JP3930393B2 - Metal separator for fuel cell and manufacturing method thereof - Google Patents

Metal separator for fuel cell and manufacturing method thereof Download PDF

Info

Publication number
JP3930393B2
JP3930393B2 JP2002228251A JP2002228251A JP3930393B2 JP 3930393 B2 JP3930393 B2 JP 3930393B2 JP 2002228251 A JP2002228251 A JP 2002228251A JP 2002228251 A JP2002228251 A JP 2002228251A JP 3930393 B2 JP3930393 B2 JP 3930393B2
Authority
JP
Japan
Prior art keywords
separator
gold
contact resistance
fuel cell
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002228251A
Other languages
Japanese (ja)
Other versions
JP2004071321A (en
Inventor
貴司 桑山
政男 宇都宮
誠 辻
輝幸 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002228251A priority Critical patent/JP3930393B2/en
Publication of JP2004071321A publication Critical patent/JP2004071321A/en
Application granted granted Critical
Publication of JP3930393B2 publication Critical patent/JP3930393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子燃料電池の構成要素であって、燃料電池のガス通路を形成する金属製セパレータおよびその製造方法に係り、特に、電極構造体との間における良好な接触抵抗性を示すとともに、優れた耐食性を確保した金属製セパレータの製造技術に関する。
【0002】
【従来の技術】
固体高分子型燃料電池は、平板状の電極構造体(MEA:Membrane Electrode Assembly)の両側にセパレータが積層された積層体が1ユニットとされ、複数のユニットが積層されて燃料電池スタックとして構成される。電極構造体は、カソードおよびアノードを構成する一対のガス拡散電極の間にイオン交換樹脂などからなる電解質膜が挟まれた三層構造である。ガス拡散電極は、電解質膜に接触する電極触媒層の外側にガス拡散層が形成されたものである。また、セパレータは、電極構造体のガス拡散電極に接触するように積層され、ガス拡散電極との間にガスを流通させるガス流路や冷媒流路が形成されている。このような燃料電池によると、例えば、アノード側のガス拡散電極に面するガス流路に燃料である水素ガスを流し、カソード側のガス拡散電極に面するガス流路に酸素や空気などの酸化性ガスを流すと電気化学反応が起こり、電気が発生する。
【0003】
上記セパレータは、アノード側の水素ガスの触媒反応により発生した電子を外部回路へ供給する一方、外部回路からの電子をカソード側に送給する機能を具備する必要がある。そこで、セパレータには黒鉛系材料や金属系材料からなる導電性材料が用いられており、特に金属系材料のものは、機械的強度に優れている点や、薄板化による軽量・コンパクト化が可能である点で有利であるとされている。金属製のセパレータは、ステンレス鋼やチタン合金などの耐食性を有する金属材料からなる薄板をプレス加工して断面凹凸状に成形したものが挙げられる。
【0004】
【発明が解決しようとする課題】
このようなセパレータは、電極構造体から発電された電気を取り出すための端子として使用されるため、ガス拡散電極との接触抵抗が低いことが必要とされる。ステンレス鋼からなるセパレータを用いた場合、黒鉛系のセパレータを用いた場合に比べて電極構造体との接触抵抗が大きい。接触抵抗の増大は発電性能の低下につながるので、接触抵抗を低減させるために、例えばステンレス鋼の表面全域に金めっき等を施すことが提案されている。しかしながら、表面全域に金めっき等を施した場合にはコストが割高となる。このため、表面の一部に金めっき等を施してガス拡散電極との間における優れた接触抵抗性が得られるセパレータの開発が要請されていた。
【0005】
また、上記セパレータは、使用時に低pHの電解質膜と接触するとともに、カソード・アノード間にて相当な電池発電電位がかかるため、優れた耐食性を有することが必要とされる。ステンレス鋼のみからなるセパレータを用いた場合、耐食性は不十分である。耐食性の不良はセパレータの寿命の短縮につながるので、耐食性を向上させるために、例えば、ステンレス鋼の表面全域に金めっき等を施すことが提案されている。しかしながら、製造コストを割高とせずに十分な発電性能を示すめっき厚、例えば厚さ0.1μmとしたセパレータでは、その表面にピンホールが存在する。このため、使用環境下においてカソード側の金とアノード側のステンレス鋼との間で部分電池が形成される。セパレータ表面に占めるピンホールの割合は微少であるが、ピンホールに電流集中が生じて錆が発生する。これにより、上記セパレータはその必要とされる寿命を実現できないという問題があった。したがって、製造コストを割高なものとしないことを前提に、セパレータとして必要な寿命を実現できる優れた耐食性を有するセパレータの開発も要請されていた。
【0006】
