WO2012046587A1 - Laser cutter and slitter with same - Google Patents

Laser cutter and slitter with same Download PDF

Info

Publication number
WO2012046587A1
WO2012046587A1 PCT/JP2011/071924 JP2011071924W WO2012046587A1 WO 2012046587 A1 WO2012046587 A1 WO 2012046587A1 JP 2011071924 W JP2011071924 W JP 2011071924W WO 2012046587 A1 WO2012046587 A1 WO 2012046587A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing film
laser
laser beam
oscillator
film
Prior art date
Application number
PCT/JP2011/071924
Other languages
French (fr)
Japanese (ja)
Inventor
幸治 植田
和範 岸▲崎▼
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020137011196A priority Critical patent/KR20130106847A/en
Priority to CN201180048178.8A priority patent/CN103153526B/en
Priority to KR1020177010393A priority patent/KR20170045376A/en
Publication of WO2012046587A1 publication Critical patent/WO2012046587A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing

Definitions

  • the present invention relates to a laser cutting device and a slitter machine equipped with the same.
  • Polarizing films are widely used for liquid crystal panels.
  • a half cut of a polarizing film that cuts only the polarizing film in a laminate including the polarizing film, or cutting of an end portion of the polarizing film is performed.
  • the polarizing film is cut with a blade, foreign matter such as film residue is hardly generated from the object to be cut. When this foreign material is mixed in the polarizing film, the yield is lowered.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2008-302376 (Released on Dec. 18, 2008)” Japanese Patent Publication “Japanese Unexamined Patent Application Publication No. 2009-22978 (published on Feb. 5, 2009)”
  • the conventional method for cutting a polarizing film using a laser has a problem that a problem occurs when the relatively moving polarizing film is cut.
  • the laser output is unstable, so that proper cutting cannot be performed.
  • the constant speed is a large speed of about 50 m / s, for example. Therefore, the polarizing film is cut even when accelerating and decelerating around a constant speed from the viewpoint of increasing the yield.
  • the energy per unit time of the portion irradiated with the laser decreases. Therefore, it is necessary to increase the laser output necessary for cutting.
  • the energy per unit time of the portion irradiated with the laser increases. As a result, there is a risk that quality will deteriorate due to excessive heat acting on the cut surface of the polarizing film. Therefore, it is necessary to suppress the output of the laser.
  • Patent Document 2 discloses a laser processing method in which the relative movement speed between the workpiece and the laser light is increased and the number of times of laser light irradiation is reduced. According to this technique, it is possible to avoid the etching depth from becoming excessively deep due to the increase in the power of the laser beam caused by the unstable output of the laser oscillator. However, in this technique, it is necessary to increase the relative moving speed between the workpiece and the laser beam, and there is a problem that it is difficult to apply when the relative speed is low.
  • the present invention has been made in view of the above-mentioned conventional problems, and its purpose is to provide a laser cutting device in which the output of the laser light does not become unstable and the quality of the cut surface of the polarizing film does not deteriorate. It is to provide.
  • the laser cutting device of the present invention is a laser cutting device that irradiates and cuts a polarizing film by irradiating a laser beam.
  • a bend mirror that reflects the laser light to the polarizing film, and a condensing lens that is disposed between the polarizing film and the bend mirror, and condenses the laser light.
  • a beam splitter for transmitting and reflecting the laser light is provided between them.
  • the laser beam is split into transmitted light and reflected light by the beam splitter, and the polarizing film is cut by the transmitted light. Therefore, even if the output of the laser beam oscillator is large, the energy of the laser beam irradiated on the polarizing film can be reduced. As a result, even when the relative speed between the laser cutting device and the polarizing film is small, the laser light oscillator can be used at a high output. That is, it is possible to obtain output stability, which is an advantage when the high output side of the laser beam oscillator is used. On the other hand, since the energy applied to the polarizing film by the beam splitter is reduced, it is possible to suppress degradation of the quality of the cut surface, which is a problem when the high output side of the laser oscillator is used.
  • the laser cutting device of the present invention includes a laser light oscillator that oscillates laser light, a bend mirror that reflects the laser light oscillated from the laser light oscillator to a polarizing film, a polarizing film, and a bend mirror. And a condensing lens for condensing the laser light, and a beam splitter for transmitting and reflecting the laser light between the bend mirror and the condensing lens.
  • the laser light oscillator can be used at a high output. That is, it is possible to obtain output stability, which is an advantage when the high output side of the laser beam oscillator is used.
  • the energy applied to the polarizing film by the beam splitter is reduced, it is possible to suppress the deterioration of the quality of the cut surface, which is a problem when the high output side of the laser oscillator is used. Play.
  • FIGS. 1 to 4 An embodiment of the present invention will be described with reference to FIGS. 1 to 4 as follows.
  • FIG. 1 is a cross-sectional view showing a laser cutting device 10 according to the present invention.
  • the laser cutting device 10 includes a laser light oscillator 1, a beam expander 2, a bend mirror 3, a beam splitter 4, and a condenser lens 5.
  • the laser beam oscillator 1 is a member that oscillates laser beam and is not particularly limited.
  • a CO 2 laser carbon dioxide laser
  • UV laser ultraviolet laser
  • semiconductor laser semiconductor laser
  • YAG laser excimer laser
  • a CO 2 laser having high output and suitable for cutting a polarizing film is preferable.
  • the specific output of the laser oscillator 1 is desirably adjusted as appropriate according to the thickness of the polarizing film 6, the conveyance speed of the polarizing film 6, and the ratio of transmission and reflection by a beam splitter 4 described later. From these viewpoints, the output of the laser beam oscillator 1 is preferably 30 W or more and 400 W or less. In addition, when the output of the laser beam oscillator 1 is low, the output becomes unstable. Specifically, when the output is less than 30 W, the output tends to be unstable.
  • the frequency of the laser light to be irradiated is appropriately changed depending on the output of the laser light oscillator 1, the thickness of the polarizing film 6, the transport speed of the polarizing film, etc., but can generally be 5 kHz or more and 100 kHz or less.
  • the laser cutting device 10 includes a beam expander 2 as a preferred form.
  • the beam expander 2 is a member that spreads laser light into a parallel light beam, and a known beam expander may be used. With the beam expander 2, the diameter of the laser beam L1 can be expanded to about 2 to 10 times, for example, to obtain the laser beam L2. When the polarizing film 6 is irradiated with the laser light L6, the laser light L6 is easily focused by increasing the diameter of the laser light.
  • the bend mirror 3 is a member that reflects the laser light oscillated from the laser light oscillator 1 to the polarizing film 6.
  • one bend mirror 3 is provided, but it is sufficient if the laser beam L2 can be reflected as the laser beam L3 to the polarizing film 6, and a plurality of bend mirrors 3 may be provided.
  • FIG. 2 is a graph showing the relationship between the time t when the polarizing film is conveyed and the output w of the laser beam oscillator.
  • the speed of the polarizing film is small in the acceleration region and the deceleration region, the energy per unit time to the polarizing film increases under the same irradiation conditions. Therefore, it is necessary to reduce the output of the laser beam oscillator. For this reason, in a part of the acceleration region and the deceleration region, the output of the laser beam oscillator is low, and the output of the laser beam oscillator becomes unstable (unstable region). As a result, uncutting may occur in the acceleration region and the deceleration region due to the unstable output of the laser oscillator. Due to the above limitations, a general laser cutting device cannot increase the output of the laser beam oscillator in the acceleration region and the deceleration region.
  • a beam splitter 4 is provided between the bend mirror 3 and the condenser lens 5.
  • the beam splitter 4 is a member that transmits and reflects the laser beam L3, and a known beam splitter can be used.
  • the laser beam L3 is branched by the beam splitter 4 into a laser beam L4 that is transmitted light and a laser beam L5 that is reflected light.
  • the ratio of transmitting and reflecting the laser light from the beam splitter 4 is not particularly limited, but may be appropriately adjusted according to the output of the laser light oscillator 1, the thickness of the polarizing film 6, the conveying speed of the polarizing film 6, and the like. desirable.
  • the ratio of transmitting and reflecting the laser beam of the beam splitter is preferably 3: 7 to 7: 3. If it is the said setting range, the laser cutting device 10 can be used conveniently for the cutting
  • the laser beam L3 is branched into transmitted light and reflected light by the beam splitter 4, and the polarizing film 6 is cut by the transmitted light. Therefore, according to the laser cutting device 10, even if the output of the laser beam oscillator 1 is large, the energy of the laser beam L6 irradiated to the polarizing film 6 can be reduced. That is, even in the acceleration region and the deceleration region, the laser beam oscillator 1 can be used at a high output, and the output stability, which is an advantage when the high output side of the laser beam oscillator 1 is used, is improved. Obtainable. On the other hand, since the energy applied to the polarizing film by the beam splitter 4 is reduced, it is possible to suppress degradation of quality at the cut surface, which is a problem when the high output side of the laser light oscillator 1 is used. .
  • the laser beam L5 is condensed on the polarizing film 6 by the condenser lens 5.
  • the condensing lens 5 is not particularly limited, and a spherical lens, an aspheric lens, or the like may be used. Since the cutting width is determined by the condensing diameter of the laser light L6, when the polarizing film is cut, the condensing diameter of the laser light L6 is preferably 5 ⁇ m or more and 500 ⁇ m or less, preferably 10 ⁇ m or more and 400 ⁇ m or less. It is more preferable that
  • a known polarizing film may be used as the polarizing film 6 to be cut by the laser cutting device 10.
  • a long polarizing film is usually used, but a short or plate-shaped polarizing film may be used.
  • the long refers to the length of the polarizing film 6 in the cutting direction of 10 m or more
  • the short refers to 2 m or more and less than 10 m
  • the plate shape refers to 10 cm or more and less than 2 m.
  • a TAC (triacetyl cellulose) film, a COP (cycloolefin polymer) film, or the like is bonded as a protective film on both surfaces of the polarizer film, and is opposite to the laser cutting device 10.
  • the protective film is laminated on the TAC film via an adhesive.
  • examples of the polarizer film located in the center include a film in which a polyvinyl alcohol film is dyed with iodine or the like, and a protective film such as TAC is bonded to the stretched film or the like. it can.
  • polyvinyl alcohol film in place of the polyvinyl alcohol film, a partially formalized polyvinyl alcohol film, an ethylene / vinyl acetate copolymer partially saponified film, a hydrophilic polymer film such as a cellulose film, etc.
  • Polyene-oriented films such as vinyl chloride dehydrochlorinated products can also be used.
  • the total thickness including the polarizing film 6 and the protective film is not particularly limited, but may be 100 ⁇ m or more and 500 ⁇ m or less.
  • the thickness of the polarizer film among the polarizing films 6 is generally 10 ⁇ m or more and 50 ⁇ m or less.
  • other layers may be included within the practical range of the polarizing film 6.
  • the protective film a polyester film, a polyethylene terephthalate film, or the like can be used.
  • the thickness and width of the protective film are not particularly limited, but from the viewpoint of being used as a protective film for a polarizing film, for example, a thickness of 5 ⁇ m or more and 50 ⁇ m or less, a width of 200 mm or more and 1500 mm or less.
  • a protective film can be preferably used.
  • the cutting of the polarizing film 6 by the laser cutting device 10 is performed while moving the laser cutting device 10 or the polarizing film 6. Thereby, a cut surface can be formed in the polarizing film 6. Specifically, it can cut
  • the laser cutting apparatus 10 is fixed and it cut
  • cutting means “cutting at least a part of the polarizing film” and includes a process of forming a predetermined depth in the polarizing film. For example, cutting of the end portion of the polarizing film, half cutting, marking processing, etc. are also included in the act of “cutting”.
  • FIG. 3 is a sectional view showing a slitter machine 20 according to the present invention.
  • the slitter machine 20 includes a laser cutting device 10, an unwinding unit 11, transport rolls 12, 12a, 12b, 12c, 12d, 12e, and 12f (hereinafter abbreviated as “12 to 12f”), a length measuring device 14, and a winding unit 13a.
  • 12 to 12f transport rolls 12, 12a, 12b, 12c, 12d, 12e, and 12f
  • 12f transport rolls 12, 12a, 12b, 12c, 12d, 12e, and 12f
  • 12f transport rolls 12, 12a, 12b, 12c, 12d, 12e, and 12f
  • 12f transport rolls 12, 12a, 12b, 12c, 12d, 12e, and 12f
  • 12f transport rolls 12, 12a, 12b, 12c, 12d, 12e, and 12f
  • -It has 13b.
  • the unwinding unit 11 holds the long polarizing film 6 and unwinds it to the transport roll 12. It does not specifically limit as the unwinding part 11, A well-known unwinding part can be used.
  • a cylindrical shaft is used as the unwinding unit 11, and a paper tube or a plastic tube around which the polarizing film 6 is wound can be held.
  • a rotating device that rotates the unwinding portion 11 is provided on the side surface of the unwinding portion 11, and the unwinding portion 11 is rotated by the rotating device to unwind the polarizing film 6 in the transport direction.
  • the tension applied to the polarizing film 6 and the conveying speed of the polarizing film can be set by a rotating device.
  • the height of the unwinding part 11 and the position in the horizontal direction of the unwinding part 11 can be adjusted suitably.
  • the unwinding part 11 is installed in one place, it may be installed in two places like the winding parts 13a and 13b. Thereby, before all the polarizing films 6 of one unwinding part 11 are unwound, it can connect with the polarizing film of another unwinding part, and the time which replace
  • transport rolls 12 to 12 f are arranged along the transport path of the polarizing film 6. What is necessary is just to change suitably the arrangement
  • FIG. The said conveyance roll is not specifically limited, What is necessary is just to use a well-known member. Further, the diameter and width of the transport roll are not limited. Usually, the width of the transport roll is about 1.5 m to 2.5 m. Moreover, the slitter machine 20 may be provided with a touch roll that presses the polarizing film 6 against the transport roll.
  • a laser cutting device 10 is provided between the transport roll 12b and the transport roll 12c.
  • the laser cutting device 10 should just be provided between the unwinding part 11 and the winding part 13a.
  • the structure of the laser cutting device 10 is as described above.
  • the winding sections 13a and 13b are members that wind the polarizing film 6 that has been cut. Similar to the unwinding section 11, the side surfaces of the winding sections 13a and 13b are provided with a rotating device (not shown) for rotating the winding sections 13a and 13b, and the winding sections 13a and 13b are rotated by the rotating apparatus. Thus, the polarizing film 6 is wound in the transport direction.
  • the tension applied to the polarizing film 6 and the conveying speed of the polarizing film can be set by a rotating device.
  • the height of the winding parts 13a and 13b and the position in the horizontal direction can be appropriately adjusted.
  • the polarizing film 6 is conveyed by the unwinding part 11 and the winding part 13a.
  • the conveyance speed of a polarizing film is not specifically limited, As an example, it can be 1 m / s or more and 100 m / s or less.
  • FIG. 4 is a plan view showing the cutting process of the polarizing film 6.
  • slits S are formed in the polarizing film 6 by the laser cutting device 10 as the polarizing film 6 is conveyed.
  • the laser cutting device 10 is installed so as to cut the periphery of the end portion of the polarizing film 6. This is a case where the end of the polarizing film 6 is slit.
  • the installation position of the laser cutting device 10 is not particularly limited as long as the polarizing film 6 can be irradiated with laser light. For example, if the laser cutting device 10 is installed so that the central portion of the polarizing film 6 is irradiated with laser light, the polarizing film 6 can be divided into two.
  • the slitter machine 20 includes the laser cutting device 10, even when the polarizing film 6 is accelerated or decelerated, i.e., when the conveying speed of the polarizing film is low, the laser light oscillator 1 has a high output. Can be used. As a result, it is possible to obtain output stability, which is an advantage when the high output side of the laser beam oscillator 1 is used. On the other hand, since the energy irradiated to the polarizing film by the beam splitter 4 is reduced, the deterioration of the quality at the cut surface of the polarizing film, which is a problem when the high output side of the laser light oscillator 1 is used, is suppressed. Can do.
  • the present invention includes the following forms.
  • the output of the laser beam oscillator is preferably 30 W or more and 400 W or less, and the ratio of transmitting and reflecting the laser beam of the beam splitter is preferably 3: 7 to 7: 3. .
  • the output of the laser beam oscillator is 30 W or more and 400 W or less, if the ratio of transmitting and reflecting the laser beam of the beam splitter is within the above range, it can be suitably used for cutting a polarizing film.
  • the laser beam oscillator is preferably a CO 2 laser beam oscillator.
  • the CO 2 laser light oscillator has a high output and is suitable for cutting a polarizing film.
  • the slitter machine of this invention is equipped with the unwinding part which winds up a polarizing film, and the winding-up part which winds up a polarizing film,
  • the said laser cutting device is provided between the said unwinding part and winding-up part. Is.
  • the slitter machine according to the present invention includes a laser cutting device, the laser light oscillator can be used at a high output even when the conveyance speed of the polarizing film is low. As a result, it is possible to obtain output stability, which is an advantage when the high output side of the laser beam oscillator is used. On the other hand, since the energy applied to the polarizing film by the beam splitter is reduced, it is possible to suppress deterioration in quality at the cut surface of the polarizing film, which is a problem when the high output side of the laser light oscillator is used. .
  • the polarizing film was cut using the slitter machine 20 shown in FIG.
  • the polarizing film 6 has a PET film (38 ⁇ m), an adhesive layer (22 ⁇ m: the adhesive layer is peeled off together with the protective film), a TAC film (80 ⁇ m), polyvinyl, as a protective film, in the order from the condensing lens 5 of the laser cutting device 10.
  • An alcohol film (30 ⁇ m) and a COP (cycloolefin polymer) film (70 ⁇ m) are laminated, and the COP film has a configuration in which a PET film (38 ⁇ m) is laminated as a separate film via an adhesive layer. .
  • the polarizing film 6 was accelerated to 50 m / s after 5 seconds by the rotating device of the unwinding unit 11 and the winding unit 13a from the state where the polarizing film 6 was stationary. While accelerating to 50 m / s, the polarizing film 6 was cut under the following conditions.
  • Laser oscillator CO 2 laser Output of laser oscillator: 20 W or more, 280 W or less Laser wavelength: 9.4 ⁇ m Laser frequency: 20 kHz Condensing diameter of L6: 54 ⁇ m Ratio of transmitted light and reflected light: 5: 5 [Comparative Example 1]
  • the polarizing film 6 was cut using a comparative cutting device in which the beam splitter 4 was removed from the laser cutting device 10 of the slitter machine 20.
  • the configuration of the polarizing film 6 is the same as in Example 1. Similar to Example 1, the polarizing film 6 was accelerated to 50 m / s.
  • the cutting conditions are as follows.
  • FIG. 5A is the polarizing film 6 of Example 1
  • FIG. 5B is the polarizing film 6 of Comparative Example 1.
  • the polarizing film 6 of Comparative Example 1 is deformed in its cross section due to thermal expansion. It was also observed that the uppermost PET film had lumps due to thermal expansion.
  • the cut surface is not deformed.
  • the slitter machine (laser cutting device) of the present invention quality deterioration at the cut surface of the polarizing film can be suppressed even at a conveyance speed of 50 m / s, and the superiority of the present invention is apparent. Is shown in
  • a test method peels a separate film from the cut
  • the polarizing film 6 after cutting of Example 1 and Comparative Example 1 was tested, no air bubbles were observed after being attached to the polarizing film 6 of Example 1, but the polarizing film 6 of Comparative Example 1 was observed. In the sample, bubbles were observed after being attached. This is a result resulting from the deformation state of the fourth COP film in the polarizing film 6. This result also confirms the superiority of the present invention.
  • the laser cutting device according to the present invention can be used for suitably cutting a polarizing film. Therefore, the present invention can be widely used in the field where a polarizing film is used.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Polarising Elements (AREA)

Abstract

This laser cutter (10) is a device for cutting a polarizing film (6) by applying a laser beam (L6) thereto. The laser cutter (10) is provided with: a laser beam oscillator (1) for oscillating a laser beam (L1); a bend mirror (3) for reflecting the laser beam, which is oscillated by the laser beam oscillator (1), to the polarizing film (6); and a condenser lens (5) disposed between the polarizing film (6) and the bend mirror (3) and condensing a laser beam (L6). A beam splitter (4) through which the laser beam (L3) is transmitted and by which the laser beam (L3) is reflected is provided between the bend mirror (3) and the condenser lens (5).

Description

レーザー切断装置およびこれを備えるスリッター機Laser cutting apparatus and slitter machine equipped with the same
 本発明は、レーザー切断装置およびこれを備えるスリッター機に関するものである。 The present invention relates to a laser cutting device and a slitter machine equipped with the same.
 偏光フィルムは液晶パネル等に広く用いられている。従来、偏光フィルムの加工工程では、偏光フィルムを含む積層物のうち偏光フィルムのみを切断する偏光フィルムのハーフカット、または偏光フィルムの端部の切断などがなされる。偏光フィルムの切断には刃物による切断がなされていたが、被切断物からフィルムカスなどの異物が生じ難い。この異物が偏光フィルムに混入することにより、歩留まりが低下してしまう。 Polarizing films are widely used for liquid crystal panels. Conventionally, in the processing step of a polarizing film, a half cut of a polarizing film that cuts only the polarizing film in a laminate including the polarizing film, or cutting of an end portion of the polarizing film is performed. Although the polarizing film is cut with a blade, foreign matter such as film residue is hardly generated from the object to be cut. When this foreign material is mixed in the polarizing film, the yield is lowered.
 そこで、近年ではレーザーでの切断が行われている。レーザーでの切断を行う場合、刃物による切断と比較して、被切断物からフィルム屑などの異物が生じ難い。これによる、歩留まりの低下を抑制することができる。このため、当該切断方法は有用であり、種々の方法が開発されている(例えば、特許文献1,2)。 Therefore, in recent years, laser cutting has been performed. When cutting with a laser, foreign objects such as film scraps are less likely to be generated from an object to be cut compared to cutting with a blade. This can suppress a decrease in yield. For this reason, the cutting method is useful, and various methods have been developed (for example, Patent Documents 1 and 2).
日本国公開特許公報「特開2008‐302376号公報(2008年12月18日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2008-302376 (Released on Dec. 18, 2008)” 日本国公開特許公報「特開2009‐22978号公報(2009年2月5日公開)」Japanese Patent Publication “Japanese Unexamined Patent Application Publication No. 2009-22978 (published on Feb. 5, 2009)”
 しかしながら、上記従来のレーザーによる偏光フィルムの切断方法では、相対的に移動する偏光フィルムを切断する際に、不具合が生じるという問題点を有している。すなわち、レーザーの低出力側を用いた場合、レーザーの出力が不安定な為、適切な切断ができないという問題がある。 However, the conventional method for cutting a polarizing film using a laser has a problem that a problem occurs when the relatively moving polarizing film is cut. In other words, when the low output side of the laser is used, there is a problem that the laser output is unstable, so that proper cutting cannot be performed.
 具体的に以下に説明する。搬送された偏光フィルムを切断する場合、切断のほとんどは一定速度で偏光フィルムを搬送しながらなされる。生産効率を向上させるため、上記一定速度は、例えば50m/s程度という大きな速度である。したがって、歩留まりを高める観点から一定速度の前後における加速時および減速時においても偏光フィルムの切断がなされる。 Specific explanation will be given below. When cutting the conveyed polarizing film, most of the cutting is performed while conveying the polarizing film at a constant speed. In order to improve production efficiency, the constant speed is a large speed of about 50 m / s, for example. Therefore, the polarizing film is cut even when accelerating and decelerating around a constant speed from the viewpoint of increasing the yield.
 偏光フィルムの搬送速度が大きい一定速度の段階では、レーザーが照射された部分の単位時間当たりのエネルギーが減少する。よって、切断に必要なレーザーの出力を増加させる必要がある。一方、偏光フィルムの搬送速度が小さい段階では、レーザーが照射された部分の単位時間当たりのエネルギーが増加する。その結果、偏光フィルムの切断面に過剰な熱が作用することによる品質の劣化が生じるおそれがある。そこで、レーザーの出力を抑える必要がある。 In the constant speed stage where the conveyance speed of the polarizing film is large, the energy per unit time of the portion irradiated with the laser decreases. Therefore, it is necessary to increase the laser output necessary for cutting. On the other hand, at the stage where the conveyance speed of the polarizing film is low, the energy per unit time of the portion irradiated with the laser increases. As a result, there is a risk that quality will deteriorate due to excessive heat acting on the cut surface of the polarizing film. Therefore, it is necessary to suppress the output of the laser.
 ここで、レーザーの出力を抑えるため、レーザーの低出力側を用いた場合、レーザーの発振が不安定になり得るという問題がある。このため、調整した出力にブレが生じ、偏光フィルムを切断するに足りるエネルギーを照射できないおそれがあり、搬送速度が小さい段階であっても、安定した出力にて切断面の品質劣化を招くことなく偏光フィルムを切断するレーザー切断装置が要求されている。 Here, there is a problem that the oscillation of the laser may become unstable when the low output side of the laser is used to suppress the output of the laser. For this reason, the adjusted output is blurred, and there is a possibility that energy sufficient to cut the polarizing film may not be irradiated, and even at a stage where the conveyance speed is low, the quality of the cut surface is not deteriorated with a stable output. There is a demand for a laser cutting device for cutting a polarizing film.
 このような問題に関連して、特許文献2では被加工物とレーザー光との相対的な移動速度を大きくし、レーザー光の照射回数を低減させるレーザー加工方法が開示されている。当該技術によれば、レーザー発振器の不安定な出力に起因するレーザー光のパワー増大により、エッチング深さが深くなり過ぎることを回避することができる。しかしながら、当該技術では、被加工物とレーザー光との相対的な移動速度を大きくする必要があり、相対速度が小さい場合に適用し難いという問題がある。 In connection with such a problem, Patent Document 2 discloses a laser processing method in which the relative movement speed between the workpiece and the laser light is increased and the number of times of laser light irradiation is reduced. According to this technique, it is possible to avoid the etching depth from becoming excessively deep due to the increase in the power of the laser beam caused by the unstable output of the laser oscillator. However, in this technique, it is necessary to increase the relative moving speed between the workpiece and the laser beam, and there is a problem that it is difficult to apply when the relative speed is low.
 本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、レーザー光の出力が不安定とならず、偏光フィルムの切断面の品質劣化を招くことのないレーザー切断装置を提供することにある。 The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to provide a laser cutting device in which the output of the laser light does not become unstable and the quality of the cut surface of the polarizing film does not deteriorate. It is to provide.
 本発明のレーザー切断装置は、上記課題を解決するために、偏光フィルムにレーザー光を照射して切断するレーザー切断装置において、レーザー光を発振するレーザー光発振機と、レーザー光発振機から発振されたレーザー光を偏光フィルムへ反射するベンドミラーと、偏光フィルムとベンドミラーとの間に配置され、上記レーザー光を集光する集光レンズとを備えており、上記ベンドミラーと集光レンズとの間に、上記レーザー光を透過および反射するビームスプリッターを備えることを特徴としている。 In order to solve the above-described problems, the laser cutting device of the present invention is a laser cutting device that irradiates and cuts a polarizing film by irradiating a laser beam. A bend mirror that reflects the laser light to the polarizing film, and a condensing lens that is disposed between the polarizing film and the bend mirror, and condenses the laser light. A beam splitter for transmitting and reflecting the laser light is provided between them.
 本発明のレーザー切断装置では、ビームスプリッターによってレーザー光は透過光と反射光とに分岐され、透過光によって偏光フィルムが切断される。よってレーザー光発振機の出力が大きくとも、偏光フィルムに照射されるレーザー光のエネルギーを低減させることができる。その結果、レーザー切断装置と偏光フィルムとの相対速度が小さい場合であっても、レーザー光発振機を高出力にて使用することができる。すなわち、レーザー光発振機の高出力側を用いた場合の利点である出力の安定性を得ることができる。一方、ビームスプリッターによって偏光フィルムに照射されるエネルギーが低減されるため、レーザー光発振機の高出力側を用いた場合の問題点である切断面の品質の劣化を抑制することができる。 In the laser cutting device of the present invention, the laser beam is split into transmitted light and reflected light by the beam splitter, and the polarizing film is cut by the transmitted light. Therefore, even if the output of the laser beam oscillator is large, the energy of the laser beam irradiated on the polarizing film can be reduced. As a result, even when the relative speed between the laser cutting device and the polarizing film is small, the laser light oscillator can be used at a high output. That is, it is possible to obtain output stability, which is an advantage when the high output side of the laser beam oscillator is used. On the other hand, since the energy applied to the polarizing film by the beam splitter is reduced, it is possible to suppress degradation of the quality of the cut surface, which is a problem when the high output side of the laser oscillator is used.
 本発明のレーザー切断装置は、以上のように、レーザー光を発振するレーザー光発振機と、レーザー光発振機から発振されたレーザー光を偏光フィルムへ反射するベンドミラーと、偏光フィルムとベンドミラーとの間に配置され、上記レーザー光を集光する集光レンズとを備えており、上記ベンドミラーと集光レンズとの間に、上記レーザー光を透過および反射するビームスプリッターを備えるものである。 As described above, the laser cutting device of the present invention includes a laser light oscillator that oscillates laser light, a bend mirror that reflects the laser light oscillated from the laser light oscillator to a polarizing film, a polarizing film, and a bend mirror. And a condensing lens for condensing the laser light, and a beam splitter for transmitting and reflecting the laser light between the bend mirror and the condensing lens.
 それゆえ、レーザー切断装置と偏光フィルムとの相対速度が小さい場合であっても、レーザー光発振機を高出力にて使用することができる。すなわち、レーザー光発振機の高出力側を用いた場合の利点である出力の安定性を得ることができる。一方、ビームスプリッターによって偏光フィルムに照射されるエネルギーが低減されるため、レーザー光発振機の高出力側を用いた場合の問題点である切断面の品質の劣化を抑制することができるという効果を奏する。 Therefore, even when the relative speed between the laser cutting device and the polarizing film is small, the laser light oscillator can be used at a high output. That is, it is possible to obtain output stability, which is an advantage when the high output side of the laser beam oscillator is used. On the other hand, since the energy applied to the polarizing film by the beam splitter is reduced, it is possible to suppress the deterioration of the quality of the cut surface, which is a problem when the high output side of the laser oscillator is used. Play.
本発明に係るレーザー切断装置を示す断面図である。It is sectional drawing which shows the laser cutting device which concerns on this invention. 偏光フィルムを搬送した場合の時間tと出力wとの関係を示すグラフである。It is a graph which shows the relationship between the time t at the time of conveying a polarizing film, and the output w. 本発明に係るスリッター機を示す断面図である。It is sectional drawing which shows the slitter machine which concerns on this invention. 本発明に係るスリッター機による偏光フィルムの切断過程を示す平面図である。It is a top view which shows the cutting process of the polarizing film by the slitter machine which concerns on this invention. 実施例1および比較例1にて切断した偏光フィルムを示す側面図である。It is a side view which shows the polarizing film cut | disconnected in Example 1 and Comparative Example 1. FIG.
 本発明の一実施形態について図1~4に基づいて説明すれば、以下の通りである。 An embodiment of the present invention will be described with reference to FIGS. 1 to 4 as follows.
 〔切断装置〕
 図1は、本発明に係るレーザー切断装置10を示す断面図である。レーザー切断装置10は、レーザー光発振機1、ビームエキスパンダー2、ベンドミラー3、ビームスプリッター4および集光レンズ5を備えている。
[Cutting device]
FIG. 1 is a cross-sectional view showing a laser cutting device 10 according to the present invention. The laser cutting device 10 includes a laser light oscillator 1, a beam expander 2, a bend mirror 3, a beam splitter 4, and a condenser lens 5.
 レーザー光発振機1はレーザー光を発振する部材であり、特に限定されるものではない。例えば、CO2 レーザー(二酸化炭素レーザー)、UVレーザー、半導体レーザー、YAGレーザー、エキシマレーザーなどを用いることができる。この中でも高出力であり、偏光フィルムの切断に好適なCO2 レーザーが好ましい。 The laser beam oscillator 1 is a member that oscillates laser beam and is not particularly limited. For example, a CO 2 laser (carbon dioxide laser), UV laser, semiconductor laser, YAG laser, excimer laser, or the like can be used. Among these, a CO 2 laser having high output and suitable for cutting a polarizing film is preferable.
 レーザー光発振機1の出力が低い場合、レーザー光の出力が不安定となり易くなる。このため、出力は高出力であることが好ましい。一方、出力が高すぎると、過剰な熱膨張等により偏光フィルムの切断面に品質の劣化が生じてしまう。 When the output of the laser beam oscillator 1 is low, the output of the laser beam tends to become unstable. For this reason, it is preferable that an output is a high output. On the other hand, when the output is too high, the quality of the cut surface of the polarizing film is degraded due to excessive thermal expansion or the like.
 レーザー光発振機1の具体的な出力は、偏光フィルム6の厚さ、偏光フィルム6の搬送速度および後述するビームスプリッター4による透過および反射の比率に応じて適宜調整することが望ましい。これらの観点からレーザー光発振機1の出力は、30W以上、400W以下であることが好ましい。なお、レーザー光発振機1の出力が低い場合、出力が不安定となるが、具体的には、30W未満であると不安定となる傾向にある。 The specific output of the laser oscillator 1 is desirably adjusted as appropriate according to the thickness of the polarizing film 6, the conveyance speed of the polarizing film 6, and the ratio of transmission and reflection by a beam splitter 4 described later. From these viewpoints, the output of the laser beam oscillator 1 is preferably 30 W or more and 400 W or less. In addition, when the output of the laser beam oscillator 1 is low, the output becomes unstable. Specifically, when the output is less than 30 W, the output tends to be unstable.
 照射するレーザー光の周波数は、レーザー光発振機1の出力、偏光フィルム6の厚さおよび偏光フィルムの搬送速度等により適宜変更されるが、概して5kHz以上、100kHz以下とすることができる。 The frequency of the laser light to be irradiated is appropriately changed depending on the output of the laser light oscillator 1, the thickness of the polarizing film 6, the transport speed of the polarizing film, etc., but can generally be 5 kHz or more and 100 kHz or less.
 レーザー切断装置10は、好ましい形態としてビームエキスパンダー2を備えている。ビームエキスパンダー2は、レーザー光を平行光束に広げる部材であり、公知のビームエキスパンダーを使用すればよい。ビームエキスパンダー2により、レーザー光L1の直径を例えば2倍~10倍程度に広げ、レーザー光L2とすることができる。偏光フィルム6へレーザー光L6を照射する際、レーザー光の直径を拡大することによって、レーザー光L6の焦点を合わせ易くなる。 The laser cutting device 10 includes a beam expander 2 as a preferred form. The beam expander 2 is a member that spreads laser light into a parallel light beam, and a known beam expander may be used. With the beam expander 2, the diameter of the laser beam L1 can be expanded to about 2 to 10 times, for example, to obtain the laser beam L2. When the polarizing film 6 is irradiated with the laser light L6, the laser light L6 is easily focused by increasing the diameter of the laser light.
 ベンドミラー3は、レーザー光発振機1から発振されたレーザー光を偏光フィルム6へ反射する部材である。レーザー切断装置10ではベンドミラー3は1つ備えられているが、レーザー光L2をレーザー光L3として偏光フィルム6へ反射することができればよく、複数備えられていてもかまわない。 The bend mirror 3 is a member that reflects the laser light oscillated from the laser light oscillator 1 to the polarizing film 6. In the laser cutting device 10, one bend mirror 3 is provided, but it is sufficient if the laser beam L2 can be reflected as the laser beam L3 to the polarizing film 6, and a plurality of bend mirrors 3 may be provided.
 図2を用いて一般的なレーザー切断装置におけるレーザー光発振機の出力について説明する。図2は偏光フィルムを搬送した場合の時間tとレーザー光発振機の出力wとの関係を示すグラフである。偏光フィルムを搬送しながら切断する場合、まず、偏光フィルムを加速させ(加速領域)、その後、切断に適する一定の速度とし(定速領域)、偏光フィルムを減速させ(減速領域)、偏光フィルムの切断が終了する。 The output of the laser oscillator in a general laser cutting device will be described with reference to FIG. FIG. 2 is a graph showing the relationship between the time t when the polarizing film is conveyed and the output w of the laser beam oscillator. When cutting while transporting the polarizing film, first, the polarizing film is accelerated (acceleration region), then at a constant speed suitable for cutting (constant speed region), the polarizing film is decelerated (deceleration region), Cutting ends.
 加速領域および減速領域では偏光フィルムの速度が小さいため、同一照射条件であれば偏光フィルムへの単位時間当たりのエネルギーが増加する。したがって、レーザー光発振機の出力を低くする必要がある。そのため、加速領域および減速領域の一部では、レーザー光発振機の出力が低く、レーザー光発振機の出力が不安定となる(不安定領域)。結果として、加速領域および減速領域において、レーザー光発振機の出力が不安定であることにより未切断が生じ得る。以上のような制約があり、一般的なレーザー切断装置では、加速領域および減速領域においてレーザー光発振機の出力を高めることができない。 Since the speed of the polarizing film is small in the acceleration region and the deceleration region, the energy per unit time to the polarizing film increases under the same irradiation conditions. Therefore, it is necessary to reduce the output of the laser beam oscillator. For this reason, in a part of the acceleration region and the deceleration region, the output of the laser beam oscillator is low, and the output of the laser beam oscillator becomes unstable (unstable region). As a result, uncutting may occur in the acceleration region and the deceleration region due to the unstable output of the laser oscillator. Due to the above limitations, a general laser cutting device cannot increase the output of the laser beam oscillator in the acceleration region and the deceleration region.
 一方、本発明に係るレーザー切断装置10では、ベンドミラー3と集光レンズ5との間には、ビームスプリッター4が備えられている。ビームスプリッター4は、上記レーザー光L3を透過および反射する部材であり、公知のビームスプリッターを使用できる。レーザー光L3は、ビームスプリッター4によって、透過光であるレーザー光L4と反射光であるレーザー光L5とに分岐される。 On the other hand, in the laser cutting device 10 according to the present invention, a beam splitter 4 is provided between the bend mirror 3 and the condenser lens 5. The beam splitter 4 is a member that transmits and reflects the laser beam L3, and a known beam splitter can be used. The laser beam L3 is branched by the beam splitter 4 into a laser beam L4 that is transmitted light and a laser beam L5 that is reflected light.
 ビームスプリッター4のレーザー光を透過および反射する比率は、特に限定されないが、上記レーザー光発振機1の出力、偏光フィルム6の厚さおよび偏光フィルム6の搬送速度等に応じて適宜調整することが望ましい。該して、上記レーザー光発振機の出力が30W以上、400W以下である場合、ビームスプリッターのレーザー光を透過および反射する比率が、3:7~7:3であることが好ましい。上記設定範囲であれば、レーザー切断装置10を偏光フィルムの切断に好適に使用することができる。 The ratio of transmitting and reflecting the laser light from the beam splitter 4 is not particularly limited, but may be appropriately adjusted according to the output of the laser light oscillator 1, the thickness of the polarizing film 6, the conveying speed of the polarizing film 6, and the like. desirable. When the output of the laser beam oscillator is 30 W or more and 400 W or less, the ratio of transmitting and reflecting the laser beam of the beam splitter is preferably 3: 7 to 7: 3. If it is the said setting range, the laser cutting device 10 can be used conveniently for the cutting | disconnection of a polarizing film.
 レーザー切断装置10では、ビームスプリッター4によってレーザー光L3は透過光と反射光とに分岐され、透過光によって偏光フィルム6が切断される。よってレーザー切断装置10によれば、レーザー光発振機1の出力が大きくとも、偏光フィルム6に照射されるレーザー光L6のエネルギーを低減させることができる。すなわち、加速領域および減速領域であっても、レーザー光発振機1を高出力にて使用することができ、レーザー光発振機1の高出力側を用いた場合の利点である出力の安定性を得ることができる。一方、ビームスプリッター4によって偏光フィルムに照射されるエネルギーが低減されるため、レーザー光発振機1の高出力側を用いた場合の問題点である切断面での品質の劣化を抑制することができる。 In the laser cutting device 10, the laser beam L3 is branched into transmitted light and reflected light by the beam splitter 4, and the polarizing film 6 is cut by the transmitted light. Therefore, according to the laser cutting device 10, even if the output of the laser beam oscillator 1 is large, the energy of the laser beam L6 irradiated to the polarizing film 6 can be reduced. That is, even in the acceleration region and the deceleration region, the laser beam oscillator 1 can be used at a high output, and the output stability, which is an advantage when the high output side of the laser beam oscillator 1 is used, is improved. Obtainable. On the other hand, since the energy applied to the polarizing film by the beam splitter 4 is reduced, it is possible to suppress degradation of quality at the cut surface, which is a problem when the high output side of the laser light oscillator 1 is used. .
 レーザー光L5は集光レンズ5によって偏光フィルム6に集光される。集光レンズ5は特に限定されるものではなく、球面レンズ、非球面レンズなどを使用すればよい。レーザー光L6の集光径によって切断幅が決定されることとなるため、偏光フィルムを切断する場合、レーザー光L6の集光径は5μm以上、500μm以下であることが好ましく、10μm以上、400μm以下であることがより好ましい。 The laser beam L5 is condensed on the polarizing film 6 by the condenser lens 5. The condensing lens 5 is not particularly limited, and a spherical lens, an aspheric lens, or the like may be used. Since the cutting width is determined by the condensing diameter of the laser light L6, when the polarizing film is cut, the condensing diameter of the laser light L6 is preferably 5 μm or more and 500 μm or less, preferably 10 μm or more and 400 μm or less. It is more preferable that
 レーザー切断装置10の切断対象である偏光フィルム6としては公知の偏光フィルムを用いればよい。本発明における偏光フィルムとしては通常、長尺の偏光フィルムが使用されるが、短尺または板状の偏光フィルムを使用してもよい。長尺とは、切断方向における偏光フィルム6の長さが10m以上を指し、短尺とは2m以上、10m未満を指し、板状とは10cm以上、2m未満を指す。 A known polarizing film may be used as the polarizing film 6 to be cut by the laser cutting device 10. As the polarizing film in the present invention, a long polarizing film is usually used, but a short or plate-shaped polarizing film may be used. The long refers to the length of the polarizing film 6 in the cutting direction of 10 m or more, the short refers to 2 m or more and less than 10 m, and the plate shape refers to 10 cm or more and less than 2 m.
 偏光フィルム6として具体的には、偏光子フィルムの両面に保護フィルムとしてTAC(トリアセチルセルロース)フィルム、COP(シクロオレフィンポリマー)フィルム等が貼合されており、レーザー切断装置10に対して逆面のTACフィルムに粘着剤を介して、保護フィルムが積層された構成となっている。偏光フィルム6のうち、中心に位置する偏光子フィルムとしては、ポリビニルアルコールフィルムにヨウ素等によって染色がなされており、延伸されたフィルム等にTACなどの保護フィルムが貼合されたフィルムを挙げることができる。また、上記ポリビニルアルコールフィルムに代えて、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム、セルロース系フィルム等の親水性高分子フィルム等、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等のポリエン配向フィルム等を使用することもできる。 Specifically, as the polarizing film 6, a TAC (triacetyl cellulose) film, a COP (cycloolefin polymer) film, or the like is bonded as a protective film on both surfaces of the polarizer film, and is opposite to the laser cutting device 10. The protective film is laminated on the TAC film via an adhesive. Among the polarizing films 6, examples of the polarizer film located in the center include a film in which a polyvinyl alcohol film is dyed with iodine or the like, and a protective film such as TAC is bonded to the stretched film or the like. it can. Further, in place of the polyvinyl alcohol film, a partially formalized polyvinyl alcohol film, an ethylene / vinyl acetate copolymer partially saponified film, a hydrophilic polymer film such as a cellulose film, etc. Polyene-oriented films such as vinyl chloride dehydrochlorinated products can also be used.
 偏光フィルム6および保護フィルムを含めた総厚さは、特に限定されないが、100μm以上、500μm以下とすることができる。なお、偏光フィルム6のうち偏光子フィルムの厚さは、概して10μm以上、50μm以下である。さらに、偏光フィルム6の実用上、問題ない範囲にて上記3層以外にさらに他の層を含んでいてもよい。 The total thickness including the polarizing film 6 and the protective film is not particularly limited, but may be 100 μm or more and 500 μm or less. In addition, the thickness of the polarizer film among the polarizing films 6 is generally 10 μm or more and 50 μm or less. Furthermore, in addition to the above three layers, other layers may be included within the practical range of the polarizing film 6.
 上記保護フィルムとしては、ポリエステルフィルム、ポリエチレンテレフタラートフィルムなどを用いることもできる。上記保護フィルムの厚さおよび幅としては、特に限定されるものではないが、偏光フィルムの保護フィルムとして用いられる観点から、例えば、5μm以上、50μm以下の厚さ、200mm以上、1500mm以下の幅の保護フィルムを好ましく用いることができる。 As the protective film, a polyester film, a polyethylene terephthalate film, or the like can be used. The thickness and width of the protective film are not particularly limited, but from the viewpoint of being used as a protective film for a polarizing film, for example, a thickness of 5 μm or more and 50 μm or less, a width of 200 mm or more and 1500 mm or less. A protective film can be preferably used.
 レーザー切断装置10による偏光フィルム6の切断は、レーザー切断装置10または偏光フィルム6を移動させながら行う。これにより、偏光フィルム6に切断面を形成することができる。具体的には後述するスリッター機により偏光フィルムを移動させながら、切断することができる。なお、レーザー切断装置10を固定して、偏光フィルム6が搬送された状態にて切断した場合、安定した切断が可能なため好適である。 The cutting of the polarizing film 6 by the laser cutting device 10 is performed while moving the laser cutting device 10 or the polarizing film 6. Thereby, a cut surface can be formed in the polarizing film 6. Specifically, it can cut | disconnect, moving a polarizing film with the slitter machine mentioned later. In addition, when the laser cutting apparatus 10 is fixed and it cut | disconnects in the state in which the polarizing film 6 was conveyed, since stable cutting | disconnection is possible, it is suitable.
 本発明における偏光フィルムを「切断する」とは、偏光フィルムの「少なくとも一部を切断する」ことを指し、偏光フィルムに所定の深さを形成する加工も含まれる。例えば、偏光フィルムの端部の切断、ハーフカット、マーキング加工なども「切断する」行為に含まれる。 The term “cutting” the polarizing film in the present invention means “cutting at least a part of the polarizing film” and includes a process of forming a predetermined depth in the polarizing film. For example, cutting of the end portion of the polarizing film, half cutting, marking processing, etc. are also included in the act of “cutting”.
 〔スリッター〕
 次に、本発明に係るスリッター機20について説明する。図3は、本発明に係るスリッター機20を示す断面図である。スリッター機20は、レーザー切断装置10、巻出部11、搬送ロール12・12a・12b・12c・12d・12e・12f(以下、「12~12f」と略す)、測長計14、巻取部13a・13bを備えている。
[Slitter]
Next, the slitter machine 20 which concerns on this invention is demonstrated. FIG. 3 is a sectional view showing a slitter machine 20 according to the present invention. The slitter machine 20 includes a laser cutting device 10, an unwinding unit 11, transport rolls 12, 12a, 12b, 12c, 12d, 12e, and 12f (hereinafter abbreviated as “12 to 12f”), a length measuring device 14, and a winding unit 13a. -It has 13b.
 巻出部11は、長尺状の偏光フィルム6を保持し、搬送ロール12へと巻き出すものである。巻出部11としては特に限定されず、公知の巻出部を使用できる。スリッター機20では、巻出部11として円筒状の軸を用いており、偏光フィルム6が巻かれた紙管またはプラスチック管などを保持することができる。巻出部11の側面には図示しないが巻出部11を回転させる回転装置が備えられており、回転装置によって巻出部11が回転されて偏光フィルム6が搬送方向に巻き出される。偏光フィルム6に加わる張力および偏光フィルムの搬送速度は回転装置によって設定可能である。また、巻出部11の高さおよび巻出部11の水平方向における位置は適宜調整することができる。 The unwinding unit 11 holds the long polarizing film 6 and unwinds it to the transport roll 12. It does not specifically limit as the unwinding part 11, A well-known unwinding part can be used. In the slitter machine 20, a cylindrical shaft is used as the unwinding unit 11, and a paper tube or a plastic tube around which the polarizing film 6 is wound can be held. Although not shown, a rotating device that rotates the unwinding portion 11 is provided on the side surface of the unwinding portion 11, and the unwinding portion 11 is rotated by the rotating device to unwind the polarizing film 6 in the transport direction. The tension applied to the polarizing film 6 and the conveying speed of the polarizing film can be set by a rotating device. Moreover, the height of the unwinding part 11 and the position in the horizontal direction of the unwinding part 11 can be adjusted suitably.
 巻出部11は1箇所に設置されているが、巻取部13a・13bのように2箇所に設置されていてもよい。これにより、一方の巻出部11の偏光フィルム6が全て巻き出される前に、他の巻出部の偏光フィルムと連結することができ、偏光フィルムの原反を交換する時間を削減できる。 Although the unwinding part 11 is installed in one place, it may be installed in two places like the winding parts 13a and 13b. Thereby, before all the polarizing films 6 of one unwinding part 11 are unwound, it can connect with the polarizing film of another unwinding part, and the time which replace | exchanges the original film of a polarizing film can be reduced.
 スリッター機20には、搬送ロール12~12fが偏光フィルム6の搬送経路に沿って配置されている。各搬送ロールの配置場所は偏光フィルム6の搬送経路に応じて適宜変更すればよい。上記搬送ロールは特に限定されず、公知の部材を使用すればよい。また、上記搬送ロール直径および幅も限定されない。通常、搬送ロールの幅は、1.5m~2.5m程度である。また、スリッター機20には、偏光フィルム6を搬送ロールに押し当てるタッチロールが備えられていてもよい。 In the slitter machine 20, transport rolls 12 to 12 f are arranged along the transport path of the polarizing film 6. What is necessary is just to change suitably the arrangement | positioning place of each conveyance roll according to the conveyance path | route of the polarizing film 6. FIG. The said conveyance roll is not specifically limited, What is necessary is just to use a well-known member. Further, the diameter and width of the transport roll are not limited. Usually, the width of the transport roll is about 1.5 m to 2.5 m. Moreover, the slitter machine 20 may be provided with a touch roll that presses the polarizing film 6 against the transport roll.
 搬送ロール12bと搬送ロール12cとの間には、レーザー切断装置10が備えられている。このようにレーザー切断装置10は、巻出部11と巻取部13aとの間に備えられていればよい。レーザー切断装置10の構造に関しては上述した通りである。 A laser cutting device 10 is provided between the transport roll 12b and the transport roll 12c. Thus, the laser cutting device 10 should just be provided between the unwinding part 11 and the winding part 13a. The structure of the laser cutting device 10 is as described above.
 巻取部13a・13bは、切断加工された偏光フィルム6を巻き取る部材である。巻出部11と同様に、巻取部13a・13bの側面には図示しないが巻取部13a・13bを回転させる回転装置が備えられており、回転装置によって巻取部13a・13bが回転されて偏光フィルム6が搬送方向に巻き取られる。偏光フィルム6に加わる張力および偏光フィルムの搬送速度は回転装置によって設定可能である。また、巻取部13a・13bの高さおよび水平方向における位置は適宜調整することができる。 The winding sections 13a and 13b are members that wind the polarizing film 6 that has been cut. Similar to the unwinding section 11, the side surfaces of the winding sections 13a and 13b are provided with a rotating device (not shown) for rotating the winding sections 13a and 13b, and the winding sections 13a and 13b are rotated by the rotating apparatus. Thus, the polarizing film 6 is wound in the transport direction. The tension applied to the polarizing film 6 and the conveying speed of the polarizing film can be set by a rotating device. Moreover, the height of the winding parts 13a and 13b and the position in the horizontal direction can be appropriately adjusted.
 スリッター機20によれば、巻出部11および巻取部13aによって偏光フィルム6が搬送される。偏光フィルムの搬送速度は特に限定されないが、一例として、1m/s以上、100m/s以下とすることができる。 According to the slitter machine 20, the polarizing film 6 is conveyed by the unwinding part 11 and the winding part 13a. Although the conveyance speed of a polarizing film is not specifically limited, As an example, it can be 1 m / s or more and 100 m / s or less.
 図4は、偏光フィルム6の切断過程を示す平面図である。図4(a)~(c)に示すように、偏光フィルム6が搬送されるにつれて、レーザー切断装置10によって偏光フィルム6にスリットSが形成される。図4では、レーザー切断装置10は、偏光フィルム6の端部周辺を切断するよう設置されている。これは偏光フィルム6の端部をスリットする場合である。レーザー切断装置10の設置位置は、偏光フィルム6にレーザー光を照射することができれば、特に限定されるものではない。例えば、偏光フィルム6の中央部分にレーザー光を照射するようにレーザー切断装置10を設置すれば、偏光フィルム6を2つに分割できる。 FIG. 4 is a plan view showing the cutting process of the polarizing film 6. As shown in FIGS. 4A to 4C, slits S are formed in the polarizing film 6 by the laser cutting device 10 as the polarizing film 6 is conveyed. In FIG. 4, the laser cutting device 10 is installed so as to cut the periphery of the end portion of the polarizing film 6. This is a case where the end of the polarizing film 6 is slit. The installation position of the laser cutting device 10 is not particularly limited as long as the polarizing film 6 can be irradiated with laser light. For example, if the laser cutting device 10 is installed so that the central portion of the polarizing film 6 is irradiated with laser light, the polarizing film 6 can be divided into two.
 本発明に係るスリッター機20はレーザー切断装置10を備えているため、偏光フィルム6を加速または減速させる場合、すなわち偏光フィルムの搬送速度が小さい場合であっても、レーザー光発振機1を高出力にて使用することができる。その結果、レーザー光発振機1の高出力側を用いた場合の利点である出力の安定性を得ることができる。一方、ビームスプリッター4によって偏光フィルムに照射されるエネルギーが低減されるため、レーザー光発振機1の高出力側を用いた場合の問題点である偏光フィルムの切断面における品質の劣化を抑制することができる。 Since the slitter machine 20 according to the present invention includes the laser cutting device 10, even when the polarizing film 6 is accelerated or decelerated, i.e., when the conveying speed of the polarizing film is low, the laser light oscillator 1 has a high output. Can be used. As a result, it is possible to obtain output stability, which is an advantage when the high output side of the laser beam oscillator 1 is used. On the other hand, since the energy irradiated to the polarizing film by the beam splitter 4 is reduced, the deterioration of the quality at the cut surface of the polarizing film, which is a problem when the high output side of the laser light oscillator 1 is used, is suppressed. Can do.
 また、本発明には以下の形態が含まれる。 Further, the present invention includes the following forms.
 本発明のレーザー切断装置では、上記レーザー光発振機の出力が30W以上、400W以下であり、上記ビームスプリッターのレーザー光を透過および反射する比率が、3:7~7:3であることが好ましい。 In the laser cutting device of the present invention, the output of the laser beam oscillator is preferably 30 W or more and 400 W or less, and the ratio of transmitting and reflecting the laser beam of the beam splitter is preferably 3: 7 to 7: 3. .
 上記レーザー光発振機の出力が30W以上、400W以下である場合、ビームスプリッターのレーザー光を透過および反射する比率が上記の範囲内であれば、偏光フィルムの切断に好適に使用することができる。 When the output of the laser beam oscillator is 30 W or more and 400 W or less, if the ratio of transmitting and reflecting the laser beam of the beam splitter is within the above range, it can be suitably used for cutting a polarizing film.
 また、本発明のレーザー切断装置では、上記レーザー光発振機がCO2 レーザー光発振機であることが好ましい。 In the laser cutting device of the present invention, the laser beam oscillator is preferably a CO 2 laser beam oscillator.
 CO2 レーザー光発振機は高出力であり、偏光フィルムの切断に好適である。 The CO 2 laser light oscillator has a high output and is suitable for cutting a polarizing film.
 また、本発明のスリッター機は、偏光フィルムを巻出す巻出部と、偏光フィルムを巻取る巻取部とを備え、上記巻出部と巻取部との間に、上記レーザー切断装置を備えるものである。 Moreover, the slitter machine of this invention is equipped with the unwinding part which winds up a polarizing film, and the winding-up part which winds up a polarizing film, The said laser cutting device is provided between the said unwinding part and winding-up part. Is.
 本発明に係るスリッター機はレーザー切断装置を備えているため、偏光フィルムの搬送速度が小さい場合であっても、レーザー光発振機を高出力にて使用することができる。その結果、レーザー光発振機の高出力側を用いた場合の利点である出力の安定性を得ることができる。一方、ビームスプリッターによって偏光フィルムに照射されるエネルギーが低減されるため、レーザー光発振機の高出力側を用いた場合の問題点である偏光フィルムの切断面における品質の劣化を抑制することができる。 Since the slitter machine according to the present invention includes a laser cutting device, the laser light oscillator can be used at a high output even when the conveyance speed of the polarizing film is low. As a result, it is possible to obtain output stability, which is an advantage when the high output side of the laser beam oscillator is used. On the other hand, since the energy applied to the polarizing film by the beam splitter is reduced, it is possible to suppress deterioration in quality at the cut surface of the polarizing film, which is a problem when the high output side of the laser light oscillator is used. .
 なお、本発明は、上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the technical means disclosed in different embodiments can be appropriately combined. Such embodiments are also included in the technical scope of the present invention.
 〔実施例1〕
 図3に記載のスリッター機20を用いて偏光フィルムの切断を行った。偏光フィルム6は、レーザー切断装置10の集光レンズ5に近い順から、保護フィルムとしてPETフィルム(38μm)、粘着層(22μm:粘着層は保護フィルムと共に剥離する)、TACフィルム(80μm)、ポリビニルアルコールフィルム(30μm)およびCOP(シクロオレフィンポリマー)フィルム(70μm)が積層されており、COPフィルムには、粘着層を介して、セパレートフィルムとしてPETフィルム(38μm)が積層された構成となっている。
[Example 1]
The polarizing film was cut using the slitter machine 20 shown in FIG. The polarizing film 6 has a PET film (38 μm), an adhesive layer (22 μm: the adhesive layer is peeled off together with the protective film), a TAC film (80 μm), polyvinyl, as a protective film, in the order from the condensing lens 5 of the laser cutting device 10. An alcohol film (30 μm) and a COP (cycloolefin polymer) film (70 μm) are laminated, and the COP film has a configuration in which a PET film (38 μm) is laminated as a separate film via an adhesive layer. .
 まず、偏光フィルム6が静止した状態から、巻出部11および巻取部13aの回転装置により、偏光フィルム6を5秒後に50m/sまで加速させた。50m/sまで加速させる間に偏光フィルム6の切断を以下の条件にて行った。 First, the polarizing film 6 was accelerated to 50 m / s after 5 seconds by the rotating device of the unwinding unit 11 and the winding unit 13a from the state where the polarizing film 6 was stationary. While accelerating to 50 m / s, the polarizing film 6 was cut under the following conditions.
 レーザー光発振機   :CO2 レーザー
 レーザー光発振機の出力:20W以上、280W以下
 レーザー波長     :9.4μm
 レーザー周波数    :20kHz
 L6の集光径     :54μm
 透過光と反射光との比率:5:5
 〔比較例1〕
 スリッター機20のレーザー切断装置10からビームスプリッター4を除去した比較用切断装置を使用して偏光フィルム6の切断を行った。偏光フィルム6の構成は実施例1と同一である。実施例1と同様に、偏光フィルム6を50m/sまで加速させた。また、切断の条件は以下の通りである。
Laser oscillator: CO 2 laser Output of laser oscillator: 20 W or more, 280 W or less Laser wavelength: 9.4 μm
Laser frequency: 20 kHz
Condensing diameter of L6: 54 μm
Ratio of transmitted light and reflected light: 5: 5
[Comparative Example 1]
The polarizing film 6 was cut using a comparative cutting device in which the beam splitter 4 was removed from the laser cutting device 10 of the slitter machine 20. The configuration of the polarizing film 6 is the same as in Example 1. Similar to Example 1, the polarizing film 6 was accelerated to 50 m / s. The cutting conditions are as follows.
 レーザー光発振機   :CO2 レーザー
 レーザー光発振機の出力:10W以上、140W以下
 レーザー波長     :9.4μm
 レーザー周波数    :20kHz
 L6の集光径     :54μm
 図5は、実施例1および比較例1にて切断した偏光フィルム6を示す側面図である。図5(a)は実施例1の偏光フィルム6であり、図5(b)は比較例1の偏光フィルム6である。両結果からわかるように、比較例1の偏光フィルム6の方が、熱膨張によりその断面に変形が生じている。また、最上面のPETフィルムには熱膨張により塊状物が生じていることも観測された。一方、実施例1の偏光フィルム6では、比較例1と異なり、切断面に変形が生じていない。さらに、最上面のPETフィルムに塊状物が生じていない。本発明のスリッター機(レーザー切断装置)によれば、50m/sという搬送速度であっても、偏光フィルムの切断面での品質劣化を抑制することができており、本発明の優位性は明らかに示されている。
Laser oscillator: CO 2 laser Output of laser oscillator: 10 W or more, 140 W or less Laser wavelength: 9.4 μm
Laser frequency: 20 kHz
Condensing diameter of L6: 54 μm
5 is a side view showing the polarizing film 6 cut in Example 1 and Comparative Example 1. FIG. 5A is the polarizing film 6 of Example 1, and FIG. 5B is the polarizing film 6 of Comparative Example 1. As can be seen from both results, the polarizing film 6 of Comparative Example 1 is deformed in its cross section due to thermal expansion. It was also observed that the uppermost PET film had lumps due to thermal expansion. On the other hand, unlike the comparative example 1, in the polarizing film 6 of Example 1, the cut surface is not deformed. Further, no lump is formed on the uppermost PET film. According to the slitter machine (laser cutting device) of the present invention, quality deterioration at the cut surface of the polarizing film can be suppressed even at a conveyance speed of 50 m / s, and the superiority of the present invention is apparent. Is shown in
 さらに、偏光フィルム6の切断面が良好か否かについて試験を行った。試験方法は、切断した偏光フィルムからセパレートフィルムを剥離し、COPフィルム面を粘着層を介してガラス板に貼り付けるものである。COPフィルムに変形が生じていれば、COPフィルムとガラス板との間に気泡が混入する。実施例1および比較例1の切断後の偏光フィルム6に試験を行ったところ、実施例1の偏光フィルム6には貼り付け後に気泡の混入は観測されなかったが、比較例1の偏光フィルム6には貼り付け後に気泡の混入が観測された。これは偏光フィルム6のうち、上から4層目のCOPフィルムの変形状態に起因した結果である。当該結果からも、本発明の優位性が裏付けられている。 Furthermore, a test was conducted as to whether or not the cut surface of the polarizing film 6 was good. A test method peels a separate film from the cut | polarized-light polarizing film, and affixes a COP film surface on a glass plate through an adhesion layer. If the COP film is deformed, bubbles are mixed between the COP film and the glass plate. When the polarizing film 6 after cutting of Example 1 and Comparative Example 1 was tested, no air bubbles were observed after being attached to the polarizing film 6 of Example 1, but the polarizing film 6 of Comparative Example 1 was observed. In the sample, bubbles were observed after being attached. This is a result resulting from the deformation state of the fourth COP film in the polarizing film 6. This result also confirms the superiority of the present invention.
 本発明に係るレーザー切断装置は、偏光フィルムを好適に切断するものとして利用可能である。よって、本発明は、偏光フィルムを使用する分野において広く利用可能である。 The laser cutting device according to the present invention can be used for suitably cutting a polarizing film. Therefore, the present invention can be widely used in the field where a polarizing film is used.
 1   レーザー光発振機
 2   ビームエキスパンダー
 3   ベンドミラー
 4   ビームスプリッター
 5   集光レンズ
 6   偏光フィルム
 10  レーザー切断装置
 11  巻出部
 12・12a・12b・12c・12d・12e・12f 搬送ロール
 13a・13b  巻取部
 14  測長計
 20  スリッター機
 L1~L6    レーザー光
 S   スリット
DESCRIPTION OF SYMBOLS 1 Laser beam oscillator 2 Beam expander 3 Bend mirror 4 Beam splitter 5 Condensing lens 6 Polarizing film 10 Laser cutting device 11 Unwinding part 12 * 12a * 12b * 12d * 12e * 12f Conveyance roll 13a * 13b Winding part 14 Length meter 20 Slitting machine L1-L6 Laser light S Slit

Claims (4)

  1.  偏光フィルムにレーザー光を照射して切断するレーザー切断装置において、
     レーザー光を発振するレーザー光発振機と、
     レーザー光発振機から発振されたレーザー光を偏光フィルムへ反射するベンドミラーと、
     偏光フィルムとベンドミラーとの間に配置され、上記レーザー光を集光する集光レンズとを備えており、
     上記ベンドミラーと集光レンズとの間に、上記レーザー光を透過および反射するビームスプリッターを備えるレーザー切断装置。
    In a laser cutting device that cuts a polarizing film by irradiating a laser beam,
    A laser beam oscillator that oscillates the laser beam;
    A bend mirror that reflects the laser light oscillated from the laser oscillator to the polarizing film;
    It is disposed between the polarizing film and the bend mirror, and includes a condensing lens that condenses the laser light,
    A laser cutting device comprising a beam splitter that transmits and reflects the laser light between the bend mirror and a condenser lens.
  2.  上記レーザー光発振機の出力が30W以上、400W以下であり、
     上記ビームスプリッターのレーザー光を透過および反射する比率が、3:7~7:3である請求項1に記載のレーザー切断装置。
    The output of the laser beam oscillator is 30 W or more and 400 W or less,
    The laser cutting device according to claim 1, wherein a ratio of transmitting and reflecting the laser beam of the beam splitter is from 3: 7 to 7: 3.
  3.  上記レーザー光発振機がCO2 レーザー光発振機である請求項1に記載のレーザー切断装置。 The laser cutting device according to claim 1, wherein the laser beam oscillator is a CO 2 laser beam oscillator.
  4.  偏光フィルムを巻出す巻出部と、偏光フィルムを巻取る巻取部とを備え、
     上記巻出部と巻取部との間に、請求項1~3の何れか1項に記載のレーザー切断装置を備えるスリッター機。
    An unwinding unit for unwinding the polarizing film, and a winding unit for winding the polarizing film;
    A slitter machine comprising the laser cutting device according to any one of claims 1 to 3 between the unwinding unit and the winding unit.
PCT/JP2011/071924 2010-10-06 2011-09-26 Laser cutter and slitter with same WO2012046587A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137011196A KR20130106847A (en) 2010-10-06 2011-09-26 Laser cutter and slitter with same
CN201180048178.8A CN103153526B (en) 2010-10-06 2011-09-26 Laser cutting device and there is the cutting cutter of this device
KR1020177010393A KR20170045376A (en) 2010-10-06 2011-09-26 Laser cutter and slitter with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010226778A JP5800486B2 (en) 2010-10-06 2010-10-06 Laser cutting apparatus, slitter machine equipped with the same, and laser cutting method
JP2010-226778 2010-10-06

Publications (1)

Publication Number Publication Date
WO2012046587A1 true WO2012046587A1 (en) 2012-04-12

Family

ID=45927582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071924 WO2012046587A1 (en) 2010-10-06 2011-09-26 Laser cutter and slitter with same

Country Status (5)

Country Link
JP (1) JP5800486B2 (en)
KR (2) KR20170045376A (en)
CN (1) CN103153526B (en)
TW (1) TWI501829B (en)
WO (1) WO2012046587A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6020884B2 (en) * 2012-05-31 2016-11-02 住友化学株式会社 Laser processing method
KR101817388B1 (en) * 2014-09-30 2018-01-10 주식회사 엘지화학 Cutting method for the polarizing plate, polarizing plate cut usuing the same
WO2019103137A1 (en) * 2017-11-27 2019-05-31 日東電工株式会社 Laser processing method for plastic film and plastic film
CN112277389A (en) * 2019-07-25 2021-01-29 林紫绮 Paper tube manufacturing method for increasing stiffness of tube and paper tube structure thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412834A (en) * 1990-04-28 1992-01-17 Kanzaki Paper Mfg Co Ltd Processing method for adhesive sheet
JP2007268581A (en) * 2006-03-31 2007-10-18 Sunx Ltd Laser beam machining apparatus
JP2008302376A (en) * 2007-06-06 2008-12-18 Nitto Denko Corp Laser beam machining method and product machined by laser beam
JP2009022978A (en) * 2007-07-19 2009-02-05 Nitto Denko Corp Laser beam machining method
JP2009061498A (en) * 2006-10-17 2009-03-26 Nitto Denko Corp Optical member adhering method and apparatus using the method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4734558A (en) * 1983-05-16 1988-03-29 Nec Corporation Laser machining apparatus with controllable mask
JPH0866790A (en) * 1994-08-30 1996-03-12 Sony Corp Laser beam machine
JPH1158056A (en) * 1997-08-12 1999-03-02 Nec Corp Laser texture machining device
US6760973B1 (en) * 1999-06-30 2004-07-13 Canon Kabushiki Kaisha Laser working method and method for producing ink jet recording head
DE20100659U1 (en) * 2001-01-15 2002-02-14 Innolas Gmbh marking
JP2004122167A (en) * 2002-10-01 2004-04-22 Nippon Steel Chem Co Ltd Laser beam machining apparatus and laser beam machining method
AU2003203192A1 (en) * 2003-01-21 2004-08-13 Toyota Steel Center Co., Ltd. Laser cutting device, laser cutting method, and laser cutting system
US7094193B2 (en) * 2003-08-28 2006-08-22 Philip Morris Usa Inc. High speed laser perforation of cigarette tipping paper
JP4215675B2 (en) * 2004-04-08 2009-01-28 日立ビアメカニクス株式会社 Laser processing machine for sheet workpieces
EP1716964B1 (en) * 2005-04-28 2009-01-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device and laser irradiation apparatus
JP4524689B2 (en) * 2007-02-20 2010-08-18 ソニー株式会社 Hologram reproducing apparatus, hologram reproducing method, and phase modulation element
JP2009154188A (en) * 2007-12-27 2009-07-16 Olympus Corp Laser machining method, laser machining tool, laser machining device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412834A (en) * 1990-04-28 1992-01-17 Kanzaki Paper Mfg Co Ltd Processing method for adhesive sheet
JP2007268581A (en) * 2006-03-31 2007-10-18 Sunx Ltd Laser beam machining apparatus
JP2009061498A (en) * 2006-10-17 2009-03-26 Nitto Denko Corp Optical member adhering method and apparatus using the method
JP2008302376A (en) * 2007-06-06 2008-12-18 Nitto Denko Corp Laser beam machining method and product machined by laser beam
JP2009022978A (en) * 2007-07-19 2009-02-05 Nitto Denko Corp Laser beam machining method

Also Published As

Publication number Publication date
JP5800486B2 (en) 2015-10-28
KR20170045376A (en) 2017-04-26
CN103153526B (en) 2016-01-20
JP2012076143A (en) 2012-04-19
CN103153526A (en) 2013-06-12
TW201221262A (en) 2012-06-01
KR20130106847A (en) 2013-09-30
TWI501829B (en) 2015-10-01

Similar Documents

Publication Publication Date Title
KR101706416B1 (en) Method for cutting polarizing plate and polarizing plate cut by said method
JP5827456B2 (en) Slitting machine
US4356375A (en) Process for producing lines of weakness in the protective backing of an adhesive laminate
JP5821155B2 (en) Optical display device production method and optical display device production system
JP5800486B2 (en) Laser cutting apparatus, slitter machine equipped with the same, and laser cutting method
KR102027010B1 (en) Method for manufacturing optical display panel and system for manufacturing optical display panel
JP4689763B1 (en) Liquid crystal display element continuous manufacturing system and liquid crystal display element continuous manufacturing method
JP6096350B2 (en) Manufacturing method of polarizing plate
WO2012086764A1 (en) Laser beam irradiation apparatus and laser beam irradiation method
JP2012076143A5 (en) Laser cutting apparatus, slitter machine equipped with the same, and laser cutting method
WO2013002187A1 (en) Knife edge and liquid-crystal display device manufacturing system including same
JP2010254439A (en) Film roll
WO2013094758A1 (en) Laser light irradiation system, laser light irradiation method, and recording medium
JP2015042423A (en) Cutting machine, slitter with the same and method for cutting film
JP2014121736A (en) Laser light irradiation apparatus and laser light irradiation method
JP2006130809A (en) Method of manufacturing laminate
WO2021145201A1 (en) System for producing film roll and method for producing film roll

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180048178.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137011196

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11830520

Country of ref document: EP

Kind code of ref document: A1