WO2012046377A1 - 擬似太陽光照射装置および太陽電池パネル用検査装置 - Google Patents

擬似太陽光照射装置および太陽電池パネル用検査装置 Download PDF

Info

Publication number
WO2012046377A1
WO2012046377A1 PCT/JP2011/004802 JP2011004802W WO2012046377A1 WO 2012046377 A1 WO2012046377 A1 WO 2012046377A1 JP 2011004802 W JP2011004802 W JP 2011004802W WO 2012046377 A1 WO2012046377 A1 WO 2012046377A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
irradiation device
irradiated
guide member
sunlight
Prior art date
Application number
PCT/JP2011/004802
Other languages
English (en)
French (fr)
Inventor
多田野 宏之
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to EP11819147.7A priority Critical patent/EP2631530A1/en
Priority to US13/392,023 priority patent/US20120287598A1/en
Priority to BR112012004908A priority patent/BR112012004908A2/pt
Priority to CN2011800037918A priority patent/CN102575820A/zh
Priority to IN1691CHN2012 priority patent/IN2012CN01691A/en
Publication of WO2012046377A1 publication Critical patent/WO2012046377A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/006Solar simulators, e.g. for testing photovoltaic panels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0028Light guide, e.g. taper
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention is a pseudo-sunlight irradiation device for irradiating an object to be irradiated with pseudo-sunlight with high directivity, and using this pseudo-sunlight irradiation device, the output characteristics of the solar cell panel are measured to determine pass / fail. It is related with the inspection apparatus for solar cell panels to perform.
  • an optical filter air mass
  • a xenon lamp or the like in order to obtain light having a desired spectrum.
  • Attempts have been made to make the illuminance distribution uniform in the object to be measured by reflecting and diffusing the simulated sunlight that has passed through the filter with a reflector.
  • Patent Document 1 discloses that two light sources, a xenon light source and a halogen light source, are mounted in a box-like frame below the irradiation surface while providing a partition, and the illuminance is made uniform by a reflecting plate inside each. Has been.
  • Patent Document 2 the entire light-receiving surface of the solar cell panel is virtually divided into a plurality of light-receiving sections, and a selected light amount adjusting member is disposed on the light-receiving surface of each section that is virtually divided. It is disclosed that the illuminance due to is made uniform.
  • a solar cell evaluation apparatus that measures the output of a solar cell panel by irradiating simulated sunlight irradiates the solar cell panel with illuminance equivalent to that of reference solar light
  • the illuminance needs to be uniform ( ⁇ 2% or less) within the effective area of the solar cell panel that is the object to be measured.
  • the illuminance is made uniform by adjusting the inclination of the light source or the reflector in the vicinity thereof, or installing a light amount adjusting member over the entire light receiving section of the solar cell panel.
  • the present invention solves the above-described conventional problems, and can easily and reliably irradiate irradiation light with uniform illuminance over the entire irradiation surface regardless of whether the irradiated object has a large area or when the lamp is replaced. It is an object of the present invention to provide an artificial solar irradiation device that can be used, and a solar cell panel inspection device that performs pass / fail determination by measuring output characteristics of the solar cell panel using the pseudo solar irradiation device.
  • the pseudo-sunlight irradiation device of the present invention is obtained through at least two light sources having different emission wavelength bands, optical elements that give different spectral distributions to light emitted from the two light sources, and the optical elements.
  • a plurality of optical systems having a light guide for propagating the emitted light and irradiating the surface of an external object with light, and the surface to be irradiated is virtually divided into a plurality of small areas.
  • the light guide member of the optical system is configured to irradiate the entire surface to be irradiated by a plurality of optical systems corresponding to each small surface to be irradiated. Achieved.
  • the optical system in the pseudo-sunlight irradiation device of the present invention includes a first light source and a first optical filter as the optical element that adjusts a spectrum of light emitted from the first light source.
  • a light mixing member that obtains simulated sunlight similar to sunlight by mixing light from the second light irradiation device and light from the second light irradiating device, and taking in the simulated sunlight from the light mixing member from one end face
  • a third light irradiation device having a third light guide member that propagates and uniformly irradiates light with high directivity with respect to the irradiated object from a flat surface.
  • the optical system in the pseudo-sunlight irradiation device of the present invention emits from the other end surface a first light source and light having enhanced directivity by taking in the emitted light from the first light source from one end surface.
  • a first light source which has the 1st light guide member and the 1st optical filter which adjusts the spectrum of the light radiate
  • the second light guide member that takes in the emitted light from one end face and emits light with enhanced directivity from the other end face, and a second that adjusts the spectrum of the light emitted from the other end face of the second light guide member
  • the optical system having the first light irradiation device, the second light irradiation device, and the third light irradiation device is defined as one unit, and the units are A plurality of two units arranged opposite to each other in the left-right direction and contacting the other end surfaces of the third light guide member of the third light irradiation device are arranged in the front-rear direction according to the size of the irradiated object. Yes.
  • the left set in which the first light irradiation device, the second light irradiation device, and the light mixing unit are disposed the first light irradiation device, the second Between the light irradiation device and the right set on which the light mixing unit is disposed, the mixed light from the left light mixing unit is taken in from one end surface and propagated through the inside, and the mixed light from the right light mixing unit is transmitted.
  • a fourth light guide member is provided in place of the third light irradiating device, which takes in from the other end surface and propagates through the inside thereof and uniformly irradiates light with high directivity to the irradiated object from the flat surface. Is a unit, and a plurality of the units are arranged in the front-rear direction according to the size of the irradiated object.
  • the inspection apparatus for solar cell panels of the present invention measures the output characteristics of the solar cell panel by using the simulated solar light irradiation apparatus of the present invention and makes a pass / fail judgment, thereby achieving the above object. .
  • the pseudo-sunlight irradiation device of the present invention it is obtained through at least two light sources having different emission wavelength bands, optical elements that give different spectral distributions to light emitted from the two light sources, and the optical elements, respectively.
  • a plurality of optical systems having a light guide for propagating the emitted light and irradiating the surface of the external object to be irradiated, and the surface to be irradiated is virtually divided into a plurality of small irradiated objects.
  • the light guide member of the optical system is irradiated on the entire irradiated surface by a plurality of optical systems corresponding to each small irradiated surface.
  • a lamp light source and an optical filter that can control the amount of light for each optical system are provided, and an irradiated surface for an object to be irradiated is virtually divided into a plurality of small irradiated surfaces. Since the light guide member is irradiated to the entire irradiated surface by a plurality of optical systems corresponding to each small irradiated surface, the irradiated surface can be irradiated even if the irradiated object has a large area or when the lamp is replaced. It becomes possible to irradiate irradiation light with uniform illuminance easily and reliably throughout.
  • the large area illumination surface is virtually divided into a plurality of parts, and the illumination intensity of the small area illumination surface for each optical system If the system is adjusted and made uniform with high accuracy, it becomes possible to make the irradiation intensity (light quantity) of the irradiation surface of a large area uniform with high accuracy only by combining them.
  • the irradiated surface for the irradiated object is virtually divided into a plurality of small irradiated surfaces, and the light guide member of the optical system corresponds to each small irradiated surface. Since the entire irradiated surface is irradiated by multiple optical systems, even if the irradiated object has a large area, it is only necessary to adjust the irradiation intensity of the small irradiated surface for each optical system. However, by combining a plurality of optical systems, it is possible to easily and reliably irradiate irradiation light with uniform illuminance over the entire irradiation surface.
  • FIG. 1 It is a perspective view which shows typically the principal part structural example of the pseudo
  • (A) is a longitudinal cross-sectional view of the xenon light source, reflector, aperture plate, and taper light guide member of FIG. 1, and
  • (b) is a plan view showing an aperture of the aperture plate of FIG.
  • FIG. 1 It is a perspective view which shows typically the principal part structural example of the simulated sunlight irradiation apparatus in Embodiment 2 of this invention. It is a longitudinal cross-sectional view which shows typically the example of a principal part structure of the simulated sunlight irradiation apparatus of FIG. It is a top view of the simulated sunlight irradiation apparatus of FIG. (A) And (b) is a perspective view for demonstrating further about the light quantity adjustment of the pseudo
  • each thickness, length, etc. of the structural member in each figure are not limited to the structure to illustrate from a viewpoint on drawing preparation.
  • FIG. 1 is a perspective view schematically showing a configuration example of a main part of a simulated solar light irradiation apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a longitudinal sectional view schematically showing an example of the configuration of the main part of the simulated solar light irradiation apparatus of FIG.
  • the pseudo-sunlight irradiating device 1 includes a xenon light source 2 of a xenon lamp and an inner surface that houses the xenon light source 2 covering a reflector 3a having a reflecting surface and a front portion thereof.
  • An aperture plate 3b, and a taper light guide member 4 that is a taper coupler that improves directivity by taking in xenon emission light from an opening (not shown) of the aperture plate 3b from its lower end surface and propagating the inside.
  • an air mass filter 5 as a first optical filter (spectrum adjustment filter) that filters the xenon light from the taper light guide member 4 to produce a pseudo-sunlight spectrum on the short wavelength side.
  • the xenon light from the air mass filter 5 corresponds to the spectrum on the short wavelength side of the pseudo-sunlight.
  • the simulated solar light irradiation device 1 includes a halogen light source 7 such as a halogen lamp, a reflector 8 whose inner surface accommodating the halogen light source 7 is a reflection surface, and a halogen emission light reflected by the inner surface of the reflector 8 below it.
  • the tapered light guide member 9 that improves the directivity by taking in from the end face and propagating the inside, and filtering the halogen emission light from the end face of the tapered light guide member 9 to produce pseudo-sunlight on the long wavelength side.
  • a second light irradiation device 11 having an air mass filter 10 as an optical filter (spectrum adjustment filter) is provided.
  • the second light irradiation device 11 reflects the light emitted from the halogen light source 7 by the reflector 8, collects the light, and emits the light from one end face of the tapered light guide member 9 called a taper coupler. Then, the light is propagated through the inside to be parallel light with high directivity, and light having high directivity is emitted from the other end face of the tapered light guide member 9 through the air mass filter 10 for spectrum adjustment.
  • the halogen light from the air mass filter 10 corresponds to the long wavelength side spectrum of pseudo-sunlight.
  • the halogen light source 7 may be a single filament type, in order to increase power, here, the halogen light source 7 uses a two-filament type and uses a tapered light guide member 9 corresponding to each of two halogen lamps.
  • the pseudo-sunlight irradiation device 1 reflects the short wavelength xenon emission light from the air mass filter 5 for spectrum adjustment of the first light irradiation device 6 and also for spectrum adjustment of the second light irradiation device 11.
  • Light mixing section such as a wavelength selection mirror (or wavelength mixing mirror) as a reflection / transmission means for obtaining pseudo-sunlight similar to sunlight by transmitting light having a long wavelength from the air mass filter 10 and transmitting it.
  • 12 and pseudo-sunlight, which is diffused light from the light mixing unit 12 is taken from one end face and propagated through the inside thereof to uniformly distribute light L having high directivity to the irradiated object 13 such as a solar cell panel.
  • a third light irradiation device 15 having a light guide member 14 for surface irradiation is provided. Moreover, as shown in FIG. 2, although the 3rd light irradiation apparatus 15 is arrange
  • FIG. 3 is a perspective view showing the xenon light source 2 of FIG. 1, the reflector 3a in which it is accommodated, and the opening plate 3b in front of the reflector 3a.
  • 4A is a longitudinal sectional view of the xenon light source 2, the reflector 3a, the aperture plate 3b and the tapered light guide member 4 in FIG. 1, and
  • FIG. 4B is a plan view showing the aperture of the aperture plate 3b in FIG. is there.
  • a reflector 3a for reflecting and collecting the light emitted from the xenon light source 2 and an opening plate 3b in front thereof are provided.
  • the opening 31 is formed at a predetermined interval in the opening plate 3b. Xenon light having good directivity is extracted from the opening 31 and is incident on the lower end surface of the tapered light guide member 4 that is a tapered coupler.
  • the present inventors irradiate the solar cell panel as the irradiated object 13 when reproducing the spectrum distribution of the sunlight with high accuracy as the pseudo-sunlight in order to check the quality of the solar cell panel.
  • the cause of the disturbance of the spectrum distribution of the pseudo sunlight is that stray light with poor directivity that leaks from the gap between the light source side and the end face side of the tapered light guide member may enter the adjacent tapered light guide member from the side surface. I found out that it was the cause.
  • the light shielding member may be, for example, a gap between the xenon light source 2 and the lower end surface side of the taper light guide member 4 and the adjacent taper guide. It arrange
  • FIG. 5 is a cross-sectional view schematically showing a first structure of the tapered light guide member that prevents stray light from entering the adjacent tapered light guide member.
  • 6 is a perspective view schematically showing a first structure of the tapered light guide member of FIG. Note that a plurality of lamp light sources 2 and reflectors 3a of the xenon lamp of FIG. 5 are provided in a lump in FIG.
  • the lamp light source 2 and the reflector 3a can take various structures in order to obtain a desired amount of emitted light.
  • the first structure and the second structure can also be applied to the tapered light guide member 9 for halogen light.
  • the outer peripheral side surfaces other than the upper end surface and the lower end surface of the tapered light guide member 4, which is a taper coupler that enhances the directivity of the xenon emission light, are independently shielded as shown in FIGS. 5A and 6. Covered with a member 41.
  • the light shielding member 41 By surrounding the periphery (side wall) of the tapered light guide member 4 with the light shielding member 41, the directivity leaked from the gap between the lower end surface of the tapered light guide member 4 and the opening of the opening plate 3b.
  • the bad stray light L1, L2 is irradiated to the light shielding member 41, taken in from the side surface of the tapered light guide member 4 as in the prior art, reflected on the wavelength selection mirror of the light mixing unit 12, and stray light L2 toward the light guide plate 14 side. Can be prevented from entering.
  • stray light on the side of the halogen light source 7 is also shielded on the outer peripheral side surfaces other than the one end face and the other end face of the taper light guide member 9 which is a taper coupler that enhances the directivity of the halogen emitted light as shown in FIGS.
  • the member 91 since halogen light is a heat ray, the temperature becomes high, and it is better not to cover the surroundings as much as possible. In short, if the light shielding rate is high on the halogen light source 7 side, the temperature tends to become high, so the light shielding rate is set low on the halogen light source 7 side.
  • the light blocking rate of the blocking member disposed between the adjacent tapered light guide members 9 that increases the directivity of the outgoing light from the halogen light source 7 increases the directivity of the outgoing light from the xenon light source 2. It is set smaller than the light shielding rate of the light shielding members arranged between the members 4. Thereby, it is possible to prevent an increase in member temperature due to absorption of halogen light by reflection of the light shielding member. For this reason, it is better that the reflection of the light shielding member is as low as possible.
  • the simulated solar light irradiation apparatus 1 of Embodiment 1 includes two sets of left and right sets of the first light irradiation apparatus 6, the second light irradiation apparatus 11, and the third light irradiation apparatus 15. In the first embodiment, these two sets are arranged side by side with 8 sets (16 units) in the front-rear direction.
  • a set of the first light irradiation device 6, the second light irradiation device 11 and the third light irradiation device 15 can be unitized and manufactured with high accuracy, and the first light irradiation device 6 and the second light irradiation device 11 can be manufactured.
  • the unit of the 3rd light irradiation apparatus 15 is combined, and it can be set as the magnitude
  • the xenon light source 2, the reflector 3a, and the aperture plate 3b are of a collective irradiation type, and these are used in common.
  • the xenon light source 2, the reflector 3 a, and the aperture plate 3 b can be provided for each tapered light guide member 4.
  • the set of the first light irradiation device 6, the second light irradiation device 11, and the third light irradiation device 15 is unitized as one unit, variation in irradiation intensity of the irradiation surface of one unit is suppressed with high accuracy.
  • the desired irradiation intensity (light quantity) can be combined and a uniform desired light intensity can be suppressed over the entire large irradiation surface. It can be set as irradiation intensity (light quantity).
  • the irradiation intensity of a large-area irradiation surface it is difficult to make the irradiation intensity of a large-area irradiation surface uniform with high accuracy, but if the large-area irradiation surface is divided into multiple parts and the irradiation intensity of the small-area irradiation surface is made uniform with high precision, By simply combining them, the irradiation intensity (light quantity) of the irradiation surface with a large area can be made uniform with high accuracy.
  • the solar cell panel The light intensity adjustment of the irradiation intensity (light intensity), which has been conventionally performed over time, can be made unnecessary by simply assembling it according to the size. That is, conventionally, according to the size of the solar cell panel, the irradiation intensity inspection device provided with the reference imaging cell at each important point measures which part of the entire irradiation area of the large area has low irradiation intensity.
  • FIG. 7 is a plan view of the simulated sunlight irradiation device 1 of FIG.
  • the set of the first light irradiation device 6, the second light irradiation device 11, and the third light irradiation device 15 is provided as two units on the left and right sides, and eight sets are provided in the front-rear direction. Since the light output from the reflector on the front and back side tends to be smaller, as shown in the plan view of FIG. 7, the light output from the reflectors at both ends is irradiated more than the light output from the other central part. Here, it is increased so that the amount of light is uniform. At both ends in the front-rear direction, the halogen light source 7 can be used with a slightly larger output halogen light source 7A.
  • the pseudo-sunlight irradiation device 1A includes a halogen light source 7A having a higher output light quantity than the halogen light source 7 on both ends in the front-rear direction, a reflector 8A having an inner surface that accommodates the halogen light source 7A, and the reflector 8A.
  • the tapered light guide member 9 that improves the directivity by taking in the halogen emitted light reflected by the inner surface of the light from one end face and propagating the light inside, and filtering the halogen emitted light from the other end face of the tapered light guide member 9 11
  • a of 2nd light irradiation apparatuses which have the air mass filter 10 as a 2nd optical filter which uses the long wavelength side pseudo sunlight are provided.
  • the reflector 8A, the tapered light guide member 9, and the air mass filter 10 are adapted to the output light quantity of the halogen light source 7A, and the reflectors 8 and 8A may be the same as long as they are adapted to the output light quantity. .
  • the set of the first light irradiation device 6, the second light irradiation device 11, and the third light irradiation device 15 is unitized and arranged in two right and left sets.
  • 8 sets one set of 2 units on the left and right; 16 units in total
  • the unit has an output light quantity so that the irradiation intensity (light quantity) can be adjusted.
  • a light source having a different output light quantity may be freely changed by providing a mounting portion between the halogen light source 7 and the halogen light source 7A having a higher output light quantity than the above.
  • FIG. 8A is a diagram showing the illuminance with respect to the wavelength of the xenon lamp
  • FIG. 8B is a diagram showing the illuminance with respect to the wavelength of the halogen lamp.
  • the emitted light from the xenon lamp has a heat ray component that contributes to the temperature rise and has a spectrum on the short wavelength side of sunlight
  • the emitted light from the halogen lamp is As shown in FIG. 8B, there are many heat ray components that contribute to the temperature rise, and the solar light has a long wavelength spectrum.
  • the quality test of the irradiated object 13 is performed by detecting whether or not the solar cell panel as the irradiated object 13 has a power generation amount that exceeds a specified level by the power generation amount detection device.
  • a solar cell panel inspection device can be obtained by the simulated solar light irradiation device 1 and the power generation amount detection device.
  • the pseudo-sunlight irradiating device 1 that emits the pseudo-sunlight uses a light source that uses a short wavelength band like the xenon light source 2 and has a large energy of light in the long-wavelength band. Since light of a wavelength band corresponding to the long wavelength band of sunlight is used like the halogen light source 7, it is possible to perform an inspection for accurately measuring the output characteristics of the solar cell panel. Further, as a light shielding method for the tapered light guide members 4 and 9 when using a light source that does not use light having a longer wavelength, stray light L2 is guided to the adjacent tapered light guide by providing a light shielding member between the adjacent tapered light guide members.
  • the stray light L2 having poor directivity leaked from the opening 31 of the opening plate 3b for introducing the xenon light source 2 can be prevented from entering the optical member from its side surface, and the tapered light guide for the xenon light source 2 is provided. It is possible to prevent the irradiation surface from being deteriorated by entering the portion 4 and being guided into the light guide members 14 and 14.
  • the light shielding on the halogen light source 7 side is covered with a light shielding member smaller than that on the xenon light source 2 side to prevent an abnormal temperature rise, and the spectral characteristics of the inner coating member such as a conventional reflection box are changed by high heat. It can also prevent the adverse effect of end.
  • FIG. 9A and FIG. 9B are perspective views for explaining light amount adjustment of the simulated solar light irradiation device 1 of the first embodiment. 9 (a) and 9 (b), the first light irradiation device 6 and the light mixing unit 12 (wavelength selection mirror) of FIG. 1 are not shown. Only the light amount adjustment may be omitted in the description using FIGS. 9A and 9B without the first light irradiation device 6 and the light mixing unit 12 (wavelength selection mirror). Similarly, the lamp light source and the reflector can have various structures. In short, the description of the light amount adjustment may be applied to FIG.
  • each light guide plate 14 and the light source lamp 2C are in one-to-one correspondence, and the amount of light output from the light source lamp 2C is individually controlled by exchanging the lamps or adjusting the current. Can do.
  • the amount of light incident on each light guide plate 14 can be adjusted by replacing with an air mass filter 10C (spectrum adjusting filter) having a different light transmittance.
  • the xenon light source 2 and the halogen light source 7 are individually controlled by changing lamps or adjusting the current. can do.
  • the air mass filter 5 and the air mass filter 10 can be replaced with air mass filters having different light transmittances, and the amount of light incident on each light guide plate 14 can be adjusted.
  • each light guide plate 14 is not divided into a batch irradiation type like a light source lamp 2D, and only the air mass filter 10D (spectrum adjustment filter) is replaced, and each filter transmittance is changed. May be controlled individually or by adding a correction filter for transmittance control and a light transmission filter separately from the air mass filter 10D (spectrum adjustment filter).
  • the amount of light to be adjusted can be adjusted. This cannot be applied to the simulated sunlight irradiation device 1 of the first embodiment, but conversely, the xenon light source 2 and the reflector 3a, the halogen light source 7 and the reflector 8 of the simulated sunlight irradiation device 1 of the first embodiment are shown in FIG. As shown in (b), it may be a batch irradiation type.
  • Embodiment 2 In the first embodiment, the case where the third light irradiation devices 15 are arranged on the left and right sides and the light guide members 14 are in contact with each other's end surfaces has been described. However, in the second embodiment, the left and right light guide members 14 are arranged. The case where the right and left 3rd light irradiation apparatuses 15 of the said Embodiment 1 are integrated is demonstrated because they became united.
  • the first light irradiation device 6, the second light irradiation device 11, and the third light irradiation device 15 are unitized as one set, and one set is unitized.
  • Two units that are arranged opposite each other in the left-right direction and abut the other end surfaces of the third light guide members 14, 14 of the third light irradiation device 15 are arranged in the front-rear direction according to the size of the irradiated object 13.
  • the left side where the first light irradiation device 6, the second light irradiation device 11, and the light mixing unit 12 are respectively disposed as a pseudo-sunlight irradiation device 1 ⁇ / b> A described later has been described.
  • the mixed light from the left light mixing unit 12 is taken in from one end face and the inside
  • a fourth light guide that takes in the mixed light from the right-side light mixing unit 12 from the other end surface and propagates it through the inside thereof to uniformly irradiate the irradiated object 13 with light having high directivity from the flat surface.
  • the member 14A is provided and unitized as a set, and a plurality of unitized sets are arranged in the front-rear direction according to the size of the irradiated object.
  • FIG. 10 is a perspective view schematically showing a configuration example of a main part of the simulated solar light irradiation apparatus according to the second embodiment of the present invention.
  • FIG. 11 is a vertical cross-sectional view schematically showing an example of the configuration of the main part of the simulated solar light irradiation apparatus of FIG. 10 and 11, the same reference numerals are given to the structural members that have the same effects as the structural members of FIGS. 1 and 2.
  • the simulated solar light irradiation device 1A of the second embodiment has the same configuration as the first light irradiation device 6 and the second light irradiation device 11 (or 11A) of the first embodiment.
  • the difference is that the left first light irradiation device 6 and the second light irradiation device 11 (or 11A) and the right first light irradiation device 6 and the second light irradiation device 11 (or 11A) are used as one unit. Yes.
  • it replaces with the structure of the 3rd light irradiation apparatus 15 of the said Embodiment 1, and uses 15A of 4th light irradiation apparatuses.
  • the simulated sunlight irradiation apparatus 1A according to the second embodiment uses the light guide member 14A in which the left and right light guide members 14 according to the first embodiment are integrated. This is different from the case of 1. Accordingly, the fourth light irradiation device 15A in which the left and right third light irradiation devices 15 are integrated is used.
  • the fourth light irradiation device 15A reflects short wavelength xenon emission light from the air mass filter 5 for spectrum adjustment of the left first light irradiation device 6 and also adjusts the spectrum of the second light irradiation device 11 on the left side.
  • the light mixing unit 12 and the right wavelength xenon emission light from the air mass filter 5 for spectrum adjustment of the first light irradiation device 6 on the right side are reflected, and the air mass for spectrum adjustment of the second light irradiation device 11 on the right side is reflected.
  • the right-side light mixing unit 12 such as the wavelength selection mirror (or wavelength mixing mirror) and the pseudo-sunlight that is emitted from the left-side light mixing unit 12 are taken in from one end face and propagated through the inside
  • the pseudo-sunlight, which is the light emitted from the light mixing unit 12 is taken from the other end surface and propagated through the inside, and the light L having high directivity is uniformly irradiated to the irradiated object 13 such as a solar cell panel.
  • a light guide member 14A is provided. In this case, in the fourth light irradiation device 15A, the light guide member 14A is integrated.
  • the light guide member 14A is not divided into two like the light guide members 14 and 14 of the first embodiment, there is no reflection at the end face between them, so that light can be used efficiently. Further, if the light guide members are arranged as in the first embodiment, the spectrum is adversely affected if a reflecting mirror is used when reflecting on the other end face. On the other hand, the light guide member 14A does not need to be divided into left and right like the light guide member 14 of the first embodiment, and therefore, light adjustment at the middle end face is eliminated, and the spectral characteristics are good. Can be. When the light guide member 14A is made of a glass material, if the area becomes large, manufacturing becomes difficult, but it can be optimally applied to a material with a small area.
  • the simulated solar light irradiation apparatus 1A includes the left and right first light irradiation apparatuses 6, the left and right second light irradiation apparatuses 11, and the fourth light irradiation apparatus 15A as one unit.
  • the one unit is provided in the front-rear direction so as to be arranged with no gaps in 8 sets.
  • the left and right first light irradiation devices 6, the left and right second light irradiation devices 11 and the fourth light irradiation device 15A can be unitized and manufactured with high accuracy as one unit.
  • the device 6, the left and right second light irradiating devices 11 and the fourth light irradiating device 15A are combined in the front-rear direction as one unit, and the size of the irradiation surface of the pseudo sunlight corresponding to the solar cell panel of a desired size is obtained. be able to. Therefore, one unit of the left and right first light irradiation devices 6, the left and right second light irradiation devices 11, and the fourth light irradiation device 15A is not limited to eight units in the front-rear direction. Thereby, it can be set as the unit which can change irradiation area freely.
  • the xenon light source 2, the reflector 3a, and the aperture plate 3b are of a collective irradiation type, and these are used in common.
  • the xenon light source 2, the reflector 3 a, and the aperture plate 3 b can be provided for each tapered light guide member 4.
  • the left and right first light irradiation devices 6, the left and right second light irradiation devices 11, and the fourth light irradiation device 15A are unitized as one unit, variation in irradiation intensity of the irradiation surface of one unit is suppressed.
  • the desired irradiation intensity (light quantity) can be accurately obtained, and even when a unitized irradiation surface is combined into a large irradiation surface, variation in irradiation intensity is suppressed uniformly over the entire large irradiation surface.
  • the desired irradiation intensity (light quantity) can be obtained.
  • the irradiation intensity of a large-area irradiation surface it is difficult to make the irradiation intensity of a large-area irradiation surface uniform with high accuracy, but if the large-area irradiation surface is divided into multiple parts and the irradiation intensity of the small-area irradiation surface is made uniform with high precision, By simply combining them, the irradiation intensity (light quantity) of the irradiation surface with a large area can be made uniform with high accuracy.
  • the left and right first light irradiation devices 6, the left and right second light irradiation devices 11 and the fourth light irradiation device 15A are set as one unit and the irradiation intensity (light quantity) of one unit is manufactured with high accuracy,
  • the irradiation intensity inspection device provided with the reference imaging cell at each important point measures which part of the entire irradiation area of the large area has low irradiation intensity.
  • it is necessary to adjust the irradiation intensity so as to increase the irradiation intensity in the portion where the irradiation intensity is low it can also be made unnecessary.
  • FIG. 12 is a plan view of the simulated solar light irradiation apparatus 1A shown in FIG.
  • the left and right first light irradiation devices 6, the left and right second light irradiation devices 11 and the fourth light irradiation device 15A are provided as one unit, and eight sets are provided in the front-rear direction.
  • the rear side reflector output light quantity tends to decrease, so that, as in the plan view of FIG. 8, as shown in the plan view of FIG. 13, the reflector output light quantity at both ends is changed to the other central side reflector. Here, it is increased so that the irradiation light quantity becomes more uniform than the output light quantity.
  • the halogen light source 7 can be used with a slightly larger output halogen light source 7A.
  • the left and right second light irradiation devices 11 and the fourth light irradiation device 15A are unitized, and, for example, 8 units are arranged in the front-rear direction.
  • at least the unit can replace the lamp with different output light amount or the air mass filter 5 (spectrum adjustment filter) with different light transmittance so that the irradiation intensity (light amount) can be adjusted, whereby the light guide plate 14A. It is possible to individually adjust the irradiation intensity (light quantity) incident on the.
  • a light source having a different output light quantity may be freely changed by providing a mounting portion between the halogen light source 7 and the halogen light source 7A having a higher output light quantity than the above.
  • the light guide members 14 and 14A that receive pseudo sunlight obtained by spectrally adjusting and mixing xenon light and halogen light are guided by the patterns (scatterers).
  • Light 14 and 14A can irradiate light of uniform illuminance, but the irradiation surface irradiated to the solar cell panel as an object to be irradiated is virtually divided into a plurality of parts, and each corresponding to the divided small irradiation surface Since the light guide members 14 and 14A are arranged, the illuminance can be easily uniformized over the plurality of small irradiation surfaces by adjusting only the amount of light emitted from the small irradiation surfaces to the light guide members 14 and 14A.
  • the solar cell panel has a large area, by arranging a plurality of optical systems in accordance with it, irradiation light with uniform illuminance can be created quickly and easily even with a large area.
  • irradiation light with uniform illuminance can be created quickly and easily even with a large area.
  • a light scattering member is printed on the light guide members 14 and 14A, and light incident on the light guide members 14 and 14A is scattered.
  • the surface of the solar cell panel as the irradiated object 13 is uniformly irradiated.
  • the scatterers (patterns) of the light guide members 14 and 14A are printed with a pattern such that the illuminance is uniform over the entire irradiated surface.
  • the light guides 14 and 14 of the left and right light source optical systems are integrated like the light guide 14A, when uneven illuminance occurs on the irradiation surface, the light guides 14A of the integrated light source optical system Therefore, it is difficult to partially adjust the illuminance on the irradiated surface by only adjusting the light amount, compared to the light guides 14 and 14 of the left and right light source optical systems. Further, if the left and right light guides 14 and 14 are integrated as the light guide 14A, uniform light is generated in a wider area, and even if the light enters from both ends of the light guide, uniform light is emitted. Since a printed pattern of a scatterer is required, it is difficult to design the printed pattern.
  • the integration of the left and right light guides 14 and 14 has a radiation area that does not hinder the creation of uniform light. There is a need to do.
  • the left and right light guides 14 and 14 are easier to adjust the illuminance unevenness on the irradiated surface than those obtained by integrating them.
  • the solar cell panel is enlarged, not only a wide range of uniform light can be created by simply arranging a large number of optical systems of the present invention in parallel, but also the amount of light emitted from the light source optical system in each optical system can be adjusted. Even with a large area, the illuminance on the irradiation surface can be adjusted uniformly.
  • a light shielding member is used for the xenon light source 2 and the tapered light guide member 4. It arrange
  • FIG. 5A a gap between the lower end surface of the tapered light guide member 4 and the opening of the opening plate 3 b is obtained by surrounding the periphery (side wall) of the tapered light guide member 4 with the light shielding member 41.
  • the stray light L1 and L2 having poor directivity leaking from the light is irradiated onto the light shielding member 41, taken in from the side surface of the tapered light guide member 4 as in the prior art, and reflected and guided to the wavelength selection mirror of the light mixing unit 12. It is possible to prevent the stray light L2 from entering the optical plate 14 side.
  • a ring having a predetermined height is provided on the outer peripheral side of the cross-sectional shape of the tapered light guide member 4 so as to cover the gap between the lower end surface of the tapered light guide member 4 and the opening plate 3b facing the reflector 3a.
  • the light shielding member 42 By arranging the light shielding member 42 in the shape of a ring, the stray light L1, L2 having poor directivity leaked from the gap between the lower end surface of the tapered light guide member 4 and the opening of the opening plate 3b
  • the inner surface is irradiated and is not taken into the inside from the side surface of the adjacent tapered light guide member 4 as in the prior art, but is reflected on the wavelength selection mirror of the light mixing unit 12 and prevented from entering the light guide plate 14 side as stray light L2. Can do.
  • the simulated solar light irradiation device 1 provides at least two light sources having different emission wavelength bands and different spectral distributions to the light emitted from the two light sources, respectively.
  • a plurality of optical systems each having an optical element and a light guide that propagates outgoing light obtained through each optical element and irradiates the surface to the outside are disposed, and a plurality of irradiation surfaces with respect to the irradiated object 13 are provided. It is virtually divided into a plurality of small irradiated surfaces, and the light guide member of the optical system is irradiated to the entire irradiated surface by the plurality of optical systems corresponding to each small irradiated surface. .
  • the object of the present invention can be achieved, which can easily and reliably irradiate irradiation light with uniform illuminance over the entire irradiation surface even when the object to be irradiated has a large area or when the lamp is replaced. .
  • the optical system includes a first light source (xenon lamp 2) and light having enhanced directivity by taking light emitted from the first light source from one end surface.
  • a first light guide member (tapered light guide member 4) that emits from the end surface and a first optical filter (air mass filter 5) that adjusts the spectrum of light emitted from the other end surface of the first light guide member.
  • the case where the 3rd light irradiation apparatus 15 which has the 3rd light guide member (light guide member 14) which uniformly irradiates a surface was provided was demonstrated. As shown in FIG.
  • the optical system is not limited to this, and a first light source (xenon lamp 2) and a first optical filter (air mass) as the optical element for adjusting the spectrum of light emitted from the first light source.
  • a first light irradiation device 6 having a filter 5), a second light source (halogen lamp 7), and a second optical filter (air mass filter 10) as an optical element for adjusting the spectrum of light emitted from the second light source.
  • a light mixing member 12 that obtains pseudo sunlight similar to sunlight by mixing the light from the first light irradiation device 6 and the light from the second light irradiation device 11,
  • a third light guide member 14 that takes in the pseudo-sunlight from the light mixing member 12 from one end surface and propagates the interior thereof to uniformly irradiate the irradiated object 13 with light having high directivity from a flat surface;
  • Third light irradiation device having 5 and may be provided.
  • the first light irradiation device 6, the second light irradiation device 11, and the third light irradiation device 15 are set as one unit, and the units are arranged to face each other in the left-right direction.
  • a plurality of two units in which the other end surfaces of the third light guide member (light guide member 14) are in contact with each other are arranged in the front-rear direction according to the size of the irradiated object 13.
  • the left set which has arrange
  • the mixed light from the left light mixing unit 12 is taken in from one end face to propagate through the right side set where the light mixing unit 12 is arranged, and the mixed light from the right light mixing unit 12 is transmitted to the other end face.
  • the fourth light guide member (light guide member 14A) is provided, which propagates the light from the inside and propagates the inside thereof to uniformly irradiate the irradiated object 13 with light having a high directivity from the flat surface.
  • a plurality of one unit are arranged in the front-rear direction.
  • the size of the opening 31 itself of the opening plate 3b is changed to change the surface irradiation from the light guide member 14A.
  • the balance of the amount of emitted light it is possible to change only the amount of light without changing the state of the optical system in the middle of making light incident on the light guide member 14A from both sides. That is, even after the spectrum distribution of the pseudo sunlight is fixed, the amount of light emitted from the light guide member 14A can be adjusted without changing the spectrum distribution of the pseudo sunlight.
  • the light guide plate 14A and the light source lamp 2C are made to correspond to each other one by one.
  • the amount of light output from the light source lamp 2C can be individually controlled.
  • the amount of light incident on the light guide plate 14A can be adjusted by replacing the air mass filter 10C (spectrum adjusting filter) with a different light transmittance.
  • the air mass filter 5 and the air mass filter 10 can be replaced with air mass filters having different light transmittances, and the amount of light incident on the light guide plate 14A can be adjusted.
  • the light guide plate 14A is not divided into a batch irradiation type like the light source lamp 2D, and only the air mass filter 10D (spectrum adjustment filter) is replaced to change the transmittance of each filter.
  • the light may be controlled individually or may be incident on the light guide plate 14A by adding a correction filter for transmittance control and a light transmission filter separately from the air mass filter 10D (spectrum adjustment filter). It can be adjusted while suppressing the amount of light.
  • a plurality of sets of the first light irradiation device 6, the second light irradiation device 11, and the third light irradiation device 15 or 15 ⁇ / b> A are provided, and the first tapered light guide members 4 are connected to each other.
  • the second taper light guide members 9 are arranged adjacent to each other, and a light shielding member is disposed between the adjacent first taper light guide members 4 and / or between the adjacent second taper light guide members 9.
  • the present invention is not limited to this, and artificial sunlight from either one of the first light irradiation device 6 and the second light irradiation device 11 is taken in from one end face and the inside It is good also as a pseudo-sunlight irradiation apparatus which has the light guide member 14 or 14A for surface irradiation which propagates the light and uniformly irradiates light with high directivity with respect to the to-be-irradiated object 3 from a flat surface.
  • the light guide member of any one of the first light irradiation device 6 and the second light irradiation device 11 is provided with a light shielding member so that stray light does not enter from outer walls other than one end surface and the other end surface of the tapered light guide member. Arranged and shaded.
  • the air mass filter 5 as the first optical filter is composed of a plurality of sheets that adjust the spectrum of the xenon light source 2, and one of them is a near infrared.
  • the light shielding member 41 or 42 is disposed so as to cover a surface other than the light incident / exit surface of the tapered light guide member 4 that is a reflecting mirror that reflects only light and that enhances the directivity of the emitted light from the xenon light source 2. . As a result, stray light from the near-infrared reflecting mirror can be prevented.
  • the present invention is a pseudo-sunlight irradiation device for irradiating an object to be irradiated with pseudo-sunlight with high directivity, and using this pseudo-sunlight irradiation device, the output characteristics of the solar cell panel are measured to determine pass / fail.
  • the output characteristics of the solar cell panel are measured to determine pass / fail.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)
  • Photovoltaic Devices (AREA)

Abstract

被照射物が大面積であってもランプ交換時であっても、照射面全体にわたって均一照度の照射光を容易かつ確実に照射する。光学系毎にその光量を制御できるランプ光源や光学フィルタが設けられており、被照射物13に対する被照射面が複数に仮想分割されて複数の小被照射面に構成され、光学系毎の導光部材14が各小被照射面にそれぞれ対応して複数の光学系により被照射面の全体に照射される。要するに、大面積の照射面の照射強度を高精度で均一にすることは難しいが、大面積の照射面を複数に仮想分割し、光学系毎の小面積の照射面の照射強度を、その光学系を調整して高精度に均一化すれば、それらを集合して組み合わせるだけで、大面積の照射面の照射強度(光量)を高精度に均一化することが可能となる。

Description

擬似太陽光照射装置および太陽電池パネル用検査装置
 本発明は、被照射物に対して指向性の高い擬似太陽光を照射するための擬似太陽光照射装置、この擬似太陽光照射装置を用いて太陽電池パネルの出力特性を測定して良否判定を行う太陽電池パネル用検査装置に関する。
 従来、太陽光のスペクトル分布を高精度に再現するための光源装置としての従来の擬似太陽光照射装置では、所望のスペクトルを有する光を得るために、キセノンランプなどを点灯して光学フィルタ(エアマスフィルタ)を通過した擬似太陽光を、反射板で反射拡散させることによって被測定対象における照度分布を均一にする試みが為されてきた。
 特許文献1では、照射面下の箱状フレーム内にキセノン光源とハロゲン光源の2つの光源を各々仕切りを設けつつ搭載して、それぞれの内部にある反射板にて照度を均一化することが開示されている。
 特許文献2では、太陽電池パネルの受光面全域を複数の受光区画に仮想分割し、この仮想分割した各区間の受光面に対して選択した光量調整部材を配置して、各区間受光面で光源による照度を均一化することが開示されている。
特許第3500352号 特開2006-216619号公報
 上記特許文献1に開示されている従来の構成では、擬似太陽光を照射して太陽電池パネルの出力を測定する太陽電池評価装置は、基準太陽光と同等の照度を太陽電池パネルに照射し、また、被測定対象物である太陽電池パネルの有効面積内において、照度が均一(±2パーセント以下)であることが必要である。この従来技術では、光源ないしその近傍にある反射板の傾きを調整したり、太陽電池パネルの受光区画全域に光量調整部材を設置したりすることにより、照度の均一化を行っていた。しかし、反射板の調整では、微少光量の照度を調整することが困難であることや、照射光量を均一化するためには複数の反射板を設置し、それぞれを独立して反射板の傾きを調整することが必要となって、照射光量の均一化も時間がかかり困難である。
 また、上記特許文献2に開示されている従来の構成では、分割した受光面には同一種の光源でも複数の箇所から光が入射されるため、照射光量を均一化するには非常に時間がかかる作業であることや、ランプ交換時には、ランプの個体差や設置誤差による照度ムラを解消するためには、照射光量を均一化する調整を一からやり直す必要があった。
 本発明は、上記従来の問題を解決するもので、被照射物が大面積であってもランプ交換時であっても、照射面全体にわたって均一照度の照射光を容易かつ確実に照射することができる擬似太陽光照射装置、この擬似太陽光照射装置を用いて太陽電池パネルの出力特性を測定して良否判定を行う太陽電池パネル用検査装置を提供することを目的とする。
 本発明の擬似太陽光照射装置は、発光波長帯の異なる少なくとも2つの光源と、該2つの光源からの出射光それぞれに異なるスペクトル分布をそれぞれ与える各光学素子と、該各光学素子を介して得られた出射光を伝搬させて外部の被照射物に面照射する導光体とを有した光学系が複数配設され、該被照射物に対する被照射面が複数に仮想分割されて複数の小被照射面に構成され、該光学系の導光部材が各小被照射面にそれぞれ対応して複数の光学系により該被照射面の全体に照射されるものであり、そのことにより上記目的が達成される。
 また、好ましくは、本発明の擬似太陽光照射装置における光学系は、第1光源と、該第1光源から出射される光のスペクトルを調整する前記光学素子としての第1光学フィルタとを有する第1光照射装置と、第2光源と、該第2光源から出射される光のスペクトルを調整する該光学素子としての第2光学フィルタとを有する第2光照射装置と、該第1光照射装置からの光と該第2光照射装置からの光を混合して太陽光に類似した擬似太陽光を得る光混合部材と、該光混合部材からの擬似太陽光を一方端面から取り込んでその内部を伝搬させて被照射物に対して指向性の高い光を平坦面から均一に面照射する第3導光部材とを有する第3光照射装置とが設けられている。
 さらに、好ましくは、本発明の擬似太陽光照射装置における光学系は、第1光源と、該第1光源からの出射光を一方端面から取り込んで指向性が高められた光を他方端面から出射する第1導光部材と、該第1導光部材の他方端面から出射される光のスペクトルを調整する第1光学フィルタとを有する第1光照射装置と、第2光源と、該第2光源からの出射光を一方端面から取り込んで指向性が高められた光を他方端面から出射する第2導光部材と、該第2導光部材の他方端面から出射される光のスペクトルを調整する第2光学フィルタとを有する第2光照射装置と、該第1光照射装置からの光と該第2光照射装置からの光を混合して太陽光に類似した擬似太陽光を得る光混合部材と、該光混合部材からの擬似太陽光を一方端面から取り込んでその内部を伝搬させて被照射物に対して指向性の高い光を平坦面から均一に面照射する第3導光部材とを有する第3光照射装置とが設けられている。
 さらに、好ましくは、本発明の擬似太陽光照射装置において、前記第1光照射装置、前記第2光照射装置および前記第3光照射装置を有する前記光学系を1ユニットとし、該1ユニット同士を左右方向に対向配置して、該第3光照射装置の第3導光部材の他方端面同士を当接した2ユニットを、前記被照射物のサイズに応じて、前後方向に複数並べて配置されている。
 さらに、好ましくは、本発明の擬似太陽光照射装置において、前記第1光照射装置、前記第2光照射装置および前記光混合部を配置した左側セットと、該第1光照射装置、該第2光照射装置および該光混合部を配置した右側セットとの間に、左側の光混合部からの混合光を一方端面から取り込んでその内部を伝搬させると共に、右側の光混合部からの混合光を他方端面から取り込んでその内部を伝搬させて被照射物に対して指向性の高い光を平坦面から均一に面照射する第4導光部材が前記第3光照射装置に代えて設けられ、これを1ユニットとし、被照射物のサイズに応じて、該1ユニットが前後方向に複数並べてられて配置されている。
 本発明の太陽電池パネル用検査装置は、本発明の上記擬似太陽光照射装置を用いて太陽電池パネルの出力特性を測定して良否判定を行うものであり、そのことにより上記目的が達成される。
 上記構成により、以下、本発明の作用を説明する。
 本発明の擬似太陽光照射装置においては、発光波長帯の異なる少なくとも2つの光源と、2つの光源からの出射光それぞれに異なるスペクトル分布をそれぞれ与える各光学素子と、各光学素子を介して得られた出射光を伝搬させて外部の被照射物に面照射する導光体とを有した光学系が複数配設され、被照射物に対する被照射面が複数に仮想分割されて複数の小被照射面に構成され、光学系の導光部材が各小被照射面にそれぞれ対応して複数の光学系により被照射面の全体に照射される。
 これによって、光学系毎にその光量を制御できるランプ光源や光学フィルタが設けられており、被照射物に対する被照射面が複数に仮想分割されて複数の小被照射面に構成され、光学系の導光部材が各小被照射面にそれぞれ対応して複数の光学系により被照射面の全体に照射されるので、被照射物が大面積であってもランプ交換時であっても、照射面全体にわたって均一照度の照射光を容易かつ確実に照射することが可能となる。要するに、大面積の照射面の照射強度を高精度で均一にすることは難しいが、大面積の照射面を複数に仮想分割し、光学系毎の小面積の照射面の照射強度を、その光学系を調整して高精度に均一化すれば、それらを組み合わせるだけで、大面積の照射面の照射強度(光量)を高精度に均一化することが可能となる。
 以上により、本発明によれば、被照射物に対する被照射面が複数に仮想分割されて複数の小被照射面に構成され、光学系の導光部材が各小被照射面にそれぞれ対応して複数の光学系により被照射面の全体に照射されるため、光学系毎の小面積の被照射面の照射強度を調整するだけで、被照射物が大面積であってもランプ交換時であっても、複数の光学系を組み合わせれば、照射面全体にわたって均一照度の照射光を容易かつ確実に照射することができる。
本発明の実施形態1における擬似太陽光照射装置の要部構成例を模式的に示す斜視図である。 図1の擬似太陽光照射装置の要部構成例を模式的に示す縦断面図である。 図1のキセノン光源、これが収容されるリフレクタおよびその前方の開口板を示す斜視図である。 (a)は図1のキセノン光源、リフレクタ、開口板およびテーパ導光部材の縦断面図、(b)は図3の開口板の開口部を示す平面図である。 迷光が隣のテーパ導光部材内に進入するのを防ぐテーパ導光部材の第1の構造を模式的に示す断面図である。 図5のテーパ導光部材の第1の構造の外観を模式的に示す斜視図である。 図1の擬似太陽光照射装置の平面図である。 (a)は、キセノンランプの波長に対する照度を示す図、(b)は、ハロゲンランプの波長に対する照度を示す図である。 (a)および(b)は、本実施形態1の擬似太陽光照射装置の光量調整についてさらに説明するための斜視図である。 本発明の実施形態2における擬似太陽光照射装置の要部構成例を模式的に示す斜視図である。 図10の擬似太陽光照射装置の要部構成例を模式的に示す縦断面図である。 図10の擬似太陽光照射装置の平面図である。 (a)および(b)は、本実施形態2の擬似太陽光照射装置の光量調整についてさらに説明するための斜視図である。 図1の擬似太陽光照射装置における要部構成例の変形例を模式的に示す縦断面図である。
 1、1A 擬似太陽光照射装置
 2 キセノン光源
 3a リフレクタ
 3b 開口板
 31 開口部
 32 遮光部材
 4 テーパ導光部材
 41,91 遮光部材
 42,92 遮光部材
 5 エアマスフィルタ(第1光学フィルタ;スペクトル調整用フィルタ)
 6 第1光照射装置
 7,7A,2C,2D ハロゲン光源
 8,8A,3C,3D リフレクタ
 9,9C,9D テーパ導光部材
 93 遮光部材(遮光板)
 10,10C,10D エアマスフィルタ(第2光学フィルタ;スペクトル調整用フィルタ)
 11 第2光照射装置
 12 光混合部(波長選択ミラー)
 13 被照射物(太陽電池パネル)
 14,14A 導光部材
 15 第3光照射装置
 15A 第4光照射装置
 L1,L2 迷光
 以下に、本発明の擬似太陽光照射装置および、この擬似太陽光照射装置を太陽電池パネル用検査装置に適用した場合の実施形態1、2について図面を参照しながら詳細に説明する。なお、各図における構成部材のそれぞれの厚みや長さなどは図面作成上の観点から、図示する構成に限定されるものではない。
 (実施形態1)
 図1は、本発明の実施形態1における擬似太陽光照射装置の要部構成例を模式的に示す斜視図である。図2は、図1の擬似太陽光照射装置の要部構成例を模式的に示す縦断面図である。
 図1および図2において、本実施形態1の擬似太陽光照射装置1には、キセノンランプのキセノン光源2と、キセノン光源2を内部に収容する内面が反射面のリフレクタ3aおよびその前方部分を覆う開口板3bと、この開口板3bの開口部(図示せず)からのキセノン出射光をその下端面から取り込んで内部を伝搬させることにより指向性を良くするテーパカプラであるテーパ導光部材4と、このテーパ導光部材4からのキセノン光をフィルタリングして短波長側の擬似太陽光のスペクトルとする第1光学フィルタ(スペクトル調整用フィルタ)としてのエアマスフィルタ5とを有する第1光照射装置6が設けられている。このように、第1光照射装置6は、キセノン光源2からの出射光がリフレクタ3aによって反射され集光されて、開口板3bの開口部から出射され、このキセノン出射光を、テーパカプラと呼ばれるテーパ導光部材4の下端面から取り込んでその内部を伝搬させて指向性の高い平行光とし、テーパ導光部材4の上端面からエアマスフィルタ5を通して指向性の高いキセノン光を出射する。このエアマスフィルタ5からのキセノン光は擬似太陽光の短波長側のスペクトルに相当している。
 また、この擬似太陽光照射装置1には、ハロゲンランプなどのハロゲン光源7と、ハロゲン光源7を収容する内面が反射面のリフレクタ8と、このリフレクタ8の内面で反射したハロゲン出射光をその下端面から取り込んで内部を伝搬させることにより指向性を良くするテーパ導光部材9と、このテーパ導光部材9の端面からのハロゲン出射光をフィルタリングして長波長側の擬似太陽光とする第2光学フィルタ(スペクトル調整用フィルタ)としてのエアマスフィルタ10とを有する第2光照射装置11が設けられている。このように、第2光照射装置11は、ハロゲン光源7の出射光がリフレクタ8で反射し集光して出射され、このハロゲン出射光を、テーパカプラと呼ばれるテーパ導光部材9の一方端面から取り込んでその内部を伝搬させて指向性の高い平行光とし、テーパ導光部材9の他方端面からスペクトル調整用のエアマスフィルタ10を通して指向性の高いハロゲン出射光を出射する。このエアマスフィルタ10からのハロゲン光は擬似太陽光の長波長側のスペクトルに相当している。ハロゲン光源7は1フィラメントタイプでもよいが、パワーを稼ぐために、ここでは、ハロゲン光源7は2フィラメントタイプを用い、二つのハロゲンランプに対応してそれぞれテーパ導光部材9をそれぞれ用いている。
 さらに、この擬似太陽光照射装置1には、第1光照射装置6のスペクトル調整用のエアマスフィルタ5からの短波長のキセノン出射光を反射させると共に、第2光照射装置11のスペクトル調整用のエアマスフィルタ10からの長波長のハロゲン出射光を透過させることにより光混合して太陽光に類似した擬似太陽光を得る反射・透過手段としての波長選択ミラー(または波長混合ミラー)などの光混合部12と、この光混合部12からの拡散光である擬似太陽光を一方端面から取り込んでその内部を伝搬させて例えば太陽電池パネルなどの被照射物13に対して指向性の高い光Lを均一に面照射する導光部材14とを有する第3光照射装置15が設けられている。また、図2に示すように、第3光照射装置15が左右に配置されているが、導光部材14同士はお互いの端面を当接している。
 図3は、図1のキセノン光源2、これが収容されるリフレクタ3aおよびその前方の開口板3bを示す斜視図である。図4(a)は図1のキセノン光源2、リフレクタ3a、開口板3bおよびテーパ導光部材4の縦断面図、図4(b)は図3の開口板3bの開口部を示す平面図である。
 図3、図4(a)および図4(b)に示すように、キセノン光源2からの出射光を反射して集光するためのリフレクタ3aおよび、その前方に開口板3bが設けられており、開口板3bに所定間隔を置いて開口部31が形成されている。この開口部31から指向性のよいキセノン光を取り出して、テーパカプラであるテーパ導光部材4の下端面に入射させるように構成している。
 ここで、本発明者らは、太陽電池パネルの良否検査を行うために、擬似太陽光として太陽光のスペクトル分布を高精度に再現する際に、被照射物13としての太陽電池パネルに照射する擬似太陽光のスペクトル分布の乱れの原因が、光源側とテーパ導光部材の端面側との間の隙間から漏れる指向性の悪い迷光が隣のテーパ導光部材内にその側面から進入することが原因であることを見出した。迷光が隣のテーパ導光部材内にその側面から進入するのを防ぐために、遮光部材を、例えば、キセノン光源2とテーパ導光部材4の下端面側との間の隙間と、隣のテーパ導光部材4との間に配設する。
 図5は、迷光が隣のテーパ導光部材内に進入するのを防ぐテーパ導光部材の第1の構造を模式的に示す断面図である。図6は、図5のテーパ導光部材の第1の構造を模式的に示す斜視図である。なお、図5のキセノンランプのランプ光源2やリフレクタ3aは、図1では複数一括して設けられているが、ここでは隣接2セット毎の構成になっている。ランプ光源2やリフレクタ3aは、所望の出射光量を得るため、各種構造を取り得る。さらに、この第1の構造および第2の構造は、ハロゲン光用のテーパ導光部材9にも適用することができる。
 第1光照射装置6において、キセノン出射光の指向性を高めるテーパカプラであるテーパ導光部材4の上端面と下端面以外の外周側面は、図5(a)および図6のように独立した遮光部材41で覆っている。このように、遮光部材41でテーパ導光部材4の周囲(側壁)を囲ったことによって、テーパ導光部材4の下端面と開口板3bの開口部との間の隙間から漏れた指向性の悪い迷光L1,L2が遮光部材41に照射され、従来のようにテーパ導光部材4の側面から内部に取り込まれて、光混合部12の波長選択ミラーに反射して導光板14側に迷光L2として入るのを防止することができる。
 一方、ハロゲン光源7側での迷光も、ハロゲン出射光の指向性を高めるテーパカプラであるテーパ導光部材9の一方端面と他方端面以外の外周側面が、図5および図6のように独立した遮光部材91で覆われていてもよいが、ハロゲン光は、熱線であるため温度が高くなり、できるだけ周囲を覆わない方がよい。要するに、ハロゲン光源7側では遮光率が高いと高温になり易いので、ハロゲン光源7側では遮光率を低く設定する。ハロゲン光源7からの出射光の指向性を高める、隣接したテーパ導光部材9間に配置された遮断部材の遮光率が、キセノン光源2からの出射光の指向性を高める、隣接したテーパ導光部材4間に配置された遮光部材の遮光率よりも小さく設定する。これによって、遮光部材の反射でハロゲン光が吸収されることによる部材温度の上昇を防ぐことができる。このため、遮光部材の反射は可能な範囲で低い方がよい。
 次に、照射面積変更自在なユニット化について説明する。
 本実施形態1の擬似太陽光照射装置1は、図1に示すように、上記第1光照射装置6、第2光照射装置11および第3光照射装置15の組が左右2組配設され、この2組が、本実施形態1では前後方向に8セット(16ユニット)隙間なく並べられて設けられている。上記第1光照射装置6、第2光照射装置11および第3光照射装置15の組がユニット化されて精度よく製造することができ、上記第1光照射装置6、第2光照射装置11および第3光照射装置15のユニットが組み合わされて、所望の大きさの太陽電池パネルに対応した擬似太陽光の照射面の大きさとすることができる。したがって、上記第1光照射装置6、第2光照射装置11および第3光照射装置15の組の左右2組が、前後方向に8セット(16ユニット)に全く限ることはない。これによって、照射面積変更自在な光学系としてユニット化とすることができる。なお、この場合、第1光照射装置6において、キセノン光源2と、リフレクタ3aおよび開口板3bは一括照射型であるので、これらについては共通に用いることになる。これらのキセノン光源2とリフレクタ3aおよび開口板3bを、テーパ導光部材4毎に設けることもできる。
 このように、上記第1光照射装置6、第2光照射装置11および第3光照射装置15の組を1単位としてユニット化すると、1単位の照射面の照射強度のばらつきを抑えて精度よく所望の照射強度(光量)とすることができて、ユニット化した1単位の照射面を組み合わせて大きい照射面とする場合にも、大きい照射面全体で照射強度のばらつきを抑えて均一な所望の照射強度(光量)とすることができる。要するに、大面積の照射面の照射強度を高精度で均一にすることは難しいが、大面積の照射面を複数に分割し、その小面積の照射面の照射強度を高精度に均一化すれば、それらを組み合わせるだけで、大面積の照射面の照射強度(光量)を高精度に均一化することができる。
 したがって、第1光照射装置6、第2光照射装置11および第3光照射装置15の組を1ユニットとして、1ユニットの照射強度(光量)を高精度に製造しておけば、太陽電池パネルのサイズに合わせて組み立てるだけで、従来、時間かけて行っていた照射強度(光量)の光量調整を不要とすることができる。即ち、従来は、太陽電池パネルのサイズに応じて、各要所に基準撮像セルが設けられた照射強度検査装置により、大面積の照射面全体のうちのどの部分の照射強度が低いかを測定し、その照射強度が低い部分の照射強度を上げるように照射強度の調整をする必要があったが、それも不要とすることができる。また、定期的なメンテナンス時にも、照射強度調整が不要である。ユニット化した1単位の光照射装置をばらつきなく精度よく製造しておけば、照射強度調整が不要であり、メンテナンス性に優れている。従来はこの照射面全体の照射強度調整(光量調整)に時間がかかっていた。
 次に、照射面全体の照射強度調整(光量調整)について更に説明する。
 図7は、図1の擬似太陽光照射装置1の平面図である。
 第1光照射装置6、第2光照射装置11および第3光照射装置15の組を1ユニットとして、左右に2組設け、これを前後方向に8セット設けているが、前後方向の両端(最も手前と最も奥側)のリフレクタ出力光量が少なくなる傾向にあるので、図7の平面図に示すように、両端側のリフレクタ出力光量をそれ以外の中央部側のリフレクタ出力光量よりも、照射光量が均一になるようにここでは増やしている。この前後方向の両端側において、上記ハロゲン光源7を少し大きい出力のハロゲン光源7Aを用いることができるようにしている。
 この擬似太陽光照射装置1Aには、前後方向の両端側において、上記ハロゲン光源7よりも出力光量が高いハロゲン光源7Aと、ハロゲン光源7Aを収容する内面が反射面のリフレクタ8Aと、このリフレクタ8Aの内面で反射したハロゲン出射光をその一方端面から取り込んで内部を伝搬させることにより指向性を良くするテーパ導光部材9と、このテーパ導光部材9の他方端面からのハロゲン出射光をフィルタリングして長波長側の擬似太陽光とする第2光学フィルタとしてのエアマスフィルタ10とを有する第2光照射装置11Aを設けている。この場合、リフレクタ8A、テーパ導光部材9およびエアマスフィルタ10は、ハロゲン光源7Aの出力光量に適合したものとし、出力光量に適合していれば、リフレクタ8、8Aは同じものであってもよい。
 また、本実施形態1の擬似太陽光照射装置1において、上記第1光照射装置6、第2光照射装置11および第3光照射装置15の組がユニット化されて左右2組配設されたものが、例えば8セット(左右の2ユニットで1セット;全16ユニット)だけ前後方向に並べられて設けられているが、少なくともユニットは、照射強度(光量)が調整できるように、出力光量の異なるランプまたは、光透過率の異なるエアマスフィルタ5(スペクトル調整用フィルタ)を取替え可能としておくことにより、導光板14に入射する照射強度(光量)を個別に調整可能とすることができる。前記した上記ハロゲン光源7とこれよりも出力光量が高いハロゲン光源7Aとの取り付け部を設けることにより、出力光量の異なる光源を取替え自在にしておけばよい。
 次に、擬似太陽光を均一に太陽電池パネルに面照射して得られる発電量の良否を精密に検査することができる太陽電池パネル検査装置について説明する。
 図8(a)は、キセノンランプの波長に対する照度を示す図、図8(b)は、ハロゲンランプの波長に対する照度を示す図である。
 キセノンランプからの出射光は、図8(a)に示すように、温度上昇に寄与する熱線成分はハロゲン光よりも少なく太陽光の短波長側のスペクトルを有し、ハロゲンランプからの出射光は、図8(b)に示すように、温度上昇に寄与する熱線成分が多く、太陽光の長波長側のスペクトルを有している。キセノンランプとハロゲンランプとの各出射光を光混合部12を通して混合することにより、太陽光に類似した擬似太陽光を得ることができる。この擬似太陽光を波長選択ミラー(または波長混合ミラー)などの光混合部12から導光部材14,14内に導いて、擬似太陽光を伝搬させて被照射物13(太陽電池パネル)に対して指向性の高い光を均一に面照射することができる。
 これによって、被照射物13としての太陽電池パネルが規定以上の発電量を有するかどうかを発電量検出装置にて検出することにより、被照射物13(例えば太陽電池パネルなど)の良否検査を行うことができる。これらの擬似太陽光照射装置1および発電量検出装置により太陽電池パネル検査装置が得られる。
 以上により、本実施形態1によれば、擬似太陽光を照射する擬似太陽光照射装置1として、キセノン光源2のように短波長帯が使用され、かつ長波長帯の光のエネルギーが大きい光源と、ハロゲン光源7のように太陽光の長波長帯に相当する波長帯の光が使用されるため、太陽電池パネルの出力特性を精度よく測定する検査を行うことができる。かつそれより長波長の光が使用されない光源とを用いる場合のテーパ導光部材4,9の遮光方法として、遮光部材を隣接テーパ導光部材間に設けたことにより、迷光L2が隣のテーパ導光部材内にその側面から進入するのを防ぐことができ、キセノン光源2を導入するための開口板3bの開口部31から漏れた指向性が悪い迷光L2が、キセノン光源2用のテーパ導光部4に入り、導光部材14,14内に導かれ、照射面の均一性が低下するのを防ぐことができる。
 また、ハロゲン光源7側での遮光を、キセノン光源2側より小さな遮光部材で覆うことで、異常な温度上昇を防ぎ、従来の反射箱のような内面のコーティング部材のスペクトル特性を高熱により変えてしまうという悪影響も防ぐことができる。
 なお、光量調整についてさらに説明する。
 図9(a)および図9(b)は、本実施形態1の擬似太陽光照射装置1の光量調整について説明するための斜視図である。図9(a)および図9(b)では、図1の上記第1光照射装置6や光混合部12(波長選択ミラー)は図示されていない。光量調整だけについて、図9(a)および図9(b)を用いた説明では、上記第1光照射装置6や光混合部12(波長選択ミラー)はなくてもよい。同様に、ランプ光源やリフレクタについても各種構造を取り得る。要するに、この光量調整の説明を図1に適用すればよい。
 図9(a)に示すように各導光板14と光源ランプ2Cとを一対一に対応させ、ランプを交換したり電流を調整することにより、光源ランプ2Cからの出力光量を個別に制御することができる。この場合、もちろん、光透過率の異なるエアマスフィルタ10C(スペクトル調整用フィルタ)に取替えて各導光板14に入射される光量を調節することもできる。これを図1の本実施形態1の擬似太陽光照射装置1について言えば、キセノン光源2やハロゲン光源7をランプを交換したり電流を調整することにより、光源ランプからの出力光量を個別に制御することができる。また、エアマスフィルタ5やエアマスフィルタ10を、光透過率の異なるエアマスフィルタに取替えて各導光板14に入射される光量を調節することもできる。
 また、図9(b)に示すように各導光板14に対して、分割せず光源ランプ2Dのように一括照射型とし、エアマスフィルタ10D(スペクトル調整用フィルタ)だけを取替えて各フィルタ透過率を個別に制御するようにしてもよく、または透過率制御用に補正用のフィルタを、エアマスフィルタ10D(スペクトル調整用フィルタ)とは別に光透過フィルタを追加することによっても、導光板14に入射する光量を抑えて調整することができる。これは本実施形態1の擬似太陽光照射装置1に適用できないが、逆に、本実施形態1の擬似太陽光照射装置1のキセノン光源2およびリフレクタ3aやハロゲン光源7およびリフレクタ8を、図10(b)に示すように一括照射型とすることもできる。
 (実施形態2)
 上記実施形態1では、第3光照射装置15が左右に配置され、導光部材14同士がお互いの端面を当接している場合について説明したが、本実施形態2では、左右の導光部材14が一体となったことにより、上記実施形態1の左右の第3光照射装置15が一体化した場合について説明する。
 即ち、上記実施形態1では、擬似太陽光照射装置1として、第1光照射装置6、第2光照射装置11および第3光照射装置15を1セットとしてユニット化され、ユニット化された1セット同士を左右方向に対向配置して、第3光照射装置15の第3導光部材14、14の他方端面同士を当接した2ユニットを、被照射物13のサイズに応じて、前後方向に複数並べて配置された場合について説明したが、本実施形態2では、後述する擬似太陽光照射装置1Aとして、第1光照射装置6、第2光照射装置11および光混合部12をそれぞれ配置した左側セットと、第1光照射装置6、第2光照射装置11および光混合部12をそれぞれ配置した右側セットとの間に、左側の光混合部12からの混合光を一方端面から取り込んでその内部を伝搬させると共に、右側の光混合部12からの混合光を他方端面から取り込んでその内部を伝搬させて被照射物13に対して指向性の高い光を平坦面から均一に面照射する第4導光部材14Aが設けられ、これを1セットとしてユニット化され、被照射物のサイズに応じて、ユニット化された1セットが前後方向に複数並べてられて配置された場合について説明する。
 図10は、本発明の実施形態2における擬似太陽光照射装置の要部構成例を模式的に示す斜視図である。図11は、図10の擬似太陽光照射装置の要部構成例を模式的に示す縦断面図である。なお、図10および図11では、図1および図2の構成部材と同様の作用効果を奏する構成部材には同一の符号を付して説明する。
 図10および図11において、本実施形態2の擬似太陽光照射装置1Aでは、上記実施形態1の第1光照射装置6および第2光照射装置11(または11A)と同一の構成であるが、左側の第1光照射装置6および第2光照射装置11(または11A)と、右側の第1光照射装置6および第2光照射装置11(または11A)とを1ユニットとして用いる点で異なっている。また、上記実施形態1の第3光照射装置15の構成に代えて第4光照射装置15Aを用いる。要するに、本実施形態2の擬似太陽光照射装置1Aは、上記実施形態1の左右の導光部材14が一体となった導光部材14Aを用いる点が、上記実施形態1の擬似太陽光照射装置1の場合とは異なっている。したがって、左右の二つの第3光照射装置15が一体化した第4光照射装置15Aを用いる。
 この第4光照射装置15Aには、左側の第1光照射装置6のスペクトル調整用のエアマスフィルタ5からの短波長のキセノン出射光を反射させると共に、左側の第2光照射装置11のスペクトル調整用のエアマスフィルタ10からの長波長のハロゲン出射光を透過させることにより光混合して太陽光に類似した擬似太陽光を得る反射・透過手段としての波長選択ミラー(または波長混合ミラー)などの左側の光混合部12と、右側の第1光照射装置6のスペクトル調整用のエアマスフィルタ5からの短波長のキセノン出射光を反射させると共に、右側の第2光照射装置11のスペクトル調整用のエアマスフィルタ10からの長波長のハロゲン出射光を透過させることにより光混合して太陽光に類似した擬似太陽光を得る反射・透過手段としての波長選択ミラー(または波長混合ミラー)などの右側の光混合部12と、左側の光混合部12からの出射光である擬似太陽光を一方端面から取り込んでその内部を伝搬させると共に、右側の光混合部12からの出射光である擬似太陽光を他方端面から取り込んでその内部を伝搬させて、例えば太陽電池パネルなどの被照射物13に対して指向性の高い光Lを均一に面照射する導光部材14Aとが設けられている。この場合、第4光照射装置15Aでは、導光部材14Aが一体化されている。
 導光部材14Aは、上記実施形態1の導光部材14、14のように二つに分かれていない方が、その間の端面での反射がないので、光を効率よく活用することができる。また、上記実施形態1のように導光部材を並べる方式であれば、他方端面で反射させる際に、反射鏡を使えばスペクトルに悪影響する。これに対して、導光部材14Aは、上記実施形態1の導光部材14のように左右二つに分ける必要がないため、真ん中の端面での光調整がなくなって、スペクトル特性を良好なものにすることができる。導光部材14Aがガラス材とした場合、面積が大きくなると、製造が困難になるが、面積がある程度小さいものに最適に適用することができる。
 次に、照射面積変更自在なユニット化について説明する。
 本実施形態2の擬似太陽光照射装置1Aは、図10に示すように、左右の第1光照射装置6、左右の第2光照射装置11および第4光照射装置15Aが1ユニットで構成される。この1ユニットが、本実施形態2では前後方向に8セット隙間なく並べられて設けられている。上記左右の第1光照射装置6、左右の第2光照射装置11および第4光照射装置15Aが、1単位として、ユニット化されて精度よく製造することができ、上記左右の第1光照射装置6、左右の第2光照射装置11および第4光照射装置15Aが1ユニットとして前後方向に組み合わされて、所望の大きさの太陽電池パネルに対応した擬似太陽光の照射面の大きさとすることができる。したがって、上記左右の第1光照射装置6、左右の第2光照射装置11および第4光照射装置15Aの1ユニットが、前後方向に8ユニットに全く限ることはない。これによって、照射面積変更自在なユニット化とすることができる。なお、この場合も、第1光照射装置6において、キセノン光源2と、リフレクタ3aおよび開口板3bは一括照射型であるので、これらについては共通に用いることになる。これらのキセノン光源2とリフレクタ3aおよび開口板3bを、テーパ導光部材4毎に設けることもできる。
 このように、上記左右の第1光照射装置6、左右の第2光照射装置11および第4光照射装置15Aを1単位としてユニット化すると、1単位の照射面の照射強度のばらつきを抑えて精度よく所望の照射強度(光量)とすることができて、ユニット化した1単位の照射面を組み合わせて大きい照射面とする場合にも、大きい照射面全体で照射強度のばらつきを抑えて均一な所望の照射強度(光量)とすることができる。要するに、大面積の照射面の照射強度を高精度で均一にすることは難しいが、大面積の照射面を複数に分割し、その小面積の照射面の照射強度を高精度に均一化すれば、それらを組み合わせるだけで、大面積の照射面の照射強度(光量)を高精度に均一化することができる。
 したがって、左右の第1光照射装置6、左右の第2光照射装置11および第4光照射装置15Aを1ユニットとして、1ユニットの照射強度(光量)を高精度に製造しておけば、太陽電池パネルのサイズに合わせて組み立てるだけで、従来、時間かけて行っていた照射強度(光量)の光量調整を不要とすることができる。即ち、従来は、太陽電池パネルのサイズに応じて、各要所に基準撮像セルが設けられた照射強度検査装置により、大面積の照射面全体のうちのどの部分の照射強度が低いかを測定し、その照射強度が低い部分の照射強度を上げるように照射強度の調整をする必要があったが、それも不要とすることができる。
 次に、照射面全体の照射強度調整(光量調整)について更に説明する。
 図12は、図10の擬似太陽光照射装置1Aの平面図である。
 左右の第1光照射装置6、左右の第2光照射装置11および第4光照射装置15Aを1ユニットとして、これを前後方向に8セット設けているが、前後方向の両端(最も手前と最も奥側)のリフレクタ出力光量が少なくなる傾向にあるので、図8の平面図の場合と同様、図13の平面図に示すように、両端側のリフレクタ出力光量をそれ以外の中央部側のリフレクタ出力光量よりも、照射光量が均一になるように、ここでは増やしている。この前後方向の両端側において、上記ハロゲン光源7を少し大きい出力のハロゲン光源7Aを用いることができるようにしている。
 また、本実施形態2の擬似太陽光照射装置1Aにおいて、上記左右の第2光照射装置11および第4光照射装置15Aがユニット化されて、例えば8ユニットが前後方向に並べられて設けられているが、少なくともユニットは、照射強度(光量)が調整できるように、出力光量の異なるランプまたは、光透過率の異なるエアマスフィルタ5(スペクトル調整用フィルタ)を取替え可能としておくことにより、導光板14Aに入射する照射強度(光量)を個別に調整可能とすることができる。前記した上記ハロゲン光源7とこれよりも出力光量が高いハロゲン光源7Aとの取り付け部を設けることにより、出力光量の異なる光源を取替え自在にしておけばよい。
 以上により、本実施形態1、2によれば、キセノン光とハロゲン光をスペクトル調整して混合して得られる擬似太陽光が入射される導光部材14,14Aのパターン(散乱体)により、導光14,14Aからは均一照度の光を照射することができるが、被照射物としての太陽電池パネルに照射する照射面を複数に仮想分割して、その分割した小照射面に対応して各導光部材14,14Aが配置されているため、各導光部材14,14Aに対する小照射面の照射光量のみを調整することにより、複数の小照射面全体の照度の均一化が容易かつ確実に素早く実現できる。太陽電池パネルが大面積であれば、それに合わせて光学系を複数並べることにより、大面積であっても、均一照度の照射光を容易かつ確実に素早く作り出すことができる。また、ランプ交換時、ランプの個体差によるランプ単体での照度ムラがあっても、ユニット化した光学系毎の光量を調整するだけで、均一な照射光を得ることができるので、再調整は必要なくなる。
 本実施形態1、2では、特に詳細には説明しなかったが、導光部材14、14Aには散乱体(パターン)が印刷されており、導光部材14、14Aに入射した光は散乱体で散乱され、被照射物13としての太陽電池パネルに均一に面照射される。この導光部材14、14Aの散乱体(パターン)は、照射面全体で照度が均一になるようなパターンを有して印刷されている。太陽電池パネルを設置する照射面上で左右に照度ムラが発生した場合には、ユニット化した左右の光源光学系(1ユニット)毎の出力光量を調整することによって、照度ムラを容易かつ確実に低減することができる。左右の光源光学系の導光体14、14が導光体14Aのように一体であると、照射面上で照度ムラが発生した場合には、一体化した光源光学系の導光体14Aからの照射光は照射面全体に照射されるので、光量調整のみでは、左右の光源光学系の導光体14、14に比べて、照射面上の照度を部分的に調整することが難しくなる。また、導光体14Aとして左右の導光体14、14が一体化すれば、より広い面積で均一な光を作り出し、更に導光体の両端から入射しても均一な光が照射されるような散乱体の印刷パターンが必要となるので、印刷パターンの設計も困難となるため、左右の導光体14、14の一体化は、均一光を作るのに支障のない程度の射射面積において行う必要がある。左右の導光体14、14の方がそれらを一体化したものよりも、照射面上での照度ムラ調整が容易になる。更に、太陽電池パネルが大型化すれば、本発明の光学系を多数並列するだけで、広範囲の均一光を作り出すだけでなく、各光学系にある光源光学系からの照射光量を調整するだけで、大面積であっても照射面上での照度を均一に調整することが可能となる。
 さらに、上記実施形態1の場合と同様、迷光が隣のテーパ導光部材4,9内にその側面から進入するのを防ぐために、遮光部材を、例えば、キセノン光源2とテーパ導光部材4の下端面側との間の隙間と、隣のテーパ導光部材4との間に配設する。例えば図5(a)に示すように、遮光部材41でテーパ導光部材4の周囲(側壁)を囲うことによって、テーパ導光部材4の下端面と開口板3bの開口部との間の隙間から漏れた指向性の悪い迷光L1,L2が遮光部材41に照射され、従来のようにテーパ導光部材4の側面から内部に取り込まれて、光混合部12の波長選択ミラーに反射して導光板14側に迷光L2として入るのを防止することができる。または、テーパ導光部材4の下端面と、リフレクタ3aに対向する開口板3bとの間の隙間を覆うように、テーパ導光部材4の横断面形状の外周側に、例えば所定高さでリング状の遮光部材42を配置することによって、テーパ導光部材4の下端面と開口板3bの開口部との間の隙間から漏れた指向性の悪い迷光L1,L2がリング状の遮光部材42の内面に照射され、従来のように隣のテーパ導光部材4の側面から内部に取り込まれず、光混合部12の波長選択ミラーに反射して導光板14側に迷光L2として入るのを防止することができる。
 なお、上記実施形態1では、特に説明していないが、擬似太陽光照射装置1では、発光波長帯の異なる少なくとも2つの光源と、この2つの光源からの出射光それぞれに異なるスペクトル分布をそれぞれ与える各光学素子と、各光学素子を介して得られた出射光を伝搬させて外部に面照射する導光体とを有した光学系が複数配設され、被照射物13に対する照射面が複数に仮想分割されて複数の小被照射面に構成され、光学系の導光部材が各小被照射面にそれぞれ対応して複数の光学系により被照射面全体に照射されるすようになっている。これによって、被照射物が大面積であってもランプ交換時であっても、照射面全体にわたって均一照度の照射光を容易かつ確実に照射することができる本発明の目的を達成することができる。
 上記実施形態1では、この光学系は、図2に示すように、第1光源(キセノンランプ2)と、第1光源からの出射光を一方端面から取り込んで指向性が高められた光を他方端面から出射する第1導光部材(テーパ導光部材4)と、第1導光部材の他方端面から出射される光のスペクトルを調整する第1光学フィルタ(エアマスフィルタ5)とを有する第1光照射装置6と、第2光源(ハロゲンランプ7)と、第2光源からの出射光を一方端面から取り込んで指向性が高められた光を他方端面から出射する第2導光部材(テーパ導光部材9)と、第2導光部材の他方端面から出射される光のスペクトルを調整する第2光学フィルタとを有する第2光照射装置11と、第1光照射装置6からの光と第2光照射装置11からの光を混合して太陽光に類似した擬似太陽光を得る光混合部材12と、光混合部材12からの擬似太陽光を一方端面から取り込んでその内部を伝搬させて被照射物13に対して指向性の高い光を平坦面から均一に面照射する第3導光部材(導光部材14)とを有する第3光照射装置15とが設けられている場合について説明した。これに限らず、光学系は、図14に示すように、第1光源(キセノンランプ2)と、第1光源から出射される光のスペクトルを調整する前記光学素子としての第1光学フィルタ(エアマスフィルタ5)とを有する第1光照射装置6と、第2光源(ハロゲンランプ7)と、第2光源から出射される光のスペクトルを調整する該光学素子としての第2光学フィルタ(エアマスフィルタ10)とを有する第2光照射装置11と、第1光照射装置6からの光と第2光照射装置11からの光を混合して太陽光に類似した擬似太陽光を得る光混合部材12と、光混合部材12からの擬似太陽光を一方端面から取り込んでその内部を伝搬させて被照射物13に対して指向性の高い光を平坦面から均一に面照射する第3導光部材14とを有する第3光照射装置15とが設けられていてもよい。ここでは、上記実施形態1の場合と比べて、第1導光部材(テーパ導光部材4)と第2導光部材(テーパ導光部材9)とがないだけである。
 上記実施形態1では、第1光照射装置6、第2光照射装置11および第3光照射装置15を1ユニットとし、1ユニット同士を左右方向に対向配置して、第3光照射装置15の第3導光部材(導光部材14)の他方端面同士を当接した2ユニットを、被照射物13のサイズに応じて、前後方向に複数並べて配置する。これに対して、上記実施形態2では、第1光照射装置6、第2光照射装置11および光混合部12を配置した左側セットと、第1光照射装置6、第2光照射装置11および光混合部12を配置した右側セットとの間に、左側の光混合部12からの混合光を一方端面から取り込んでその内部を伝搬させると共に、右側の光混合部12からの混合光を他方端面から取り込んでその内部を伝搬させて被照射物13に対して指向性の高い光を平坦面から均一に面照射する第4導光部材(導光部材14A)が設けられ、これを1ユニットとし、被照射物13のサイズに応じて、1ユニットが前後方向に複数並べてられて配置されている。
 なお、本実施形態2では、特に説明していないが、上記実施形態1の場合と同様、開口板3bの開口部31自体の大きさを変化させることにより、面照射の導光部材14Aからの出射光量のバランスを調整する際に、導光部材14Aに両側から光を入射させるための途中の光学系の状態を変化させないで、光量だけを変化させることができる。つまり、擬似太陽光のスペクトル分布を固定した後でも、擬似太陽光のスペクトル分布を変化させることなく、導光部材14Aからの出射光量を調整することができる。
 なお、本実施形態2では、特に説明していないが、上記実施形態1の場合と同様、図13(a)に示すように導光板14Aと光源ランプ2Cとを一対一に対応させ、ランプを交換したり電流を調整することにより、光源ランプ2Cからの出力光量を個別に制御することができる。この場合、もちろん、光透過率の異なるエアマスフィルタ10C(スペクトル調整用フィルタ)に取替えて導光板14Aに入射される光量を調節することもできる。これを図11の本実施形態2の擬似太陽光照射装置1Aについて言えば、キセノン光源2やハロゲン光源7をランプを交換したり電流を調整することにより、光源ランプからの出力光量を個別に制御することができる。また、エアマスフィルタ5やエアマスフィルタ10を、光透過率の異なるエアマスフィルタに取替えて導光板14Aに入射される光量を調節することもできる。
 また、図13(b)に示すように導光板14Aに対して、分割せず光源ランプ2Dのように一括照射型とし、エアマスフィルタ10D(スペクトル調整用フィルタ)だけを取替えて各フィルタ透過率を個別に制御するようにしてもよく、または透過率制御用に補正用のフィルタを、エアマスフィルタ10D(スペクトル調整用フィルタ)とは別に光透過フィルタを追加することによっても、導光板14Aに入射する光量を抑えて調整することができる。これは本実施形態2の擬似太陽光照射装置1Aに適用できないが、逆に、本実施形態2の擬似太陽光照射装置1Aのキセノン光源2およびリフレクタ3aやハロゲン光源7およびリフレクタ8を、図13(b)に示すように一括照射型とすることもできる。
 なお、本実施形態1、2では、第1光照射装置6と、第2光照射装置11と、第3光照射装置15または15Aとのセットが複数設けられ、第1テーパ導光部材4同士および第2テーパ導光部材9同士がそれぞれ隣接して並べられており、隣接した第1テーパ導光部材4間および/または、隣接した第2テーパ導光部材9間に遮光部材が配置されている擬似太陽光照射装置1または1Aについて説明したが、これに限らず、第1光照射装置6および第2光照射装置11のうちのいずれかからの擬似太陽光を一方端面から取り込んでその内部を伝搬させて被照射物3に対して指向性の高い光を平坦面から均一に面照射する面照射用の導光部材14または14Aを有する擬似太陽光照射装置としてもよい。この場合、第1光照射装置6および第2光照射装置11のうちのいずれかの導光部材は、テーパ導光部材の一方端面および他方端面以外の外壁から迷光が入射しないように遮光部材が配置されて遮光されている。
 なお、本実施形態1、2では、特に説明しなかったが、第1光学フィルタとしてエアマスフィルタ5は、キセノン光源2のスペクトルを調整する複数枚で構成され、かつそのうちの1枚が近赤外光のみ反射する反射鏡であり、かつキセノン光源2からの出射光の指向性を高めるテーパ導光部材4の光の入出射面以外の面を覆うように遮光部材41または42が配置されている。これによって、近赤外線反射鏡による迷光を防止することができる。
 以上のように、本発明の好ましい実施形態1、2を用いて本発明を例示してきたが、本発明は、この実施形態1、2に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態1、2の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。
 本発明は、被照射物に対して指向性の高い擬似太陽光を照射するための擬似太陽光照射装置、この擬似太陽光照射装置を用いて太陽電池パネルの出力特性を測定して良否判定を行う太陽電池パネル用検査装置の分野において、被照射物が大面積であってもランプ交換時であっても、照射面全体にわたって均一照度の照射光を容易かつ確実に照射することができる。

Claims (6)

  1.  発光波長帯の異なる少なくとも2つの光源と、該2つの光源からの出射光それぞれに異なるスペクトル分布をそれぞれ与える各光学素子と、該各光学素子を介して得られた出射光を伝搬させて外部の被照射物に面照射する導光体とを有した光学系が複数配設され、
     該被照射物に対する被照射面が複数に仮想分割されて複数の小被照射面に構成され、該光学系の導光部材が各小被照射面にそれぞれ対応して複数の光学系により該被照射面の全体に照射される擬似太陽光照射装置。
  2.  前記光学系は、
     第1光源と、該第1光源から出射される光のスペクトルを調整する前記光学素子としての第1光学フィルタとを有する第1光照射装置と、
     第2光源と、該第2光源から出射される光のスペクトルを調整する該光学素子としての第2光学フィルタとを有する第2光照射装置と、
     該第1光照射装置からの光と該第2光照射装置からの光を混合して太陽光に類似した擬似太陽光を得る光混合部材と、該光混合部材からの擬似太陽光を一方端面から取り込んでその内部を伝搬させて被照射物に対して指向性の高い光を平坦面から均一に面照射する第3導光部材とを有する第3光照射装置とが設けられている請求項1に記載の擬似太陽光照射装置。
  3.  前記光学系は、
     第1光源と、該第1光源からの出射光を一方端面から取り込んで指向性が高められた光を他方端面から出射する第1導光部材と、該第1導光部材の他方端面から出射される光のスペクトルを調整する第1光学フィルタとを有する第1光照射装置と、
     第2光源と、該第2光源からの出射光を一方端面から取り込んで指向性が高められた光を他方端面から出射する第2導光部材と、該第2導光部材の他方端面から出射される光のスペクトルを調整する第2光学フィルタとを有する第2光照射装置と、
     該第1光照射装置からの光と該第2光照射装置からの光を混合して太陽光に類似した擬似太陽光を得る光混合部材と、該光混合部材からの擬似太陽光を一方端面から取り込んでその内部を伝搬させて被照射物に対して指向性の高い光を平坦面から均一に面照射する第3導光部材とを有する第3光照射装置とが設けられている請求項1に記載の擬似太陽光照射装置。
  4.  前記第1光照射装置、前記第2光照射装置および前記第3光照射装置を有する前記光学系を1ユニットとし、該1ユニット同士を左右方向に対向配置して、該第3光照射装置の第3導光部材の他方端面同士を当接した2ユニットを、前記被照射物のサイズに応じて、前後方向に複数並べて配置されている請求項2または3に記載の擬似太陽光照射装置。
  5.  前記第1光照射装置、前記第2光照射装置および前記光混合部を配置した左側セットと、該第1光照射装置、該第2光照射装置および該光混合部を配置した右側セットとの間に、左側の光混合部からの混合光を一方端面から取り込んでその内部を伝搬させると共に、右側の光混合部からの混合光を他方端面から取り込んでその内部を伝搬させて被照射物に対して指向性の高い光を平坦面から均一に面照射する第4導光部材が前記第3光照射装置に代えて設けられ、これを1ユニットとし、被照射物のサイズに応じて、該1ユニットが前後方向に複数並べてられて配置されている請求項2または3に記載の擬似太陽光照射装置。
  6.  請求項1~3のいずれかに記載の擬似太陽光照射装置を用いて太陽電池パネルの出力特性を測定して良否判定を行う太陽電池パネル用検査装置。
PCT/JP2011/004802 2010-10-08 2011-08-29 擬似太陽光照射装置および太陽電池パネル用検査装置 WO2012046377A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11819147.7A EP2631530A1 (en) 2010-10-08 2011-08-29 Simulated sunlight light irradiation device and inspection device for solar cell panel
US13/392,023 US20120287598A1 (en) 2010-10-08 2011-08-29 Pseudo-sunlight irradiation apparatus and solar panel inspection apparatus
BR112012004908A BR112012004908A2 (pt) 2010-10-08 2011-08-29 aparelho de irradiação de pseudo luz solar e aparelho de inspeção de painel solar
CN2011800037918A CN102575820A (zh) 2010-10-08 2011-08-29 伪阳光照射装置和太阳能电池板检验装置
IN1691CHN2012 IN2012CN01691A (ja) 2010-10-08 2012-02-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010229124A JP5355525B2 (ja) 2010-10-08 2010-10-08 擬似太陽光照射装置および太陽電池パネル用検査装置
JP2010-229124 2010-10-08

Publications (1)

Publication Number Publication Date
WO2012046377A1 true WO2012046377A1 (ja) 2012-04-12

Family

ID=45927386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004802 WO2012046377A1 (ja) 2010-10-08 2011-08-29 擬似太陽光照射装置および太陽電池パネル用検査装置

Country Status (7)

Country Link
US (1) US20120287598A1 (ja)
EP (1) EP2631530A1 (ja)
JP (1) JP5355525B2 (ja)
CN (1) CN102575820A (ja)
BR (1) BR112012004908A2 (ja)
IN (1) IN2012CN01691A (ja)
WO (1) WO2012046377A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278762B (zh) * 2013-05-30 2015-08-19 天津三安光电有限公司 太阳能电池芯片测试装置及测试方法
WO2017099819A2 (en) 2015-12-09 2017-06-15 Flir Systems, Inc. Airborne inspection systems and methods
CN109121808B (zh) * 2018-08-23 2021-07-13 深圳佰城邦品牌发展有限公司 一种模拟太阳光的全光谱植物用灯具

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05342904A (ja) * 1992-06-09 1993-12-24 Photonics:Kk 照明方法および照明装置
JP3500352B2 (ja) 2000-08-07 2004-02-23 日清紡績株式会社 ソーラーシミュレータ
JP2006216619A (ja) 2005-02-01 2006-08-17 Nisshinbo Ind Inc 太陽電池の出力特性の測定方法、並びに、そのソーラーシミュレータ、及び、ソーラーシミュレータに適用する照度設定用モジュールと光量調整部
JP2008216840A (ja) * 2007-03-07 2008-09-18 Mitsubishi Electric Corp 投写型表示装置
WO2010004610A1 (ja) * 2008-07-07 2010-01-14 桐生株式会社 導光板ユニット及びこの導光板ユニットを用いた照明器具
JP2010027826A (ja) * 2008-07-18 2010-02-04 Nisshinbo Holdings Inc ソーラシミュレータ及び多接合型太陽電池の測定方法
WO2010050489A1 (ja) * 2008-10-30 2010-05-06 日本ゼオン株式会社 光源装置および液晶表示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4641227A (en) * 1984-11-29 1987-02-03 Wacom Co., Ltd. Solar simulator
US4933813A (en) * 1986-04-14 1990-06-12 Berger Daniel S Sunlight simulator
JP3383412B2 (ja) * 1993-08-03 2003-03-04 富士通ディスプレイテクノロジーズ株式会社 導光体群、列状導光体、、光源装置及び液晶表示装置
JP2004273245A (ja) * 2003-03-07 2004-09-30 Canon Inc 擬似太陽光照射方法および装置
JP5274528B2 (ja) * 2010-10-08 2013-08-28 シャープ株式会社 擬似太陽光照射装置および太陽電池パネル用検査装置
JP5314653B2 (ja) * 2010-10-08 2013-10-16 シャープ株式会社 光照射装置および擬似太陽光照射装置、太陽電池パネル用検査装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05342904A (ja) * 1992-06-09 1993-12-24 Photonics:Kk 照明方法および照明装置
JP3500352B2 (ja) 2000-08-07 2004-02-23 日清紡績株式会社 ソーラーシミュレータ
JP2006216619A (ja) 2005-02-01 2006-08-17 Nisshinbo Ind Inc 太陽電池の出力特性の測定方法、並びに、そのソーラーシミュレータ、及び、ソーラーシミュレータに適用する照度設定用モジュールと光量調整部
JP2008216840A (ja) * 2007-03-07 2008-09-18 Mitsubishi Electric Corp 投写型表示装置
WO2010004610A1 (ja) * 2008-07-07 2010-01-14 桐生株式会社 導光板ユニット及びこの導光板ユニットを用いた照明器具
JP2010027826A (ja) * 2008-07-18 2010-02-04 Nisshinbo Holdings Inc ソーラシミュレータ及び多接合型太陽電池の測定方法
WO2010050489A1 (ja) * 2008-10-30 2010-05-06 日本ゼオン株式会社 光源装置および液晶表示装置

Also Published As

Publication number Publication date
BR112012004908A2 (pt) 2016-04-12
IN2012CN01691A (ja) 2015-08-21
JP2012084672A (ja) 2012-04-26
CN102575820A (zh) 2012-07-11
JP5355525B2 (ja) 2013-11-27
US20120287598A1 (en) 2012-11-15
EP2631530A1 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5314653B2 (ja) 光照射装置および擬似太陽光照射装置、太陽電池パネル用検査装置
JP4570680B1 (ja) 光照射装置および検査装置
JP5826597B2 (ja) 擬似太陽光照射装置
US20120275132A1 (en) Pseudo-Sunlight Irradiating Apparatus
JP5355525B2 (ja) 擬似太陽光照射装置および太陽電池パネル用検査装置
JP5274528B2 (ja) 擬似太陽光照射装置および太陽電池パネル用検査装置
JP5583468B2 (ja) 擬似太陽光照射装置
JP5053448B1 (ja) 擬似太陽光照射装置
JP5274530B2 (ja) 光照射装置および擬似太陽光照射装置、太陽電池パネル用検査装置
JP2010251002A (ja) 光照射装置
JP5049375B2 (ja) 擬似太陽光照射装置
WO2013038769A1 (ja) 擬似太陽光照射装置
JP5863392B2 (ja) 擬似太陽光照射装置
JP2013251154A (ja) 擬似太陽光照射装置
JP2010261833A (ja) 擬似太陽光照射装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003791.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011819147

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1691/CHENP/2012

Country of ref document: IN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819147

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13392023

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012004908

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201000944

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 112012004908

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120305