よって本発明は、以上のような要請に鑑みてなされたものであり、製造コストが割高とならないように、ステンレス鋼材の一部にめっきを施すことを前提とした上で、ガス拡散電極との間における優れた接触抵抗性が得られるとともに、セパレータとして必要な寿命が実現される優れた耐食性を有する燃料電池用金属製セパレータおよびその製造方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明の燃料電池用金属製セパレータは、耐食性を有する表面から導電性介在物が露出し、表面の導電性介在物が露出していない領域にのみ金が被覆されていることを特徴としている。本発明のセパレータでは、耐食性を有する表面から露出した介在物が導電経路を形成する。このためこの燃料電池用金属製セパレータは、ガス拡散電極との間における優れた接触抵抗性を得ることができる。また本発明のセパレータは、上記表面の導電性介在物が露出していない領域に金を被覆した構成を採用している。例えば、母材となる表面を形成する金属材料に上記組成のステンレス鋼板を用いた場合、導電性介在物が露出する領域は、表面全域の約10〜20%となる。したがって本発明によれば、導電性介在物が露出していない面積率80〜90%の領域に金を被覆した部分めっきとすることで、母材そのものでは達成し得ないガス拡散電極との間における優れた接触抵抗性を得ることができる。また本発明では、導電性介在物が露出している面積率10〜20%の領域には金を被覆しないこととしている。このため、カソード側の金とアノード側の母材との間で部分電池が形成されて電流集中が発生した場合であっても、この電流の導電経路を上記10〜20%の面積率を有する導電性介在物に担わせることができる。このため、上記電流集中を十分に緩和して母材の溶出に基づく錆の発生を確実に防止することができる。したがって、本発明によれば、セパレータとして必要な寿命を実現し得る優れた耐食性を確保することができる。
【0008】
なお、上記耐食性を有する表面を形成する金属材料としては、導電経路を形成する導電性介在物が金属組織中に分散するステンレス鋼板を用いることができる。具体的には、例えば次の組成を有するステンレス鋼板を用いることが望ましい。すなわち、C:0.15wt%以下、Si:0.01〜1.5wt%、Mn:0.01〜2.5wt%、P:0.035wt%以下、S:0.01wt%以下、Al:0.001〜0.2wt%、N:0.3wt%以下、Cu:0〜3wt%、Ni:7〜50wt%、Cr:17〜30wt%、Mo:0〜7wt%、残部がFe,Bおよび不可避的不純物であり、かつ、Cr,MoおよびBが次式を満足するものである。
Cr(wt%)+3×Mo(wt%)−2.5×B(wt%)≧17
このステンレス鋼板を使用した場合には、Bが、MBおよびMB型の硼化物、M23(C,B)型の硼化物として表面に析出し、これら硼化物が導電性介在物となる。
【0009】
このような燃料電池用金属製セパレータにおいては、導電性介在物を表面から突出させることが望ましい。この形態によれば、導電性介在物がガス拡散電極に接触する割合が増大するので、ガス拡散電極との間における接触抵抗をさらに低減することができる。
【0010】
次に、本発明の燃料電池用金属製セパレータの製造方法は、耐食性を有する表面から導電性介在物が露出する素材板の表面に、下地処理を施さず前記表面の導電性介在物が露出していない領域にのみ酸性浴にて金めっきを行うことを特徴としている。本発明では、耐食性を有する表面から露出した介在物に導電経路としての役割を担わせ、ガス拡散電極との間における優れた接触抵抗性を得ることができる。また、表面の導電性介在物が露出していない領域に金を被覆することで、母材そのものでは達成し得ないガス拡散電極との間における優れた接触抵抗性を得ることもできる。さらに、導電性介在物が露出している領域には金を被覆しないことで、金と母材との間に生じ得る電流集中を導電性介在物に負担させて緩和し、錆の発生を確実に防止すべく優れた耐食性を実現することができる。なお、上述した理由により、導電性介在物を表面から突出させることが望ましい。
【0011】
さらに本発明では、下地処理を施さずに直接金めっきを施している。従来は、母材と金との密着性を高めるためにニッケルめっきによる下地処理を行っていたが、金めっきにピンホールなどの欠陥が生じていると、下地処理の成分であるニッケルが溶出し易くなっていた。このため、従来のセパレータには金めっきを施しているにもかかわらず耐食性が低いという問題があった。また、ニッケルの溶出は電解質膜のイオン交換量の低下や金めっきの剥離の促進させることから、接触抵抗の増大を招くといった問題もあった。本発明では、下地処理を施さず素材板の表面に直接めっきを行うことにより、金めっきにピンホールなどの欠陥があっても、下地成分の溶出が起こらない。このため金めっきが剥離しにくくなり、ガス拡散電極との間における接触抵抗を低く抑えることができる。なお、本発明では、金めっきを酸性浴で行うことで、母材に対して金の密着性を高めることができる。
【0012】
【実施例】
次に、本発明の実施例を説明する。
A.セパレータの製造
[実施例および比較例1〜6]
表1に示す各母材により、実施例および比較例1〜6の各セパレータ用の鋼板をそれぞれ製造した。なお、表1に示す開発材とは、表2に示す各成分を有し、残部がFeと不可避的不純物であるステンレス素材をいう。次いで、これら鋼板を厚さ0.2mmまで圧延し圧延鋼を得た。さらに開発材を母材とした実施例および比較例5,6については、これら圧延鋼の両面に40℃に保持したボーメ度40゜Be(重液用ボーメ度)の塩化第二鉄溶液のシャワーを吹き付け圧1kg/cmで30秒間吹き付けて化学的エッチングを行い、圧延鋼の表面に導電性介在物を露出させてセパレータ用の素材板をそれぞれ得た。次に、これら素材板から100mm×100mmの正方形状の薄板をそれぞれ必要枚数切り出して得た。これら薄板をプレス成形して、図1に示すセパレータの成形板をそれぞれ得た。これら成形板は、中央に断面凹凸状の発電部を有し、その周囲に平坦な縁部を有している。
【0013】
【表1】

Figure 0003930393
【0014】
【表2】
Figure 0003930393
【0015】
さらに、各成形板の両面を不動態化処理して成形板表面に強固な酸化被膜を形成した。不動態化処理は、成形板をアセトンで10分間脱脂洗浄後、30℃に保持した10wt%硝酸液浴の中に10分間浸漬することによって行った。不動態化処理後は常温水による10分間の洗浄を2回行い、この後乾燥させた。
【0016】
次に、比較例1以外の成形板の両面に金めっきを行った。比較例2〜6の成形板については表1に示す条件(めっき浴への浸漬時間)下で、30℃に保持し、電流密度が1.0A/dmであり、pHが0.5〜0.9に設定された青化金(2g/L)のめっき浴に浸漬することにより行った。なお、実施例の成形板については、マトリックス(母材表面の導電性介在物が露出していない領域)上にのみ金をめっきするため、予めマトリックス上にのみ金をめっきする方法について検討した。その結果、表3に示すように予め金ストライクめっきを施してから金めっきを施す場合と、金めっきのみを施す場合とについて、好適なめっき浴が判明した。具体的には金ストライクめっきを施すか否かに関わらず、酸性浴で電流密度が2.0A/dm以下であり、浸漬時間が12分以下であれば、マトリックスのみに金をめっきすることができるとの知見を得た。そこで、発明者らは、実施例の成形板については、電流密度0.5A/dmとするとともに、pHが3〜6に設定された青化金(2g/L)のめっき浴に5分浸漬した。最後に、金めっきを施したものについては、常温水による10分間の水洗を2回行い、実施例および比較例1〜6の各セパレータを得た。
【0017】
【表3】
Figure 0003930393
【0018】
B.表面の観察
上記実施例のセパレータの表面を走査電子顕微鏡で観察した。図2はそのSEM写真であり、金めっきがマトリックス上のみに析出し、その他の部分には、導電性介在物が析出していることが判る。
【0019】
C.めっきの面積率の測定
1000倍のSEM写真から粒子状の金の被覆面積を画像解析ソフトを用いて求め、金属間化合物の面積に対する金の面積を計算によって求めた。各セパレータについて任意に30カ所を選択して測定した平均値を表1に併記する。
【0020】
D.初期の接触抵抗の測定
実施例および比較例1〜6の7種類のセパレータにつき、次の方法で初期の接触抵抗を測定した。2枚のセパレータで電極構造体のガス拡散層の表面を構成するカーボンペーパーを挟み、これを2枚の電極板で挟み、さらに電極板に対するセパレータの面圧が10kg/cmになるように荷重をかけ、試験体をセットした。そして、2枚のセパレータ間に電流を流し、セパレータ間の電圧降下から接触抵抗を求めた。その結果を表4に示す。同表によれば、実施例のセパレータは、めっきの面積率が比較例2,4,5,6のセパレータに比して低いにも関わらず、これらのセパレータと同等の優れた接触抵抗性を示す。これは、金めっきをマトリックス上のみに施したことで、接触抵抗性の不良な母材には導電経路を担わせず、金および導電性介在物の双方に導電経路を負担させ、優れた接触抵抗性を実現したからである。これに対し、比較例1,3のセパレータについては、金めっきの面積率が皆無かまたは著しく低いものであるため、接触抵抗性の不良な母材に導電経路を担わせなければならず、このため優れた接触抵抗性を得ることはできない。
【0021】
【表4】
Figure 0003930393
【0022】
E.硫酸浸漬試験後の接触抵抗の測定
実施例および比較例1〜6の7種類の未使用のセパレータのそれぞれを、90℃、pH3の硫酸に1000時間浸漬した。次いで、各セパレータの硫酸浸漬試験後の接触抵抗を上記したように測定した。その結果を表4に併記する。同表によれば、実施例のセパレータは、いずれの比較例のセパレータに対しても、同等以上の優れた接触抵抗値示すことが判る。これは、カソード側の金とアノード側の母材との間で部分電池が形成されて電流集中が発生した場合であっても、この電流の導電経路を15%の面積率を有する導電性介在物に担わせることができるからである。このため、上記電流集中を十分に緩和して母材の溶出に基づく錆の発生を確実に防止することができる。これに対し、比較例2,5,6のセパレータについては、金の面積率が高過ぎることから上記部分電池が形成され易い。しかも金めっきがマトリックス上に限らず、導電性介在部上にも施されているため、電流集中を緩和すべき導電性介在物が金めっきにより消失している箇所がある。このため、比較例2,5,6のセパレータについては、電流集中により母材が溶出し、錆が発生することから優れた接触抵抗性が実現できない。なお、比較例1,3のセパレータについては初期の接触抵抗が高いために優れた接触抵抗性を実現することができない。また、比較例4のセパレータについては、金めっきの面積率が比較例2,5,6のセパレータに比して多少低いものであるが、めっき部分がマトリックスに限定されていないため、実施例のセパレータよりも優れた接触抵抗性が実現できない。
【0023】
F.塩水噴霧−乾燥試験後の錆の観察
実施例および比較例1〜6の7種類の未使用のセパレータのそれぞれに塩水を12時間噴霧した後12時間乾燥させるサイクルを250サイクル繰り返した。その後、各セパレータの表面を目視にて観察し、錆の発生の有無を調査した。その結果を表4に併記する。同表によれば、初期の接触抵抗に比して塩水噴霧−乾燥試験後の接触抵抗が大幅に増大した比較例2,5,6については錆の発生が確認された。これは、上述した部分電池の形成による母材の溶出が原因である。これに対し、初期の接触抵抗に比して塩水噴霧−乾燥試験後の接触抵抗が比較的増大しなかった実施例および比較例1,3,4については錆の発生は確認されなかった。
【0024】
【発明の効果】
