JP5180932B2 - Method for forming metal-containing carbon film for fuel cell separator and method for forming corrosion-resistant film for fuel cell separator - Google Patents

Method for forming metal-containing carbon film for fuel cell separator and method for forming corrosion-resistant film for fuel cell separator Download PDF

Info

Publication number
JP5180932B2
JP5180932B2 JP2009201697A JP2009201697A JP5180932B2 JP 5180932 B2 JP5180932 B2 JP 5180932B2 JP 2009201697 A JP2009201697 A JP 2009201697A JP 2009201697 A JP2009201697 A JP 2009201697A JP 5180932 B2 JP5180932 B2 JP 5180932B2
Authority
JP
Japan
Prior art keywords
film
metal
forming
containing carbon
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009201697A
Other languages
Japanese (ja)
Other versions
JP2011052266A (en
Inventor
俊樹 佐藤
良規 伊藤
順 鈴木
宣裕 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009201697A priority Critical patent/JP5180932B2/en
Publication of JP2011052266A publication Critical patent/JP2011052266A/en
Application granted granted Critical
Publication of JP5180932B2 publication Critical patent/JP5180932B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池に使用される燃料電池セパレータの表面を被覆して耐食性を付与する皮膜の形成方法に関する。   The present invention relates to a method of forming a coating that coats the surface of a fuel cell separator used in a fuel cell to provide corrosion resistance.

水素等の燃料と酸素等の酸化剤を供給し続けることで継続的に電力を取り出すことができる燃料電池は、乾電池等の一次電池や鉛蓄電池等の二次電池とは異なり、発電効率が高くシステム規模の大小にあまり影響されず、騒音や振動も少ないため、多様な用途・規模をカバーするエネルギー源として期待されている。燃料電池は、具体的には、固体高分子型燃料電池(PEFC)、アルカリ電解質型燃料電池(AFC)、リン酸型燃料電池(PAFC)、溶融炭酸塩型燃料電池(MCFC)、固体酸化物型燃料電池(SOFC)、バイオ燃料電池等として開発されている。中でも、燃料電池自動車や、家庭用コジェネレーションシステム、携帯電話やパソコン向けとして、固体高分子型燃料電池の開発が進められている。   Unlike primary batteries such as dry batteries and secondary batteries such as lead-acid batteries, fuel cells that can continuously extract power by continuing to supply fuel such as hydrogen and oxidants such as oxygen have high power generation efficiency. It is not affected by the size of the system so much, and has little noise and vibration, so it is expected as an energy source covering various applications and scales. Specifically, the fuel cell includes a polymer electrolyte fuel cell (PEFC), an alkaline electrolyte fuel cell (AFC), a phosphoric acid fuel cell (PAFC), a molten carbonate fuel cell (MCFC), and a solid oxide. It has been developed as a type fuel cell (SOFC) and biofuel cell. In particular, solid polymer fuel cells are being developed for fuel cell vehicles, home cogeneration systems, mobile phones and personal computers.

固体高分子型燃料電池(以下、燃料電池という)は、固体高分子電解質膜をアノード電極とカソード電極とで挟んだものを単セルとし、ガス(水素、酸素等)の流路となる溝が形成されたセパレータ(バイポーラプレートとも呼ばれる)を介して前記単セルを複数個重ね合わせて構成される。   A polymer electrolyte fuel cell (hereinafter referred to as a fuel cell) is a single cell in which a solid polymer electrolyte membrane is sandwiched between an anode electrode and a cathode electrode, and has a groove serving as a flow path for gas (hydrogen, oxygen, etc.). A plurality of the single cells are overlapped through a formed separator (also called a bipolar plate).

セパレータは、燃料電池において発生した電流を外部へ取り出すための部品でもあるので、接触抵抗(電極とセパレータ表面との間で、界面現象のために電圧降下が生じることをいう。)が低い材料が適用される。さらに近年では、セパレータは、燃料電池の薄型化・軽量化のため、薄肉化を可能とするための高強度および加工性が要求されている。この要求を満足するため、従来のカーボンに代えて、低抵抗であるだけでなく、加工性および強度に優れたアルミニウム、チタン、ニッケル、それらを基とする合金、あるいはステンレス鋼等の金属材料を用いて軽量化されたセパレータが検討されている。   Since the separator is also a part for taking out the current generated in the fuel cell to the outside, a material having a low contact resistance (which means that a voltage drop occurs due to an interface phenomenon between the electrode and the separator surface). Applied. Furthermore, in recent years, separators are required to have high strength and workability to enable thinning of the fuel cell in order to reduce the thickness and weight of the fuel cell. In order to satisfy this requirement, instead of conventional carbon, not only low resistance, but also metal materials such as aluminum, titanium, nickel, alloys based on them, stainless steel, etc. that are excellent in workability and strength are used. Separators that have been made lighter are being studied.

燃料電池の内部はpH2〜4程度の酸性雰囲気であるため、セパレータは前記特性以外に高耐食性が要求され、さらに低い接触抵抗がこの酸性雰囲気での使用中に長期間維持されるという特性も要求される。アルミニウムやステンレス鋼等をセパレータとすると、酸性雰囲気で腐食して金属イオンが溶出することにより、固体高分子電解質膜や触媒を劣化させてしまう。一方、耐食性が良好なチタン等の金属は、腐食環境下で導電性の低い不働態皮膜を形成するため、接触抵抗が劣化(上昇)する。そのため、これらの金属材料を基材としてその表面に耐食性および導電性を有する皮膜を被覆したセパレータが開発されている。   Since the inside of the fuel cell is in an acidic atmosphere having a pH of about 2 to 4, the separator is required to have high corrosion resistance in addition to the above characteristics, and further has a characteristic that a low contact resistance is maintained for a long time during use in this acidic atmosphere. Is done. When aluminum, stainless steel, or the like is used as a separator, the solid polymer electrolyte membrane and the catalyst are deteriorated due to corrosion in an acidic atmosphere and the elution of metal ions. On the other hand, a metal such as titanium having good corrosion resistance forms a passive film having low conductivity in a corrosive environment, so that the contact resistance is deteriorated (increased). Therefore, a separator has been developed in which these metal materials are used as a base material and the surface thereof is coated with a coating having corrosion resistance and conductivity.

このような皮膜にAu等の貴金属を適用したセパレータが開示されている。例えば、特許文献1には、ステンレス鋼からなる基材の表面に厚さ10〜60nmの金めっきを施したセパレータが記載されている。また、特許文献2には、基材表面にAu等の貴金属または貴金属合金を厚さ5nm以上で付着させたセパレータが記載されている。また、特許文献3には、貴金属の使用量を抑えるために、チタン等の耐食性に優れた金属を基材とすることで、貴金属皮膜は導電性のみを付与できる程度に薄く形成したセパレータが記載されている。   A separator in which a noble metal such as Au is applied to such a film is disclosed. For example, Patent Document 1 describes a separator in which a surface of a base material made of stainless steel is subjected to gold plating with a thickness of 10 to 60 nm. Further, Patent Document 2 describes a separator in which a noble metal such as Au or a noble metal alloy is adhered to a surface of a substrate with a thickness of 5 nm or more. Patent Document 3 describes a separator formed by using a metal having excellent corrosion resistance, such as titanium, as a base material so that the amount of noble metal used is reduced, so that the noble metal film is thin enough to provide only conductivity. Has been.

一方、貴金属を適用するとコスト高となるため、貴金属を含まない皮膜によるセパレータが開示されている。例えば、特許文献4には、水素を含有するダイヤモンド状炭素層を基材表面に形成したセパレータが記載されている。また、特許文献5には、炭素層の下地として、第4〜6族金属元素、ケイ素、またはホウ素からなる層を基材表面に形成して密着性をよくしたセパレータが記載されている。   On the other hand, when a noble metal is applied, the cost increases. Therefore, a separator using a film that does not contain a noble metal is disclosed. For example, Patent Document 4 describes a separator in which a diamond-like carbon layer containing hydrogen is formed on a substrate surface. Patent Document 5 describes a separator in which a layer made of a Group 4 to 6 metal element, silicon, or boron is formed on a substrate surface as a base for a carbon layer to improve adhesion.

特開平10−228914号公報JP-A-10-228914 特開2001−6713号公報JP 2001-6713 A 特開2004−158437号公報JP 2004-158437 A 特開2005−93172号公報JP-A-2005-93172 特開2004−14208号公報Japanese Patent Laid-Open No. 2004-14208

特許文献4,5に記載された炭素膜(層)は、通常のPVD法やCVD法で成膜されている。例えば、特許文献4にはイオンビーム法による成膜が記載されているが、イオンビーム法は大面積への成膜は可能であるが成膜速度が遅い。一方、特許文献5には、方法の詳細は記載されていないが、例えばカーボンターゲットを用いたスパッタリング法で成膜すると、成膜速度が遅くて生産コストが高くなる。また、炭素膜の膜応力緩和、基材への結合力向上による密着性向上、および抵抗低減のためには、炭素膜中に金属成分を添加することが望ましいが、通常のスパッタリング法やイオンビーム法ではこれが困難である。例えばスパッタリング法で金属成分を含有する炭素膜を形成するためには、カーボンターゲットと金属ターゲットを同時放電するが、基材や2つのターゲットの配置を調整しても、一定以上の面積に均一な組成の膜を形成することが難しい。   The carbon films (layers) described in Patent Documents 4 and 5 are formed by a normal PVD method or a CVD method. For example, Patent Document 4 describes film formation by an ion beam method. The ion beam method can form a film over a large area, but the film formation speed is slow. On the other hand, although details of the method are not described in Patent Document 5, for example, when a film is formed by a sputtering method using a carbon target, the film formation speed is slow and the production cost is high. In addition, it is desirable to add a metal component to the carbon film in order to alleviate the stress of the carbon film, improve adhesion by improving the bonding force to the substrate, and reduce resistance. This is difficult by law. For example, in order to form a carbon film containing a metal component by sputtering, the carbon target and the metal target are discharged at the same time, but even if the arrangement of the base material and the two targets is adjusted, it is uniform over a certain area. It is difficult to form a film having a composition.

本発明は前記問題点に鑑みてなされたものであり、低い接触抵抗を長期間維持して使用できる燃料電池セパレータとするための低コストな炭素膜を、生産性よく形成できる製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a manufacturing method capable of forming a low-cost carbon film with high productivity for a fuel cell separator that can be used while maintaining low contact resistance for a long period of time. For the purpose.

本発明者は、金属含有硬質炭素膜の製造方法として、特許第3734656号を発明している。この発明では、従来のアークイオンプレーティング(AIP)装置とは異なり、図2に示すように、金属ターゲット(蒸発源)2の蒸発させる面(蒸発面)またはその前方(被処理体W側)を取り囲むように磁界形成手段(磁石)3が配置されたアーク式蒸発源を有するAIP装置を用いる。磁界形成手段3はこのように配置されることで、蒸発源2の蒸発面にほぼ直交して前方に発散ないし平行に進行する磁力線(図2中の破線)を形成して、この磁力線で被処理体(基材)Wの近傍で雰囲気ガスに含む炭化水素系ガスのプラズマ化が促進されることによって、金属が過剰にならずに含有される硬質炭素膜を形成する方法である。この製造方法は、成膜速度が速く生産性に優れ、また、蒸発源の前方で炭化水素ガスのプラズマが生成するため、蒸発した金属のイオンまたは原子が炭素等からなるプラズマ中を飛来して被処理体に付着して膜に含有するため、組成および膜厚が均一な膜が容易に成膜できるという特徴がある。前記発明の方法で得られる硬質膜はセパレータ用の皮膜に要求される特性については考慮されていないが、鋭意研究の結果、この製造方法において、セパレータの仕様(接触抵抗、耐食性等)を満足する炭素膜を形成するための、蒸発源とする金属の種類および成膜条件を見出した。   The inventor has invented Japanese Patent No. 3734656 as a method for producing a metal-containing hard carbon film. In the present invention, unlike the conventional arc ion plating (AIP) apparatus, as shown in FIG. 2, the surface (evaporation surface) on which the metal target (evaporation source) 2 evaporates or in front thereof (the object W side). An AIP apparatus having an arc evaporation source in which a magnetic field forming means (magnet) 3 is arranged so as to surround is used. With this arrangement, the magnetic field forming means 3 forms magnetic lines of force (broken lines in FIG. 2) that diverge forward or travel in a direction substantially perpendicular to the evaporation surface of the evaporation source 2 and are covered by the lines of magnetic force. This is a method of forming a hard carbon film that contains a metal without being excessive by accelerating the conversion of the hydrocarbon-based gas contained in the atmospheric gas into the vicinity of the treatment body (base material) W. In this manufacturing method, the deposition rate is high and the productivity is excellent, and the plasma of hydrocarbon gas is generated in front of the evaporation source, so that the evaporated metal ions or atoms fly into the plasma made of carbon or the like. Since the film adheres to the object to be processed and is contained in the film, a film having a uniform composition and film thickness can be easily formed. The hard film obtained by the method of the present invention does not consider the characteristics required for the film for the separator, but as a result of earnest research, the manufacturing method satisfies the specifications of the separator (contact resistance, corrosion resistance, etc.). The inventors have found the type of metal used as the evaporation source and the film forming conditions for forming the carbon film.

前記セパレータの仕様を満足するために、燃料電池セパレータ用金属含有炭素膜は、Ti,Nb,Zr,Hf,Taから選択される1種以上の金属元素を炭素の2/3倍以下の含有率(at%)で含有する炭素膜とした。すなわち、本発明に係る燃料電池セパレータ用金属含有炭素膜の形成方法は、チタンまたはチタン合金からなる基材上に前記炭素膜を形成する方法であって、アース電位に対して−50〜−300Vのバイアス電圧を前記基材に印加し、炭素含有ガスと希ガスとを主成分とする雰囲気ガスを希ガスに対する炭素含有ガスの流量比を1/3〜2として供給しながらこの雰囲気ガス中でアーク放電を行い、前記金属元素で構成された陰極物質を蒸発させて、この蒸発させた陰極物質および前記炭素含有ガスのそれぞれからイオンおよびラジカルの少なくとも一方を形成させ、磁界形成手段で前記陰極物質の蒸発させる面にほぼ直交して発散ないし平行に進行して少なくとも前記基材近傍まで到達する磁力線を形成させることにより、前記イオンおよびラジカルを前記基材上に供給することを特徴とする。   In order to satisfy the specifications of the separator, the metal-containing carbon film for a fuel cell separator contains at least one metal element selected from Ti, Nb, Zr, Hf, and Ta at a rate of 2/3 or less of carbon. The carbon film contained in (at%). That is, the method for forming a metal-containing carbon film for a fuel cell separator according to the present invention is a method of forming the carbon film on a substrate made of titanium or a titanium alloy, and is −50 to −300 V with respect to the ground potential. Is applied to the substrate, and an atmospheric gas mainly composed of a carbon-containing gas and a rare gas is supplied in the atmospheric gas while supplying a flow rate ratio of the carbon-containing gas to the rare gas as 1/3 to 2. Arc discharge is performed, the cathode material composed of the metal element is evaporated, and at least one of ions and radicals is formed from each of the evaporated cathode material and the carbon-containing gas, and the cathode material is formed by magnetic field forming means. By forming a magnetic field line that diverges or travels substantially perpendicular to the surface to be evaporated and reaches at least the vicinity of the base material, Fine radicals and supplying on said substrate.

これらの金属元素を所定の含有率で添加した炭素膜とすることで、当該金属元素による腐食がなく、チタンまたはチタン合金からなる基材への密着性がよい皮膜とすることができる。また、基材に印加するバイアス電圧を所定の範囲とすることで、雰囲気ガスの希ガスイオンにより基材表面が適度にスパッタされて、基材表面への金属の成膜速度を減速して、炭素を基とする膜が成膜され、また基材が高温になることが抑制される。また、所定の配合の雰囲気ガスとすることで、炭素膜に含有される金属の原子比が前記所定範囲に制御できる。そして、陰極物質から基材に向かって伸びる磁力線により、基材の近傍で雰囲気ガスのプラズマ化が促進されることで、形成される膜は炭素の原子比が金属の原子比よりも高い金属含有炭素膜となる。   By using a carbon film to which these metal elements are added at a predetermined content, a film having no adhesion due to the metal element and having good adhesion to a substrate made of titanium or a titanium alloy can be obtained. In addition, by setting the bias voltage applied to the base material within a predetermined range, the base material surface is appropriately sputtered by the rare gas ions of the atmospheric gas, and the film forming rate of the metal on the base material surface is reduced. A film based on carbon is formed, and the temperature of the substrate is suppressed from becoming high. Moreover, the atomic ratio of the metal contained in the carbon film can be controlled within the predetermined range by using the atmospheric gas having a predetermined composition. And, by the magnetic field lines extending from the cathode material toward the base material, the plasma of the atmospheric gas is promoted in the vicinity of the base material, so that the formed film contains a metal whose carbon atomic ratio is higher than the metal atomic ratio. It becomes a carbon film.

そして、前記の方法を用いて金属含有炭素膜で表面を被覆することで、燃料電池セパレータとして良好な接触抵抗や耐食性を付与することができる。すなわち本発明に係る燃料電池セパレータ用耐食皮膜の形成方法は、チタンまたはチタン合金からなる基材の表面に、Ti,Nb,Zr,Hf,Taから選択される1種以上からなる下地金属膜を形成する下地金属膜形成工程と、この下地金属膜を形成した基材の表面に、前記の本発明に係る燃料電池セパレータ用金属含有炭素膜の形成方法にて炭素膜を形成する金属含有炭素膜形成工程と、を行うものであり、その後、熱処理工程をさらに行うことが好ましい。   By coating the surface with a metal-containing carbon film using the above method, good contact resistance and corrosion resistance can be imparted as a fuel cell separator. That is, in the method for forming a corrosion-resistant film for a fuel cell separator according to the present invention, a base metal film made of at least one selected from Ti, Nb, Zr, Hf, and Ta is formed on the surface of a base material made of titanium or a titanium alloy. A base metal film forming step to be formed, and a metal-containing carbon film that forms a carbon film on the surface of the base material on which the base metal film is formed by the method for forming a metal-containing carbon film for a fuel cell separator according to the present invention. It is preferable to further perform a heat treatment step after that.

このような方法で形成された燃料電池セパレータ用耐食皮膜は、所定の金属元素からなる金属膜を下地として前記の金属含有炭素膜が成膜されるので、チタンまたはチタン合金からなる基材の表面に不働態皮膜が形成されている状態で密着性よく被覆でき、また不働態皮膜により耐食性にいっそう優れた耐食皮膜となる。さらに熱処理を施すことで、前記不働態皮膜の導電性が向上し、このような耐食皮膜を備えた燃料電池セパレータの接触抵抗を低くすることができる。   The corrosion-resistant coating for a fuel cell separator formed by such a method is formed by depositing the metal-containing carbon film on the basis of a metal film made of a predetermined metal element. In the state in which the passive film is formed, the film can be coated with good adhesion, and the passive film provides a corrosion-resistant film with further excellent corrosion resistance. Furthermore, by conducting heat treatment, the conductivity of the passive film is improved, and the contact resistance of the fuel cell separator provided with such a corrosion-resistant film can be lowered.

本発明に係る別の燃料電池セパレータ用耐食皮膜の形成方法は、チタンまたはチタン合金からなる基材の表面の不働態皮膜を除去する不働態皮膜除去工程と、前記の本発明に係る燃料電池セパレータ用金属含有炭素膜の形成方法にて炭素膜を形成する金属含有炭素膜形成工程と、を行うものである。   Another method of forming a corrosion-resistant film for a fuel cell separator according to the present invention includes a passive film removing step of removing a passive film on the surface of a substrate made of titanium or a titanium alloy, and the fuel cell separator according to the present invention. And a metal-containing carbon film forming step of forming a carbon film by a method for forming a metal-containing carbon film.

このような方法で形成された燃料電池セパレータ用耐食皮膜は、基材の表面に金属Tiを露出させて前記の金属含有炭素膜を形成するので、金属含有炭素膜を密着性よく被覆できる。さらに導電性を阻害する不働態皮膜が除去されているので、金属含有炭素膜の形成後に熱処理を行わなくても、このような耐食皮膜を備えた燃料電池セパレータの接触抵抗を低くすることができる。   Since the corrosion resistant coating for a fuel cell separator formed by such a method exposes the metal Ti on the surface of the substrate to form the metal-containing carbon film, the metal-containing carbon film can be coated with good adhesion. Furthermore, since the passive film that impedes conductivity is removed, the contact resistance of the fuel cell separator having such a corrosion-resistant film can be reduced without performing heat treatment after the formation of the metal-containing carbon film. .

本発明に係る燃料電池セパレータ用金属含有炭素膜の形成方法によれば、低コストな炭素膜を基材に密着性よく形成することができる。そして、本発明に係る燃料電池セパレータ用耐食皮膜の形成方法によれば、前記炭素膜にて低い接触抵抗を長時間維持できる燃料電池セパレータを生産性よく製造することができる。   According to the method for forming a metal-containing carbon film for a fuel cell separator according to the present invention, a low-cost carbon film can be formed on a substrate with good adhesion. According to the method for forming a corrosion-resistant film for a fuel cell separator according to the present invention, a fuel cell separator that can maintain a low contact resistance with the carbon film for a long time can be manufactured with high productivity.

本発明の実施形態に用いるアークイオンプレーティング(AIP)装置の概略図である。It is the schematic of the arc ion plating (AIP) apparatus used for embodiment of this invention. 本発明の実施に供するアーク式蒸発源の一例の要部拡大断面図である。It is a principal part expanded sectional view of an example of the arc type evaporation source with which implementation of this invention is provided. 接触抵抗の測定方法を説明する模式図である。It is a schematic diagram explaining the measuring method of contact resistance. 従来のアーク式蒸発源の要部拡大断面図である。It is a principal part expanded sectional view of the conventional arc type evaporation source.

本発明に係る燃料電池セパレータ用金属含有炭素膜の形成方法、および本発明に係る燃料電池セパレータ用耐食皮膜の形成方法について詳細に説明する。まず、本発明に係る燃料電池セパレータ用金属含有炭素膜の形成方法(以下、金属含有炭素膜の形成方法という)で形成される燃料電池セパレータ用金属含有炭素膜およびこれを表面に備える燃料電池セパレータについて説明する。   The method for forming a metal-containing carbon film for a fuel cell separator according to the present invention and the method for forming a corrosion-resistant film for a fuel cell separator according to the present invention will be described in detail. First, a metal-containing carbon film for a fuel cell separator formed by a method for forming a metal-containing carbon film for a fuel cell separator according to the present invention (hereinafter referred to as a method for forming a metal-containing carbon film) and a fuel cell separator provided with the same Will be described.

〔燃料電池セパレータ〕
燃料電池セパレータは、チタンまたはチタン合金からなる基材Wと、表面を被覆する燃料電池セパレータ用金属含有炭素膜(以下、金属含有炭素膜という)とを備えて構成される。燃料電池セパレータは、さらに、金属含有炭素膜の密着性をよくするために、下地として基材Wの表面に下地金属膜を備えてもよく、あるいは基材Wの表面の不働態皮膜を除去して用いてもよい。以下、燃料電池セパレータを構成する各要素について詳細に説明する。
[Fuel cell separator]
The fuel cell separator includes a substrate W made of titanium or a titanium alloy, and a metal-containing carbon film for a fuel cell separator (hereinafter referred to as a metal-containing carbon film) that covers the surface. The fuel cell separator may further include a base metal film on the surface of the base material W as a base in order to improve the adhesion of the metal-containing carbon film, or remove the passive film on the surface of the base material W. May be used. Hereafter, each element which comprises a fuel cell separator is demonstrated in detail.

(基材)
基材Wは、本発明に係る金属含有炭素膜の形成方法における被処理体である。基材Wは、燃料電池セパレータの軽量化に特に好適で、また、本発明に係る金属含有炭素膜の形成方法のための耐熱性を有する純チタンまたはチタン(Ti)合金で形成される。具体的には、例えばJIS H 4600に規定される1〜4種の純Tiや、Ti−Al,Ti−Ta,Ti−6Al−4V,Ti−Pd等のTi合金を適用でき、中でも薄型化に特に好適な純Tiが好ましい。ただし、本発明において適用できる純TiまたはTi合金としては、これらに限定されることはなく、他の金属元素等を含有してなる前記した純Ti相当またはTi合金相当の組成を有するものであれば、好適に用いることができる。
(Base material)
The substrate W is an object to be processed in the method for forming a metal-containing carbon film according to the present invention. The substrate W is particularly suitable for reducing the weight of the fuel cell separator, and is formed of pure titanium or titanium (Ti) alloy having heat resistance for the method for forming a metal-containing carbon film according to the present invention. Specifically, for example, one to four kinds of pure Ti specified in JIS H 4600 and Ti alloys such as Ti-Al, Ti-Ta, Ti-6Al-4V, Ti-Pd can be applied, and in particular, the thickness is reduced. Particularly preferred is pure Ti. However, the pure Ti or Ti alloy that can be applied in the present invention is not limited to these, and may have a composition equivalent to the above pure Ti or Ti alloy containing other metal elements. Can be suitably used.

基材Wの厚さは特に限定されるものではないが、燃料電池セパレータの基材としては、0.05〜0.3mmにすることが好ましい。基材Wの厚さをこのような範囲とすれば、燃料電池セパレータの軽量化・薄型化の要求を満足し、かつ、かかる厚さに加工することが比較的容易であり、板材としての強度やハンドリング性を備えることができる。   Although the thickness of the base material W is not specifically limited, It is preferable to set it as 0.05-0.3 mm as a base material of a fuel cell separator. If the thickness of the base material W is within such a range, the fuel cell separator needs to be reduced in weight and thickness, and can be processed to such a thickness relatively easily. And handleability.

基材Wの製造方法の一例としては、前記した純TiまたはTi合金のインゴットを公知の方法で熱間圧延し、必要に応じて間に焼鈍・酸洗処理等を行って、冷間圧延にて所望の厚さまで圧延したものをプレス加工等でガス流路となる溝を形成することにより製造することができる。   As an example of the manufacturing method of the substrate W, the above-described pure Ti or Ti alloy ingot is hot-rolled by a known method, and if necessary, annealed / pickled, etc. Then, a product rolled to a desired thickness can be manufactured by forming a groove to be a gas flow path by press working or the like.

ここで、純TiまたはTi合金は不働態皮膜を形成するため、基材Wは耐食性を有して燃料電池セパレータの耐食性が向上する。しかし、圧延により基材W(Ti圧延板)はその表面から1μm程度の深さまで圧延油に由来する炭素が浸入しており、この炭素がTiと結合してしまい、表面に緻密なTiの不働態皮膜が形成されていない場合がある。燃料電池セパレータの表面の金属含有炭素膜にはピンホールが存在する場合があり、ピンホールを介して基材Wが酸性雰囲気に接触するため、基材Wに不働態皮膜が形成されていない箇所があると耐食性が著しく劣化する虞があり、金属含有炭素膜(および下地金属膜)の剥離や導電性の劣化に至る。したがって、基材Wは、金属含有炭素膜を成膜する前(下地金属膜を成膜する場合はその前)に、フッ酸と硝酸の混合溶液等で酸洗して、表層の炭素が浸入した領域を除去しておくことが好ましく、またこの酸洗処理により、同時に基材Wの表面に安定して不働態皮膜を形成することができる。   Here, since pure Ti or Ti alloy forms a passive film, the substrate W has corrosion resistance, and the corrosion resistance of the fuel cell separator is improved. However, the base material W (Ti-rolled sheet) is rolled, and carbon derived from the rolling oil infiltrates from the surface to a depth of about 1 μm. The carbon is bonded to Ti, and the surface of the Ti is not dense. The active film may not be formed. A pinhole may exist in the metal-containing carbon film on the surface of the fuel cell separator, and the base material W is in contact with the acidic atmosphere through the pinhole, so that the passive film is not formed on the base material W. If there is, there is a possibility that the corrosion resistance is remarkably deteriorated, leading to peeling of the metal-containing carbon film (and the base metal film) and deterioration of conductivity. Therefore, the substrate W is pickled with a mixed solution of hydrofluoric acid and nitric acid before the metal-containing carbon film is formed (or before the base metal film is formed), so that the carbon on the surface layer enters. It is preferable to remove the region, and the pickling treatment can simultaneously form a passive film stably on the surface of the substrate W.

あるいは、基材Wは表面の不働態皮膜を除去して用いてもよい。基材Wの金属Tiが表面に露出することで、金属含有炭素膜との密着性がよくなる。不働態皮膜は大気中等で速やかに形成されるため、後記するように金属含有炭素膜の形成と同じアークイオンプレーティング(AIP)装置を用いて除去し、引き続き金属含有炭素膜を形成するようにする。ここで、基材Wは、前記と同様に、表面近傍の炭素が浸入した領域も除去する。この基材Wの表層の炭素が浸入した領域は、AIP装置を用いて不働態皮膜と連続して除去することも可能であるが、1μm程度と厚いため時間を要し、生産性が低下する。したがって、この基材Wの表層は、前記の不働態皮膜の形成と同様に酸洗処理により除去し、その後大気中で形成された不働態皮膜をAIP装置にて除去することが好ましい。このように、基材Wは、不働態皮膜と共に炭素が浸入した部分が除去されていることで、金属含有炭素膜のピンホール部分については、燃料電池セパレータの腐食環境下で緻密なTiの不働態皮膜が形成(再生)されて耐食性が付与される。   Alternatively, the substrate W may be used after removing the passive film on the surface. By exposing the metal Ti of the substrate W to the surface, the adhesion with the metal-containing carbon film is improved. Since the passive film is rapidly formed in the atmosphere or the like, it is removed using the same arc ion plating (AIP) apparatus as the formation of the metal-containing carbon film as described later, and the metal-containing carbon film is subsequently formed. To do. Here, the substrate W also removes the area in which the carbon in the vicinity of the surface has entered, as described above. The carbon-infiltrated region of the surface layer of the substrate W can be removed continuously with the passive film using an AIP apparatus. However, since it is as thick as about 1 μm, time is required and productivity is reduced. . Therefore, it is preferable to remove the surface layer of the substrate W by pickling treatment in the same manner as in the formation of the passive film, and then remove the passive film formed in the atmosphere using an AIP apparatus. As described above, the base material W is removed from the carbon-infiltrated portion together with the passive film, so that the pinhole portion of the metal-containing carbon film has a dense Ti non-removability in the corrosive environment of the fuel cell separator. A working film is formed (regenerated) to provide corrosion resistance.

(金属含有炭素膜)
金属含有炭素膜は、燃料電池セパレータの表面を被覆して腐食環境下での導電性を付与するもので、炭素を基とする硬質皮膜である。金属含有炭素膜の厚さは特に限定されるものではないが、燃料電池セパレータに十分な導電性を付与するためには、10nm以上が好ましく、一方、厚すぎても効果が飽和して生産性が低下するため、1000nm以下が好ましい。炭素のみで構成された皮膜ではTiまたはTi合金からなる基材Wへの密着性が不十分であるため、Ti,Nb,Zr,Hf,Taから選択される1種以上の金属元素を含有する。金属を含有することで炭素膜の膜応力を緩和して密着性を向上させることができ、特にTi,Nb,Zr,Hf,Taは、基材Wの表面に形成した後記の下地金属膜、または不働態皮膜を除去された基材Wの金属Tiへの密着性がよい。また、これらの金属元素は不働態皮膜を形成するため、燃料電池内部の酸性雰囲気で腐食して溶出することがない。金属含有炭素膜の基材Wへの密着性を良好なものとするために、金属元素は、少なくとも炭素:金属元素の原子比が19:1となるように含有されることが好ましい。ただし、これらの金属元素の含有率が増大するにしたがい、その不働態皮膜により導電性が低下し、炭素の含有率の2/3より多くなると、炭素膜ではなく金属や金属炭化物の影響の大きい膜となって導電性が低下する。したがって、金属元素は多くとも炭素:金属元素の原子比が6:4まで、すなわち金属含有炭素膜における含有率(at%)が炭素の2/3以下(炭素の含有率が金属元素の1.5倍以上)とし、原子比7:3までが好ましい。このような組成の金属含有炭素膜は、AIP装置を用いて形成することが好ましく、後記する金属含有炭素膜の形成方法により、膜材料として炭素は雰囲気ガスで、金属元素は蒸発源(陰極物質)でそれぞれ供給されて成膜される。
(Metal-containing carbon film)
The metal-containing carbon film is a hard film based on carbon that covers the surface of the fuel cell separator and imparts conductivity in a corrosive environment. The thickness of the metal-containing carbon film is not particularly limited, but is preferably 10 nm or more in order to impart sufficient conductivity to the fuel cell separator. Is preferably 1000 nm or less. Since the film composed only of carbon has insufficient adhesion to the substrate W made of Ti or Ti alloy, it contains one or more metal elements selected from Ti, Nb, Zr, Hf, and Ta. . By containing a metal, the film stress of the carbon film can be relaxed and adhesion can be improved. In particular, Ti, Nb, Zr, Hf, and Ta are base metal films described later formed on the surface of the substrate W, Or the adhesiveness to the metal Ti of the base material W from which the passive film was removed is good. Moreover, since these metal elements form a passive film, they are not corroded and eluted in an acidic atmosphere inside the fuel cell. In order to improve the adhesion of the metal-containing carbon film to the substrate W, the metal element is preferably contained so that the atomic ratio of carbon: metal element is at least 19: 1. However, as the content of these metal elements increases, the passive film reduces the conductivity, and when it exceeds 2/3 of the carbon content, the influence of metal and metal carbide rather than the carbon film is large. It becomes a film and the conductivity decreases. Therefore, at most, the atomic ratio of carbon: metal element is up to 6: 4, that is, the content (at%) in the metal-containing carbon film is 2/3 or less of carbon (the carbon content is 1.3 of the metal element). 5 times or more) and an atomic ratio of up to 7: 3 is preferable. The metal-containing carbon film having such a composition is preferably formed using an AIP apparatus. According to a method for forming a metal-containing carbon film described later, carbon is an atmospheric gas as a film material, and a metal element is an evaporation source (cathode substance). ) To form a film.

(下地金属膜)
下地金属膜は、Ti,Nb,Zr,Hf,Taから選択される1種以上の金属元素からなり、金属含有炭素膜の下地として設けられて、基材Wへの密着性、詳しくは基材W表面の不働態皮膜への密着性をいっそう向上させる。これらの金属元素からなる下地金属膜は、基材Wの不働態皮膜および金属含有炭素膜のそれぞれに対して、金属元素同士の結合等により密着性がよく、また前記したように不働態皮膜を形成するため腐食して溶出することがない。密着性を十分なものとするために、下地金属膜は基材Wの表面を完全に被覆できるように、その厚さを5nm以上とすることが好ましく、10nm以上とすることがさらに好ましい。一方、厚すぎても効果が飽和して生産性が低下するため、500nm以下が好ましい。
(Underlying metal film)
The base metal film is composed of one or more metal elements selected from Ti, Nb, Zr, Hf, and Ta, and is provided as a base for the metal-containing carbon film. Further improves the adhesion of the W surface to the passive film. The base metal film made of these metal elements has good adhesion to the passive film of the base material W and the metal-containing carbon film by bonding of metal elements, and the passive film is formed as described above. Because it forms, it does not corrode and dissolve. In order to ensure sufficient adhesion, the thickness of the underlying metal film is preferably 5 nm or more, and more preferably 10 nm or more so that the surface of the substrate W can be completely covered. On the other hand, even if it is too thick, the effect is saturated and productivity is lowered.

下地金属膜を構成する金属元素は、金属含有炭素膜に含まれる金属元素と同一の元素であっても異なる元素(例えばTi含有炭素膜の下地にNb膜を設ける)であってもよい。しかし、基材Wにこれらの膜を形成する際、後記するように、同じ成膜装置(AIP装置)で下地金属膜、金属含有炭素膜を連続して形成することが好ましい。このとき、それぞれの膜に含まれる金属元素を共通とすれば、成膜装置に備え付ける膜材料である蒸発源(ターゲット)を最少で1種類とすることができるため、生産性および成膜装置の簡潔性の点で好ましい。   The metal element constituting the base metal film may be the same element as the metal element contained in the metal-containing carbon film or may be a different element (for example, an Nb film is provided on the base of the Ti-containing carbon film). However, when forming these films on the substrate W, it is preferable to continuously form the base metal film and the metal-containing carbon film with the same film forming apparatus (AIP apparatus) as described later. At this time, if the metal elements contained in the respective films are made common, the evaporation source (target) that is a film material provided to the film forming apparatus can be reduced to one type at a minimum. Preferred in terms of simplicity.

下地金属膜は、スパッタリング法、真空蒸着法、イオンプレーティング法等の公知のPVD法で形成できるが、前記したように金属含有炭素膜と同じAIP装置を用いることが好ましく、すなわちアークイオンプレーティング(AIP)法が好ましい。AIP法による下地金属膜の形成方法については、後記の燃料電池セパレータ用耐食皮膜の形成方法において詳細に説明する。   The underlying metal film can be formed by a known PVD method such as sputtering, vacuum deposition, or ion plating, but it is preferable to use the same AIP apparatus as the metal-containing carbon film as described above, that is, arc ion plating. The (AIP) method is preferred. The formation method of the base metal film by the AIP method will be described in detail in a method for forming a corrosion resistant film for a fuel cell separator described later.

〔燃料電池セパレータ用金属含有炭素膜の形成方法〕
次に、本発明に係る金属含有炭素膜の形成方法を説明する。本発明に係る金属含有炭素膜の形成方法には、アークイオンプレーティング(AIP)法を適用することが好ましく、実施形態として図1に示すAIP装置を用いる。
[Method of forming metal-containing carbon film for fuel cell separator]
Next, a method for forming a metal-containing carbon film according to the present invention will be described. An arc ion plating (AIP) method is preferably applied to the method for forming a metal-containing carbon film according to the present invention, and an AIP apparatus shown in FIG. 1 is used as an embodiment.

(AIP装置)
AIP法は、真空中またはAr等の希ガスの減圧雰囲気中で、成膜しようとする金属からなる蒸発源をカソード(陰極物質)として、アノードとしてはチャンバー(処理室)または専用の電極を設けてアーク放電を行うことにより、蒸発源表面から金属を蒸発させて、被処理体上に成膜する方法である。蒸発源は、前記下地金属膜のような金属膜を形成する場合は、成膜しようとする金属膜を構成する金属元素からなるものが適用できる。一方、本発明に係る金属含有炭素膜の形成方法においては、金属含有炭素膜に含有させる金属元素、すなわちTi,Nb,Zr,Hf,Taから選択される1種以上からなる蒸発源を適用する。本実施形態においては、図1に示すように円板形状の蒸発源(陰極物質)2を2つ用い、これをAIP装置10の電極に取り付ける。また、被処理体である基材Wを、両面のそれぞれを蒸発源2,2に正対させてステージに載置する。このような同じ蒸発源を2つ備えたAIP装置を用いることで、1回の処理で基材Wの両面に同じ膜を形成できるが、蒸発源の数および配置はこれに限らない。例えば燃料電池セパレータの仕様として、片面のみに金属含有炭素膜を形成する場合は1つの蒸発源を用いればよく、また、1つの蒸発源により、一面側に金属含有炭素膜を成膜した後、基材Wを裏返して載置して、他面側に金属含有炭素膜を成膜してもよい。
(AIP device)
In the AIP method, an evaporation source made of a metal to be deposited is used as a cathode (cathode material) in a vacuum or a reduced pressure atmosphere of a rare gas such as Ar, and a chamber (processing chamber) or a dedicated electrode is provided as an anode. In this method, the metal is evaporated from the surface of the evaporation source by performing arc discharge to form a film on the object to be processed. As the evaporation source, when a metal film such as the base metal film is formed, an evaporation source composed of a metal element constituting the metal film to be formed can be applied. On the other hand, in the method for forming a metal-containing carbon film according to the present invention, an evaporation source composed of one or more selected from the metal elements to be contained in the metal-containing carbon film, that is, Ti, Nb, Zr, Hf, and Ta is applied. . In the present embodiment, two disk-shaped evaporation sources (cathode materials) 2 are used as shown in FIG. 1 and are attached to the electrodes of the AIP apparatus 10. Moreover, the base material W which is a to-be-processed object is mounted in a stage with each of both surfaces facing the evaporation sources 2 and 2 facing each other. By using such an AIP apparatus provided with two identical evaporation sources, the same film can be formed on both surfaces of the substrate W in one process, but the number and arrangement of the evaporation sources are not limited thereto. For example, as a specification of the fuel cell separator, when a metal-containing carbon film is formed only on one side, one evaporation source may be used, and after a metal-containing carbon film is formed on one side by one evaporation source, The substrate W may be placed upside down and a metal-containing carbon film may be formed on the other surface side.

そして、チャンバー内を真空に排気した後、雰囲気ガスとしてArガス等の希ガスを導入してチャンバー内を所定の圧力(減圧雰囲気)に調整する。本発明に係る金属含有炭素膜の形成方法においては、雰囲気ガスとして、希ガスと共に金属含有炭素膜を構成する炭素を含有する炭素含有ガスを導入する。次に蒸発源2,2にアーク電源にて、基材Wにバイアス電源にて、それぞれの所定出力を印加して放電し、雰囲気ガスをプラズマ化する。発生したAr等の希ガス原子のプラズマにより、蒸発源2,2表面から金属を蒸発させて、この金属を基材Wの両面上に堆積させ、また、炭素含有ガスのプラズマにより炭素膜を基材Wの両面上に堆積させて、これらを合わせて金属含有炭素膜を形成する。   Then, after evacuating the inside of the chamber, a rare gas such as Ar gas is introduced as an atmospheric gas to adjust the inside of the chamber to a predetermined pressure (depressurized atmosphere). In the method for forming a metal-containing carbon film according to the present invention, a carbon-containing gas containing carbon constituting the metal-containing carbon film is introduced together with a rare gas as the atmospheric gas. Next, a predetermined power is applied to the evaporation sources 2 and 2 by an arc power source and a bias power source is applied to the substrate W to discharge the plasma, and the atmospheric gas is turned into plasma. The metal is evaporated from the surfaces of the evaporation sources 2 and 2 by the generated plasma of rare gas atoms such as Ar, and the metal is deposited on both surfaces of the substrate W, and the carbon film is formed by the plasma of the carbon-containing gas. The metal W is deposited on both surfaces of the material W, and these are combined to form a metal-containing carbon film.

ここで、アーク放電で発生した電子e-の一部は磁界形成手段から発生する磁力線に巻き付くように運動を行い、この電子が雰囲気ガス分子と衝突することでこの雰囲気ガス分子をプラズマ化して、イオンおよびラジカルの少なくとも一方(以下、プラズマという)を生成する。AIP装置に取り付けるアーク式蒸発源が従来のものでは、図4に示すように、磁界形成手段103が蒸発源102の後方(前方を被処理体側とする)に配置されるため、磁界形成手段103から発生する磁力線は蒸発源102の近傍までに限られ、その結果、基材Wの近傍では雰囲気ガスのプラズマ密度はかなり低いものとなる。これに対して、本発明の実施形態に係る金属含有炭素膜の形成方法においては、図1に示すように、円環形状の磁界形成手段3を蒸発源2の周面を囲むように配置したアーク式蒸発源1を用いる。このような配置により、図2に示すように、磁界形成手段3から発生する磁力線を、蒸発源2の蒸発させる面(基材Wに対向する面、以下、蒸発面)にほぼ直交して発散ないし平行に進行させて、基材Wまたはその近傍まで到達させることができる。このような磁力線により、基材Wの近傍においてもプラズマ密度が高くなる。なお、磁力線について、蒸発源2の蒸発面にほぼ直交するとは、磁力線の向きが蒸発面の法線に対して30°以内であるとする。磁界形成手段3は、公知のアーク式蒸発源に用いられる磁石等を適用できる。また、本実施形態のように、2つの蒸発源2,2を基材Wを挟んで対向させて配置する場合は、これらの蒸発源2,2を囲んで配置する磁界形成手段3,3の互いの磁力が反発しないように、磁界形成手段3,3の一方はN極、他方はS極を基材Wに正対させて配置する。 Here, a part of the electrons e generated by the arc discharge moves so as to be wound around the magnetic field lines generated from the magnetic field forming means, and the electrons collide with the atmospheric gas molecules to convert the atmospheric gas molecules into plasma. At least one of ions and radicals (hereinafter referred to as plasma) is generated. When the arc evaporation source attached to the AIP apparatus is a conventional one, as shown in FIG. 4, the magnetic field forming unit 103 is disposed behind the evaporation source 102 (the front side is the object to be processed). The line of magnetic force generated from is limited to the vicinity of the evaporation source 102. As a result, the plasma density of the atmospheric gas is considerably low in the vicinity of the substrate W. In contrast, in the method for forming a metal-containing carbon film according to the embodiment of the present invention, as shown in FIG. 1, the annular magnetic field forming means 3 is arranged so as to surround the circumferential surface of the evaporation source 2. An arc evaporation source 1 is used. With such an arrangement, as shown in FIG. 2, the lines of magnetic force generated from the magnetic field forming means 3 diverge almost perpendicularly to the evaporation surface of the evaporation source 2 (the surface facing the substrate W, hereinafter referred to as the evaporation surface). Or it can be made to advance in parallel and reach | attain to the base material W or its vicinity. Such magnetic field lines increase the plasma density even in the vicinity of the substrate W. In addition, it is assumed that the direction of the magnetic force line is within 30 ° with respect to the normal line of the evaporation surface when the magnetic force line is substantially orthogonal to the evaporation surface of the evaporation source 2. As the magnetic field forming means 3, a magnet or the like used in a known arc evaporation source can be applied. Further, when the two evaporation sources 2 and 2 are arranged opposite to each other with the base material W interposed therebetween as in the present embodiment, the magnetic field forming means 3 and 3 arranged to surround the evaporation sources 2 and 2 are used. One of the magnetic field forming means 3 and 3 is arranged with the N pole facing the base material W so that one of the magnetic field forming means 3 and 3 does not repel each other.

このような高いプラズマ密度は成膜挙動に次の影響を与える。第1に、雰囲気ガスにおける希ガスのプラズマが蒸発源2から蒸発した金属で基材Wに形成される膜をスパッタエッチングするため、金属の堆積速度すなわち成膜速度が遅くなる。この希ガスのプラズマによるエッチングは、基材Wに印加する負のバイアス電圧を上げると速くなるため、バイアス電圧を下記の通り制御することで、エッチング速度と金属の堆積速度とのバランスを調整して、所定の組成の金属含有炭素膜を形成する。第2に、雰囲気ガスに炭素含有ガスを含んだ場合に、この炭素含有ガスが基材Wの近傍でプラズマ化するため、炭素膜を生成する前駆体が多く生成して炭素膜の成膜速度が従来の蒸発源を用いた場合に比べてかなり速くなる。また、基材Wの近傍においてプラズマ密度がほぼ均一に高いことで、炭素膜の成膜速度および前記の希ガスのプラズマによるエッチング速度がそれぞれ均一となり、金属含有炭素膜の厚さおよび成分が均一に成膜できる。これらの効果(影響)を得るため、本発明に係る金属含有炭素膜の形成方法においては、基材Wの位置での磁束密度としては、5G以上が好ましく、10G以上がさらに好ましい。磁束密度が5G未満では炭素含有ガスのプラズマ化が不十分で、金属が多い膜となるからである。   Such a high plasma density has the following influence on the deposition behavior. First, since the film of the rare gas in the atmospheric gas is sputter-etched with the metal evaporated from the evaporation source 2, the metal deposition rate, that is, the film formation rate is reduced. Etching with this rare gas plasma increases as the negative bias voltage applied to the substrate W increases, so the balance between the etching rate and the metal deposition rate is adjusted by controlling the bias voltage as follows. Thus, a metal-containing carbon film having a predetermined composition is formed. Second, when the carbon-containing gas is included in the atmospheric gas, the carbon-containing gas is turned into plasma in the vicinity of the substrate W, so that a large number of precursors that generate a carbon film are generated and the film formation rate of the carbon film is increased. However, it is considerably faster than when a conventional evaporation source is used. In addition, since the plasma density is almost uniformly high in the vicinity of the substrate W, the deposition rate of the carbon film and the etching rate of the rare gas plasma are uniform, and the thickness and components of the metal-containing carbon film are uniform. Can be formed. In order to obtain these effects (influences), in the method for forming a metal-containing carbon film according to the present invention, the magnetic flux density at the position of the substrate W is preferably 5 G or more, and more preferably 10 G or more. This is because if the magnetic flux density is less than 5 G, the plasma of the carbon-containing gas is insufficient and the film is rich in metal.

また、放電時には、蒸発源2表面上を、推定温度4000〜10000℃で直径数十〜数百μmのアークスポットが高速で走り回るため、蒸発源2のアークスポットが存在する箇所から金属が蒸発し、また直径数百nm〜数μm程度のドロップレット(マクロパーティクル)も蒸発源2から飛び出して基材W上に付着する。このため、本実施形態によれば、表面が荒れたすなわち表面粗さの大きい金属含有炭素膜が形成されるが、このような表面形状は金属含有炭素膜の効果を何ら妨げるものではない。   Further, at the time of discharge, since an arc spot having a diameter of several tens to several hundreds of μm runs around the surface of the evaporation source 2 at an estimated temperature of 4000 to 10000 ° C., the metal evaporates from the location where the arc spot of the evaporation source 2 exists. In addition, droplets (macro particles) having a diameter of about several hundreds of nanometers to several μm also jump out of the evaporation source 2 and adhere to the substrate W. For this reason, according to the present embodiment, a metal-containing carbon film having a rough surface, that is, a large surface roughness is formed, but such a surface shape does not hinder the effect of the metal-containing carbon film.

基材Wに印加するバイアス電圧は、アース電位に対して−50〜−300Vとする。負のバイアス電圧として−50Vより小さいと、希ガスのプラズマによるスパッタエッチング作用が弱くなり、金属膜の成膜速度が減速されず、金属膜や金属炭化物の皮膜が形成される。一方、負のバイアス電圧として−300Vより大きいと、基材Wに衝突するプラズマのイオンのエネルギーが過大となって、基材Wの温度が上昇して変形に至る虞がある。   The bias voltage applied to the substrate W is set to −50 to −300 V with respect to the ground potential. If the negative bias voltage is less than −50 V, the sputter etching action by the rare gas plasma is weakened, the deposition rate of the metal film is not reduced, and a metal film or a metal carbide film is formed. On the other hand, if the negative bias voltage is greater than −300 V, the energy of plasma ions that collide with the base material W becomes excessive, and the temperature of the base material W may increase, leading to deformation.

アーク電流は50〜180Aとすることが好ましく、この範囲で適宜調整する。アーク電流が小さいと、アーク放電が安定しなかったり、成膜速度が低下する場合がある。一方、アーク電流が大きいと、炭素の析出速度よりも金属の堆積速度が速くなり、金属炭化物の皮膜、さらには金属膜となる。   The arc current is preferably 50 to 180 A, and is appropriately adjusted within this range. When the arc current is small, the arc discharge may not be stable or the film formation rate may be reduced. On the other hand, when the arc current is large, the deposition rate of the metal is faster than the deposition rate of carbon, resulting in a metal carbide film and further a metal film.

金属含有炭素膜の形成における雰囲気ガスは、希ガスおよび炭素含有ガスを主成分とする。炭素含有ガスとしては、具体的にメタン(CH4)、エタン(C26)、プロパン(C38)、エチレン(C24)、アセチレン(C22)等の炭化水素ガスを用いることができる。また、希ガスとしてはAr以外にHe,Ne,Kr等が挙げられる。また、希ガスと炭素含有ガスとの流量比は3:1〜1:2(炭素含有ガスの流量が希ガスの1/3〜2倍)とする。炭素含有ガスの流量が希ガスの1/3未満であると、形成される膜中の炭素が少なくなるため、金属炭化物の皮膜、さらには金属膜となる。一方、炭素含有ガスの流量が希ガスの2倍を超えると、炭素含有ガスとして炭化水素ガスを適用した場合に水素も多量に含まれた炭素膜となって、このような炭素膜は接触抵抗が高くなる。なお、雰囲気ガスは、調整用として窒素(N2)をさらに含有してもよい。 The atmosphere gas in forming the metal-containing carbon film is mainly composed of a rare gas and a carbon-containing gas. Specific examples of the carbon-containing gas include hydrocarbons such as methane (CH 4 ), ethane (C 2 H 6 ), propane (C 3 H 8 ), ethylene (C 2 H 4 ), and acetylene (C 2 H 2 ). Gas can be used. In addition to Ar, examples of rare gases include He, Ne, and Kr. The flow rate ratio between the rare gas and the carbon-containing gas is 3: 1 to 1: 2 (the flow rate of the carbon-containing gas is 1/3 to 2 times that of the rare gas). When the flow rate of the carbon-containing gas is less than 1/3 of that of the rare gas, carbon in the formed film is reduced, so that a metal carbide film and further a metal film are formed. On the other hand, when the flow rate of the carbon-containing gas exceeds twice that of the rare gas, when a hydrocarbon gas is applied as the carbon-containing gas, a carbon film containing a large amount of hydrogen is formed. Becomes higher. The atmosphere gas may further contain nitrogen (N 2 ) for adjustment.

金属含有炭素膜の形成における雰囲気ガスによる圧力は、0.5〜10Paが好ましい。圧力が0.5Pa未満では、雰囲気中の炭素含有ガスの絶対量が不足して炭素の析出が少なくなって、形成される膜中の炭素が少なくなるため、金属炭化物の皮膜、さらには金属膜となる。一方、圧力が10Paを超えると、雰囲気ガス分子の密度が高くなり、蒸発源2で発生して磁力線に巻き付きながら基材W側へ飛んでいく電子e-の多くが、短い飛行距離で雰囲気ガス分子と衝突してしまい、基材Wまで到達しなくなる。したがって、基材Wの近傍での雰囲気ガス分子のプラズマ化が少なく、却って形成される膜中の炭素が少なくなるため、金属炭化物の皮膜、さらには金属膜となる。 The pressure by the atmospheric gas in forming the metal-containing carbon film is preferably 0.5 to 10 Pa. If the pressure is less than 0.5 Pa, the absolute amount of the carbon-containing gas in the atmosphere is insufficient and the carbon deposition is reduced, so that the carbon in the formed film is reduced. It becomes. On the other hand, when the pressure exceeds 10 Pa, the density of the atmospheric gas molecules increases, and most of the electrons e that are generated in the evaporation source 2 and fly to the base material W side while being wound around the magnetic field lines are reduced by a short flight distance. It collides with molecules and does not reach the substrate W. Accordingly, the atmospheric gas molecules in the vicinity of the substrate W are reduced to plasma, and the carbon formed in the film is reduced, so that a metal carbide film and further a metal film are formed.

以上の方法により、所望の金属を含有する炭素膜(金属含有炭素膜)を形成することができる。さらに前記実施形態で用いたAIP装置によれば、雰囲気ガスやバイアス電圧等を変化させることで、金属の堆積速度およびエッチング速度をそれぞれ制御できるので、金属や金属炭化物のような炭素膜以外の膜を形成したり、あるいは成膜せずにスパッタエッチングすることも可能である。したがって、本発明に係る金属含有炭素膜の形成方法にて基材上に金属含有炭素膜を形成する工程の前後に、異なる組成の膜を形成する工程や、エッチングする工程を連続して行うことができる。以下、これらの工程を組み合わせた本発明に係る燃料電池セパレータ用耐食皮膜の形成方法を説明する。   By the above method, a carbon film containing a desired metal (metal-containing carbon film) can be formed. Furthermore, according to the AIP apparatus used in the embodiment, the deposition rate and the etching rate of the metal can be controlled by changing the atmospheric gas, the bias voltage, etc., so that the film other than the carbon film such as metal or metal carbide is used. It is also possible to perform sputter etching without forming the film. Therefore, before and after the step of forming the metal-containing carbon film on the substrate by the method for forming a metal-containing carbon film according to the present invention, the step of forming a film having a different composition and the step of etching are performed continuously. Can do. Hereinafter, the formation method of the corrosion-resistant film for fuel cell separators which combined these processes according to the present invention is explained.

〔燃料電池セパレータ用耐食皮膜の形成方法〕
本発明の第1実施形態に係る燃料電池セパレータ用耐食皮膜の形成方法は、図1に示すAIP装置を用いて、基材の表面(少なくとも片面)に下地金属膜を形成する下地金属膜形成工程と、前記金属含有炭素膜の形成方法にて金属含有炭素膜を形成する金属含有炭素膜形成工程と、を行うものであり、さらにその後、300〜600℃で熱処理を施す熱処理工程を行うことが好ましい。下地金属膜形成工程を金属含有炭素膜の形成方法と同じAIP装置を用いて行うことで、後続の金属含有炭素膜形成工程を連続して行うことができ、成膜した下地金属膜の表面に不働態皮膜が成膜されず、金属含有炭素膜を密着性よく積層することができる。
[Method of forming corrosion-resistant film for fuel cell separator]
The method for forming a corrosion-resistant coating for a fuel cell separator according to the first embodiment of the present invention is a base metal film forming step of forming a base metal film on the surface (at least one side) of a substrate using the AIP apparatus shown in FIG. And a metal-containing carbon film forming step of forming a metal-containing carbon film by the method for forming a metal-containing carbon film, and then performing a heat treatment step of performing a heat treatment at 300 to 600 ° C. preferable. By performing the base metal film forming process using the same AIP apparatus as the method for forming the metal-containing carbon film, the subsequent metal-containing carbon film forming process can be continuously performed, and the surface of the formed base metal film is formed. A passive film is not formed, and a metal-containing carbon film can be laminated with good adhesion.

(下地金属膜形成工程)
下地金属膜の形成においては、成膜しようとする下地金属膜を構成する金属元素、すなわちTi,Nb,Zr,Hf,Taから選択される1種以上からなる蒸発源2を、前記金属含有炭素膜の形成方法と同様にAIP装置10の電極に取り付け、基材Wをステージに載置する(図1参照)。前記したように、基材Wは、酸洗処理にて、炭素が浸入した表層を除去し、かつ表面に安定した不働態皮膜を形成されたものを用いることが好ましい。チャンバー内を真空に排気した後、Arガス等の希ガスをチャンバー内に導入してチャンバー内を所定の圧力(減圧雰囲気)に調整する。次に蒸発源2,2にアーク電源にて、基材Wにバイアス電源にて、それぞれの所定出力を印加して放電し、Ar等の希ガス原子のプラズマを発生させることにより、蒸発源2,2表面から金属を蒸発させて、基材Wの両面(表面)に金属を堆積させて所望の厚さの下地金属膜を形成する。下地金属膜の形成においては、雰囲気ガスに炭素含有ガスを含まないので、膜材料は蒸発源2のみで供給されて金属膜が形成される。
(Underlying metal film formation process)
In forming the base metal film, the metal source constituting the base metal film to be formed, that is, the evaporation source 2 composed of one or more selected from Ti, Nb, Zr, Hf, Ta is used as the metal-containing carbon. It attaches to the electrode of AIP apparatus 10 similarly to the formation method of a film | membrane, and mounts the base material W on a stage (refer FIG. 1). As described above, it is preferable to use a substrate W in which a surface layer into which carbon has entered is removed by a pickling treatment and a stable passive film is formed on the surface. After evacuating the inside of the chamber, a rare gas such as Ar gas is introduced into the chamber and the inside of the chamber is adjusted to a predetermined pressure (depressurized atmosphere). Next, a predetermined power is applied to the evaporation sources 2 and 2 by an arc power source and a bias power source is applied to the substrate W to discharge, thereby generating a plasma of a rare gas atom such as Ar. , 2 evaporate the metal from the surface and deposit the metal on both surfaces (surfaces) of the substrate W to form a base metal film having a desired thickness. In the formation of the base metal film, the atmosphere gas does not contain a carbon-containing gas, so that the film material is supplied only by the evaporation source 2 to form the metal film.

また、前記金属含有炭素膜の形成方法における放電時と同様に、蒸発源2のアークスポットが存在する箇所から金属が蒸発し、またマクロパーティクルも蒸発源2から飛び出して基材W表面に付着するため、本実施形態にて形成される下地金属膜も表面粗さの大きいものとなる。このような表面形状の下地金属膜とすることで、その上に積層される金属含有炭素膜へのアンカー効果により密着性がさらに向上する。   Similarly to the discharge in the method for forming the metal-containing carbon film, the metal evaporates from the location where the arc spot of the evaporation source 2 exists, and the macro particles also jump out of the evaporation source 2 and adhere to the surface of the substrate W. Therefore, the underlying metal film formed in this embodiment also has a large surface roughness. By using such a surface-shaped base metal film, the adhesion is further improved by an anchor effect to the metal-containing carbon film laminated thereon.

下地金属膜の形成において基材Wに印加するバイアス電圧は、アース電位に対して−10〜−100Vが好ましい。また、アーク電流は50〜200A、雰囲気ガス(希ガス)による圧力は1〜10Paがそれぞれ好ましい。金属含有炭素膜の形成方法にて説明したように、負のバイアス電圧を上げると希ガスのプラズマによるエッチングが速くなるため、磁束密度、圧力、およびアーク電流にもよるが、負のバイアス電圧として−100V以上になると、金属の堆積よりもエッチングの方が速くなって金属膜が成膜されなくなる。   The bias voltage applied to the substrate W in the formation of the base metal film is preferably −10 to −100 V with respect to the ground potential. Further, the arc current is preferably 50 to 200 A, and the pressure by the atmospheric gas (rare gas) is preferably 1 to 10 Pa. As explained in the method of forming the metal-containing carbon film, if the negative bias voltage is increased, the etching with the rare gas plasma becomes faster, so depending on the magnetic flux density, pressure, and arc current, the negative bias voltage When the voltage is −100 V or higher, etching is faster than metal deposition, and the metal film is not formed.

(金属含有炭素膜形成工程)
金属含有炭素膜の形成においては、本実施形態のように下地金属膜を形成した場合は、下地金属膜を形成された基材W(以下、基材W)が引き続きAIP装置10のステージに載置され、蒸発源2,2も下地金属膜の形成に用いたものを継続して使用できる。また、チャンバーも開放せず、内部は希ガスの減圧雰囲気である。このチャンバー内に炭素含有ガスを希ガスと共に導入してチャンバー内を所定の圧力(減圧雰囲気)に調整する。そして、蒸発源2,2にアーク電源にて、基材Wにバイアス電源にて、それぞれの所定出力を印加して放電して、基材Wの両面上に金属含有炭素膜を所望の厚さに形成する。雰囲気ガスの成分および圧力、ならびにバイアス電圧およびアーク電流は、それぞれ前記金属含有炭素膜の形成方法にて説明した通りであるので、説明は省略する。
(Metal-containing carbon film formation process)
In the formation of the metal-containing carbon film, when the base metal film is formed as in the present embodiment, the base material W (hereinafter referred to as the base material W) on which the base metal film is formed is continuously placed on the stage of the AIP apparatus 10. The evaporation sources 2 and 2 used for forming the base metal film can be used continuously. Further, the chamber is not opened, and the inside is a noble gas decompression atmosphere. A carbon-containing gas is introduced into the chamber together with a rare gas, and the inside of the chamber is adjusted to a predetermined pressure (depressurized atmosphere). Then, a predetermined power is applied to the evaporation sources 2 and 2 by an arc power source and a bias power source is applied to the base material W to discharge the metal-containing carbon films on both surfaces of the base material W to a desired thickness. To form. Since the components and pressure of the atmospheric gas, the bias voltage, and the arc current are the same as described in the method for forming the metal-containing carbon film, description thereof is omitted.

本実施形態では、下地金属膜を構成する金属元素と金属含有炭素膜に含有させる金属元素とを共通として、下地金属膜形成工程および金属含有炭素膜形成工程において同一の蒸発源2を適用したが、異なる金属元素からなる蒸発源を用いてもよい。例えば複数の電極を備えたAIP装置を用い、それぞれの電極に異なる蒸発源を取り付けて、下地金属膜形成工程と金属含有炭素膜形成工程とで電極を切り換えてもよい。また、1つの蒸発源により、一面側に下地金属膜および金属含有炭素膜を連続して成膜した後、基材Wを裏返して載置して、他面側に下地金属膜および金属含有炭素膜を再び連続して成膜してもよい。   In the present embodiment, the same evaporation source 2 is applied in the base metal film forming step and the metal-containing carbon film forming step, with the metal element constituting the base metal film and the metal element included in the metal-containing carbon film being used in common. Alternatively, evaporation sources made of different metal elements may be used. For example, an AIP device having a plurality of electrodes may be used, different evaporation sources may be attached to the respective electrodes, and the electrodes may be switched between the base metal film forming step and the metal-containing carbon film forming step. Further, after the base metal film and the metal-containing carbon film are continuously formed on one surface side by one evaporation source, the base material W is turned over and placed, and the base metal film and the metal-containing carbon film are disposed on the other surface side. The film may be continuously formed again.

(熱処理工程)
下地金属膜および金属含有炭素膜を形成された基材Wは、真空中または低酸素雰囲気中で300〜600℃の熱処理を施すことが好ましい。このような温度範囲で熱処理を施すことにより、基材Wの表面(下地金属膜との界面)におけるTiの不働態皮膜中の酸素が基材WのTi母材中や下地金属膜に拡散して、不働態皮膜が薄くなったり不働態皮膜が酸素欠乏型の酸化皮膜となって不働態皮膜の導電性が向上し、燃料電池セパレータの接触抵抗を低くすることができる。熱処理温度が300℃未満では、この効果が十分に得られない。一方、600℃を超えると、TiまたはTi合金からなる基材Wと金属含有炭素膜との熱膨張係数差に起因する熱応力により、金属含有炭素膜が剥離する虞がある。
(Heat treatment process)
The substrate W on which the base metal film and the metal-containing carbon film are formed is preferably subjected to heat treatment at 300 to 600 ° C. in a vacuum or in a low oxygen atmosphere. By performing the heat treatment in such a temperature range, oxygen in the Ti passive film on the surface of the substrate W (interface with the underlying metal film) diffuses into the Ti base material of the substrate W and the underlying metal film. As a result, the passive film becomes thin or the passive film becomes an oxygen-deficient oxide film, whereby the conductivity of the passive film is improved and the contact resistance of the fuel cell separator can be lowered. If the heat treatment temperature is less than 300 ° C., this effect cannot be obtained sufficiently. On the other hand, when the temperature exceeds 600 ° C., the metal-containing carbon film may be peeled off due to thermal stress caused by the difference in thermal expansion coefficient between the base material W made of Ti or Ti alloy and the metal-containing carbon film.

また、熱処理雰囲気は、真空、または窒素(N2)やAr等を供給して酸素分圧を1Pa以下に低くする。酸素分圧が1Paを超えると、金属含有炭素膜の炭素が熱処理で酸化して二酸化炭素(CO2)として解離してしまい、金属含有炭素膜の膜厚が減少する。また、金属含有炭素膜の金属が酸化して接触抵抗が却って増大する。このような熱処理は、300〜600℃の熱処理温度で熱処理を行うことができ、かつ雰囲気調整ができる熱処理炉であれば、電気炉、ガス炉等、どのような熱処理炉でも用いることができる。 In the heat treatment atmosphere, vacuum or nitrogen (N 2 ) or Ar is supplied to lower the oxygen partial pressure to 1 Pa or less. When the oxygen partial pressure exceeds 1 Pa, the carbon of the metal-containing carbon film is oxidized by heat treatment and dissociated as carbon dioxide (CO 2 ), and the film thickness of the metal-containing carbon film decreases. In addition, the metal of the metal-containing carbon film is oxidized and the contact resistance is increased. Such a heat treatment can be performed in any heat treatment furnace such as an electric furnace or a gas furnace as long as the heat treatment can be performed at a heat treatment temperature of 300 to 600 ° C. and the atmosphere can be adjusted.

このような方法により、金属含有炭素膜を燃料電池セパレータ用耐食皮膜として基材上に形成することができる。詳しくは、第1実施形態で形成される燃料電池セパレータ用耐食皮膜は、基材の金属Ti表面に形成されている不働態皮膜と、下地金属膜と、金属含有炭素膜とが積層されてなるものである。このような構成にすることで、低い接触抵抗で耐食性に優れた金属含有炭素膜を密着性よく表面に設けた燃料電池セパレータ用耐食皮膜となる。   By such a method, a metal-containing carbon film can be formed on a substrate as a corrosion-resistant film for a fuel cell separator. Specifically, the corrosion resistant coating for the fuel cell separator formed in the first embodiment is formed by laminating a passive film formed on the surface of the metal Ti of the base material, a base metal film, and a metal-containing carbon film. Is. By adopting such a configuration, a corrosion-resistant film for a fuel cell separator is provided in which a metal-containing carbon film having low contact resistance and excellent corrosion resistance is provided on the surface with good adhesion.

第1実施形態に係る燃料電池セパレータ用耐食皮膜の形成方法では、基材表面に下地金属膜を設けることで金属含有炭素膜を密着性よく形成したが、基材表面の不働態皮膜が除去された状態として、金属含有炭素膜を直接に形成してもよい。すなわち、本発明の第2実施形態に係る燃料電池セパレータ用耐食皮膜の形成方法は、前記第1実施形態と同様にAIP装置を用いて、基材Wの表面の不働態皮膜を除去する不働態皮膜除去工程と、前記金属含有炭素膜の形成方法にて金属含有炭素膜を形成する金属含有炭素膜形成工程と、を行うものである。不働態皮膜除去工程により基材Wの表面に金属Tiが露出することで、下地金属膜を設けなくても金属含有炭素膜との密着性をよくすることができる。さらに導電性を阻害する不働態皮膜が除去されることで、金属含有炭素膜形成工程後の熱処理工程が不要となる。   In the method for forming a corrosion-resistant film for a fuel cell separator according to the first embodiment, a metal-containing carbon film is formed with good adhesion by providing a base metal film on the surface of the substrate, but the passive film on the surface of the substrate is removed. Alternatively, the metal-containing carbon film may be formed directly. That is, the method for forming a corrosion-resistant film for a fuel cell separator according to the second embodiment of the present invention uses the AIP device to remove the passive film on the surface of the substrate W, similarly to the first embodiment. A film removing step and a metal-containing carbon film forming step of forming a metal-containing carbon film by the method for forming a metal-containing carbon film are performed. By exposing the metal Ti to the surface of the substrate W through the passive film removal step, the adhesion with the metal-containing carbon film can be improved without providing a base metal film. Furthermore, by removing the passive film that impedes conductivity, a heat treatment step after the metal-containing carbon film forming step becomes unnecessary.

(不働態皮膜除去工程)
前記したように、図1に示すAIP装置10では、基材Wの近傍で雰囲気ガス(希ガス)のプラズマ密度が高くなることで、希ガスのプラズマが蒸発源2から蒸発した金属が基材Wに堆積して形成される膜をスパッタエッチングする。したがって、基材Wに印加する負のバイアス電圧を上げることで、エッチング速度を金属の堆積速度よりも速くして、金属膜の成膜を実質的にゼロとし、さらに基材W表面の不働態皮膜をエッチング除去して基材Wの金属面を露出させることができる。また、基材Wの近傍においてプラズマ密度がほぼ均一に高いことで、除去厚さを均一にできる。さらに、金属含有炭素膜や下地金属膜の形成と同様に、基材W表面にマクロパーティクルが付着して、この部分はエッチングされないため、基材Wの表面粗さが大きくなって、金属含有炭素膜へのアンカー効果により密着性がいっそう向上する。
(Passive film removal process)
As described above, in the AIP apparatus 10 shown in FIG. 1, the plasma density of the atmospheric gas (rare gas) increases in the vicinity of the substrate W, so that the metal in which the rare gas plasma is evaporated from the evaporation source 2 is the substrate. The film formed by depositing on W is sputter etched. Therefore, by increasing the negative bias voltage applied to the substrate W, the etching rate is made faster than the deposition rate of the metal so that the film formation of the metal film is substantially zero, and the passive state of the surface of the substrate W is further increased. The metal surface of the substrate W can be exposed by removing the film by etching. In addition, since the plasma density is almost uniformly high in the vicinity of the substrate W, the removal thickness can be made uniform. Furthermore, as with the formation of the metal-containing carbon film and the base metal film, macroparticles adhere to the surface of the base material W, and this portion is not etched. Adhesion is further improved by the anchor effect to the membrane.

不働態皮膜の除去において成膜は行わないが、AIP装置10で連続して金属含有炭素膜形成工程を行うため、前記金属含有炭素膜の形成方法と同様に、金属含有炭素膜に含有させる金属元素からなる蒸発源2をAIP装置10の電極に取り付け、基材Wをステージに載置する(図1参照)。基材Wは、第1実施形態と同様に、酸洗処理にて、炭素が浸入した表層を除去したものを用いることが好ましい。次に、第1実施形態の下地金属膜形成工程と同様に、チャンバー内を真空に排気した後、Arガス等の希ガスをチャンバー内に導入してチャンバー内を減圧雰囲気に調整する。そして、蒸発源2,2にアーク電源にて、基材Wにバイアス電源にて、それぞれの所定出力を印加して放電し、Ar等の希ガス原子のプラズマを発生させることにより、基材Wの表面をスパッタエッチングする。   Although the film formation is not performed in the removal of the passive film, the metal-containing carbon film is formed in the same manner as the metal-containing carbon film forming method because the metal-containing carbon film forming process is continuously performed by the AIP apparatus 10. The evaporation source 2 made of an element is attached to the electrode of the AIP apparatus 10, and the substrate W is placed on the stage (see FIG. 1). As in the first embodiment, it is preferable to use the substrate W from which the surface layer into which carbon has entered is removed by pickling treatment. Next, similarly to the base metal film forming step of the first embodiment, the inside of the chamber is evacuated and then a rare gas such as Ar gas is introduced into the chamber to adjust the inside of the chamber to a reduced pressure atmosphere. Then, a predetermined power is applied to the evaporation sources 2 and 2 by an arc power source and a bias power source is applied to the base material W to be discharged to generate a plasma of a rare gas atom such as Ar. The surface of the film is sputter etched.

不働態皮膜の除去においては、下地金属膜の形成と同様に、雰囲気ガス(希ガス)による圧力は1〜10Paの減圧雰囲気とし、アーク電流は50〜200Aとすることが好ましい。ただし、希ガスのプラズマによるエッチングを金属の堆積速度よりも速くするため、基材Wに印加するバイアス電圧は、アース電位に対して−100〜−300Vの範囲で調整することが好ましい。また、前記の酸洗処理した基材Wであれば、アーク放電時間は1〜数分程度で不働態皮膜の除去が可能である。   In the removal of the passive film, it is preferable that the pressure by the atmospheric gas (rare gas) is a reduced pressure atmosphere of 1 to 10 Pa and the arc current is 50 to 200 A, as in the formation of the base metal film. However, the bias voltage applied to the substrate W is preferably adjusted in the range of −100 to −300 V with respect to the ground potential in order to make the etching with the rare gas plasma faster than the deposition rate of the metal. In the case of the pickled base material W, the arc discharge time is about 1 to several minutes, and the passive film can be removed.

(金属含有炭素膜形成工程)
金属含有炭素膜の形成においては、不働態皮膜を除去された基材Wが引き続きAIP装置10のステージに載置され、蒸発源2,2も金属含有炭素膜の形成に対応したものが予め取り付けられているので、第1実施形態の下地金属膜形成工程後と同様に、チャンバーは開放せず、引き続き金属含有炭素膜形成工程を行って、前記基材Wの両面上に金属含有炭素膜を所望の厚さに形成する。雰囲気ガスの成分および圧力、ならびにバイアス電圧およびアーク電流は、それぞれ前記金属含有炭素膜の形成方法にて説明した通りであるので、説明は省略する。
(Metal-containing carbon film formation process)
In the formation of the metal-containing carbon film, the base material W from which the passive film has been removed is continuously placed on the stage of the AIP apparatus 10, and the evaporation sources 2 and 2 corresponding to the formation of the metal-containing carbon film are attached in advance. As in the first embodiment, the chamber is not opened and the metal-containing carbon film forming step is subsequently performed to form the metal-containing carbon film on both surfaces of the substrate W. A desired thickness is formed. Since the components and pressure of the atmospheric gas, the bias voltage, and the arc current are the same as described in the method for forming the metal-containing carbon film, description thereof is omitted.

このような方法によっても、金属含有炭素膜を燃料電池セパレータ用耐食皮膜として基材上に形成することができる。詳しくは、第2実施形態で形成される燃料電池セパレータ用耐食皮膜は金属含有炭素膜のみからなり、基材の金属Ti表面に形成されている。このような構成にすることで、第1実施形態と同様に、低い接触抵抗で耐食性に優れた金属含有炭素膜を密着性よく表面に設けた燃料電池セパレータ用耐食皮膜となる。   Also by such a method, a metal-containing carbon film can be formed on a substrate as a corrosion-resistant film for a fuel cell separator. Specifically, the corrosion resistant coating for a fuel cell separator formed in the second embodiment is composed only of a metal-containing carbon film, and is formed on the surface of the metal Ti of the base material. By adopting such a configuration, as in the first embodiment, a corrosion-resistant film for a fuel cell separator is provided in which a metal-containing carbon film having low contact resistance and excellent corrosion resistance is provided on the surface with good adhesion.

以上、本発明に係る燃料電池セパレータ用金属含有炭素膜の形成方法、およびこの方法を用いた燃料電池セパレータ用耐食皮膜の形成方法について、本発明を実施するための形態について説明したが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と比較して説明する。なお、本発明はこの実施例および前記形態に限定されるものではなく、これらの記載に基づいて種々変更、改変等したものも本発明の趣旨に含まれることはいうまでもない。   As mentioned above, although the form for implementing this invention was demonstrated about the formation method of the metal containing carbon film for fuel cell separators concerning this invention, and the formation method of the corrosion-resistant film | membrane for fuel cell separators using this method, Examples in which the effects of the present invention have been confirmed will be described in comparison with comparative examples that do not satisfy the requirements of the present invention. In addition, this invention is not limited to this Example and the said form, It cannot be overemphasized that what was variously changed and modified based on these description is also contained in the meaning of this invention.

本発明に係る金属含有炭素膜の形成方法を用いた実施例を、本発明の第1実施形態に係る燃料電池セパレータ用耐食皮膜の形成方法にて、以下の通り作製、評価した。   An example using the method for forming a metal-containing carbon film according to the present invention was produced and evaluated as follows in the method for forming a corrosion-resistant film for a fuel cell separator according to the first embodiment of the present invention.

〔基材の作製(共通)〕
被処理体として用いた基材は、次のようにして前処理した。まず、JIS H 4600に規定される1種の純チタンKS40((株)神戸製鋼所製)からなるチタン材(幅20mm×長さ50mm×厚さ0.2mm)を、アセトン中で超音波洗浄した後、酸洗処理として、室温にて0.25%フッ化水素酸と1.0%硝酸の混合水溶液に3分間浸漬し、純水で洗浄して乾燥させた。
[Production of base material (common)]
The base material used as the object to be processed was pretreated as follows. First, a titanium material (width 20 mm × length 50 mm × thickness 0.2 mm) made of one kind of pure titanium KS40 (manufactured by Kobe Steel, Ltd.) defined in JIS H 4600 is ultrasonically cleaned in acetone. Then, as pickling treatment, it was immersed in a mixed aqueous solution of 0.25% hydrofluoric acid and 1.0% nitric acid at room temperature for 3 minutes, washed with pure water and dried.

なお、後記の試験材No.1において、酸洗処理の前後の基材の重量変化から、片面あたりで表面から約5μmの厚さが除去された。さらに、酸洗処理後の基材の表面を、全自動走行型X線光電子分光分析装置(Physical Electronics社製Quantera SXM)を用いて、深さ方向にX線光電子分光分析(XPS)を行った結果、厚さ約10nmのTiの不働態皮膜が形成されていた。   Note that the test material No. In No. 1, a thickness of about 5 μm was removed from the surface per side from the weight change of the base material before and after the pickling treatment. Furthermore, the surface of the base material after the pickling treatment was subjected to X-ray photoelectron spectroscopy (XPS) in the depth direction using a fully automatic traveling X-ray photoelectron spectrometer (Quantera SXM manufactured by Physical Electronics). As a result, a passive film of Ti having a thickness of about 10 nm was formed.

〔実施例(試験材No.1)〕
(下地金属膜の形成)
基材を、図1に示すAIP装置10のステージに載置した。Nbからなる蒸発源(φ100mm×厚さ16mm)を2つの電極にそれぞれ取り付けて基材両面のそれぞれに正対させた。また、磁界形成手段として、Nd−Fe−B磁石を蒸発源の周囲に配置した。このとき、基材表面における位置の磁束密度を測定した結果、12Gであった。AIP装置10のチャンバー内を1×10-3Pa以下の真空に排気した後、下記条件に示すように、雰囲気ガス(Ar)をチャンバー内に導入してチャンバー内の圧力を調整し、2つの蒸発源を同時にアーク放電して、基材の両面に成膜を行った。
[Example (Test Material No. 1)]
(Formation of underlying metal film)
The base material was mounted on the stage of the AIP apparatus 10 shown in FIG. An evaporation source (φ100 mm × thickness 16 mm) made of Nb was attached to each of the two electrodes so as to face each of both surfaces of the base material. In addition, an Nd—Fe—B magnet was disposed around the evaporation source as a magnetic field forming means. At this time, as a result of measuring the magnetic flux density at the position on the substrate surface, it was 12 G. After evacuating the chamber of the AIP apparatus 10 to a vacuum of 1 × 10 −3 Pa or less, as shown in the following conditions, atmospheric gas (Ar) is introduced into the chamber to adjust the pressure in the chamber, The evaporation source was simultaneously arc-discharged to form a film on both sides of the substrate.

(下地金属膜の形成条件)
チャンバー内雰囲気 ガス種:Ar
圧力:2.66Pa
基材バイアス電圧:−50V
アーク電流:100A
アーク放電時間:30秒
(Under metal film formation conditions)
Atmosphere in chamber Gas type: Ar
Pressure: 2.66 Pa
Substrate bias voltage: -50V
Arc current: 100A
Arc discharge time: 30 seconds

(金属含有炭素膜の形成)
引き続き、下記条件に示すように、雰囲気ガス(Ar,CH4)をチャンバー内に導入してチャンバー内の圧力を調整し、2つの蒸発源を同時にアーク放電して、基材両面の下地金属膜上に成膜を行った。
(Formation of metal-containing carbon film)
Subsequently, as shown in the following conditions, atmospheric gases (Ar, CH 4 ) are introduced into the chamber, the pressure in the chamber is adjusted, and two evaporation sources are simultaneously arc-discharged. A film was formed on top.

(金属含有炭素膜の形成条件)
チャンバー内雰囲気 ガス種:Ar,CH4(流量比1:1)
圧力:2.66Pa
基材バイアス電圧:−100V
アーク電流:60A
アーク放電時間:30秒
(Conditions for forming metal-containing carbon film)
Atmosphere in chamber Gas type: Ar, CH 4 (Flow ratio 1: 1)
Pressure: 2.66 Pa
Substrate bias voltage: -100V
Arc current: 60A
Arc discharge time: 30 seconds

(熱処理)
両面に下地金属膜および金属含有炭素膜を形成した基材を、真空熱処理炉の予備室に収容し、予備室及び炉内を1×10-3Pa以下の真空に排気して、炉内を450℃に加熱した。その後、予備室と熱処理炉の間のバルブを開放して、基材を炉内に搬送し、3分間の熱処理を行った。熱処理後、基材を再び予備室に搬送し、バルブを閉じて予備室内にArを導入して、基材の温度が100℃以下になるまでガス冷却して、燃料電池セパレータの試験材とした。
(Heat treatment)
The base material on which the base metal film and the metal-containing carbon film are formed on both sides is housed in a preliminary chamber of a vacuum heat treatment furnace, and the preliminary chamber and the furnace are evacuated to a vacuum of 1 × 10 −3 Pa or less, Heated to 450 ° C. Thereafter, the valve between the preliminary chamber and the heat treatment furnace was opened, the base material was transferred into the furnace, and heat treatment was performed for 3 minutes. After the heat treatment, the base material is transported again to the preliminary chamber, the valve is closed, Ar is introduced into the preliminary chamber, and gas cooling is performed until the temperature of the base material becomes 100 ° C. or lower to obtain a test material for the fuel cell separator. .

(膜組成の測定)
XPSにより、試験材の表面から膜厚方向に150nmまでの深さ(以下、表面近傍)における膜の組成分析を行った。金属(Nb)含有炭素膜の組成は膜厚方向にほぼ均一で、炭素を基とするNb含有炭素膜が形成されていた。Nb,C,Oの組成を表1に示す。また、透過電子顕微鏡(TEM)により断面を観察した。その結果、試験材は、表面からNb含有炭素膜/Nb膜(下地金属膜)/Ti不働態皮膜層/Ti基材の構造になっており、膜厚は、Nb含有炭素膜が80nm、Nb膜が27nm、Ti不働態皮膜層が7nmであった。また、Nb膜の表面にはところどころにマクロパーティクルと推測される数百nm程度のNbの粒子が突出しているのが認められ、Nb膜及びマクロパーティクルの表面に沿ってNb含有炭素膜が形成されていた。また、Ti不働態皮膜層は、熱処理により成膜前(酸洗処理後の基材)の10nmに対して薄くなっていた。
(Measurement of film composition)
The composition analysis of the film in the depth (henceforth the surface vicinity) to 150 nm in the film thickness direction from the surface of the test material was performed by XPS. The composition of the metal (Nb) -containing carbon film was almost uniform in the film thickness direction, and an Nb-containing carbon film based on carbon was formed. Table 1 shows the composition of Nb, C, and O. Moreover, the cross section was observed with the transmission electron microscope (TEM). As a result, the test material has a structure of Nb-containing carbon film / Nb film (underlying metal film) / Ti passive film layer / Ti substrate from the surface, and the film thickness is 80 nm for the Nb-containing carbon film, Nb The film was 27 nm and the Ti passive film layer was 7 nm. Further, it is recognized that Nb particles of about several hundreds of nanometers, which are estimated to be macro particles, protrude from the surface of the Nb film, and an Nb-containing carbon film is formed along the surfaces of the Nb film and the macro particles. It was. Moreover, the Ti passive state film layer was thinned with respect to 10 nm before film formation (base material after pickling treatment) by heat treatment.

(導電性の評価)
試験材の接触抵抗を、図3に示す接触抵抗測定装置を用いて測定した。
図3に示すように、試験材を両面から2枚のカーボンクロスで挟み、さらにその外側を接触面積1cm2の銅電極で荷重98N(10kgf)に加圧し、直流電流電源を用いて7.4mAの電流を通電し、両カーボンクロス間に印加される電圧を電圧計で測定して抵抗値を算出した。得られた抵抗値を初期特性の接触抵抗として表1に示す。なお、導電性の合格基準は、後記の耐食試験後の接触抵抗が15mΩ・cm2以下とした。
(Evaluation of conductivity)
The contact resistance of the test material was measured using a contact resistance measuring device shown in FIG.
As shown in FIG. 3, the test material was sandwiched between two carbon cloths from both sides, and the outside was pressurized to a load of 98 N (10 kgf) with a copper electrode having a contact area of 1 cm 2 and 7.4 mA using a direct current power source. Was applied, and the voltage applied between the carbon cloths was measured with a voltmeter to calculate the resistance value. The obtained resistance values are shown in Table 1 as the initial contact resistance. In addition, the electrical conductivity acceptance criteria were such that the contact resistance after a corrosion resistance test described later was 15 mΩ · cm 2 or less.

(耐食性の評価)
耐食試験として、試験材を、端面をマスキングした後、80℃に加熱したpH2の硫酸水溶液に浸漬して、標準カロメル電極(SCE)に対して0.62Vの電位を100時間印加した。耐食試験後の試験材について、前記の浸漬前の試験材と同じ方法で接触抵抗を測定し、表1に示す。耐食性の合格基準は、耐食試験後の接触抵抗が15mΩ・cm2以下とした。
(Evaluation of corrosion resistance)
As a corrosion resistance test, the end face of the test material was masked, immersed in a sulfuric acid aqueous solution of pH 2 heated to 80 ° C., and a potential of 0.62 V was applied to a standard calomel electrode (SCE) for 100 hours. For the test material after the corrosion resistance test, the contact resistance was measured by the same method as that for the test material before the immersion, and is shown in Table 1. The acceptance standard for corrosion resistance was such that the contact resistance after the corrosion resistance test was 15 mΩ · cm 2 or less.

表1に示すように、試験材No.1は、本発明に係る金属含有炭素膜の形成方法による実施例であるので、導電性が良好で、耐食試験により少し上昇したが、接触抵抗を十分に低く維持でき、耐食性も良好であった。   As shown in Table 1, the test material No. 1 is an example according to the method for forming a metal-containing carbon film according to the present invention, so that the conductivity was good and increased slightly by the corrosion resistance test, but the contact resistance could be kept sufficiently low and the corrosion resistance was also good. .

〔アーク式蒸発源による評価(試験材No.2,3)〕
試験材No.2は、試験材No.1と同じAIP装置にて、Tiからなる蒸発源(φ100mm×厚さ16mm)を用いて、下地金属膜と金属含有炭素膜を形成した。
基材表面における位置の磁束密度は8Gとした。試験材No.1と同様に、AIP装置10にて下記条件に示すように、チャンバー内の雰囲気を調整し、アーク放電して、基材の両面に下地金属膜(Ti膜)、金属(Ti)含有炭素膜をそれぞれ形成した。次に、試験材No.1と同様に、真空熱処理炉にて熱処理を行って燃料電池セパレータの試験材No.2とした。熱処理条件は400℃×3分間とした。
[Evaluation with an arc evaporation source (test material No. 2, 3)]
Test material No. 2 is the test material No. In the same AIP apparatus as 1, an underlying metal film and a metal-containing carbon film were formed using an evaporation source (φ100 mm × thickness 16 mm) made of Ti.
The magnetic flux density at the position on the substrate surface was 8G. Test material No. 1, as shown in the following conditions in the AIP device 10, the atmosphere in the chamber is adjusted, arc discharge is performed, and a base metal film (Ti film) and a metal (Ti) -containing carbon film are formed on both surfaces of the base material. Formed respectively. Next, the test material No. In the same manner as in No. 1, the fuel cell separator test material No. 2. The heat treatment conditions were 400 ° C. × 3 minutes.

(下地金属膜の形成条件)
チャンバー内雰囲気 ガス種:Ar
圧力:2.66Pa
基材バイアス電圧:−50V
アーク電流:80A
アーク放電時間:20秒
(Under metal film formation conditions)
Atmosphere in chamber Gas type: Ar
Pressure: 2.66 Pa
Substrate bias voltage: -50V
Arc current: 80A
Arc discharge time: 20 seconds

(金属含有炭素膜の形成条件)
チャンバー内雰囲気 ガス種:Ar,CH4(流量比1:1)
圧力:2.66Pa
基材バイアス電圧:−200V
アーク電流:60A
アーク放電時間:30秒
(Conditions for forming metal-containing carbon film)
Atmosphere in chamber Gas type: Ar, CH 4 (Flow ratio 1: 1)
Pressure: 2.66 Pa
Substrate bias voltage: -200V
Arc current: 60A
Arc discharge time: 30 seconds

比較例として、試験材No.2と同じ基材に、同じTiからなる蒸発源を用い、図4に示すアーク式蒸発源を備えたAIP装置にて、下地金属膜と金属含有炭素膜を形成した。基材表面における位置の磁束密度を測定した結果、0.1Gであり、基材まで磁力線がほとんど到達しないことを示した。その他の条件、すなわちチャンバー内の雰囲気ガスおよび圧力、基材バイアス電圧、アーク電流、およびアーク放電時間は、すべて試験材No.2と同じとした。さらに試験材No.2と同様に400℃×3分間の熱処理を行って、燃料電池セパレータの試験材No.3とした。   As a comparative example, test material No. The base metal film and the metal-containing carbon film were formed on the same base material as in No. 2 using an AIP apparatus having the arc evaporation source shown in FIG. As a result of measuring the magnetic flux density at the position on the surface of the base material, it was 0.1 G, indicating that almost no magnetic field lines reached the base material. Other conditions, that is, the atmospheric gas and pressure in the chamber, the substrate bias voltage, the arc current, and the arc discharge time are all test material Nos. Same as 2. Furthermore, test material No. In the same manner as in No. 2, heat treatment was performed at 400 ° C. for 3 minutes, and the test specimen No. It was set to 3.

得られた試験材No.2,3について、試験材No.1と同様に、XPSによる試験材表面近傍の膜について、Ti,C,Oの組成分析と、TEMによる膜厚測定を行った。また、導電性および耐食性の評価として接触抵抗を測定した。結果を表1に示す。   The obtained test material No. 2 and 3, the test material No. Similar to 1, the composition in the vicinity of the test material surface by XPS was subjected to composition analysis of Ti, C, O, and film thickness measurement by TEM. Moreover, contact resistance was measured as evaluation of electroconductivity and corrosion resistance. The results are shown in Table 1.

Figure 0005180932
Figure 0005180932

表1に示すように、試験材No.2は、試験材No.1と同様に、本発明に係る金属含有炭素膜の形成方法による実施例であるので、膜厚方向にほぼ均一な組成で炭素を基とするTi含有炭素膜が得られ、導電性および耐食性が良好であった。これに対して、従来のアーク式蒸発源を用いて成膜した試験材No.3は、試験材No.2と同じTi蒸発源および雰囲気ガスであっても、基材まで磁力線が到達しないことで基材近傍のプラズマ密度が低く、金属(Ti)の成膜速度が速かった。そのために試験材No.3は、試験材No.2と比較して下地金属膜の膜厚は厚くなり、一方、金属含有炭素膜としては、TiおよびTi炭化物を主とする皮膜が形成され、また膜厚は薄かった。その結果、試験材No.3は、Tiの不働態皮膜により初期の接触抵抗が高く、耐食試験によりさらに不働態皮膜が形成されて接触抵抗が大きく上昇した。   As shown in Table 1, the test material No. 2 is the test material No. 1 is an example of the method for forming a metal-containing carbon film according to the present invention, so that a Ti-containing carbon film based on carbon with a substantially uniform composition in the film thickness direction is obtained, and the conductivity and corrosion resistance are improved. It was good. In contrast, the test material No. 1 formed using a conventional arc evaporation source. 3 is the test material No. Even with the same Ti evaporation source and atmospheric gas as in No. 2, the plasma density in the vicinity of the substrate was low because the magnetic field lines did not reach the substrate, and the metal (Ti) film formation rate was high. Therefore, the test material No. 3 is the test material No. The film thickness of the base metal film was thicker than that of No. 2, while a film mainly composed of Ti and Ti carbide was formed as the metal-containing carbon film, and the film thickness was thin. As a result, the test material No. No. 3 had a high initial contact resistance due to the Ti passive film, and a further increase in the contact resistance due to the formation of a passive film by the corrosion test.

次に、前記実施例1の試験材No.1,2で用いたAIP装置およびアーク式蒸発源(図1,2参照)を用いて、本発明の第1実施形態に係る燃料電池セパレータ用耐食皮膜の形成方法にて、金属含有炭素膜の形成における条件の比較を行った。また、基材も前記チタン材を酸洗処理して用いた。   Next, the test material No. 1 of Example 1 was used. In the method for forming a corrosion-resistant coating for a fuel cell separator according to the first embodiment of the present invention, using the AIP device and the arc evaporation source (see FIGS. 1 and 2) used in 1 and 2, A comparison of conditions in formation was made. Also, the titanium material was used after pickling the titanium material.

〔基材バイアス電圧による評価(試験材No.4〜8)〕
Zrからなる蒸発源(φ100mm×厚さ16mm)を用いて、基材に試験材No.2と同じ条件で下地金属膜(Zr膜)を形成し、引き続き、表2に示す基材バイアス電圧で金属(Zr)含有炭素膜を形成した。金属含有炭素膜の形成のその他の条件、すなわちチャンバー内の雰囲気ガスおよび圧力、アーク電流、およびアーク放電時間は試験材No.2と同様とした。熱処理条件も試験材No.2と同じ400℃×3分間とした。
[Evaluation by Base Material Bias Voltage (Test Material Nos. 4 to 8)]
Using an evaporation source (φ100 mm × thickness 16 mm) made of Zr, the test material No. Then, a base metal film (Zr film) was formed under the same conditions as in No. 2, and subsequently a metal (Zr) -containing carbon film was formed at the substrate bias voltage shown in Table 2. The other conditions for forming the metal-containing carbon film, that is, the atmospheric gas and pressure in the chamber, the arc current, and the arc discharge time were measured using the test material No. Same as 2. The heat treatment conditions were also the test material No. Same as 2 at 400 ° C. × 3 minutes.

得られた試験材について、試験材No.1〜3と同様に、試験材表面近傍の膜のXPSによるZr,C,Oの組成分析およびTEMによる膜厚測定を行った。なお、下地金属膜(Zr膜)の厚さは16nmであった。また、導電性および耐食性の評価として接触抵抗を測定した。結果を表2に示す。   For the obtained test material, the test material No. As in 1-3, composition analysis of Zr, C, O by XPS and film thickness measurement by TEM were performed on the film near the surface of the test material. Note that the thickness of the base metal film (Zr film) was 16 nm. Moreover, contact resistance was measured as evaluation of electroconductivity and corrosion resistance. The results are shown in Table 2.

Figure 0005180932
Figure 0005180932

表2に示すように、基材バイアス電圧が(負のバイアス電圧として)大きくなるにしたがい、ArのプラズマによるZr膜へのスパッタエッチング作用が大きくなって、Zr含有炭素膜のZr含有率が少なくなった。その結果、試験材の導電性および耐食性が次第に向上した。また、Arのプラズマによるエッチングの一方で、CH4のプラズマ密度が高くなって炭素の析出が増加したため、Zr含有炭素膜の膜厚の減少量は小さかった。試験材No.5〜7は基材バイアス電圧が本発明に係る金属含有炭素膜の形成方法を満足する実施例であるため、炭素を基とするZr含有炭素膜が得られ、試験材No.1,2と同様に導電性および耐食性が良好であった。これに対して、試験材No.4は基材バイアス電圧が小さかった(印加しなかった)ため、Arのプラズマによるスパッタエッチング作用が弱く、金属膜(Zr膜)の成膜速度が減速されなかった結果、Zrを多く含んでZrおよびZr炭化物を主とする皮膜が形成された。そのため、Zrの不働態皮膜により初期の接触抵抗が合格基準内で既に高く、耐食試験によりさらに不働態皮膜が形成されて接触抵抗が大きく上昇した。一方、試験材No.8は基材バイアス電圧が大きすぎたため、基材が熱変形した。 As shown in Table 2, as the substrate bias voltage increases (as a negative bias voltage), the sputter etching action on the Zr film by Ar plasma increases, and the Zr content of the Zr-containing carbon film decreases. became. As a result, the conductivity and corrosion resistance of the test material gradually improved. In addition, while the etching with Ar plasma was performed, the CH 4 plasma density was increased and the carbon deposition was increased, so that the amount of decrease in the thickness of the Zr-containing carbon film was small. Test material No. Nos. 5 to 7 are examples in which the substrate bias voltage satisfies the method for forming a metal-containing carbon film according to the present invention, so that a Zr-containing carbon film based on carbon is obtained. Like 1 and 2, the conductivity and corrosion resistance were good. In contrast, test material No. In No. 4, since the substrate bias voltage was low (not applied), the sputter etching action by Ar plasma was weak, and the film formation rate of the metal film (Zr film) was not slowed. As a result, Zr contained a large amount of Zr. And a film mainly composed of Zr carbide was formed. Therefore, the initial contact resistance was already high within the acceptance criteria due to the passive film of Zr, and a passive film was further formed by the corrosion resistance test, resulting in a significant increase in contact resistance. On the other hand, test material No. In No. 8, the base material bias voltage was too large, so that the base material was thermally deformed.

〔雰囲気ガスによる評価(試験材No.1,9〜12)〕
試験材No.1と同じNbからなる蒸発源を用いて、かつ同じ条件で基材に下地金属膜(Nb膜)を形成し、引き続き、雰囲気ガスを表3に示すArとCH4の流量比に変化させて、金属(Nb)含有炭素膜を形成した。金属含有炭素膜の形成におけるその他の条件、すなわちチャンバー内の圧力、基材バイアス電圧、アーク電流、およびアーク放電時間は試験材No.1と同様とした。熱処理条件も試験材No.1と同じ450℃×3分間とした。
[Evaluation by Atmospheric Gas (Test Material Nos. 1, 9-12)]
Test material No. The base metal film (Nb film) is formed on the base material using the same Nb evaporation source as 1 and under the same conditions. Subsequently, the atmospheric gas is changed to the flow ratio of Ar and CH 4 shown in Table 3. A metal (Nb) -containing carbon film was formed. The other conditions in the formation of the metal-containing carbon film, that is, the pressure in the chamber, the substrate bias voltage, the arc current, and the arc discharge time were measured using the test material No. Same as 1. The heat treatment conditions were also the test material No. 1 and 450 ° C. for 3 minutes.

得られた試験材について、試験材No.1と同様に、試験材表面近傍の膜のXPSによるNb,C,Oの組成分析およびTEMによる膜厚測定を行った。また、導電性および耐食性の評価として接触抵抗を測定した。結果を試験材No.1も併せて表3に示す。   For the obtained test material, the test material No. As in 1, the composition analysis of Nb, C, O by XPS of the film near the surface of the test material and the film thickness measurement by TEM were performed. Moreover, contact resistance was measured as evaluation of electroconductivity and corrosion resistance. The results are shown in Test Material No. 1 is also shown in Table 3.

Figure 0005180932
Figure 0005180932

表3に示すように、CH4の流量比が増大するにしたがい、成膜される炭素が増加して金属含有炭素膜の炭素の含有率が増加した。試験材No.10,11は、試験材No.1と同様に、CH4の流量比が本発明に係る金属含有炭素膜の形成方法を満足する実施例であるので、炭素を基とするNb含有炭素膜が得られ、導電性および耐食性が良好であった。これに対して、試験材No.9はCH4の流量比が不足したため、成膜される炭素が少なく、NbおよびNb炭化物を主とする皮膜が形成された。そのため、Nbの不働態皮膜により初期の接触抵抗が高く、耐食試験によりさらに不働態皮膜が形成されて接触抵抗が大きく上昇した。また、試験材No.9はArの流量比が多かったため、Arのプラズマによるスパッタエッチング作用が強く、成膜速度が低下して、同じ放電時間であっても膜厚が薄かった。一方、試験材No.12はCH4の流量比が過剰で、Nb含有炭素膜における炭素とNbの原子比としては問題ないが、初期の接触抵抗が高く、CH4の水素が多く含まれたと推察される。このように、CH4の流量比が多くなるにしたがい金属含有炭素膜の金属含有率は減少するが、同時に水素も含まれるようになるため、炭化水素ガスの流量比による炭素含有率の増加には限界があり、必ずしも接触抵抗のさらなる向上効果は得られない。 As shown in Table 3, as the flow rate ratio of CH 4 increased, the amount of carbon formed increased and the carbon content of the metal-containing carbon film increased. Test material No. 10 and 11 are test material Nos. As in Example 1, since the flow rate ratio of CH 4 is an example that satisfies the method for forming a metal-containing carbon film according to the present invention, an Nb-containing carbon film based on carbon is obtained, and the conductivity and corrosion resistance are good. Met. In contrast, test material No. No. 9 was insufficient in the flow rate ratio of CH 4 , so that the amount of carbon formed was small, and a film mainly composed of Nb and Nb carbide was formed. Therefore, the initial contact resistance was high due to the passive film of Nb, and a passive film was further formed by the corrosion resistance test, resulting in a significant increase in contact resistance. In addition, test material No. Since No. 9 had a large Ar flow ratio, the sputtering effect by Ar plasma was strong, the film formation rate was reduced, and the film thickness was small even during the same discharge time. On the other hand, test material No. No. 12 has an excessive flow rate ratio of CH 4 , and there is no problem as an atomic ratio of carbon to Nb in the Nb-containing carbon film, but it is presumed that the initial contact resistance is high and a large amount of CH 4 hydrogen is contained. Thus, as the CH 4 flow rate ratio increases, the metal content of the metal-containing carbon film decreases, but hydrogen is also included at the same time, so the carbon content rate increases due to the flow rate ratio of the hydrocarbon gas. However, there is a limit, and a further improvement effect of the contact resistance cannot always be obtained.

次に、前記実施例1および実施例2で用いたAIP装置およびアーク式蒸発源(図1,2参照)を用いて、本発明の第2実施形態に係る燃料電池セパレータ用耐食皮膜の形成方法による実施例を作製、評価した。   Next, using the AIP apparatus and arc evaporation source (see FIGS. 1 and 2) used in Examples 1 and 2, the method for forming a corrosion-resistant film for a fuel cell separator according to the second embodiment of the present invention is used. The examples according to were prepared and evaluated.

〔不働態皮膜の除去による評価(試験材No.13)〕
試験材No.13は、試験材No.1〜12と同じチタン材を基材として、同様に酸洗処理して、AIP装置10のステージに載置し、また試験材No.2と同じTiからなる蒸発源を電極に取り付けた。AIP装置10のチャンバー内を1×10-3Pa以下の真空に排気した後、下記条件に示すように、雰囲気ガス(Ar)をチャンバー内に導入してチャンバー内の圧力を調整し、2つの蒸発源を同時にアーク放電して、基材の両表面の不働態皮膜の除去を行った。
[Evaluation by removing passive film (test material No. 13)]
Test material No. 13 is a test material No. The same titanium material as that of Nos. 1 to 12 was used as a base material, and was similarly pickled and placed on the stage of the AIP apparatus 10. The same evaporation source made of Ti as 2 was attached to the electrode. After evacuating the chamber of the AIP apparatus 10 to a vacuum of 1 × 10 −3 Pa or less, as shown in the following conditions, atmospheric gas (Ar) is introduced into the chamber to adjust the pressure in the chamber, The evaporation source was simultaneously arced to remove the passive film on both surfaces of the substrate.

(不働態皮膜の除去条件)
チャンバー内雰囲気 ガス種:Ar
圧力:2.66Pa
基材バイアス電圧:−150V
アーク電流:80A
アーク放電時間:60秒
(Removal conditions for passive film)
Atmosphere in chamber Gas type: Ar
Pressure: 2.66 Pa
Substrate bias voltage: -150V
Arc current: 80A
Arc discharge time: 60 seconds

(金属含有炭素膜の形成)
引き続き、雰囲気ガス(Ar,CH4)をチャンバー内に導入してチャンバー内の圧力を調整し、2つの蒸発源を同時にアーク放電して、基材の両表面上に金属含有炭素膜の成膜を行って、燃料電池セパレータの試験材とした。金属含有炭素膜の形成条件、すなわちチャンバー内の雰囲気ガスおよび圧力、基材バイアス電圧、アーク電流、およびアーク放電時間は、すべて試験材No.2と同じとした。
(Formation of metal-containing carbon film)
Subsequently, atmospheric gas (Ar, CH 4 ) is introduced into the chamber, the pressure in the chamber is adjusted, two evaporation sources are simultaneously arc-discharged, and a metal-containing carbon film is formed on both surfaces of the substrate. To obtain a test material for a fuel cell separator. The formation conditions of the metal-containing carbon film, that is, the atmospheric gas and pressure in the chamber, the substrate bias voltage, the arc current, and the arc discharge time are all test materials No. Same as 2.

得られた試験材No.13について、XPSにより、表面から膜厚方向に150nmまでの深さにおける膜の組成分析を行った。金属(Ti)含有炭素膜の組成は膜厚方向にほぼ均一で、炭素を基とするTi含有炭素膜が形成されていた。また、TEMによる断面観察により、Ti含有炭素膜とTi基材の界面にTi不働態皮膜層は認められず、不働態皮膜が除去されていることが確認された。XPSにて測定したTi,C,Oの組成、およびTEMにて測定したTi含有炭素膜の膜厚を表4に示す。また、試験材No.13について、試験材No.1〜12と同様に、導電性および耐食性の評価として接触抵抗を測定した。結果を試験材No.1も併せて表4に示す。   The obtained test material No. About 13, the composition analysis of the film | membrane in the depth to 150 nm from the surface to a film thickness direction was performed by XPS. The composition of the metal (Ti) -containing carbon film was almost uniform in the film thickness direction, and a Ti-containing carbon film based on carbon was formed. Further, cross-sectional observation by TEM confirmed that no Ti passive film layer was observed at the interface between the Ti-containing carbon film and the Ti base material, and that the passive film was removed. Table 4 shows the composition of Ti, C, and O measured by XPS and the thickness of the Ti-containing carbon film measured by TEM. In addition, test material No. No. 13, test material No. Similar to 1-12, contact resistance was measured as an evaluation of conductivity and corrosion resistance. The results are shown in Test Material No. 1 is also shown in Table 4.

Figure 0005180932
Figure 0005180932

表4に示すように、試験材No.13は、本発明に係る金属含有炭素膜の形成方法による実施例であるので、導電性および耐食性が良好であった。なお、参考として、試験材No.1について、熱処理前に(熱処理なし)接触抵抗を測定した結果、17mΩ・cm2で、導電性が少し低下した。このように、本発明の第2実施形態に係る燃料電池セパレータ用耐食皮膜の形成方法として、基材表面の不働態皮膜を除去してから、本発明に係る金属含有炭素膜の形成方法にて金属含有炭素膜を形成することで、熱処理を行わなくても良好な導電性を得ることができた。 As shown in Table 4, the test material No. Since No. 13 is an example according to the method for forming a metal-containing carbon film according to the present invention, the conductivity and corrosion resistance were good. For reference, the test material No. As a result of measuring the contact resistance of No. 1 before heat treatment (without heat treatment), the conductivity decreased slightly at 17 mΩ · cm 2 . As described above, as a method for forming a corrosion-resistant film for a fuel cell separator according to the second embodiment of the present invention, after removing the passive film on the substrate surface, the method for forming a metal-containing carbon film according to the present invention is used. By forming the metal-containing carbon film, good conductivity could be obtained without performing heat treatment.

10 アークイオンプレーティング(AIP)装置
1 アーク式蒸発源
2 蒸発源(陰極物質)
3 磁界形成手段
W 基材
10 Arc ion plating (AIP) equipment 1 Arc type evaporation source 2 Evaporation source (cathode material)
3 Magnetic field forming means W base material

Claims (4)

Ti,Nb,Zr,Hf,Taから選択される1種以上の金属元素を炭素の2/3倍以下の含有率(at%)で含有する炭素膜を、チタンまたはチタン合金からなる基材上に形成する燃料電池セパレータ用金属含有炭素膜の形成方法であって、
アース電位に対して−50〜−300Vのバイアス電圧を前記基材に印加し、
炭素含有ガスと希ガスとを主成分とする雰囲気ガスを前記希ガスに対する前記炭素含有ガスの流量比を1/3〜2として供給しながら、この雰囲気ガス中でアーク放電を行い、前記金属元素で構成された陰極物質を蒸発させて、この蒸発させた陰極物質および前記炭素含有ガスのそれぞれからイオンおよびラジカルの少なくとも一方を形成させ、
磁界形成手段で、前記陰極物質の蒸発させる面にほぼ直交して発散ないし平行に進行して少なくとも前記基材近傍まで到達する磁力線を形成させることにより、前記イオンおよびラジカルを前記基材上に供給することを特徴とする燃料電池セパレータ用金属含有炭素膜の形成方法。
A carbon film containing one or more metal elements selected from Ti, Nb, Zr, Hf, and Ta at a content rate (at%) of 2/3 or less of carbon on a substrate made of titanium or a titanium alloy A method for forming a metal-containing carbon film for a fuel cell separator formed in
A bias voltage of −50 to −300 V with respect to the ground potential is applied to the substrate,
While supplying an atmospheric gas mainly composed of a carbon-containing gas and a rare gas with a flow ratio of the carbon-containing gas to the rare gas being 1/3 to 2, arc discharge is performed in the atmospheric gas, and the metal element And evaporating a cathode material composed of: forming at least one of ions and radicals from each of the evaporated cathode material and the carbon-containing gas;
The magnetic field forming means supplies the ions and radicals onto the substrate by forming magnetic lines of force that diverge or parallel to the surface on which the cathode material is evaporated and reach at least the vicinity of the substrate. A method for forming a metal-containing carbon film for a fuel cell separator.
チタンまたはチタン合金からなる基材の表面に、Ti,Nb,Zr,Hf,Taから選択される1種以上からなる下地金属膜を形成する下地金属膜形成工程と、
前記下地金属膜を形成した基材の表面に、請求項1に記載の燃料電池セパレータ用金属含有炭素膜の形成方法にて炭素膜を形成する金属含有炭素膜形成工程と、を行う燃料電池セパレータ用耐食皮膜の形成方法。
A base metal film forming step of forming a base metal film made of one or more selected from Ti, Nb, Zr, Hf, Ta on the surface of a base material made of titanium or a titanium alloy;
The fuel cell separator which performs the metal containing carbon film formation process which forms a carbon film in the formation method of the metal containing carbon film for fuel cell separators of Claim 1 on the surface of the base material in which the said base metal film was formed Of forming a corrosion-resistant coating film.
前記金属含有炭素膜形成工程の後、熱処理工程をさらに行う請求項2に記載の燃料電池セパレータ用耐食皮膜の形成方法。   The method for forming a corrosion-resistant film for a fuel cell separator according to claim 2, wherein a heat treatment step is further performed after the metal-containing carbon film formation step. チタンまたはチタン合金からなる基材の表面の不働態皮膜を除去する不働態皮膜除去工程と、
前記基材の表面に、請求項1に記載の燃料電池セパレータ用金属含有炭素膜の形成方法にて炭素膜を形成する金属含有炭素膜形成工程と、を行う燃料電池セパレータ用耐食皮膜の形成方法。
A passive film removing step for removing the passive film on the surface of the substrate made of titanium or a titanium alloy;
A method for forming a corrosion-resistant film for a fuel cell separator, comprising: forming a carbon film on the surface of the base material by a method for forming a metal-containing carbon film for a fuel cell separator according to claim 1. .
JP2009201697A 2009-09-01 2009-09-01 Method for forming metal-containing carbon film for fuel cell separator and method for forming corrosion-resistant film for fuel cell separator Expired - Fee Related JP5180932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009201697A JP5180932B2 (en) 2009-09-01 2009-09-01 Method for forming metal-containing carbon film for fuel cell separator and method for forming corrosion-resistant film for fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009201697A JP5180932B2 (en) 2009-09-01 2009-09-01 Method for forming metal-containing carbon film for fuel cell separator and method for forming corrosion-resistant film for fuel cell separator

Publications (2)

Publication Number Publication Date
JP2011052266A JP2011052266A (en) 2011-03-17
JP5180932B2 true JP5180932B2 (en) 2013-04-10

Family

ID=43941565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009201697A Expired - Fee Related JP5180932B2 (en) 2009-09-01 2009-09-01 Method for forming metal-containing carbon film for fuel cell separator and method for forming corrosion-resistant film for fuel cell separator

Country Status (1)

Country Link
JP (1) JP5180932B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6229603B2 (en) * 2014-06-27 2017-11-15 トヨタ自動車株式会社 Method for forming conductive film for fuel cell separator
CN106887600B (en) * 2017-01-20 2020-01-24 大连理工大学 High-performance bipolar plate of fuel cell with titanium tantalum carbon film on surface and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255823A (en) * 1997-03-07 1998-09-25 Asahi Glass Co Ltd Solid high polymer fuel cell
JP3734656B2 (en) * 1999-12-16 2006-01-11 株式会社神戸製鋼所 Method for forming metal-containing hard carbon film
JP2007134107A (en) * 2005-11-09 2007-05-31 Toyota Motor Corp Separator for fuel cell, its manufacturing method and fuel cell
JP4702304B2 (en) * 2007-02-22 2011-06-15 トヨタ自動車株式会社 Fuel cell separator, fuel cell separator manufacturing method, and fuel cell
JP2010248572A (en) * 2009-04-15 2010-11-04 Toyota Motor Corp Titanium-based material and production method of the same, and fuel cell separator

Also Published As

Publication number Publication date
JP2011052266A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
JP5209706B2 (en) Stainless steel separator for fuel cell having metal layer / metal nitride layer and metal oxynitride layer formed thereon, and method for producing the same
JP5507495B2 (en) Method for producing titanium fuel cell separator
JP5108976B2 (en) Fuel cell separator
US9595723B2 (en) Fuel cell separator
JP5222214B2 (en) Stainless steel separator for fuel cell and method for producing the same
JP2009170116A (en) Recycling method of separator for fuel cell, regenerated separator for the fuel cell, and the fuel cell
CN113235062B (en) MAX-phase multilayer composite coating and preparation method and application thereof
JP2008258114A (en) Metallic separator for fuel cell, and manufacturing method therefor
JP2010248572A (en) Titanium-based material and production method of the same, and fuel cell separator
JP2016201300A (en) Manufacturing method of fuel cell separator and fuel cell separator
KR20070050396A (en) Fuel cell separator and method for manufacturing the same
US10181603B2 (en) Manufacturing method of separator for fuel cell
JP5192908B2 (en) Titanium substrate for fuel cell separator, fuel cell separator, and fuel cell separator manufacturing method
JP2010182593A (en) Corrosion resistant film for fuel cell separator, and fuel cell separator
JP2020509538A (en) Bipolar plate for fuel cell and manufacturing method
JP2001093538A (en) Stainless steel cryogenic fuel cell separator
JP5139997B2 (en) Fuel cell separator and method for producing the same
CN113249683A (en) MAX phase solid solution composite coating with high conductivity, corrosion resistance and long service life, and preparation method and application thereof
TWI640122B (en) Base material stainless steel plate for steel plate of fuel cell separator and manufacturing method thereof
Yin et al. Rapid coating preparation strategy for chromium nitride coated titanium bipolar plates of proton exchange membrane fuel cells
JP6344539B1 (en) Titanium material, cell component, cell, and polymer electrolyte fuel cell
JP5180932B2 (en) Method for forming metal-containing carbon film for fuel cell separator and method for forming corrosion-resistant film for fuel cell separator
CN107195909A (en) A kind of preparation method of fuel battery double plates and its surface titanium film
JP2018006300A (en) Metal separator for fuel cell and fuel cell using the same
JP5108986B2 (en) Fuel cell separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130111

R150 Certificate of patent or registration of utility model

Ref document number: 5180932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees