WO2012050365A2 - 교모세포종의 진단 또는 예후 예측용 바이오 마커 및 그 용도 - Google Patents

교모세포종의 진단 또는 예후 예측용 바이오 마커 및 그 용도 Download PDF

Info

Publication number
WO2012050365A2
WO2012050365A2 PCT/KR2011/007592 KR2011007592W WO2012050365A2 WO 2012050365 A2 WO2012050365 A2 WO 2012050365A2 KR 2011007592 W KR2011007592 W KR 2011007592W WO 2012050365 A2 WO2012050365 A2 WO 2012050365A2
Authority
WO
WIPO (PCT)
Prior art keywords
glioblastoma
prognosis
protein
patients
proteins
Prior art date
Application number
PCT/KR2011/007592
Other languages
English (en)
French (fr)
Other versions
WO2012050365A9 (ko
WO2012050365A3 (ko
Inventor
남도현
김종현
박관
신형진
홍승철
이정일
공두식
설호준
서연림
Original Assignee
사회복지법인 삼성생명공익재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사회복지법인 삼성생명공익재단 filed Critical 사회복지법인 삼성생명공익재단
Publication of WO2012050365A2 publication Critical patent/WO2012050365A2/ko
Publication of WO2012050365A9 publication Critical patent/WO2012050365A9/ko
Publication of WO2012050365A3 publication Critical patent/WO2012050365A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates to biomarkers for the diagnosis or prognosis of glioblastoma and its use, more particularly survivin, cyclinE, DCC, TGF- ⁇ , CDC25B, Histone H1, p-EGFR, p-VEGFR2 / 3 and p16 Using a protein selected from the group consisting of biomarkers for diagnosis or prognosis of glioblastoma, measuring the expression level of the protein to provide information necessary for diagnosis or prognosis of glioblastoma It relates to the method of analysis.
  • Glioma is a tumor that accounts for 60% of primary brain tumors (malignant tumors) still no special treatment other than radiation therapy.
  • glioblastoma which is classified as the most malignant, is highly resistant to radiation and chemotherapy compared to other cancers. Once diagnosed, the expected survival is only 1 year.
  • cerebrovascular barriers that make drug delivery difficult and are relatively marginalized in the development of therapeutics due to a relatively lack of understanding of neurobiology.
  • the present inventors introduced a tissue microarray (TMA) technique to analyze expression patterns of important proteins related to glioblastoma, and a new concept of image analysis technique. And analyzing these important proteins (survivin, cyclinE, DCC, TGF- ⁇ CDC25B, Histone H1, p-EGFR, p-VEGFR2 / 3, p16 ) by analyzing them through an optimized histochemical score (H-score). It was confirmed that the present invention can be applied to confirm the progress of glioblastoma, the present invention has been completed.
  • TMA tissue microarray
  • An object of the present invention is to provide a biomarker for the diagnosis or prognosis of glioblastoma selected from the group consisting of survivin, cyclinE, DCC, TGF- ⁇ , CDC25B, Histone H1, p-EGFR, p-VEGFR2 / 3 and p16 There is.
  • Another object of the present invention is to measure the expression level of a gene encoding a protein selected from the group consisting of survivin, cyclinE, DCC, TGF- ⁇ , CDC25B, Histone H1, p-EGFR, p-VEGFR2 / 3 and p16.
  • a kit for diagnosing or prognostic glioblastoma comprising a substance that can be.
  • Another object of the present invention survivin, cyclinE, DCC, TGF- ⁇ , CDC25B, Histone H1, p-EGFR, p-VEGFR2 / 3 and p16 to provide information necessary for the diagnosis or prognosis of glioblastoma It is to provide a method for analyzing protein comprising the step of measuring the amount of expression of the protein selected from the group.
  • the present invention is for the diagnosis or prognostic prediction of glioblastoma selected from the group consisting of survivin, cyclinE, DCC, TGF- ⁇ , CDC25B, Histone H1, p-EGFR, p-VEGFR2 / 3 and p16 Provide a biomarker.
  • the present invention can also measure the expression level of a gene encoding a protein selected from the group consisting of survivin, cyclinE, DCC, TGF- ⁇ , CDC25B, Histone H1, p-EGFR, p-VEGFR2 / 3 and p16.
  • a kit for diagnosing or predicting glioblastoma comprising a substance.
  • the present invention is also selected from the group consisting of survivin, cyclinE, DCC, TGF- ⁇ , CDC25B, Histone H1, p-EGFR, p-VEGFR2 / 3 and p16 for providing information necessary for the diagnosis or prognosis of glioblastoma. It provides a protein analysis method comprising the step of measuring the expression level of the protein.
  • FIG. 1 shows that the tissue microarray (TMA) image is analyzed by manual scoring method and optimized H-scoring method, and there is no difference according to the analysis method (A: survivin, B: APC).
  • Fig. 2 shows the clinical prognosis of 56 glioblastoma patients classified using 108 protein expression levels (A: protein expression level before and after normalization by boxplot, B: Hierarchical clustering result by heatmap and dendogram). Results: C: Results of Kaplan-Meier method for overall survival analyzed by Univariate survival analysis.
  • Figure 3 shows the results of the analysis of the expression of the predictive prognostic marker protein compared with TMA (82 cases) and public DNA microarray data (55 cases) using the tissue of another glioblastoma patient (A: Hierarchical clustering of 10 biomarkers, B: Kaplan-Meier survival curves of 2 separate patient groups, C: 9 target genes and euclidean distance between patients, D: Kaplan-Meier for each group survival curves compared to overall survival).
  • Figure 4 shows the expression of the marker protein for prognostic prognosis predicted in two isolated patient groups.
  • glioblastoma-associated proteins is analyzed by tissue microarray (TMA) in patients with glioblastoma.
  • TMA tissue microarray
  • H-score histochemical score
  • glioblastoma patients were divided into patients with good glioblastoma prognosis and patients with poor glioblastoma prognosis.
  • the present invention relates to a biomarker for the diagnosis or prognosis of glioblastoma selected from the group consisting of survivin, cyclinE, DCC, TGF- ⁇ , CDC25B, Histone H1, p-EGFR, p-VEGFR2 / 3 and p16 in one aspect. will be.
  • the present invention is to measure the expression level of the gene encoding a protein selected from the group consisting of survivin, cyclinE, DCC, TGF- ⁇ , CDC25B, Histone H1, p-EGFR, p-VEGFR2 / 3 and p16 It relates to a kit for diagnosing or prognostic glioblastoma, comprising a substance that can be.
  • the substance may be characterized as a primer having a complementary sequence specific for the gene encoding the protein.
  • the present invention consists of survivin, cyclinE, DCC, TGF- ⁇ , CDC25B, Histone H1, p-EGFR, p-VEGFR2 / 3 and p16 for providing information necessary for the diagnosis or prognosis of glioblastoma. It relates to a protein analysis method comprising measuring the expression level of a protein selected from the group.
  • the survivin, cyclinE, DCC and TGF- ⁇ Predicting the diagnosis or prognosis of glioblastoma by measuring protein overexpression and predicting the diagnosis or prognosis of glioblastoma by measuring the low expression of DC25B, Histone H1, p-EGFR, p-VEGFR2 / 3 and p16 proteins Can be.
  • the expression levels of survivin and cyclinE proteins were found to function as an important factor in dividing glioblastoma patients.
  • Glioblastoma is very important for predicting the prognosis of glioblastoma, because once expected, life expectancy is only 1 year.
  • the expression of proteins detected by the factor can be distinguished into a patient group with a good prognosis and a patient group with a poor prognosis, which is an important criterion for the treatment of glioblastoma patients. Obtain the information necessary for diagnosing or predicting blastoma.
  • diagnosis or prognosis of glioblastoma can be predicted by measuring the expression level of the proteins, it can be usefully used to develop a therapy for glioblastoma using this.
  • the tissue microarray (TMA) technique and the optimized histochemical score (H-score) were analyzed by immunoprofiling by integratively analyzing clinical results such as survival time in glioblastoma.
  • Molecular markers were predicted to predict the prognosis of blastoma.
  • a total of 56 glioblastoma patients were analyzed for the expression of 108 glioblastoma-associated proteins.
  • the survival time difference between the two groups was found to be statistically significant (p ⁇ 0.05).
  • Figure 2 shows the protein expression levels before and after normalization by boxplot analysis using the 'normalize.quantiles' function in the affy package of the R program, and also R program package (Comprehensive R archives network (CRAN). [Cited]; Available from : The results of Hierarchical clustering using http://cran.r-project.org/.) as a heatmap and dendogram, and the overall survival analyzed by Univariate survival analysis using Kaplan-Meier method. The results are shown.
  • CRAN Computer R archives network
  • FIG. 3 hierarchical clustering of 10 biomarkers using the tissues of another glioblastoma patient was performed to express the expression of the prognostic marker protein, and the patient group was divided into two groups. Kaplan-Meier survival curves were used to verify the significance, and log-rank analysis showed statistically significant differences in overall survival. In addition, the euclidean distance between 9 genes and patients was verified, and Kaplan-Meier survival curves of each group were compared with overall survival.
  • GBM samples were obtained from Samsung Medical Research Institute from January 2004 to December 2006. The ages of the patients ranged from 13 to 78 years, and their survival ranged from 22 to 913 days with a median value of 376.5 days.
  • an independent 82 GBM sample obtained from patients diagnosed with GBM between January 2004 and December 2007) for the verification of glioblastoma prognostic predictor proteins found in the present invention was obtained from Samsung Medical Research Institute. Got it.
  • Brain extraction was performed at an appropriate time after cell inoculation and treatment. To determine the biological status of the tumor before and after brain extraction and to examine histology, place the brain extracted in the brain matrix after brain harvest, slice the brain at 2 mm intervals, and slice one tissue around the cell line. The frozen block was made using the OCT compound. The remaining tissue sections were placed in a buffered 10% formalin solution and fixed at 4 ° C for 24 hours to form paraffin blocks. Frozen sections were made using a frozen slicer with a thickness of 8 um, and stored at -20 ° C. Paraffin sections were made with a 4 um thickness and stored at room temperature. In order to confirm the expression by immunohistochemical method, tissues were prepared first through de-paraffin and re-hydration.
  • the prepared tissues were colored with Gill's Hematoxylin and Eosin for 15-20 seconds and then stained with water. Then, after the dehydration process was mounted in permount. At this time, the control sample should react only with the secondary antibody and should not be stained. Tumorigenecity of each cell group was determined by measuring the size and number of stained tumors.
  • Paraffin sections (4-6 ⁇ m) were attached to the coated slide glass and dried overnight.
  • the tissues were subjected to de-paraffinization with xylene, followed by progressively [100, 95, 80% ethanol, DW] samples according to alcohol percentage and re-hydrated in PBS (pH 7.5).
  • Samples were subjected to antigen retrival for 5 minutes in a microwave oven in water or treated with pepsin and left at 37 ° C. for 15 minutes, followed by washing with PBS.
  • 3% H 2 O 2 was reacted with peroxidase in the tissue.
  • the tissue was blocked with 5% normal horse serum / 1% normal goat serum, and the primary antibody cytosine deaminase antibody and 3 hours at room temperature and overnight at 4 ° C.
  • Example 3 Analysis by H-scoring method of tissue microarray (TMA) image
  • Sections were prepared from paraffin blocks prepared using tissues of each patient, and pathologically cancerous sites were selected by H & E staining.
  • Tissue microarrays were prepared using Beecher Instruments (Sun Prairie, Wis.) MTA-1 instrument according to the company's standard protocol.
  • the expression patterns of 78 important proteins known to be associated with glioblastoma were analyzed by immunostaining on the TMA slides prepared in this manner (expression and intracellular location information of each protein were established through existing research papers).
  • the TAM slide is converted into an image file using Aperio's Scan Scope CS System, and the converted image is analyzed using Bioimagene's TissueMine (Bioimagene Co., USA) program.
  • the proteins discovered through the analysis of the present invention can be applied to predict the prognosis of glioblastoma patients, thereby providing a kit for diagnosing glioblastoma prognosis using the same, and applied to the development of a new concept of targeted therapies and anticancer drugs targeting the discovered proteins. It can be useful. In addition, it is useful because it can bring a large ripple effect in the related industrial field.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 교모세포종의 진단 또는 예후 예측을 위한 바이오 마커 및 그 용도에 관한 것으로, 더욱 자세하게는 survivin, cyclinE, DCC, TGF-β, CDC25B, Histone H1, p-EGFR, p-VEGFR2/3 및 p16 로 구성된 군에서 선택되는 단백질을 교모세포종의 진단 또는 예후 예측을 위한 바이오 마커로 활용하여, 교모세포종의 진단 또는 예후 예측에 필요한 정보를 제공하기 위해 상기 단백질의 발현량을 측정하는 단계를 포함하는 단백질의 분석방법에 관한 것이다. 본 발명의 분석을 통해 발굴된 단백질들은 교모세포종 환자의 예후 예측에 적용가능 함으로 이를 이용한 교모세포종 예후 진단용 키트를 제공할 수 있고, 발굴된 단백질들을 대상으로 한 새로운 개념의 표적 치료법 및 항암제 개발에 응용될 수 있어 유용하다. 또한, 이에 따라 관련 산업 분야에 큰 파급효과를 가져올 수 있어 유용하다.

Description

교모세포종의 진단 또는 예후 예측용 바이오 마커 및 그 용도
본 발명은 교모세포종의 진단 또는 예후 예측을 위한 바이오 마커 및 그 용도에 관한 것으로, 더욱 자세하게는 survivin, cyclinE, DCC, TGF-β, CDC25B, Histone H1, p-EGFR, p-VEGFR2/3 및 p16 로 구성된 군에서 선택되는 단백질을 교모세포종의 진단 또는 예후 예측을 위한 바이오 마커로 활용하여, 교모세포종의 진단 또는 예후 예측에 필요한 정보를 제공하기 위해 상기 단백질의 발현량을 측정하는 단계를 포함하는 단백질의 분석방법에 관한 것이다.
신경교종 (glioma)은 원발성 뇌종양 (primary brain tumor)의 60%를 차지하는 종양으로 현재까지도 방사선 치료 외엔 특별한 치료법이 없는 악성 종양이다. 특히 가장 악성으로 분류되는 교모세포종 (glioblastoma)은 다른 암과 비교하여 방사선 및 항암제 치료에 대한 저항성이 매우 높아 일단 진단되면 기대 생존기간이 1년에 불과하다. 또한 뇌혈관 장벽이 있어 약물의 전달이 쉽지 않고, 상대적으로 뇌신경 생물학에 대한 이해의 부족 때문에 치료제 개발에서 소외된 분야이기도 하다.
최근 시스템 생물학 (systems biology) 및 생물정보학 기법 (bioinformatics tools)의 비약적 발전에 따라 교모세포종의 발생과 병증의 진행과 관련된 것으로 여겨지는 의미 있는 유전적 결함 및 유전자 발현 패턴들이 보고되고 있으나, 임상성과를 대표할 수 있는 분자 마커 (molecular marker)들의 발굴 성과는 전무한 실정이며, 유전자 발현 분석이 전사체 (trascriptom) 수준에 머물러 있어 실제 암 조직에서의 단백질 발현 정도를 대변하지 못하는 한계가 있다.
이에, 본 발명자들은 교모세포종 예후를 예측할 수 있는 바이오마커를 제공하기 위하여 조직 마이크로어레이 (TMA, tissue microarray) 기법을 도입하여 교모세포종과 관련된 중요 단백질들의 발현 패턴을 분석하였고, 새로운 개념의 영상 분석 기법 및 최적화된 histochemical score (H-score)를 통해 분석함으로써 이들 중요 단백질(survivin, cyclinE, DCC, TGF-β CDC25B, Histone H1, p-EGFR, p-VEGFR2/3, p16)들을 교모세포종의 진단 또는 교모세포종의 진행정도를 확인하는 데 적용할 수 있음을 확인하고, 본 발명을 완성하게 되었다.
발명의 요약
본 발명의 목적은 survivin, cyclinE, DCC, TGF-β, CDC25B, Histone H1, p-EGFR, p-VEGFR2/3 및 p16 로 구성된 군에서 선택되는 교모세포종의 진단 또는 예후 예측용 바이오 마커를 제공하는 데 있다.
본 발명의 다른 목적은, survivin, cyclinE, DCC, TGF-β, CDC25B, Histone H1, p-EGFR, p-VEGFR2/3 및 p16 로 구성된 군에서 선택되는 단백질을 코딩하는 유전자의 발현량을 측정할 수 있는 물질을 포함하는, 교모세포종의 진단 또는 예후 예측용 키트를 제공하는 데 있다.
본 발명의 또 다른 목적은, 교모세포종의 진단 또는 예후 예측에 필요한 정보 제공을 위해, survivin, cyclinE, DCC, TGF-β, CDC25B, Histone H1, p-EGFR, p-VEGFR2/3 및 p16 로 구성된 군에서 선택되는 단백질의 발현량을 측정하는 단계를 포함하는 단백질의 분석방법을 제공하는 데 있다.
상기 목적을 달성하기 위하여, 본 발명은 survivin, cyclinE, DCC, TGF-β, CDC25B, Histone H1, p-EGFR, p-VEGFR2/3 및 p16 로 구성된 군에서 선택되는 교모세포종의 진단 또는 예후 예측용 바이오 마커를 제공한다.
본 발명은 또한, survivin, cyclinE, DCC, TGF-β, CDC25B, Histone H1, p-EGFR, p-VEGFR2/3 및 p16 로 구성된 군에서 선택되는 단백질을 코딩하는 유전자의 발현량을 측정할 수 있는 물질을 포함하는, 교모세포종의 진단 또는 예후 예측용 키트를 제공한다.
본 발명은 또한, 교모세포종의 진단 또는 예후 예측에 필요한 정보 제공을 위해, survivin, cyclinE, DCC, TGF-β, CDC25B, Histone H1, p-EGFR, p-VEGFR2/3 및 p16 로 구성된 군에서 선택되는 단백질의 발현량을 측정하는 단계를 포함하는 단백질의 분석방법을 제공한다 .
본 발명의 다른 특징 및 구현예는 다음의 상세한 설명 및 첨부한 특허청구범위로부터 더욱 명백해 질 것이다.
도 1은 조직 마이크로어레이(TMA) image를 manual scoring 방법과 최적화된 H-scoring 방법을 통해 분석하여 분석 방법에 따른 차이가 나타나지 않음을 나타낸 것이다(A: survivin, B: APC).
도 2는 교모세포종 환자 56례의 임상 예후를 108 가지의 단백질 발현 수준을 이용해 분류한 결과이다(A: 정규화 전후의 단백질 발현 수준을 boxplot으로 나타낸 결과, B: Hierarchical clustering 결과를 heatmap과 dendogram으로 나타낸 결과, C: Univariate survival analysis을 통해 분석한 생존률 (overall survival)을 Kaplan-Meier method를 이용해 나타낸 결과).
도 3은 발굴된 예후 예측용 마커 단백질의 발현을 또 다른 교모세포종 환자의 조직을 이용한 TMA (82례) 및 public DNA microarray data (55례) 와의 비교분석을 통해 검증한 결과를 나타낸 것이다(A: 10 종의 바이오마커들을 대상으로 한 hierarchical clustering 결과, B: 분리된 2 환자군의 Kaplan-Meier survival curves, C: 9종의 대상 유전자와 환자간의 euclidean distance를 나타낸 결과, D: 각 그룹별 Kaplan-Meier survival curves를 overall survival과 비교한 결과).
도 4는 분리된 2 환자군에서의 발굴된 예후 예측용 마커 단백질의 발현을 나타낸 것이다.
발명의 상세한 설명 및 구체적인 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법 및 이하에 기술하는 실험 방법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명에서는 교모세포종의 예후를 예측할 수 있는 교모세포종과 관련된 중요 단백질들을 발굴하기 위하여, 교모세포종 환자를 대상으로 조직 마이크로어레이(TMA, tissue microarray) 기법으로 교모세포종 연관 단백질들의 발현을 분석하고, 새로운 개념의 영상 분석 기법 및 최적화된 histochemical score(H-score)를 이용하여 분석을 실시하였다. 그 결과, 교모세포종 환자군을 교모세포종 예후가 좋은 환자군과 좋지 않은 환자군으로 나눌 수 있었고, 두 환자군에서 survivin, cyclinE, DCC, TGF-β, CDC25B, Histone H1, p-EGFR, p-VEGFR2/3 및 p16 단백질의 발현 차이가 나타남을 확인하였다.
즉, 예후가 좋지 않은 환자군에서는 예후가 좋은 환자군과 비교하여 survivin, cyclinE, DCC, TGF-β 단백질이 과발현되었고, CDC25B, Histone H1, p-EGFR, p-VEGFR2/3 및 p16 단백질이 저발현되었음을 확인하였다.
본 발명은 일 관점에서 survivin, cyclinE, DCC, TGF-β, CDC25B, Histone H1, p-EGFR, p-VEGFR2/3 및 p16 로 구성된 군에서 선택되는 교모세포종의 진단 또는 예후 예측용 바이오 마커에 관한 것이다.
본 발명은 다른 관점에서, survivin, cyclinE, DCC, TGF-β, CDC25B, Histone H1, p-EGFR, p-VEGFR2/3 및 p16 로 구성된 군에서 선택되는 단백질을 코딩하는 유전자의 발현량을 측정할 수 있는 물질을 포함하는, 교모세포종의 진단 또는 예후 예측용 키트에 관한 것이다.
본 발명에 있어서, 상기 물질은 상기 단백질을 코딩하는 유전자에 특이적인 상보적 서열을 갖는 프라이머인 것을 특징으로 할 수 있다.
본 발명은 또 다른 관점에서, 교모세포종의 진단 또는 예후 예측에 필요한 정보 제공을 위해, survivin, cyclinE, DCC, TGF-β, CDC25B, Histone H1, p-EGFR, p-VEGFR2/3 및 p16 로 구성된 군에서 선택되는 단백질의 발현량을 측정하는 단계를 포함하는 단백질의 분석방법에 관한 것이다.
본 발명에 있어서, 상기 survivin, cyclinE, DCC 및 TGF-β 단백질이 과발현된 것을 측정함으로써 교모세포종의 진단 또는 예후를 예측할 수 있고, DC25B, Histone H1, p-EGFR, p-VEGFR2/3 및 p16 단백질이 저발현된 것을 측정함으로써 교모세포종의 진단 또는 예후를 예측할 수 있다. 또한, survivin, cyclinE 단백질의 발현 정도가 교모세포종 환자군을 나누는 중요한 요소로 기능함을 확인하였다.
교모세포종은 일단 진단되면 기대 생존기간이 1년에 불과하기 때문에 교모세포종의 예후를 예측하는 것은 매우 중요한데, 이에 따라 향후에 적용가능한 치료방법 등이 달라지는 점에서 본 발명에서 교모세포종 진단 또는 예후 예측용 인자로 발굴한 단백질의 발현량을 측정하여, 예후가 좋은 환자군과 좋지 않은 환자군으로 구별할 수 있음은 교모세포종 환자의 치료에 중요한 기준이 되고, 따라서 상기 단백질들의 과발현 또는 저발현 정도를 측정함으로써 교모세포종의 진단 또는 예후 예측에 필요한 정보를 얻을 수 있다. 또한, 상기 단백질들의 발현량을 측정함으로써 교모세포종의 진단 또는 예후를 예측할 수 있으므로, 이를 이용하여 교모세포종의 치료법을 개발하는 데 유용하게 활용될 수 있다.
본 발명에서는 조직 마이크로어레이(TMA, tissue microarray) 기법 및 최적화된 histochemical score(H-score)를 이용한 분석 결과를 교모세포종에서의 생존 시간과 같은 임상 변수들과 통합적으로 분석하여 immunoprofiling 하였고, 이를 토대로 교모세포종의 예후를 예측할 수 있는 분자 마커를 분석하였다. 총 56례의 교모세포종 환자를 대상으로 108가지의 교모세포종 연관 단백질들의 발현을 분석한 결과, 단백질 발현의 차이를 보이는 환자군 (cluster)이 두 그룹 (n=19, 37)으로 나누어지는 것을 확인하였고, 두 그룹간 생존 기간의 차이가 통계적으로 유의미하게 나타나는 것을 확인하였다(p<0.05). 도 2는 R program의 affy package안의 'normalize.quantiles' 기능을 이용해 분석하여 정규화 전후의 단백질 발현 수준을 boxplot으로 나타내었고, 또한 R program package (Comprehensive R archives network (CRAN). [cited]; Available from: http://cran.r-project.org/.)를 이용한 Hierarchical clustering 결과를 heatmap과 dendogram으로 나타낸 결과 및 Kaplan-Meier method를 이용하여 Univariate survival analysis을 통해 분석한 생존률 (overall survival)을 분석한 결과를 나타내었다.
도 3에서는 발굴된 예후 예측용 마커 단백질의 발현을 또 다른 교모세포종 환자의 조직을 이용한 10 종의 바이오마커들을 대상으로 한 hierarchical clustering 결과, 환자군은 2개의 집단으로 나누어지고, 분리된 2 환자군을 대상으로 Kaplan-Meier survival curves를 통해 유의미함을 검증하였고 log-rank 분석법을 통해 분석된 생존률 (Overall survival)에서도 통계적으로 유의미한 차이를 확인하였다. 또한, 9종의 대상 유전자와 환자간의 euclidean distance를 검증하고 각 그룹별 Kaplan-Meier survival curves를 overall survival과 비교한 결과 통계적으로 유의미함을 검증하였다.
본 발명에서는 또한, 두 그룹 중 예후가 좋지 않은 환자군에서 survivin, cyclinE, DCC, TGF-β, CDC25B, Histone H1, p-EGFR, p-VEGFR2/3, p16 단백질들의 유의미한 발현 차이를 검증하였다 (q < 0.05). 또한, 본 연구를 통해 발굴된 상기 단백질들이 교모세포종 환자의 예후를 예측할 수 있는 마커로 사용될 수 있는지 검증하기 위해 독립적으로 제작된 82례의 교모세포종 샘플과 public DNA array data를 대상으로 검증한 결과, 단백질 및 RNA 발현 수준 모두 상기의 2 환자군을 구별할 수 있음을 확인하였고(도 4), 따라서 상기 단백질은 그 발현량을 측정함으로써 교모세포종의 진단 또는 예후를 예측하는 데 이용될 수 있음을 의미한다.
교모세포종 관련 단백질들의 발현량을 분석한 결과, 교모세포종 예후가 좋지 않은 환자군에서는 교모세포종 예후가 좋은 환자군에 비하여 survivin, cyclinE, DCC 및 TGF-β 단백질은 과발현되고, CDC25B, Histone H1, p-EGFR, p-VEGFR2/3 및 p16 단백질은 저발현되는 것을 확인하였다(표 1).
이하, 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 이들 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
표 1
Figure PCTKR2011007592-appb-T000001
이하, 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 이들 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
조직 마이크로어레이를 위한 샘플의 수집 (교모세포종 환자 및 조직의 수집)
2004년 1월부터 2006년 12월까지 삼성 의료 연구소로부터 62 GBM 샘플을 얻었다. 환자들의 나이는 13세에서 78세로 분포되어 있었고, 그들의 생존 기간은 22일에서 913일로 중앙값(median value)은 376.5일이었다. 또한, 본 발명에서 발굴한 교모세포종 예후 예측 인자 단백질들의 검증을 위해 독립적으로 제작된 82 GBM 샘플(2004년 1월부터 2007년 12월 사이에 GBM으로 진단받은 환자들로부터 획득)을 삼성 의료 연구소로부터 얻었다.
실시예 1:뇌 조직의 처리
세포 접종 및 치료 후 적정 시기에 뇌 적출을 시행하였다. 뇌 적출 전후에 종양의 생물학적 상태를 파악하고 조직 검사를 위하여, brain harvest 후 brain matrix에 적출한 뇌를 놓고, 뇌를 2 mm 간격으로 절편을 만들고, 세포주가 주입된 곳을 중심으로 하나의 조직 절편을 OCT compound를 이용해서 frozen block을 만들었다. 그리고 나머지 조직 절편들은 buffered 10% formalin 용액에 넣어 4℃에서 24시간 고정한 후에, paraffin block을 만들었다. Frozen section은 8 um 두께로 동결절편기를 이용해서 절편을 만든 후, -20℃에서 보관하고, Paraffin section은 4 um두께로 절편을 만든 후, 상온에서 보관하였다. 면역조직화학적 방법으로 발현을 확인하기 위해서는, 먼저 de-paraffin과 re-hydration과정을 거쳐서 조직을 준비하였다. 준비된 조직을 Gill's Hematoxylin과 Eosin으로 15-20초간 발색한 후 수세함으로 background 염색하였다. 그 후, 탈수과정을 한 후에 permount로 mounting하였다. 이 때, control sample은 2차 항체에만 반응시키고, 염색은 되지 않아야 한다. 이를 사용하여 염색된 종양의 크기와 수를 측정하는 방법으로 각 세포군의 Tumorigenecity를 판정하였다.
실시예 2:조직면역학적 검사
파라핀 절편 (4-6 μm)을 coating된 slide glass에 붙이고, 하룻밤 동안 건조시켰다. 조직은 xylene으로 de-paraffin 과정을 거친 후, 점차적으로 alcohol 퍼센트에 따라 [100, 95, 80% ethanol, DW] sample을 처리하고, PBS (pH 7.5)에 re-hydrate과정 거쳤다. sample은 물에 넣어 전자레인지에서 5분간 antigen retrival을 수행하거나 pepsin을 처리해서 37℃에서 15분간 방치한 후, PBS로 수세하였다. 3% H2O2로 조직내에 있는 peroxidase와 반응시켰다. 5% normal horse serum/1% normal goat serum으로 조직을 blocking하고, 일차 항체 cytosine deaminase antibody와 상온에서는 3시간, 4℃에서는 overnight시켰다. 이를 수세한 후, 5% normal horse serum/1% normal goat serum으로 조직을 blocking하고, HRP가 붙은 이차 항체를 상온에서 1시간 동안 처리하였다. DAB으로 5-10분 정도 발색반응을 한 후, DAB의 발색 정도는 현미경 상에서 확인하고 적당한 발색 정도를 결정하였다. Gill's Hematoxylin으로 15-20초간 발색한 후 수세함으로 background 염색하고, 탈수과정을 한 후에 permount로 mounting을 하였다.
실시예 3:조직 마이크로 어레이(TMA) 이미지의 H-scoring 방법에 의한 분석
각 환자의 조직을 사용해 준비한 파라핀 블록으로부터 절편을 만들고 H&E 염색 기법을 통해 병리학적으로 암조직인 부위를 선별하였다. 선별된 부위를 Beecher Instruments (Sun Prairie, WI )사의 MTA-1 기기를 이용해 tissue microarray를 동사의 standard protocol에 따라 제작하였다. 이렇게 준비된 TMA 슬라이드를 대상으로 교모세포종과 관련된 것으로 알려진 중요 단백질 78종의 발현 패턴을 면역염색화학적 기법을 통해 분석하였다 (각 단백질의 발현 및 세포내 위치 정보는 기존 연구 논문들을 통해 설정하였음). 염색을 마친 TAM 슬라이드는 Aperio사의 Scan Scope CS System을 이용해 이미지 파일로 변환하고 변환된 이미지는 Bioimagene사의 TissueMine (Bioimagene Co., USA) 프로그램을 이용하여 정확한 세포내 위치에서 보이는 염색 강도에 따라 [grade 0 (negative), 1 (weak), 2 (moderate), and 3 (strong)]와 같이 나누어 자동으로 분석하였다. 상기의 이미지 분석 후, H-score(0-300)는 0 negative % + 1 weak % + 2 moderate % + 3 strong %의 기준을 설정하여 검증하였다 (McCarty KS et al., Arch Pathol Lab Med. 1985;109(8):716-21; Abd El-Rehim DM et al., Int J Cancer. 2005;116(3):340-50). 이를 통하여, 조직 마이크로어레이 이미지를 manual scoring 방법과 최적화된 H-scoring 방법을 이용하여 분석한 결과, 분석 방법에 따른 차이가 나타나지 않음을 확인하였다 (도 1).
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
본 발명의 분석을 통해 발굴된 단백질들은 교모세포종 환자의 예후 예측에 적용가능 함으로 이를 이용한 교모세포종 예후 진단용 키트를 제공할 수 있고, 발굴된 단백질들을 대상으로 한 새로운 개념의 표적 치료법 및 항암제 개발에 응용될 수 있어 유용하다. 또한, 이에 따라 관련 산업 분야에 큰 파급효과를 가져올 수 있어 유용하다.

Claims (6)

  1. survivin, cyclinE, DCC, TGF-β, CDC25B, Histone H1, p-EGFR, p-VEGFR2/3 및 p16 로 구성된 군에서 선택되는 교모세포종의 진단 또는 예후 예측용 바이오 마커.
  2. survivin, cyclinE, DCC, TGF-β, CDC25B, Histone H1, p-EGFR, p-VEGFR2/3 및 p16 로 구성된 군에서 선택되는 단백질을 코딩하는 유전자의 발현량을 측정할 수 있는 물질을 포함하는, 교모세포종의 진단 또는 예후 예측용 키트.
  3. 제2항에 있어서, 상기 물질은 상기 단백질을 코딩하는 유전자에 특이적인 상보적 서열을 갖는 프라이머인 것을 특징으로 하는 교모세포종의 진단 또는 예후 예측용 키트.
  4. 교모세포종의 진단 또는 예후 예측에 필요한 정보 제공을 위해, survivin, cyclinE, DCC, TGF-β, CDC25B, Histone H1, p-EGFR, p-VEGFR2/3 및 p16 로 구성된 군에서 선택되는 단백질의 발현량을 측정하는 단계를 포함하는 단백질의 분석방법.
  5. 제4항에 있어서, 상기 단백질의 발현량을 측정하는 단계는 survivin, cyclinE, DCC 및 TGF-β로 구성된 군에서 선택되는 단백질의 과발현 여부를 측정하는 것을 특징으로 하는 단백질의 분석방법.
  6. 제4항에 있어서, 상기 단백질의 발현량을 측정하는 단계는 CDC25B, Histone H1, p-EGFR, p-VEGFR2/3 및 p16로 구성된 군에서 선택되는 단백질의 저발현 여부를 측정하는 것을 특징으로 하는 단백질의 분석방법.
PCT/KR2011/007592 2010-10-13 2011-10-12 교모세포종의 진단 또는 예후 예측용 바이오 마커 및 그 용도 WO2012050365A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0100050 2010-10-13
KR1020100100050A KR101760464B1 (ko) 2010-10-13 2010-10-13 교모세포종의 진단 또는 예후 예측용 바이오 마커 및 그 용도

Publications (3)

Publication Number Publication Date
WO2012050365A2 true WO2012050365A2 (ko) 2012-04-19
WO2012050365A9 WO2012050365A9 (ko) 2012-06-28
WO2012050365A3 WO2012050365A3 (ko) 2012-11-01

Family

ID=45938804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007592 WO2012050365A2 (ko) 2010-10-13 2011-10-12 교모세포종의 진단 또는 예후 예측용 바이오 마커 및 그 용도

Country Status (2)

Country Link
KR (1) KR101760464B1 (ko)
WO (1) WO2012050365A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016146259A1 (en) * 2015-03-16 2016-09-22 Amal Therapeutics Sa A novel complex comprising a cell penetrating peptide, a cargo and a tlr peptide agonist for treatment of glioblastoma
WO2017068182A1 (en) * 2015-10-22 2017-04-27 Basilea Pharmaceutica Ag Use of eb1 as a biomarker of drug response
CN114075604A (zh) * 2022-01-18 2022-02-22 天津医科大学总医院 胶质母细胞瘤预后预测评分模型及其在指导临床精准诊疗中的应用
US11338027B2 (en) 2016-09-21 2022-05-24 Amal Therapeutics Sa Fusion comprising a cell penetrating peptide, a multi epitope and a TLR peptide agonist for treatment of cancer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101692044B1 (ko) * 2014-12-05 2017-01-04 사회복지법인 삼성생명공익재단 교모세포종에서 표피 성장인자 수용체 억제제의 치료 효과를 예측하는 방법
KR102320436B1 (ko) * 2020-01-13 2021-11-03 주식회사 메타큐라 교모종줄기세포 엑소좀 유래 펩타이드를 포함하는 교모세포종의 진단용 바이오마커 조성물
CN111454254B (zh) 2020-04-26 2023-06-02 云白药征武科技(上海)有限公司 一种具有含氟取代基的苯并咪唑衍生物的制备及其应用
KR20230144764A (ko) * 2022-04-08 2023-10-17 연세대학교 산학협력단 유전자로 정의된 암기원세포, 및 이의 분류방법
KR20230144759A (ko) * 2022-04-08 2023-10-17 연세대학교 산학협력단 유전자로 정의된 암기원세포, 및 이의 분류방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BLUM R. ET AL.: 'Suppression of survivin expression in glioblastoma cells by the Ras inhibitor farnesylthiosalicylic acid promotes caspase-dependent apoptosis.' MOLECULAR CANCER THERAPEUTICS. vol. 5, no. 9, September 2006, pages 2737 - 2347 *
GEORGE J. ET AL.: 'Survivin knockdown and concurrent 4-HPR treatment controlled human glioblastoma in vitro and in vivo.' NEURO-ONCOLOGY. vol. 12, no. 11, 02 August 2010, pages 1088 - 1101 *
QUICK Q. A. ET AL.: 'Epothilone B induces glioblastoma cell death via survivin down-regulation.' EXPERIMENTAL ONCOLOGY. vol. 30, no. 3, September 2008, pages 195 - 201 *
UEMATSU, M. ET AL.: 'Prognostic significance of the immunohistochemical index of survivin in glioma: a comparative study with the MIB-1 index.' JOURNAL OF NEUROONCOLOGY. vol. 72, no. 3, May 2005, pages 231 - 238 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016146259A1 (en) * 2015-03-16 2016-09-22 Amal Therapeutics Sa A novel complex comprising a cell penetrating peptide, a cargo and a tlr peptide agonist for treatment of glioblastoma
WO2017068182A1 (en) * 2015-10-22 2017-04-27 Basilea Pharmaceutica Ag Use of eb1 as a biomarker of drug response
CN108139405A (zh) * 2015-10-22 2018-06-08 巴斯利尔药物国际股份公司 Eb1作为药物应答的生物标记物的用途
US11338027B2 (en) 2016-09-21 2022-05-24 Amal Therapeutics Sa Fusion comprising a cell penetrating peptide, a multi epitope and a TLR peptide agonist for treatment of cancer
CN114075604A (zh) * 2022-01-18 2022-02-22 天津医科大学总医院 胶质母细胞瘤预后预测评分模型及其在指导临床精准诊疗中的应用

Also Published As

Publication number Publication date
WO2012050365A9 (ko) 2012-06-28
KR20120038339A (ko) 2012-04-23
WO2012050365A3 (ko) 2012-11-01
KR101760464B1 (ko) 2017-07-24

Similar Documents

Publication Publication Date Title
WO2012050365A2 (ko) 교모세포종의 진단 또는 예후 예측용 바이오 마커 및 그 용도
Wang et al. Upregulated INHBA expression is associated with poor survival in gastric cancer
AU2015249113B2 (en) Lung cancer biomarkers and uses thereof
AU2011289284B2 (en) Pancreatic cancer biomarkers and uses thereof
KR101870123B1 (ko) 폐암 바이오마커 및 그것의 용도
EP2295975B1 (en) Determining the expression status of human epidermal growth factor receptor 2 (HER2) in biological samples
AU2011378427B2 (en) Lung cancer biomarkers and uses thereof
WO2011043840A1 (en) Cancer biomarkers and uses thereof
WO2010147961A1 (en) Methods and markers for predicting responses to chemotherapy
López et al. Identification of prefoldin amplification (1q23. 3-q24. 1) in bladder cancer using comparative genomic hybridization (CGH) arrays of urinary DNA
Morley-Bunker et al. Assessment of intra-tumoural colorectal cancer prognostic biomarkers using RNA in situ hybridisation
Tu et al. Quantitative proteomic profiling of paired cancerous and normal colon epithelial cells isolated freshly from colorectal cancer patients
EP2550534B1 (en) Prognosis of oesophageal and gastro-oesophageal junctional cancer
Hunt et al. Extensive intratumor proteogenomic heterogeneity revealed by multiregion sampling in high-grade serous Ovarian tumor specimens
Turk et al. Paralemmin-1 is over-expressed in estrogen-receptor positive breast cancers
Evans et al. Microarray and RNA in situ hybridization assay for recurrence risk markers of breast carcinoma and ductal carcinoma in situ: Evidence supporting the use of diverse pathways panels
Suehara Proteomic analysis of soft tissue sarcoma
KR102416614B1 (ko) 방사선 저항성 지표 단백질 및 이의 검출방법
Shi et al. Integrated single‐cell and spatial transcriptomic profiling reveals higher intratumour heterogeneity and epithelial–fibroblast interactions in recurrent bladder cancer
WO2023153833A1 (ko) 폐암의 뇌전이를 진단 또는 예측하기 위한 바이오마커 패널 및 이의 용도
CN113373227B (zh) Vav2在预测患者放疗敏感性和预后中的用途
WO2024080414A1 (ko) 대식세포 분화 및 분포에 따른 면역세포 치료제의 치료 반응성 예측 방법
Gemoll et al. Applying genomics and proteomics in translational surgical oncology research
WO2022231191A1 (ko) 암의 진단용 조성물
Gomase et al. Oncogenomics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832752

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832752

Country of ref document: EP

Kind code of ref document: A2