以上説明したように、本発明によれば、耐食性を有する表面から導電性介在物を露出させ、表面の導電性介在物が露出していない領域に金を被覆させることで、燃料電池用金属製セパレータの優れた接触抵抗性および耐食性を実現することができる。よって本発明は、好適な燃料電池用金属製セパレータを製造することができる点で有望である。
【図面の簡単な説明】
【図1】 セパレータの成形板の一例を示す平面図である。
【図2】 実施例のセパレータの表面のSEM写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal separator that is a component of a solid polymer fuel cell and forms a gas passage of the fuel cell, and a method for manufacturing the same, and in particular, exhibits good contact resistance with an electrode structure. In addition, the present invention relates to a manufacturing technique of a metallic separator that ensures excellent corrosion resistance.
[0002]
[Prior art]
In the polymer electrolyte fuel cell, a laminated body in which separators are laminated on both sides of a plate electrode assembly (MEA) is formed as one unit, and a plurality of units are laminated to form a fuel cell stack. The The electrode structure has a three-layer structure in which an electrolyte membrane made of an ion exchange resin or the like is sandwiched between a pair of gas diffusion electrodes constituting a cathode and an anode. In the gas diffusion electrode, a gas diffusion layer is formed on the outside of the electrode catalyst layer in contact with the electrolyte membrane. The separator is laminated so as to be in contact with the gas diffusion electrode of the electrode structure, and a gas flow path and a refrigerant flow path for allowing a gas to flow between the separator and the gas diffusion electrode are formed. According to such a fuel cell, for example, hydrogen gas, which is a fuel, is allowed to flow in a gas flow channel facing the gas diffusion electrode on the anode side, and oxidation such as oxygen or air is performed on the gas flow channel facing the gas diffusion electrode on the cathode side. When a sex gas is flowed, an electrochemical reaction occurs and electricity is generated.
[0003]
The separator needs to have a function of supplying electrons generated by the catalytic reaction of hydrogen gas on the anode side to the external circuit, and supplying electrons from the external circuit to the cathode side. Therefore, conductive materials such as graphite and metal materials are used for the separator. Especially metal materials are excellent in mechanical strength, and can be made lighter and more compact by making them thinner. It is said that it is advantageous at this point. Examples of the metal separator include those formed by pressing a thin plate made of a metal material having corrosion resistance such as stainless steel and titanium alloy so as to have a cross-sectional uneven shape.
