WO2012044145A1 - Nueva composición para la producción de materiales vinil-aromáticos con resistencia al impacto mejorada con un aditivo modificador de estructura - Google Patents

Nueva composición para la producción de materiales vinil-aromáticos con resistencia al impacto mejorada con un aditivo modificador de estructura Download PDF

Info

Publication number
WO2012044145A1
WO2012044145A1 PCT/MX2010/000103 MX2010000103W WO2012044145A1 WO 2012044145 A1 WO2012044145 A1 WO 2012044145A1 MX 2010000103 W MX2010000103 W MX 2010000103W WO 2012044145 A1 WO2012044145 A1 WO 2012044145A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
composition according
additive
modifying additive
composition
Prior art date
Application number
PCT/MX2010/000103
Other languages
English (en)
French (fr)
Inventor
Graciela Elizabeth Morales Balado
Florentino Soriano Corral
Pablo ACUÑA VAZQUEZ
Rodolfo LÓPEZ GONZÁLEZ
Ricardo BENAVIDES PÉREZ
José Gertrudis BOCANEGRA ROJAS
Original Assignee
Servicios Administrativos Peñoles, S.A. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Servicios Administrativos Peñoles, S.A. De C.V. filed Critical Servicios Administrativos Peñoles, S.A. De C.V.
Priority to PCT/MX2010/000103 priority Critical patent/WO2012044145A1/es
Priority to CA2832026A priority patent/CA2832026A1/en
Priority to RU2013145306/05A priority patent/RU2578321C2/ru
Priority to US13/984,408 priority patent/US20140031495A1/en
Priority to EP10857940.0A priority patent/EP2647665A4/en
Publication of WO2012044145A1 publication Critical patent/WO2012044145A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/04Vinyl aromatic monomers and nitriles as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F287/00Macromolecular compounds obtained by polymerising monomers on to block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene

Definitions

  • the present invention relates to a new composition for the production of high impact polymers, and in particular, relates to a composition in which the impact resistance of a polymer is improved by the use of an additive in a process for obtaining of a rubber-reinforced vinyl aromatic polymer.
  • polystyrene (PS) and poly (styrene-co-acrylonitrile) (PSAN) are thermoplastic polymers that have poor toughness, however, when reinforced with rubber, high impact polystyrene (HIPS) is obtained ) and poly (acrylonitrile-butadiene-styrene) (ABS), impact resistant thermoplastic materials, which are constituted by a rigid matrix of PS and PSAN respectively, with rubber particles dispersed in said matrices.
  • HIPS and ABS can be defined as complex polystyrene mixtures: PS-polybutadiene (PBd) - graft copolymer (PBd-g-PS), and poly (styrene-co-acrylonitrile) (PSAN) -polybutadiene (PBd) graft copolymer (PBd-g-PSAN), respectively.
  • the PBd is forming thin lamellar microfases in the outer part of the domains and in the inner part of these, between the subdomains of PS.
  • HIPS and ABS owe their characteristic toughness or impact resistance to these elastomeric microfases which, due to different reinforcement mechanisms (Crazing and Shear Yielding), cause an improvement in the performance properties of these materials.
  • Processes for the production of HIPS include a continuous process, first to be developed and commonly used, following the mass polymerization reaction, method used by The Dow Chemical Company, p. ex. United States Patent No.
  • the polymerization of a homogeneous solution of styrene (St) / Rubber monomer is initially carried out; however, once the homopolymer PS is formed, a phase separation occurs in the system, two phases being formed, one continuous consisting of the St / Rubber solution and the other dispersed formed by the St / PS solution.
  • St / Hule phase the PS graft reaction takes place on the Rubber, while in the St / PS phase only the homopolymerization of PS occurs.
  • phase co-continuity occurs and just when the viscosities of both phases are equalized, by agitation in the system, the "inversion” occurs of phases "forming like this rubber particles dispersed in a continuous phase of St / PS.
  • the elastomeric particle is formed in its entirety and therefore the final morphology of the HIPS is established. It should be mentioned that elastomeric particles are responsible for the final properties of the material, depending on the type of morphology, as well as its size and distribution.
  • the differences between the different types of morphology are the result of the interactions between the rubber particles and the PS matrix, the intramolecular separation of the dispersed phase, PS sequences in the rubber and mechanical treatment, among others.
  • the different reaction conditions employed agitation, type and concentration of initiator, type and concentration of rubber, viscosity, etc.
  • the type of rubber as described in the international application WO2008033646 (Styranec, 2008) and the patent application of United States No. US20060194915 (Morales-Balado et al, 2006); the reaction temperature, as described in European Patent EP0818481 (Doyle, 2002), the agitation speed of the reaction system, described in the same European application and in US Patent No. US6239225 (Michels et al, 2001); the type and concentration of the initiator, the graft density, for example, as described in the Michels et al.
  • European Patent No. 0716664 describes a method for the preparation of a composition of a rubber-modified aromatic monovinyl, which contains an initiator and a chain transfer agent and under agitation conditions provide a capsule and cell type morphology. , in a range of specific particle sizes to improve impact resistance.
  • the use of solvents in the polymerization reaction of an HIPS is referred to and in the application of Miyatake et al, the use of a solvent as a reaction medium for improving particle size is described.
  • Another object of the present invention is to provide an improved composition for the production of a rubber-modified vinyl aromatic polymer, by incorporating a structure modifying additive. It is still another object of the present invention, that the incorporation of the structure modifying additive can be carried out at different stages of a conventional polymeric material production process, obtaining similar results.
  • a further object of the present invention is to provide an improved composition for the production of a rubber-modified vinyl aromatic polymer, where the impact resistance property is substantially increased, without modifying the rubber content in the reaction mixture.
  • Another object of the present invention is to provide an improved composition for the production of a rubber-modified vinyl aromatic polymer, which with lower rubber contents than in a conventional formulation, has an impact resistance similar to that obtained in said conventional formulation. , without the addition of the additive.
  • the present invention relates to an improved composition for the production of rubber-modified vinyl aromatic polymers, in which, by by means of the incorporation of a structure modifying additive at different stages of any of the synthesis processes described in the state of the art, but preferably in the period of co-continuity of phases and in the investment interval, a substantial improvement occurs of the impact resistance of the product obtained.
  • the structure modifying additive is a compound with general formula (I):
  • Ri, R 3 each represents a saturated or unsaturated chain from Ci to C hy, being the same or different,
  • R 2 , R 4 , R5 each represents hydrogen, halogen or a carbon chain from C 1 to Ci 8 , being the same or different from each other,
  • n is an integer equal to or greater than 1.
  • the structure modifying additive (I) can be used in combination with low molecular weight polymers; said low molecular weight polymers comprise the family of vinyl aromatic compounds, preferably in mixtures in a low molecular weight structure / polymer modifying additive ratio of 5/1 to 1/5 by weight.
  • Figure 1 is a ternary phase diagram of the PB-Styrene-PS system showing the "phase inversion" zone at point 2.
  • Figure 2 is a first photograph observed by transmission electron microscopy (TEM) of the material obtained from according to example 1.
  • TEM transmission electron microscopy
  • Figure 3 is a second photograph observed by transmission electron microscopy of the material obtained according to example 1.
  • Figure 4 is a first photograph observed by transmission electron microscopy of the material obtained according to example 2.
  • Figure 5 is a second photograph observed by means of transmission electron microscopy of the material obtained according to example 2.
  • Figure 6 is a first photograph observed by transmission electron microscopy of the material obtained according to example 3.
  • Figure 7 is a second photograph observed by transmission electron microscopy of the material obtained according to example 3.
  • the present invention relates to a new composition for the preparation of impact resistant vinyl aromatic thermoplastic materials which are obtained from: a) 94,975-60% by weight of an aromatic vinyl monomer,
  • a rubber such as a conjugated diene or a copolymer, based on a conjugated diene and an aromatic vinyl compound
  • the present invention relates to obtaining HIPS or ABS with the described composition, preferably presenting salami-like particles.
  • the production process of impact resistant polymers is a batch polymerization, although the teachings of the invention can be applied to the continuous or semi-continuous polymerization processes of a solution of styrene or acrylonitrile, or any other vinyl aromatic monomer, with polybutadiene or copolymers based on an alkane and an vinyl aromatic monomer;
  • a structure modifying additive of general formula (1) is incorporated into the formulation:
  • Ri, R3 each represents a saturated or unsaturated chain from C1 to Ci 8 , being the same or different from each other,
  • R2, R 4 , R5 each represents hydrogen, halogen or a carbon chain from C1 to C-is, being the same or different from each other,
  • n is an integer equal to or greater than 1.
  • the production of said polymers is carried out by a mass and suspension polymerization process, described in the prior art, using azo, peroxide or hydroperoxide radical initiators, and preferably mono or polyfunctional peroxides, and variable stirring between 40-350 rpm, with a system preferably of the anchor-turbine type until reaching phase inversion.
  • the structure modifying additive part of the invention can be added at different stages of the process, but preferably during the phase inversion interval, in order to achieve the optimum results in the improvement of the impact resistance properties.
  • the reaction is continued in suspension using a suspension medium which basically consists of water, polyvinyl alcohol, nonyl phenol and sodium chloride in varying proportions, however, any other suspension means known and described in the state of the art can be employed for suspension polymerization processes.
  • a suspension medium which basically consists of water, polyvinyl alcohol, nonyl phenol and sodium chloride in varying proportions, however, any other suspension means known and described in the state of the art can be employed for suspension polymerization processes.
  • the rubber that can be used in the present invention are 1, 3- butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, copolymers in linear or radial blocks, in perfect or partially randomized blocks of the type SB, SBR, SBS , BSB or multiple blocks (SB) n, where S is an aromatic vinyl polymer and B is a conjugated diene, n is an integer, and where the elastomeric part can be partially or totally hydrogenated.
  • the S / B composition of the copolymer may vary between 5/95 to 80/20 by weight and mixtures thereof, preferably S / B copolymers with a composition between 30/70 and 20/80 by weight, and may vary the molecular weight of the rubber in the range of 100,000 to 450,000 g / mol.
  • the vinyl aromatic monomer to be used is selected from the group that includes: vinyl toluene, styrene, ⁇ -styrene, chloro-styrene, and mixtures with each other or with other copolymerizable monomers such as acrylic, methacrylic, acrylonitrile and maleic anhydride monomers.
  • the graft polymerization reaction of the aromatic vinyl monomer on the rubber and the addition of the structure modifying additive part of the present invention can be carried out by a mass polymerization process, solution, suspension and / or emulsion, as well as any another modification and / or combination of them such as mass-suspension polymerization processes.
  • primary phenolic and / or hindered phenolic antioxidants, phosphite and / or phosphate secondary antioxidants can be used, in addition to light stabilizers either in the polymerization process or when processing the materials.
  • PBTB tert-butyl perbenzoate
  • the resulting pearl-shaped material was subjected to the compression molding technique from which specimens with dimensions established for mechanical tests of impact resistance according to ASTM D-256 were obtained.
  • the values corresponding to these determinations are presented in Table 2.
  • the morphology of the particles was observed by transmission electron microscopy (TEM), the samples were previously cut in cryogenic ultramicrotome and subsequently stained with osmium tetra-oxide, according to the technique already widely reported by Kato (Kato, K. Polym. Eng Sci. 7, 38, 1967), the photographs are shown in Figures 2 and 3.
  • S azeotropic ratio of styrene
  • AN acrylonitrile
  • PBTB tert-butyl perbenzoate
  • the polymerization reaction was continued with a stirring speed of 650-700 rpm following a program of temperature-time ramps of 2 hours at 125 ° C and 2 hours at 145 ° C. Subsequently the product (pearls) was filtered, washed and dried.
  • the pearl-shaped material was subjected to the compression molding technique from which specimens with dimensions established for mechanical tests of impact resistance according to ASTM D-256 were obtained. The values corresponding to these determinations are presented in Table 2.
  • the first two lines of Table 2 also show that an impact resistance of approximately 71 J / m is obtained, when an HIPS with a rubber content of 6% is produced (representing a 25% reduction in the content of rubber) with respect to a HIPS with 8% rubber. This translates into real savings in rubber consumption for the production of polymers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

La presente invención se refiere a una composición mejorada para la producción de polímeros vinil-aromáticos modificados con hule, en los cuales se produce una mejora substancial de la resistencia al impacto del producto final por la incorporación de un aditivo modificador de estructura en diferentes etapas de la polimerización, preferentemente durante el periodo de co-continuidad de fases, y en especial, durante el intervalo de inversión de fases. El aditivo es un compuesto insaturado de fórmula: en la cual: R1, R3 representa cada uno una cadena saturada o insaturada desde C1 a C18, siendo iguales o diferentes entre sí, R2, R4, R5 representa cada uno, hidrógeno, halógeno o una cadena carbonada desde C1 a C18, siendo iguales o diferentes entre sí, siendo "n" un número entero igual o mayor a 1; y donde el aditivo puede ser utilizado ya sea sin mezclar en una concentración en el rango de 0.025 a 5% en peso, o en mezclas con polímeros de bajo peso molecular en una relación en peso preferiblemente de 5/1 a 1/5.

Description

NUEVA COMPOSICION PARA LA PRODUCCION DE MATERIALES VINIL-AROMÁTICOS CON RESISTENCIA AL IMPACTO MEJORADA CON UN
ADITIVO MODIFICADOR DE ESTRUCTURA
CAMPO TECNICO DE LA INVENCION
La presente invención se relaciona con una nueva composición para la producción de polímeros de alto impacto, y en particular, se refiere a una composición en que la resistencia al impacto de un polímero es mejorada mediante el uso de un aditivo en un proceso para la obtención de un polímero vinil-aromático reforzado con hule.
ANTECEDENTES DE LA INVENCION
Es bien sabido que el poliestireno (PS) y el poli(estireno-co-acrilonitrilo) (PSAN), son polímeros termoplásticos que cuentan con una pobre tenacidad, sin embargo, cuando son reforzados con hule se obtienen el poliestireno de alto impacto (HIPS) y el poli(acrilonitrilo-butadieno-estireno) (ABS), materiales termoplásticos resistentes al impacto, los cuales quedan constituidos por una matriz rígida de PS y PSAN respectivamente, con partículas de hule dispersas en dichas matrices. Al HIPS y al ABS se les puede definir como mezclas complejas de poliestireno: PS-polibutadieno (PBd)- copolímero de injerto (PBd-g-PS), y poli(estireno-co-acrilonitrilo) (PSAN)-polibutadieno (PBd)-copolímero de injerto (PBd-g-PSAN), respectivamente.
Es posible realizar el reforzamiento de polímeros termoplásticos frágiles a través de la incorporación de hule, lo que provoca en ellos incrementos considerables en su tenacidad volviéndolos materiales resistentes al impacto, y donde las propiedades finales de estos materiales dependen, entre otros parámetros, del tamaño y tipo de morfología de las partículas presentes. Por lo tanto, una variación en las propiedades y características de HIPS y ABS puede lograrse en la medida que las partículas de hule puedan modificarse para presentar diferentes morfologías. Para el caso especifico del HIPS, un ejemplo típico de morfología es la de tipo "Salami", en la cual los dominios del copolímero de injerto PBd-g-PS están embebidos en la matriz de PS. Los dominios no son puramente elastoméricos, ya que pueden contener en su interior PS ocluido, formando subdominios. El PBd se encuentra formando delgadas microfases lamelares en la parte exterior de los dominios y en la parte interior de éstos, entre los subdominios de PS. El HIPS y el ABS le deben su característica de tenacidad o resistencia al impacto a estas microfases elastoméricas las cuales por diferentes mecanismos de reforzamiento (Crazing y Shear Yielding), ocasionan una mejora en las propiedades de desempeño de estos materiales. Los procesos para la producción del HIPS incluyen un proceso continuo, primero en desarrollarse y que se emplea comúnmente, siguiendo la reacción de polimerización en masa, método utilizado por The Dow Chemical Company, p. ej. La patente de los Estados Unidos N° 3,936,365 (Saunders et al, 1976); y un proceso en lotes, que se empezó a utilizar poco después, realizando la reacción de polimerización en masa para después ser continuada en suspensión, método utilizado por Monsanto, p. ej. La patente de los Estados Unidos N° 4,146,589 (Dupre, 1979), los cuales estaban orientados a la obtención de HIPS a escala industrial.
En cuanto al proceso discontinuo, de manera general, inicialmente se lleva a cabo la polimerización de una solución homogénea de monómero de estireno (St)/Hule; sin embargo, una vez formado el PS homopolímero ocurre una separación de fases en el sistema, quedando formadas dos fases, una continua constituida por la solución St/Hule y la otra dispersa formada por la solución St/PS. En la fase St/Hule tiene lugar la reacción de injerto de PS sobre el Hule, mientras que en la fase St/PS únicamente ocurre la homopolimerización de PS. Este es un sistema heterogéneo que se mantiene estable, debido a los injertos de PS sobre el hule los cuales conducen a la formación de una emulsión aceite-enaceite. Posteriormente, y una vez formada una determinada cantidad de PS homopolímero y de injertos de PS sobre el elastómero, se presenta una co- continuidad de fases y justo cuando se igualan las viscosidades de ambas fases, mediante agitación en el sistema, ocurre la "inversión de fases" formándose así las partículas de hule dispersas en una fase continua de St/PS. Al momento de la inversión de fases, se forma en su totalidad la partícula elastomérica y por lo tanto queda establecida la morfología final del HIPS. Cabe mencionar que las partículas elastoméricas son las responsables de las propiedades finales del material, dependiendo a su vez del tipo de morfología, así como de su tamaño y distribución.
Lo anterior se representa en el diagrama de fases ternario de la Figura 1 , en el cual, siguiendo el sentido de los puntos 1 a 2, tiene lugar la polimerización en masa de estireno en presencia del hule, donde ocurren las reacciones de injerto y se establece el tamaño y tipo de morfología de la fase elastomérica, una vez que ocurre la inversión de fases (punto 2), dicho punto puede ser detectado por los cambios en la viscosidad de la mezcla de reacción en la zona sigmoidal de la curva de viscosidad vs conversión, donde al inicio de la polimerización, la viscosidad de la emulsión polimérica aceite en aceite está regida por la alta viscosidad de la solución de la fase elastomérica (fase continua). En la región de la inversión de fases, la viscosidad total de la emulsión decrece por la baja viscosidad de la solución de poliestireno la cual se convierte ahora en la fase continua y determina la viscosidad total de la mezcla. Una vez ocurrida la inversión de fases, los puntos 2 a 3 del diagrama de fases representan la polimerización a elevadas temperaturas donde el estireno se polimeriza hasta consumo total del monómero. Dependiendo de distintos factores tales como la velocidad de polimerización de estireno, formación de injertos, factores cinéticos y termodinámicos de la interfase, esfuerzos de corte y el entrecruzamiento de la fase elastomérica; se puede dar lugar a la formación de diversos tipos de morfologías. Las diferencias entre los distintos tipos de morfología son el resultado de las interacciones entre las partículas de hule y la matriz de PS, la separación intramolecular de la fase dispersa, secuencias de PS en el hule y tratamiento mecánico, entre otros. Además, las distintas condiciones de reacción empleadas (agitación, tipo y concentración de iniciador, tipo y concentración de hule, viscosidad, etc.) influyen de manera compleja en la formación de las partículas.
En lo que se refiere a las características particulares impartidas por los diferentes tipos de morfología, se puede mencionar que los materiales con una morfología tipo "salami" presentan mejor resistencia al impacto, mientras que la de tipo "núcleo-coraza" proporcionan una menor tenacidad pero el material presenta buenas propiedades ópticas (brillo y transparencia).
Entre los factores que afectan y/o modifican la estructura morfológica de la fase dispersa en un HIPS y/o ABS, se encuentran: el tipo de hule, como se describe en la solicitud internacional WO2008033646 (Styranec, 2008) y la solicitud de patente de Estados Unidos N° US20060194915 (Morales-Balado et al, 2006); la temperatura de reacción, como se describe en la patente europea EP0818481 (Doyle, 2002), la velocidad de agitación del sistema de reacción, descrita en la misma solicitud europea y en la patente de los Estados Unidos N° US6239225 (Michels et al, 2001); el tipo y concentración del iniciador, la densidad de injertos, por ejemplo, como se describe en la patente de Michels et al, el uso de un agente de transferencia de cadena, véase la patente europea EP0716664 (Schrader et al, 1997, 2005, 2006), empleo de aditivos como solventes como en la patente de Michels et al y en la solicitud europea EP1380620 (Miyatake et al, 2004); entre otros.
En mayor detalle, en la solicitud internacional de Styranec, se describe la mejora en la resistencia al impacto mediante la obtención de morfología bimodal en la distribución de tamaños de partícula utilizando elastómeros de diferentes pesos moleculares. Asimismo, en la solicitud de patente de Morales-Balado et al, se describen cambios en la morfología de las partículas elastoméricas de diferente resistencia al impacto mediante el uso de copolímeros en bloque de Estireno/Butadieno con diferente polidispersidad en el bloque de poliestireno.
En la Patente Europea de Doyle, se describe la síntesis de polímeros estirénicos con resistencia al impacto modificada mediante el uso de un proceso continuo con reactores de agitación y flecha de tipo turbina. En la descripción principalmente se presentan los cambios en la resistencia al impacto ocasionados por diferencias en el sistema de agitación de flechas tipo turbina y tipo ancla, así como el efecto causado por la polimerización iniciada térmicamente y el uso de iniciadores radicálicos. En la patente de Michels et al, se describe un proceso continuo de polimerización para la manufactura de un HIPS donde se muestran diferencias en la resistencia al impacto, mediante una distribución de tamaños de partícula bimodal, obtenida a partir de diferentes condiciones durante el proceso de polimerización, como el proceso de iniciación térmica y químicamente; concentración del iniciador, el uso de solvente, de agentes de transferencia de cadena del grupo de los mercaptanos y variaciones en la velocidad de agitación.
En la Patente Europea No.0716664 se describe un método para la preparación de una composición de un monovinil aromático modificado con hule, la cual contiene un iniciador y un agente de trasferencia de cadena y bajo condiciones de agitación proveen una morfología tipo cápsula y tipo célula, en un rango de tamaños de partícula específico para mejorar la resistencia al impacto. En la Patente de Michels et al, se refiere el uso de solventes en la reacción de polimerización de un HIPS y en la solicitud de Miyatake et al, se describe el uso de un solvente como medio de reacción para mejorar el tamaño de partícula.
Estos y otros documentos que conforman el estado de la técnica, expresan la necesidad de obtener polímeros con propiedades mejoradas de resistencia al impacto, mostrando además, que se han empleado diversas alternativas, incluyendo la modificación de las condiciones de operación de los procesos base, o el empleo de substancias que promueven el cambio de morfología necesario para lograr dicha mejora. OBJETOS DE LA INVENCION En vista de la necesidad por materiales poliméricos con propiedades de resistencia al impacto mejoradas y de las alternativas descritas en el estado de la técnica actual, es un objeto de la presente invención, proveer materiales poliméricos con una mayor resistencia al impacto que aquellos materiales convencionales, con una composición similar.
Es otro objeto de la presente invención, proveer materiales poliméricos que presenten una resistencia al impacto equivalente a la de otros materiales en el estado actual de la técnica, empleando una menor proporción de hule en su composición, esto es, ofrecer un mayor aprovechamiento del hule empleado en las formulaciones.
Es aún otro objeto de la presente invención, proveer una composición mejorada para la producción de un polímero vinil-aromático modificado con hule, con resistencia al impacto mejorada.
Otro objeto de la presente invención, es proveer una composición mejorada para la producción de un polímero vinil-aromático modificado con hule, mediante la incorporación de un aditivo modificador de estructura. Es todavía otro objeto de la presente invención, que la incorporación del aditivo modificador de estructura pueda realizarse en distintas etapas de un proceso convencional de producción del material polimérico, obteniendo resultados similares.
Un objeto más de la presente invención, es proveer una composición mejorada para la producción de un polímero vinil-aromático modificado con hule, en donde se incremente sustancialmente la propiedad de resistencia al impacto, sin modificar el contenido de hule en la mezcla de reacción.
Otro objeto de la presente invención es proveer una composición mejorada para la producción de un polímero vinil-aromático modificado con hule, el cual con menores contenidos de hule que en una formulación convencional, presente una resistencia al impacto similar a la obtenida en dicha formulación convencional, sin la adición del aditivo.
Estos y otros objetos serán evidentes a la luz de la descripción siguiente y de las figuras que le acompañan.
BREVE DESCRIPCION DE LA INVENCION
La presente invención se refiere a una composición mejorada para la producción de polímeros vinil-aromáticos modificados con hule, en la cual, por medio de la incorporación de un aditivo modificador de estructura en diferentes etapas de cualquiera de los procesos de síntesis descritos en el estado del arte, pero preferentemente en el periodo de co-continuidad de fases y en el intervalo de inversión, se produce una mejora substancial de la resistencia al impacto del producto obtenido.
El aditivo modificador de estructura es un compuesto con fórmula general (I):
Figure imgf000012_0001
en la cual:
R-i, R3 representa cada uno una cadena saturada o insaturada desde Ci a Cía, siendo iguales o diferentes entre sí,
R2, R4, R5 representa cada uno, hidrógeno, halógeno o una cadena carbonada desde C1 a Ci8, siendo iguales o diferentes entre sí,
siendo "n" un número entero igual o mayor a 1.
El aditivo modificador de estructura (I) puede ser utilizado en combinación con polímeros de bajo peso molecular; dichos polímeros de bajo peso molecular comprenden a la familia de los compuestos vinil aromáticos, preferiblemente en mezclas en una relación aditivo modificador de estructura/polímero de bajo peso molecular de 5/1 a 1/5 en peso.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 es un diagrama de fases ternario del sistema PB- Estireno-PS mostrando la zona de "inversión de fases" en el punto 2. La Figura 2 es una primera fotografía observada mediante microscopía electrónica de transmisión (TEM) del material obtenido de acuerdo al ejemplo 1.
La Figura 3 es una segunda fotografía observada mediante microscopía electrónica de transmisión del material obtenido de acuerdo al ejemplo 1.
La Figura 4 es una primera fotografía observada mediante microscopía electrónica de transmisión del material obtenido de acuerdo al ejemplo 2.
La Figura 5 es una segunda fotografía observada medíante microscopía electrónica de transmisión del material obtenido de acuerdo al ejemplo 2.
La Figura 6 es una primera fotografía observada medíante microscopía electrónica de transmisión del material obtenido de acuerdo al ejemplo 3. La Figura 7 es una segunda fotografía observada mediante microscopía electrónica de transmisión del material obtenido de acuerdo al ejemplo 3.
DESCRIPCION DETALLADA DE LA INVENCION
La presente invención se refiere a una nueva composición para la preparación de materiales termoplásticos vinil aromáticos resistentes al impacto los cuales se obtienen a partir de: a) 94.975-60% en peso de un monómero vinil aromático,
b) 5-35% en peso de un hule tal como un dieno conjugado o un copolímero, basado en un dieno conjugado y un compuesto vinil aromático, y
c) 0.025-5% en peso de un aditivo modificador de estructura.
De manera particular la presente invención se refiere a la obtención de HIPS o ABS con la composición descrita, presentando partículas preferentemente tipo salami.
De acuerdo a una modalidad preferida para la realización de la presente invención, el proceso de producción de polímeros resistentes al impacto es una polimerización en lotes, aunque las enseñanzas de la invención pueden aplicarse a los procesos de polimerización continuos o semi-continuos, de una solución de estireno o acrilonitrilo, o cualquier otro monómero vinil aromático, con polibutadieno o copolímeros basados en un alcadieno y un monómero vinil aromático; a la formulación se le incorpora un aditivo modificador de estructura de fórmula general (1):
Figure imgf000015_0001
en la cual:
Ri , R3 representa cada uno una cadena saturada o insaturada desde C1 a Ci8, siendo iguales o diferentes entre sí,
R2, R4, R5 representa cada uno, hidrógeno, halógeno o una cadena carbonada desde C1 a C-is, siendo iguales o diferentes entre sí,
siendo "n" un número entero igual o mayor a 1.
La producción de dichos polímeros se lleva a cabo mediante un proceso de polimerización en masa y suspensión, descrito en el estado de la técnica, utilizando iniciadores preferentemente de tipo radicálicos azo, peróxido o hidroperóxido, y preferentemente peróxidos mono o polifuncionales, y agitación variable entre 40-350 rpm, con un sistema preferentemente del tipo ancla-turbina hasta alcanzar Ja inversión de fases. El aditivo modificador de estructura parte de la invención, se puede adicionar en diferentes etapas del proceso, pero preferentemente durante el intervalo de inversión de fases, a fin de lograr los resultados óptimos en la mejora de las propiedades de resistencia al impacto.
Una vez ocurrida la inversión de fases, generalmente entre 20-40% en peso de conversión, la reacción se continúa en suspensión utilizando un medio de suspensión el cual consiste básicamente de agua, alcohol polivinílico, nonil fenol y cloruro de sodio en proporciones variables, sin embargo, puede emplearse cualquier otro medio de suspensión conocido y descrito en el estado de la técnica para procesos de polimerización en suspensión.
Los hules que pueden emplearse en la presente invención son 1 ,3- butadieno, isopreno, 2,3-dimetil-1 ,3-butadieno, copolímeros en bloques lineales o radiales, en bloques perfectos o parcialmente aleatorizados del tipo SB, SBR, SBS, BSB o múltiples bloques (SB)n, siendo S un polímero vinil aromático y B un dieno conjugado, n es un número entero, y donde la parte elastoméríca puede ser parcial o totalmente hidrogenada. En el caso de copolímeros SB, la composición S/B del copolímero puede variar entre 5/95 a 80/20 en peso y mezclas entre ellos, preferentemente copolímeros S/B con composición entre 30/70 y 20/80 en peso, pudiendo variar el peso molecular del hule en el intervalo de 100,000 a 450,000 g/mol. Para la producción de materiales con resistencia al impacto, en la presente invención, el monómero vinil aromático a emplear es seleccionado del grupo que incluye: vinil tolueno, estireno, α-estireno, cloro-estireno, y mezclas entre sí o con otros monómeros copolimerizables tales como monómeros acrílicos, metacrílicos, acrilonitrilo y anhídrido maleico.
La reacción de polimerización de injerto del monómero vinil aromático sobre el hule y la adición del aditivo modificador de estructura parte de la presente invención, puede llevarse a cabo mediante un proceso de polimerización en masa, solución, suspensión y/o emulsión, así como cualquier otra modificación y/o combinación de ellos tales como los procesos de polimerización masa- suspensión.
También es posible adicionar durante el proceso de polimerización (inducido térmicamente o mediante el empleo de compuestos que puedan generar radicales libres tipo azo o peroxídicos), aceite mineral y un agente de transferencia de cadena (regulador del peso molecular), utilizados conjuntamente o por separado, a fin de controlar simultáneamente la proporción de poliestireno injertado en el hule y el peso molecular de la matriz de poliestireno, con ello puede regularse las propiedades de flujo del poliestireno de impacto dependiendo de la aplicación y el tipo de procesamiento al cual estará sometido.
Asimismo, a fin de evitar degradaciones provocadas por elevadas temperaturas y altos esfuerzos mecánicos durante el procesado final del material, se pueden utilizar antioxidantes primarios tipo fenólicos y/o fenólicos impedidos, antioxidantes secundarios tipo fosfito y/o fosfato, además de estabilizadores a la luz ya sea en el proceso de polimerización o bien al momento de procesar los materiales.
Habiendo descrito de manera general la invención puede obtenerse un mayor entendimiento de la misma refiriéndose a ejemplos específicos los cuales se citan a continuación con el propósito de ilustrar la presente invención pero sin pretender ser limitantes de la misma.
Ejemplo 1 Producción de HIPS
En un reactor con capacidad de 1 galón, se adicionaron 920 g (92% en peso) de monómero de estireno y 80 g (8% en peso) de polibutadieno (PB); se agitó a 45 rpm a temperatura ambiente hasta la total disolución del elastómero. En este momento se adicionó 0.1% en peso de peróxido de benzoílo (BPO) y se polimerizó a 80°C manteniendo la agitación constante en 60 rpm hasta la inversión de fases (25-30% en peso de conversión). Al momento de la inversión de fases, que se identifica por un cambio considerable en la viscosidad en la mezcla, se adiciona 0.2% en peso de aditivo modificador de estructura con la composición que se describe en la Tabla 2: Tabla 1.- Composición del aditivo usado en la síntesis de HIPS o ABS.
Figure imgf000019_0001
Luego de 30 minutos se incorporó al sistema de reacción 0.1% en peso de perbenzoato de ter-butilo (PBTB) seguido del medio de suspensión. Este último consistió de 2 L de agua, 1.8 g de alcohol polivinílico, 0.7 g de nonil fenol y 1.7 g de cloruro de sodio. La reacción de polimerización se continuó con una velocidad de agitación de 650-700 rpm siguiendo un programa de rampas de temperatura- tiempo de 2 horas a 125°C y 2 horas a 145°C. Posteriormente, el producto en forma de perlas fue filtrado, lavado y secado.
El material resultante en forma de perlas se sometió a la técnica de moldeo por compresión de la cual se obtuvieron probetas con dimensiones establecidas para pruebas mecánicas de resistencia al impacto según la norma ASTM D-256. Los valores correspondientes a dichas determinaciones se presentan en la Tabla 2. La morfología de las partículas fue observada mediante microscopía electrónica de transmisión (TEM), las muestras fueron previamente cortadas en ultramicrotomo criogénico y posteriormente teñidas con tetra-óxido de osmio, según la técnica ya ampliamente reportada por Kato (Kato, k. Polym. Eng. Sci. 7, 38, 1967), las fotografías se muestran en las Figuras 2 y 3.
Ejemplo 2 Producción de HIPS
Igual que el ejemplo 1 pero empleando 6% en peso de polibutadieno. La morfología resultante se muestra en las Figuras 4 y 5, y los valores correspondientes a dichas determinaciones se presentan en la Tabla 2.
Ejemplo 3 Producción de ABS En un reactor con capacidad de 1 galón, se adicionan 940 g (94% en peso) de una relación azeotrópica de monómero estireno (S) y acrilonitrilo (AN) (77.6 s/22.4 an), y 60 g (6% en peso) de un copolímero en bloques (SB) con composición S/B=30/70, 0.2% en peso de ter-dodecilmercaptano como agente de transferencia y 5% en peso de aceite mineral y se agitó a 45 rpm a temperatura ambiente hasta la total disolución del elastómero. En ese momento se adicionó 0.025% en peso de peróxido de benzoílo (BPO) y se polimerizó a 80°C manteniendo la agitación constante en 60 rpm hasta la inversión de fases (25- 30% en peso de conversión). El aditivo modificador de estructura se agregó antes de la inversión de fases, con la misma composición y en la misma dosificación del ejemplo 1. Posterior a ésta se incorporó al sistema de reacción 0.1% en peso de perbenzoato de ter-butilo (PBTB) seguido del medio de suspensión. Este último consistió de 2 litros de agua, 1.8 g de alcohol polivinílico, 0.7 g de nonil fenol y 1.7 g de cloruro de sodio. La reacción de polimerización se continuó con una velocidad de agitación de 650-700 rpm siguiendo un programa de rampas de temperatura-tiempo de 2 horas a 125°C y 2 horas a 145°C. Posteriormente el producto (perlas) fue filtrado, lavado y secado.
El material en forma de perlas se sometió a la técnica de moldeo por compresión de la cual se obtuvieron probetas con dimensiones establecidas para pruebas mecánicas de resistencia al impacto según la norma ASTM D-256. Los valores correspondientes a dichas determinaciones se presentan en la Tabla 2.
La morfología de las partículas de hule fue observada mediante microscopía electrónica de transmisión, las muestras previamente fueron cortadas en ultramicrotomo criogénico y posteriormente teñidas con tetra-óxido de osmio. Se observan las fotografías correspondientes en las Figuras 6 y 7; para el caso del ABS (ejemplo 3) la morfología resultante mediante el uso del aditivo de la invención es más uniforme, del tipo salami, con partículas ligeramente de alrededor de 1-2 mieras extendiendo a lo largo de la fase continua. Sin embargo puede apreciarse que los dominios de la fase continua son más amplios que las morfologías del HIPS con 6% de hule (Figuras 4 y 5) y la red continua de hule no observa del todo bien definida, lo cual explicar que en este sistema el aumento en la resistencia al impacto sea menor (42.4%) que el sistema HIPS cuyo aporte en el impacto es de 64.2%.
Los valores correspondientes a las determinaciones de la resistencia al impacto en los diferentes materiales producidos de acuedo con los ejemplos 1 a 3 descritos anteriormente, se presentan en las Tabla 2.
Formulaciones obtenidas, sus correspondientes blancos de referencia y resistencia al impacto.
Figure imgf000022_0001
Los resultados mostrados en la Tabla 2 permiten llegar a las conclusiones siguientes: i. Para un mismo contenido de hule, en el rango convencional de 8% en peso, un material HIPS muestra un incremento substancial en la resistencia al impacto entre una formulación sin el empleo del aditivo de la Tabla 1 de 70.53 a 150.6 J/m, esto es, un incremento del 113.53%. Para un HIPS con un contenido reducido de hule de 6%, el incremento en la resistencia al impacto es del orden del 64.2%, suficiente para igualar la resistencia obtenida con la de un HIPS con un contenido convencional de hule del 8%.
En el caso de una composición de ABS con un 6% de hule, se obtiene una mejora del 42.4% en la resistencia al impacto, de 61.6 en un ABS sin aditivo, a 87.71 en un ABS con el aditivo con la composición de la Tabla 1 y en una proporción como se describe en el ejemplo 3. El material así obtenido tiene una resistencia que sobrepasa la del HIPS convencional.
Los dos primeros renglones de la Tabla 2 también muestran que se obtiene una resistencia al impacto de aproximadamente 71 J/m, cuando se produce un HIPS con un contenido de hule del 6% (lo que representa una reducción del 25% en el contenido de hule) con respecto a un HIPS con un 8% de hule. Esto se traduce en un ahorro real en el consumo de hule para la producción de los polímeros.
La mejora considerable en la resistencia al impacto puede estar directamente relacionada con la morfología tipo salami desarrollada, en donde los dominios de la fase elastomérica se encuentran bien definidos formando una red interprenetrada (Figuras 2 y 4) llegando a valores similares de resistencia al impacto con 8% de hule al utilizar el aditivo y reduciendo en un 25% la cantidad de hule, lo cual representa un ventaja importante no solamente en el ámbito técnico, sino también en el comercial. La conclusión derivada del análisis de los resultados de los ejemplos, es que el empleo del aditivo modificador de estructura de la presente invención en la preparación de composiciones para la producción de materiales vinil-aromáticos resulta en una resistencia al impacto visiblemente mejorada, y con un impacto comercial que es también relevante.
Si bien los ejemplos permiten comprender mejor el objeto de la invención y reflejan la mejor forma de uso de la misma para algunas de las alternativas de procesos disponibles en el campo técnico para la producción de polímeros con alta resistencia al impacto, será evidente para un técnico con conocimientos en la materia que las enseñanzas de la presente invención pueden ser aplicadas a otros procesos, o bien, que los porcentajes señalados de las mezclas, pueden ser modificados dentro de los rangos convencionales, sin que esto pueda considerarse que sale del ámbito de la invención.

Claims

REIVINDICACIONES
Habiendo descrito la invención, se considera como novedoso, y por tal motivo se reclama como de nuestra propiedad lo contenido en las siguientes cláusulas:
1. Una composición para producir materiales termoplásticos vinil aromáticos resistentes al impacto, caracterizada porque contiene:
a) entre 94.975 - 60% en peso de un monómero vinil aromático, b) entre 5 - 35% en peso de un hule tal como un dieno conjugado o un copolímero basado en un dieno conjugado y un compuesto vinil aromático, y
c) entre 0.025 - 5% en peso de un aditivo modificador de estructura que tiene fórmula general:
Figure imgf000025_0001
(I)
en donde:
Ri , R3 representa cada uno una cadena saturada o insaturada desde
Ci a Cíe, siendo iguales o diferentes entre sí,
R2, R4, R5 representa cada uno, hidrógeno, halógeno o una cadena carbonada desde C1 a C18, siendo iguales o diferentes entre sí, siendo "n" un número entero igual o mayor a 1.
Una composición de conformidad con la reivindicación 1 caracterizada porque el aditivo modificador de estructura se adiciona sin mezclarse con vehículos.
Una composición de conformidad con la reivindicación 1 caracterizada porque el aditivo modificador de estructura se adiciona como una mezcla con polímeros que comprenden a la familia de los compuestos vinil aromáticos que comprenden a la familia de los éteres, ésteres, aminas y amidas.
Una mezcla del aditivo de conformidad con la reivindicación 3 caracterizada porque el aditivo se encuentra en una relación de desde 5/1 a 1/5 en peso.
5. Una composición de conformidad con la reivindicación 1 caracterizada porque el aditivo modificador de estructura se adiciona durante el intervalo de inversión de fases de la reacción.
6. Una composición de conformidad con la reivindicación 5 caracterizada porque el aditivo modificador de estructura se adiciona de una sola vez.
7. Una composición de conformidad con la reivindicación 5 caracterizada porque el aditivo modificador de estructura se adiciona en dosificaciones intermitentes. 8. Una composición de conformidad con la reivindicación 1 , donde el dieno conjugado se selecciona del grupo que comprende: 1 ,3-butadieno, isopreno, 2,3-dimetil-1 ,3-butadieno, copolímeros en bloques lineales o radiales, en bloques perfectos o parcialmente aleatorizados del tipo SB, SBR, SBS, BSB o múltiples bloques (SB)n, siendo S un polímero vinil aromático, B un dieno conjugado y n un número entero, y donde la parte elastomérica puede ser parcial o totalmente hidrogenada.
9. Una composición de conformidad con la reivindicación 1 , donde la composición de los copolímeros en bloques puede variar entre 5/95 a 80/20 en peso y mezclas entre ellos, preferentemente copolímeros PS/PB con composición entre 30/70 a 20/80 en peso, pudiendo variar el peso molecular del copolímero en bloques en el intervalo de 100,000 a 450,000 g/mol. 10. Una composición de acuerdo con la reivindicación 1 donde el monómero vinil-aromático se selecciona de entre vinil tolueno, estireno, a-estireno, cloro-estireno, y mezclas entre sí o con otro monómero copolimerizabie tal como; monómeros acrílicos, metacrílicos, acrilonitrilo y anhídrido maleico.
11. Una composición de acuerdo con la reivindicación 1 , donde el iniciador radicálico a emplear en la producción del material termoplástico vinil aromático es del tipo azo, peróxido o hidroperóxido, y preferentemente peróxidos mono o polifuncionales.
12. Una composición de conformidad con la reivindicación 1 donde el proceso para producir el termoplástico resistente al impacto es del tipo masa-suspensión, ya sea continuo o discontinuo.
PCT/MX2010/000103 2010-10-01 2010-10-01 Nueva composición para la producción de materiales vinil-aromáticos con resistencia al impacto mejorada con un aditivo modificador de estructura WO2012044145A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/MX2010/000103 WO2012044145A1 (es) 2010-10-01 2010-10-01 Nueva composición para la producción de materiales vinil-aromáticos con resistencia al impacto mejorada con un aditivo modificador de estructura
CA2832026A CA2832026A1 (en) 2010-10-01 2010-10-01 Novel composition for the production of vinyl aromatic materials with impact resistance improved by a structure-modifying additive
RU2013145306/05A RU2578321C2 (ru) 2010-10-01 2010-10-01 Новая композиция для производства винилароматических материалов с ударной прочностью, улучшенной модифицирующей структуру добавкой
US13/984,408 US20140031495A1 (en) 2010-10-01 2010-10-01 Novel composition for the production of vinylaromatic materials with impact strength improved by a structure-modifying additive
EP10857940.0A EP2647665A4 (en) 2010-10-01 2010-10-01 NOVEL COMPOSITION FOR THE PRODUCTION OF VINYLAROMATIC MATERIALS HAVING ENHANCED IMPACT RESISTANCE WITH STRUCTURE MODIFIER ADDITIVE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2010/000103 WO2012044145A1 (es) 2010-10-01 2010-10-01 Nueva composición para la producción de materiales vinil-aromáticos con resistencia al impacto mejorada con un aditivo modificador de estructura

Publications (1)

Publication Number Publication Date
WO2012044145A1 true WO2012044145A1 (es) 2012-04-05

Family

ID=45893393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2010/000103 WO2012044145A1 (es) 2010-10-01 2010-10-01 Nueva composición para la producción de materiales vinil-aromáticos con resistencia al impacto mejorada con un aditivo modificador de estructura

Country Status (5)

Country Link
US (1) US20140031495A1 (es)
EP (1) EP2647665A4 (es)
CA (1) CA2832026A1 (es)
RU (1) RU2578321C2 (es)
WO (1) WO2012044145A1 (es)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104610508A (zh) * 2013-11-05 2015-05-13 派诺尔斯管理服务公司 具有增强抗冲击性且包含结构改性添加剂的乙烯基芳香族材料组合物
TWI509011B (zh) * 2013-12-26 2015-11-21 Chi Mei Corp 冰箱板材用耐衝擊性苯乙烯系聚合物組成物以及冰箱板材

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936365A (en) 1974-05-28 1976-02-03 The Dow Chemical Company Radiation crosslinked block copolymer blends with improved impact resistance
US4146589A (en) 1978-05-19 1979-03-27 Monsanto Company Method for preparing a monoalkenyl aromatic polyblend having a dispersed rubber phase as particles with a bimodal particle size distribution
US4183878A (en) * 1976-02-05 1980-01-15 Solar Chemical Corporation High impact polystyrene resin
US4294937A (en) * 1979-06-18 1981-10-13 Shell Oil Company Impact polymers
CA1112786A (en) * 1978-06-05 1981-11-17 Kent S. Dennis Transparent impact-resistant polystyrene structure
EP0417310A1 (en) * 1989-03-10 1991-03-20 Nippon Steel Chemical Co. Ltd. Production of rubber-modified styrenic resin
EP0716664A1 (en) 1993-09-02 1996-06-19 Dow Chemical Co IMPROVED RUBBER-MODIFIED POLYSTYRENE
EP0818481A2 (en) 1996-07-10 1998-01-14 Nova Chemicals (International) SA Large particle generation
US6239225B1 (en) 1999-07-08 2001-05-29 Bayer Corporation Process for the manufacture of impact resistant modified polymers
ES2174648T3 (es) * 1998-12-01 2002-11-01 Basf Ag Tipo de colada por inyeccion de poliestireno altamente resistente a los choques.
EP1380620A1 (en) 2001-02-09 2004-01-14 Kaneka Corporation Impact modifier for thermoplastic resin and resin composition containing the same
WO2005005539A1 (en) * 2003-07-11 2005-01-20 Polimeri Europa S.P.A. Rubber-reinforced vinyl aromatic polymers
US20060194915A1 (en) 2002-11-08 2006-08-31 Graciela Morales-Balado Preparation of impact-resistant thermoplastic meterials on the basis of stryrene/butadiene copolymers with polydisperse blocks
US20070142549A1 (en) * 2005-12-21 2007-06-21 Fina Technology, Inc. Reactor system for the production of high impact polystyrene
WO2008033646A2 (en) 2006-09-11 2008-03-20 Nova Chemicals Inc. Rubber modified styrenic copolymer composition comprising high molecular weight elastomers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1043117B (it) * 1975-10-03 1980-02-20 Snam Progetti Resine antiurto e metodo per la loro areparazione
IT1283041B1 (it) * 1996-05-21 1998-04-07 Enichem Spa Procedimento per la preparazione di resine abs
DE60006239T2 (de) * 1999-05-17 2004-07-15 Dow Global Technologies, Inc., Midland Bimodale kautschuke und daraus hergestellte hochschlagfeste kautschuk-modifizierte monovinyliden aromatische polymere
KR100471716B1 (ko) * 2002-08-03 2005-03-10 금호석유화학 주식회사 연속식 음이온 중합에 의한 내충격 비닐 방향족 고분자의제조방법

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936365A (en) 1974-05-28 1976-02-03 The Dow Chemical Company Radiation crosslinked block copolymer blends with improved impact resistance
US4183878A (en) * 1976-02-05 1980-01-15 Solar Chemical Corporation High impact polystyrene resin
US4146589A (en) 1978-05-19 1979-03-27 Monsanto Company Method for preparing a monoalkenyl aromatic polyblend having a dispersed rubber phase as particles with a bimodal particle size distribution
CA1112786A (en) * 1978-06-05 1981-11-17 Kent S. Dennis Transparent impact-resistant polystyrene structure
US4294937A (en) * 1979-06-18 1981-10-13 Shell Oil Company Impact polymers
EP0417310A1 (en) * 1989-03-10 1991-03-20 Nippon Steel Chemical Co. Ltd. Production of rubber-modified styrenic resin
EP0716664A1 (en) 1993-09-02 1996-06-19 Dow Chemical Co IMPROVED RUBBER-MODIFIED POLYSTYRENE
EP0818481A2 (en) 1996-07-10 1998-01-14 Nova Chemicals (International) SA Large particle generation
ES2174648T3 (es) * 1998-12-01 2002-11-01 Basf Ag Tipo de colada por inyeccion de poliestireno altamente resistente a los choques.
US6239225B1 (en) 1999-07-08 2001-05-29 Bayer Corporation Process for the manufacture of impact resistant modified polymers
EP1380620A1 (en) 2001-02-09 2004-01-14 Kaneka Corporation Impact modifier for thermoplastic resin and resin composition containing the same
US20060194915A1 (en) 2002-11-08 2006-08-31 Graciela Morales-Balado Preparation of impact-resistant thermoplastic meterials on the basis of stryrene/butadiene copolymers with polydisperse blocks
WO2005005539A1 (en) * 2003-07-11 2005-01-20 Polimeri Europa S.P.A. Rubber-reinforced vinyl aromatic polymers
US20070142549A1 (en) * 2005-12-21 2007-06-21 Fina Technology, Inc. Reactor system for the production of high impact polystyrene
WO2008033646A2 (en) 2006-09-11 2008-03-20 Nova Chemicals Inc. Rubber modified styrenic copolymer composition comprising high molecular weight elastomers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KATO, K., POLYM. ENG. SCI., vol. 7, 1967, pages 38
See also references of EP2647665A4

Also Published As

Publication number Publication date
CA2832026A1 (en) 2012-04-05
EP2647665A1 (en) 2013-10-09
RU2013145306A (ru) 2015-04-20
US20140031495A1 (en) 2014-01-30
EP2647665A4 (en) 2014-10-01
RU2578321C2 (ru) 2016-03-27

Similar Documents

Publication Publication Date Title
US6777500B2 (en) Core-shell polymer particles
JP2006206926A (ja) 安定フリーラジカルの存在下での重合によるビニル芳香族ポリマー及びゴムを含む組成物の製造方法
EP3248994B1 (en) Rubber polymer and preparation method therefor, graft copolymer, and thermoplastic resin composition
JPS6346106B2 (es)
US5380798A (en) Impact-resistant styrenic polymer resin composition and process for making same
AU775983B2 (en) Monovinylidene aromatic polymers with improved properties and a process for their preparation
BR112014031892B1 (pt) Mistura, e, método para aumentar a resistência a risco de policarbonato
JP4105879B2 (ja) ゴム強化熱可塑性樹脂及びゴム強化熱可塑性樹脂組成物
WO2012044145A1 (es) Nueva composición para la producción de materiales vinil-aromáticos con resistencia al impacto mejorada con un aditivo modificador de estructura
US6444752B1 (en) Monovinylidene aromatic polymers with improved toughness and rigidity and a process for their preparation
JPH11508615A (ja) スチレンポリマーからなる耐衝撃性成形材料
AU2001259683A1 (en) Monovinylidene aromatic polymers with improved toughness and rigidity and a process for their preparation
KR20190084549A (ko) 코어-쉘 공중합체, 이의 제조방법 및 이를 포함하는 수지 조성물
JPH11147993A (ja) 熱可塑性樹脂組成物
JPH0238437A (ja) 高光沢耐衝撃性スチレン系樹脂組成物
TW201425435A (zh) 橡膠改質甲基丙烯酸酯系樹脂組成物
JP3538489B2 (ja) 熱可塑性樹脂組成物
JPH0238435A (ja) スチレン系樹脂組成物
US3875259A (en) Thermoplastic resin-graft polyblend compositions
JPS63221147A (ja) ゴム変性ポリスチレン樹脂組成物
JP2546936B2 (ja) スチレン系樹脂組成物
JP3538491B2 (ja) 熱可塑性樹脂組成物
KR860001118B1 (ko) 폴리메틸 메트 아크릴레이트 및 스티렌 공중합체의 투명블랜드
JPS61130365A (ja) 耐熱性および耐衝撃性にすぐれた熱可塑性樹脂組成物
JPH0676464B2 (ja) スチレン系樹脂の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010857940

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010857940

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13984408

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2832026

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013145306

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013024440

Country of ref document: BR

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: 112013024440

Country of ref document: BR

Free format text: PEDIDO RETIRADO EM RELACAO AO BRASIL POR TER SIDO INTEMPESTIVO, JA QUE A SOLICITACAO DE RESTABELECIMENTO DE DIREITO FOI NEGADA CONFORME PARECER DISPONIVEL NO E-PARECER E NAO TENDO O DEPOSITANTE ENTRADO COM NENHUMA MANIFESTACAO CONTRA A DECISAO.