WO2012050172A1 - 超音波トランスデューサおよびそれを用いた超音波診断装置 - Google Patents

超音波トランスデューサおよびそれを用いた超音波診断装置 Download PDF

Info

Publication number
WO2012050172A1
WO2012050172A1 PCT/JP2011/073582 JP2011073582W WO2012050172A1 WO 2012050172 A1 WO2012050172 A1 WO 2012050172A1 JP 2011073582 W JP2011073582 W JP 2011073582W WO 2012050172 A1 WO2012050172 A1 WO 2012050172A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic transducer
insulating film
protrusion
cavity
membrane
Prior art date
Application number
PCT/JP2011/073582
Other languages
English (en)
French (fr)
Inventor
泰一 竹崎
俊太郎 町田
Original Assignee
株式会社日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立メディコ filed Critical 株式会社日立メディコ
Priority to US13/879,439 priority Critical patent/US9941817B2/en
Priority to JP2012538715A priority patent/JP5486689B2/ja
Priority to CN201180048454.0A priority patent/CN103155597B/zh
Priority to KR1020137009318A priority patent/KR101492033B1/ko
Priority to EP11832603.2A priority patent/EP2629549B1/en
Publication of WO2012050172A1 publication Critical patent/WO2012050172A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators
    • H02N1/08Influence generators with conductive charge carrier, i.e. capacitor machines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0292Electrostatic transducers, e.g. electret-type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2406Electrostatic or capacitive probes, e.g. electret or cMUT-probes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones

Definitions

  • the present invention relates to an ultrasonic transducer and an ultrasonic diagnostic apparatus using the ultrasonic transducer, and more particularly to an ultrasonic transducer manufactured by MEMS (Micro Electro Mechanical Systems) technology.
  • MEMS Micro Electro Mechanical Systems
  • Ultrasonic transducers are used for diagnosis of tumors in the human body, nondestructive inspection of structures, fluid velocity detection, etc. by transmitting and receiving ultrasonic waves.
  • CMUT Capacitive Micromachined Ultrasonic
  • Patent Document 1 the protrusion of the insulating film protruding in the cavity portion of the CMUT is formed, and the lower surface of the protrusion is in contact with the lower surface of the cavity even when a DC voltage higher than the collapse voltage or an AC voltage is applied. A structure is shown in which does not contact the lower surface of the cavity. However, since the protrusion has a structure sandwiched between the upper and lower electrodes, charge injection into the insulating film of the protrusion is inevitable.
  • Patent Document 2 has a structure in which a part of the electrode is pierced so that the region where the lower surface of the membrane contacts the lower surface of the cavity is not sandwiched between the upper and lower electrodes.
  • the electric field strength in the membrane insulating film in the contact region is reduced, so that charge injection can be avoided, but the area of the overlapping portion of the upper and lower electrodes is reduced correspondingly, the drive voltage of the CMUT is increased, The reception sensitivity will be reduced.
  • Patent Document 3 the protrusion of the insulating film protruding into the cavity is not sandwiched between the upper and lower electrodes. In this case as well, for the same reason as described above, the CMUT drive voltage increases and the reception sensitivity decreases.
  • Patent Document 4 describes the content of adjusting the rigidity of the entire membrane and controlling the center frequency and bandwidth of the CMUT by providing a rigid member on the membrane.
  • the introduction of the rigid member brings about an increase in driving voltage, and securing device operation reliability becomes a problem.
  • the present invention provides a CMUT having a protrusion protruding into a cavity, and at least one of the upper electrode and the lower electrode is disposed at a position where the protrusion does not overlap with the protrusion as viewed from above, and the lower surface of the protrusion is the lower surface of the cavity.
  • the ultrasonic transducer has a high transmission sound pressure and a highly reliable structure that secures a voltage margin between the lower surface of the membrane and the lower surface of the membrane in contact with the lower surface of the cavity, and suppresses charge injection into the membrane insulating film.
  • An object is to provide an ultrasonic diagnostic apparatus.
  • an ultrasonic transducer of the present invention includes a lower electrode, a cavity formed on the lower electrode and surrounded by an insulating film, and an upper electrode formed on the cavity.
  • the ultrasonic transducer having a plurality of insulating film protrusions formed in the cavity includes a plurality of rigid members formed on the cavity, and includes at least one of the lower electrode and the upper electrode.
  • the electrode is disposed at a position where it does not overlap with the protrusion of the insulating film when viewed from the top surface by penetrating the portion overlapping the protrusion of the insulating film, and each of the rigid members is viewed from the protrusion and top surface of the insulating film. They are arranged so that there are overlapping regions.
  • the rigid member is a beam member
  • the membrane including the insulating film, the upper electrode, and the beam member has a thickness of a portion where the beam member is disposed.
  • the beam member may be thicker than the portion where the member is not disposed.
  • the ultrasonic transducer according to the present invention may further include an upper insulating film formed so as to cover the upper electrode and the cavity, and the beam member may be disposed on the upper insulating film.
  • the ultrasonic transducer according to the present invention may further include an upper insulating film formed to cover the upper electrode and the cavity, and the beam member may be embedded in the upper insulating film. .
  • the rigid member may be a member having a higher Young's modulus than the membrane formed by the insulating film, the upper electrode, and the beam member.
  • the ultrasonic transducer according to the present invention further includes an upper insulating film formed so as to cover the upper electrode and the cavity, and the high Young's modulus member is embedded in the upper insulating film. Things can be used.
  • the high Young's modulus member may be formed by embedding a metal material such as tungsten or a ceramic material such as alumina.
  • the high Young's modulus member may be formed by modifying the upper insulating film by ion implantation.
  • the center of the rigid member may be disposed so as to coincide with the center of the protrusion of the insulating film as viewed from above.
  • the plurality of insulating film protrusions may be arranged so as to overlap one rigid member.
  • the protrusion of the insulating film may be disposed on the upper surface of the cavity.
  • the protrusion of the insulating film may be disposed on the lower surface of the cavity.
  • the plurality of insulating film protrusions and the plurality of rigid members may be arranged at equal intervals when viewed from above.
  • the cavity may be circular or polygonal when viewed from above.
  • the protrusion of the insulator may be circular or polygonal when viewed from above.
  • the rigid member may have a circular shape, a cross shape, or a polygonal shape as viewed from above.
  • the ultrasonic diagnostic apparatus of the present invention uses any one of the above-described ultrasonic transducers and a bias unit.
  • CMUT capacitance detection type ultrasonic transducer
  • the voltage margin between the state where the lower surface of the protrusion protruding into the cavity portion is in contact with the lower surface of the cavity and the state where the lower surface of the membrane is in contact with the lower surface of the cavity is expanded.
  • at least a part of the protrusion protruding into the cavity and the rigid member or high Young's modulus member provided on the membrane when the CMUT is viewed from above This is realized by arranging the two to overlap.
  • a cavity 102 surrounded by an insulating film 103 is formed in the upper layer of the lower electrode 101.
  • An upper electrode 104 is disposed on the cavity 102 via an insulating film 103.
  • electrostatic force acts between the upper electrode 104 and the lower electrode 101, and the insulating film 103 and the upper electrode 104 on the cavity 102 are formed.
  • the membrane 105 vibrates at the frequency of the applied AC voltage, thereby transmitting an ultrasonic wave.
  • SN ratio signal-to-noise ratio
  • CMUT complementary metal-oxide-semiconductor
  • the amount of change in capacity at the time of reception may be increased. It is possible to increase the amount of change in capacitance by increasing the number and area of CMUTs. In this case, however, the size of the transducer becomes large, and thus it is necessary to increase the amount of change in capacitance per unit area. That is, it is necessary to improve reception sensitivity. Alternatively, it is possible to increase the amount of change in capacity at the time of reception by increasing the transmission sound pressure and increasing the sound pressure of the ultrasonic wave reflected from the inspection object.
  • the membrane lower surface 106 contacts the cavity lower surface 107 during driving, charge injection occurs in the insulating film, and the transmission / reception characteristics drift. Therefore, it is necessary to set CMUT driving conditions in a range in which the membrane lower surface 106 does not contact the cavity lower surface 107.
  • the height of the cavity 102 varies due to manufacturing variations, so that the driving conditions are designed with a margin in addition to the condition that the membrane does not contact, and the amplitude of the membrane is much smaller than the height of the cavity 102.
  • the upper limit of the transmission sound pressure is limited.
  • FIG. FIG. 4 is a cross-sectional view showing a state where the protrusion 108 provided on the lower side of the membrane 105 is in contact with the cavity lower surface 107. This state is referred to as a protrusion contact state.
  • a voltage higher than the voltage at which the protrusion is brought into contact is applied.
  • the membrane rigidity in the protrusion contact state is increased without increasing the rigidity of the entire membrane when the protrusion lower surface 106 is not in contact with the cavity lower surface 107, the above margin voltage can be widened. Transmission sound pressure can be improved without drifting of transmission / reception characteristics.
  • the cross-sectional structure of the CMUT according to this embodiment will be described with reference to FIG.
  • the CMUT includes a rectangular parallelepiped lower electrode 201 disposed on the substrate 206, a rectangular parallelepiped cavity 202 disposed on the lower electrode 201, a rectangular parallelepiped upper electrode 205 disposed on the cavity 202, and the like. Composed. Note that an insulating film 209 is formed between the lower electrode 201 and the cavity portion 202 so as to cover the lower electrode 201, and the cavity portion 202 and the lower electrode 201 are covered between the upper electrode 205 and the cavity portion 202.
  • An insulating film 208 is formed, and at least one columnar protrusion 204 protruding from the lower surface of the insulating film 208 to the cavity 202 is disposed in the cavity 202.
  • An insulating film 207 covers the insulating film 208.
  • the protrusions 204 and the insulating films 207, 208, and 209 described above are formed of silicon oxide, silicon nitride, or the like.
  • the beam member as the rigid member 203 may be formed of the same material such as silicon oxide, silicon nitride, or the like, as with the insulating films 207, 208, and 209, or may be a different material. Note that ultrasonic waves are transmitted when the membrane 210 including the insulating film 207, the upper electrode 205, and the insulating film 208 vibrates. In the future, for convenience of explanation, the surface of the protrusion 204 that faces the insulating film 209 across the cavity is referred to as the protrusion lower surface 211, and the surface of the insulating film 209 that is exposed to the cavity is referred to as the cavity lower surface 213. .
  • a surface of the membrane 210 that is exposed to the cavity is referred to as a membrane lower surface 212.
  • the protrusion lower surface 211 is in contact with the cavity lower surface 213, the voltage at that time is the protrusion contact voltage, the membrane lower surface 212 is in contact with the cavity lower surface 213, the membrane contact, and the voltage at that time is membrane contact This is called voltage.
  • the difference between the membrane contact voltage and the protrusion contact voltage is referred to as a margin voltage.
  • the method for manufacturing the CMUT shown in FIG. 1 will be described.
  • the basic manufacturing method is described in Patent Document 3, and here, a method of forming a beam member which is the rigid member 203 will be described.
  • the beam member is formed by a photolithography technique and a dry etching technique by depositing a thin film, such as silicon oxide or silicon nitride, which is a material of the beam member on the insulating film 207 by a plasma CVD method.
  • a thin film such as silicon oxide or silicon nitride
  • care must be taken so that the insulating film 207 does not become thin during dry etching.
  • the beam member that is the rigid member 203 is a laminated film in the order of silicon nitride and silicon oxide when viewed from above, and the insulating film 207 is made of silicon nitride so that the base after the etching of the beam member that is the rigid member 203 is completed.
  • the amount of the insulating film 207 is reduced, and the amount of change in the thickness of the membrane 210 before and after etching can be reduced.
  • FIG. 2 shows a top view of FIG.
  • FIG. 1 is a cross-sectional view taken along line A-A ′ of FIG.
  • the protrusion 204 and the like are seen through from the rigid member 203.
  • the cavity 202 and the upper electrode 205 have a width in the vertical direction and a length in the horizontal direction, and the rigid member 203 has a length in the vertical direction and a width in the horizontal direction.
  • the shape of the upper electrode 205 will be described.
  • the upper electrode 205 has a plurality of circular holes.
  • the protrusions 204 are arranged at substantially the center positions of the plurality of circular holes 214 of the upper electrode 205. Since the protrusion 204 is disposed in the hole 214 of the upper electrode 205 when viewed from the upper surface, the protrusion 204 is disposed at a position not overlapping the upper electrode 205. That is, there is no upper electrode 205 in the vertical direction of the protrusion 204. In FIG. 2, a part of the upper electrode 205 is penetrated, and the protrusion 204 and the upper electrode 205 are arranged so as not to overlap when viewed from above, but the electrode that penetrates may be the lower electrode 201. .
  • At least one of the upper electrode 205 and the lower electrode 201 is disposed at a position that does not overlap the protrusion 204 when viewed from above.
  • the reason for this arrangement is that when a DC voltage or an AC voltage is applied between the electrodes, and when the lower surface of the protrusion 211 comes into contact with the lower surface of the cavity 213, a strong electric field is applied to the protrusion 204 and the insulating film 209. This is because the distance between the electrodes is increased by penetrating the electrodes so that the electric field strength is reduced.
  • At least one protrusion 204 is arranged at the center in the width direction of the cavity 202 when viewed from above.
  • the rigid member 203 is disposed so as to partially overlap the hole 214 and the protrusion 204 of the upper electrode 205 as viewed from above.
  • the rigid members 203 and the protrusions 204 are arranged at equal intervals in the cavity length direction when viewed from the top, but they may be arranged at unequal intervals. However, in the case of unequal intervals, a plurality of membrane contact voltages exist in one CMUT, which is not preferable in terms of design.
  • the interval between the rigid members 203 and the protrusions 204 is preferably determined from the magnitude relationship between the membrane contact voltage and the protrusion contact voltage. For example, when the membrane contact voltage is lower than the protrusion contact voltage, the distance between the rigid member 203 and the protrusion 204 is narrowed to improve the membrane contact voltage. However, if the interval between the protrusions 204 is narrowed, the area of the upper electrode 205 is reduced and the sensitivity of the CMUT is lowered. Therefore, it is preferable to set the protrusion interval so as to satisfy the minimum marginal voltage at the design stage.
  • the feature of the first embodiment is that at least one of the upper electrode 205 and the lower electrode 201 is disposed at a position where it does not overlap with the protrusion 204 protruding into the cavity 202 when viewed from above.
  • the rigid member 203 and the protrusion 204 provided on the membrane 210 are arranged so as to partially overlap each other when viewed from above.
  • membrane contact in order to obtain a high transmission sound pressure, membrane contact can be prevented even when the membrane 210 is vibrated to the maximum extent under the driving conditions in which the protrusion lower surface 211 contacts the cavity lower surface 213.
  • the membrane contact voltage may be partially lower than the design due to manufacturing variations.
  • the above structure prevents the membrane contact and injects charge into the insulating film 208 of the membrane 210. Can be reduced. For this reason, the operation reliability of CMUT can be improved.
  • FIG. 6 shows a simulation result in which an external force of a certain magnitude is uniformly applied to the entire membrane 310 from the protrusion contact state of FIG. 6 and the strain of the membrane 310 is plotted by the distance from the center of the protrusion 304.
  • FIG. 8 is a graph showing the relationship between the positional relationship between the rigid member and the protrusion and the magnitude of strain near the protrusion. As shown in FIG.
  • FIG. 8C shows the relationship between the displacement d between the rigid member and the protrusion and the membrane contact voltage.
  • FIG. 9 which is a top view
  • the cuboidal rigid member 303 and the columnar protrusion 304 partially overlap each other when viewed from above, there is an effect of reducing distortion in the vicinity of the protrusion.
  • the shape and arrangement of the rigid member 303 viewed from the upper surface may be appropriately determined according to desired frequency characteristics.
  • at least a part of the plurality of columnar protrusions 304 may overlap with each other when viewed from above with respect to one rectangular solid member 303.
  • the plurality of protrusions 304 are arranged so as not to overlap with the upper electrode 305 when viewed from the upper surface in the same manner as described above.
  • the rigid member 303 is arranged so that at least a part of the plurality of protrusions 304 overlap each other when viewed from above.
  • Such a structure is effective as a means for improving the membrane contact voltage when the cavity 302 is wide and the rigidity in the cavity width direction is low.
  • the shape of the rigid member 303 may be a cross shape. In this structure, in the membrane between the protrusions 304, the membrane becomes thick at the portion where the rigid member 303 is disposed, and the rigidity can be improved.
  • the contact voltage of the membrane between the protrusions can be improved.
  • the rigidity of the membrane between the protrusions can be increased, but the area of the rigid member 203 is increased, the rigidity of the entire membrane is increased, and the driving voltage is increased.
  • the contact voltage of the interprotrusion membrane can be increased without greatly changing the drive voltage.
  • the shape of the membrane 310 be flat, a bulge or a dent may occur due to the residual stress of the formed film.
  • the place where the rigid member 303 is embedded is changed.
  • the residual stress distribution of the membrane 310 can be controlled, and the bulge or dent shape of the membrane 310 can be controlled.
  • the structure of the CMUT according to the second embodiment will be described with reference to FIG.
  • the CMUT includes a rectangular parallelepiped lower electrode 501 disposed on the substrate 506, a cavity 502 disposed on the lower electrode 501, a rectangular parallelepiped upper electrode 505 disposed on the cavity 502, and the like.
  • an insulating film 509 is formed between the lower electrode 501 and the cavity 502 so as to cover the lower electrode 501, and the cavity 502 and the lower electrode 501 are covered between the upper electrode 505 and the cavity 502.
  • An insulating film 508 is formed. At least one or more columnar protrusions 504 protruding from the upper surface of the insulating film 509 to the cavity 502 are disposed in the cavity 502.
  • the protrusion 504 is made of an insulating film. Further, at least one cuboid rigid member 503 is disposed on the upper surface of the insulating film 507.
  • the beam member that is the rigid member 503 may be formed of the same material such as silicon oxide, silicon nitride, or the like, like the insulating films 507, 508, and 509, or may be a different material. Note that the membrane 510 including the insulating film 507, the upper electrode 505, and the insulating film 508 vibrates to transmit ultrasonic waves.
  • the surface of the protrusion 504 facing the insulating film 508 across the cavity is referred to as the protrusion upper surface 514, and the surface of the insulating film 509 exposed to the cavity is referred to as the cavity lower surface 513.
  • the surface of the membrane 510 that is exposed to the cavity is referred to as a membrane lower surface 512.
  • the protrusion upper surface 514 is in contact with the membrane lower surface 512, the voltage at that time is the protrusion contact voltage, the membrane lower surface 512 is in contact with the cavity lower surface 513, the membrane contact, and the voltage at that time is the membrane contact voltage. I will call it.
  • the difference between the membrane contact voltage and the protrusion contact voltage is referred to as a margin voltage.
  • the interval between the rigid members 503 and the protrusions 504 is preferably determined from the magnitude relationship between the membrane contact voltage and the protrusion contact voltage, as described in the first embodiment. For example, when the membrane contact voltage is lower than the protrusion contact voltage, the gap between the rigid member 503 and the protrusion 504 is narrowed to improve the membrane contact voltage.
  • the protrusion 504 protrudes from the cavity lower surface 513 to the cavity 502.
  • the projection 304 shown in FIG. 6 is in the same state as the structure protruding from the membrane lower surface 312 to the cavity 302. Therefore, even in the structure in which the protrusion 504 protrudes from the cavity lower surface 513, the difference between the protrusion contact voltage and the membrane contact voltage can be increased by arranging the rigid member and the protrusion so that the centers of the protrusions coincide with each other when viewed from above. The same effect as the ultrasonic transducer of Example 1 can be obtained.
  • the maximum effect can be obtained when the centers of the rigid member 503 and the protrusion 504 coincide with each other when viewed from above, but there is an effect if even a part of them overlaps.
  • the rigid member is disposed on the membrane surface.
  • the rigid portion 503 may be embedded in the membrane 510, and the same as described in the first embodiment.
  • the shape of the membrane 510 can be easily controlled.
  • FIG. 15 is a cross-sectional view showing one CMUT.
  • the CMUT cell includes a rectangular parallelepiped lower electrode 701, a hollow portion 702 disposed on the lower electrode 701, a rectangular parallelepiped upper electrode 705 disposed on the hollow portion 702, and the like. Note that an insulating film 709 is formed between the lower electrode 701 and the cavity 702 so as to cover the lower electrode 701, and the cavity 702 and the lower electrode 701 are covered between the upper electrode 705 and the cavity 702. An insulating film 708 is formed.
  • the protrusion 704 protruding from the lower surface of the insulating film 708 to the cavity portion 702 is disposed.
  • the protrusion 704 is made of an insulating film.
  • the protrusions 704 and the insulating films 707, 708, and 709 described above are formed of silicon oxide, silicon nitride, or the like.
  • a rectangular parallelepiped high Young's modulus member 703 is embedded in the membrane 710. In FIG. 15, the high Young's modulus member 703 is embedded in the insulating film 707, but may be embedded in the insulating film 708, or may be embedded in both the insulating film 707 and the insulating film 708.
  • the high Young's modulus member 703 is made of a material having a higher Young's modulus than the surrounding insulating film 707 and the insulating film 708, for example, a metal material such as tungsten, a ceramic material such as alumina, or an ion implantation.
  • the film 708 is modified to improve the Young's modulus.
  • the surface of the protrusion 704 that faces the insulating film 709 across the cavity is referred to as the protrusion lower surface 711, and the surface of the insulating film 709 that is exposed to the cavity is referred to as the cavity lower surface 713.
  • the surface of the membrane 710 that is exposed to the cavity is referred to as a membrane lower surface 712.
  • the protrusion lower surface 711 is in contact with the cavity lower surface 713, the voltage at that time is the protrusion contact voltage, the membrane lower surface 712 is in contact with the cavity lower surface 713, and the voltage at that time is the membrane contact voltage. I will call it.
  • FIG. 15 is a cross-sectional view taken along line A-A ′ of FIG.
  • the protrusion 704 and the like are seen through the high Young's modulus member 703.
  • the cavity 702 and the upper electrode 705 have a width in the vertical direction and a length in the horizontal direction
  • the high Young's modulus member 703 has a length in the vertical direction and a width in the horizontal direction.
  • At least one protrusion 704 is arranged at the center in the width direction of the cavity 702 when viewed from above.
  • the high Young's modulus member 703 is disposed so that the center portion thereof coincides with each of the protrusions 704 when viewed from above.
  • at least one of the upper electrode 705 and the lower electrode 701 is disposed at a position that does not overlap with the protrusion 704 when viewed from above. In FIG. 16, a part of the upper electrode 705 is penetrated, and the protrusion 704 and the upper electrode 705 are arranged so as not to overlap when viewed from above, but the electrode that penetrates may be the lower electrode 701. .
  • the reason for this arrangement is that when a DC voltage or an AC voltage is applied between the electrodes and the protrusion lower surface 711 contacts the cavity lower surface 713, a strong electric field is applied to the protrusion 704 and the insulating film 709, and charge injection is performed. This is because the distance between the electrodes is increased by penetrating the electrodes so that the electric field strength is reduced.
  • the high Young's modulus material 703 and the protrusions 704 are arranged at equal intervals in the cavity length direction, but may be unequal intervals. However, in the case of unequal intervals, a plurality of membrane contact voltages exist in one CMUT, which is not preferable in design.
  • the interval between the high Young's modulus members 703 and the protrusions 704 is preferably determined from the magnitude relationship between the membrane contact voltage and the protrusion contact voltage. For example, when the membrane contact voltage is lower than the protrusion contact voltage, the distance between the high Young's modulus member 703 and the protrusion 704 is narrowed to improve the membrane contact voltage.
  • the feature of the third embodiment is that at least one of the upper electrode 705 and the lower electrode 701 is disposed at a position where it does not overlap with the protrusion 704 protruding into the cavity 702 when viewed from above.
  • the high Young's modulus member 703 and the protrusion 704 provided on the membrane 710 are arranged so as to partially overlap each other when viewed from above.
  • the rigidity is locally increased by disposing a high Young's modulus member inside the membrane in a region overlapping the protrusion 704 when viewed from above.
  • membrane contact in order to obtain a high transmission sound pressure, membrane contact can be prevented even when the membrane 710 is vibrated to the maximum under a driving condition in which the projecting lower surface 711 contacts the cavity lower surface 713.
  • the membrane contact voltage may be partially lower than the design due to manufacturing variations.
  • the above structure prevents the membrane contact and charges the insulating film 708 of the membrane 710. Injection can be reduced. For this reason, the operation reliability of CMUT can be improved.
  • the CMUT surface can be made flat.
  • the structure of the CMUT according to the fourth embodiment will be described with reference to FIG.
  • the CMUT includes a rectangular parallelepiped lower electrode 701 disposed on the substrate 706, a cavity 702 disposed on the lower electrode 701, a rectangular parallelepiped upper electrode 705 disposed on the cavity 702, and the like.
  • an insulating film 709 is formed between the lower electrode 701 and the cavity 702 so as to cover the lower electrode 701, and the cavity 702 and the lower electrode 701 are covered between the upper electrode 705 and the cavity 702.
  • An insulating film 708 is formed.
  • In the cavity 702, at least one columnar protrusion 704 protruding from the upper surface of the insulating film 709 to the cavity 702 is disposed.
  • the protrusion 704 is made of an insulating film.
  • at least one rectangular parallelepiped high Young's modulus member 703 is embedded in the upper surface of the insulating film 707.
  • the surface of the protrusion 704 that faces the insulating film 708 across the cavity is referred to as the protrusion upper surface 714
  • the surface of the insulating film 709 that is exposed to the cavity is referred to as the cavity lower surface 713
  • the surface of the membrane 710 that is exposed to the cavity is referred to as a membrane lower surface 712.
  • the protrusion upper surface 714 is in contact with the membrane lower surface 712, the voltage at that time is the protrusion contact voltage, the membrane lower surface 712 is in contact with the cavity lower surface 713, and the voltage at that time is the membrane contact voltage. I will call it.
  • the interval between the high Young's modulus members 703 and the protrusions 704 is preferably determined from the magnitude relationship between the membrane contact voltage and the protrusion contact voltage. For example, when the membrane contact voltage is lower than the protrusion contact voltage, the distance between the high Young's modulus member 703 and the protrusion 704 is narrowed to improve the membrane contact voltage.
  • Example 3 The difference from Example 3 described above is that the protrusion 704 protrudes from the cavity lower surface 713 into the cavity 702.
  • the membrane lower surface 712 comes into contact with the protrusion upper surface 714, a state similar to the protrusion contact state of the structure shown in FIG. 15 is obtained. Therefore, even in the structure in which the protrusion 704 protrudes from the cavity lower surface 713, the difference between the protrusion contact voltage and the membrane contact voltage can be increased by arranging the high Young's modulus member and the center of the protrusion to coincide with each other when viewed from above. Since the operation reliability of the CMUT can be improved, the same effect as that of the ultrasonic transducer of the third embodiment can be obtained.
  • the ultrasonic transducer of the third embodiment it is effective if the high Young's modulus member and the protrusion partially overlap each other when viewed from above. With such a structure, there is a feature that it is easy to design the frequency characteristics of the CMUT because the protrusion is not on the membrane side of the CMUT vibration part.
  • FIG. 18 is a top view showing the ultrasonic transducer of the fifth embodiment.
  • This ultrasonic transducer includes a circular projection 804, a circular membrane 810, and a circular rigid member 803 or a high Young's modulus member 805 on the upper surface of the membrane 810.
  • the rigid member 803 and the protrusion 804 are disposed between the center of the membrane 810 and the upper, lower, left and right membrane ends.
  • the rigid member 803 and the protrusion 804 are arranged so that a part thereof overlaps when viewed from above.
  • the circular protrusion 804 is an example, and may be other polygonal shapes such as a triangular shape, a pentagonal shape, and a heptagonal shape.
  • the rigid member 803 or the high Young's modulus member 805 is also an example of a circular shape, and may be another polygonal shape such as a triangular shape, a pentagonal shape, or a heptagonal shape.
  • the number and arrangement of the rigid members 803 and the protrusions 804 may be determined by the magnitude relationship between the protrusion contact voltage and the membrane contact voltage. For example, when the membrane contact voltage is lower than the protrusion contact voltage in the structure of FIG. 18, the number of rigid members 803 and protrusions 804 should be increased. In this case, the location where the membrane contacts with the membrane contact voltage is good.
  • FIG. 19 is a top view showing the ultrasonic transducer of the sixth embodiment.
  • This ultrasonic transducer includes a circular protrusion 904, an octagonal membrane 910, and a circular rigid member 903 or a high Young's modulus member 905 on the upper surface of the membrane 910.
  • the rigid member 903 and the protrusion 904 are disposed at the center of the membrane 910 and the periphery thereof.
  • the rigid member 903 and the protrusion 904 are arranged so that a part thereof overlaps when viewed from above.
  • the octagonal membrane 910 is an example, and may be other polygonal shapes such as a triangular shape, a pentagonal shape, and a heptagonal shape.
  • the circular protrusion 904 is an example, and may be other polygonal shapes such as a triangular shape, a pentagonal shape, and a heptagonal shape.
  • the rigid member 903 or the high Young's modulus member 905 is also an example of a circular shape, and may be another polygonal shape such as a triangular shape, a pentagonal shape, or a heptagonal shape.
  • the number and arrangement of the rigid members 903 and the protrusions 904 may be determined according to the magnitude relationship between the protrusion contact voltage and the membrane contact voltage. For example, when the membrane contact voltage is lower than the protrusion contact voltage in the structure of FIG. 19, the number of rigid members 903 and protrusions 904 should be increased. In this case, the location where the membrane contacts with the membrane contact voltage is good.
  • the ultrasonic diagnostic apparatus 1001 includes an ultrasonic probe 1002, a transmission / reception separation unit 1003, a transmission unit 1004, a bias unit 1006, a reception unit 1008, a phasing addition unit 1010, an image processing unit 1012, a display unit 1014, a control unit 1016, The operation unit 1018 is configured.
  • the ultrasonic probe 1002 is a device that transmits and receives ultrasonic waves to and from the subject by contacting the subject. An ultrasonic wave is transmitted from the ultrasonic probe 1002 to the subject, and a reflected echo signal from the subject is received by the ultrasonic probe 1002.
  • the ultrasonic transducer according to any of the first to sixth embodiments is housed in the ultrasonic probe 1002 and is electrically connected to a transmission / reception separating unit 1003 described later.
  • the transmission unit 1004 and the bias unit 1006 are devices that supply drive signals to the ultrasound probe 1002.
  • the receiving unit 1008 is a device that receives a reflected echo signal output from the ultrasonic probe 1002.
  • the receiving unit 1008 further performs processing such as analog-digital conversion on the received reflected echo signal.
  • the transmission / reception separating unit 1003 switches between transmission and reception so as to pass a drive signal from the transmission unit 1004 to the ultrasonic probe 1002 at the time of transmission, and to pass a reception signal from the ultrasonic probe 1002 to the reception unit 1008 at the time of reception.
  • the phasing addition unit 1010 is a device that performs phasing addition of the received reflected echo signals.
  • the image processing unit 1010 is a device that configures a diagnostic image (for example, a tomographic image or a blood flow image) based on the reflected echo signal subjected to phasing addition.
  • the display unit 1014 is a display device that displays a diagnostic image subjected to image processing.
  • the control unit 1016 is a device that controls each component described above.
  • the operation unit 1018 is a device that gives an instruction to the control unit 1016.
  • the operation unit 1018 is configured by an input device such as a trackball, a keyboard, or a mouse, for example.
  • the ultrasonic transducer of the present invention can be used for an ultrasonic diagnostic apparatus using an ultrasonic probe, a defect inspection apparatus inside the structure, an object position detection apparatus, a flow velocity measurement apparatus, and the like. Further, high transmission sound pressure and high reception sensitivity can be realized, and reliability in long-term driving can be improved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

 容量検出型超音波トランスデューサ(CMUT)において、高送信音圧と高受信感度を実現し、また長期間駆動における信頼性を向上させる。下部電極(201)と、前記下部電極上に形成された、絶縁膜(209、208)で囲まれた空洞部(202)と、前記空洞部上に形成された上部電極(205)と、前記空洞部(202)内に形成された複数の絶縁膜の突起(204)を備えた超音波トランスデューサにおいて、前記空洞部上に形成された複数の剛性部材(203)を備え、前記下部電極(201)と前記上部電極(205)のうちの少なくとも一方の電極は、前記絶縁膜の突起(204)と重なる部分を刳り貫くことにより、前記絶縁膜の突起(204)と上面から見て重ならない位置に配置され、前記剛性部材(203)のそれぞれは前記絶縁膜の突起(204)と上面から見て重なる領域が存在するように配置されている。

Description

超音波トランスデューサおよびそれを用いた超音波診断装置
 本発明は、超音波トランスデューサ、および、それを用いた超音波診断装置に関するものであり、特に、MEMS(Micro Electro Mechanical Systems)技術により製造した超音波トランスデューサに関するものである。
 超音波トランスデューサは、超音波を送信、受信することにより、人体内の腫瘍などの診断や、構造物の非破壊検査、流体の速度検知などに用いられている。
 これまでは、圧電体の振動を利用した超音波トランスデューサが用いられてきたが、近年のMEMS技術の進歩により、振動部をシリコン基板上に作製した容量検出型超音波トランスデューサ(CMUT:Capacitive Micromachined Ultrasonic Transducer)が盛んに開発されている。
  例えば、特許文献1、特許文献2や特許文献3には、CMUTの動作信頼性向上について開示されている。また、特許文献4には、CMUTの中心周波数と帯域幅を制御する方法について開示されている。
米国特許出願公開第2005/0228285号明細書 米国特許出願公開第2009/0322181号明細書 特開2007-74263号公報 国際公開第2007/046180号
 前記特許文献1では、CMUTの空洞部に突き出た絶縁膜の突起を形成し、コラプス電圧以上の直流電圧や、交流電圧を印加した場合でも、突起下面は、空洞下面に接触するが、メンブレン下面が空洞下面に接触しない構造が示されている。しかし、突起部は上下電極に挟まれた構造であるため、突起部の絶縁膜への電荷注入は免れない。
 一方、前記特許文献2では、メンブレン下面が空洞下面に接触する領域が上下電極に挟まれないよう電極の一部を刳り貫いた構造となっている。この構造の場合、接触領域におけるメンブレン絶縁膜中の電界強度が低減されるため、電荷注入は回避できるが、その分、上下電極の重なり部の面積が小さくなり、CMUTの駆動電圧の上昇や、受信感度の低下を招くことになる。
 また、前記特許文献3では、空洞部へ突き出た絶縁膜の突起が、上下電極に挟まれない構造となっている。この場合も上記の理由と同様に、CMUTの駆動電圧の上昇や受信感度の低下を招くことになる。
 前記特許文献4は、メンブレンに剛性部材を設けることで、メンブレン全体の剛性を調整し、CMUTの中心周波数と帯域幅を制御する内容である。しかし、剛性部材の導入は駆動電圧の上昇をもたらし、デバイス動作信頼性の確保が課題となる。
 そこで、本発明は、空洞部に突き出た突起を有し、上部電極と下部電極のうち少なくとも一方の電極は突起と上面から見て重ならない位置に配置されているCMUTにおいて、突起下面が空洞下面に接触してからメンブレン下面が空洞下面に接触する間の電圧マージンを確保し、メンブレン絶縁膜への電荷注入を抑制し、高送信音圧と高信頼構造を有する超音波トランスデューサとそれを用いた超音波診断装置を提供することを目的とする。
 上記課題を解決するために、本発明の超音波トランスデューサは、下部電極と、前記下部電極上に形成された、絶縁膜で囲まれた空洞部と、前記空洞部上に形成された上部電極と、前記空洞部内に形成された複数の絶縁膜の突起を備えた超音波トランスデューサにおいて、前記空洞部上に形成された複数の剛性部材を備え、前記下部電極と前記上部電極のうちの少なくとも一方の電極は、前記絶縁膜の突起と重なる部分を刳り貫くことにより、前記絶縁膜の突起と上面から見て重ならない位置に配置され、前記剛性部材のそれぞれは前記絶縁膜の突起と上面から見て重なる領域が存在するように配置されていることを特徴とするものである。
 本発明の超音波トランスデューサにおいて、前記剛性部材は梁部材であり、前記絶縁膜と前記上部電極と前記梁部材で構成されるメンブレンは、前記梁部材が配置されている部分の厚さが、梁部材が配置されてない部分と比べて梁部材の厚さ分厚いものでよい。
  また、本発明の超音波トランスデューサにおいて、前記上部電極および前記空洞部を覆うように形成された上部絶縁膜を備えており、前記梁部材は前記上部絶縁膜上に配置されているものでよい。
  また、本発明の超音波トランスデューサにおいて、前記上部電極および前記空洞部を覆うように形成された上部絶縁膜を備えており、前記梁部材は前記上部絶縁膜の内部に埋め込まれているものでよい。
 本発明の超音波トランスデューサにおいて、前記剛性部材は、前記絶縁膜と前記上部電極と前記梁部材で構成されるメンブレンよりも高ヤング率の部材でよい。
  また、本発明の超音波トランスデューサにおいて、前記上部電極および前記空洞部を覆うように形成された上部絶縁膜を備えており、前記高ヤング率の部材は前記上部絶縁膜の内部に埋め込まれているものでよい。
  また、本発明の超音波トランスデューサにおいて、前記高ヤング率の部材は、タングステンなどの金属材料やアルミナなどのセラミック材料を埋め込んで形成したものでよい。
  また、本発明の超音波トランスデューサにおいて、前記高ヤング率の部材は、イオンの打ち込みにより前記上部絶縁膜を改質して形成したものでよい。
 本発明の超音波トランスデューサにおいて、前記剛性部材の中心は前記絶縁膜の突起の中心と上面から見て一致するように配置されているものでよい。
  また、本発明の超音波トランスデューサにおいて、一つの前記剛性部材に対して複数の前記絶縁膜の突起が重なるように配置されているものでよい。
  また、本発明の超音波トランスデューサにおいて、前記絶縁膜の突起が前記空洞部の上面に配置されているものでよい。
  また、本発明の超音波トランスデューサにおいて、前記前記絶縁膜の突起が前記空洞部の下面に配置されているものでよい。
  また、本発明の超音波トランスデューサにおいて、前記複数の絶縁膜の突起と前記複数の剛性部材が上面から見て等間隔に配置されているものでよい。
  また、本発明の超音波トランスデューサにおいて、前記空洞部が上面から見て、円形状または多角形状でよい。
  また、本発明の超音波トランスデューサにおいて、前記絶縁物の突起が上面から見て、円形状または多角形状でよい。
  また、本発明の超音波トランスデューサにおいて、前記剛性部材が上面から見て、円形状、十字型形状または多角形状でよい。
 本発明の超音波診断装置は、上記何れか一つの超音波トランスデューサとバイアス部を用いたものである。
 本発明によれば、容量検出型超音波トランスデューサ(CMUT)において、高送信音圧と高受信感度を実現することができ、また、長期間駆動における信頼性を向上させることができる。
本発明の実施例1の超音波トランスデューサの断面図である。 本発明の実施例1の超音波トランスデューサの上面図である。 本発明者らが検討した、CMUT超音波トランスデューサの断面図である。 本発明者らが検討した、超音波トランスデューサの突起が空洞下面に接触した状態の断面図である。 本発明者らが検討した、超音波トランスデューサのメンブレンが空洞下面に接触した断面図である。 突起が空洞下面に接触した状態を示した断面図である。 突起が空洞下面に接触した状態である一定の外力をメンブレンに加えた場合のメンブレンのひずみを突起中心からの距離でプロットしたグラフである。 メンブレンに配置された剛性部材と突起の中心のずれ量と突起近傍のひずみおよびメンブレン接触電圧の関係を示したグラフである。 本発明の実施例1の超音波トランスデューサで、剛性部材と突起の中心が一致していない場合の上面図である。 本発明の実施例1の超音波トランスデューサで、剛性部材と複数の突起が重なっている場合の上面図である。 本発明の実施例1の超音波トランスデューサで、剛性部材が十字形状の場合の上面図である。 本発明の実施例1の他の超音波トランスデューサの断面図である。 本発明の実施例2の超音波トランスデューサの断面図である。 本発明の実施例2の他の超音波トランスデューサの断面図である。 本発明の実施例3の超音波トランスデューサの断面図である。 本発明の実施例3の超音波トランスデューサの上面図である。 本発明の実施例4の超音波トランスデューサの断面図である。 本発明の実施例5の超音波トランスデューサの上面図である。 本発明の実施例6の超音波トランスデューサの上面図である。 本発明の実施例7の超音波診断装置の構成ブロック図である。
 以下、本発明の実施例を図面に基づいて詳細に説明する。
 以下の実施例においては、便宜上、その必要があるときは、複数のセクションまたは実施例に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施例において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。さらに、以下の実施例において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施例において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうではないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。なお、平面図であっても理解を容易にするため、ハッチングを付す場合がある。
 下記の実施例の記載では、容量検出型超音波トランスデューサ(CMUT)において、空洞部に突き出た突起の下面が空洞下面へ接触した状態からメンブレン下面が空洞下面に接触する状態間の電圧マージンを拡げることでメンブレン絶縁膜への電荷注入や絶縁耐圧の低下を抑制するという目的を、CMUTを上面から見て、空洞に突き出た突起とメンブレンに設けられた剛性部材或いは高ヤング率部材の少なくとも一部が重なっている配置とすることで実現している。
 図3を用いて、CMUTの基本的な構造および動作を説明する。下部電極101の上層に絶縁膜103に囲まれた空洞部102が形成されている。空洞部102上には絶縁膜103を介して上部電極104が配置されている。上部電極104と下部電極101の間に直流電圧と交流電圧を重畳すると、静電気力が上部電極104と下部電極101の間に働き、空洞部102上の絶縁膜103と上部電極104で構成されるメンブレン105が印加した交流電圧の周波数で振動することで、超音波を発信する。
  受信の場合は、上部電極104と下部電極101の間に直流電圧のみを印加しておき、メンブレン105の表面に到達した超音波の圧力により、メンブレン105が振動する。すると、上部電極104と下部電極101との間の距離が変化するため、容量の変化として超音波を検出できる。
 超音波トランスデューサとして最も重要な性能の一つは信号対雑音比(SN比)が高いことである。例えば、超音波診断装置や探傷検査装置においてSN比が高いことは画質が鮮明であることに相当し、装置の性能上重要である。CMUTにおいてSN比を高くするためには、受信時の容量変化量を大きくすれば良い。CMUTの数や面積を増やして、容量変化量を増やすこともできるが、その場合トランスデューサのサイズが大きくなってしまうので、単位面積当たりの容量変化量を大きくする必要がある。つまり、受信感度を向上させることが必要である。または、送信音圧を大きくし、検査対象物から反射してくる超音波の音圧を上げることで受信時の容量変化量を大きくすることも可能である。
 受信感度を向上するためには、上部電極104と下部電極101の間隔をできるだけ狭くした方がよいので、できるだけ大きな直流電圧を印加することが必要である。しかし、メンブレンの変形量が真空換算で両電極間の3分の1以上の距離になると、電極間の静電気力がメンブレンのバネ復元力よりも大きくなり、メンブレン下面106が空洞部下面107に接触する。この電圧をコラプス電圧という。以上の理由から、受信時はコラプス電圧よりもわずかに小さな直流電圧を印加することになる。
 一方、送信音圧を向上するためには、メンブレンの振幅を最大限とすることが望ましい。しかし、駆動中にメンブレン下面106が空洞下面107に接触すると、絶縁膜中に電荷注入が生じ、送受信特性がドリフトする。そのため、CMUTの駆動条件は、メンブレン下面106が空洞下面107に接触しない範囲で設定する必要がある。実際には、製造ばらつきにより、空洞部102の高さがばらつくため、駆動条件はメンブレンが接触しない条件に加え、さらにマージンをもって設計され、メンブレンの振幅は空洞部102の高さよりもはるかに小さくなり、送信音圧の上限が制限される。
 そこで、空洞部へ突き出た絶縁膜の突起を形成し、さらにその突起が上下電極に挟まれない構造とするように電極を刳り貫くことで、突起接触部における電界強度が低減され、電荷注入は回避できる。しかし、電極を刳り貫くため、上下電極の重なり部の面積が小さくなり、CMUTの駆動電圧の上昇や、受信感度の低下を招くことになる。
 送受信特性のドリフトが生じずに、さらにCMUTの駆動電圧の上昇や受信感度の低下を招くことなく、高送信音圧を実現するためには、突起の数と電極の刳り貫き面積を必要最小限にすることが必要である。その際に注意すべきことについて図4と図5を用いて説明する。図4は、メンブレン105下側に設けられた突起108が空洞下面107に接触している状態を示す断面図である。この状態を突起接触状態と呼ぶことにする。高送信音圧を得るためには、メンブレンの振幅を最大限にするのが望ましいので、突起接触状態となる電圧以上の電圧を印加する。突起接触状態となる電圧以上の電圧を印加すると、突起108間のメンブレン105が空洞下面107に近づくように変形し、ある電圧以上で空洞下面107に接触する。この状態をメンブレン接触状態と呼び、図5に示す。このメンブレン接触状態では、メンブレン105へ電荷注入が生じるため、メンブレン接触状態にならないよう突起接触状態との電圧マージンを広くとることが動作信頼性向上のポイントとなる。電圧マージンを広げるには、メンブレン全体の剛性を上げれば良いが、駆動電圧も上がってしまうため、良策ではない。そこで、突起下面106が空洞下面107に非接触の状態でのメンブレン全体の剛性は上げずに、突起接触状態でのメンブレン剛性を上げるようにすれば、上記のマージン電圧を広くとることができ、送受信特性のドリフトなしに、送信音圧を向上できる。
 本実施例によるCMUTの断面構造を図1を用いて説明する。CMUTは、基板206の上に配置された直方体の下部電極201と、下部電極201上に配置された直方体の空洞部202と、空洞部202上に配置された直方体の上部電極205などを備えて構成される。なお、下部電極201と空洞部202の間に下部電極201を覆うように絶縁膜209が形成されており、上部電極205と空洞部202の間に、空洞部202と下部電極201を覆うように絶縁膜208が形成され、空洞部202には、絶縁膜208下面から空洞部202に突き出た円柱状の突起204が少なくとも一つ以上配置されている。また、絶縁膜208の上には絶縁膜207が覆っている。上述した突起204や絶縁膜207、208、209は酸化シリコンや窒化シリコンなどで形成される。絶縁膜207の上面には、剛性部材203である直方体の梁部材が少なくとも一つ以上配置されている。この剛性部材203である梁部材は、絶縁膜207、208、209と同様に酸化シリコン、窒化シリコンなどのように同じ材料で形成されても良いし、また別の材料でも良い。なお、絶縁膜207、上部電極205、絶縁膜208で構成されるメンブレン210が振動することで超音波を送信する。今後は、説明の都合上、突起204のうち、絶縁膜209と空洞を挟んで対向している面を突起下面211、絶縁膜209のうち、空洞に曝されている面を空洞下面213と呼ぶ。また、メンブレン210のうち、空洞に曝されている面をメンブレン下面212と呼ぶ。そして、突起下面211が空洞下面213に接触することを突起接触、また、その時の電圧を突起接触電圧、そしてメンブレン下面212が空洞下面213に接触することをメンブレン接触、またその時の電圧をメンブレン接触電圧と呼ぶことにする。また、メンブレン接触電圧と突起接触電圧との差をマージン電圧と呼ぶことにする。
 図1に示すCMUTの製造方法について記載する。基本的な製造方法は特許文献3に記載されており、ここでは、剛性部材203である梁部材の形成方法について述べる。梁部材は、絶縁膜207上に梁部材の材料となる薄膜、例えば酸化シリコンや窒化シリコンをプラズマCVD法により堆積し、フォトグラフィ技術とドライエッチング技術により形成する。ここでメンブレン210の厚さはデバイス特性に大きな影響を与えるため、ドライエッチング時に絶縁膜207が薄くならないように注意が必要である。例えば、剛性部材203である梁部材を上側から見て窒化シリコン、酸化シリコンの順番となる積層膜とし、絶縁膜207を窒化シリコンとすることで、剛性部材203である梁部材エッチング終了後の下地の絶縁膜207の削れ量が少なくなり、メンブレン210の厚さのエッチング前後の変化量を少なく抑えることができる。
 本実施例によるCMUTの上面構造を図2を用いて説明する。図2は図1の上面図を示している。また、図1は図2の線A-A’で切断した断面図を示している。なお、図2において、説明の便宜上、剛性部材203から突起204等を透視して示している。今後は説明の都合上、空洞202、上部電極205については、紙面の縦方向を幅、横方向を長さとし、剛性部材203については、紙面縦方向を長さ、横方向を幅とする。まず、上部電極205の形状を記載する。例えば、上部電極205は、複数の円形状の穴部を有している。上面から見て、上部電極205の複数の円形状の穴部214のほぼ中央の位置に突起204がそれぞれ配置されている。上面から見て、突起204は上部電極205の穴部214に配置されているため、上部電極205とは重ならない位置に配置されていることになる。つまり、突起204の鉛直方向には上部電極205がない。図2では、上部電極205の一部が刳り貫かれており、上面から見て突起204と上部電極205は重ならないように配置されているが、刳り貫く電極は下部電極201であっても良い。重要であることは、上部電極205と下部電極201のうち、少なくとも一方の電極は突起204と上面から見て重ならない位置に配置されていることである。このような配置となっている理由は、直流電圧もしくは交流電圧を電極間に印加し、突起下面211が空洞下面213に接触した場合に突起204と絶縁膜209に強電界が印加され、電荷注入が生じることがないように、電極を刳り貫くことで電極間距離を離し、電界強度を下げるためである。
 剛性部材203と突起204の位置関係について、図2を用いて説明する。突起204は、上面から見て空洞202の幅方向中央に少なくとも一つ以上配置されている。また、剛性部材203は、上部電極205の穴部214と突起204に対して、上面から見て一部でも重なるように配置されている。図1と図2では、剛性部材203と突起204が上面から見て空洞長さ方向に等間隔に配置されているが、不等間隔でもよい。ただし、不等間隔の場合、一つのCMUT内に複数のメンブレン接触電圧が存在することになり、設計上好ましくないので、等間隔にするのがよい。また、剛性部材203同士と突起204同士の間隔は、メンブレン接触電圧と突起接触電圧の大小関係から決めるのが良い。例えば、メンブレン接触電圧が突起接触電圧よりも低い場合、剛性部材203と突起204の間隔を狭くして、メンブレン接触電圧を向上させる。但し、突起204の間隔を狭くすると上部電極205の面積が減少し、CMUTの感度低下を招くので、設計段階で必要最低限のマージン電圧を満たすような突起間隔にするのが良い。
 本実施例1の特徴は、図1と図2で示すように、上部電極205と下部電極201のうち、少なくとも一方の電極は空洞202に突き出た突起204と上面から見て重ならない位置に配置されているCMUTにおいて、メンブレン210に設けられた剛性部材203と突起204とが上面から見て一部でも重なるように配置されていることである。このような構造にすることにより、突起204直上のメンブレンが厚くなり、剛性が上がり、マージン電圧を大きくとることができる。つまり、高送信音圧を得るために、突起下面211が空洞下面213に接触する駆動条件でメンブレン210を最大限に振動させる場合においても、メンブレン接触を防止することができる。実際のCMUTでは、製造ばらつきにより、部分的にメンブレン接触電圧が設計よりも低くなることがあるが、上記の構造にすることで、メンブレン接触を防止し、メンブレン210の絶縁膜208への電荷注入を低減することができる。このため、CMUTの動作信頼性を向上させることができる。
 上面から見た場合に、剛性部材203と突起204とが一部でも重なるように配置すると良い理由を図6を用いて説明する。ここでのポイントは、上面から見て突起204と重なる領域のメンブレン210を厚くし、局所的に剛性を高くしている点である。なお、図6では図1で図示した絶縁膜207、上部電極205、絶縁膜208をまとめてメンブレン310として図示している。図7では、図6の突起接触状態からある大きさの外力をメンブレン310全体に一様に印加し、メンブレン310のひずみを突起304中心からの距離でプロットしたシミュレーション結果である。ひずみは突起304近傍で最大値となり、遠くなるにつれて単調に減少する。この結果は、突起接触状態からメンブレン310が変形する場合、突起304が固定端となるため、突起304の近傍のひずみが最大となることを意味している。したがって、突起近傍のひずみを低減することができれば、マージン電圧を拡げることができることになる。図8に、剛性部材と突起の位置関係と突起近傍のひずみの大きさの関係を示したグラフを示す。図8(b)に示されるように、剛性部材と突起のずれ量dが小さい場合は、突起近傍のひずみは小さく、剛性部材と突起の中心が一致している場合が最小となる。一方、剛性部材と突起の重ならない場合、突起近傍のひずみは大きくなる。図8(c)に、剛性部材と突起間のずれ量dとメンブレン接触電圧との関係を示す。ずれ量dが小さい場合は、メンブレン接触電圧は大きいが、ずれ量dが大きくなるとメンブレン接触電圧は低下する。以上より、剛性部材を配置する場所は突起近傍のひずみに大きく影響を与え、剛性部材と突起の中心が一致するように配置する場合に突起近傍のひずみが最も小さく効果的である。但し、上面図である図9に示す構造のように直方体の剛性部材303と円柱状の突起304が上面から見て一部でも重なっていれば突起近傍のひずみを低減する効果はある。なお、剛性部材303の上面から見た形状や配置は、所望の周波数特性によって適切に決定するとよい。また、図10に示すように、一つの直方体の剛性部材303に対して上面から見て、円柱状の複数の突起304の少なくとも一部が重なっている配置でも良い。この構造においても、上述した内容と同様に上面から見て、複数の突起304は上部電極305と重ならない配置されている。また、剛性部材303は、上面から見て、複数の突起304の少なくとも一部は重なっているように配置されている。このような構造は、空洞302の幅が広く、空洞幅方向の剛性が低い場合に、メンブレン接触電圧を向上させる手段として有効である。但し、突起304を増やすと上部電極305の面積が減り、CMUTの感度が低下するので、必要最低限の数とするのが良い。また、図11に示すように、剛性部材303の形状を十字型にしても良い。この構造では、突起304間のメンブレンにおいて、剛性部材303が配置された箇所では、メンブレンが厚くなり、剛性を向上させることができるため、突起間メンブレンの接触電圧を向上させることができる。図2に示した長方形の剛性部材203の幅を広げることでも、突起間のメンブレンの剛性を上げることができるが、剛性部材203の面積が大きくなり、メンブレン全体の剛性が高くなり、駆動電圧が上がってしまうため、信頼性の面で不利となる。つまり、図11に示す十字型の剛性部材303では、駆動電圧を大きく変えることなく、突起間メンブレンの接触電圧を上げることができる。なお、以上ではメンブレン表面に剛性部材が配置されている構造の説明をしたが、図12に示すように剛性部材303がメンブレン310の内部に埋め込まれていても良い。メンブレン310の形状は平坦でることが望ましいのに対して、構成される膜の残留応力により、膨らみもしくは、へこみが生じる場合があるが、図12に示すように、剛性部材303の埋め込む場所を変えることで、メンブレン310の残留応力分布を制御することができ、メンブレン310の膨らみもしくは、へこみ形状を制御することが可能となる。
 本実施例2によるCMUTの構造を図13を用いて説明する。CMUTは、基板506の上に配置された直方体の下部電極501と、下部電極501上に配置された空洞部502と、空洞部502上に配置された直方体の上部電極505などを備えて構成される。なお、下部電極501と空洞部502の間に下部電極501を覆うように絶縁膜509が形成されており、上部電極505と空洞部502の間に、空洞部502と下部電極501を覆うように絶縁膜508が形成されている。空洞部502には、絶縁膜509上面から空洞部502に突き出た円柱状の突起504が少なくとも一つ以上配置されている。この突起504は絶縁膜で構成される。また、絶縁膜507の上面には、直方体の剛性部材503が少なくとも一つ以上配置されている。この剛性部材503である梁部材は、絶縁膜507、508、509と同様に酸化シリコン、窒化シリコンなどのように同じ材料で形成されても良いし、また別の材料でも良い。なお、絶縁膜507、上部電極505、絶縁膜508で構成されるメンブレン510が振動することで超音波を送信する。今後は、説明の都合上、突起504のうち、絶縁膜508と空洞を挟んで対向している面を突起上面514、絶縁膜509のうち、空洞に曝されている面を空洞下面513と呼ぶ。また、メンブレン510のうち、空洞に曝されている面をメンブレン下面512と呼ぶ。そして、突起上面514がメンブレン下面512に接触することを突起接触、またその時の電圧を突起接触電圧、そしてメンブレン下面512が空洞下面513に接触することをメンブレン接触、またその時の電圧をメンブレン接触電圧と呼ぶことにする。また、メンブレン接触電圧と突起接触電圧との差をマージン電圧と呼ぶことにする。剛性部材503同士と突起504同士の間隔は、実施例1に述べた内容と同じく、メンブレン接触電圧と突起接触電圧の大小関係から決めるのが良い。例えば、メンブレン接触電圧が突起接触電圧よりも低い場合、剛性部材503と突起504の間隔を狭くして、メンブレン接触電圧を向上させる。
 前述した実施例1との相違点は、突起504が空洞下面513から空洞502に突き出ている点である。この構造でメンブレン下面512が突起上面514に接触すると、図6で示す突起304がメンブレン下面312から空洞302に突き出た構造と同様の状態となる。したがって、突起504が空洞下面513から突き出した構造においても、上面から見て剛性部材と突起の中心が一致するように配置すると突起接触電圧とメンブレン接触電圧の差を大きくすることができるので、実施例1の超音波トランスデューサと同様の効果を得ることができる。
なお、実施例1の超音波トランスデューサと同様に上面から見て剛性部材503と突起504の中心が一致している配置で最大の効果が得られるが、一部でも重なっていれば効果はある。このような構造にすると、突起がCMUT振動部のメンブレン側にないことで、CMUTの周波数特性の設計がしやすくなる特徴がある。なお、以上ではメンブレン表面に剛性部材が配置されている構造の説明をしたが、図14に示すように剛性部503がメンブレン510の内部に埋め込まれていても良く、実施例1で記載した同様にメンブレン510の形状制御がしやすくなるという特徴がある。
 本実施例3によるCMUTの構造を、図15と図16を用いて説明する。図15には、一つのCMUTを示した断面図を示す。CMUTセルは、直方体の下部電極701と、下部電極701上に配置された空洞部702と、空洞部702上に配置された直方体の上部電極705などを備えて構成される。なお、下部電極701と空洞部702の間に下部電極701を覆うように絶縁膜709が形成されており、上部電極705と空洞部702の間に、空洞部702と下部電極701を覆うように絶縁膜708が形成されている。空洞部702には、絶縁膜708下面から空洞部702に突き出た円柱状の突起704が少なくとも一つ以上配置されている。この突起704は絶縁膜で構成される。上述した突起704や絶縁膜707、708、709は酸化シリコンや窒化シリコンなどで形成される。メンブレン710には、直方体の高ヤング率部材703が埋め込まれている。図15では、高ヤング率部材703が絶縁膜707に埋め込まれているが、絶縁膜708に埋め込まれていても良いし、絶縁膜707と絶縁膜708の両方に埋め込まれていても良い。高ヤング率部材703は、周囲の絶縁膜707や絶縁膜708よりもヤング率が高い材料、例えば、タングステンなどの金属材料やアルミナなどのセラミック材料など、もしくはイオンの打ち込みなどにより絶縁膜707や絶縁膜708を改質し、ヤング率を向上させて形成する。今後は、説明の都合上、突起704のうち、絶縁膜709と空洞を挟んで対向している面を突起下面711、絶縁膜709のうち、空洞に曝されている面を空洞下面713と呼ぶ。また、メンブレン710のうち、空洞に曝されている面をメンブレン下面712と呼ぶ。そして、突起下面711が空洞下面713に接触することを突起接触、またその時の電圧を突起接触電圧、そしてメンブレン下面712が空洞下面713に接触することをメンブレン接触、またその時の電圧をメンブレン接触電圧と呼ぶことにする。
 高ヤング率部材703と突起704の位置関係について、図16を用いて説明する。また、図15は図16の線A-A’で切断した断面図を示している。なお、図16において、説明の便宜上、高ヤング率部材703から突起704等を透視して示している。今後は説明の都合上、空洞702、上部電極705については、紙面の縦方向を幅、横方向を長さとし、高ヤング率部材703については、紙面縦方向を長さ、横方向を幅とする。突起704は、上面から見て空洞702の幅方向中央に少なくとも一つ以上配置されている。また、高ヤング率部材703は突起704それぞれに対して、上面から見て中心部が一致するように配置されている。また、上部電極705と下部電極701のうち、少なくとも一方の電極は突起704と上面から見て重ならない位置に配置されている。図16では、上部電極705の一部が刳り貫かれており、上面から見て突起704と上部電極705は重ならないように配置されているが、刳り貫く電極は下部電極701であっても良い。このような配置となっている理由は、直流電圧もしくは交流電圧を電極間に印加し、突起下面711が空洞下面713に接触した場合に突起704と絶縁膜709に強電界が印加され、電荷注入が生じることがないように、電極を刳り貫くことで電極間距離を離し、電界強度を下げるためである。図15と図16では、高いヤング率材703と突起704が空洞長さ方向に等間隔で配置されているが、不等間隔でもよい。ただし、不等間隔の場合、ひとつのCMUT内に複数のメンブレン接触電圧が存在することになり、設計上好ましくないので、等間隔にするのがよい。また、高ヤング率部材703同士と突起704同士の間隔は、メンブレン接触電圧と突起接触電圧の大小関係から決めるのが良い。例えば、メンブレン接触電圧が突起接触電圧よりも低い場合、高ヤング率部材703と突起704の間隔を狭くして、メンブレン接触電圧を向上させる。
 本実施例3の特徴は、図15と図16で示すように、上部電極705と下部電極701のうち、少なくとも一方の電極は空洞702に突き出た突起704と上面から見て重ならない位置に配置されているCMUTにおいて、メンブレン710に設けられた高ヤング率部材703と突起704とが上面から見て一部でも重なるように配置されていることである。ここでのポイントは、上面から見て突起704と重なる領域のメンブレン内部に高ヤング率部材を配置することで、局所的に剛性を高くしている点である。このような構造にすることにより、突起接触電圧とメンブレン接触電圧の差を大きくとることができる。つまり、高送信音圧を得るために、突起下面711が空洞下面713に接触する駆動条件でメンブレン710を最大限に振動させる場合においても、メンブレン接触を防止することができる。実際のCMUTでは、製造のばらつきにより、部分的にメンブレン接触電圧が設計よりも低くなることがあるが、上記の構造にすることで、メンブレン接触を防止し、メンブレン710の絶縁膜708への電荷注入を低減することができる。このため、CMUTの動作信頼性を向上させることができる。また、CMUT表面を平らにできるという特徴がある。
 本実施例4によるCMUTの構造を図17を用いて説明する。CMUTは、基板706の上に配置された直方体の下部電極701と、下部電極701上に配置された空洞部702と、空洞部702上に配置された直方体の上部電極705などを備えて構成される。なお、下部電極701と空洞部702の間に下部電極701を覆うように絶縁膜709が形成されており、上部電極705と空洞部702の間に、空洞部702と下部電極701を覆うように絶縁膜708が形成されている。空洞部702には、絶縁膜709上面から空洞部702に突き出た円柱状の突起704が少なくとも一つ以上配置されている。この突起704は絶縁膜で構成される。また、絶縁膜707の上面には、直方体の高ヤング率部材703が少なくとも一つ以上埋め込まれている。説明の都合上、突起704のうち、絶縁膜708と空洞を挟んで対向している面を突起上面714、絶縁膜709のうち、空洞に曝されている面を空洞下面713と呼ぶ。また、メンブレン710のうち、空洞に曝されている面をメンブレン下面712と呼ぶ。そして、突起上面714がメンブレン下面712に接触することを突起接触、またその時の電圧を突起接触電圧、そしてメンブレン下面712が空洞下面713に接触することをメンブレン接触、またその時の電圧をメンブレン接触電圧と呼ぶことにする。高ヤング率部材703同士と突起704同士の間隔は、メンブレン接触電圧と突起接触電圧の大小関係から決めるのが良い。例えば、メンブレン接触電圧が突起接触電圧よりも低い場合、高ヤング率部材703と突起704の間隔を狭くして、メンブレン接触電圧を向上させる。
 前述した実施例3との相違点は、突起704が空洞下面713から空洞702に突き出ている点である。この構造でメンブレン下面712が突起上面714に接触すると図15で示す構造の突起接触状態と同様の状態となる。したがって、突起704が空洞下面713から突き出した構造においても、上面から見て高ヤング率部材と突起の中心が一致するように配置すると突起接触電圧とメンブレン接触電圧の差を大きくすることができ、CMUTの動作信頼性を向上することができるので、実施例3の超音波トランスデューサと同様の効果を得ることができる。なお、実施例3の超音波トランスデューサと同様に高ヤング率部材と突起が上面から見て一部でも重なっていれば効果はある。このような構造にすると、突起がCMUT振動部のメンブレン側にないことで、CMUTの周波数特性の設計がしやすくなる特徴がある。
 図18は、本実施例5の超音波トランスデューサを示す上面図である。この超音波トランスデューサは円形状の突起804と円形状のメンブレン810とメンブレン810の上面に円形状の剛性部材803または高ヤング率部材805を含んでいる。剛性部材803と突起804は、メンブレン810の中央とその上下左右のメンブレン端との中間に配置されている。剛性部材803と突起804は上面から見て一部が重なるように配置されている。円形状の突起804は一例であって、三角形状、五角形状、七角形状など、他の多角形状でもよい。また、剛性部材803または高ヤング率部材805においても、円形状は一例であり、三角形状、五角形状、七角形状など、他の多角形状でもよい。剛性部材803と突起804の個数と配置については、突起接触電圧とメンブレン接触電圧の大小関係で決めると良い。例えば、図18の構造においてメンブレン接触電圧が突起接触電圧よりも低い場合、剛性部材803と突起804の数を増やすべきである。その場合の配置場所は、メンブレン接触電圧でメンブレンが接触する箇所が良い。
 図19は、本実施例6の超音波トランスデューサを示す上面図である。この超音波トランスデューサは円形状の突起904と八角形状のメンブレン910とメンブレン910の上面に円形状の剛性部材903または、高ヤング率部材905を含んでいる。剛性部材903と突起904は、メンブレン910の中央とその周囲に配置されている。剛性部材903と突起904は上面から見て一部が重なるように配置されている。八角形状のメンブレン910は一例であり、三角形状、五角形状、七角形状など、他の多角形状でもよい。また、円形状の突起904は一例であって、三角形状、五角形状、七角形状など、他の多角形状でもよい。また、剛性部材903または、高ヤング率部材905においても、円形状は一例であり、三角形状、五角形状、七角形状など、他の多角形状でもよい。剛性部材903と突起904の個数と配置については、突起接触電圧とメンブレン接触電圧の大小関係で決めると良い。例えば、図19の構造においてメンブレン接触電圧が突起接触電圧よりも低い場合、剛性部材903と突起904の数を増やすべきである。その場合の配置場所は、メンブレン接触電圧でメンブレンが接触する箇所が良い。
 図20を参照しながら、本発明の超音波トランスデューサを備えた超音波診断装置の構成とその動作について説明する。超音波診断装置1001は、超音波探触子1002、送受分離部1003、送信部1004、バイアス部1006、受信部1008、整相加算部1010、画像処理部1012、表示部1014、制御部1016、操作部1018から構成される。
 超音波探触子1002は、被検体に接触させて被検体との間で超音波を送受波する装置である。超音波探触子1002から超音波が被検体に送波され、被検体からの反射エコー信号が超音波探触子1002により受波される。実施例1~6のいずれかの超音波トランスデューサは、超音波探触子1002の内部に収納され、後述する送受分離部1003と電気的に接続される。送信部1004及びバイアス部1006は、超音波探触子1002に駆動信号を供給する装置である。受信部1008は、超音波探触子1002から出力される反射エコー信号を受信する装置である。受信部1008は、さらに、受信した反射エコー信号に対してアナログデジタル変換等の処理を行う。送受分離部1003は、送信時には送信部1004から超音波探触子1002へ駆動信号を渡し、受信時には超音波探触子1002から受信部1008へ受信信号を渡すよう送信と受信とを切換、分離するものである。整相加算部1010は、受信された反射エコー信号を整相加算する装置である。画像処理部1010は、整相加算された反射エコー信号に基づいて診断画像(例えば、断層像や血流像)を構成する装置である。表示部1014は、画像処理された診断画像を表示する表示装置である。制御部1016は、上述した各構成要素を制御する装置である。操作部1018は、制御部1016に指示を与える装置である。操作部1018は、例えば、トラックボールやキーボードやマウス等の入力機器で構成される。
 本発明の超音波トランスデューサは、超音波探触子を用いる超音波診断装置、構造内部の欠陥検査装置、物体位置検知装置、流速計測装置等に利用することができる。そして、高送信音圧と高受信感度を実現することができ、また、長期間駆動における信頼性を向上させることができる。
201、301、501、701、801、901 下部電極
202、302、502、702 空洞部
207、208、209、309、507、508、509、707、708、709 
絶縁膜
205、305、505、705 上部電極
210、310、510、710、810、910 メンブレン
213、313、513、713 空洞下面
203、303、503、803、903 剛性部材
204、304、504、704、804、904 突起
206、306、506、706 基板
211、311、711 突起下面
212、312、512、712 メンブレン下面
514、714 突起上面
703、805、905 高ヤング率部材
1001 超音波診断装置
1002 超音波探触子
1003 送受分離部
1004 送信部
1006 バイアス部
1008 受信部
1010 整相加算部
1012 画像処理部
1014 表示部
1016 制御部
1018 操作部。

Claims (17)

  1.  下部電極と、前記下部電極上に形成された、絶縁膜で囲まれた空洞部と、前記空洞部上に形成された上部電極と、前記空洞部内に形成された複数の絶縁膜の突起を備えた超音波トランスデューサにおいて、
     前記空洞部上に形成された複数の剛性部材を備え、
     前記下部電極と前記上部電極のうちの少なくとも一方の電極は、前記絶縁膜の突起と重なる部分を刳り貫くことにより、前記絶縁膜の突起と上面から見て重ならない位置に配置され、
     前記剛性部材のそれぞれは前記絶縁膜の突起と上面から見て重なる領域が存在するように配置されていることを特徴とする超音波トランスデューサ。
  2.  請求項1記載の超音波トランスデューサにおいて、
     前記剛性部材は梁部材であり、
    前記絶縁膜と前記上部電極と前記梁部材で構成されるメンブレンは、前記梁部材が配置されている部分の厚さが、梁部材が配置されてない部分と比べて梁部材の厚さ分厚いことを特徴とする超音波トランスデューサ。
  3.  請求項2記載の超音波トランスデューサにおいて、
    前記上部電極および前記空洞部を覆うように形成された上部絶縁膜を備えており、前記梁部材は前記上部絶縁膜上に配置されていることを特徴とする超音波トランスデューサ。
  4.  請求項2記載の超音波トランスデューサにおいて、
    前記上部電極および前記空洞部を覆うように形成された上部絶縁膜を備えており、前記梁部材は前記上部絶縁膜の内部に埋め込まれていることを特徴とする超音波トランスデューサ。
  5.  請求項1記載の超音波トランスデューサにおいて、
     前記剛性部材は、前記絶縁膜と前記上部電極と前記梁部材で構成されるメンブレンよりも高ヤング率の部材であることを特徴とする超音波トランスデューサ。
  6.  請求項5記載の超音波トランスデューサにおいて、
    前記上部電極および前記空洞部を覆うように形成された上部絶縁膜を備えており、前記高ヤング率の部材は前記上部絶縁膜の内部に埋め込まれていることを特徴とする超音波トランスデューサ。
  7.  請求項6記載の超音波トランスデューサにおいて、
    前記高ヤング率の部材は、タングステンなどの金属材料やアルミナなどのセラミック材料を埋め込んで形成したことを特徴とする超音波トランスデューサ。
  8.  請求項6記載の超音波トランスデューサにおいて、
    前記高ヤング率の部材は、イオンの打ち込みにより前記上部絶縁膜を改質して形成したことを特徴とする超音波トランスデューサ。
  9.  請求項1記載の超音波トランスデューサにおいて、
     前記剛性部材の中心は前記絶縁膜の突起の中心と上面から見て一致するように配置されていることを特徴とする超音波トランスデューサ。
  10.  請求項1記載の超音波トランスデューサにおいて、
     一つの前記剛性部材に対して複数の前記絶縁膜の突起が重なるように配置されていることを特徴とする超音波トランスデューサ。
  11.  請求項1記載の超音波トランスデューサにおいて、
    前記絶縁膜の突起が前記空洞部の上面に配置されていることを特徴とする超音波トランスデューサ。
  12.  請求項1記載の超音波トランスデューサにおいて、
    前記前記絶縁膜の突起が前記空洞部の下面に配置されていることを特徴とする超音波トランスデューサ。
  13.  請求項1記載の超音波トランスデューサにおいて、
    前記複数の絶縁膜の突起と前記複数の剛性部材が上面から見て等間隔に配置されていることを特徴とする超音波トランスデューサ。
  14. 請求項1記載の超音波トランスデューサにおいて、
    前記空洞部が上面から見て、円形状または多角形状であることを特徴とする超音波トランスデューサ。
  15.  請求項1記載の超音波トランスデューサにおいて、
    前記絶縁物の突起が上面から見て、円形状または多角形状であることを特徴とする超音波トランスデューサ。
  16.  請求項1記載の超音波トランスデューサにおいて、
    前記剛性部材が上面から見て、円形状、十字型形状または多角形状であることを特徴とする超音波トランスデューサ。
  17.  請求項1乃至請求項16の何れか一つに記載の超音波トランスデューサとバイアス部を備えていることを特徴とする超音波診断装置。
PCT/JP2011/073582 2010-10-15 2011-10-13 超音波トランスデューサおよびそれを用いた超音波診断装置 WO2012050172A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/879,439 US9941817B2 (en) 2010-10-15 2011-10-13 Ultrasonic transducer and ultrasonic diagnostic equipment using the same
JP2012538715A JP5486689B2 (ja) 2010-10-15 2011-10-13 超音波トランスデューサおよびそれを用いた超音波診断装置
CN201180048454.0A CN103155597B (zh) 2010-10-15 2011-10-13 超声波转换器以及使用其的超声波诊断装置
KR1020137009318A KR101492033B1 (ko) 2010-10-15 2011-10-13 초음파 트랜스듀서 및 그것을 사용한 초음파 진단 장치
EP11832603.2A EP2629549B1 (en) 2010-10-15 2011-10-13 Ultrasonic transducer and ultrasonic diagnostic equipment using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010232618 2010-10-15
JP2010-232618 2010-10-15

Publications (1)

Publication Number Publication Date
WO2012050172A1 true WO2012050172A1 (ja) 2012-04-19

Family

ID=45938393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073582 WO2012050172A1 (ja) 2010-10-15 2011-10-13 超音波トランスデューサおよびそれを用いた超音波診断装置

Country Status (6)

Country Link
US (1) US9941817B2 (ja)
EP (1) EP2629549B1 (ja)
JP (1) JP5486689B2 (ja)
KR (1) KR101492033B1 (ja)
CN (1) CN103155597B (ja)
WO (1) WO2012050172A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014000122A (ja) * 2012-06-15 2014-01-09 Seiko Epson Corp 超音波プローブおよび超音波検査装置
WO2017081806A1 (ja) * 2015-11-13 2017-05-18 株式会社日立製作所 Mems素子およびその製造方法
JP2019075646A (ja) * 2017-10-13 2019-05-16 株式会社日立製作所 超音波送受信装置および超音波トランスデュ−サ

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102440005B (zh) * 2009-05-25 2014-09-24 株式会社日立医疗器械 超声波换能器及利用该超声波换能器的超声波诊断装置
JP2015023994A (ja) * 2013-07-26 2015-02-05 セイコーエプソン株式会社 超音波測定装置、超音波ヘッドユニット、超音波プローブ及び超音波画像装置
EP3097180B1 (en) * 2014-01-21 2021-10-13 Promedica Bioelectronics S.r.l. Device for ultrasound tests
KR20160021559A (ko) * 2014-08-18 2016-02-26 삼성전자주식회사 나노필라 구조를 가진 정전용량 미세가공 초음파 변환기 및 그 제조방법
JP2016101417A (ja) 2014-11-28 2016-06-02 キヤノン株式会社 静電容量型音響波トランスデューサ及びこれを備えた被検体情報取得装置
JP6613628B2 (ja) * 2015-05-28 2019-12-04 セイコーエプソン株式会社 圧電デバイスおよびプローブ並びに電子機器および超音波画像装置
CN107710787B (zh) * 2015-05-29 2019-12-06 株式会社日立制作所 超声波换能器及超声波检查装置
JP6562322B2 (ja) * 2015-10-27 2019-08-21 株式会社村田製作所 圧電デバイス、及び圧電デバイスの製造方法
US10006888B2 (en) * 2016-04-21 2018-06-26 The Boeing Company MEMS transducers in a phased array coupled to a flexible substrate using carbon nanotubes for conformal ultrasound scanning
JP6763731B2 (ja) * 2016-09-28 2020-09-30 株式会社日立製作所 超音波トランスデューサ、その製造方法および超音波撮像装置
US9813831B1 (en) 2016-11-29 2017-11-07 Cirrus Logic, Inc. Microelectromechanical systems microphone with electrostatic force feedback to measure sound pressure
US9900707B1 (en) * 2016-11-29 2018-02-20 Cirrus Logic, Inc. Biasing of electromechanical systems microphone with alternating-current voltage waveform
CA3065214A1 (en) * 2017-06-20 2018-12-27 Butterfly Network, Inc. Analog to digital signal conversion in ultrasound device
CN107957273B (zh) * 2018-01-16 2024-05-03 北京先通康桥医药科技有限公司 具有触压和超声功能的传感器
JP2019212992A (ja) 2018-05-31 2019-12-12 キヤノン株式会社 静電容量型トランスデューサ、及びその製造方法
KR102253210B1 (ko) * 2020-08-06 2021-05-18 한국과학기술원 전하 포획층을 가지는 정전용량형 미세가공 초음파 트랜스듀서 및 이의 제조 방법
TWI800437B (zh) * 2022-08-02 2023-04-21 友達光電股份有限公司 超音波換能裝置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191180A (ja) * 2000-10-16 2002-07-05 Xerox Corp 静電駆動素子の劣化を防ぐ方法および装置
US20050228285A1 (en) 2004-04-01 2005-10-13 Yongli Huang Capacitive ultrasonic transducers with isolation posts
JP2006020313A (ja) * 2004-06-30 2006-01-19 General Electric Co <Ge> 高感度容量性微細加工超音波トランスデューサ
JP2006516368A (ja) * 2002-08-08 2006-06-29 ザ・ボード・オブ・トラスティーズ・オブ・ザ・レランド・スタンフォード・ジュニア・ユニバーシティ マイクロ機械加工された超音波トランスデューサ及び製造方法
JP2007046180A (ja) 2005-08-08 2007-02-22 Kurita Water Ind Ltd 製紙方法
JP2007074263A (ja) 2005-09-06 2007-03-22 Hitachi Ltd 超音波トランスデューサおよびその製造方法
WO2007046180A1 (ja) * 2005-10-18 2007-04-26 Hitachi, Ltd. 超音波トランスデューサ、超音波探触子および超音波撮像装置
JP2009100460A (ja) * 2007-09-25 2009-05-07 Canon Inc 電気機械変換素子及びその製造方法
US20090322181A1 (en) 2008-06-19 2009-12-31 Hitachi, Ltd. Ultrasonic transducer and method of manufacturing the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5774423A (en) * 1995-12-15 1998-06-30 Innovative Transducers Inc. Acoustic sensor and array thereof
JPH11169365A (ja) * 1997-11-28 1999-06-29 Hitachi Medical Corp 超音波診断装置
US6974417B2 (en) * 2001-10-05 2005-12-13 Queen's University At Kingston Ultrasound transducer array
CN101238754A (zh) * 2005-10-18 2008-08-06 株式会社日立制作所 超声波换能器、超声波探头以及超声波摄像装置
JP2008099036A (ja) 2006-10-12 2008-04-24 Olympus Medical Systems Corp 超音波トランスデューサ、超音波探触子及び超音波診断装置
WO2009041675A1 (en) * 2007-09-25 2009-04-02 Canon Kabushiki Kaisha Electrostatic transducer and manufacturing method therefor
WO2009073562A1 (en) * 2007-12-03 2009-06-11 Kolo Technologies, Inc. Dual-mode operation micromachined ultrasonic transducer
WO2009088845A1 (en) * 2007-12-31 2009-07-16 Brigham And Women's Hospital, Inc. System and method for accelerated focused ultrasound imaging
US8467559B2 (en) * 2008-02-20 2013-06-18 Shandong Gettop Acoustic Co., Ltd. Silicon microphone without dedicated backplate
EP2346269B1 (en) * 2008-11-04 2019-02-13 Olympus Corporation Acoustic oscillator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191180A (ja) * 2000-10-16 2002-07-05 Xerox Corp 静電駆動素子の劣化を防ぐ方法および装置
JP2006516368A (ja) * 2002-08-08 2006-06-29 ザ・ボード・オブ・トラスティーズ・オブ・ザ・レランド・スタンフォード・ジュニア・ユニバーシティ マイクロ機械加工された超音波トランスデューサ及び製造方法
US20050228285A1 (en) 2004-04-01 2005-10-13 Yongli Huang Capacitive ultrasonic transducers with isolation posts
JP2006020313A (ja) * 2004-06-30 2006-01-19 General Electric Co <Ge> 高感度容量性微細加工超音波トランスデューサ
JP2007046180A (ja) 2005-08-08 2007-02-22 Kurita Water Ind Ltd 製紙方法
JP2007074263A (ja) 2005-09-06 2007-03-22 Hitachi Ltd 超音波トランスデューサおよびその製造方法
WO2007046180A1 (ja) * 2005-10-18 2007-04-26 Hitachi, Ltd. 超音波トランスデューサ、超音波探触子および超音波撮像装置
JP2009100460A (ja) * 2007-09-25 2009-05-07 Canon Inc 電気機械変換素子及びその製造方法
US20090322181A1 (en) 2008-06-19 2009-12-31 Hitachi, Ltd. Ultrasonic transducer and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014000122A (ja) * 2012-06-15 2014-01-09 Seiko Epson Corp 超音波プローブおよび超音波検査装置
WO2017081806A1 (ja) * 2015-11-13 2017-05-18 株式会社日立製作所 Mems素子およびその製造方法
JP2019075646A (ja) * 2017-10-13 2019-05-16 株式会社日立製作所 超音波送受信装置および超音波トランスデュ−サ

Also Published As

Publication number Publication date
EP2629549B1 (en) 2019-01-23
CN103155597B (zh) 2016-06-08
US20130241345A1 (en) 2013-09-19
EP2629549A1 (en) 2013-08-21
KR101492033B1 (ko) 2015-02-10
EP2629549A4 (en) 2017-05-17
CN103155597A (zh) 2013-06-12
JPWO2012050172A1 (ja) 2014-02-24
KR20130080040A (ko) 2013-07-11
JP5486689B2 (ja) 2014-05-07
US9941817B2 (en) 2018-04-10

Similar Documents

Publication Publication Date Title
JP5486689B2 (ja) 超音波トランスデューサおよびそれを用いた超音波診断装置
US8687466B2 (en) Cell, element of ultrasonic transducer, ultrasonic transducer including the same, and method of manufacturing cell of ultrasonic transducer
US10128777B2 (en) Pre-collapsed capacitive micro-machined transducer cell with annular-shaped collapsed region
US7667374B2 (en) Ultrasonic transducer, ultrasonic probe and method for fabricating the same
US9085012B2 (en) Ultrasonic transducer and ultrasonic diagnostic apparatus provided with same
US8617078B2 (en) Ultrasonic transducer and ultrasonic diagnostic device using same
US9925561B2 (en) Capacitive micromachined ultrasonic transducer with multiple deflectable membranes
KR101761819B1 (ko) 초음파 변환기 및 그 제조 방법
US8299685B2 (en) High power ultrasonic transducer
JP2008283618A (ja) 超音波送受信デバイス及びそれを用いた超音波探触子
CN108886660B (zh) 超声波换能器、超声波换能器的制造方法以及超声波拍摄装置
JP6636516B2 (ja) 超音波トランスデューサ素子、及び超音波撮像装置
WO2018128072A1 (ja) 超音波トランスデューサおよび超音波撮像装置
US11376628B2 (en) Capacitive device and piezoelectric device
JP2019165307A (ja) 超音波センサ
JP2009071395A (ja) 超音波受信素子及びこれを用いた超音波トランスデューサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180048454.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832603

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012538715

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137009318

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011832603

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13879439

Country of ref document: US