[0004]
[Problems to be solved by the invention]
Since such a separator is used as a terminal for taking out the electricity generated from the electrode structure, the contact resistance with the gas diffusion electrode is required to be low. When a stainless steel separator is used, the contact resistance with the electrode structure is greater than when a graphite separator is used. Since an increase in contact resistance leads to a decrease in power generation performance, it has been proposed to apply, for example, gold plating to the entire surface of stainless steel in order to reduce the contact resistance. However, when gold plating or the like is applied to the entire surface, the cost is high. Therefore, there has been a demand for the development of a separator capable of obtaining excellent contact resistance with a gas diffusion electrode by performing gold plating or the like on a part of the surface.
[0005]
Further, the separator is required to have excellent corrosion resistance because it is in contact with the low pH electrolyte membrane during use and a considerable battery power generation potential is applied between the cathode and the anode. When a separator made only of stainless steel is used, the corrosion resistance is insufficient. Since poor corrosion resistance leads to shortening of the life of the separator, for example, it has been proposed to apply gold plating or the like over the entire surface of the stainless steel in order to improve the corrosion resistance. However, a separator having a plating thickness exhibiting sufficient power generation performance without increasing the manufacturing cost, for example, a thickness of 0.1 μm, has pinholes on the surface thereof. Therefore, a partial cell is formed between the gold on the cathode side and the stainless steel on the anode side in the use environment. Although the ratio of pinholes on the separator surface is very small, current concentration occurs in the pinholes and rust is generated. As a result, there is a problem that the separator cannot realize the required life. Therefore, on the premise that the manufacturing cost is not high, development of a separator having excellent corrosion resistance capable of realizing a life required as a separator has been demanded.
[0006]
Therefore, the present invention has been made in view of the above demands, and on the premise that a part of the stainless steel material is plated so that the manufacturing cost is not expensive, It is an object of the present invention to provide a metal separator for a fuel cell and a method for producing the same, which have excellent contact resistance, and have excellent corrosion resistance that realizes a required life as a separator.
[0007]
[Means for Solving the Problems]
The metal separator for a fuel cell according to the present invention is characterized in that the conductive inclusions are exposed from the surface having corrosion resistance, and gold is coated only in the region where the conductive inclusions on the surface are not exposed. In the separator of the present invention, inclusions exposed from the surface having corrosion resistance form a conductive path. For this reason, this metal separator for fuel cells can obtain excellent contact resistance with the gas diffusion electrode. Moreover, the separator of this invention employ | adopts the structure which coat | covered the gold | metal | money to the area | region where the conductive inclusion of the said surface is not exposed. For example, when a stainless steel plate having the above composition is used as the metal material that forms the surface to be the base material, the region where the conductive inclusions are exposed is about 10 to 20% of the entire surface. Therefore, according to the present invention, by forming a partial plating in which the area of 80 to 90% of the area ratio where the conductive inclusions are not exposed is covered with gold, the gap between the gas diffusion electrode which cannot be achieved with the base material itself is achieved. Excellent contact resistance can be obtained. Moreover, in this invention, it is supposed that gold | metal | money is not coat | covered to the area | region of the area ratio 10-20% which the electroconductive inclusion is exposed. For this reason, even when a partial cell is formed between the gold on the cathode side and the base material on the anode side and current concentration occurs, the current conduction path has an area ratio of 10 to 20%. It can be carried by conductive inclusions. For this reason, the current concentration can be sufficiently relaxed to reliably prevent the occurrence of rust based on the dissolution of the base material. Therefore, according to this invention, the outstanding corrosion resistance which can implement | achieve a lifetime required as a separator is securable.
[0008]
In addition, as a metal material which forms the surface which has the said corrosion resistance, the stainless steel plate in which the conductive inclusion which forms a conduction path disperse | distributes in a metal structure can be used. Specifically, for example, it is desirable to use a stainless steel plate having the following composition. That is, C: 0.15 wt% or less, Si: 0.01 to 1.5 wt%, Mn: 0.01 to 2.5 wt%, P: 0.035 wt% or less, S: 0.01 wt% or less, Al: 0.001-0.2 wt%, N: 0.3 wt% or less, Cu: 0-3 wt%, Ni: 7-50 wt%, Cr: 17-30 wt%, Mo: 0-7 wt%, balance is Fe, B And inevitable impurities, and Cr, Mo and B satisfy the following formula.
Cr (wt%) + 3 × Mo (wt%) − 2.5 × B (wt%) ≧ 17
When this stainless steel plate is used, B precipitates on the surface as M 2 B and MB type borides and M 23 (C, B) 6 type borides, and these borides are separated from conductive inclusions. Become.
[0009]
In such a metal separator for a fuel cell, it is desirable that the conductive inclusions protrude from the surface. According to this aspect, since the ratio of the conductive inclusions contacting the gas diffusion electrode increases, the contact resistance with the gas diffusion electrode can be further reduced.
[0010]
A method of manufacturing a metal separator for a fuel cell of the present invention, the surface of the material plate the conductive inclusions from the surface having a corrosion resistance is exposed, conductive inclusions of the surface is exposed without being subjected to surface treatment It is characterized in that gold plating is carried out in an acidic bath only in an unexposed area . In the present invention, the inclusion exposed from the surface having corrosion resistance can play a role as a conductive path, and excellent contact resistance with the gas diffusion electrode can be obtained. In addition, by coating gold on the region where the conductive inclusions on the surface are not exposed, excellent contact resistance with the gas diffusion electrode that cannot be achieved with the base material itself can be obtained. Furthermore, by not covering the exposed area of the conductive inclusions with gold, the current concentration that can occur between the gold and the base metal is borne on the conductive inclusions and alleviated, and the occurrence of rust is ensured. Therefore, excellent corrosion resistance can be realized. For the reasons described above, it is desirable that the conductive inclusions protrude from the surface.
[0011]
Furthermore, in the present invention, the gold plating is directly performed without applying the base treatment. Conventionally, surface treatment by nickel plating has been performed to improve the adhesion between the base material and gold. However, if defects such as pinholes occur in the gold plating, nickel, which is a component of the surface treatment, is eluted. It was easy. For this reason, the conventional separator has a problem that the corrosion resistance is low despite the gold plating. Further, the elution of nickel causes a decrease in the ion exchange amount of the electrolyte membrane and promotes the peeling of the gold plating, which causes an increase in contact resistance. In the present invention, by performing the plating directly on the surface of the material plate without applying the ground treatment, even if the gold plating has a defect such as a pinhole, the ground component does not elute. For this reason, it becomes difficult to peel gold plating, and the contact resistance with the gas diffusion electrode can be kept low. In the present invention, gold adhesion to the base material can be enhanced by performing gold plating in an acidic bath.
[0012]
【Example】
Next, examples of the present invention will be described.
A. Production of separator [Examples and Comparative Examples 1 to 6]
The steel plates for separators of Examples and Comparative Examples 1 to 6 were manufactured using the base materials shown in Table 1, respectively. The developed material shown in Table 1 refers to a stainless steel material having the components shown in Table 2 with the balance being Fe and inevitable impurities. Subsequently, these steel plates were rolled to a thickness of 0.2 mm to obtain rolled steel. Further, in Examples and Comparative Examples 5 and 6 using the developed material as a base material, a shower of ferric chloride solution with a Baume degree of 40 ° Be (heavy liquid Baume degree) maintained at 40 ° C. on both surfaces of these rolled steels. Were sprayed at a spraying pressure of 1 kg / cm 2 for 30 seconds to perform chemical etching, exposing conductive inclusions on the surface of the rolled steel, and obtaining separator plates. Next, a necessary number of 100 mm × 100 mm square thin plates were cut out from these material plates. These thin plates were press-molded to obtain separator molded plates shown in FIG. These molded plates have a power generation part having a concavo-convex cross section at the center and a flat edge around the power generation part.
[0013]
[Table 1]
Figure 0003930393
[0014]
[Table 2]
Figure 0003930393
[0015]
Further, both surfaces of each molded plate were passivated to form a strong oxide film on the molded plate surface. The passivation treatment was performed by immersing the molded plate in a 10 wt% nitric acid bath maintained at 30 ° C. for 10 minutes after degreasing and washing with acetone for 10 minutes. After the passivation treatment, it was washed twice with normal temperature water for 10 minutes and then dried.
[0016]
Next, gold plating was performed on both surfaces of the molded plate other than Comparative Example 1. About the shaping | molding board of Comparative Examples 2-6, it hold | maintains at 30 degreeC under the conditions (immersion time to a plating bath) shown in Table 1, a current density is 1.0 A / dm < 2 >, and pH is 0.5- It was performed by dipping in a plating bath of gold cyanide (2 g / L) set to 0.9. In addition, about the shaping | molding board of an Example, in order to plate gold only on a matrix (area | region where the conductive inclusion of the base material surface is not exposed), the method of plating gold only on a matrix was examined previously. As a result, as shown in Table 3, a suitable plating bath was found for the case where gold plating was performed after gold strike plating was performed in advance and the case where only gold plating was performed. Specifically, regardless of whether or not to perform gold strike plating, if the current density is 2.0 A / dm 2 or less in an acidic bath and the immersion time is 12 minutes or less, only the matrix is plated with gold. I got the knowledge that I can do it. Therefore, the inventors set a current density of 0.5 A / dm 2 for the molded plate of the example and put it in a plating bath of gold bromide (2 g / L) whose pH was set to 3 to 6 for 5 minutes. Soaked. Finally, about what gave gold plating, the water washing for 10 minutes by normal temperature water was performed twice, and each separator of an Example and Comparative Examples 1-6 was obtained.
[0017]
[Table 3]
Figure 0003930393
[0018]
B. Surface Observation The surface of the separator of the above example was observed with a scanning electron microscope. FIG. 2 is an SEM photograph showing that gold plating is deposited only on the matrix, and conductive inclusions are deposited in other portions.
[0019]
C. Measurement of area ratio of plating The coated area of the particulate gold was determined from an SEM photograph of 1000 times using image analysis software, and the area of gold relative to the area of the intermetallic compound was determined by calculation. Table 1 shows the average values measured by arbitrarily selecting 30 locations for each separator.
[0020]
D. Measurement of initial contact resistance For the seven types of separators of Examples and Comparative Examples 1 to 6, initial contact resistance was measured by the following method. The carbon paper that constitutes the surface of the gas diffusion layer of the electrode structure is sandwiched between two separators, which is sandwiched between two electrode plates, and further loaded so that the surface pressure of the separator against the electrode plates is 10 kg / cm 2 The test specimen was set. A current was passed between the two separators, and the contact resistance was determined from the voltage drop between the separators. The results are shown in Table 4. According to the table, the separators of the examples had excellent contact resistance equivalent to those of the separators although the plating area ratio was lower than that of the separators of Comparative Examples 2, 4, 5, and 6. Show. This is because gold plating is applied only on the matrix, so that the base material with poor contact resistance does not bear the conductive path, and both the gold and the conductive inclusions bear the conductive path, thus providing excellent contact. This is because resistance is realized. On the other hand, for the separators of Comparative Examples 1 and 3, the area ratio of the gold plating is none or extremely low, so the base material with poor contact resistance must have a conductive path. Therefore, excellent contact resistance cannot be obtained.
[0021]
[Table 4]
Figure 0003930393
[0022]
E. Measurement of Contact Resistance after Sulfuric Acid Immersion Test Each of the seven unused separators of Examples and Comparative Examples 1 to 6 was immersed in sulfuric acid at 90 ° C. and pH 3 for 1000 hours. Subsequently, the contact resistance after the sulfuric acid immersion test of each separator was measured as described above. The results are also shown in Table 4. According to the table, it can be seen that the separators of the examples show an excellent contact resistance value equal to or higher than the separators of any of the comparative examples. This is because even when a partial cell is formed between gold on the cathode side and the base material on the anode side and current concentration occurs, the conductive path of this current has a conductive ratio having an area ratio of 15%. This is because it can be carried by things. For this reason, the current concentration can be sufficiently relaxed to reliably prevent the occurrence of rust based on the dissolution of the base material. On the other hand, in the separators of Comparative Examples 2, 5, and 6, since the area ratio of gold is too high, the partial battery is easily formed. Moreover, since the gold plating is applied not only on the matrix but also on the conductive intervening portion, there are places where the conductive inclusion that should alleviate the current concentration disappears due to the gold plating. For this reason, the separators of Comparative Examples 2, 5, and 6 cannot realize excellent contact resistance because the base material is eluted due to current concentration and rust is generated. In addition, about the separator of Comparative Examples 1 and 3, since the initial contact resistance is high, excellent contact resistance cannot be realized. Moreover, about the separator of the comparative example 4, although the area rate of gold plating is a little low compared with the separator of the comparative examples 2, 5, and 6, since the plating part is not limited to a matrix, Contact resistance superior to that of a separator cannot be realized.
[0023]
F. Observation of rust after salt spray-drying test Each of the seven unused separators of Comparative Examples 1 to 6 was sprayed with salt water for 12 hours and then dried for 12 hours. The cycle was repeated 250 cycles. Thereafter, the surface of each separator was visually observed to check for the occurrence of rust. The results are also shown in Table 4. According to the table, the occurrence of rust was confirmed in Comparative Examples 2, 5, and 6 in which the contact resistance after the salt spray-drying test was significantly increased compared to the initial contact resistance. This is due to the elution of the base material due to the formation of the partial battery described above. On the other hand, the generation of rust was not confirmed in Examples and Comparative Examples 1, 3 and 4 in which the contact resistance after the salt spray-drying test did not relatively increase as compared with the initial contact resistance.
[0024]
【The invention's effect】
As described above, according to the present invention, the conductive inclusions are exposed from the surface having corrosion resistance, and the region where the conductive inclusions on the surface are not exposed is covered with gold, so that Excellent contact resistance and corrosion resistance of the separator can be realized. Therefore, the present invention is promising in that a suitable metal separator for a fuel cell can be produced.
[Brief description of the drawings]
FIG. 1 is a plan view showing an example of a molded plate of a separator.
FIG. 2 is a SEM photograph of the surface of a separator of an example.

Claims (3)

耐食性を有する表面から導電性介在物が露出し、前記表面の導電性介在物が露出していない領域にのみ金が被覆されていることを特徴とする燃料電池用金属製セパレータ。A metal separator for a fuel cell, wherein conductive inclusions are exposed from a surface having corrosion resistance, and gold is coated only in a region where the conductive inclusions on the surface are not exposed. 前記導電性介在物が表面から突出していることを特徴とする請求項1に記載の燃料電池用金属製セパレータ。  The metal separator for a fuel cell according to claim 1, wherein the conductive inclusion protrudes from the surface. 耐食性を有する表面から導電性介在物が露出する素材板の表面に、下地処理を施さず前記表面の導電性介在物が露出していない領域にのみ酸性浴にて金めっきを行うことを特徴とする燃料電池用金属製セパレータの製造方法。The surface of the material plate where the conductive inclusions are exposed from the surface having corrosion resistance is characterized by performing gold plating in an acidic bath only in a region where the surface is not exposed without conducting a ground treatment. A method for manufacturing a metal separator for a fuel cell.
JP2002228251A 2002-08-06 2002-08-06 Metal separator for fuel cell and manufacturing method thereof Expired - Fee Related JP3930393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002228251A JP3930393B2 (en) 2002-08-06 2002-08-06 Metal separator for fuel cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002228251A JP3930393B2 (en) 2002-08-06 2002-08-06 Metal separator for fuel cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004071321A JP2004071321A (en) 2004-03-04
JP3930393B2 true JP3930393B2 (en) 2007-06-13

Family

ID=32014990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002228251A Expired - Fee Related JP3930393B2 (en) 2002-08-06 2002-08-06 Metal separator for fuel cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3930393B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100683419B1 (en) 2005-03-08 2007-02-20 자동차부품연구원 Bipolar plate for fuel cell
EP1978582A1 (en) * 2007-04-05 2008-10-08 Atotech Deutschland Gmbh Process for the preparation of electrodes for use in a fuel cell
JP2009140789A (en) 2007-12-07 2009-06-25 Toyota Motor Corp Method for manufacturing fuel cell separator, and fuel cell separator
JP5157405B2 (en) 2007-12-07 2013-03-06 トヨタ自動車株式会社 Terminal plate and fuel cell for fuel cell
KR101165542B1 (en) * 2009-08-21 2012-07-16 현대하이스코 주식회사 Metal separator for fuel cell having coating film and method for the same
KR101938500B1 (en) 2014-08-19 2019-01-14 신닛테츠스미킨 카부시키카이샤 Metal material and current-carrying component using said metal material
EP3258522A4 (en) * 2015-02-13 2018-01-24 Nippon Steel & Sumitomo Metal Corporation Ferritic stainless steel material, separator, solid polymer fuel cell, and method for producing separator
JP6057034B1 (en) * 2015-02-13 2017-01-11 新日鐵住金株式会社 Separator for polymer electrolyte fuel cell and method for producing the same

Also Published As

Publication number Publication date
JP2004071321A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
JP4327489B2 (en) Metal separator for fuel cell and manufacturing method thereof
US8778562B2 (en) Method of depositing durable thin gold coating on fuel cell bipolar plates
JPWO2003079477A1 (en) Cell unit of solid polymer electrolyte fuel cell
JP2013225513A (en) Process for manufacturing electrodes for use in fuel cell
JP4901864B2 (en) Separator for solid polymer fuel cell made of pure titanium or titanium alloy and method for producing the same
JP2010027262A (en) Fuel cell separator and fuel cell
TWI515944B (en) Stainless steel foil for separator between solid polymer fuel cell
JP2000323152A (en) Separator for stainless steel low-temperature type fuel cell and manufacture thereof
JP3930393B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP5796694B1 (en) Stainless steel foil for separator of polymer electrolyte fuel cell
US8367241B2 (en) Separator for fuel cell and manufacturing method therefor
JP4234597B2 (en) Manufacturing method of fuel cell separator
JP3917442B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP4040008B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP4274737B2 (en) Metal separator for fuel cell and manufacturing method thereof
WO2014010663A1 (en) Fuel cell separator, fuel cell, fuel cell stack, and method for producing fuel cell separator
JP5700183B1 (en) Stainless steel foil for separator of polymer electrolyte fuel cell
JP2003123782A (en) Separator for fuel cell, its manufacturing method, and fuel cell
JP3971267B2 (en) Material plate for metal separator for fuel cell and metal separator for fuel cell using the same
JP2003187817A (en) Separator for fuel cell
JP5466269B2 (en) Fuel cell separator and fuel cell
TW201727980A (en) Stainless steel sheet for fuel cell separators and method for producing same
JP2003092118A (en) Separator for fuel cell
KR20110018058A (en) Bipolar plate for fuel cell and manufacturing method thereof
JP2017152225A (en) Curent collector plate for fuel battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees