WO2012043641A1 - Vehicle control device and control method - Google Patents

Vehicle control device and control method Download PDF

Info

Publication number
WO2012043641A1
WO2012043641A1 PCT/JP2011/072209 JP2011072209W WO2012043641A1 WO 2012043641 A1 WO2012043641 A1 WO 2012043641A1 JP 2011072209 W JP2011072209 W JP 2011072209W WO 2012043641 A1 WO2012043641 A1 WO 2012043641A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
engine
control
brake
braking
Prior art date
Application number
PCT/JP2011/072209
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 橋本
陽介 大森
雪生 森
政義 武田
Original Assignee
株式会社 アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 アドヴィックス filed Critical 株式会社 アドヴィックス
Priority to CN201180046554.XA priority Critical patent/CN103124661B/en
Priority to DE112011103322.2T priority patent/DE112011103322B4/en
Publication of WO2012043641A1 publication Critical patent/WO2012043641A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • B60W10/192Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes electric brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18027Drive off, accelerating from standstill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18118Hill holding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/06Hill holder; Start aid systems on inclined road

Definitions

  • the present invention relates to a vehicle control device and control method for automatically stopping and restarting an engine.
  • the engine is automatically stopped while the vehicle is stopped, such as waiting for a signal, and the engine is automatically restarted according to the driver's starting operation, thereby saving fuel consumption and improving exhaust emission. Stop / restart devices are in practical use. In recent years, there has also been proposed a device for stopping an engine during deceleration of a vehicle before stopping.
  • the creep phenomenon is a phenomenon in an AT vehicle where the vehicle slowly moves forward even if the accelerator pedal is not depressed when the shift lever is in the traveling position. The power is transmitted to the drive wheel side.
  • Patent Document 1 when the amount of stepping on the brake is equal to or less than the second predetermined value S2, the engine is allowed to start. Therefore, when the brake is loosened to near zero on the uphill road, the engine may be started. In this case, if the engine cannot be started before the vehicle stops, the vehicle cannot be maintained in a stopped state on the slope with only the reduced braking force (braking force), and the vehicle may slide down.
  • One of the objects of the present invention is that, in a vehicle that automatically stops and restarts an engine, even when the timing when the stop maintenance control should be performed and the timing when the engine should be restarted overlap at least partially, It is an object of the present invention to provide a control device and a control method for a vehicle that can effectively balance engine restart and increase in braking force while respecting a person's intention to start.
  • a vehicle control apparatus that performs stop control for automatically stopping a vehicle engine (12) and restart control for automatically restarting the engine (12).
  • the control device includes an electric motor (41, 35a, 35b) that increases the braking force applied by the braking device (32a to 32d) to the vehicle wheels (FR, FL, RR, RL) by electric power, and the engine (12
  • a braking control section (55, S18, S22) for controlling the electric motor (41, 35a, 35b) to perform stop maintenance control for increasing the braking force in accordance with the stopping of the vehicle in the stop state of
  • a determination unit 55, S15 for determining whether or not the driver has an intention to start based on the detection result of the driving operation system detector (SW1) provided in the braking control unit (55).
  • a second determination unit (55, S12) that determines whether or not the braking force (Apmc) before the increase is less than the force (Ag) corresponding to gravity acting in the front-rear direction of the vehicle according to the road surface gradient ( ⁇ ). ), And the braking control unit (55, S18, S22) performs the stop maintenance control when the braking force (Apmc) before the increase is less than the force corresponding to the gravity (Ag). However, when the braking force (Apmc) before the increase is equal to or greater than the force corresponding to the gravity (Ag), it is preferable not to perform the stop maintenance control.
  • the braking control unit increases the braking force giving priority to maintaining the stop of the vehicle. , 35a, 35b), and after the braking force by the electric motor (41, 35a, 35b) has increased, it is preferable to allow the engine (12) to restart.
  • the brake control unit (55, S18, S22) supplies electric power supplied to the electric motor (41, 35a, 35b) for increasing the braking force when the engine (12) is restarted. ) Is preferably set to be equal to or less than the remaining power consumed.
  • the braking controller (55, S18, S22) increases the braking force at a time at least avoiding a current peak generation time (PT) in the initial driving of the electric motor (72) that restarts the engine (12). It is preferable to supply electric power for the electric motor (41, 35a, 35b).
  • a vehicle control method for performing stop control for automatically stopping the engine (12) of the vehicle and restart control for automatically restarting the engine (12).
  • the method controls the electric motors (41, 35a, 35b) that increase the braking force applied to the vehicle wheels (FR, FL, RR, RL) by the braking devices (32a to 32d) by electric power, and A braking control step (55, S18, S22) for performing stop maintenance control for increasing the braking force in accordance with the stopping of the vehicle in a stopped state of the engine (12), and reactivation while the engine (12) is stopped.
  • the braking control step (55, S18, S22) starts in the determination step (55, S15) when the restart request is accepted when the start condition of the stop maintenance control is satisfied.
  • the electric motor (41, 35a, 35b) is controlled to increase the braking force within a power range that does not hinder the restart of the engine (12), while the determination step ( 55, S15), when it is determined that there is no intention to start, the electric motors (41, 35a, 35b) increase the braking force with priority given to maintaining the stop of the vehicle rather than restarting the engine (12). ) To control.
  • the block diagram which shows an example of the vehicle carrying the control apparatus of one Embodiment.
  • the block diagram which shows an example of a braking device.
  • the schematic side view which shows the force which acts on the vehicle which stops on an uphill road.
  • the map which shows the relationship between a gradient acceleration and the electric current value with respect to a linear solenoid valve.
  • the flowchart which shows the principal part of a stop maintenance / restart control routine.
  • the flowchart (part) which shows a part of stop maintenance / restart control routine.
  • the flowchart which shows an engine stop control routine.
  • the timing chart explaining normal sliding prevention control The timing chart explaining the stop maintenance / restart control when there is an intention to start.
  • the drive power of a pump motor and a starter motor is shown, (a) a graph when there is an intention to start, (b) a graph when there is no intention to start.
  • the vehicle according to the present embodiment automatically stops the engine in accordance with the establishment of a predetermined stop condition while the vehicle is running, and then improves the fuel efficiency performance and the emission performance. Has a so-called idle stop function for automatically restarting. Therefore, in this vehicle, the engine is automatically stopped while the vehicle is decelerated or stopped by the brake operation by the driver.
  • the vehicle has a plurality of (four in this embodiment) wheels (the right front wheel FR, the left front wheel FL, the right rear wheel RR, and the left rear wheel RL). It is a so-called front wheel drive vehicle that functions as a vehicle.
  • a vehicle includes a driving force generator 13 having an engine 12 that generates a driving force corresponding to the amount of operation of the accelerator pedal 11 by the driver, and the driving force generated by the driving force generator 13 is applied to the front wheels FR and FL.
  • a driving force transmission device 14 for transmission.
  • the vehicle also has an audio 60 (including a navigation device) as an example of comfort equipment, a temperature adjustment device 61 as an example of comfort equipment, and a braking force according to the amount of operation of the brake pedal 15 by the driver.
  • a braking device 16 is provided for applying to each wheel FR, FL, RR, RL.
  • the driving force generator 13 includes an intake pipe 70 that extends outward from the engine 12 and a throttle valve 71 that is disposed in the intake pipe 70 and that changes the sectional area of the opening.
  • the throttle valve 71 is operated by a driving force generated by an actuator (not shown).
  • a fuel injection device (not shown) having an injector for injecting fuel is provided near the intake port (not shown) of the engine 12.
  • the driving force generator 13 is provided with a starter motor 72 as an example of an electric motor that operates when the engine 12 is started.
  • the driving force generator 13 is driven based on the control of an engine ECU 17 (also referred to as “engine electronic control device”) having a CPU, a ROM, a RAM, and the like (not shown).
  • the engine ECU 17 is electrically connected to an accelerator opening sensor SE1 that is disposed in the vicinity of the accelerator pedal 11 and that detects an operation amount of the accelerator pedal 11 by the driver, that is, an accelerator opening.
  • the engine ECU 17 calculates the accelerator opening based on the detection signal from the accelerator opening sensor SE1, and controls the driving force generator 13 based on the calculated accelerator opening.
  • the driving force transmission device 14 controls the automatic transmission 18, the differential gear 19 that appropriately distributes the driving force transmitted from the output shaft of the automatic transmission 18, and transmits it to the front wheels FR and FL, and the automatic transmission 18. And an AT ECU (not shown).
  • the automatic transmission 18 includes a fluid driving force transmission mechanism 20 having a torque converter (not shown) and a transmission mechanism 21 as an example of a fluid coupling.
  • a creep phenomenon occurs because a torque converter is provided in the torque transmission path from the engine 12 to the drive wheels (front wheels FR, FL).
  • This creep phenomenon is a phenomenon in which the vehicle slowly moves forward without depression of the accelerator pedal 11 when the shift lever is in the traveling position in a vehicle having the automatic transmission 18.
  • the torque converter transmits some driving force to the front wheels FR, FL. The slight power transmitted to the front wheels FR and FL is called “creep torque”.
  • the audio 60 is a device for providing information such as music according to the operation by the vehicle occupant to the occupant. Such audio 60 operates based on electric power supplied from a battery (not shown) mounted on the vehicle.
  • the temperature adjusting device 61 is an air conditioner for adjusting the temperature inside the vehicle.
  • the temperature adjusting device 61 includes a compressor 62 that operates based on a driving force generated by the engine 12 and a contact / disconnection mechanism 63 that is disposed on a power transmission path between the engine 12 and the compressor 62.
  • the contact / disconnection mechanism 63 is a mechanism that operates to permit transmission or disconnection of the driving force to the compressor 62. That is, the compressor 62 operates when the driving force generated in the engine 12 is transmitted through the contact / disconnection mechanism 63.
  • the audio 60 and the temperature adjusting device 61 are controlled by an idle stop ECU 65 (also referred to as “idle stop electronic control device”) having a CPU, a ROM, a RAM, and the like (not shown). More specifically, the idle stop ECU 65 controls the amount of power supplied from the battery to the audio 60 and controls the connection / disconnection mechanism 63.
  • an idle stop ECU 65 also referred to as “idle stop electronic control device” having a CPU, a ROM, a RAM, and the like (not shown). More specifically, the idle stop ECU 65 controls the amount of power supplied from the battery to the audio 60 and controls the connection / disconnection mechanism 63.
  • the braking device 16 includes a hydraulic pressure generating device 28 having a master cylinder 25, a booster 26 and a reservoir 27, and a brake actuator 31 having two hydraulic pressure circuits 29 and 30 (in FIG. 2). 2).
  • the hydraulic circuits 29 and 30 are connected to the master cylinder 25 of the hydraulic pressure generator 28, respectively.
  • a wheel cylinder 32a for the right front wheel FR and a wheel cylinder 32d for the left rear wheel RL are connected to the first hydraulic circuit 29, and a wheel cylinder 32b for the left front wheel FL is connected to the second hydraulic circuit 30.
  • the wheel cylinder 32c for the right rear wheel RR is connected.
  • the booster 26 is connected to an intake manifold 70 a that generates negative pressure when the engine 12 is driven.
  • the booster 26 uses the pressure difference between the negative pressure generated in the intake manifold 70a and the atmospheric pressure to assist the operating force of the brake pedal 15 by the driver.
  • the master cylinder 25 generates a master cylinder pressure PMC corresponding to the operation of the brake pedal 15 (hereinafter also referred to as “brake operation”) by the driver.
  • brake operation a master cylinder pressure corresponding to the operation of the brake pedal 15
  • brake fluid is supplied from the master cylinder 25 into the wheel cylinders 32a to 32d via the hydraulic circuits 29 and 30.
  • a braking force corresponding to the wheel cylinder pressure PWC in the wheel cylinders 32a to 32d is applied to the wheels FR, FL, RR, and RL.
  • each hydraulic circuit 29, 30 is connected to the master cylinder 25 through pipes 33, 34, and a normally open type linear electromagnetic valve (regulating valve) is provided in the middle of each pipe 33, 34. ) 35a and 35b are provided.
  • the linear solenoid valves 35a and 35b include a valve seat, a valve body, an electromagnetic coil, and a biasing member (for example, a coil spring) that biases the valve body in a direction away from the valve seat.
  • the ECU 55 is displaced according to the current value supplied to the electromagnetic coil from the ECU 55. That is, the wheel cylinder pressure PWC in the wheel cylinders 32a to 32d is maintained at a hydraulic pressure corresponding to the current value supplied to the linear electromagnetic valves 35a and 35b.
  • a master pressure sensor SE8 for detecting the master cylinder pressure PMC is provided at a position closer to the master cylinder 25 than the linear electromagnetic valve 35a in the pipe line 33.
  • the master pressure sensor SE8 outputs a detection signal having a value corresponding to the master cylinder pressure PMC to the brake ECU 55.
  • the pressure increasing valves 37a, 37b, 37c, 37d made of normally open solenoid valves are provided in the middle of the pipes 36a-36d branched from the pipes 33, 34 connected to the master cylinder 25 and connected to the wheel cylinders 32a-32d.
  • pressure-reducing valves 38a, 38b, 38c, and 38d that are normally closed solenoid valves.
  • the pressure increasing valves 37a, 37b, 37c, and 37d are operated when restricting the pressure increase of each wheel cylinder pressure PWC, and the pressure reducing valves 38a, 38b, 38c, and 38d are operated when decreasing the wheel cylinder pressure PWC.
  • the hydraulic circuits 29 and 30 include reservoirs 39 and 40 for temporarily storing brake fluid that has flowed out of the wheel cylinders 32a to 32d through the pressure reducing valves 38a to 38d, and a pump 42 that operates based on the rotation of the pump motor 41. , 43 are connected.
  • the reservoirs 39 and 40 are connected to the pumps 42 and 43 through the pipes 44 and 45, and are connected to the pipes 33 and 34 at positions closer to the master cylinder 25 than the linear electromagnetic valves 35a and 35b. , 47, etc., are connected to the master cylinder 25, respectively.
  • the pipes 48 and 49 extending from the discharge ports of the pumps 42 and 43 are connected to connection portions 50 and 51 on the communication path connecting the pressure increasing valves 37a to 37d and the linear electromagnetic valves 35a and 35b.
  • the pumps 42 and 43 suck in the brake fluid from the reservoirs 39 and 40 and the master cylinder 25 through the pipelines 44, 45, 46, and 47, and the sucked brake fluid is fed into the pipelines 48 and 48. It discharges to 49.
  • “sliding prediction determination” is performed to determine (predict) whether or not the vehicle will slide down after stopping when the engine 12 is traveling uphill.
  • the brake is applied so that the control target pressure that can resist the slippage is applied within the range of the vehicle slippage distance “0” or “allowable distance Lp”.
  • Start pressure control For example, when the amount of depression of the brake pedal 15 is small, and it is predicted that the vehicle will slide down due to the road surface gradient after stopping, the brake pressurization is performed before the vehicle slides down.
  • the creep torque acts, so that the vehicle can be stopped against the road surface gradient even with a relatively small amount of brake depression.
  • the number of engine restarts increases, and the fuel efficiency improvement effect due to idling stop of the engine 12 decreases. Therefore, in this embodiment, even if such engine restart is not performed, a relatively high fuel efficiency improvement effect is expected by preventing “sliding down” by pressurizing the brake. Therefore, in the vehicle control apparatus according to the present embodiment, the vehicle is preferably prevented from sliding down when stopping on an uphill road.
  • brake ECU 55 also referred to as “brake electronic control device” that controls the drive of the brake actuator 31 will be described.
  • wheel speed sensors SE3, SE4, SE5, SE6 for detecting the wheel speed of each wheel FR, FL, RR, RL are provided on the input side interface of the brake ECU 55 as a braking control unit.
  • An acceleration sensor also referred to as “G sensor”
  • G sensor also referred to as “G sensor”
  • a brake switch SW1 and a master pressure sensor SE8 that are disposed in the vicinity of the brake pedal 15 and detect whether or not the brake pedal 15 is operated are electrically connected to the input side interface of the brake ECU 55.
  • the valves 35a, 35b, 37a to 37d, 38a to 38d, the pump motor 41, and the like are electrically connected to the output side interface of the brake ECU 55.
  • the acceleration sensor SE7 outputs a signal that takes a positive value when the center of gravity of the vehicle moves backward, and a signal that takes a negative value when the center of gravity of the vehicle moves forward. Is output.
  • the brake ECU 55 includes a digital computer composed of a CPU, ROM and RAM (not shown), a valve driver circuit (not shown) for operating the valves 35a, 35b, 37a to 37d, and 38a to 38d, and a pump motor.
  • a motor driver circuit (not shown) for operating 41 is provided.
  • the ROM of the digital computer stores various control processing (such as idle stop processing described later) programs, various maps (such as the map shown in FIG. 4), and various threshold values.
  • the RAM also stores various types of information that can be appropriately rewritten while an ignition switch (not shown) of the vehicle is on.
  • FIG. 3 shows the relationship of the force acting on the vehicle stopped on the uphill road.
  • the slope (inclination angle) of the uphill road is “ ⁇ ” and the gravity acting on the vehicle is “g”
  • the vehicle is pulled backward by the force Fg of “g ⁇ sin ⁇ ” by the action of the gravity g. become.
  • This force Fg is a component of gravity g acting on the vehicle in the vehicle rearward direction, and changes according to the road surface gradient ⁇ .
  • a braking force Fpmc corresponding to the master cylinder pressure PMC acts on the vehicle as a force against the force Fg.
  • the force Fg and the braking force Fpmc are compared, and if Fg> Fpmc, there is a possibility that the vehicle will slip down.
  • the vehicle rearward acceleration obtained by dividing the force Fg by the vehicle body weight M is defined as a gradient acceleration Ag
  • the acceleration obtained by dividing the braking force Fpmc by the vehicle body weight M is defined as a braking acceleration Apmc.
  • the gradient acceleration Ag is calculated based on the detection signal from the acceleration sensor SE7.
  • a vehicle body speed differential value DVS obtained by time-differentiating the vehicle body speed VS calculated based on the detection signals of the wheel speed sensors SE3 to SE6 from the vehicle body acceleration G calculated based on the detection signal of the acceleration sensor SE7.
  • the gradient acceleration Ag is calculated by subtracting (corresponding to the traveling acceleration).
  • the vehicle body acceleration G calculated based on the detection signal from the acceleration sensor SE7 varies with the variation of the master cylinder pressure PMC, that is, the variation of the braking force with respect to the wheels FR, FL, RR, and RL. Accordingly, in the present embodiment, focusing on the fact that there is a correspondence relationship between the master cylinder pressure (that is, braking force) and the vehicle body acceleration G, the braking acceleration Apmc is acquired as a value corresponding to the master cylinder pressure PMC based on the vehicle body acceleration G. Is done.
  • This braking acceleration Apmc corresponds to an acceleration obtained by dividing the braking force Fpmc by the vehicle body weight M when a braking force Fpmc corresponding to the master cylinder pressure PMC is applied to the wheel.
  • brake pressurization is performed to prevent the vehicle from sliding down.
  • the brake pressurization is performed by controlling the current value supplied to the linear electromagnetic valves 35a and 35b to adjust the wheel cylinder pressure PWC to the control target pressure P1 (see FIGS. 8 to 10) that can prevent the sliding down. Do.
  • the current value to be supplied to the linear electromagnetic valves 35a and 35b needs to be changed to a value corresponding to the road surface gradient ⁇ , that is, the force Fg acting backward of the vehicle.
  • acceleration toward the rear of the vehicle obtained by dividing the force Fg by the vehicle body weight M is defined as a gradient acceleration Ag.
  • a gradient acceleration Ag is calculated based on a detection signal from the acceleration sensor SE7, and a current value corresponding to the gradient acceleration Ag is given to the linear electromagnetic valves 35a and 35b.
  • the “gradient acceleration Ag” is the vehicle acceleration G calculated based on the detection signal of the acceleration sensor SE7 or a value corresponding to the vehicle acceleration G when the vehicle is stopped on a slope with a road surface gradient ⁇ (that is, the traveling acceleration is zero). It is.
  • the “current value I for the linear solenoid valves 35a and 35b” is the minimum braking force required to maintain the vehicle stopped when the driving force from the engine 12 is not transmitted to the front wheels FR and FL. This is a value obtained by adding an offset value ⁇ to the current value Ix necessary for giving to each wheel FR, FL, RR, RL. Therefore, as shown in FIG. 3, the current value I for the linear electromagnetic valves 35a and 35b is set to a larger value as the absolute value of the gradient acceleration Ag is larger.
  • the ECUs including the engine ECU 17, the brake ECU 55, and the idle stop ECU 65 are connected to each other via a bus 56 so that various information and various control commands can be transmitted and received as shown in FIG. Has been.
  • information related to the accelerator opening of the accelerator pedal 11 and various requests are appropriately transmitted from the engine ECU 17 to the brake ECU 55.
  • a stop command for permitting automatic stop of the engine 12 a restart command for permitting automatic restart of the engine 12, and the like are transmitted to the engine ECU 17.
  • the idle stop ECU 65 transmits information related to the audio 60 and the temperature adjustment device 61 to the engine ECU 17 and the brake ECU 55. This information includes information on the power being supplied to the audio 60 and the temperature adjustment device 61, that is, power supply information.
  • the brake ECU 55 executes an idle stop control routine every predetermined period (for example, 0.01 second period) set in advance.
  • an engine stop control routine (FIG. 7) for automatically stopping the engine 12 and an engine restart control for automatically restarting the engine 12 in anticipation of fuel efficiency improvement and environmental effects.
  • a vehicle stop maintenance / restart control routine (a part of FIGS. 5 and 6) including a sliding prevention control.
  • the slip-down prevention control is a control for preventing vehicle slip-down by increasing the braking force by applying brake pressure before the vehicle stops in the engine stop state after the engine is automatically stopped.
  • the slip-down prevention includes each control of brake pressurization for increasing the wheel cylinder pressure PWC to the control target pressure P1, and brake holding for maintaining the wheel cylinder pressure PWC at the control target pressure P1 until the engine is restarted.
  • step S101 it is determined whether or not an idle stop condition is satisfied while the vehicle is traveling.
  • the idle stop condition is that the vehicle body speed VS is in a low speed range that is equal to or less than the vehicle speed threshold value V1 (for example, 20 km / h) (VS ⁇ V1), the brake pedal 15 is operated, and the brake switch SW1 is turned on.
  • V1 vehicle speed threshold value
  • the brake pedal 15 is operated, and the brake switch SW1 is turned on.
  • PMC ⁇ Ps the specified pressure
  • the brake ECU 55 permits the engine 12 to stop in step S102. That is, the brake ECU 55 sends a stop command to the engine ECU 17. The engine ECU 17 stops the engine 12 when receiving the stop command. On the other hand, if the idle stop condition is not satisfied in step S101, the routine is terminated.
  • the vehicle speed VS the engine rotation speed, the brake system hydraulic pressure, the slip prediction prediction, the current of the pump motor 41, the linear electromagnetic
  • the transition of the current of the valve 35 (35a, 35b) is shown.
  • the wheel speed is used as the vehicle body speed VS.
  • the vehicle body speed VS is obtained by adding an integrated value obtained by integrating the wheel acceleration, which is a time differential value of the wheel speed, per unit time to the previous wheel speed.
  • the brake ECU 55 applies the brake pressurization ( The braking force applied to the wheels FR, FL, RR, RL is increased. As a result, the control for preventing the vehicle from sliding down after stopping is performed.
  • FIG. 8 is a timing chart when normal vehicle sliding control is performed.
  • normal sliding prevention control will be described with reference to FIG.
  • the engine restart request is not received from the engine ECU 17 during the control period from the start to the end of the slip control, and the engine restart request is received during a period other than the control period.
  • Engine restart control is not received from the engine ECU 17 during the control period from the start to the end of the slip control, and the engine restart request is received during a period other than the control period.
  • FIGS. 9 and 10 are examples in which the execution timings of the brake pressurization in the slip-down prevention control and the permission of the engine restart performed when the engine restart request is received overlap.
  • FIG. 9 shows an example in which it is determined that the engine restart request is due to the driver's intention to start
  • FIG. 10 shows that the engine restart request is due to something other than the driver's intention to start. It is an example when it is determined.
  • Some requests other than the driver's intention to start are for the purpose of securing electric power to be supplied to comfort facilities such as the temperature adjusting device 61.
  • the vehicle decelerates while the engine is stopped by the braking force applied to the wheels FR, FL, RR, and RL due to the increase in the master cylinder pressure PMC by the brake operation.
  • the brake ECU 55 is configured to prevent the vehicle from sliding down after the vehicle has stopped, and a restart control that permits the engine 12 to restart when an engine restart request is received. I do.
  • the engine restart request is not received within the execution period of brake pressurization (in the case of “predicted slip down” to be described later).
  • the slip prediction determination is a prediction of whether or not a vehicle will slip after stopping, and whether or not a brake pressurization start condition for starting brake pressurization for preventing the slip is satisfied. This is a determination process including a brake pressurization start condition determination (hereinafter also simply referred to as “start condition determination”).
  • the slip prediction it is determined whether or not the slope generation condition, gradient acceleration Ag> braking acceleration Apmc, is satisfied. If Ag> Apmc is satisfied, it is predicted that a slip will occur, and if Ag> Apmc is not satisfied, it is predicted that no slip will occur.
  • an estimated time T required until the vehicle stops after the engine stops is calculated.
  • the predicted time T is obtained as the time required from the present time to the stop.
  • the vehicle body speed differential value DVS is a value obtained by differentiating the vehicle body speed VS with respect to time.
  • Brake pressurization is started earlier than the time of stopping by the pressurization required time T1 required for brake pressurization. This is to ensure the braking force necessary to suppress the sliding down until the vehicle stops. Therefore, when the predicted time T reaches the pressurization required time T1, the brake pressurization start condition (T ⁇ T1) is satisfied.
  • the slip-down prevention control is performed so that the slip-down distance L of the vehicle is suppressed to the allowable distance La or less.
  • the brake pressurization start timing may be delayed by an amount of the allowable delay time Ta required for the slippage distance L to reach the allowable distance La from the stop point.
  • the slippage prediction condition is satisfied.
  • the slip prediction judgment flag is turned off while the slip prediction condition is not satisfied, and is turned on when the slip prediction condition is satisfied.
  • the brake ECU 55 supplies current to the pump motor 41 and the linear electromagnetic valve 35 (35a, 35b) to pressurize the brake, thereby driving the pump motor 41 and linear electromagnetic.
  • the wheel cylinder pressure PWC is increased by reducing the opening degree by operating the valve 35 in the valve closing direction.
  • the current value I1 to be supplied to the linear electromagnetic valve 35 for pressurizing the brake is based on the absolute value of the gradient acceleration Ag determined from the road surface gradient ⁇ , and referring to the map shown in FIG. Asked in advance before.
  • This current value I1 is a value at which the wheel cylinder pressure PWC can be increased (increased) to the control target pressure P1 when supplied to the linear electromagnetic valves 35a and 35b under the drive state of the pumps 42 and 43.
  • the current supplied when the pump motor 41 is driven changes so as to converge once to a stable current value after rising significantly at the start of driving.
  • the current characteristic of the pump motor 41 is a general motor current characteristic, and the starter motor 72 has the same current characteristic.
  • the pump motor 41 when the pump motor 41 is driven for a drive time sufficient for the wheel cylinder pressure PWC to reach the control target pressure P1, the supply of current to the pump motor 41 is stopped. Since the brake pressurization is completed when the driving of the pump motor 41 is stopped, the slip prediction prediction flag is switched from on to off.
  • the current supplied to the linear solenoid valves 35a and 35b is changed from the current value I1 to the current value I2 (> I1) at the timing when the slip prediction prediction flag is turned off (that is, when the brake pressurization is finished). Is done.
  • the current value I2 is obtained by referring to a map created based on the same concept as the map shown in FIG. 4 according to the absolute value of the gradient acceleration Ag.
  • the wheel cylinder pressure PWC increases to a pressure corresponding to the current value I due to brake pressurization. For this reason, the braking force applied to the wheels FR, FL, RR, RL increases. For example, the wheel cylinder pressure PWC is increased even when the driver decreases the operation amount (stepping amount) of the brake pedal 15 and the master cylinder pressure PMC decreases from time t2 before the vehicle stops. . For this reason, when the vehicle stops, even if the wheel cylinder pressure PWC does not reach the control target pressure P1, the vehicle after stopping stops so that the sliding distance L falls within the allowable distance La.
  • the driver once depresses the brake pedal 15 whose operating amount was once reduced before and after stopping, and then stepped on again for a while, and then increased to the master cylinder pressure PMC higher than the control target pressure P1.
  • the wheel cylinder pressure PWC also increases following this master cylinder pressure PMC. Even if the driver depresses the brake pedal 15 and the master cylinder pressure PMC decreases, the current of the current value I2 is supplied to the linear electromagnetic valves 35a and 35b. Therefore, the wheel cylinder pressure PWC is set to the control target pressure P1. Retained. In other words, the brake is held, and the vehicle is stopped and maintained on the slope without falling off the vehicle.
  • the engine ECU 17 detects the operation with the intention to start.
  • An engine restart request is sent to the ECU 55.
  • the brake ECU 55 permits the engine 12 to restart.
  • the engine 12 is restarted by the engine ECU 17, and the engine speed starts to increase from zero at time t4.
  • the brake ECU 55 stops supplying current to the linear electromagnetic valve 35.
  • the brake holding pressure is released. After the brake holding pressure is released, the restart of the engine 12 is completed, and then the depression of the brake pedal 15 is stopped, so that the vehicle starts by creep torque.
  • step S11 it is determined whether or not the engine is stopped. If the engine is not stopped, the routine ends. On the other hand, if the engine is stopped, the process proceeds to step S12.
  • step S12 the sliding prediction is determined.
  • this slip prediction determination it is determined (predicted) whether or not a vehicle slip occurs after the vehicle stops.
  • the brake ECU 55 calculates the gradient acceleration Ag and the braking acceleration Apmc, and determines whether or not Ag> Apmc is satisfied. When Ag> Apmc is satisfied, it is predicted that a slip will occur, and when Ag> Apmc is not satisfied, it is predicted that no slip will occur. Further, in this slippage prediction determination, the brake ECU 55 acquires the vehicle body speed VS, calculates the time derivative of the vehicle body speed VS, and acquires the vehicle body speed differential value DVS.
  • Step S12 corresponds to a second determination step.
  • the brake control target pressure P1 is calculated.
  • the brake ECU 55 refers to the map shown in FIG. 4 on the basis of the absolute value of the gradient acceleration Ag and obtains a current value I1 corresponding to the gradient acceleration Ag.
  • the wheel cylinder pressure PWC can be set as the control target pressure P1.
  • a map showing the correspondence between the gradient acceleration Ag and the control target pressure is stored in the ROM of the brake ECU 55, and is uniquely determined from the control target pressure P1 according to the map acquired based on the gradient acceleration Ag.
  • the current value I that is determined may be acquired.
  • step S14 it is determined whether an engine restart request has been made. That is, the brake ECU 55 determines whether an engine restart request has been received from the engine ECU 17.
  • the engine restart request secures a request when the driver intends to start (hereinafter also referred to as “first request”) and power supplied to comfort equipment such as the audio 60 and the temperature control device 61. For requesting (hereinafter also referred to as “second request”).
  • the engine ECU 17 sequentially determines whether or not a restart condition for restarting the engine 12 is satisfied.
  • a restart condition for restarting the engine 12 is satisfied.
  • an engine restart request is transmitted to the brake ECU 55.
  • the restart condition includes the audio 60, the temperature adjustment device 61, and the like when the detection signals from the driving operation sensors SE1, SW1, SE3 to SE8, such as the accelerator pedal 11 and the brake pedal 15, satisfy a predetermined start condition.
  • the driving state of the comfortable equipment satisfies a predetermined restart condition.
  • the engine ECU 17 transmits the engine restart request to the brake ECU 55 without distinguishing between the first request and the second request.
  • the brake ECU 55 proceeds to step S15 if there is an engine restart request, and proceeds to step S26 (FIG. 6) if there is no engine restart request.
  • step S26 shown in FIG. 6 is normal vehicle sliding prevention control.
  • this normal vehicle sliding prevention control the processing shown in the timing chart of FIG. 8 is performed.
  • steps S15 to S20 and the processes in steps S15 and S21 to S25 shown in FIG. 5 are executed by engine restart to be performed in response to the engine restart request and brake pressurization in the slip prevention control.
  • the processing when they overlap in terms of timing is shown.
  • the processing in steps S15 to S20 is the first processing performed when the engine restart request is the first request based on the driver's intention to start.
  • the control content of this first process is shown in the timing chart of FIG. 9, and engine restart is performed with priority over brake pressurization.
  • the processes in steps S15 and S21 to S25 are the second processes that are performed when the engine restart request is a second request that the driver does not intend to start.
  • the control content of the second process is shown in the timing chart of FIG. 9, and brake pressurization is performed first in preference to engine restart.
  • step S15 it is determined whether or not the driver intends to start.
  • the driver's intention to start is that the driver stops pressing the brake pedal 15 and the brake switch SW1 is off (brake switch off), and the driver starts operating the accelerator pedal 11 and opens the accelerator.
  • the determination is made when each condition that the degree takes a positive value is satisfied by an AND condition (hereinafter also referred to as “starting intention condition”).
  • starting intention condition an AND condition
  • at least one of the conditions such as checking the value of the master cylinder pressure PMC and the rate of change of the value, or checking whether the value of the accelerator opening is equal to or greater than a specified value, determines whether to start the vehicle. It may be replaced with at least one of the conditions, or may be added to the start intention determination condition.
  • step S15 determines whether or not the driver intends to start also functions as a determination unit. Step S15 corresponds to a determination step.
  • step S16 If it is determined that the driver intends to start, the engine 12 is first restarted in step S16. That is, the brake ECU 55 permits restart of the engine 12 by sending a restart command to the engine ECU 17.
  • step S17 it is determined whether or not there is a sliding prediction. That is, the brake ECU 55 determines whether or not the slip prediction prediction flag is on. If there is a sliding prediction (flag on), the process proceeds to step S18, and if there is no sliding prediction (flag off), the process proceeds to step S19.
  • step S18 the brake is pressurized to the control target pressure P1 below the available power.
  • the brake ECU 55 supplies the current to the pump motor 41 to drive the pump motor 41, and causes the linear electromagnetic valves 35a and 35b to have the current value I1 corresponding to the control target pressure P1.
  • a current is supplied (see FIG. 9).
  • the wheel cylinder pressure PWC is increased to the control target pressure P1.
  • the brake ECU 55 stops the supply current to the pump motor 41 and stops its driving.
  • Step S18 corresponds to a braking control step.
  • the brake is held at the control target pressure P1 below the available power. That is, the brake ECU 55 changes the current supplied to the linear electromagnetic valves 35a and 35b from the current value I1 to the current value I2 (> I1). As a result, even after driving of the pumps 42 and 43 is stopped, the wheel cylinder pressure PWC is maintained at the control target pressure P1, so that the vehicle is held in a stopped state on the slope. In addition, when there is no slip down prediction, although brake pressurization is not performed, the brake is held by maintaining the wheel cylinder pressure PWC.
  • step S20 it is determined whether or not the engine restart is completed. If the engine restart has not been completed, the process waits while maintaining the brake below the power that can be used in step S19 until the engine restart is completed. When the engine restart is completed (Yes in S20), the process proceeds to step S32. move on.
  • step S32 brake pressure reduction is performed. That is, the brake ECU 55 stops the supply of current to the linear electromagnetic valves 35a and 35b. As a result, the control target pressure P1 of the wheel cylinder pressure PWC that has been held until then is canceled, and the braking force applied to the wheels FR, FL, RR, RL for maintaining the stop is released. For this reason, when the driver depresses the accelerator pedal 11, the vehicle starts. Even if the driver does not depress the accelerator pedal 11 so much, the creep torque of the engine 12 suppresses the vehicle from sliding down. Even if it slides down, the sliding speed is very slow. Therefore, the driver can depress the brake pedal 15 with a margin to stop the sliding.
  • the current supplied to the pump motor 41 during the brake pressurization process and the current value I1 supplied to the linear electromagnetic valves 35a and 35b are both kept below the usable power.
  • the electric power that can be used refers to the remaining electric power consumed by the starter motor 72 that is driven when the engine is restarted.
  • FIG. 11 is a graph showing the driving power of the pump motor and the starter motor.
  • FIG. 11A shows a case where there is no intention to start (that is, a case where priority is given to brake pressurization)
  • FIG. 11B shows a case where there is a intention to start (ie, a case where priority is given to engine restart).
  • the horizontal axis represents time t
  • the vertical axis represents motor drive power.
  • the electric power value Wb is electric power that can be used for brake pressurization and engine restart among electric power (battery electric power W) that can be supplied by a battery (not shown) mounted on the vehicle.
  • This electric power Wb excludes electric power used for other purposes such as comfort equipment such as the audio 60 and the temperature adjusting device 61, electric power consumed by lamps, and the like.
  • the idle stop ECU 65 manages the power consumption of the comfort facilities, the lamps, and the electric system such as various motors.
  • the idle stop ECU 65 grasps electric power Wb that can be used for engine restart and brake pressurization out of the battery electric power W, and information on the electric power Wb is periodically or whenever there is a request from the brake ECU 55. , To the brake ECU 55.
  • the electric power characteristic (time-dependent change characteristic of electric power) at the time of engine restart of the starter motor 72 driven at the time of engine restart depends on the battery voltage at that time, but is roughly determined by the vehicle type.
  • . 11 shows the power characteristic of the starter motor 72 in which the time-varying characteristic of the power indicated by the one-dot chain line in the graph of FIG. 11 is determined from the battery voltage.
  • a peak avoidance period PT including the peak generation period of the starter motor drive power (in this example, the same as the peak generation period) is set, and after the peak avoidance period PT has elapsed, the drive period of the pump motor 41 is set. Is set.
  • the engine restart is prioritized, and the normal power required for restarting the engine 12 is used as the starter motor drive power.
  • the brake ECU 55 that has received the engine restart request sends a restart command for permitting the engine restart to the engine ECU 17, and then after a time corresponding to the peak avoidance period PT has elapsed, the motor driver circuit
  • the electric power (current) is supplied to the pump motor 41 via and the drive is started.
  • the pump motor 41 and the linear solenoid valves 35a and 35b are driven within the range of the remaining brake pressurization usable electric power W1 of the electric power used for restarting the engine, but the pump is used in a period avoiding the peak avoidance period PT.
  • the motor 41 Since the motor 41 is driven, a relatively large current can be supplied to the pump motor 41 and the linear electromagnetic valves 35a and 35b as compared with the case where the peak avoidance period PT is the driving period. As a result, even when engine restart is prioritized, the wheel cylinder pressure PWC can be increased to the control target pressure P1 relatively quickly.
  • the line shown with a dashed-two dotted line in the graph of FIG. 11 shows the sum of pump motor drive power and the drive power of linear electromagnetic valve 35a, 35b.
  • step S21 If it is determined in step S15 in FIG. 5 that the driver does not intend to start, it is determined in step S21 whether or not there is a slip prediction. That is, the brake ECU 55 determines whether or not the slip prediction prediction flag is on. If there is a sliding prediction (flag on), the process proceeds to step S22, and if there is no sliding prediction (flag off), the process proceeds to step S23.
  • step S22 the brake is pressurized to the control target pressure P1.
  • the brake ECU 55 supplies current to the pump motor 41 to drive the pump motor 41 and causes the linear electromagnetic valves 35a and 35b to have a current value I1 corresponding to the control target pressure P1. (See FIG. 10).
  • the wheel cylinder pressure PWC is increased to the control target pressure P1.
  • the brake ECU 55 stops the supply current to the pump motor 41 and stops its driving.
  • the brake ECU 55 switches the slip prediction prediction determination flag from on to off.
  • restart of the engine 12 is started. That is, the brake ECU 55 permits restart of the engine 12 by sending a restart command to the engine ECU 17. As a result, the engine 12 is restarted by the engine ECU 17 that has received this restart command.
  • the brake is held at the control target pressure P1. That is, the brake ECU 55 changes the current supplied to the linear electromagnetic valves 35a and 35b from the current value I1 to the current value I2 (> I1). As a result, even after driving of the pumps 42 and 43 is stopped, the wheel cylinder pressure PWC is maintained at the control target pressure P1, so that the vehicle is held in a stopped state on the slope.
  • step S25 it is determined whether or not the engine restart is completed. If the engine restart has not been completed, the process waits while continuing to hold the brake in step S24 until the engine restart is completed. If the engine restart is completed (affirmative determination in S25), the process proceeds to step S32.
  • step S32 brake pressure reduction is performed. That is, the brake ECU 55 stops the supply of current to the linear electromagnetic valves 35a and 35b. As a result, the control target pressure P1 of the wheel cylinder pressure PWC that has been held until then is canceled, and the braking force applied to the wheels FR, FL, RR, RL for maintaining the stop is released. For this reason, when the driver depresses the accelerator pedal 11, the vehicle starts. Even if the driver does not depress the accelerator pedal 11 so much, the creep torque of the engine 12 suppresses the vehicle from sliding down.
  • step S26 If there is no engine restart request (in the case of negative determination in S14), it is determined in step S26 whether or not there is a slip prediction (the slip prediction flag is on). If there is a predicted slip down, the brake is pressurized to the control target pressure P1 in step S27. Specifically, the brake ECU 55 supplies current to the pump motor 41 to drive the pumps 42 and 43, and supplies a current value I1 corresponding to the road surface gradient ⁇ to the linear electromagnetic valves 35a and 35b, whereby the wheel cylinder The pressure PWC is set as the control target pressure P1.
  • step S29 it is determined whether or not there is an engine restart request. If there is no restart request, the system waits in step S28 while maintaining the brake until there is an engine restart request, and if there is an engine restart request ( (Yes determination in S29), the process proceeds to step S30.
  • step S30 restart of the engine 12 is started. That is, the brake ECU 55 permits restart of the engine 12 by sending a restart command to the engine ECU 17. As a result, the engine 12 is restarted by the engine ECU 17 that has received this restart command.
  • step S31 it is determined whether or not the engine restart is completed. If the engine restart has not been completed, the system waits while holding the brake. If the engine restart has been completed (Yes determination in S31), the process proceeds to step S32.
  • step S32 brake pressure reduction is performed. That is, the brake ECU 55 stops the supply of current to the linear electromagnetic valves 35a and 35b. As a result, the brake holding is released, and the braking force applied to the wheels FR, FL, RR, RL for maintaining the stop is released. For this reason, when the driver depresses the accelerator pedal 11, the vehicle starts.
  • the sliding control is performed.
  • the acceleration is greater than or equal to the gradient acceleration Ag, the sliding prevention control is not performed. Therefore, when it is predicted that the braking force depending on the amount of depression of the brake pedal 15 and the road surface gradient will occur, the vehicle is controlled to prevent the vehicle from sliding down by performing the control for preventing the vehicle from sliding down. In the case where it is predicted that no slip-down occurs, unnecessary stop maintenance control is not performed. Therefore, stop maintenance control is suitably performed when necessary, and wasteful power consumption can be reduced.
  • the power supplied to the pump motor 41 and the linear solenoid valves 35 and 35b for pressurizing the brake is set to be equal to or less than the remaining power consumed by the starter motor 72 when the engine 12 is restarted. Therefore, while giving priority to the restart of the engine 12, the brake pressurization during the restart can be performed within the allowable range of the battery power at that time.
  • Electric power for pressurizing the brake is applied to the pump motor 41 and the linear electromagnetic valves 35 and 35b at a time when the peak avoidance period PT set so as to include the generation time of the current peak in the initial drive of the starter motor 72 is avoided. Supply. Therefore, relatively large electric power can be supplied to the pump motor 41 when the brake is applied. For this reason, the wheel cylinder pressure PWC can be increased to the control target pressure P1 relatively quickly, and the braking force for preventing the sliding down can be generated relatively early while giving priority to the engine start.
  • the current when there is an intention to start, the current is supplied to the pump motor 41 while avoiding the peak avoidance period PT, but the current may be supplied in a period including the peak occurrence period. In this case, it is preferable to shift the generation time of the current peak of the starter motor 72 and the current peak of the pump motor 41.
  • the brake ECU 55 is configured so that the current supply to the pump motor 41 is started before the power supply to the starter motor 72 and the current peak of the starter motor 72 appears after the current peak of the pump motor 41 appears. A drive command and a restart command for the pump motor 41 are performed.
  • both the pump motor 41 and the linear electromagnetic valves 35a and 35b supply current while avoiding the peak avoidance period PT.
  • the current supplied to the electromagnetic valves 35a and 35b may be supplied also during the peak avoidance period PT.
  • the braking acceleration Apmc and the gradient acceleration Ag are compared in the determination of the sliding down. Threshold value) or a master cylinder pressure conversion value (threshold value) of the master cylinder pressure PMC and the force Fg may be compared.
  • the braking acceleration Apmc may be acquired based on the master cylinder pressure PMC detected by the master pressure sensor SE8.
  • a map (not shown) indicating a correspondence relationship between the master cylinder pressure PMC and the braking acceleration Apmc (or the braking force Fpmc) is stored.
  • the brake ECU 55 obtains the braking acceleration Apmc (or braking force Fpmc) with reference to the map based on the master cylinder pressure PMC, and compares the braking acceleration Apmc with the gradient acceleration Ag (or between the braking force Fpmc and the force Fg). It may be configured to determine the presence or absence of sliding down by comparison.
  • a larger value may be set for the allowable distance La as the road surface gradient ⁇ increases.
  • the allowable distance La is set to “0” until the road surface gradient ⁇ reaches a certain value, and after the road surface gradient ⁇ exceeds the certain value, the allowable distance La is increased according to the increase in the road surface gradient ⁇ .
  • the vehicle body speed VS and the vehicle body speed differential value DVS are used, but the wheel speed and the wheel acceleration may be used.
  • the vehicle body speed a value calculated using at least one of the wheel speed sensors SE3 to SE6, a value acquired by a car navigation system, or the like can be used.
  • the braking force for the wheels FR, FL, RR, RL may be increased using the electric parking brake device instead of the brake actuator 31 when the brake is applied.
  • the drive source of the electric parking brake device corresponds to the electric motor.
  • the vehicle is not limited to a two-wheel drive vehicle, and the control device of the present invention can be similarly applied to vehicles of other drive systems such as a four-wheel drive vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

This vehicle control device, which performs stopping control for automatically stopping the engine (12) of the vehicle and restarting control for automatically restarting the engine (12), has: electric motors (41, 35a, 35b) that, by means of electric power, increase the braking force applied to vehicle wheels (FR, FL, RR, RL) by braking devices (32a-32d); a braking control unit (55, S18, S22) that, by controlling the electric motors (41, 35a, 35b), performs vehicle-stoppage-maintaining control that increases braking force together with the stopping of the vehicle while the engine (12) is in a stopped state; and a determination unit (55, S15) that determines whether or not the driver intends to depart on the basis of the detection results of a detector (SW1) of a driving operation system provided to the vehicle. When the determination unit (55, S15) has determined that there is an intention to depart, the braking control unit (55, S18, S22) controls the electric motors (41, 35a, 35b) in a manner so as to increase braking force within an electrical power range that does not hinder the restarting of the engine (12), and meanwhile, when the determination unit (55, S15) has determined that there is no intention to depart, the braking control unit (55, S18, S22) controls the electric motors (41, 35a, 35b) in a manner so as to increase braking force prioritizing maintenance of vehicle stoppage over restarting of the engine (12).

Description

車両の制御装置及び制御方法Vehicle control apparatus and control method
 本発明は、エンジンの自動停止並びに自動再始動を行う車両の制御装置及び制御方法に関する。 The present invention relates to a vehicle control device and control method for automatically stopping and restarting an engine.
 周知のように、信号待ちのような停車中にエンジンを自動停止するとともに、運転者の発進操作に応じてエンジンを自動再始動することで、燃料消費の節約や排気エミッションの向上を図るエンジン自動停止再始動装置が実用されている。近年には、停車以前の車両の減速中からエンジンを停止させる装置も提案されている。 As is well known, the engine is automatically stopped while the vehicle is stopped, such as waiting for a signal, and the engine is automatically restarted according to the driver's starting operation, thereby saving fuel consumption and improving exhaust emission. Stop / restart devices are in practical use. In recent years, there has also been proposed a device for stopping an engine during deceleration of a vehicle before stopping.
 従来、特許文献1に記載のように、ブレーキ踏み量が第1の所定値S1である場合は、運転者が車両を停止させるものと予測して、エンジンの回転の迅速な停止処理を行い、その過程又は回転の停止後にブレーキの踏み量が減少して第2の所定値S2以下になった場合は、運転者が車両を再加速させるものと予測して燃料の供給を再開し、スタータモータを作動させて、エンジンを所定の回転数以上に回転させる車両の制御装置が提案されている。 Conventionally, as described in Patent Document 1, when the brake depression amount is the first predetermined value S1, it is predicted that the driver will stop the vehicle, and a quick stop process of engine rotation is performed, In this process or when the amount of brake depression is reduced to a value equal to or less than the second predetermined value S2 after stopping the rotation, the driver predicts that the vehicle will be accelerated again and restarts the fuel supply, and the starter motor There has been proposed a vehicle control apparatus that operates the engine to rotate the engine at a predetermined rotational speed or more.
特開2009-63001号公報JP 2009-63001 A
 ところで、トルクコンバータ付き自動変速機を搭載するAT車では、エンジンのアイドル時にも、クリープ現象による車両前方向への推力が発生している。なお、クリープ現象とは、AT車において、シフトレバーが走行位置にあるときにアクセルペダルを踏み込まなくても車両がゆっくりと前進する現象であり、この現象は、エンジンのアイドル時にもトルクコンバータが若干の動力を駆動輪側に伝達するために発生する。 By the way, in an AT vehicle equipped with an automatic transmission with a torque converter, thrust in the forward direction of the vehicle due to a creep phenomenon is generated even when the engine is idle. Note that the creep phenomenon is a phenomenon in an AT vehicle where the vehicle slowly moves forward even if the accelerator pedal is not depressed when the shift lever is in the traveling position. The power is transmitted to the drive wheel side.
 登坂路での停車中も、エンジンが運転されていれば、クリープ現象によるトルク(クリープトルク)が作用しているため、比較的小さいブレーキ踏み量で車両のずり下がりを防止することができる。しかしながら、このときのエンジンが自動停止されていれば、クリープトルクが作用しないため、ブレーキ踏み量が小さいと、重力に抗し切れずに車両が坂路をずり下がることがある。 Even when the vehicle is stopped on an uphill road, if the engine is operated, torque (creep torque) due to a creep phenomenon is applied, so that the vehicle can be prevented from sliding down with a relatively small amount of brake depression. However, if the engine at this time is automatically stopped, creep torque does not act. Therefore, if the amount of brake depression is small, the vehicle may slide down the slope without resisting gravity.
 特許文献1では、ブレーキの踏み量が第2の所定値S2以下となった場合、エンジンの始動を許可していた。そのため、登坂路でブレーキをゼロ近くまで緩めると、エンジンが始動されることがあった。この場合、車両停止前にエンジンを始動できないと、低下したブレーキ力(制動力)のみでは車両を坂路に停止状態に維持できず、車両がずり下がることがある。 In Patent Document 1, when the amount of stepping on the brake is equal to or less than the second predetermined value S2, the engine is allowed to start. Therefore, when the brake is loosened to near zero on the uphill road, the engine may be started. In this case, if the engine cannot be started before the vehicle stops, the vehicle cannot be maintained in a stopped state on the slope with only the reduced braking force (braking force), and the vehicle may slide down.
 この場合、ブレーキを加圧して車両を停車状態に維持する停車維持制御を行うことが有効だが、エンジン再始動とブレーキ加圧が重なると、電力使用量が大きくなるため、エンジン再始動とブレーキ加圧の両方とも十分に機能させることができなくなるという問題がある。 In this case, it is effective to perform stop maintenance control to pressurize the brake and maintain the vehicle in a stopped state. However, if engine restart and brake pressurization overlap, power consumption increases, so engine restart and brake There is a problem that both pressures cannot function sufficiently.
 本発明の目的の一つは、エンジンの自動停止並びに自動再始動を行う車両において、停車維持制御を行うべき時期とエンジンの再始動を行わせるべき時期とが少なくとも一部重なった場合でも、運転者の発進意思を尊重しつつエンジンの再始動と制動力の増加とを有効に両立させることができる車両の制御装置及び制御方法を提供することにある。 One of the objects of the present invention is that, in a vehicle that automatically stops and restarts an engine, even when the timing when the stop maintenance control should be performed and the timing when the engine should be restarted overlap at least partially, It is an object of the present invention to provide a control device and a control method for a vehicle that can effectively balance engine restart and increase in braking force while respecting a person's intention to start.
 本発明の第1の態様では、車両のエンジン(12)を自動的に停止させるための停止制御及び前記エンジン(12)を自動的に再始動させるための再始動制御を行う車両の制御装置が提供される。該制御装置は、制動装置(32a~32d)が車両の車輪(FR,FL,RR,RL)に付与する制動力を、電力により増加させる電動機(41、35a、35b)と、前記エンジン(12)の停止状態での前記車両の停車に合わせて制動力を増加させる停車維持制御を、前記電動機(41、35a、35b)を制御して行う制動制御部(55、S18、S22)と、車両に設けられた運転操作系の検出器(SW1)の検出結果に基づき運転者に発進の意思があるか否かを判定する判定部(55、S15)とを有し、前記制動制御部(55、S18、S22)は、前記判定部(55、S15)が発進の意思があると判定した場合は、前記エンジン(12)の再始動に支障の無い電力範囲で制動力を増加するように前記電動機(41、35a、35b)を制御し、一方、前記判定部(55、S15)が発進の意思がないと判定した場合は、前記エンジン(12)の再始動よりも車両の停止維持を優先した制動力の増加を行うように前記電動機(41、35a、35b)を制御する。 In the first aspect of the present invention, there is provided a vehicle control apparatus that performs stop control for automatically stopping a vehicle engine (12) and restart control for automatically restarting the engine (12). Provided. The control device includes an electric motor (41, 35a, 35b) that increases the braking force applied by the braking device (32a to 32d) to the vehicle wheels (FR, FL, RR, RL) by electric power, and the engine (12 A braking control section (55, S18, S22) for controlling the electric motor (41, 35a, 35b) to perform stop maintenance control for increasing the braking force in accordance with the stopping of the vehicle in the stop state of And a determination unit (55, S15) for determining whether or not the driver has an intention to start based on the detection result of the driving operation system detector (SW1) provided in the braking control unit (55). , S18, S22), when the determination unit (55, S15) determines that there is an intention to start, the braking force is increased so that the braking force is increased within a power range that does not hinder the restart of the engine (12). Electric motor (41, 35a, 5b), on the other hand, if the determination unit (55, S15) determines that there is no intention to start, an increase in braking force giving priority to vehicle stoppage maintenance over restart of the engine (12) is performed. The electric motors (41, 35a, 35b) are controlled to perform.
 増加前の制動力(Apmc)が路面勾配(θ)に応じて車両の前後方向に作用する重力相当分の力(Ag)未満であるか否かを判定する第2の判定部(55、S12)をさらに有し、前記制動制御部(55、S18、S22)は、増加前の制動力(Apmc)が前記重力相当分の力(Ag)未満である場合には、前記停車維持制御を実施し、増加前の制動力(Apmc)が前記重力相当分の力(Ag)以上の場合には、前記停車維持制御を実施しないことが好ましい。 A second determination unit (55, S12) that determines whether or not the braking force (Apmc) before the increase is less than the force (Ag) corresponding to gravity acting in the front-rear direction of the vehicle according to the road surface gradient (θ). ), And the braking control unit (55, S18, S22) performs the stop maintenance control when the braking force (Apmc) before the increase is less than the force corresponding to the gravity (Ag). However, when the braking force (Apmc) before the increase is equal to or greater than the force corresponding to the gravity (Ag), it is preferable not to perform the stop maintenance control.
 前記制動制御部(55、S18、S22)は、前記判定部(55、S15)が発進の意思がないと判定した場合には、車両の停止維持を優先した制動力の増加を前記電動機(41、35a、35b)に指示し、前記電動機(41、35a、35b)による前記制動力が増加した後、前記エンジン(12)の再始動を許可することが好ましい。 When the determination unit (55, S15) determines that there is no intention to start, the braking control unit (55, S18, S22) increases the braking force giving priority to maintaining the stop of the vehicle. , 35a, 35b), and after the braking force by the electric motor (41, 35a, 35b) has increased, it is preferable to allow the engine (12) to restart.
 前記制動制御部(55、S18、S22)は、前記制動力の増加のために前記電動機(41、35a、35b)に供給する電力を、前記エンジン(12)を再始動させる際に電動機(72)が電力を消費した残りの電力以下に設定することが好ましい。 The brake control unit (55, S18, S22) supplies electric power supplied to the electric motor (41, 35a, 35b) for increasing the braking force when the engine (12) is restarted. ) Is preferably set to be equal to or less than the remaining power consumed.
 前記制動制御部(55、S18、S22)は、前記エンジン(12)を再始動させる電動機(72)の駆動初期における電流ピークの発生時期(PT)を少なくとも避けた時期に、前記制動力の増加のための電力を前記電動機(41、35a、35b)に供給することが好ましい。 The braking controller (55, S18, S22) increases the braking force at a time at least avoiding a current peak generation time (PT) in the initial driving of the electric motor (72) that restarts the engine (12). It is preferable to supply electric power for the electric motor (41, 35a, 35b).
 本発明の第2の態様では、車両のエンジン(12)を自動的に停止させるための停止制御及び前記エンジン(12)を自動的に再始動させるための再始動制御を行う車両の制御方法が提供される。該方法は、制動装置(32a~32d)により車両の車輪(FR,FL,RR,RL)に付与される制動力を、電力により増加させる電動機(41、35a、35b)を制御して、前記エンジン(12)の停止状態での前記車両の停車に合わせて前記制動力を増加させる停車維持制御を、行う制動制御ステップ(55、S18、S22)と、前記エンジン(12)の停止中に再始動要求を受け付けると、車両に設けられた運転操作系の検出器(SW1)の検出結果に基づき運転者に発進の意思があるか否かを判定する判定ステップ(55、S15)とを有し、前記制動制御ステップ(55、S18、S22)は、前記停車維持制御の開始条件成立したときに前記再始動要求を受け付けた場合、前記判定ステップ(55、S15)において発進の意思があると判定された場合は、エンジン(12)の再始動に支障の無い電力範囲で制動力を増加するように前記電動機(41、35a、35b)を制御し、一方、前記判定ステップ(55、S15)において発進の意思がないと判定された場合は、前記エンジン(12)の再始動よりも車両の停止維持を優先した制動力の増加を行うように前記電動機(41、35a、35b)を制御する。 In the second aspect of the present invention, there is provided a vehicle control method for performing stop control for automatically stopping the engine (12) of the vehicle and restart control for automatically restarting the engine (12). Provided. The method controls the electric motors (41, 35a, 35b) that increase the braking force applied to the vehicle wheels (FR, FL, RR, RL) by the braking devices (32a to 32d) by electric power, and A braking control step (55, S18, S22) for performing stop maintenance control for increasing the braking force in accordance with the stopping of the vehicle in a stopped state of the engine (12), and reactivation while the engine (12) is stopped. A determination step (55, S15) for determining whether or not the driver is willing to start based on a detection result of a driving operation system detector (SW1) provided in the vehicle when the start request is received; The braking control step (55, S18, S22) starts in the determination step (55, S15) when the restart request is accepted when the start condition of the stop maintenance control is satisfied. If it is determined that there is an intention, the electric motor (41, 35a, 35b) is controlled to increase the braking force within a power range that does not hinder the restart of the engine (12), while the determination step ( 55, S15), when it is determined that there is no intention to start, the electric motors (41, 35a, 35b) increase the braking force with priority given to maintaining the stop of the vehicle rather than restarting the engine (12). ) To control.
一実施形態の制御装置を搭載する車両の一例を示すブロック図。The block diagram which shows an example of the vehicle carrying the control apparatus of one Embodiment. 制動装置の一例を示すブロック図。The block diagram which shows an example of a braking device. 登坂路で停車する車両に働く力を示す模式側面図。The schematic side view which shows the force which acts on the vehicle which stops on an uphill road. 勾配加速度とリニア電磁弁に対する電流値との関係を示すマップ。The map which shows the relationship between a gradient acceleration and the electric current value with respect to a linear solenoid valve. 停車維持・再始動制御ルーチンの主要部を示すフローチャート。The flowchart which shows the principal part of a stop maintenance / restart control routine. 停車維持・再始動制御ルーチンの一部を示すフローチャート(一部)。The flowchart (part) which shows a part of stop maintenance / restart control routine. エンジン停止制御ルーチンを示すフローチャート。The flowchart which shows an engine stop control routine. 通常のずり下がり防止制御を説明するタイミングチャート。The timing chart explaining normal sliding prevention control. 発進意思ありの場合の停車維持・再始動制御を説明するタイミングチャート。The timing chart explaining the stop maintenance / restart control when there is an intention to start. 発進意思なしの場合の停車維持・再始動制御を示すタイミングチャート。The timing chart which shows stop maintenance / restart control when there is no start intention. ポンプモータとスタータモータの各駆動電力を示し、(a)発進意思ありの場合のグラフ、(b)発進意思なしの場合のグラフ。The drive power of a pump motor and a starter motor is shown, (a) a graph when there is an intention to start, (b) a graph when there is no intention to start.
 以下、本発明を具体化した一実施形態を図1~図11に従って説明する。なお、以下における本明細書中の説明においては、車両の進行方向を前方として説明する。 Hereinafter, an embodiment embodying the present invention will be described with reference to FIGS. In the following description in the present specification, the traveling direction of the vehicle will be described as the front.
 本実施形態の車両は、燃費性能やエミッション性能を向上させるべく、車両走行中に所定の停止条件の成立に応じてエンジンを自動的に停止させ、その後、所定の始動条件の成立に応じてエンジンを自動的に再始動させる、いわゆるアイドルストップ機能を有している。そのため、この車両では、運転手によるブレーキ操作による減速中又は停車中に、エンジンが自動的に停止される。 The vehicle according to the present embodiment automatically stops the engine in accordance with the establishment of a predetermined stop condition while the vehicle is running, and then improves the fuel efficiency performance and the emission performance. Has a so-called idle stop function for automatically restarting. Therefore, in this vehicle, the engine is automatically stopped while the vehicle is decelerated or stopped by the brake operation by the driver.
 次に、アイドルストップ機能を有する車両の一例について説明する。 Next, an example of a vehicle having an idle stop function will be described.
 図1に示すように、車両は、複数(本実施形態では4つ)ある車輪(右前輪FR、左前輪FL、右後輪RR及び左後輪RL)のうち、前輪FR,FLが駆動輪として機能する、いわゆる前輪駆動車である。こうした車両には、運転手によるアクセルペダル11の操作量に応じた駆動力を発生するエンジン12を有する駆動力発生装置13と、該駆動力発生装置13で発生した駆動力を前輪FR,FLに伝達する駆動力伝達装置14とを備えている。また、車両には、快適設備の一例としてのオーディオ60(ナビゲーション装置も含む。)と、快適設備の一例としての温度調整装置61と、運転手によるブレーキペダル15の操作量に応じた制動力を各車輪FR,FL,RR,RLに付与するための制動装置16とが設けられている。 As shown in FIG. 1, the vehicle has a plurality of (four in this embodiment) wheels (the right front wheel FR, the left front wheel FL, the right rear wheel RR, and the left rear wheel RL). It is a so-called front wheel drive vehicle that functions as a vehicle. Such a vehicle includes a driving force generator 13 having an engine 12 that generates a driving force corresponding to the amount of operation of the accelerator pedal 11 by the driver, and the driving force generated by the driving force generator 13 is applied to the front wheels FR and FL. And a driving force transmission device 14 for transmission. The vehicle also has an audio 60 (including a navigation device) as an example of comfort equipment, a temperature adjustment device 61 as an example of comfort equipment, and a braking force according to the amount of operation of the brake pedal 15 by the driver. A braking device 16 is provided for applying to each wheel FR, FL, RR, RL.
 駆動力発生装置13は、エンジン12から外部に向けて延設された吸気管70と、該吸気管70内に配置され、且つその開口断面積を可変させるスロットル弁71とを備えている。このスロットル弁71は、図示しないアクチュエータで発生する駆動力によって作動する。また、エンジン12の吸気ポート(図示略)近傍には、燃料を噴射するインジェクタを有する図示しない燃料噴射装置が設けられている。また、駆動力発生装置13には、エンジン12を始動させる際に作動する電動機の一例としてのスタータモータ72が設けられている。 The driving force generator 13 includes an intake pipe 70 that extends outward from the engine 12 and a throttle valve 71 that is disposed in the intake pipe 70 and that changes the sectional area of the opening. The throttle valve 71 is operated by a driving force generated by an actuator (not shown). A fuel injection device (not shown) having an injector for injecting fuel is provided near the intake port (not shown) of the engine 12. Further, the driving force generator 13 is provided with a starter motor 72 as an example of an electric motor that operates when the engine 12 is started.
 こうした駆動力発生装置13は、図示しないCPU、ROM及びRAMなどを有するエンジン用ECU17(「エンジン用電子制御装置」ともいう。)の制御に基づき駆動する。このエンジン用ECU17には、アクセルペダル11の近傍に配置され、且つ運転手によるアクセルペダル11の操作量、即ちアクセル開度を検出するためのアクセル開度センサSE1が電気的に接続されている。エンジン用ECU17は、アクセル開度センサSE1からの検出信号に基づきアクセル開度を演算し、該演算したアクセル開度などに基づき駆動力発生装置13を制御する。 The driving force generator 13 is driven based on the control of an engine ECU 17 (also referred to as “engine electronic control device”) having a CPU, a ROM, a RAM, and the like (not shown). The engine ECU 17 is electrically connected to an accelerator opening sensor SE1 that is disposed in the vicinity of the accelerator pedal 11 and that detects an operation amount of the accelerator pedal 11 by the driver, that is, an accelerator opening. The engine ECU 17 calculates the accelerator opening based on the detection signal from the accelerator opening sensor SE1, and controls the driving force generator 13 based on the calculated accelerator opening.
 駆動力伝達装置14は、自動変速機18と、該自動変速機18の出力軸から伝達された駆動力を適宜配分して前輪FR,FLに伝達するディファレンシャルギヤ19と、自動変速機18を制御する図示しないAT用ECUとを備えている。自動変速機18は、流体継手の一例としてトルクコンバータ(図示略)を有する流体式駆動力伝達機構20と、変速機構21とを備えている。 The driving force transmission device 14 controls the automatic transmission 18, the differential gear 19 that appropriately distributes the driving force transmitted from the output shaft of the automatic transmission 18, and transmits it to the front wheels FR and FL, and the automatic transmission 18. And an AT ECU (not shown). The automatic transmission 18 includes a fluid driving force transmission mechanism 20 having a torque converter (not shown) and a transmission mechanism 21 as an example of a fluid coupling.
 なお、本実施形態の車両においてエンジン12から駆動輪(前輪FR,FL)へのトルク伝達経路には、トルクコンバータが設けられているため、クリープ現象が発生する。このクリープ現象とは、自動変速機18を有する車両において、シフトレバーが走行位置にあるときにアクセルペダル11を踏み込まなくても車両がゆっくりと前進する現象であり、この現象は、エンジン12のアイドル時にも、トルクコンバータが若干の駆動力を前輪FR,FL側に伝達するために発生する。前輪FR,FL側に伝達される若干の動力のことを、「クリープトルク」という。 In the vehicle of this embodiment, a creep phenomenon occurs because a torque converter is provided in the torque transmission path from the engine 12 to the drive wheels (front wheels FR, FL). This creep phenomenon is a phenomenon in which the vehicle slowly moves forward without depression of the accelerator pedal 11 when the shift lever is in the traveling position in a vehicle having the automatic transmission 18. Sometimes it occurs because the torque converter transmits some driving force to the front wheels FR, FL. The slight power transmitted to the front wheels FR and FL is called “creep torque”.
 オーディオ60は、車両の乗員による操作に応じた音楽などの情報を、乗員に提供するための機器である。こうしたオーディオ60は、車両に搭載される図示しないバッテリから供給される電力に基づき作動する。 The audio 60 is a device for providing information such as music according to the operation by the vehicle occupant to the occupant. Such audio 60 operates based on electric power supplied from a battery (not shown) mounted on the vehicle.
 温度調整装置61は、車内の温度を調整するための空調装置である。こうした温度調整装置61は、エンジン12で発生した駆動力に基づき作動するコンプレッサ62と、エンジン12とコンプレッサ62との動力伝達経路上に配置される接・断機構63とを備えている。接・断機構63は、コンプレッサ62への駆動力の伝達を許可したり切断したりすべく作動する機構である。すなわち、コンプレッサ62は、接・断機構63を介してエンジン12で発生した駆動力が伝達される場合に作動する。 The temperature adjusting device 61 is an air conditioner for adjusting the temperature inside the vehicle. The temperature adjusting device 61 includes a compressor 62 that operates based on a driving force generated by the engine 12 and a contact / disconnection mechanism 63 that is disposed on a power transmission path between the engine 12 and the compressor 62. The contact / disconnection mechanism 63 is a mechanism that operates to permit transmission or disconnection of the driving force to the compressor 62. That is, the compressor 62 operates when the driving force generated in the engine 12 is transmitted through the contact / disconnection mechanism 63.
 こうしたオーディオ60及び温度調整装置61は、図示しないCPU、ROM及びRAMなどを有するアイドルストップ用ECU65(「アイドルストップ用電子制御装置」ともいう。)によって制御される。具体的には、アイドルストップ用ECU65は、上記バッテリからオーディオ60に供給する電力量を制御したり、接・断機構63を制御したりする。 The audio 60 and the temperature adjusting device 61 are controlled by an idle stop ECU 65 (also referred to as “idle stop electronic control device”) having a CPU, a ROM, a RAM, and the like (not shown). More specifically, the idle stop ECU 65 controls the amount of power supplied from the battery to the audio 60 and controls the connection / disconnection mechanism 63.
 制動装置16は、図1及び図2に示すように、マスタシリンダ25、ブースタ26及びリザーバ27を有する液圧発生装置28と、2つの液圧回路29,30を有するブレーキアクチュエータ31(図2では二点鎖線で示す。)とを備えている。各液圧回路29,30は、液圧発生装置28のマスタシリンダ25にそれぞれ接続されている。第1液圧回路29には、右前輪FR用のホイールシリンダ32a及び左後輪RL用のホイールシリンダ32dが接続されると共に、第2液圧回路30には、左前輪FL用のホイールシリンダ32b及び右後輪RR用のホイールシリンダ32cが接続されている。 As shown in FIGS. 1 and 2, the braking device 16 includes a hydraulic pressure generating device 28 having a master cylinder 25, a booster 26 and a reservoir 27, and a brake actuator 31 having two hydraulic pressure circuits 29 and 30 (in FIG. 2). 2). The hydraulic circuits 29 and 30 are connected to the master cylinder 25 of the hydraulic pressure generator 28, respectively. A wheel cylinder 32a for the right front wheel FR and a wheel cylinder 32d for the left rear wheel RL are connected to the first hydraulic circuit 29, and a wheel cylinder 32b for the left front wheel FL is connected to the second hydraulic circuit 30. The wheel cylinder 32c for the right rear wheel RR is connected.
 液圧発生装置28においてブースタ26は、エンジン12の駆動時に負圧が発生するインテークマニホールド70aに接続されている。ブースタ26は、インテークマニホールド70a内に発生する負圧と大気圧との圧力差を利用し、運転手によるブレーキペダル15の操作力を助勢する。 In the hydraulic pressure generator 28, the booster 26 is connected to an intake manifold 70 a that generates negative pressure when the engine 12 is driven. The booster 26 uses the pressure difference between the negative pressure generated in the intake manifold 70a and the atmospheric pressure to assist the operating force of the brake pedal 15 by the driver.
 マスタシリンダ25は、運転手によるブレーキペダル15の操作(以下、「ブレーキ操作」ともいう。)に応じたマスタシリンダ圧PMCを発生する。その結果、マスタシリンダ25から液圧回路29,30を介してホイールシリンダ32a~32d内にブレーキ液が供給される。すると、車輪FR,FL,RR,RLには、ホイールシリンダ32a~32d内のホイールシリンダ圧PWCに応じた制動力が付与される。 The master cylinder 25 generates a master cylinder pressure PMC corresponding to the operation of the brake pedal 15 (hereinafter also referred to as “brake operation”) by the driver. As a result, brake fluid is supplied from the master cylinder 25 into the wheel cylinders 32a to 32d via the hydraulic circuits 29 and 30. Then, a braking force corresponding to the wheel cylinder pressure PWC in the wheel cylinders 32a to 32d is applied to the wheels FR, FL, RR, and RL.
 ブレーキアクチュエータ31において各液圧回路29,30は、管路33,34を通じてマスタシリンダ25にそれぞれ接続されており、各管路33,34の途中には、常開型のリニア電磁弁(調整弁)35a,35bがそれぞれ設けられている。リニア電磁弁35a,35bは、弁座、弁体、電磁コイル及び弁体を弁座から離間する方向に付勢する付勢部材(例えばコイルスプリング)を備えており、弁体は、後述するブレーキ用ECU55から電磁コイルに供給される電流値に応じて変位する。すなわち、ホイールシリンダ32a~32d内のホイールシリンダ圧PWCは、リニア電磁弁35a,35bへの供給電流値に応じた液圧に維持される。 In the brake actuator 31, each hydraulic circuit 29, 30 is connected to the master cylinder 25 through pipes 33, 34, and a normally open type linear electromagnetic valve (regulating valve) is provided in the middle of each pipe 33, 34. ) 35a and 35b are provided. The linear solenoid valves 35a and 35b include a valve seat, a valve body, an electromagnetic coil, and a biasing member (for example, a coil spring) that biases the valve body in a direction away from the valve seat. The ECU 55 is displaced according to the current value supplied to the electromagnetic coil from the ECU 55. That is, the wheel cylinder pressure PWC in the wheel cylinders 32a to 32d is maintained at a hydraulic pressure corresponding to the current value supplied to the linear electromagnetic valves 35a and 35b.
 また、管路33においてリニア電磁弁35aよりもマスタシリンダ25側の位置には、マスタシリンダ圧PMCを検出するためのマスタ圧センサSE8が設けられている。このマスタ圧センサSE8からは、マスタシリンダ圧PMCに応じた値の検出信号がブレーキ用ECU55に出力される。 Further, a master pressure sensor SE8 for detecting the master cylinder pressure PMC is provided at a position closer to the master cylinder 25 than the linear electromagnetic valve 35a in the pipe line 33. The master pressure sensor SE8 outputs a detection signal having a value corresponding to the master cylinder pressure PMC to the brake ECU 55.
 マスタシリンダ25に繋がる管路33,34から分岐して各ホイールシリンダ32a~32dに接続された管路36a~36dの途中には、常開型電磁弁よりなる増圧弁37a,37b,37c,37dと、常閉型電磁弁よりなる減圧弁38a,38b,38c,38dとが設けられている。増圧弁37a,37b,37c,37dは各ホイールシリンダ圧PWCの増圧を規制するときに作動され、減圧弁38a,38b,38c,38dは各ホイールシリンダ圧PWCを減圧させるときに作動される。 The pressure increasing valves 37a, 37b, 37c, 37d made of normally open solenoid valves are provided in the middle of the pipes 36a-36d branched from the pipes 33, 34 connected to the master cylinder 25 and connected to the wheel cylinders 32a-32d. And pressure-reducing valves 38a, 38b, 38c, and 38d that are normally closed solenoid valves. The pressure increasing valves 37a, 37b, 37c, and 37d are operated when restricting the pressure increase of each wheel cylinder pressure PWC, and the pressure reducing valves 38a, 38b, 38c, and 38d are operated when decreasing the wheel cylinder pressure PWC.
 また、液圧回路29,30には、ホイールシリンダ32a~32dから減圧弁38a~38dを介して流出したブレーキ液を一時貯留するリザーバ39,40と、ポンプモータ41の回転に基づき作動するポンプ42,43とが接続されている。各リザーバ39,40は、管路44,45を通じてポンプ42,43に接続されると共に、リニア電磁弁35a,35bよりもマスタシリンダ25側の位置で管路33,34に接続された管路46,47等を通じてマスタシリンダ25にそれぞれ接続されている。また、ポンプ42,43の吐出口から延びる管路48,49は、増圧弁37a~37dとリニア電磁弁35a,35bとの間を繋ぐ連通路上の接続部50,51に接続されている。ポンプ42,43は、ポンプモータ41が回転した場合に、リザーバ39,40及びマスタシリンダ25側から管路44,45,46,47を通じてブレーキ液を吸入し、吸入したブレーキ液を管路48,49へ吐出する。 The hydraulic circuits 29 and 30 include reservoirs 39 and 40 for temporarily storing brake fluid that has flowed out of the wheel cylinders 32a to 32d through the pressure reducing valves 38a to 38d, and a pump 42 that operates based on the rotation of the pump motor 41. , 43 are connected. The reservoirs 39 and 40 are connected to the pumps 42 and 43 through the pipes 44 and 45, and are connected to the pipes 33 and 34 at positions closer to the master cylinder 25 than the linear electromagnetic valves 35a and 35b. , 47, etc., are connected to the master cylinder 25, respectively. The pipes 48 and 49 extending from the discharge ports of the pumps 42 and 43 are connected to connection portions 50 and 51 on the communication path connecting the pressure increasing valves 37a to 37d and the linear electromagnetic valves 35a and 35b. When the pump motor 41 rotates, the pumps 42 and 43 suck in the brake fluid from the reservoirs 39 and 40 and the master cylinder 25 through the pipelines 44, 45, 46, and 47, and the sucked brake fluid is fed into the pipelines 48 and 48. It discharges to 49.
 さて、こうした車両では、登坂路において停車する際に、エンジン12が運転されていれば、クリープ現象によるトルク、すなわちクリープトルクが作用するため、そのクリープトルクを利用して車両のずり下りに抗することができる。一方、登坂路での停車時にエンジン12が停止されていれば、クリープトルクは作用しないため、ブレーキペダル15を強く踏み込まなければ、車両が坂路をずり下ってしまうようになる。 Now, in such a vehicle, when the engine 12 is operated when stopping on an uphill road, a torque due to a creep phenomenon, that is, a creep torque acts, so that the creep torque is used to resist the vehicle from descending. be able to. On the other hand, if the engine 12 is stopped at the time of stopping on the uphill road, the creep torque does not act. Therefore, if the brake pedal 15 is not depressed firmly, the vehicle will slide down the slope.
 そこで本実施形態では、エンジン12の停止中の登坂走行時に、停車後の車両のずり下がりが発生するか否かを判定(予測)する「ずり下がり予測判定」を行うようにしている。ずり下がりが発生すると判定されたときには、車両のずり下がり距離が「0」又は「許容距離Lp」のうちにずり下がりに抗しうる制御目標圧のブレーキ加圧が施されるように、ブレーキ加圧制御を開始する。例えばブレーキペダル15の踏み量が小さく、そのままでは停車後に路面勾配による車両のずり下がりが発生すると予測されたときには、車両のずり下がりが発生しないうちにブレーキ加圧が行われる。 Therefore, in the present embodiment, “sliding prediction determination” is performed to determine (predict) whether or not the vehicle will slide down after stopping when the engine 12 is traveling uphill. When it is determined that the slippage occurs, the brake is applied so that the control target pressure that can resist the slippage is applied within the range of the vehicle slippage distance “0” or “allowable distance Lp”. Start pressure control. For example, when the amount of depression of the brake pedal 15 is small, and it is predicted that the vehicle will slide down due to the road surface gradient after stopping, the brake pressurization is performed before the vehicle slides down.
 もちろん、エンジン12が再始動されれば、クリープトルクが作用するため、比較的小さいブレーキ踏み量でも、路面勾配に抗して車両を停止させることはできる。しかし、エンジン再始動回数が増え、エンジン12のアイドルストップによる燃費向上効果が低下する。そこで、本実施形態では、このようなエンジン再始動を行わなくても、ブレーキ加圧により「ずり下がり」を防止することにより、比較的高い燃費向上効果が期待される。そのため、本実施形態の車両の制御装置では、登坂路での停車時における車両のずり下がりが好適に防止される。 Of course, when the engine 12 is restarted, the creep torque acts, so that the vehicle can be stopped against the road surface gradient even with a relatively small amount of brake depression. However, the number of engine restarts increases, and the fuel efficiency improvement effect due to idling stop of the engine 12 decreases. Therefore, in this embodiment, even if such engine restart is not performed, a relatively high fuel efficiency improvement effect is expected by preventing “sliding down” by pressurizing the brake. Therefore, in the vehicle control apparatus according to the present embodiment, the vehicle is preferably prevented from sliding down when stopping on an uphill road.
 ところで、停車時にずれ下がり防止のために行われるブレーキ加圧と、運転手がブレーキペダル15の踏み量を所定値未満としたことにより開始されるエンジン再始動とが、タイミング的に重なる場合がある。エンジン再始動は、車両に搭載されたスタータモータ72を駆動させることにより行われる。また、ブレーキ加圧は、ポンプモータ41及びリニア電磁弁35a,35bを駆動させることにより行われる。 By the way, there is a case in which the brake pressurization performed to prevent the slippage when the vehicle is stopped and the engine restart that is started when the driver sets the depression amount of the brake pedal 15 to less than a predetermined value overlap in timing. . The engine is restarted by driving a starter motor 72 mounted on the vehicle. The brake pressurization is performed by driving the pump motor 41 and the linear electromagnetic valves 35a and 35b.
 ブレーキ加圧とエンジン再始動の各タイミングが重なった場合、スタータモータ72とポンプモータ41とが共に供給電力不足になってエンジン再始動もブレーキ加圧も好適に行われなくなる事態が危惧される。そこで、本実施形態では、エンジン停止中において、ずり下がり防止のブレーキ加圧とエンジン再始動との実施タイミングを好適に調整する。 When the timings of brake pressurization and engine restart are overlapped, there is a concern that both the starter motor 72 and the pump motor 41 will be short of supply power and neither engine restart nor brake pressurization will be performed properly. Therefore, in the present embodiment, when the engine is stopped, the execution timing of brake pressurization for preventing slip-down and engine restart is suitably adjusted.
 次に、ブレーキアクチュエータ31の駆動を制御するブレーキ用ECU55(「ブレーキ用電子制御装置」ともいう。)について説明する。 Next, the brake ECU 55 (also referred to as “brake electronic control device”) that controls the drive of the brake actuator 31 will be described.
 図2に示すように、制動制御部としてのブレーキ用ECU55の入力側インターフェースには、各車輪FR,FL,RR,RLの車輪速度を検出するための車輪速度センサSE3,SE4,SE5,SE6、及び車両の前後方向における加速度を検出するための加速度センサ(「Gセンサ」ともいう。)SE7が電気的に接続されている。また、ブレーキ用ECU55の入力側インターフェースには、ブレーキペダル15の近傍に配置され、且つブレーキペダル15が操作されているか否かを検出するためのブレーキスイッチSW1及びマスタ圧センサSE8が電気的に接続されている。ブレーキ用ECU55の出力側インターフェースには、各弁35a,35b,37a~37d,38a~38d及びポンプモータ41などが電気的に接続されている。なお、加速度センサSE7からは、車両の重心が後方に移動する際に正の値となるような信号が出力される一方、車両の重心が前方に移動する際に負の値となるような信号が出力される。 As shown in FIG. 2, wheel speed sensors SE3, SE4, SE5, SE6 for detecting the wheel speed of each wheel FR, FL, RR, RL are provided on the input side interface of the brake ECU 55 as a braking control unit. An acceleration sensor (also referred to as “G sensor”) SE7 for detecting acceleration in the longitudinal direction of the vehicle is electrically connected. Also, a brake switch SW1 and a master pressure sensor SE8 that are disposed in the vicinity of the brake pedal 15 and detect whether or not the brake pedal 15 is operated are electrically connected to the input side interface of the brake ECU 55. Has been. The valves 35a, 35b, 37a to 37d, 38a to 38d, the pump motor 41, and the like are electrically connected to the output side interface of the brake ECU 55. The acceleration sensor SE7 outputs a signal that takes a positive value when the center of gravity of the vehicle moves backward, and a signal that takes a negative value when the center of gravity of the vehicle moves forward. Is output.
 また、ブレーキ用ECU55は、図示しないCPU、ROM及びRAMなどから構成されるデジタルコンピュータ、各弁35a,35b,37a~37d,38a~38dを作動させるための図示しない弁用ドライバ回路、及びポンプモータ41を作動させるための図示しないモータ用ドライバ回路を有している。デジタルコンピュータのROMには、各種制御処理(後述するアイドルストップ処理等)のプログラム、各種マップ(図4に示すマップ等)及び各種閾値などが予め記憶されている。また、RAMには、車両の図示しないイグニッションスイッチがオンである間、適宜書き換えられる各種の情報などがそれぞれ記憶される。 The brake ECU 55 includes a digital computer composed of a CPU, ROM and RAM (not shown), a valve driver circuit (not shown) for operating the valves 35a, 35b, 37a to 37d, and 38a to 38d, and a pump motor. A motor driver circuit (not shown) for operating 41 is provided. The ROM of the digital computer stores various control processing (such as idle stop processing described later) programs, various maps (such as the map shown in FIG. 4), and various threshold values. The RAM also stores various types of information that can be appropriately rewritten while an ignition switch (not shown) of the vehicle is on.
 図3は、登坂路で停車中の車両に作用する力の関係を示している。ここで登坂路の勾配(傾斜角)を「θ」とし、車両に作用する重力を「g」とすると、車両は重力gの作用により、「g・sinθ」の力Fgで後方に引かれることになる。この力Fgは、車両に作用する重力gの車両後方向の成分であり、路面勾配θに応じて変化する。 FIG. 3 shows the relationship of the force acting on the vehicle stopped on the uphill road. Here, when the slope (inclination angle) of the uphill road is “θ” and the gravity acting on the vehicle is “g”, the vehicle is pulled backward by the force Fg of “g · sin θ” by the action of the gravity g. become. This force Fg is a component of gravity g acting on the vehicle in the vehicle rearward direction, and changes according to the road surface gradient θ.
 また、図3に示すように、車両には、力Fgに抗する力としてマスタシリンダ圧PMCに応じた制動力Fpmcが働く。車両停止状態において、力Fgと制動力Fpmcとを比較し、Fg>Fpmcであると、ずり下がりが発生する可能性がある。 Further, as shown in FIG. 3, a braking force Fpmc corresponding to the master cylinder pressure PMC acts on the vehicle as a force against the force Fg. When the vehicle is in a stopped state, the force Fg and the braking force Fpmc are compared, and if Fg> Fpmc, there is a possibility that the vehicle will slip down.
 本例では、力Fgを車体重量Mで除算して得られる車両後方への加速度を勾配加速度Agと定義し、制動力Fpmcを車体重量Mで除算して得られる加速度を制動加速度Apmcと定義する。加速度センサSE7からの検出信号に基づき勾配加速度Agは算出される。 In this example, the vehicle rearward acceleration obtained by dividing the force Fg by the vehicle body weight M is defined as a gradient acceleration Ag, and the acceleration obtained by dividing the braking force Fpmc by the vehicle body weight M is defined as a braking acceleration Apmc. . The gradient acceleration Ag is calculated based on the detection signal from the acceleration sensor SE7.
 なお、車両ずり下がり防止制御を行う場合、ずり下がりの有無の判定に用いる勾配加速度Agを、停車する前(走行中)に取得しておく必要がある。本実施形態では、加速度センサSE7の検出信号に基づき算出した車体加速度Gから、車輪速度センサSE3~SE6の検出信号に基づき算出される車体速度VSを時間微分して得られる車体速度微分値DVS(走行加速度に相当)を差し引くことにより、勾配加速度Agを演算するようにしている。 In addition, when performing vehicle slip-down prevention control, it is necessary to acquire the gradient acceleration Ag used for the determination of the presence or absence of slip-down before stopping (during driving | running | working). In the present embodiment, a vehicle body speed differential value DVS (obtained by time-differentiating the vehicle body speed VS calculated based on the detection signals of the wheel speed sensors SE3 to SE6 from the vehicle body acceleration G calculated based on the detection signal of the acceleration sensor SE7. The gradient acceleration Ag is calculated by subtracting (corresponding to the traveling acceleration).
 また、ずり下がり防止制御では、車両停止前までに車両の制動力を取得する必要がある。加速度センサSE7からの検出信号に基づき演算される車体加速度Gは、マスタシリンダ圧PMCの変動、すなわち車輪FR,FL,RR,RLに対する制動力の変動に伴い変動する。そこで、本実施形態では、マスタシリンダ圧(即ち、制動力)と車体加速度Gとに対応関係があることに着目し、車体加速度Gに基づきマスタシリンダ圧PMCに対応する値として制動加速度Apmcが取得される。この制動加速度Apmcは、マスタシリンダ圧PMCに応じた制動力Fpmcが車輪に付与されるとき、その制動力Fpmcを車体重量Mで除算して得られる加速度に相当する。詳しくは、車体加速度Gから、クリープトルクに相当する加速度成分であるクリープ加速度Acと、走行抵抗に相当する加速度成分である走行抵抗加速度Arと、勾配加速度Agとを除くことにより、制動加速度Apmcが算出される(Apmc=G-Ac+Ar+Ag)。そして、勾配加速度Agと制動加速度Apmcとを比較し、Apmc<Agである場合、ずり下がりが発生する可能性があると判定される。 Also, in the slip prevention control, it is necessary to acquire the braking force of the vehicle before the vehicle stops. The vehicle body acceleration G calculated based on the detection signal from the acceleration sensor SE7 varies with the variation of the master cylinder pressure PMC, that is, the variation of the braking force with respect to the wheels FR, FL, RR, and RL. Accordingly, in the present embodiment, focusing on the fact that there is a correspondence relationship between the master cylinder pressure (that is, braking force) and the vehicle body acceleration G, the braking acceleration Apmc is acquired as a value corresponding to the master cylinder pressure PMC based on the vehicle body acceleration G. Is done. This braking acceleration Apmc corresponds to an acceleration obtained by dividing the braking force Fpmc by the vehicle body weight M when a braking force Fpmc corresponding to the master cylinder pressure PMC is applied to the wheel. Specifically, the braking acceleration Apmc is obtained by removing the creep acceleration Ac, which is an acceleration component corresponding to creep torque, the running resistance acceleration Ar, which is an acceleration component corresponding to running resistance, and the gradient acceleration Ag, from the vehicle body acceleration G. Calculated (Apmc = G−Ac + Ar + Ag). Then, the gradient acceleration Ag and the braking acceleration Apmc are compared, and if Apmc <Ag, it is determined that there is a possibility that the sliding may occur.
 本実施形態では、車両のずり下がりを防止するためにブレーキ加圧を行う。ブレーキ加圧は、リニア電磁弁35a,35bに供給する電流値を制御して、ホイールシリンダ圧PWCを、ずり下がりを防止しうる制御目標圧P1(図8~図10参照)に調整することにより行う。このため、ホイールシリンダ圧PWCを制御目標圧P1に調整するためにリニア電磁弁35a,35bに供給すべき電流値は、路面勾配θ、すなわち車両後方へ働く力Fgに応じた値に変化させる必要がある。本例では、力Fgを車体重量Mで除算して得られる車両後方への加速度を勾配加速度Agと定義する。加速度センサSE7からの検出信号に基づき勾配加速度Agを算出し、この勾配加速度Agに応じた電流値をリニア電磁弁35a,35bに与えるようにしている。 In this embodiment, brake pressurization is performed to prevent the vehicle from sliding down. The brake pressurization is performed by controlling the current value supplied to the linear electromagnetic valves 35a and 35b to adjust the wheel cylinder pressure PWC to the control target pressure P1 (see FIGS. 8 to 10) that can prevent the sliding down. Do. For this reason, in order to adjust the wheel cylinder pressure PWC to the control target pressure P1, the current value to be supplied to the linear electromagnetic valves 35a and 35b needs to be changed to a value corresponding to the road surface gradient θ, that is, the force Fg acting backward of the vehicle. There is. In this example, acceleration toward the rear of the vehicle obtained by dividing the force Fg by the vehicle body weight M is defined as a gradient acceleration Ag. A gradient acceleration Ag is calculated based on a detection signal from the acceleration sensor SE7, and a current value corresponding to the gradient acceleration Ag is given to the linear electromagnetic valves 35a and 35b.
 次に、ブレーキ用ECU55のROMに記憶される各種マップについて図4に基づき説明する。 Next, various maps stored in the ROM of the brake ECU 55 will be described with reference to FIG.
 図4に示すマップは、勾配加速度Agの絶対値と、リニア電磁弁35a,35bに対する電流値Iとの関係を示している。「勾配加速度Ag」とは、路面勾配θの坂路で停車中(つまり走行加速度がゼロ)のときに、加速度センサSE7の検出信号に基づき算出される車体加速度G又は該車体加速度Gに相当する値である。また、「リニア電磁弁35a,35bに対する電流値I」とは、エンジン12からの駆動力が前輪FR,FLに伝達されない場合に、車両の停車を維持するために必要な最低限度の制動力を各車輪FR,FL,RR,RLに付与するために必要な電流値Ixに対してオフセット値αを加算した値である。そのため、図3に示すように、リニア電磁弁35a,35bに対する電流値Iは、勾配加速度Agの絶対値が大きいほど、大きな値に設定される。 4 shows the relationship between the absolute value of the gradient acceleration Ag and the current value I for the linear electromagnetic valves 35a and 35b. The “gradient acceleration Ag” is the vehicle acceleration G calculated based on the detection signal of the acceleration sensor SE7 or a value corresponding to the vehicle acceleration G when the vehicle is stopped on a slope with a road surface gradient θ (that is, the traveling acceleration is zero). It is. The “current value I for the linear solenoid valves 35a and 35b” is the minimum braking force required to maintain the vehicle stopped when the driving force from the engine 12 is not transmitted to the front wheels FR and FL. This is a value obtained by adding an offset value α to the current value Ix necessary for giving to each wheel FR, FL, RR, RL. Therefore, as shown in FIG. 3, the current value I for the linear electromagnetic valves 35a and 35b is set to a larger value as the absolute value of the gradient acceleration Ag is larger.
 本実施形態の車両において、エンジン用ECU17、ブレーキ用ECU55及びアイドルストップ用ECU65を含むECU同士は、図1に示すように、各種情報及び各種制御指令を送受信できるようにバス56を介してそれぞれ接続されている。例えば、エンジン用ECU17からは、アクセルペダル11のアクセル開度に関する情報などや、各種の要求が、ブレーキ用ECU55に適宜送信される。一方、ブレーキ用ECU55からは、エンジン12の自動的な停止を許可する旨の停止指令、エンジン12の自動的な再始動を許可する旨の再始動指令などがエンジン用ECU17に送信される。また、アイドルストップ用ECU65は、オーディオ60及び温度調整装置61に関する情報をエンジン用ECU17及びブレーキ用ECU55に送信する。この情報には、オーディオ60及び温度調整装置61へ供給中の電力の情報、すなわち供給電力情報が含まれる。 In the vehicle of the present embodiment, the ECUs including the engine ECU 17, the brake ECU 55, and the idle stop ECU 65 are connected to each other via a bus 56 so that various information and various control commands can be transmitted and received as shown in FIG. Has been. For example, information related to the accelerator opening of the accelerator pedal 11 and various requests are appropriately transmitted from the engine ECU 17 to the brake ECU 55. On the other hand, from the brake ECU 55, a stop command for permitting automatic stop of the engine 12, a restart command for permitting automatic restart of the engine 12, and the like are transmitted to the engine ECU 17. Further, the idle stop ECU 65 transmits information related to the audio 60 and the temperature adjustment device 61 to the engine ECU 17 and the brake ECU 55. This information includes information on the power being supplied to the audio 60 and the temperature adjustment device 61, that is, power supply information.
 さて、ブレーキ用ECU55は、予め設定された所定周期(例えば0.01秒周期)毎にアイドルストップ制御ルーチンを実行する。このアイドルストップ制御ルーチンは、燃費向上および環境上の効果などを期待し、エンジン12を自動的に停止させるエンジン停止制御ルーチン(図7)と、エンジン12を自動的に再始動させるエンジン再始動制御及びずり下がり防止制御を含む停車維持・再始動制御ルーチン(図5及び図6の一部)とを含む。ずり下がり防止制御とは、エンジン自動停止後、エンジン停止状態で車両が停車するまでにブレーキ加圧を行って制動力を増加させることにより、車両ずり下がりを防止する制御である。ずり下がり防止は、ホイールシリンダ圧PWCを制御目標圧P1に増圧するブレーキ加圧と、エンジン再始動までその制御目標圧P1にホイールシリンダ圧PWCを保持するブレーキ保持との各制御を含む。 Now, the brake ECU 55 executes an idle stop control routine every predetermined period (for example, 0.01 second period) set in advance. In this idle stop control routine, an engine stop control routine (FIG. 7) for automatically stopping the engine 12 and an engine restart control for automatically restarting the engine 12 in anticipation of fuel efficiency improvement and environmental effects. And a vehicle stop maintenance / restart control routine (a part of FIGS. 5 and 6) including a sliding prevention control. The slip-down prevention control is a control for preventing vehicle slip-down by increasing the braking force by applying brake pressure before the vehicle stops in the engine stop state after the engine is automatically stopped. The slip-down prevention includes each control of brake pressurization for increasing the wheel cylinder pressure PWC to the control target pressure P1, and brake holding for maintaining the wheel cylinder pressure PWC at the control target pressure P1 until the engine is restarted.
 まず、図7を用いてエンジン停止制御ルーチンについて説明する。 First, the engine stop control routine will be described with reference to FIG.
 ステップS101では、車両の走行中にアイドルストップ条件が成立するか否かを判定する。本実施形態では、アイドルストップ条件とは、車体速度VSが車速閾値V1(例えば20km/h)以下の低速域にあること(VS≦V1)、ブレーキペダル15が操作されてブレーキスイッチSW1がオン状態にあること(ブレーキスイッチオン)、マスタシリンダ圧PMCが規定圧Ps以上であること(PMC≧Ps)の各条件がアンド条件で成立することを指す。 In step S101, it is determined whether or not an idle stop condition is satisfied while the vehicle is traveling. In the present embodiment, the idle stop condition is that the vehicle body speed VS is in a low speed range that is equal to or less than the vehicle speed threshold value V1 (for example, 20 km / h) (VS ≦ V1), the brake pedal 15 is operated, and the brake switch SW1 is turned on. And the condition that the master cylinder pressure PMC is equal to or higher than the specified pressure Ps (PMC ≧ Ps).
 これら各条件がアンド条件で成立したことによりアイドルストップ条件が成立すると、ステップS102において、ブレーキ用ECU55はエンジン12の停止を許可する。すなわち、ブレーキ用ECU55は、停止指令をエンジン用ECU17に送る。エンジン用ECU17は、停止指令を受け付けると、エンジン12を停止させる。一方、ステップS101でアイドルストップ条件が不成立の場合は、当該ルーチンを終了する。 When the idle stop condition is satisfied because these conditions are satisfied under the AND condition, the brake ECU 55 permits the engine 12 to stop in step S102. That is, the brake ECU 55 sends a stop command to the engine ECU 17. The engine ECU 17 stops the engine 12 when receiving the stop command. On the other hand, if the idle stop condition is not satisfied in step S101, the routine is terminated.
 図8~図10は、アイドルストップ制御が行われるときのタイミングチャートを示す。各図は、登坂路での車両が走行しているときに行われるアイドルストップ制御を示し、車体速度VS、エンジン回転速度、ブレーキ系の油圧、ずり下がり予測判定、ポンプモータ41の電流、リニア電磁弁35(35a,35b)の電流の推移を示している。なお、本実施形態では、車体速度VSには車輪速度を用いる。車体速度VSは、車輪速度の時間微分値である車輪加速度を単位時間毎に積算した積算値を、前回の車輪速度に加算することにより求められる。 8 to 10 show timing charts when the idle stop control is performed. Each figure shows idle stop control performed when the vehicle is traveling on an uphill road. The vehicle speed VS, the engine rotation speed, the brake system hydraulic pressure, the slip prediction prediction, the current of the pump motor 41, the linear electromagnetic The transition of the current of the valve 35 (35a, 35b) is shown. In the present embodiment, the wheel speed is used as the vehicle body speed VS. The vehicle body speed VS is obtained by adding an integrated value obtained by integrating the wheel acceleration, which is a time differential value of the wheel speed, per unit time to the previous wheel speed.
 図8~図10は共通のエンジン停止制御を行い、エンジン停止後に行われる処理が図8~図10で異なる。本実施形態では、エンジン停止後の車両の減速中に、停車後の車両のずり下がりが発生するか否かを判定し、ずり下がりが発生すると判定されたときには、ブレーキ用ECU55がブレーキ加圧(増圧)を行って、車輪FR,FL,RR,RLに与えられる制動力を増加させる。これにより、停車後の車両のずり下がりを防止するずり下がり防止制御が行われる。 8 to 10 perform common engine stop control, and the processes performed after the engine stop are different from those in FIGS. In the present embodiment, it is determined whether or not the vehicle after the vehicle stops slipping during deceleration of the vehicle after the engine is stopped. When it is determined that the vehicle slips, the brake ECU 55 applies the brake pressurization ( The braking force applied to the wheels FR, FL, RR, RL is increased. As a result, the control for preventing the vehicle from sliding down after stopping is performed.
 図8は、通常の車両ずり下がり制御を行うときのタイミングチャートである。まず、図8を用いて、通常のずり下がり防止制御を説明する。通常のずり下がり防止制御とは、ずり下がり制御の開始から終了までの制御期間中に、エンジン用ECU17からエンジン再始動要求を受け付けず、上記制御期間以外の期間でエンジン再始動要求を受け付ける場合におけるエンジン再始動制御である。 FIG. 8 is a timing chart when normal vehicle sliding control is performed. First, normal sliding prevention control will be described with reference to FIG. In the normal slip prevention control, the engine restart request is not received from the engine ECU 17 during the control period from the start to the end of the slip control, and the engine restart request is received during a period other than the control period. Engine restart control.
 これに対して、図9及び図10は、ずり下がり防止制御におけるブレーキ加圧と、エンジン再始動要求を受け付けたときに行うエンジン再始動の許可との実行タイミングが重なった場合の例である。特に図9は、そのエンジン再始動要求が運転者の発進の意思によるものであると判定された場合の例、図10はそのエンジン再始動要求が運転者の発進の意思以外によるものであると判定された場合の例である。運転者の発進意思以外の要求には、温度調整装置61などの快適設備に供給すべき電力の確保を目的とするものがある。 On the other hand, FIGS. 9 and 10 are examples in which the execution timings of the brake pressurization in the slip-down prevention control and the permission of the engine restart performed when the engine restart request is received overlap. In particular, FIG. 9 shows an example in which it is determined that the engine restart request is due to the driver's intention to start, and FIG. 10 shows that the engine restart request is due to something other than the driver's intention to start. It is an example when it is determined. Some requests other than the driver's intention to start are for the purpose of securing electric power to be supplied to comfort facilities such as the temperature adjusting device 61.
 まず、図8を参照して、通常のずり下がり防止制御について説明する。図8において、登坂路を走行中の時刻t1で、運転者がブレーキペダル15を踏み込んでマスタシリンダ圧PMCが上昇し、アイドルストップ条件(ブレーキスイッチオン、PMC≦Ps、VS≦V1)が成立すると、ブレーキ用ECU55はエンジン12の停止を許可し、エンジン用ECU17がエンジン12を停止することにより、エンジン回転速度は時刻t1から減少し、やがてゼロになる。 First, normal sliding prevention control will be described with reference to FIG. In FIG. 8, when the driver depresses the brake pedal 15 at time t1 while traveling on the uphill road, the master cylinder pressure PMC increases, and the idle stop condition (brake switch on, PMC ≦ Ps, VS ≦ V1) is satisfied. The brake ECU 55 permits the engine 12 to stop, and when the engine ECU 17 stops the engine 12, the engine speed decreases from time t1 and eventually becomes zero.
 ブレーキ操作によるマスタシリンダ圧PMCの増加により車輪FR,FL,RR,RLに与えられた制動力により、車両はエンジン停止状態で減速する。この車両のエンジン停止中において、ブレーキ用ECU55は、停車後の車両のずり下がりを防止するずり下がり防止制御と、エンジン再始動要求を受け付けたときにエンジン12の再始動を許可する再始動制御とを行う。但し、図8に示す通常のずり下がり防止制御の例では、ブレーキ加圧の実行期間内(後述する「ずり下がり予測あり」の場合)に、エンジン再始動要求を受け付けることはない。 The vehicle decelerates while the engine is stopped by the braking force applied to the wheels FR, FL, RR, and RL due to the increase in the master cylinder pressure PMC by the brake operation. While the vehicle engine is stopped, the brake ECU 55 is configured to prevent the vehicle from sliding down after the vehicle has stopped, and a restart control that permits the engine 12 to restart when an engine restart request is received. I do. However, in the example of the normal slip prevention control shown in FIG. 8, the engine restart request is not received within the execution period of brake pressurization (in the case of “predicted slip down” to be described later).
 ブレーキ用ECU55は、停止指令の送信後、エンジン12を停止したエンジン用ECU17から停止通知信号を受信してエンジン12の停止を把握すると、このエンジン停止後、ずり下がり予測判定を行う。ずり下がり予測判定とは、停車後に車両のずり下がりが発生するか否かを予測するずり下がり予測と、ずり下がりを防止するためのブレーキ加圧を開始するブレーキ加圧開始条件が成立したか否かを判定するブレーキ加圧開始条件判定(以下単に「開始条件判定」ともいう。)とを含む判定処理である。 After transmitting the stop command, the brake ECU 55 receives a stop notification signal from the engine ECU 17 that has stopped the engine 12 and grasps that the engine 12 has stopped. The slip prediction determination is a prediction of whether or not a vehicle will slip after stopping, and whether or not a brake pressurization start condition for starting brake pressurization for preventing the slip is satisfied. This is a determination process including a brake pressurization start condition determination (hereinafter also simply referred to as “start condition determination”).
 ずり下がり予測では、ずり下がり発生条件である、勾配加速度Ag>制動加速度Apmcが成立するか否かが判定される。Ag>Apmcが成立すればずり下がりが発生すると予測され、Ag>Apmcが不成立であればずり下がりが発生しないと予測される。 In the slip prediction, it is determined whether or not the slope generation condition, gradient acceleration Ag> braking acceleration Apmc, is satisfied. If Ag> Apmc is satisfied, it is predicted that a slip will occur, and if Ag> Apmc is not satisfied, it is predicted that no slip will occur.
 ブレーキ加圧開始条件判定では、エンジン停止後、停車までに要する予測時間Tを演算する。予測時間Tは、現時点から停車までに要する時間として求められる。予測時間Tは、車体速度VSを車体速度微分値DVSで除算して求められる(T=VS/DVS)。車体速度微分値DVSとは、車体速度VSを時間で微分した値である。 In the brake pressurization start condition determination, an estimated time T required until the vehicle stops after the engine stops is calculated. The predicted time T is obtained as the time required from the present time to the stop. The predicted time T is obtained by dividing the vehicle body speed VS by the vehicle body speed differential value DVS (T = VS / DVS). The vehicle body speed differential value DVS is a value obtained by differentiating the vehicle body speed VS with respect to time.
 ブレーキ加圧は、停車時点よりもブレーキ加圧に必要な加圧必要時間T1だけ早い時期に開始される。これは、停車までにずり下がりの抑制に必要な制動力を確保するためである。そのため、予測時間Tが加圧必要時間T1に達すると、ブレーキ加圧開始条件(T≦T1)が成立する。但し、本実施形態では、車両のずり下がり距離Lが許容距離La以下に抑えるようにずり下がり防止制御が行われる。この場合、停車時点からずり下がり距離Lが許容距離Laに至るまでに要する遅延許容時間Taの分だけ、ブレーキ加圧開始タイミングを遅くしてもよい。この遅延許容時間Taは、路面勾配θと遅延許容時間Taとの対応関係を示した図示しないマップを用いて求められる。そして、停車時点より早くブレーキ加圧を開始するために設定されるブレーキ開始時点から停車時点までの設定時間T2を、加圧必要時間T1から遅延許容時間Taを減算した値に設定する(T2=T1-Ta)。 * Brake pressurization is started earlier than the time of stopping by the pressurization required time T1 required for brake pressurization. This is to ensure the braking force necessary to suppress the sliding down until the vehicle stops. Therefore, when the predicted time T reaches the pressurization required time T1, the brake pressurization start condition (T ≦ T1) is satisfied. However, in this embodiment, the slip-down prevention control is performed so that the slip-down distance L of the vehicle is suppressed to the allowable distance La or less. In this case, the brake pressurization start timing may be delayed by an amount of the allowable delay time Ta required for the slippage distance L to reach the allowable distance La from the stop point. The allowable delay time Ta is obtained using a map (not shown) showing the correspondence between the road surface gradient θ and the allowable delay time Ta. Then, the set time T2 from the brake start time to the stop time set to start the brake pressurization earlier than the stop time is set to a value obtained by subtracting the delay allowable time Ta from the pressurization required time T1 (T2 = T1-Ta).
 予測時間T(=VS/DVS)が設定時間T2以下になると、ブレーキ加圧開始条件が成立したと判定するようにしている。もちろん、許容距離Laをゼロ(つまり遅延許容時間Ta=0)とし、予測時間Tが加圧必要時間T1以下(T≦T1)になると、ブレーキ加圧開始条件が成立したと判定する構成を採用してもよい。 When the predicted time T (= VS / DVS) is equal to or shorter than the set time T2, it is determined that the brake pressurization start condition is satisfied. Of course, when the allowable distance La is zero (that is, the allowable delay time Ta = 0) and the predicted time T is equal to or less than the required pressurization time T1 (T ≦ T1), it is determined that the brake pressurization start condition is satisfied. May be.
 ずり下がり発生条件Ag>Apmcが成立し、かつブレーキ加圧開始条件T≦T2が成立すると、ずり下がり予測条件が成立したことになる。ずり下がり予測判定フラグは、ずり下がり予測条件が不成立のうちはオフとされ、ずり下がり予測条件が成立するとオンされる。図8に示す例では、車両停止の時刻t3よりも設定時間T2(=T1-Ta)だけ早い時刻t2のタイミングでずり下がり予測判定フラグはオンする。 When the slippage occurrence condition Ag> Apmc is satisfied and the brake pressurization start condition T ≦ T2 is satisfied, the slippage prediction condition is satisfied. The slip prediction judgment flag is turned off while the slip prediction condition is not satisfied, and is turned on when the slip prediction condition is satisfied. In the example shown in FIG. 8, the slippage prediction determination flag is turned on at time t2 that is earlier than the vehicle stop time t3 by a set time T2 (= T1-Ta).
 ずり下がり予測判定フラグがオンすると、ブレーキ用ECU55は、ブレーキ加圧のためにポンプモータ41とリニア電磁弁35(35a,35b)へ電流を供給して、ポンプモータ41を駆動させるとともに、リニア電磁弁35を閉弁方向へ作動させて開度を小さくすることによりホイールシリンダ圧PWCを増圧させる。 When the slippage prediction determination flag is turned on, the brake ECU 55 supplies current to the pump motor 41 and the linear electromagnetic valve 35 (35a, 35b) to pressurize the brake, thereby driving the pump motor 41 and linear electromagnetic. The wheel cylinder pressure PWC is increased by reducing the opening degree by operating the valve 35 in the valve closing direction.
 ここで、ブレーキ加圧のためにリニア電磁弁35に供給すべき電流値I1は、路面勾配θから決まる勾配加速度Agの絶対値に基づき、図4に示すマップを参照して、ブレーキ加圧開始前に事前に求められる。この電流値I1は、ポンプ42,43の駆動状態下で、リニア電磁弁35a,35bに供給すればホイールシリンダ圧PWCが制御目標圧P1まで加圧(増圧)可能な値である。 Here, the current value I1 to be supplied to the linear electromagnetic valve 35 for pressurizing the brake is based on the absolute value of the gradient acceleration Ag determined from the road surface gradient θ, and referring to the map shown in FIG. Asked in advance before. This current value I1 is a value at which the wheel cylinder pressure PWC can be increased (increased) to the control target pressure P1 when supplied to the linear electromagnetic valves 35a and 35b under the drive state of the pumps 42 and 43.
 また、ポンプモータ41の駆動時に供給される電流は、図8に示すように、駆動開始時に一旦大きく立ち上がってから下降して安定した電流値に収束するように変化する。このポンプモータ41の電流特性は、モータ一般の電流特性であり、スタータモータ72についても同様の電流特性を有している。 Further, as shown in FIG. 8, the current supplied when the pump motor 41 is driven changes so as to converge once to a stable current value after rising significantly at the start of driving. The current characteristic of the pump motor 41 is a general motor current characteristic, and the starter motor 72 has the same current characteristic.
 例えばホイールシリンダ圧PWCが制御目標圧P1に達するのに十分な駆動時間だけポンプモータ41が駆動されると、ポンプモータ41への電流の供給が停止される。このポンプモータ41の駆動停止時にはブレーキ加圧は完了しているので、ずり下がり予測判定フラグがオンからオフへ切り換わる。そして、ずり下がり予測判定フラグがオフへ切り換わるタイミング(つまりブレーキ加圧終了のタイミング)で、リニア電磁弁35a,35bへ供給される電流が、電流値I1から電流値I2(>I1)へ変更される。この電流値I2は、本例では、勾配加速度Agの絶対値に応じて、図4に示すマップと同様な考え方で作成されたマップを参照して求められる。 For example, when the pump motor 41 is driven for a drive time sufficient for the wheel cylinder pressure PWC to reach the control target pressure P1, the supply of current to the pump motor 41 is stopped. Since the brake pressurization is completed when the driving of the pump motor 41 is stopped, the slip prediction prediction flag is switched from on to off. The current supplied to the linear solenoid valves 35a and 35b is changed from the current value I1 to the current value I2 (> I1) at the timing when the slip prediction prediction flag is turned off (that is, when the brake pressurization is finished). Is done. In this example, the current value I2 is obtained by referring to a map created based on the same concept as the map shown in FIG. 4 according to the absolute value of the gradient acceleration Ag.
 ブレーキ加圧によって、ホイールシリンダ圧PWCは、電流値Iに応じた圧力へ増加する。このため、車輪FR,FL,RR,RLに与えられる制動力が増加する。例えば、車両が停止する前の時刻t2近くから、運転者がブレーキペダル15の操作量(踏み量)を小さくし、マスタシリンダ圧PMCが低下しても、ホイールシリンダ圧PWCは加圧されている。このため、停車したときに、ホイールシリンダ圧PWCが制御目標圧P1に達していなくても、停車後の車両は、ずり下がり距離Lが許容距離La以下に収まるように停止する。 The wheel cylinder pressure PWC increases to a pressure corresponding to the current value I due to brake pressurization. For this reason, the braking force applied to the wheels FR, FL, RR, RL increases. For example, the wheel cylinder pressure PWC is increased even when the driver decreases the operation amount (stepping amount) of the brake pedal 15 and the master cylinder pressure PMC decreases from time t2 before the vehicle stops. . For this reason, when the vehicle stops, even if the wheel cylinder pressure PWC does not reach the control target pressure P1, the vehicle after stopping stops so that the sliding distance L falls within the allowable distance La.
 ホイールシリンダ圧PWCが制御目標圧P1に達すると、ポンプモータ41への電流供給が停止されるとともに、リニア電磁弁35a,35bへの供給電流がホイールシリンダ圧PWCを制御目標圧P1へ加圧(増加)させるときの電流値I1よりも高い、ブレーキ保圧用の電流値I2に切り換えられる。この結果、ポンプモータ41の駆動終了後も、ホイールシリンダ圧PWCは制御目標圧P1に保持される。 When the wheel cylinder pressure PWC reaches the control target pressure P1, the current supply to the pump motor 41 is stopped, and the supply current to the linear electromagnetic valves 35a and 35b increases the wheel cylinder pressure PWC to the control target pressure P1 ( Switching) to a current value I2 for brake pressure holding, which is higher than the current value I1 at the time of increase). As a result, even after the driving of the pump motor 41 is finished, the wheel cylinder pressure PWC is maintained at the control target pressure P1.
 なお、図8の例では、停車前後で運転者が一旦操作量を小さくしたブレーキペダル15を、停車後しばらくして再び踏み込んで、このとき制御目標圧P1よりも高いマスタシリンダ圧PMCまで上昇したため、このマスタシリンダ圧PMCに追従してホイールシリンダ圧PWCも増加している。運転者がブレーキペダル15の踏込みを緩めてマスタシリンダ圧PMCが減少しても、リニア電磁弁35a,35bに電流値I2の電流が供給されているため、ホイールシリンダ圧PWCは制御目標圧P1に保持される。すなわち、ブレーキ保持され、車両はずり下がることなく坂路に停止維持される。 In the example of FIG. 8, the driver once depresses the brake pedal 15 whose operating amount was once reduced before and after stopping, and then stepped on again for a while, and then increased to the master cylinder pressure PMC higher than the control target pressure P1. The wheel cylinder pressure PWC also increases following this master cylinder pressure PMC. Even if the driver depresses the brake pedal 15 and the master cylinder pressure PMC decreases, the current of the current value I2 is supplied to the linear electromagnetic valves 35a and 35b. Therefore, the wheel cylinder pressure PWC is set to the control target pressure P1. Retained. In other words, the brake is held, and the vehicle is stopped and maintained on the slope without falling off the vehicle.
 その後、運転者が車両を発進させるために、ブレーキペダル15の踏込みを止めて、アクセルペダル11を操作し始めると(時刻t4)、その発進の意思のある操作を検知したエンジン用ECU17からブレーキ用ECU55へエンジン再始動要求が送られる。ブレーキ用ECU55は、エンジン再始動要求を受け付けると、エンジン12の再始動を許可する。こうしてエンジン用ECU17によりエンジン12が再始動され、時刻t4からエンジン回転速度がゼロから上昇し始める。エンジン回転速度が所定値に達するまで上昇すると、ブレーキ用ECU55は、リニア電磁弁35への電流の供給を停止する。この結果、ブレーキ保圧が解除される。ブレーキ保圧解除後、エンジン12の再始動が完了し、その後、ブレーキペダル15の踏込みを止めているので、クリープトルクにより車両は発進する。 Thereafter, when the driver stops the depression of the brake pedal 15 and starts operating the accelerator pedal 11 (time t4) in order to start the vehicle, the engine ECU 17 detects the operation with the intention to start. An engine restart request is sent to the ECU 55. When receiving the engine restart request, the brake ECU 55 permits the engine 12 to restart. Thus, the engine 12 is restarted by the engine ECU 17, and the engine speed starts to increase from zero at time t4. When the engine speed increases until it reaches a predetermined value, the brake ECU 55 stops supplying current to the linear electromagnetic valve 35. As a result, the brake holding pressure is released. After the brake holding pressure is released, the restart of the engine 12 is completed, and then the depression of the brake pedal 15 is stopped, so that the vehicle starts by creep torque.
 次に、ブレーキ用ECU55が実行する図5及び図6に示す停車維持・再始動制御ルーチンについて、図8~10に示すタイミングチャートを参照しつつ説明する。 Next, the stoppage maintenance / restart control routine shown in FIGS. 5 and 6 executed by the brake ECU 55 will be described with reference to the timing charts shown in FIGS.
 まずステップS11では、エンジン停止中であるか否かを判断する。エンジン停止中でなければ当該ルーチンを終了する。一方、エンジン停止中であれば、ステップS12に進む。 First, in step S11, it is determined whether or not the engine is stopped. If the engine is not stopped, the routine ends. On the other hand, if the engine is stopped, the process proceeds to step S12.
 ステップS12では、ずり下がり予測判定を行う。このずり下がり予測判定では、停車後に車両のずり下がりが発生するか否かを判定(予測)する。具体的には、ブレーキ用ECU55は、勾配加速度Agと制動加速度Apmcとを演算し、Ag>Apmcが成立するか否かを判定する。Ag>Apmcが成立した場合は、ずり下がりが発生すると予測し、Ag>Apmcが不成立の場合は、ずり下がりが発生しないと予測する。さらに、このずり下がり予測判定において、ブレーキ用ECU55は、車体速度VSを取得し、車体速度VSの時間微分を計算して車体速度微分値DVSを取得する。そして、車体速度VSを車体速度微分値DVSで除算し、停車までに要する予測時間T(=VS/DVS)を求める。そして、予測時間Tが設定時間T2以下であるか否かを判定し、T≦T2が成立すれば、ブレーキ加圧開始条件が成立したと判定し、T≦T2が不成立であれば、ブレーキ加圧開始条件が成立しないと判定する。ずり下がり発生条件Ag<Apmcと、ブレーキ加圧開始条件T≦T2との両方が成立すると、ずり下がり予測条件が成立したと判定する。このずり下がり予測条件が不成立のうちは予測判定フラグはオフのままとされ、ずり下がり予測条件が成立すると、予測判定フラグはオフからオンに切り換えられる。なお、本実施形態では、Ag>Apmcが成立するか否かを判定するブレーキ用ECU55が、第2の判定部としても機能する。また、ステップS12が、第2の判定ステップに相当する。 In step S12, the sliding prediction is determined. In this slip prediction determination, it is determined (predicted) whether or not a vehicle slip occurs after the vehicle stops. Specifically, the brake ECU 55 calculates the gradient acceleration Ag and the braking acceleration Apmc, and determines whether or not Ag> Apmc is satisfied. When Ag> Apmc is satisfied, it is predicted that a slip will occur, and when Ag> Apmc is not satisfied, it is predicted that no slip will occur. Further, in this slippage prediction determination, the brake ECU 55 acquires the vehicle body speed VS, calculates the time derivative of the vehicle body speed VS, and acquires the vehicle body speed differential value DVS. Then, the vehicle speed VS is divided by the vehicle speed differential value DVS to obtain a predicted time T (= VS / DVS) required until the vehicle stops. Then, it is determined whether or not the predicted time T is equal to or shorter than the set time T2, and if T ≦ T2 is satisfied, it is determined that the brake pressurization start condition is satisfied. It is determined that the pressure start condition is not satisfied. If both the slip generation condition Ag <Apmc and the brake pressurization start condition T ≦ T2 are satisfied, it is determined that the slip prediction condition is satisfied. The prediction determination flag remains off while the falling prediction condition is not satisfied, and the prediction determination flag is switched from off to on when the falling prediction condition is satisfied. In the present embodiment, the brake ECU 55 that determines whether or not Ag> Apmc also functions as the second determination unit. Step S12 corresponds to a second determination step.
 次のステップS13では、ブレーキの制御目標圧P1を演算する。具体的には、ブレーキ用ECU55は、勾配加速度Agの絶対値を基に図4に示すマップを参照して、勾配加速度Agに応じた電流値I1を求める。この電流値I1は、ポンプ42,43が駆動された加圧状態下で、リニア電磁弁35a,35bに供給すれば、ホイールシリンダ圧PWCを制御目標圧P1としうる値である。もちろん、勾配加速度Agと制御目標圧との対応関係を示すマップをブレーキ用ECU55のROMに記憶しておき、勾配加速度Agを基にマップを参照して取得したに応じた制御目標圧P1から一義的に決まる電流値Iを取得してもよい。 In the next step S13, the brake control target pressure P1 is calculated. Specifically, the brake ECU 55 refers to the map shown in FIG. 4 on the basis of the absolute value of the gradient acceleration Ag and obtains a current value I1 corresponding to the gradient acceleration Ag. When the current value I1 is supplied to the linear electromagnetic valves 35a and 35b in a pressurized state where the pumps 42 and 43 are driven, the wheel cylinder pressure PWC can be set as the control target pressure P1. Of course, a map showing the correspondence between the gradient acceleration Ag and the control target pressure is stored in the ROM of the brake ECU 55, and is uniquely determined from the control target pressure P1 according to the map acquired based on the gradient acceleration Ag. Alternatively, the current value I that is determined may be acquired.
 ステップS14では、エンジン再始動要求があったか否かを判断する。すなわち、ブレーキ用ECU55は、エンジン用ECU17からエンジン再始動要求を受け付けたか否かを判断する。ここで、エンジン再始動要求には、運転者に発進意思があるときの要求(以下「第1要求」ともいう。)と、オーディオ60及び温度調整装置61などの快適設備への供給電力を確保するための要求(以下「第2要求」ともいう。)とが含まれる。 In step S14, it is determined whether an engine restart request has been made. That is, the brake ECU 55 determines whether an engine restart request has been received from the engine ECU 17. Here, the engine restart request secures a request when the driver intends to start (hereinafter also referred to as “first request”) and power supplied to comfort equipment such as the audio 60 and the temperature control device 61. For requesting (hereinafter also referred to as “second request”).
 ここで、エンジン用ECU17はエンジン12を再始動するための再始動条件が成立するか否かを逐次判断しており、再始動条件が成立すると、ブレーキ用ECU55に対してエンジン再始動要求を送信する。再始動条件には、アクセルペダル11やブレーキペダル15などの運転操作系のセンサ類SE1,SW1、SE3~SE8等の検出信号が所定の始動条件を満たした場合、オーディオ60及び温度調整装置61などの快適設備の駆動状態が所定の再始動条件を満たした場合などがある。エンジン用ECU17は、第1要求と第2要求とを区別することなく、エンジン再始動要求としてブレーキ用ECU55に送信する。 Here, the engine ECU 17 sequentially determines whether or not a restart condition for restarting the engine 12 is satisfied. When the restart condition is satisfied, an engine restart request is transmitted to the brake ECU 55. To do. The restart condition includes the audio 60, the temperature adjustment device 61, and the like when the detection signals from the driving operation sensors SE1, SW1, SE3 to SE8, such as the accelerator pedal 11 and the brake pedal 15, satisfy a predetermined start condition. In some cases, the driving state of the comfortable equipment satisfies a predetermined restart condition. The engine ECU 17 transmits the engine restart request to the brake ECU 55 without distinguishing between the first request and the second request.
 ブレーキ用ECU55は、エンジン再始動要求があればステップS15に進み、エンジン再始動要求がなければステップS26(図6)に進む。 The brake ECU 55 proceeds to step S15 if there is an engine restart request, and proceeds to step S26 (FIG. 6) if there is no engine restart request.
 ここで、図6に示すステップS26以降の処理は、通常の車両ずり下がり防止制御であり、この通常の車両ずり下がり防止制御では、図8のタイミングチャートで示される処理が行われる。 Here, the processing after step S26 shown in FIG. 6 is normal vehicle sliding prevention control. In this normal vehicle sliding prevention control, the processing shown in the timing chart of FIG. 8 is performed.
 また、図5に示すステップS15~S20の処理と、ステップS15,S21~S25の処理は、エンジン再始動要求に応じて行うべきエンジン再始動と、ずり下がり防止制御におけるブレーキ加圧とが、実行タイミング上、重なった場合の処理を示す。詳しくは、ステップS15~S20の処理は、エンジン再始動要求が運転者の発進意思に基づく第1要求であるときに行われる第1処理である。この第1処理の制御内容は、図9のタイミングチャートで示され、エンジン再始動をブレーキ加圧に優先して行う。また、ステップS15,S21~S25の処理は、エンジン再始動要求が運転者の発進意思のない第2要求であるときに行われる第2処理である。この第2処理の制御内容は、図9のタイミングチャートで示され、エンジン再始動に優先してブレーキ加圧を先に行う。 In addition, the processes in steps S15 to S20 and the processes in steps S15 and S21 to S25 shown in FIG. 5 are executed by engine restart to be performed in response to the engine restart request and brake pressurization in the slip prevention control. The processing when they overlap in terms of timing is shown. Specifically, the processing in steps S15 to S20 is the first processing performed when the engine restart request is the first request based on the driver's intention to start. The control content of this first process is shown in the timing chart of FIG. 9, and engine restart is performed with priority over brake pressurization. The processes in steps S15 and S21 to S25 are the second processes that are performed when the engine restart request is a second request that the driver does not intend to start. The control content of the second process is shown in the timing chart of FIG. 9, and brake pressurization is performed first in preference to engine restart.
 まず、エンジン再始動要求が運転者の発進意思に基づくものであるときに行われる第1処理について、図9のタイミングチャートを参照しつつ説明する。 First, the first process performed when the engine restart request is based on the driver's intention to start will be described with reference to the timing chart of FIG.
 ステップS15では、運転者の発進意思があるか否かを判定する。ここで、運転者の発進意思は、一例として、運転者がブレーキペダル15の踏込みを止めてブレーキスイッチSW1がオフであること(ブレーキスイッチオフ)、運転者がアクセルペダル11を操作し始めてアクセル開度が正の値をとることの各条件がアンド条件(以下「発進意思条件」ともいう。)で成立したことをもって判定する。もちろん、マスタシリンダ圧PMCの値やその値の変化速度をみたり、アクセル開度の値が規定値以上になったか否かをみたりするなどの条件のうち少なくとも一つを、上記発進意思判定条件の少なくとも一の条件と入れ替えたり、上記発進意思判定条件に追加したりしてもよい。つまり、発進意思の判定ができる限りにおいて条件を適宜組合せてもよい。ステップS15の判定で、発進意思があると判定された場合はステップS16に進み、発進意思がないと判定された場合はステップS21に進む。なお、本実施形態では、運転者の発進意思があるか否かを判定するブレーキ用ECU55が、判定部としても機能する。また、ステップS15が、判定ステップに相当する。 In step S15, it is determined whether or not the driver intends to start. Here, as an example, the driver's intention to start is that the driver stops pressing the brake pedal 15 and the brake switch SW1 is off (brake switch off), and the driver starts operating the accelerator pedal 11 and opens the accelerator. The determination is made when each condition that the degree takes a positive value is satisfied by an AND condition (hereinafter also referred to as “starting intention condition”). Of course, at least one of the conditions, such as checking the value of the master cylinder pressure PMC and the rate of change of the value, or checking whether the value of the accelerator opening is equal to or greater than a specified value, determines whether to start the vehicle. It may be replaced with at least one of the conditions, or may be added to the start intention determination condition. That is, the conditions may be appropriately combined as long as the intention to start can be determined. If it is determined in step S15 that there is an intention to start, the process proceeds to step S16. If it is determined that there is no intention to start, the process proceeds to step S21. In the present embodiment, the brake ECU 55 that determines whether or not the driver intends to start also functions as a determination unit. Step S15 corresponds to a determination step.
 運転者の発進意思があると判定された場合は、ステップS16において、まずエンジン12の再始動を開始する。すなわち、ブレーキ用ECU55は、エンジン用ECU17に再始動指令を送ることにより、エンジン12の再始動を許可する。 If it is determined that the driver intends to start, the engine 12 is first restarted in step S16. That is, the brake ECU 55 permits restart of the engine 12 by sending a restart command to the engine ECU 17.
 次のステップS17では、ずり下がり予測ありであるか否かを判定する。つまり、ブレーキ用ECU55は、ずり下がり予測判定フラグがオンであるか否かを判定する。ずり下がり予測あり(フラグオン)であればステップS18に進み、ずり下がり予測なし(フラグオフ)であればステップS19に進む。 In the next step S17, it is determined whether or not there is a sliding prediction. That is, the brake ECU 55 determines whether or not the slip prediction prediction flag is on. If there is a sliding prediction (flag on), the process proceeds to step S18, and if there is no sliding prediction (flag off), the process proceeds to step S19.
 ステップS18において、使用できる電力以下で制御目標圧P1までブレーキ加圧する。詳しくは、ブレーキ加圧を行う場合、ブレーキ用ECU55は、ポンプモータ41に電流を供給してポンプモータ41を駆動させるとともに、リニア電磁弁35a,35bに制御目標圧P1に対応する電流値I1の電流を供給する(図9を参照)。この結果、図9に示すように、ホイールシリンダ圧PWCは制御目標圧P1に加圧される。このブレーキ加圧により、車両は停車後のずり下がり距離Lが許容距離La以下で停止する。制御目標圧P1までのブレーキ加圧が達成されると、ブレーキ用ECU55は、ポンプモータ41への供給電流を停止し、その駆動を停止させる。ブレーキ加圧を終えると、ブレーキ用ECU55は、ずり下がり予測判定フラグをオンからオフへ切り換える。なお、本実施形態では、ブレーキ加圧を行うブレーキ用ECU55が、制動制御部としても機能する。また、ステップS18が、制動制御ステップに相当する。 In step S18, the brake is pressurized to the control target pressure P1 below the available power. Specifically, when the brake is pressurized, the brake ECU 55 supplies the current to the pump motor 41 to drive the pump motor 41, and causes the linear electromagnetic valves 35a and 35b to have the current value I1 corresponding to the control target pressure P1. A current is supplied (see FIG. 9). As a result, as shown in FIG. 9, the wheel cylinder pressure PWC is increased to the control target pressure P1. By this brake pressurization, the vehicle stops when the sliding distance L after stopping is equal to or less than the allowable distance La. When the brake pressurization up to the control target pressure P1 is achieved, the brake ECU 55 stops the supply current to the pump motor 41 and stops its driving. When the brake pressurization is finished, the brake ECU 55 switches the slip prediction prediction determination flag from on to off. In the present embodiment, the brake ECU 55 that performs brake pressurization also functions as a brake control unit. Step S18 corresponds to a braking control step.
 次のステップS19では、使用できる電力以下で制御目標圧P1にブレーキ保持する。すなわち、ブレーキ用ECU55は、リニア電磁弁35a,35bへの供給電流を電流値I1から電流値I2(>I1)へ変更する。この結果、ポンプ42,43の駆動が停止された後においても、ホイールシリンダ圧PWCが制御目標圧P1に保圧されることにより、車両は坂路に停止状態に保持される。また、ずり下がり予測なしの場合は、ブレーキ加圧は行われないものの、ホイールシリンダ圧PWCの保圧によりブレーキ保持される。 In the next step S19, the brake is held at the control target pressure P1 below the available power. That is, the brake ECU 55 changes the current supplied to the linear electromagnetic valves 35a and 35b from the current value I1 to the current value I2 (> I1). As a result, even after driving of the pumps 42 and 43 is stopped, the wheel cylinder pressure PWC is maintained at the control target pressure P1, so that the vehicle is held in a stopped state on the slope. In addition, when there is no slip down prediction, although brake pressurization is not performed, the brake is held by maintaining the wheel cylinder pressure PWC.
 次のステップS20では、エンジン再始動が完了したか否かを判定する。エンジン再始動が完了していなければ、エンジン再始動が完了するまでステップS19において使用できる電力以下でブレーキ保持を継続しつつ待機し、エンジン再始動が完了したら(S20で肯定判定)、ステップS32に進む。 In the next step S20, it is determined whether or not the engine restart is completed. If the engine restart has not been completed, the process waits while maintaining the brake below the power that can be used in step S19 until the engine restart is completed. When the engine restart is completed (Yes in S20), the process proceeds to step S32. move on.
 ステップS32では、ブレーキ減圧を行う。つまり、ブレーキ用ECU55は、リニア電磁弁35a,35bへの電流の供給を停止する。この結果、それまで保持されていたホイールシリンダ圧PWCの制御目標圧P1が解消され、停車維持のために車輪FR,FL,RR,RLに与えられていた制動力が解除される。このため、運転者がアクセルペダル11を踏み込めば、車両は発進する。また、運転者がアクセルペダル11をさほど踏み込んでいなくても、エンジン12のクリープトルクにより車両のずり下がりは抑制される。仮にずり下がったとしてもそのずり下がり速度は非常にゆっくりなので、運転者は余裕をもってブレーキペダル15を踏み込んで、そのずり下がりを止めることができる。 In step S32, brake pressure reduction is performed. That is, the brake ECU 55 stops the supply of current to the linear electromagnetic valves 35a and 35b. As a result, the control target pressure P1 of the wheel cylinder pressure PWC that has been held until then is canceled, and the braking force applied to the wheels FR, FL, RR, RL for maintaining the stop is released. For this reason, when the driver depresses the accelerator pedal 11, the vehicle starts. Even if the driver does not depress the accelerator pedal 11 so much, the creep torque of the engine 12 suppresses the vehicle from sliding down. Even if it slides down, the sliding speed is very slow. Therefore, the driver can depress the brake pedal 15 with a margin to stop the sliding.
 ここで、図8に示すようにブレーキ加圧過程でポンプモータ41に供給される電流と、リニア電磁弁35a,35bに供給される電流値I1は、共に使用できる電力以下に抑えられる。使用できる電力とは、エンジン再始動のときに駆動されるスタータモータ72で消必要な電力を消費した残りの電力をいう。 Here, as shown in FIG. 8, the current supplied to the pump motor 41 during the brake pressurization process and the current value I1 supplied to the linear electromagnetic valves 35a and 35b are both kept below the usable power. The electric power that can be used refers to the remaining electric power consumed by the starter motor 72 that is driven when the engine is restarted.
 図11は、ポンプモータとスタータモータの駆動電力を示すグラフである。図11(a)は発進の意思なしの場合(つまりブレーキ加圧を優先する場合)であり、図11(b)は発進の意思ありの場合(つまりエンジン再始動を優先する場合)である。各図において、横軸は時間t、縦軸はモータ駆動電力を示す。各グラフにおいて、電力値Wbは、車両に搭載された図示しないバッテリーが供給可能な電力(バッテリー電力W)のうち、ブレーキ加圧とエンジン再始動に使用可能な電力である。この電力Wbには、オーディオ60や温度調整装置61等の快適設備、ランプなどで消費される電力など他の用途に使用される電力分は除かれている。 FIG. 11 is a graph showing the driving power of the pump motor and the starter motor. FIG. 11A shows a case where there is no intention to start (that is, a case where priority is given to brake pressurization), and FIG. 11B shows a case where there is a intention to start (ie, a case where priority is given to engine restart). In each figure, the horizontal axis represents time t, and the vertical axis represents motor drive power. In each graph, the electric power value Wb is electric power that can be used for brake pressurization and engine restart among electric power (battery electric power W) that can be supplied by a battery (not shown) mounted on the vehicle. This electric power Wb excludes electric power used for other purposes such as comfort equipment such as the audio 60 and the temperature adjusting device 61, electric power consumed by lamps, and the like.
 快適設備及びランプの消費電力や各種モータ等の電動系の消費電力は、アイドルストップ用ECU65が管理している。アイドルストップ用ECU65は、バッテリー電力Wのうちエンジン再始動とブレーキ加圧とに使用可能な電力Wbを把握し、その電力Wbの情報を、定期的にあるいはブレーキ用ECU55からの要求がある度に、ブレーキ用ECU55へ送信する。 The idle stop ECU 65 manages the power consumption of the comfort facilities, the lamps, and the electric system such as various motors. The idle stop ECU 65 grasps electric power Wb that can be used for engine restart and brake pressurization out of the battery electric power W, and information on the electric power Wb is periodically or whenever there is a request from the brake ECU 55. , To the brake ECU 55.
 また、ブレーキ用ECU55は、エンジン再始動時に駆動されるスタータモータ72のエンジン再始動時の電力特性(電力の経時変化特性)は、その時々のバッテリー電圧に依存するものの、車種によっておおよそ決まっている。図11のグラフ中に一点鎖線で示す電力の経時変化特性がバッテリー電圧から決まるスタータモータ72の電力特性を示す。 Further, in the brake ECU 55, the electric power characteristic (time-dependent change characteristic of electric power) at the time of engine restart of the starter motor 72 driven at the time of engine restart depends on the battery voltage at that time, but is roughly determined by the vehicle type. . 11 shows the power characteristic of the starter motor 72 in which the time-varying characteristic of the power indicated by the one-dot chain line in the graph of FIG. 11 is determined from the battery voltage.
 図11(a)に示すグラフにおいて、電力Wbから、スタータモータ72の使用電力を除いた、同図にハッチングで示した範囲で示される残りの電力が、ブレーキ加圧のために使用できる電力(以下「ブレーキ加圧使用可能電力W1」という。)となる。 In the graph shown in FIG. 11A, the remaining power shown in the hatched range in the figure, excluding the power used by the starter motor 72 from the power Wb, is the power that can be used for pressurizing the brake ( Hereinafter, it is referred to as “brake pressurization usable electric power W1”.
 ここで、スタータモータ72の駆動開始初期にはその消費電力は大きく上昇してピークを形成し、ピーク終了後に安定域の電力値に収まる。このスタータモータ駆動電力のピークが発生する期間は、結果として、ブレーキ加圧使用可能電力W1が小さくなる。また、ポンプモータ駆動電力もポンプモータ41の駆動開始初期にピークを形成するため、スタータモータ駆動電力のピーク発生期間と、ポンプモータ駆動電力のピーク発生期間は互いに回避させることが望ましい。そこで、本実施形態では、スタータモータ駆動電力のピーク発生期間を含むピーク回避期間PT(本例ではピーク発生期間に同じ)を設定し、ピーク回避期間PTを経過した後に、ポンプモータ41の駆動期間を設定している。 Here, at the beginning of the start of the starter motor 72, the power consumption increases greatly to form a peak, and after the end of the peak, it falls within the stable power value. As a result, the brake pressurization usable power W1 is reduced during the period in which the peak of the starter motor driving power occurs. In addition, since the pump motor driving power also forms a peak at the beginning of driving of the pump motor 41, it is desirable to avoid the peak generation period of the starter motor driving power and the peak generation period of the pump motor driving power. Therefore, in this embodiment, a peak avoidance period PT including the peak generation period of the starter motor drive power (in this example, the same as the peak generation period) is set, and after the peak avoidance period PT has elapsed, the drive period of the pump motor 41 is set. Is set.
 このため、発進意思ありの場合はエンジン再始動が優先され、スタータモータ駆動電力には、エンジン12の再始動に必要な通常の電力が使用される。そして、エンジン再始動要求を受け付けたブレーキ用ECU55は、エンジン再始動を許可する旨の再始動指令をエンジン用ECU17へ送ってから、ピーク回避期間PTに相当する時間の経過後に、モータ用ドライバ回路を介してポンプモータ41へ電力(電流)を供給してその駆動を開始させる。この場合、エンジン再始動で使用される電力の残りのブレーキ加圧使用可能電力W1の範囲内でポンプモータ41及びリニア電磁弁35a,35bを駆動するものの、ピーク回避期間PTを避けた期間でポンプモータ41を駆動させるので、ピーク回避期間PTを駆動期間とする場合に比べ、相対的に大きな電流をポンプモータ41及びリニア電磁弁35a,35bに供給することができる。この結果、エンジン再始動が優先される場合でも、比較的速やかにホイールシリンダ圧PWCを制御目標圧P1に加圧することができる。なお、図11のグラフにおいて二点鎖線で示すラインは、ポンプモータ駆動電力とリニア電磁弁35a,35bの駆動電力との和を示す。 For this reason, when there is an intention to start, the engine restart is prioritized, and the normal power required for restarting the engine 12 is used as the starter motor drive power. The brake ECU 55 that has received the engine restart request sends a restart command for permitting the engine restart to the engine ECU 17, and then after a time corresponding to the peak avoidance period PT has elapsed, the motor driver circuit The electric power (current) is supplied to the pump motor 41 via and the drive is started. In this case, the pump motor 41 and the linear solenoid valves 35a and 35b are driven within the range of the remaining brake pressurization usable electric power W1 of the electric power used for restarting the engine, but the pump is used in a period avoiding the peak avoidance period PT. Since the motor 41 is driven, a relatively large current can be supplied to the pump motor 41 and the linear electromagnetic valves 35a and 35b as compared with the case where the peak avoidance period PT is the driving period. As a result, even when engine restart is prioritized, the wheel cylinder pressure PWC can be increased to the control target pressure P1 relatively quickly. In addition, the line shown with a dashed-two dotted line in the graph of FIG. 11 shows the sum of pump motor drive power and the drive power of linear electromagnetic valve 35a, 35b.
 次に発進意思なしの場合に行われる図5のステップS21~25で示される第2処理について、図10に示すタイミングチャートを参照しつつ説明する。 Next, the second processing shown in steps S21 to S25 in FIG. 5 performed when there is no intention to start will be described with reference to the timing chart shown in FIG.
 図5におけるステップS15において、運転者の発進意思がないと判定された場合は、ステップS21において、ずり下がり予測ありであるか否かを判定する。つまり、ブレーキ用ECU55は、ずり下がり予測判定フラグがオンであるか否かを判定する。ずり下がり予測あり(フラグオン)であればステップS22に進み、ずり下がり予測なし(フラグオフ)であればステップS23に進む。 If it is determined in step S15 in FIG. 5 that the driver does not intend to start, it is determined in step S21 whether or not there is a slip prediction. That is, the brake ECU 55 determines whether or not the slip prediction prediction flag is on. If there is a sliding prediction (flag on), the process proceeds to step S22, and if there is no sliding prediction (flag off), the process proceeds to step S23.
 ステップS22では、制御目標圧P1までブレーキ加圧する。詳しくは、このブレーキ加圧をする場合、ブレーキ用ECU55は、ポンプモータ41に電流を供給してポンプモータ41を駆動させるとともに、リニア電磁弁35a,35bに制御目標圧P1に応じた電流値I1の電流を供給する(図10を参照)。この結果、図10に示すように、ホイールシリンダ圧PWCは制御目標圧P1に加圧される。このため、車両は停車後のずり下がり距離Lが許容距離La以下で停止する。制御目標圧P1までのブレーキ加圧が達成されると、ブレーキ用ECU55は、ポンプモータ41への供給電流を停止し、その駆動を停止させる。ブレーキ加圧を終えると、ブレーキ用ECU55は、ずり下がり予測判定フラグをオンからオフへ切り換える。 In step S22, the brake is pressurized to the control target pressure P1. Specifically, when this brake pressurization is performed, the brake ECU 55 supplies current to the pump motor 41 to drive the pump motor 41 and causes the linear electromagnetic valves 35a and 35b to have a current value I1 corresponding to the control target pressure P1. (See FIG. 10). As a result, as shown in FIG. 10, the wheel cylinder pressure PWC is increased to the control target pressure P1. For this reason, the vehicle stops when the sliding distance L after stopping is equal to or less than the allowable distance La. When the brake pressurization up to the control target pressure P1 is achieved, the brake ECU 55 stops the supply current to the pump motor 41 and stops its driving. When the brake pressurization is finished, the brake ECU 55 switches the slip prediction prediction determination flag from on to off.
 次のステップS23では、エンジン12の再始動を開始する。すなわち、ブレーキ用ECU55は、エンジン用ECU17に再始動指令を送ることにより、エンジン12の再始動を許可する。この結果、この再始動指令を受け取ったエンジン用ECU17によって、エンジン12は再始動される。 In the next step S23, restart of the engine 12 is started. That is, the brake ECU 55 permits restart of the engine 12 by sending a restart command to the engine ECU 17. As a result, the engine 12 is restarted by the engine ECU 17 that has received this restart command.
 次のステップS24では、制御目標圧P1にブレーキ保持する。すなわち、ブレーキ用ECU55は、リニア電磁弁35a,35bへの供給電流を電流値I1から電流値I2(>I1)へ変更する。この結果、ポンプ42,43の駆動が停止された後においても、ホイールシリンダ圧PWCが制御目標圧P1に保圧されることにより、車両は坂路に停止状態に保持される。 In the next step S24, the brake is held at the control target pressure P1. That is, the brake ECU 55 changes the current supplied to the linear electromagnetic valves 35a and 35b from the current value I1 to the current value I2 (> I1). As a result, even after driving of the pumps 42 and 43 is stopped, the wheel cylinder pressure PWC is maintained at the control target pressure P1, so that the vehicle is held in a stopped state on the slope.
 次のステップS25では、エンジン再始動が完了したか否かを判定する。エンジン再始動が完了していなければ、エンジン再始動が完了するまでステップS24においてブレーキ保持を継続しつつ待機し、エンジン再始動が完了したら(S25で肯定判定)、ステップS32に進む。 In the next step S25, it is determined whether or not the engine restart is completed. If the engine restart has not been completed, the process waits while continuing to hold the brake in step S24 until the engine restart is completed. If the engine restart is completed (affirmative determination in S25), the process proceeds to step S32.
 ステップS32では、ブレーキ減圧を行う。つまり、ブレーキ用ECU55は、リニア電磁弁35a,35bへの電流の供給を停止する。この結果、それまで保持されていたホイールシリンダ圧PWCの制御目標圧P1が解消され、停車維持のために車輪FR,FL,RR,RLに与えられていた制動力が解除される。このため、運転者がアクセルペダル11を踏み込めば、車両は発進する。また、運転者がアクセルペダル11をさほど踏み込んでいなくても、エンジン12のクリープトルクにより車両のずり下がりは抑制される。 In step S32, brake pressure reduction is performed. That is, the brake ECU 55 stops the supply of current to the linear electromagnetic valves 35a and 35b. As a result, the control target pressure P1 of the wheel cylinder pressure PWC that has been held until then is canceled, and the braking force applied to the wheels FR, FL, RR, RL for maintaining the stop is released. For this reason, when the driver depresses the accelerator pedal 11, the vehicle starts. Even if the driver does not depress the accelerator pedal 11 so much, the creep torque of the engine 12 suppresses the vehicle from sliding down.
 運転者の発進意思なしの場合は、図10に示すように、ずり下がり予測判定フラグがオンしたほぼ同じタイミング(時刻t12)で、エンジン再始動要求があると、ポンプモータ41に通常の電流が供給されるとともに、リニア電磁弁35a,35bに必要な電流値I1が供給される。この結果、ホイールシリンダ圧PWCが制御目標圧P1に増加し、車両停止(時刻t13)後の車両のずり下がりが例えば許容距離La以下に抑えられる。このブレーキ加圧終了後、リニア電磁弁35a,35bへの供給電流が加圧時の電流値I1から保圧時の電流値I2へ少し増やされる。この結果、坂路上の車両は停止状態に維持される。 When the driver does not intend to start, as shown in FIG. 10, when an engine restart request is made at approximately the same timing (time t12) when the slip prediction prediction flag is turned on, a normal current is supplied to the pump motor 41. While being supplied, a necessary current value I1 is supplied to the linear electromagnetic valves 35a and 35b. As a result, the wheel cylinder pressure PWC increases to the control target pressure P1, and the vehicle slip after the vehicle stops (time t13) is suppressed to, for example, the allowable distance La or less. After the brake pressurization is completed, the supply current to the linear electromagnetic valves 35a and 35b is slightly increased from the current value I1 during pressurization to the current value I2 during holding pressure. As a result, the vehicle on the slope is maintained in a stopped state.
 これに前後してブレーキ加圧が終了すると、エンジン再始動が開始される。エンジン再始動が完了するまでの間、ホイールシリンダ圧PWCは制御目標圧P1に保圧されるので、坂路上の車両は停止状態に維持され、ずり下がることがない。そして、エンジン再始動完了後に、リニア電磁弁35a,35bへの通電が停止される。このとき、クリープトルクが発生しているので、仮に運転者がブレーキペダル15の踏込みを緩めても、車両はずり下がりにくい。 * When the brake pressurization is finished before or after this, the engine restart is started. Until the engine restart is completed, the wheel cylinder pressure PWC is maintained at the control target pressure P1, so that the vehicle on the slope is maintained in a stopped state and does not slide down. Then, after the engine restart is completed, the energization to the linear electromagnetic valves 35a and 35b is stopped. At this time, since the creep torque is generated, even if the driver loosens the depression of the brake pedal 15, it is difficult for the vehicle to fall down.
 次に図6のステップS26~S32で示される通常のずり下がり制御を、図8のタイミングチャートを参照しつつ説明する。 Next, normal sliding control shown in steps S26 to S32 in FIG. 6 will be described with reference to the timing chart in FIG.
 エンジン再始動要求がない場合(S14で否定判定の場合)、ステップS26において、ずり下がり予測あり(ずり下がり予測フラグがオンである)か否かを判定する。ずり下がり予測ありの場合は、ステップS27において、制御目標圧P1までブレーキ加圧を行う。詳しくは、ブレーキ用ECU55は、ポンプモータ41に電流を供給してポンプ42,43を駆動するとともに、路面勾配θに応じた電流値I1をリニア電磁弁35a,35bに供給することにより、ホイールシリンダ圧PWCを制御目標圧P1とする。 If there is no engine restart request (in the case of negative determination in S14), it is determined in step S26 whether or not there is a slip prediction (the slip prediction flag is on). If there is a predicted slip down, the brake is pressurized to the control target pressure P1 in step S27. Specifically, the brake ECU 55 supplies current to the pump motor 41 to drive the pumps 42 and 43, and supplies a current value I1 corresponding to the road surface gradient θ to the linear electromagnetic valves 35a and 35b, whereby the wheel cylinder The pressure PWC is set as the control target pressure P1.
 また、ブレーキ加圧を終えた後、ステップS28において、ホイールシリンダ圧PWCは制御目標圧P1に保圧される。ステップS29において、エンジン再始動要求があるか否かを判定し、再始動要求が無ければエンジン再始動要求があるまでステップS28においてブレーキ保持を継続しつつ待機し、エンジン再始動要求があれば(S29で肯定判定)、ステップS30に進む。 In addition, after the brake pressurization is finished, the wheel cylinder pressure PWC is maintained at the control target pressure P1 in step S28. In step S29, it is determined whether or not there is an engine restart request. If there is no restart request, the system waits in step S28 while maintaining the brake until there is an engine restart request, and if there is an engine restart request ( (Yes determination in S29), the process proceeds to step S30.
 ステップS30では、エンジン12の再始動を開始する。すなわち、ブレーキ用ECU55は、エンジン用ECU17に再始動指令を送ることにより、エンジン12の再始動を許可する。この結果、この再始動指令を受け取ったエンジン用ECU17によって、エンジン12は再始動される。 In step S30, restart of the engine 12 is started. That is, the brake ECU 55 permits restart of the engine 12 by sending a restart command to the engine ECU 17. As a result, the engine 12 is restarted by the engine ECU 17 that has received this restart command.
 次のステップS31では、エンジン再始動が完了したか否かを判定する。エンジン再始動が完了していなければ、ブレーキ保持したまま待機し、エンジン再始動が完了したら(S31で肯定判定)、ステップS32に進む。 In the next step S31, it is determined whether or not the engine restart is completed. If the engine restart has not been completed, the system waits while holding the brake. If the engine restart has been completed (Yes determination in S31), the process proceeds to step S32.
 ステップS32では、ブレーキ減圧を行う。つまり、ブレーキ用ECU55は、リニア電磁弁35a,35bへの電流の供給を停止する。この結果、ブレーキ保持が解除され、停車維持のために車輪FR,FL,RR,RLに与えられていた制動力が解除される。このため、運転者がアクセルペダル11を踏み込めば、車両は発進する。 In step S32, brake pressure reduction is performed. That is, the brake ECU 55 stops the supply of current to the linear electromagnetic valves 35a and 35b. As a result, the brake holding is released, and the braking force applied to the wheels FR, FL, RR, RL for maintaining the stop is released. For this reason, when the driver depresses the accelerator pedal 11, the vehicle starts.
 以上説明した本実施形態の車両の制御装置によれば、以下の効果が得られる。 According to the vehicle control apparatus of the present embodiment described above, the following effects can be obtained.
 (1)車両のずり下がり防止制御(停車維持制御)におけるブレーキ加圧を実行すべき期間(ずり下がり予測ありの期間)と、エンジン再始動要求によりエンジン再始動を行うべき期間とが少なくとも一部重なった場合でも、運転者の発進意思の有無を判定し、その判定結果に応じてエンジン12の再始動とブレーキ加圧のうち一方を他方に優先して実行させる。よって、運転者の発進意思を尊重しつつ、エンジン12の再始動とブレーキ加圧とを有効に両立させることができる。 (1) At least a part of a period during which brake pressurization is performed in the vehicle sliding prevention control (stop maintenance control) (a period with predicted sliding down) and a period during which engine restart is requested in response to an engine restart request Even if they overlap, it is determined whether or not the driver intends to start, and one of restarting of the engine 12 and brake pressurization is executed with priority over the other according to the determination result. Therefore, the restart of the engine 12 and the brake pressurization can be effectively made compatible while respecting the driver's intention to start.
 (2)運転者の発進意思ありの場合は、エンジン12の再始動を優先し、エンジン12の再始動に支障の無い電力範囲でブレーキ加圧を行うようにポンプモータ41及びリニア電磁弁35a,35b(電動機)が制御される。よって、発進意思ありの場合は、エンジン再始動を優先しつつも、ブレーキ加圧を可能な範囲で再始動と並行して進めるので、エンジン再始動の完了により発生するクリープトルクの発生前におけるずり下がりを効果的に抑制できる。 (2) When the driver intends to start, the restart of the engine 12 is prioritized, and the pump motor 41 and the linear electromagnetic valve 35a, so as to perform brake pressurization in a power range that does not interfere with the restart of the engine 12. 35b (electric motor) is controlled. Therefore, if there is an intention to start, the engine restart is prioritized, but the brake pressurization is advanced in parallel with the restart as far as possible, so the shear before the creep torque generated by the completion of the engine restart occurs. The fall can be effectively suppressed.
 (3)運転者の発進意思なしの場合は、エンジン再始動よりもブレーキ加圧を優先し、ブレーキ加圧の後にエンジン12の再始動を行う。よって、停車後の車両のずり下がりを効果的に抑制できるうえ、エンジン12の再始動をより確実に行うことができる。 (3) When the driver does not intend to start, the brake pressurization has priority over the engine restart, and the engine 12 is restarted after the brake pressurization. Therefore, the vehicle can be prevented from slipping down after stopping, and the engine 12 can be restarted more reliably.
 (4)ブレーキ加圧前の制動加速度Apmcが、路面勾配θに応じて車両の前後方向に作用する重力相当分の力による加速度である勾配加速度Ag未満である場合には、ずり下がり制御を実施し、勾配加速度Ag以上の場合には、ずり下がり防止制御を実施しない。よって、ブレーキペダル15の踏み量による制動力と路面勾配とからずり下がりが発生すると予測される場合には、ブレーキ加圧を伴うずり下がり防止制御を行って、車両のずり下がりを最小限に抑制でき、ずり下がりが発生しないと予測される場合には、不要な停車維持制御が行われることはない。よって、停車維持制御を必要なときに好適に行い、無駄な電力消費を低減できる。 (4) If the braking acceleration Apmc before pressurizing the brake is less than the gradient acceleration Ag, which is the acceleration due to the force corresponding to gravity acting in the longitudinal direction of the vehicle in accordance with the road surface gradient θ, the sliding control is performed. However, when the acceleration is greater than or equal to the gradient acceleration Ag, the sliding prevention control is not performed. Therefore, when it is predicted that the braking force depending on the amount of depression of the brake pedal 15 and the road surface gradient will occur, the vehicle is controlled to prevent the vehicle from sliding down by performing the control for preventing the vehicle from sliding down. In the case where it is predicted that no slip-down occurs, unnecessary stop maintenance control is not performed. Therefore, stop maintenance control is suitably performed when necessary, and wasteful power consumption can be reduced.
 (5)ブレーキ加圧のためにポンプモータ41及びリニア電磁弁35,35bに供給する電力は、エンジン12を再始動させる際にスタータモータ72が電力を消費した残りの電力以下に設定される。よって、エンジン12の再始動を優先しつつその再始動中にブレーキ加圧も、その時々のバッテリー電力の許容範囲内で行うことができる。 (5) The power supplied to the pump motor 41 and the linear solenoid valves 35 and 35b for pressurizing the brake is set to be equal to or less than the remaining power consumed by the starter motor 72 when the engine 12 is restarted. Therefore, while giving priority to the restart of the engine 12, the brake pressurization during the restart can be performed within the allowable range of the battery power at that time.
 (6)スタータモータ72の駆動初期における電流ピークの発生時期を含むように設定したピーク回避期間PTを避けた時期に、ポンプモータ41及びリニア電磁弁35,35bにブレーキ加圧のための電力を供給する。よって、ブレーキ加圧の際にポンプモータ41に相対的に大きな電力を供給できる。このため、ホイールシリンダ圧PWCを制御目標圧P1に比較的速やかに加圧でき、エンジン始動を優先する割に、ずり下がり防止の制動力を相対的に早めに発生させることができる。 (6) Electric power for pressurizing the brake is applied to the pump motor 41 and the linear electromagnetic valves 35 and 35b at a time when the peak avoidance period PT set so as to include the generation time of the current peak in the initial drive of the starter motor 72 is avoided. Supply. Therefore, relatively large electric power can be supplied to the pump motor 41 when the brake is applied. For this reason, the wheel cylinder pressure PWC can be increased to the control target pressure P1 relatively quickly, and the braking force for preventing the sliding down can be generated relatively early while giving priority to the engine start.
 なお、上記各実施の形態は、以下のように変更して実施することもできる。 It should be noted that the above-described embodiments can be implemented with the following modifications.
 ・前記実施形態では、発進意思ありの場合に、ポンプモータ41にピーク回避期間PTを避けて電流を供給したが、ピーク発生期間を含む期間に電流を供給してもよい。この場合、スタータモータ72の電流ピークとポンプモータ41の電流ピークの各発生時期をずらすのが好ましい。例えばポンプモータ41への電流供給がスタータモータ72への電力供給より先に開始され、ポンプモータ41の電流ピークの出現後にスタータモータ72の電流ピークが出現するタイミングになるように、ブレーキ用ECU55がポンプモータ41の駆動指令と再始動指令とを行うようにする。 In the above embodiment, when there is an intention to start, the current is supplied to the pump motor 41 while avoiding the peak avoidance period PT, but the current may be supplied in a period including the peak occurrence period. In this case, it is preferable to shift the generation time of the current peak of the starter motor 72 and the current peak of the pump motor 41. For example, the brake ECU 55 is configured so that the current supply to the pump motor 41 is started before the power supply to the starter motor 72 and the current peak of the starter motor 72 appears after the current peak of the pump motor 41 appears. A drive command and a restart command for the pump motor 41 are performed.
 ・前記実施形態では、発進意思ありの場合に、ポンプモータ41及びリニア電磁弁35a,35b共にピーク回避期間PTを避けて電流を供給したが、例えばポンプモータ41だけピーク回避期間PTを避け、リニア電磁弁35a,35bへの電流はピーク回避期間PTにも供給する構成としてもよい。 In the above embodiment, when there is an intention to start, both the pump motor 41 and the linear electromagnetic valves 35a and 35b supply current while avoiding the peak avoidance period PT. The current supplied to the electromagnetic valves 35a and 35b may be supplied also during the peak avoidance period PT.
 ・前記実施形態では、ずり下がり判定の際に制動加速度Apmcと勾配加速度Ag(閾値)とを比較したが、制動力と車両に作用する重力の車両前後方向成分(路面方向成分)の力Fg(閾値)とを比較したり、マスタシリンダ圧PMCと力Fgのマスタシリンダ圧換算値(閾値)とを比較したりしてもよい。 In the above-described embodiment, the braking acceleration Apmc and the gradient acceleration Ag (threshold) are compared in the determination of the sliding down. Threshold value) or a master cylinder pressure conversion value (threshold value) of the master cylinder pressure PMC and the force Fg may be compared.
 ・マスタシリンダ圧PMCを検出するマスタ圧センサSE8を備える車両においては、マスタ圧センサSE8により検出されるマスタシリンダ圧PMCを基に制動加速度Apmcを取得してもよい。ブレーキ用ECU55のメモリには、例えばマスタシリンダ圧PMCと制動加速度Apmc(又は制動力Fpmc)との対応関係を示す図示しないマップが記憶される。ブレーキ用ECU55は、マスタシリンダ圧PMCを基にマップを参照して制動加速度Apmc(又は制動力Fpmc)を取得し、制動加速度Apmcと勾配加速度Agとの比較(又は制動力Fpmcと力Fgとの比較)により、ずり下がりの有無を判定する構成としてもよい。 In a vehicle including the master pressure sensor SE8 that detects the master cylinder pressure PMC, the braking acceleration Apmc may be acquired based on the master cylinder pressure PMC detected by the master pressure sensor SE8. In the memory of the brake ECU 55, for example, a map (not shown) indicating a correspondence relationship between the master cylinder pressure PMC and the braking acceleration Apmc (or the braking force Fpmc) is stored. The brake ECU 55 obtains the braking acceleration Apmc (or braking force Fpmc) with reference to the map based on the master cylinder pressure PMC, and compares the braking acceleration Apmc with the gradient acceleration Ag (or between the braking force Fpmc and the force Fg). It may be configured to determine the presence or absence of sliding down by comparison.
 ・路面勾配θが大きいほど、上記許容距離Laに大きい値を設定してもよい。例えば路面勾配θが一定値に達するまでは、許容距離Laを「0」に設定するとともに、路面勾配θがその一定値を超えた後は、路面勾配θの増加に応じて許容距離Laを増大させる。 · A larger value may be set for the allowable distance La as the road surface gradient θ increases. For example, the allowable distance La is set to “0” until the road surface gradient θ reaches a certain value, and after the road surface gradient θ exceeds the certain value, the allowable distance La is increased according to the increase in the road surface gradient θ. Let
 ・前記実施形態では、車体速度VS及び車体速度微分値DVSを用いたが、車輪速度及び車輪加速度を用いてもよい。車体速度は、車輪速度センサSE3~SE6のうち少なくとも1つの値を用いて算出したものや、カーナビゲーションシステムで取得された値などを用いることが可能である。 In the above embodiment, the vehicle body speed VS and the vehicle body speed differential value DVS are used, but the wheel speed and the wheel acceleration may be used. As the vehicle body speed, a value calculated using at least one of the wheel speed sensors SE3 to SE6, a value acquired by a car navigation system, or the like can be used.
 ・車両が電動パーキングブレーキ装置を備えている場合、ブレーキ加圧時に、ブレーキアクチュエータ31の代わりに、電動パーキングブレーキ装置を用いて車輪FR,FL,RR,RLに対する制動力を増加させてもよい。この場合、電動パーキングブレーキ装置の駆動源が、電動機に相当する。 When the vehicle has an electric parking brake device, the braking force for the wheels FR, FL, RR, RL may be increased using the electric parking brake device instead of the brake actuator 31 when the brake is applied. In this case, the drive source of the electric parking brake device corresponds to the electric motor.
 ・車両は、2輪駆動車に限定されず、4輪駆動車などの他の駆動方式の車両にも同様に本発明の制御装置を適用することができる。 The vehicle is not limited to a two-wheel drive vehicle, and the control device of the present invention can be similarly applied to vehicles of other drive systems such as a four-wheel drive vehicle.

Claims (6)

  1.  車両のエンジン(12)を自動的に停止させるための停止制御及び前記エンジン(12)を自動的に再始動させるための再始動制御を行う車両の制御装置であって、
     制動装置(32a~32d)が車両の車輪(FR,FL,RR,RL)に付与する制動力を、電力により増加させる電動機(41、35a、35b)と、
     前記エンジン(12)の停止状態での前記車両の停車に合わせて制動力を増加させる停車維持制御を、前記電動機(41、35a、35b)を制御して行う制動制御部(55、S18、S22)と、
     車両に設けられた運転操作系の検出器(SW1)の検出結果に基づき運転者に発進の意思があるか否かを判定する判定部(55、S15)とを有し、
     前記制動制御部(55、S18、S22)は、
     前記判定部(55、S15)が発進の意思があると判定した場合は、前記エンジン(12)の再始動に支障の無い電力範囲で制動力を増加するように前記電動機(41、35a、35b)を制御し、一方、
     前記判定部(55、S15)が発進の意思がないと判定した場合は、前記エンジン(12)の再始動よりも車両の停止維持を優先した制動力の増加を行うように前記電動機(41、35a、35b)を制御することを特徴とする車両の制御装置。
    A vehicle control device that performs stop control for automatically stopping a vehicle engine (12) and restart control for automatically restarting the engine (12),
    Electric motors (41, 35a, 35b) for increasing the braking force applied to the vehicle wheels (FR, FL, RR, RL) by the braking devices (32a to 32d) with electric power;
    A braking control unit (55, S18, S22) that controls the electric motor (41, 35a, 35b) to perform stop maintenance control for increasing the braking force in accordance with the stopping of the vehicle when the engine (12) is stopped. )When,
    A determination unit (55, S15) for determining whether or not the driver has an intention to start based on a detection result of a driving operation system detector (SW1) provided in the vehicle;
    The braking control unit (55, S18, S22)
    When the determination unit (55, S15) determines that there is an intention to start, the electric motors (41, 35a, 35b) so as to increase the braking force within a power range that does not hinder the restart of the engine (12). ), While
    When the determination unit (55, S15) determines that there is no intention to start, the electric motor (41, 35a, 35b) for controlling a vehicle.
  2.  増加前の制動力(Apmc)が路面勾配(θ)に応じて車両の前後方向に作用する重力相当分の力(Ag)未満であるか否かを判定する第2の判定部(55、S12)をさらに有し、
     前記制動制御部(55、S18、S22)は、増加前の制動力(Apmc)が前記重力相当分の力(Ag)未満である場合には、前記停車維持制御を実施し、増加前の制動力(Apmc)が前記重力相当分の力(Ag)以上の場合には、前記停車維持制御を実施しないことを特徴とする請求項1に記載の車両の制御装置。
    A second determination unit (55, S12) that determines whether or not the braking force (Apmc) before the increase is less than the force (Ag) corresponding to gravity acting in the front-rear direction of the vehicle according to the road surface gradient (θ). )
    The braking control unit (55, S18, S22) performs the stop maintaining control when the braking force (Apmc) before the increase is less than the force corresponding to the gravity (Ag), and the braking control unit before the increase is controlled. 2. The vehicle control device according to claim 1, wherein when the power (Apmc) is equal to or greater than the force (Ag) corresponding to the gravity, the stop maintenance control is not performed.
  3.  前記制動制御部(55、S18、S22)は、前記判定部(55、S15)が発進の意思がないと判定した場合には、車両の停止維持を優先した制動力の増加を前記電動機(41、35a、35b)に指示し、前記電動機(41、35a、35b)による前記制動力が増加した後、前記エンジン(12)の再始動を許可することを特徴とする請求項1又は2に記載の車両の制御装置。 When the determination unit (55, S15) determines that there is no intention to start, the braking control unit (55, S18, S22) increases the braking force giving priority to maintaining the stop of the vehicle. 35a, 35b), and restarting the engine (12) is permitted after the braking force by the electric motor (41, 35a, 35b) is increased. Vehicle control device.
  4.  前記制動制御部(55、S18、S22)は、前記制動力の増加のために前記電動機(41、35a、35b)に供給する電力を、前記エンジン(12)を再始動させる際に電動機(72)が電力を消費した残りの電力以下に設定することを特徴とする請求項1乃至3のいずれか一項に記載の車両の制御装置。 The brake control unit (55, S18, S22) supplies electric power supplied to the electric motor (41, 35a, 35b) for increasing the braking force when the engine (12) is restarted. 4) is set to be equal to or lower than the remaining electric power consumed, the vehicle control device according to any one of claims 1 to 3.
  5.  前記制動制御部(55、S18、S22)は、前記エンジン(12)を再始動させる電動機(72)の駆動初期における電流ピークの発生時期(PT)を少なくとも避けた時期に、前記制動力の増加のための電力を前記電動機(41、35a、35b)に供給することを特徴とする請求項1乃至4のいずれか一項に記載の車両の制御装置。 The braking controller (55, S18, S22) increases the braking force at a time at least avoiding a current peak generation time (PT) in the initial driving of the electric motor (72) that restarts the engine (12). The vehicle control device according to any one of claims 1 to 4, wherein electric power for power supply is supplied to the electric motor (41, 35a, 35b).
  6.  車両のエンジン(12)を自動的に停止させるための停止制御及び前記エンジン(12)を自動的に再始動させるための再始動制御を行う車両の制御方法であって、
     制動装置(32a~32d)により車両の車輪(FR,FL,RR,RL)に付与される制動力を、電力により増加させる電動機(41、35a、35b)を制御して、前記エンジン(12)の停止状態での前記車両の停車に合わせて前記制動力を増加させる停車維持制御を、行う制動制御ステップ(55、S18、S22)と、
     前記エンジン(12)の停止中に再始動要求を受け付けると、車両に設けられた運転操作系の検出器(SW1)の検出結果に基づき運転者に発進の意思があるか否かを判定する判定ステップ(55、S15)とを有し、
     前記制動制御ステップ(55、S18、S22)は、前記停車維持制御の開始条件成立したときに前記再始動要求を受け付けた場合、前記判定ステップ(55、S15)において発進の意思があると判定された場合は、エンジン(12)の再始動に支障の無い電力範囲で制動力を増加するように前記電動機(41、35a、35b)を制御し、一方、前記判定ステップ(55、S15)において発進の意思がないと判定された場合は、前記エンジン(12)の再始動よりも車両の停止維持を優先した制動力の増加を行うように前記電動機(41、35a、35b)を制御することを特徴とする車両の制御方法。
    A vehicle control method for performing stop control for automatically stopping a vehicle engine (12) and restart control for automatically restarting the engine (12),
    The engine (12) is controlled by controlling the electric motors (41, 35a, 35b) that increase the braking force applied to the wheels (FR, FL, RR, RL) of the vehicle by the braking devices (32a to 32d). A braking control step (55, S18, S22) for performing stop maintenance control for increasing the braking force in accordance with the stop of the vehicle in the stop state;
    When a restart request is received while the engine (12) is stopped, a determination is made as to whether or not the driver is willing to start based on a detection result of a driving operation system detector (SW1) provided in the vehicle. Step (55, S15),
    In the brake control step (55, S18, S22), when the restart request is received when the start condition of the stop maintenance control is satisfied, it is determined in the determination step (55, S15) that there is an intention to start. In the case where the engine (12) is restarted, the electric motor (41, 35a, 35b) is controlled so as to increase the braking force within an electric power range that does not hinder the restart of the engine (12), while the determination step (55, S15) starts. The motor (41, 35a, 35b) is controlled so as to increase the braking force giving priority to maintaining the stop of the vehicle over the restart of the engine (12). A vehicle control method characterized by the above.
PCT/JP2011/072209 2010-09-29 2011-09-28 Vehicle control device and control method WO2012043641A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180046554.XA CN103124661B (en) 2010-09-29 2011-09-28 Vehicle control device and control method
DE112011103322.2T DE112011103322B4 (en) 2010-09-29 2011-09-28 Vehicle control device and vehicle control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-219786 2010-09-29
JP2010219786A JP5621479B2 (en) 2010-09-29 2010-09-29 Vehicle control apparatus and control method

Publications (1)

Publication Number Publication Date
WO2012043641A1 true WO2012043641A1 (en) 2012-04-05

Family

ID=45893080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072209 WO2012043641A1 (en) 2010-09-29 2011-09-28 Vehicle control device and control method

Country Status (4)

Country Link
JP (1) JP5621479B2 (en)
CN (1) CN103124661B (en)
DE (1) DE112011103322B4 (en)
WO (1) WO2012043641A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103707864A (en) * 2012-10-09 2014-04-09 日信工业株式会社 Vehicle break hydraulic pressure control apparatus
EP2979938A4 (en) * 2013-03-29 2016-08-10 Nissin Kogyo Kk Vehicle brake fluid pressure control device
US20210316706A1 (en) * 2018-09-28 2021-10-14 Advics Co., Ltd. Brake control device
CN113646218A (en) * 2019-03-29 2021-11-12 株式会社爱德克斯 Vehicle control device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012007122T5 (en) * 2012-11-13 2015-07-23 Honda Motor Co., Ltd. Stop control system for vehicle
JP6147127B2 (en) 2013-07-25 2017-06-14 株式会社エフ・シー・シー Saddle riding
JP6147128B2 (en) * 2013-07-25 2017-06-14 株式会社エフ・シー・シー Saddle riding
JP5864504B2 (en) * 2013-10-04 2016-02-17 本田技研工業株式会社 Vehicle braking system
JP5979119B2 (en) * 2013-11-13 2016-08-24 トヨタ自動車株式会社 Vehicle control device
JP6164141B2 (en) * 2014-03-31 2017-07-19 株式会社アドヴィックス Vehicle driving support device
JP6354426B2 (en) * 2014-07-30 2018-07-11 株式会社アドヴィックス Brake device for vehicle
JP6791040B2 (en) * 2017-06-30 2020-11-25 株式会社アドヴィックス Vehicle braking control device
JP7275541B2 (en) 2018-11-20 2023-05-18 スズキ株式会社 vehicle controller
JP7286985B2 (en) * 2019-02-08 2023-06-06 株式会社アドヴィックス Braking control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137218A (en) * 2004-11-10 2006-06-01 Honda Motor Co Ltd Vehicular parking brake device
JP2008265669A (en) * 2007-04-24 2008-11-06 Toyota Motor Corp Electric parking brake system
JP2010018192A (en) * 2008-07-11 2010-01-28 Advics Co Ltd Electric braking device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3613970B2 (en) * 1998-03-23 2005-01-26 トヨタ自動車株式会社 Vehicle engine restart control device and automatic stop / restart control device
JP4269523B2 (en) 2001-01-26 2009-05-27 株式会社デンソー Engine control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137218A (en) * 2004-11-10 2006-06-01 Honda Motor Co Ltd Vehicular parking brake device
JP2008265669A (en) * 2007-04-24 2008-11-06 Toyota Motor Corp Electric parking brake system
JP2010018192A (en) * 2008-07-11 2010-01-28 Advics Co Ltd Electric braking device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103707864A (en) * 2012-10-09 2014-04-09 日信工业株式会社 Vehicle break hydraulic pressure control apparatus
EP2719598A1 (en) * 2012-10-09 2014-04-16 Nissin Kogyo Co., Ltd. Vehicle break hydraulic pressure control apparatus
US9221448B2 (en) 2012-10-09 2015-12-29 Nissin Kogyo Co., Ltd Vehicle brake hydraulic pressure control apparatus
CN103707864B (en) * 2012-10-09 2017-04-12 日本奥托立夫日信制动器系统株式会社 Vehicle break hydraulic pressure control apparatus
EP2979938A4 (en) * 2013-03-29 2016-08-10 Nissin Kogyo Kk Vehicle brake fluid pressure control device
US9932024B2 (en) 2013-03-29 2018-04-03 Autoliv Nissin Brake Systems Japan Co., Ltd. Vehicle brake hydraulic pressure control apparatus
US20210316706A1 (en) * 2018-09-28 2021-10-14 Advics Co., Ltd. Brake control device
CN113646218A (en) * 2019-03-29 2021-11-12 株式会社爱德克斯 Vehicle control device
CN113646218B (en) * 2019-03-29 2023-09-22 株式会社爱德克斯 Control device for vehicle

Also Published As

Publication number Publication date
JP5621479B2 (en) 2014-11-12
CN103124661B (en) 2015-05-20
DE112011103322T5 (en) 2013-08-08
CN103124661A (en) 2013-05-29
JP2012071790A (en) 2012-04-12
DE112011103322B4 (en) 2019-05-16

Similar Documents

Publication Publication Date Title
JP5621479B2 (en) Vehicle control apparatus and control method
JP5736705B2 (en) Vehicle control apparatus and vehicle control method
US8382642B2 (en) Vehicle control apparatus
JP5776153B2 (en) Vehicle control apparatus and vehicle control method
US9157382B2 (en) Idling stop control device, vehicle and vehicle control method
JP5672917B2 (en) Vehicle control device
JP5593876B2 (en) Vehicle control apparatus and vehicle control method
JP5895916B2 (en) Brake control device for vehicle
JP5471429B2 (en) VEHICLE STOP CONTROL DEVICE AND VEHICLE STOP CONTROL METHOD
JP2005186928A (en) Braking system of idle stop vehicle
JP2009190648A (en) Brake control device
US9080534B2 (en) Idling stop control device, vehicle and vehicle control method
JP5787050B2 (en) Vehicle control device
JP5382260B1 (en) ENGINE RESTART CONTROL DEVICE, VEHICLE, AND VEHICLE CONTROL METHOD
WO2012002469A1 (en) Vehicle control device and vehicle control method
JP2007276655A (en) Vehicular brake control device
JP4499691B2 (en) Braking control device
JP5304032B2 (en) Vehicle traction control device and vehicle traction control method
EP2754590B1 (en) Vehicle control apparatus
JP5895599B2 (en) Vehicle control apparatus and vehicle control method
JP6355070B2 (en) Vehicle stop maintenance device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180046554.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829194

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112011103322

Country of ref document: DE

Ref document number: 1120111033222

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11829194

Country of ref document: EP

Kind code of ref document: A1