WO2012043572A1 - 光導波路モジュール、光導波路モジュールの製造方法および電子機器 - Google Patents

光導波路モジュール、光導波路モジュールの製造方法および電子機器 Download PDF

Info

Publication number
WO2012043572A1
WO2012043572A1 PCT/JP2011/072093 JP2011072093W WO2012043572A1 WO 2012043572 A1 WO2012043572 A1 WO 2012043572A1 JP 2011072093 W JP2011072093 W JP 2011072093W WO 2012043572 A1 WO2012043572 A1 WO 2012043572A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical waveguide
waveguide module
optical
light emitting
Prior art date
Application number
PCT/JP2011/072093
Other languages
English (en)
French (fr)
Inventor
洋史 尾張
匠 久保田
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Publication of WO2012043572A1 publication Critical patent/WO2012043572A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device

Definitions

  • the present invention relates to an optical waveguide module, a method for manufacturing an optical waveguide module, and an electronic apparatus.
  • This application claims priority based on Japanese Patent Application No. 2010-224415 filed in Japan on October 1, 2010, the contents of which are incorporated herein by reference.
  • broadband lines capable of communicating large amounts of information at high speed have been spreading.
  • transmission devices such as router devices and WDM (Wavelength-Division-Multiplexing) devices are used.
  • WDM Widelength-Division-Multiplexing
  • Each signal processing board has a circuit in which arithmetic elements, storage elements, etc. are connected by electrical wiring.
  • each board has a very high throughput. It is required to transmit.
  • problems such as generation of crosstalk and high frequency noise and deterioration of electric signals are becoming apparent.
  • electrical wiring becomes a bottleneck, making it difficult to improve the throughput of the signal processing board. Similar problems are also becoming apparent in supercomputers and large-scale servers.
  • an optical communication technique for transferring data using an optical carrier wave has been developed.
  • an optical waveguide has been widely used as a means for guiding the optical carrier wave from one point to another point.
  • This optical waveguide has a linear core part and a clad part provided so as to cover the periphery thereof.
  • the core part is made of a material that is substantially transparent to the light of the optical carrier wave
  • the cladding part is made of a material having a refractive index lower than that of the core part.
  • the optical waveguide In the optical waveguide, light introduced from one end of the core portion is transmitted (conveyed) to the other end while being reflected at the boundary with the cladding portion.
  • a light emitting element such as a semiconductor laser is disposed on the incident side of the optical waveguide, and a light receiving element such as a photodiode is disposed on the emission side. Light incident from the light emitting element propagates through the optical waveguide, is received by the light receiving element, and performs communication based on the flickering pattern of the received light or its intensity pattern.
  • Patent Document 1 discloses an apparatus having a configuration in which an optical transmission IC (light emitting element), an optical reception IC (light receiving element), and an optical waveguide are provided on a printed circuit board.
  • the light emitted from the light emitting element is reflected by a mirror and introduced into an optical waveguide. Further, the introduced light is reflected by a mirror and received by a light receiving element. There is also a problem that light is scattered when propagating through the light, resulting in an increase in light transmission loss.
  • An object of the present invention is to provide an optical waveguide module with low optical transmission loss and high reliability, a method of manufacturing an optical waveguide module capable of easily manufacturing such an optical waveguide module, and an electronic apparatus including such an optical waveguide module. It is to provide.
  • An optical waveguide substrate comprising: a core part that transmits light; and an optical path changing part that changes the optical path of the light;
  • An optical element provided on one surface side of the optical waveguide substrate and provided with a light emitting part or a light receiving part;
  • a light guide unit provided corresponding to the light emitting unit or the light receiving unit, and guiding the light between the optical element and the optical path changing unit;
  • the light guide module is characterized in that an area of a cross section in a direction substantially perpendicular to a central axis of the light guide section changes in a direction along the central axis.
  • the optical waveguide substrate includes a defect portion formed by causing a portion of the optical waveguide substrate to be lost until reaching the core portion,
  • optical waveguide module according to (4), wherein a metal film is provided on the surface.
  • the optical element is a light receiving element including a light receiving unit,
  • the optical waveguide module according to any one of (1) to (7), wherein an area of a cross section in a direction substantially perpendicular to a central axis of the light guide portion decreases toward the light receiving portion. .
  • the optical element is a light emitting element including a light emitting unit,
  • the optical waveguide according to any one of (1) to (7), wherein an area of a cross section in a direction substantially perpendicular to the central axis of the light guide portion decreases toward the optical path changing portion. module.
  • a third step of transmitting the photosensitive resin composition and irradiating a region including the light emitting part of the light emitting element In the third step, light having a condition such that light is emitted after being changed in the optical path by the optical path changing unit is introduced as the photosensitive light, and the transmissive region through which the photosensitive light of the photosensitive resin composition is transmitted.
  • a method for producing an optical waveguide module comprising: forming the light guide portion by reacting the photosensitive resin composition and increasing a refractive index from a non-transmissive region through which the photosensitive light is not transmitted. .
  • the photosensitive resin composition includes a base polymer and a monomer having a refractive index higher than that of the base polymer, and the reaction of the monomer proceeds in the transmission region, thereby allowing the non-transmission region to (10) or (11), wherein the unreacted monomer is diffused into the transmission region, and as a result, the refractive index of the transmission region is made higher than the refractive index of the non-transmission region to form the light guide section.
  • the part where the air gap is originally formed is eliminated, and the light guide part is provided in the part, so that the light transmission loss in the optical communication can be particularly reduced. For this reason, a highly reliable optical waveguide module and electronic device are obtained.
  • the light guide portion when forming the light guide portion using the photosensitive resin composition, since the light for photosensitive is introduced into the core portion of the optical waveguide formed in advance, the light for photosensitive use is utilized. It is easy to form the light guide portion so as to accurately correspond to the light emitting portion.
  • FIG. 1 is a side view showing an outline of the first embodiment of the optical waveguide module of the present invention. It is a longitudinal cross-sectional view which expands and shows the optical waveguide module shown in FIG. 1 partially. It is a longitudinal cross-sectional view for demonstrating the manufacturing process of an optical waveguide module. It is a longitudinal cross-sectional view which expands and shows the part by the side of the light emitting element of the optical waveguide module of 2nd Embodiment. It is a longitudinal cross-sectional view which expands and shows the part by the side of the light emitting element of the optical waveguide module of 3rd Embodiment.
  • FIG. 1 is a side view showing an outline of a first embodiment of an optical waveguide module of the present invention
  • FIG. 2 is a longitudinal sectional view showing a partially enlarged optical waveguide module shown in FIG.
  • the upper side in FIGS. 1 and 2 is referred to as “upper” and the lower side is referred to as “lower”.
  • An optical waveguide module 1 shown in FIG. 1 is mainly mounted on an optical waveguide substrate 2, wiring substrates 3a and 3b joined to the upper surface of the optical waveguide substrate 2 with a space therebetween, and one wiring substrate 3a.
  • the light emitting element 4 and the light emitting element IC 40, and the light receiving element 5 and the light receiving element IC 50 mounted on the other wiring board 3b are provided.
  • the light L from the light emitting element 4 is transmitted through the optical waveguide substrate (optical circuit) 2 and received by the light receiving element 5. That is, optical communication is performed between the light emitting element 4 and the light receiving element 5 through the optical waveguide substrate 2.
  • the optical waveguide substrate 2 includes an optical waveguide 20 and protective layers 29 provided on the upper and lower surfaces of the optical waveguide 20 as shown in FIG.
  • the optical waveguide 20 has a linear core portion 21 and a cylindrical cladding portion 22 provided so as to cover the periphery of the core portion 21, and the light L incident on one end of the core portion 21 is received. It can be reflected at the interface between the core portion 21 and the cladding portion 22 and transmitted (propagated) to the other end.
  • the cross-sectional shape of the optical waveguide 20 is preferably a square such as a square or a rectangle (rectangle).
  • the width and height of the core portion 21 are not particularly limited, but are preferably about 1 to 200 ⁇ m, more preferably about 5 to 100 ⁇ m, and even more preferably about 10 to 60 ⁇ m.
  • the core portion 21 and the cladding portion 22 have different light refractive indexes, and the difference in refractive index is preferably 0.5% or more, and more preferably 0.8% or more.
  • the upper limit value may not be set, but is preferably about 5.5%. If the difference in refractive index is less than the lower limit, the effect of transmitting light may be reduced, and even if the upper limit is exceeded, no further increase in light transmission efficiency can be expected.
  • the difference in refractive index is expressed by the following equation when the refractive index of the core portion 21 is A and the refractive index of the cladding portion 22 is B.
  • Refractive index difference (%)
  • Each constituent material of the core part 21 and the clad part 22 is not particularly limited as long as the above-described refractive index difference is generated.
  • resin materials such as polyamide, polyimide, polybenzoxazole, polysilane, polysilazane, and cyclic olefin resins such as benzocyclobutene resin and norbornene resin, and glass materials such as quartz glass and borosilicate glass Can be used.
  • the protective layer 29 has a function of protecting the upper and lower surfaces of the optical waveguide 20.
  • the average thickness of the protective layer 29 is not particularly limited, but is preferably about 5 to 200 ⁇ m, and more preferably about 10 to 100 ⁇ m. Thereby, the protective layer 29 can sufficiently exhibit the function of protecting the optical waveguide 20. Moreover, when providing flexibility as the entire optical waveguide substrate 2, it is possible to prevent the flexibility from being lowered.
  • the constituent material of the protective layer 29 is not particularly limited, and examples thereof include polyimide, polyimide amide, polyimide amide ether, polyester imide, and polyimide ether.
  • the optical waveguide substrate 2 has an upper side (side on which the optical element is provided) beyond the core portion 21 from its lower side (surface facing the side on which the optical element is provided).
  • the defect part 28a, 28b formed by making the part until it reaches the protective layer 29 is provided.
  • At least the surfaces of the core portion 21 that face the defect portions 28a and 28b are mirrors that reflect light based on the difference in refractive index between the core portion 21 and the air in the defect portions 28a and 28b (optical paths that change the optical path of light).
  • (Change part) 23a, 23b is comprised.
  • the defect portions 28 a and 28 b are formed so as to form a right triangle in the longitudinal section (vertical section) of the optical waveguide substrate 2, and the mirrors 23 a and 23 b are substantially in the center axis of the core portion 21. It is inclined at 45 ° (45 ° ⁇ 10 °, preferably 45 ° ⁇ 5 °, more preferably 45 ° ⁇ 3 °). Therefore, as indicated by the arrows in FIG. 2, the light L emitted downward from the light emitting element 4 has an optical path of approximately 90 ° (90 ° ⁇ 10 °, preferably 90 °) by the mirror 23a immediately below the light L.
  • the light After being changed (bent) by ⁇ 5 °, more preferably 90 ° ⁇ 3 °, the light is transmitted through the core portion 21 and the optical path is approximately 90 ° upward by the mirror 23b directly below the light receiving element 5 ( After being changed by 90 ° ⁇ 10 °, preferably 90 ° ⁇ 5 °, more preferably 90 ° ⁇ 3 °, the light enters the light receiving element 5.
  • the light emitting element 4 and the light receiving element 5 can be mounted on the main surface (horizontal plane) of the optical waveguide substrate 2, so that the optical waveguide module 1 can be miniaturized. It can also contribute to high-density mounting.
  • the surfaces (mirror surfaces) of the mirrors 23a and 23b can be provided with metal films such as Au, Ag, and Al. Thereby, the light L from the light emitting element 4 can be reflected reliably. By providing such a metal film, light transmission loss can be further reduced.
  • the wiring substrates 3a and 3b are bonded to the upper surface (surface on which the optical element is provided) of such an optical waveguide substrate 2 via the adhesive layer 6.
  • an epoxy adhesive an acrylic adhesive, a phenol resin adhesive, a cyanate resin adhesive, a maleimide resin adhesive, or the like can be used for the adhesive layer 6.
  • a sheet material composed of the above-described adhesive can be used for the adhesive layer 6.
  • Each of the wiring boards 3a and 3b includes a flat base 31 and metal layers 32 provided on the upper and lower surfaces of the base 31, respectively.
  • the base 31 is made of an insulating material.
  • the base 31 may be flexible or may be rigid.
  • the flexible base 31 can be made of various resin materials such as polyimide resin, epoxy resin, polyethylene terephthalate resin, etc., among which the polyimide resin is preferably used as the main material. In this case, the base 31 having high heat resistance and excellent flexibility can be obtained.
  • the base 31 having rigidity is a resin material such as a phenolic resin, a polyester resin, an epoxy resin, a cyanate resin, a polyimide resin, or a fluorine resin on a core material such as paper, glass cloth, or resin film. Can be impregnated.
  • a resin material such as a phenolic resin, a polyester resin, an epoxy resin, a cyanate resin, a polyimide resin, or a fluorine resin on a core material such as paper, glass cloth, or resin film. Can be impregnated.
  • the average thickness of the base 31 is not particularly limited, but is preferably about 5 to 500 ⁇ m, more preferably about 10 to 200 ⁇ m, from the viewpoint of reducing the thickness of the optical waveguide module 1.
  • Each metal layer 32 includes a wiring portion (conductor portion) formed in a predetermined pattern, and is electrically connected to each other via a conductor post (not shown) provided through the base portion 31. ing. Thereby, an electric circuit is constructed in the optical waveguide module 1.
  • each metal layer 32 examples include various metal materials such as copper, copper-based alloy, aluminum, and aluminum-based alloy.
  • the average thickness of each metal layer 32 is not particularly limited, but is usually preferably about 3 to 120 ⁇ m, more preferably about 5 to 70 ⁇ m.
  • Such a wiring board 3a has a light corresponding to the optical path of the light L from the light emitting element 4, and the wiring board 3b has a light corresponding to a light path of the light L to the light receiving element 5.
  • Through holes 33a and 33b are formed through the wiring boards 3a and 3b.
  • the light emitting element 4 and the light emitting element IC 40 are mounted on the wiring board 3a so as to be electrically connected to the wiring portion, and the light receiving element 5 and the light receiving element IC 50 are mounted on the wiring board 3b. Is mounted so as to be electrically connected to the wiring portion.
  • the light emitting element 4 includes an element main body 41 including a light emitting portion 411 and a bump 42, and the bump 42 is bonded to the metal layer 32 (a terminal of the wiring portion) of the wiring substrate 3a.
  • the light emitting element IC 40 includes an element body 401 on which a predetermined circuit is formed and a bump 402, and the bump 402 is bonded to the metal layer 32 (terminal of the wiring portion) of the wiring board 3a. As a result, the light emitting element 4 is electrically connected to the light emitting element IC 40 via the metal layer 32, and its operation is controlled by the light emitting element IC 40.
  • the light receiving element 5 includes an element body 51 including a light receiving portion 511 and a bump 52, and the bump 52 is bonded to the metal layer 32 (a terminal of the wiring portion) of the wiring substrate 3b.
  • the light receiving element IC 50 includes an element body 501 on which a predetermined circuit is formed and a bump 502, and the bump 502 is bonded to the metal layer 32 (terminal of the wiring portion) of the wiring board 3b.
  • the light receiving element 5 is electrically connected to the light receiving element IC 50 via the metal layer 32, and the light receiving element IC 50 operates to amplify the detection signal from the light receiving element 5.
  • these optical elements (the light emitting element 4 and the light receiving element 5) and the electric elements (the light emitting element IC 40 and the light receiving element IC 50) operate in a coordinated manner, whereby an optical signal and an electric signal are obtained.
  • the interconversion is reliably performed, and signal processing with high speed and low noise can be easily performed.
  • a photosensitive resin composition in the space below the optical through hole 33 a and the light emitting element 4) defined by the light emitting element 4, the wiring substrate 3 a and the optical waveguide substrate 2 (
  • a filling portion 7a is formed which is filled with a photosensitive resin composition that reacts with light of 400 nm or more.
  • the photosensitive resin composition preferably, light having a wavelength of 400 nm or more is also formed in the gap defined by the light receiving element 5, the wiring substrate 3b, and the optical waveguide substrate 2 (the light through hole 33b and the space below the light receiving element 5).
  • the filling portion 7b is formed by being filled with a photosensitive resin composition that reacts with (a).
  • the optical waveguide module 1 (the optical waveguide module of the present invention) by providing the filling portions 7a and 7b in the portion where the air gap is originally formed, the optical communication can be performed due to moisture in the air existing in the air gap.
  • the light used can be prevented or suppressed from being attenuated by absorption, irregular reflection, or the like. Therefore, the optical waveguide module 1 has a small light transmission loss and high reliability.
  • the filling portion 7a includes a central portion 71a provided corresponding to the light emitting portion 411 of the light emitting element 4 and an outer peripheral portion (low refractive index) having a refractive index lower than that of the central portion 71a. Part) 72a.
  • the filling portion 7b includes a central portion 71b provided corresponding to the light receiving portion 511 of the light receiving element 5 and an outer peripheral portion (low refractive index) that is provided outside the central portion 71b and has a lower refractive index than the central portion 71b. Rate part) 72b.
  • each of the filling portions 7a and 7b By configuring each of the filling portions 7a and 7b as described above, the light L used for optical communication can be guided inside the central portions 71a and 71b, and reliably prevented from leaking outside the filling portions 7a and 7b. Or it can be suppressed. For this reason, the reliability of optical communication in the optical waveguide module 1 can be further increased.
  • the central portion 71a constitutes a light guide portion that guides the light L emitted from the light emitting element 4 to the mirror 23a, and the central portion 71b is transmitted through the core portion 21 and reflected by the mirror 23b (the optical path is changed).
  • induces the light L to the light receiving element 5 is comprised.
  • each central portion 71a, 71b is substantially perpendicular to the central axis (preferably 90 ° ⁇ 10 °, more preferably 90 ° ⁇ 5 °, and still more preferably 90 ° ⁇ 3 °). It is characterized in that the area of the cross section (transverse cross section) in any direction changes in the direction (vertical direction) along this central axis.
  • the central portion 71a has a truncated cone shape (inverted truncated cone shape) in which the area of the cross section gradually decreases along the direction from the light emitting portion 411 toward the mirror 23a.
  • the central portion 71b has a truncated cone shape in which the area of the cross section gradually decreases along the direction from the mirror 23b toward the light receiving portion 511.
  • the upper end of the central portion 71 a is provided in contact with the light emitting portion 411 of the light emitting element 4, and the light L emitted from the light emitting portion 411 of the light emitting element 4 is more reliably received in the central portion 71 a. Can be done.
  • the upper end of the central portion 71b is provided in contact with the light receiving portion 511 of the light receiving element 5, so that the light L guided in the central portion 71b can be reliably transmitted to the light receiving portion 511. Yes.
  • the lower ends of the central portions 71a and 71b are in contact with the mirrors (optical path changing portions) 23a and 23b of the optical waveguide substrate 2, and the light L guided in the central portion 71a is transmitted to the optical waveguide substrate 2.
  • the light L transmitted through the optical waveguide substrate 2 can be transmitted to the central portion 71b.
  • the angles ⁇ a and ⁇ b formed by the central axes Oa and Ob of the central portions 71a and 71b and the central axis Oc of the core portion 21 are approximately 90 °.
  • the angles ⁇ a, ⁇ b are about 80 to 100 ° (more preferably 90 ° ⁇ 5 °, still more preferably). It can also be set in the range of 90 ° ⁇ 3 °.
  • the central portion 71a and the outer peripheral portion 72a are integrally formed, and the central portion 71b and the outer peripheral portion 72b are integrally formed.
  • the filling portions 7a and 7b are, for example, photosensitive resin compositions (photosensitive materials) whose refractive index changes due to the action (exposure) of photosensitive light (preferably light having a wavelength of 400 nm or more, more preferably 400 to 500 nm). It can be formed by using the resin composition 70).
  • center part 71a and the outer peripheral part 72a may be comprised separately, and the center part 71b and the outer peripheral part 72b may be comprised separately.
  • each part can be formed by combining, for example, the materials mentioned as the constituent materials of the core part 21 and the clad part 22 described above.
  • FIG. 3 is a longitudinal sectional view for explaining a manufacturing process of the optical waveguide module 1.
  • the optical waveguide substrate 2 is provided with protective layers 29 on both surfaces of the optical waveguide 20, and laser processing, grinding processing, or the like is performed at predetermined positions to form the defect portions 28a and 28b, thereby changing the optical path changing portion (mirror). ) 23a and 23b are manufactured.
  • the optical path changing portion may be formed by attaching a metal film to the defect portions 28a and 28b.
  • Each of the wiring boards 3a and 3b is prepared by, for example, preparing a laminated board (for example, a double-sided copper-clad board) in which metal layers are formed on both sides of a flat base, and performing etching, laser processing, etc. It is manufactured by forming the layers in a predetermined pattern and applying laser processing, machining, or the like to form the optical through holes 33a and 33b.
  • a laminated board for example, a double-sided copper-clad board
  • a photosensitive resin composition 70 is prepared that changes so that the refractive index is increased by the action of the photosensitive light EL.
  • a photosensitive resin composition 70 for example, a resin composition having a special composition can be used.
  • This resin composition contains a base polymer and a monomer having a higher refractive index than the base polymer.
  • Examples of the base polymer include cyclic olefin resins such as norbornene resins and benzocyclobutene resins, acrylic resins, methacrylic resins, polycarbonate, polystyrene, cyclic ether resins such as epoxy resins and oxetane resins, Examples include polyamides, polyimides, polybenzoxazoles, silicone resins, fluorine resins, etc., and use one or more of these (polymer alloy, polymer blend (mixture), copolymer, etc.). Can do.
  • cyclic olefin resins such as norbornene resins and benzocyclobutene resins
  • acrylic resins methacrylic resins
  • polycarbonate polycarbonate
  • polystyrene cyclic ether resins
  • examples include polyamides, polyimides, polybenzoxazoles, silicone resins, fluorine resins, etc., and use one or more of these (polymer alloy, polymer blend
  • the central portion 71a having excellent optical transmission performance and heat resistance can be formed.
  • the cyclic olefin resin it is preferable to use a norbornene resin from the viewpoints of heat resistance and transparency. Moreover, since norbornene-type resin has high hydrophobicity, the center part 71a which cannot produce the dimensional change by water absorption etc. can be formed.
  • any monomer can be used as long as it has a higher refractive index than the base polymer.
  • it is a cyclic olefin monomer having an aromatic ring.
  • the cyclic olefin monomer having an aromatic ring is not particularly limited, and examples thereof include oxetane (3-ethyl-3- (phenoxymethyl) oxetane; POX), phenylethyl norbornene, and diphenol norbornene. These can be used alone or in combination of two or more.
  • a particularly preferable combination of the base polymer and the monomer includes a combination of a norbornene resin and the above oxetane, a combination of a norbornene resin and the above phenylethyl norbornene, or the like. According to these combinations, it is possible to form the central portion 71a having particularly excellent optical transmission performance and heat resistance.
  • the light emitting element 4 and the light emitting element IC 40 are mounted (joined) on the wiring board 3a.
  • the light receiving element 5 and the light receiving element IC 50 are mounted (bonded) on the wiring board 3b.
  • the wiring substrate 3a on which the light emitting element 4 and the light emitting element IC 40 are mounted is positioned so that the light emitting unit 411 corresponds to the mirror 23a, and is bonded to the upper surface of the optical waveguide substrate 2 using an adhesive.
  • the photosensitive resin composition 70 described above is filled in the gap. Since there is a gap between the bumps 42 between the light emitting element 4 and the wiring board 3a, the photosensitive resin composition 70 can be filled into the gap from this gap.
  • a photosensitive resin composition is previously placed in the light through hole 33a and the lower space of the light emitting element 4.
  • the object 70 may be filled.
  • the photosensitive light EL is introduced from the side opposite to the mirror 23a of the core portion 21 (the mirror 23b side of the core portion 21).
  • the photosensitive light EL is reflected (changed in the optical path) by the mirror 23a, then transmitted through the photosensitive resin composition 70, and irradiated onto a region including the light emitting portion 411 of the light emitting element 4 (see FIG. 3A). ).
  • a refractive index becomes high, the center part (light guide part) 71a is formed, and the non-transmissive area
  • the outer peripheral portion (low refractive index portion) 72a has a lower refractive index than the central portion 71a.
  • the photosensitive light EL may be irradiated from above the mirror 23b (on the light receiving element 5 side), reflected (bent) by the mirror 23b, and introduced into the core portion 21, or to the left of the mirror 23b (mirror 23b).
  • the side facing the mirror 23a via the mirror 23b may be transmitted through the mirror 23b and introduced into the core portion 21.
  • the resin composition having a special blend as described above is used as the photosensitive resin composition 70, the following effects can be obtained.
  • the monomer reaction (crosslinking of the pace polymer, polymerization of the monomer, etc.) starts from the central axis (optical axis) in the transmission region and the vicinity thereof, so that a difference in monomer concentration also occurs in the transmission region. Unreacted monomer collects toward. At almost the same time, unreacted monomers gather in the transmission region from the non-transmission region. For this reason, in the formed central portion 71a, a refractive index distribution is formed that continuously decreases from the central axis toward the outer peripheral portion 72a.
  • the wavelength of the photosensitive light EL used is preferably different from the wavelength of the light emitted from the light emitting element 4.
  • the wavelength of the photosensitive light EL is preferably 400 nm or more, and more preferably about 400 to 500 nm.
  • the photosensitive light EL is introduced from the side opposite to the mirror 23a of the core portion 21.
  • the photosensitive light EL reaches the mirror 23a, and then is reflected (optical path change) toward the photosensitive resin composition 70 filled in the gap by the mirror 23a.
  • the photosensitive light EL reaches the mirror 23a while being reflected in the core portion 21, the incident angle when reaching the mirror 23a is not constant. Therefore, as shown in FIG. 3, the photosensitive light EL reflected by the mirror 23 a takes an optical path that diverges when passing through the photosensitive resin composition 70. Therefore, the central part 71a to be formed has an inverted truncated cone shape as shown in FIG.
  • the photosensitive resin composition 70 is filled in the light through hole 33b and the lower space of the light receiving element 5, and the photosensitive resin composition 70 is irradiated with the photosensitive light EL (FIG. 3B). )reference).
  • the transmission region becomes the central portion (light guide portion) 71b
  • the non-transmission region becomes the outer peripheral portion (low refractive index portion) 72b.
  • photosensitive light EL that is condensed toward the light receiving element 5 (light receiving unit 511) is used.
  • the truncated cone-shaped center part 71b as shown in FIG. 2 can be formed.
  • the light receiving element 5 and the light receiving element IC 50 are mounted so that the light receiving portion 511 corresponds to the mirror 23b, and the wiring substrate 3b on which the filling portion 7b is formed is positioned, and the optical waveguide substrate 2 The upper surface is bonded using an adhesive (see FIG. 3C).
  • center part 71b and the outer peripheral part 72b to the lower space of the optical through hole 33b and the light receiving element 5 can be formed as follows in addition to the steps ⁇ 4> and ⁇ 5>.
  • the light receiving element 5 and the light receiving element IC 50 are arranged so that the light receiving unit 511 corresponds to the mirror 23b.
  • the wiring substrate 3b that is mounted and formed with the filling portion 7b is positioned and bonded to the upper surface of the optical waveguide substrate 2 using an adhesive.
  • the photosensitive resin composition 70 is irradiated with the photosensitive light EL condensed using a lens or the like via the mirror 23b, so that the central portion 71b which is a transmission region and the non-transmission region are present.
  • the outer peripheral part 72b is formed.
  • the central portion 71b and the outer peripheral portion 72b can be formed in the light through hole 33b and the lower space of the light receiving element 5.
  • the optical waveguide module 1 is manufactured through the above steps.
  • FIG. 4 is an enlarged longitudinal sectional view showing a portion on the light emitting element side of the optical waveguide module of the second embodiment.
  • optical waveguide module of the second embodiment will be described with a focus on differences from the optical waveguide module of the first embodiment, and the description of the same matters will be omitted.
  • the optical waveguide module 1 of the second embodiment is the same as the optical waveguide module 1 of the first embodiment, except that the portion (each layer) immediately below the optical through hole 33a is removed.
  • the adhesive layer 6 corresponding to the optical through hole 33a, the protective layer 29 of the optical waveguide substrate 2, and the upper clad portion 22 are removed, and the filling portion 7a is also formed in this removed portion.
  • Each layer can be easily removed by, for example, laser processing.
  • the center portion 71 a has an upper end in contact with the light emitting portion 411 and a lower end in contact with the core portion 21.
  • the same operations and effects as those of the first embodiment can be obtained.
  • the number of layers through which light from the light emitting element 4 must pass is reduced. As a result, light absorption, reflection and the like when passing through each layer are eliminated, so that transmission loss of light can be further reduced.
  • the filling portion 7a is provided from the lower space of the light emitting element 4 through the wiring substrate 3a and into the optical waveguide substrate 2, the light emitting element 4 and the wiring substrate 3a are connected to the optical waveguide substrate 2.
  • the effect of pinning can be obtained. Thereby, the position shift with respect to the optical waveguide board
  • the layer to be removed is not limited to the case of removing the three layers of the adhesive layer 6, the protective layer 29, and the upper clad portion 22 as in the present embodiment, but if at least one upper layer is removed.
  • the adhesive layer 6 may be one layer, or the adhesive layer 6 and the protective layer 29 may be two layers.
  • FIG. 5 is an enlarged longitudinal sectional view showing a portion on the light emitting element side of the optical waveguide module of the third embodiment.
  • optical waveguide module according to the third embodiment will be described with a focus on differences from the optical waveguide modules according to the first and second embodiments, and description of similar matters will be omitted.
  • the optical waveguide module 1 of the third embodiment is the same as the optical waveguide module 1 of the second embodiment except that the configuration of the optical waveguide substrate 2 is different.
  • a defect portion 28a formed by damaging a portion from the upper surface (surface on the optical element 4 side) to the vicinity of the lower surface beyond the core portion 21 is provided.
  • the optical waveguide substrate 2 having such a configuration at least the surface facing the missing portion 28a of the core portion 21 forms a mirror (an optical path changing portion that changes the optical path of light) 23a that reflects light.
  • a reflective film 231a is formed on the surface (mirror surface) of the mirror 23a. Thereby, the light L from the light emitting element 4 can be reliably reflected by the reflective film 231a. On the other hand, as described above, when the central portion 71a is formed, the photosensitive light EL can be reliably reflected by the reflective film 231a.
  • a metal film such as Au, Ag, Al is preferably used.
  • the filling portion 7a is formed in the defect portion 28a, and the center portion 71a has an upper end in contact with the light emitting portion 411 and a lower end in contact with the mirror 23a (reflection film 231a). Yes.
  • the same operations and effects as those of the first and second embodiments can be obtained.
  • the light L from the light emitting element 4 is directly guided to the reflection film 231a in the central portion 71a.
  • the reflection film 231a in the central portion 71a there is no light absorption, reflection or the like when passing through each layer, so that the light transmission loss can be further reduced.
  • the surface (the left surface in FIG. 5) where the filling portion 7a and the core portion 21 are in direct contact is substantially perpendicular to the central axis Oc of the core portion 21 (90 ° ⁇ 10 °, preferably 90 ° ⁇ ). 5 °, more preferably 90 ° ⁇ 3 °).
  • the configurations of the second and third embodiments can be applied to the light receiving element 5 side.
  • the optical waveguide module of the present invention can be applied to any electronic device that performs signal processing of both an optical signal and an electric signal.
  • the amount of heat generated in the optical waveguide portion is greatly reduced compared to electrical wiring. For this reason, the degree of integration in the substrate can be increased, the power required for cooling can be reduced, and the power consumption of the entire electronic device can be reduced.
  • optical waveguide module the method for manufacturing the optical waveguide module, and the electronic device of the present invention have been described above, but the present invention is not limited to this.
  • each part constituting the optical waveguide module can be replaced with any part that can exhibit the same function.
  • arbitrary components may be added.
  • any configuration of the first to third embodiments can be combined.
  • the configuration in which one light emitting element and one light receiving element are provided has been described.
  • a plurality of light emitting elements and light receiving elements may be provided.
  • the optical waveguide is provided with a plurality of core portions.
  • the center (light guide) has a truncated cone shape, that is, the case where the cross-sectional shape of the center is circular is shown, but the present invention is not limited to this.
  • the cross-sectional shape of the central portion may be an ellipse, an oval, a square, a quadrangle, a strip, a triangle, a pentagon, a hexagon, and the like.
  • the light guide since the light guide is provided in the gap portion that has been conventionally formed in the middle of the optical path, the transmission loss of light in optical communication can be particularly reduced. For this reason, a highly reliable optical waveguide module and electronic device are obtained.
  • the light guide unit irradiates the photosensitive resin composition with the photosensitive light introduced into the core part of the optical waveguide formed in advance through the optical path changing unit after filling the photosensitive resin composition. Therefore, it is easy to form the light guide portion so as to accurately correspond to the light emitting portion.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

 光導波路モジュール(1)は、光(L)を伝送するコア部(21)と、光(L)の光路を変更するミラー(23a)、(23b)とを備える光導波路基板(2)と、光導波路基板(2)の一方の面側に設けられ、発光部(411)を備える発光素子(4)および受光部(511)を備える受光素子(5)と、発光部(411)および受光部(511)に対応して設けられ、発光素子(4)からミラー(23a)へ光(L)を導く中心部(71a)およびミラー(23b)から受光素子(5)へ光(L)を導く中心部(71b)とを有し、中心部(71a)は、横断面の面積が、発光部(411)からミラー(23a)に向かう方向に沿って漸減し、中心部(71b)は、横断面の面積が、ミラー(23b)から受光部(511)に向かう方向に沿って漸減している。

Description

光導波路モジュール、光導波路モジュールの製造方法および電子機器
 本発明は、光導波路モジュール、光導波路モジュールの製造方法および電子機器に関する。
 本願は、2010年10月1日に、日本に出願された特願2010-224415号に基づき優先権を主張し、その内容をここに援用する。
 近年、情報化の波とともに、大容量の情報を高速で通信可能な広帯域回線(ブロードバンド)の普及が進んでいる。また、これらの広帯域回線に情報を伝送する装置として、ルーター装置、WDM(Wavelength Division Multiplexing)装置等の伝送装置が用いられている。これらの伝送装置内には、LSIのような演算素子、メモリーのような記憶素子等が組み合わされた信号処理基板が多数設置されており、各回線の相互接続を担っている。
 各信号処理基板には、演算素子や記憶素子等が電気配線で接続された回路が構築されているが、近年、処理する情報量の増大に伴って、各基板では、極めて高いスループットで情報を伝送することが要求されている。しかしながら、情報伝送の高速化に伴い、クロストークや高周波ノイズの発生、電気信号の劣化等の問題が顕在化しつつある。このため、電気配線がボトルネックとなって、信号処理基板のスループットの向上が困難になっている。また、同様の課題は、スーパーコンピューターや大規模サーバー等でも顕在化しつつある。
 一方、光搬送波を使用してデータを移送する光通信技術が開発され、近年、この光搬送波を、一地点から他地点に導くための手段として、光導波路が普及しつつある。この光導波路は、線状のコア部と、その周囲を覆うように設けられたクラッド部とを有している。コア部は、光搬送波の光に対して実質的に透明な材料によって構成され、クラッド部は、コア部より屈折率が低い材料によって構成されている。
 光導波路では、コア部の一端から導入された光が、クラッド部との境界で反射しながら他端に伝送(搬送)される。光導波路の入射側には、半導体レーザー等の発光素子が配置され、出射側には、フォトダイオード等の受光素子が配置される。発光素子から入射された光は光導波路を伝搬し、受光素子により受光され、受光した光の明滅パターンもしくはその強弱パターンに基づいて通信を行う。
 このような光導波路で信号処理基板内の電気配線を置き換えることにより、前述したような電気配線の問題が解消され、信号処理基板のさらなる高スループット化が可能になると期待されている。
 例えば、特許文献1には、プリント基板上に、光送信用IC(発光素子)、光受信用IC(受光素子)および光導波路が設けられた構成の装置が開示されている。
 かかる装置では、プリント基板と各ICとの間に形成された空隙や、プリント基板に形成されたスルーホール内に、空気が存在する。このため、光通信に用いる光が、この空気中の水分等により、例えば、吸収、乱反射等されることにより減衰し、光の伝送損失が高くなるという問題がある。
 また、発光素子から発光された光をミラーで反射させて光導波路に導入し、さらに、この導入された光をミラーで反射させて受光素子に受光させることで光を伝搬するが、これらミラーを介して光を伝搬する際に光が散乱し、これに起因して、光の伝送損失が高くなるという問題もある。
特開2005-294407号公報
 本発明の目的は、光の伝送損失が小さく、信頼性の高い光導波路モジュール、かかる光導波路モジュールを簡便に製造することができる光導波路モジュールの製造方法、およびかかる光導波路モジュールを備える電子機器を提供することにある。
 このような目的は、下記(1)~(13)に記載の本発明により達成される。
 (1) 光を伝送するコア部と、前記光の光路を変更する光路変更部とを備える光導波路基板と、
 該光導波路基板の一方の面側に設けられ、発光部または受光部を備える光素子と、
 前記発光部または受光部に対応して設けられ、前記光素子と前記光路変更部との間で前記光を導く導光部とを有し、
 前記導光部は、その中心軸に対してほぼ垂直な方向での断面の面積が、前記中心軸に沿った方向で変化していることを特徴とする光導波路モジュール。
 (2) 前記導光部は、その一端部が前記発光部または受光部に接触している上記(1)に記載の光導波路モジュール。
 (3) 前記導光部は、その他端部が前記光路変更部に接触している上記(1)または(2)に記載の光導波路モジュール。
 (4) 前記光導波路基板は、その一部を前記コア部に至るまで欠損させることにより形成された欠損部を備え、
 前記光路変更部は、前記コア部の中心軸に対して傾斜し、少なくとも前記コア部の前記欠損部に臨む面で構成されている上記(1)ないし(3)のいずれかに記載の光導波路モジュール。
 (5) 前記面に金属膜を備える上記(4)に記載の光導波路モジュール。
 (6) 前記導光部の外周部に設けられ、前記導光部より屈折率が低い低屈折率部を有する上記(1)ないし(5)のいずれかに記載の光導波路モジュール。
 (7) 前記コア部の中心軸と前記導光部の中心軸とのなす角度は、80~100°である上記(1)ないし(6)のいずれかに記載の光導波路モジュール。
 (8) 前記光素子は、受光部を備える受光素子であり、
 前記導光部は、その中心軸に対してほぼ垂直な方向での断面の面積が、前記受光部に向かって減少している上記(1)ないし(7)のいずれかに記載の光導波路モジュール。
 (9) 前記光素子は、発光部を備える発光素子であり、
 前記導光部は、その中心軸に対してほぼ垂直な方向での断面の面積が、前記光路変更部に向かって減少している上記(1)ないし(7)のいずれかに記載の光導波路モジュール。
 (10) 上記(9)に記載の光導波路モジュールを製造する光導波路モジュールの製造方法であって、
 前記光導波路基板と、前記発光素子と、感光用光の作用により屈折率が高くなるよう変化する感光性樹脂組成物とを用意する第1の工程と、
 前記発光部が前記光路変更部に対応するように、前記発光素子を前記光導波路基板の一方の面側に位置決めする第2の工程と、
 前記位置決めした際に形成される空隙に、前記感光性樹脂組成物を充填した状態で、前記コア部の前記光路変更部と反対側より前記感光用光を導入し、前記光路変更部で光路変更させた後、前記感光性樹脂組成物を透過させ、前記発光素子の前記発光部を包含する領域に照射する第3の工程とを有し、
 該第3の工程において、前記感光用光として、前記光路変更部で光路変更された後に発散するような条件の光を導入し、前記感光性樹脂組成物の前記感光用光が透過した透過領域内において、前記感光性樹脂組成物を反応させて、前記感光用光が透過しない非透過領域より屈折率を高めることにより、前記導光部を形成することを特徴とする光導波路モジュールの製造方法。
 (11) 前記感光用光の波長は、前記発光素子が発する前記光の波長と異なる上記(10)に記載の光導波路モジュールの製造方法。
 (12) 前記感光性樹脂組成物は、ベースポリマーと、該ベースポリマーより屈折率の高いモノマーとを含み、前記透過領域内において、前記モノマーの反応を進行させることにより、前記非透過領域から、未反応の前記モノマーを前記透過領域に拡散させ、結果として、前記透過領域の屈折率を前記非透過領域の屈折率より高くして、前記導光部を形成する上記(10)または(11)に記載の光導波路モジュールの製造方法。
 (13) 上記(1)ないし(9)のいずれかに記載の光導波路モジュールを備えることを特徴とする電子機器。
 本発明によれば、光路の途中において、本来、空隙が形成される部分をなくすとともに、当該部分に導光部を設けたので、光通信における光の伝送損失を特に小さくすることができる。このため、信頼性の高い光導波路モジュールおよび電子機器が得られる。
 また、上記導光部を感光性樹脂組成物を用いて形成するのに際し、予め形成された光導波路のコア部に感光用光を導入して、この感光用光を利用するようにしたので、導光部を発光部に正確に対応させて形成することが容易である。
図1は、本発明の光導波路モジュールの第1実施形態の概略を示す側面図である。 図1に示す光導波路モジュールを部分的に拡大して示す縦断面図である。 光導波路モジュールの製造工程を説明するための縦断面図である。 第2実施形態の光導波路モジュールの発光素子側の部分を拡大して示す縦断面図である。 第3実施形態の光導波路モジュールの発光素子側の部分を拡大して示す縦断面図である。
 以下、本発明の光導波路モジュール、光導波路モジュールの製造方法および電子機器について添付図面に示す好適実施形態に基づいて詳細に説明する。
 <第1実施形態>
 まず、本発明の光導波路モジュールの第1実施形態について説明する。
 図1は、本発明の光導波路モジュールの第1実施形態の概略を示す側面図、図2は、図1に示す光導波路モジュールを部分的に拡大して示す縦断面図である。なお、以下の説明では、図1および図2中の上側を「上」といい、下側を「下」という。
 図1に示す光導波路モジュール1は、主に、光導波路基板2と、この光導波路基板2の上面に間隔を空けて接合された配線基板3a、3bと、一方の配線基板3a上に搭載された発光素子4および発光素子用IC40と、他方の配線基板3b上に搭載された受光素子5および受光素子用IC50とを有する。
 発光素子4からの光Lは、光導波路基板(光回路)2内を伝送され、受光素子5により受光される。すなわち、光導波路基板2を介して、発光素子4と受光素子5との間において、光通信がなされる。
 光導波路基板2は、図2に示すように、光導波路20と、この光導波路20の上下面にそれぞれ設けられた保護層29とを備える。
 光導波路20は、線状のコア部21と、コア部21の周囲を覆うように設けられた筒状のクラッド部22とを有しており、コア部21の一端に入射された光Lをコア部21とクラッド部22との界面で反射させ、他端に伝送(伝搬)することができる。
 光導波路20の横断面形状は、好ましくは正方形または矩形(長方形)のような四角形とされる。コア部21の幅および高さは、特に限定されないが、1~200μm程度であるのが好ましく、5~100μm程度であるのがより好ましく、10~60μm程度であるのがさらに好ましい。
 また、コア部21とクラッド部22とは、互いに光の屈折率が異なり、その屈折率の差は、0.5%以上であるのが好ましく、0.8%以上であるのがより好ましい。一方、上限値は、特に設定されなくてもよいが、好ましくは5.5%程度とされる。屈折率の差が前記下限値未満であると光を伝送する効果が低下する場合があり、前記上限値を超えても、光の伝送効率のそれ以上の増大は期待できない。
 なお、前記屈折率差とは、コア部21の屈折率をA、クラッド部22の屈折率をBとしたとき、次式で表される。
 屈折率差(%)=|A/B-1|×100
 コア部21、クラッド部22の各構成材料は、それぞれ上記の屈折率差が生じる材料であれば特に限定されないが、具体的には、アクリル系樹脂、メタクリル系樹脂、ポリカーボネート、ポリスチレン、エポキシ樹脂、ポリアミド、ポリイミド、ポリベンゾオキサゾール、ポリシラン、ポリシラザン、また、ベンゾシクロブテン系樹脂やノルボルネン系樹脂等の環状オレフィン系樹脂のような各種樹脂材料の他、石英ガラス、ホウケイ酸ガラスのようなガラス材料等を用いることができる。
 保護層29は、光導波路20の上下面を保護する機能を有する。
 この保護層29の平均厚さは、特に限定されないが、5~200μm程度であるのが好ましく、10~100μm程度であるのがより好ましい。これにより、保護層29は、光導波路20を保護する機能を十分に発揮することができる。また、光導波路基板2全体として可撓性を付与する場合には、その可撓性が低下するのを防止することができる。
 保護層29の構成材料としては、特に限定されないが、例えば、ポリイミド、ポリイミドアミド、ポリイミドアミドエーテル、ポリエステルイミドおよびポリイミドエーテル等が挙げられる。
 また、本実施形態では、光導波路基板2は、その下面(光素子が設けられている側の面に対向する面)からコア部21を超えて、上側(光素子が設けられている側)の保護層29に至るまでの部分を欠損させることにより形成された欠損部28a、28bを備える。少なくともコア部21の欠損部28a、28bに臨む面は、それぞれ、コア部21と欠損部28a、28b内の空気との屈折率差に基づいて光を反射するミラー(光の光路を変更する光路変更部)23a、23bを構成している。
 また、欠損部28a、28bは、光導波路基板2の縦断面(鉛直方向断面)において直角三角形状をなすように形成されており、ミラー23a、23bは、コア部21の中心軸に対してほぼ45°(45°±10°、好ましくは45°±5°、より好ましくは45°±3°)で傾斜している。したがって、図2中の矢印で示すように、発光素子4から下方に向かって発せられた光Lは、その直下のミラー23aにより、その光路がほぼ90°(90°±10°、好ましくは90°±5°、より好ましくは90°±3°)で変更(屈曲)された後、コア部21内を伝送され、受光素子5の直下のミラー23bで上方に向かって光路がほぼ90°(90°±10°、好ましくは90°±5°、より好ましくは90°±3°)で変更された後、受光素子5に入射する。
 このようなミラー23a、23bを設けることにより、光導波路基板2の主面(水平面)上に発光素子4および受光素子5を搭載することができるので、光導波路モジュール1の小型化を図ることができるとともに、高密度実装にも寄与する。
 ミラー23a、23bの表面(ミラー面)には、Au、Ag、Al等の金属膜を備えることができる。これにより、発光素子4からの光Lを確実に反射することができる。このような金属膜を備えることにより、光の伝送損失をより低減することができる。
 このような光導波路基板2の上面(光素子が設けられる側の面)には、接着剤層6を介して、配線基板3a、3bが接合されている。この接着剤層6には、例えば、エポキシ系接着剤、アクリル系接着剤、フェノール樹脂系接着剤、シアネート樹脂系接着剤、マレイミド樹脂系接着剤等を用いることができる。また、接着剤層6には、上記接着剤で構成されるシート材を用いることもできる。
 配線基板3a、3bは、それぞれ、平板状の基部31と、この基部31の上下面にそれぞれ設けられた金属層32とを備える。
 基部31は、絶縁性を有する材料で構成されている。この基部31は、可撓性を有していてもよく、剛性を有するもののいずれであってもよい。
 可撓性を有する基部31は、例えば、ポリイミド系樹脂、エポキシ系樹脂、ポリエチレンテレフタレート樹脂等の各種樹脂材料で構成することができるが、なかでもポリイミド系樹脂を主材料として構成するのが好ましい。この場合、耐熱性が高く、優れた可撓性を有する基部31が得られる。
 一方、剛性を有する基部31は、例えば、紙、ガラス布、樹脂フィルム等のコア材に、フェノール系樹脂、ポリエステル系樹脂、エポキシ系樹脂、シアネート樹脂、ポリイミド系樹脂、フッ素系樹脂等の樹脂材料を含浸させて構成することができる。
 基部31の平均厚さは、特に限定されないが、光導波路モジュール1の薄型化の観点から、好ましくは5~500μm程度、より好ましくは10~200μm程度とされる。
 各金属層32は、所定のパターンで形成された配線部(導体部)を含んでおり、基部31を貫通して設けられた導体ポスト(図示せず)を介して、互いに電気的に接続されている。これにより、光導波路モジュール1内に、電気回路が構築されている。
 各金属層32の構成材料としては、例えば、銅、銅系合金、アルミニウム、アルミニウム系合金等の各種金属材料が挙げられる。各金属層32の平均厚さは、特に限定されないが、通常、3~120μm程度が好ましく、5~70μm程度がより好ましい。
 このような配線基板3aには、発光素子4からの光Lの光路に対応する部分に、また、配線基板3bには、受光素子5への光Lの光路に対応する部分に、それぞれ、光スルーホール33a、33bが配線基板3a、3bを貫通して形成されている。
 前述したように、配線基板3aには、発光素子4と発光素子用IC40とが配線部に電気的に接続されるように搭載され、配線基板3bには、受光素子5と受光素子用IC50とが配線部に電気的に接続されるように搭載されている。
 発光素子4は、発光部411を備える素子本体41とバンプ42とを備え、バンプ42が配線基板3aの金属層32(配線部の端子)に接合されている。また、発光素子用IC40は、所定の回路が形成された素子本体401とバンプ402とを備え、バンプ402が配線基板3aの金属層32(配線部の端子)に接合されている。これにより、発光素子4は、発光素子用IC40と金属層32を介して電気的に接続され、その動作が発光素子用IC40により制御される。
 受光素子5は、受光部511を備える素子本体51とバンプ52とを備え、バンプ52が配線基板3bの金属層32(配線部の端子)に接合されている。また、受光素子用IC50は、所定の回路が形成された素子本体501とバンプ502とを備え、バンプ502が配線基板3bの金属層32(配線部の端子)に接合されている。これにより、受光素子5は、受光素子用IC50と金属層32を介して電気的に接続され、受光素子用IC50は、受光素子5による検出信号を増幅するよう動作する。
 したがって、光導波路モジュール1では、これらの光素子(発光素子4および受光素子5)と電気素子(発光素子用IC40および受光素子用IC50)とが協調して動作することにより、光信号と電気信号の相互変換が確実に行われ、高速かつ低ノイズでの信号処理を容易に行うことができる。
 このような光導波路モジュール1において、発光素子4、配線基板3aおよび光導波路基板2とで画成される空隙(光スルーホール33aおよび発光素子4の下部空間)には、感光性樹脂組成物(好ましくは、400nm以上の光に反応する感光性樹脂組成物)が充填されてなる充填部7aが形成されている。一方、受光素子5、配線基板3bおよび光導波路基板2とで画成される空隙(光スルーホール33bおよび受光素子5の下部空間)にも、感光性樹脂組成物(好ましくは、400nm以上の光に反応する感光性樹脂組成物)が充填されてなる充填部7bが形成されている。
 光導波路モジュール1(本発明の光導波路モジュール)では、本来、空隙が形成される部分に、充填部7a、7bを設けたことにより、空隙内に存在する空気中の水分等により、光通信に用いられる光が、例えば、吸収、乱反射等されることにより減衰することを防止または抑制することができる。したがって、光導波路モジュール1は、光の伝送損失が小さく、信頼性の高いものとなる。
 また、充填部7aは、発光素子4の発光部411に対応して設けられた中心部71aと、この中心部71aの外側に設けられ、中心部71aより屈折率が低い外周部(低屈折率部)72aとで構成されている。同様に、充填部7bは、受光素子5の受光部511に対応して設けられた中心部71bと、この中心部71bの外側に設けられ、中心部71bより屈折率が低い外周部(低屈折率部)72bとで構成されている。
 各充填部7a、7bをかかる構成とすることにより、光通信に用いられる光Lは、中心部71a、71b内を導かれるようになり、充填部7a、7b外に漏出するのを確実に防止または抑制することができる。このため、光導波路モジュール1における光通信の確実性をより高めることができる。
 すなわち、中心部71aは、発光素子4から発せられた光Lをミラー23aに導く導光部を構成し、中心部71bは、コア部21を伝送され、ミラー23bで反射された(光路が変更された)光Lを受光素子5に導く導光部を構成する。
 特に、本発明では、各中心部71a、71bが、その中心軸に対してほぼ垂直(好ましくは90°±10°、より好ましくは90°±5°、より更に好ましくは90°±3°)な方向での断面(横断面)の面積が、この中心軸に沿った方向(上下方向)で変化していることに特徴を有する。本実施形態では、図2に示すように、中心部71aは、その横断面の面積が、発光部411からミラー23aに向かう方向に沿って漸減するような円錐台形状(逆円錐台形状)をなしており、一方、中心部71bは、その横断面の面積が、ミラー23bから受光部511に向かう方向に沿って漸減するような円錐台形状をなしている。
 このような構成により、発光素子4の発光部411から発せられた光Lが、中心部71aの中心軸に対して若干傾いていた場合でも、この光Lを確実に中心部71a内に受けることができるようになっており、一方、ミラー23bで反射された光Lが、中心部71bの中心軸に対して若干傾いていた場合でも、この光を確実に中心部71b内に受けることができるようになっている。
 さらに、中心部71aは、その上端が発光素子4の発光部411に接触して設けられており、発光素子4の発光部411から発せられた光Lをより確実に中心部71a内に受けることができるようになっている。一方、中心部71bは、その上端が受光素子5の受光部511に接触して設けられており、中心部71b内を導かれる光Lを確実に受光部511に伝えることができるようになっている。
 また、各中心部71a、71bは、その下端が光導波路基板2のミラー(光路変更部)23a、23bに接触しており、中心部71a内を導かれた光Lを光導波路基板2に伝え、光導波路基板2内を伝送された光Lを中心部71bに伝えることができるようになっている。
 なお、図示の構成では、各中心部71a、71bの中心軸Oa、Obとコア部21の中心軸Ocとのなす角度θa、θbは、ほぼ90°をなしているが、発光素子4や受光素子5を搭載する位置、ミラー23a、23bのコア部21の中心軸Ocに対する傾き等によっては、角度θa、θbは、80~100°程度(より好ましくは90°±5°、より更に好ましくは90°±3°)の範囲で設定することもできる。これにより、光導波路モジュール1の構成の幅が広がる。
 ただし、角度θa、θbをほぼ90°とすること、すなわち、光通信に用いる光Lの光路を光導波路基板2の上面と直交するようにすることにより、各中心部71a、71bと光導波路基板2との界面における光Lの不要な反射等を防止することができる。その結果、光の伝送損失をより低減することができる。
 このような充填部7a、7bは、それぞれ、中心部71aと外周部72aとが一体的に形成され、中心部71bと外周部72bとが一体的に形成されている。かかる充填部7a、7bは、例えば、感光用光(好ましくは400nm以上、より更に好ましくは400~500nmの波長の光)の作用(露光)により屈折率が変化する感光性樹脂組成物(感光性樹脂組成物70)を用いることにより形成することができる。
 なお、中心部71aと外周部72aとが別体で、中心部71bと外周部72bとが別体で構成されていてもよい。この場合、各部は、例えば、前述したコア部21およびクラッド部22の構成材料として挙げた材料を組み合わせて形成することができる。
 以上説明したような光導波路モジュール1は、例えば、次のようにして製造することができる。
 図3は、光導波路モジュール1の製造工程を説明するための縦断面図である。
 <1> まず、光導波路基板2、配線基板3a、3b、発光素子4、発光素子用IC40、受光素子5、受光素子用IC50、接着剤層6を形成するための接着剤および充填部7a、7bを形成するための感光性樹脂組成物70を用意する。
 光導波路基板2は、例えば、光導波路20の両面に保護層29を設け、所定の位置に、レーザー加工、研削加工等を施すことにより欠損部28a、28bを形成することにより光路変更部(ミラー)23a、23bが製造される。欠損部28a、28bに金属膜を付けて光路変更部を形成してもよい。
 また、配線基板3a、3bは、それぞれ、例えば、平板状の基部の両面に金属層が形成された積層板(例えば、両面銅張り板)を用意し、エッチング、レーザ加工等を施して、金属層を所定のパターンに形成するとともに、レーザー加工、機械加工等を施して、光スルーホール33a、33bを形成することにより製造される。
 また、本実施形態では、感光性樹脂組成物70として、感光用光ELの作用により屈折率が高くなるよう変化するものを用意する。かかる感光性樹脂組成物70としては、例えば、特殊な配合の樹脂組成物を用いることができる。
 この樹脂組成物には、ベースポリマーと、このベースポリマーより屈折率の高いモノマーとを含む。感光用光ELを透過させた透過領域内において、感光用光ELの照射によりモノマーの反応を進行させることにより、感光用光ELを透過させない非透過領域から、未反応のモノマーを透過領域に拡散させ、結果として、透過領域の屈折率を非透過領域の屈折率より高くすることができる。
 ベースポリマーとしては、例えば、ノルボルネン系樹脂やベンゾシクロブテン系樹脂等の環状オレフィン系樹脂、アクリル系樹脂、メタクリル系樹脂、ポリカーボネート、ポリスチレン、エポキシ系樹脂やオキセタン系樹脂のような環状エーテル系樹脂、ポリアミド、ポリイミド、ポリベンゾオキサゾール、シリコーン系樹脂、フッ素系樹脂等が挙げられ、これらのうちの1種または2種以上を組み合わせて(ポリマーアロイ、ポリマーブレンド(混合物)、共重合体など)用いることができる。
 これらの中でも、特に、環状オレフィン系樹脂を主とするものが好ましい。ベースポリマーとして環状オレフィン系樹脂を用いることにより、優れた光伝送性能や耐熱性を有する中心部71aを形成することができる。
 さらに、環状オレフィン系樹脂としては、耐熱性、透明性等の観点から、ノルボルネン系樹脂を使用することが好ましい。また、ノルボルネン系樹脂は、高い疎水性を有するため、吸水による寸法変化等を生じ難い中心部71aを形成することができる。
 一方、モノマーとしては、ベースポリマーより屈折率が高いものであれば如何なるものも使用することができる。好ましくは、芳香環を有する環状オレフィンモノマーである。芳香環を有する環状オレフィンモノマーとしては、特に限定されないが、例えば、オキセタン(3-エチル-3-(フェノキシメチル)オキセタン;POX)、フェニルエチルノルボルネン、およびダイフェノールノルボルネン等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 なお、特に好ましいベースポリマーとモノマーとの組み合わせとしては、ノルボルネン系樹脂と、上記オキセタンとの組み合わせや、ノルボルネン系樹脂と、上記フェニルエチルノルボルネンとの組み合わせ等が挙げられる。これらの組み合わせによれば、特に優れた光伝送性能や耐熱性を有する中心部71aを形成することができる。
 <2> 次に、発光素子4および発光素子用IC40を配線基板3a上に搭載(接合)する。一方、受光素子5および受光素子用IC50を配線基板3b上に搭載(接合)する。
 次いで、発光部411がミラー23aに対応するように、発光素子4および発光素子用IC40を搭載した配線基板3aを位置決めしつつ、光導波路基板2の上面に接着剤を用いて接合する。
 このとき、発光素子4、配線基板3aおよび光導波路基板2により、空隙が画成されるので、この空隙に、前述した感光性樹脂組成物70を充填する。発光素子4と配線基板3aとの間には、バンプ42同士の間に隙間が存在するため、この隙間から空隙内に感光性樹脂組成物70を充填することが可能である。
 なお、発光素子4および発光素子用IC40を搭載した配線基板3aを、光導波路基板2の上面に接合する前に、光スルーホール33aおよび発光素子4の下部空間内に、予め、感光性樹脂組成物70を充填しておいてもよい。
 <3> 次に、この状態で、コア部21のミラー23aと反対側(コア部21のミラー23b側)より感光用光ELを導入する。この感光用光ELを、ミラー23aで反射(光路変更)させた後、感光性樹脂組成物70に透過させ、発光素子4の発光部411を包含する領域に照射する(図3(a)参照)。これにより、感光性樹脂組成物70の感光用光ELが透過した透過領域では、屈折率が高くなり、中心部(導光部)71aが形成され、感光用光ELが透過しない非透過領域が中心部71aより屈折率の低い外周部(低屈折率部)72aとなる。
 なお、感光用光ELは、ミラー23bの上方(受光素子5側)から照射し、ミラー23bで反射(屈曲)させてコア部21内に導入してもよく、ミラー23bの左方(ミラー23bを介してミラー23aと対峙する側)からミラー23bを透過させてコア部21内に導入してもよい。
 この場合、感光用光ELの光路と、発光素子4からの光Lの光路とをほぼ一致させることができるため、中心部71aを発光部411に正確に対応させて形成することが可能となる。
 また、感光性樹脂組成物70として、前述したような特殊な配合の樹脂組成物を用いると、次のような効果も得られる。
 この場合、透過領域内の中心軸(光軸)およびその近傍からモノマーの反応(ペースポリマーの架橋、モノマーの重合等)が始まるため、透過領域内においても、モノマー濃度の差が生じ、中心軸に向かって未反応のモノマーが集まる。また、これとほぼ同時に、非透過領域からは、透過領域に未反応のモノマーが集まってくる。このようなことから、形成された中心部71aにおいては、中心軸から外周部72aに向かって連続的に低くなるような屈折率分布が形成される。
 したがって、このような中心部71aでは、その中心軸および近傍において、光が集中的に導光(伝送)されるようになる。このため、中心部71aから外周部72aへの光の漏出が低減され、光の伝送損失をより確実に防止することができる。
 ここで、用いる感光用光ELの波長は、発光素子4が発する光の波長と異なるのが好ましい。これにより、光導波路モジュール1を使用している際に、充填部7a、7b内で感光性樹脂組成物70の屈折率の変化が生じるのを防止することができる。その結果、光導波路モジュール1の光通信における特性が変化するのを防止して、その信頼性を高めることができる。
 具体的には、感光用光ELの波長は、400nm以上であるのが好ましく、400~500nm程度であるのがより好ましい。
 また、本実施形態では、感光用光ELを、コア部21のミラー23aと反対側より導入する構成としている。これにより、感光用光ELは、ミラー23aにまで到達し、その後、ミラー23aで前記空隙に充填された感光性樹脂組成物70に向かって反射(光路変更)される。ここで、感光用光ELは、コア部21内を反射しつつミラー23aにまで到達するため、ミラー23aに到達する際の入射角は一定のものではない。そのため、ミラー23aで反射された感光用光ELは、図3に示すように、感光性樹脂組成物70を透過する際に、発散するような光路をとる。そのため、形成される中心部71aは、図2に示すような逆円錐台形状をなすものとなる。
 <4> 一方、光スルーホール33bおよび受光素子5の下部空間に、感光性樹脂組成物70を充填し、感光性樹脂組成物70に対して、感光用光ELを照射する(図3(b)参照)。これにより、透過領域が中心部(導光部)71bとなり、非透過領域が外周部(低屈折率部)72bとなる。
 本実施形態では、受光素子5(受光部511)に向かって集光するような感光用光ELを用いる。これにより、図2に示すような円錐台形状の中心部71bを形成することができる。
 <5> 次に、受光部511がミラー23bに対応するように、受光素子5および受光素子用IC50を搭載し、充填部7bが形成された配線基板3bを位置決めしつつ、光導波路基板2の上面に接着剤を用いて接合する(図3(c)参照)。
 なお、光スルーホール33bおよび受光素子5の下部空間への中心部71bおよび外周部72bの形成は、前記工程<4>、<5>の他、以下のようにして形成することができる。
 すなわち、まず、光スルーホール33bおよび受光素子5の下部空間に、感光性樹脂組成物70を充填した状態で、受光部511がミラー23bに対応するように、受光素子5および受光素子用IC50を搭載し、充填部7bが形成された配線基板3bを位置決めしつつ、光導波路基板2の上面に接着剤を用いて接合する。
 次いで、ミラー23bを介して、レンズ等を用いて集光された感光用光ELを感光性樹脂組成物70に対して照射することにより、透過領域である中心部71bと、非透過領域である外周部72bを形成させる。
 かかる工程によっても、光スルーホール33bおよび受光素子5の下部空間に中心部71bおよび外周部72bを形成することができる。
 以上のような工程を経て、光導波路モジュール1が製造される。
 <第2実施形態>
 次に、本発明の光導波路モジュールの第2実施形態について説明する。
 図4は、第2実施形態の光導波路モジュールの発光素子側の部分を拡大して示す縦断面図である。
 以下、第2実施形態の光導波路モジュールについて、第1実施形態の光導波路モジュールとの相違点を中心に説明し、同様の事項については、その説明を省略する。
 第2実施形態の光導波路モジュール1では、光スルーホール33aの直下の部分(各層)が除去されていること以外は、前記第1実施形態の光導波路モジュール1と同様である。
 すなわち、図4に示すように、光スルーホール33aに対応する接着剤層6、光導波路基板2の保護層29および上側のクラッド部22が除去され、この除去部分にも充填部7aが形成されている。各層の除去は、例えば、レーザー加工等により容易に行うことができる。
 したがって、第2実施形態では、中心部71aは、その上端が発光部411に接触し、その下端が、コア部21に接触している。
 このような構成においても、前記第1実施形態と同様の作用・効果を得ることができる。特に、第2実施形態では、発光素子4からの光が透過しなければならない層の数が減少する。その結果、各層を透過する際の光の吸収、反射等がなくなるため、光の伝送損失をより低減することが可能となる。
 また、充填部7aは、発光素子4の下部空間内から、配線基板3aを貫通して、光導波路基板2内に至って設けられることになるため、発光素子4および配線基板3aを光導波路基板2に対してピン止めするような効果も得られる。これにより、発光素子4および配線基板3aの光導波路基板2に対する位置ズレを防止することができ、さらなる光導波路モジュール1の信頼性の向上に寄与する。
 なお、除去する層は、本実施形態のように、接着剤層6、保護層29および上側のクラッド部22の3層を除去する場合に限らず、少なくとも上側の1層が除去されていれば良く、例えば、接着剤層6の1層であっても良く、接着剤層6および保護層29の2層であってもよい。
 <第3実施形態>
 次に、本発明の光導波路モジュールの第3実施形態について説明する。
 図5は、第3実施形態の光導波路モジュールの発光素子側の部分を拡大して示す縦断面図である。
 以下、第3実施形態の光導波路モジュールについて、第1および2実施形態の光導波路モジュールとの相違点を中心に説明し、同様の事項については、その説明を省略する。
 第3実施形態の光導波路モジュール1では、光導波路基板2の構成が異なること以外は、前記第2実施形態の光導波路モジュール1と同様である。
 すなわち、図5に示すように、その上面(光素子4側の面)からコア部21を超えて、下面近傍に至るまでの部分を欠損させることにより形成された欠損部28aを備える。かかる構成の光導波路基板2において、少なくともコア部21の欠損部28aに臨む面は、光を反射するミラー(光の光路を変更する光路変更部)23aを構成している。
 また、ミラー23aの表面(ミラー面)には、反射膜231aが成膜されている。これにより、発光素子4からの光Lを反射膜231aで確実に反射することができる。一方、前述したように、中心部71aを形成する際には、感光用光ELを反射膜231aで確実に反射することができる。この反射膜231aとしては、例えば、Au、Ag、Al等の金属膜が好ましく用いられる。
 第3実施形態では、欠損部28a内に充填部7aが形成されており、中心部71aは、その上端が発光部411に接触し、その下端が、ミラー23a(反射膜231a)に接触している。
 このような構成においても、前記第1および2実施形態と同様の作用・効果を得ることができる。特に、第3実施形態では、発光素子4からの光Lは、中心部71a内を反射膜231aにまで直接導かれる。その結果、各層を透過する際の光の吸収、反射等がなくなるため、光の伝送損失をさらに低減することが可能となる。
 また、充填部7aとコア部21とが直接接触する面(図5中、左側の面)は、コア部21の中心軸Ocに対してほぼ垂直(90°±10°、好ましくは90°±5°、より好ましくは90°±3°)であるのが好ましい。これにより、当該面において、中心部71aを形成する際の感光用光ELや、発光素子4からの光Lが、屈折したり反射したり等するのを防止することができる。その結果、高い寸法制度で中心部71aを形成することや、光の伝送損失を低減することが可能である。
 なお、このような第2および第3実施形態の構成は、受光素子5側に適用することもできる。
 本発明の光導波路モジュールは、光信号と電気信号の双方の信号処理を行ういかなる電子機器にも適用可能であるが、例えば、ルータ装置、WDM装置、携帯電話、ゲーム機、パソコン、テレビ、ホーム・サーバー等の電子機器類への適用が好適である。これらの電子機器では、いずれも、例えばLSI等の演算装置とRAM等の記憶装置との間で、大容量のデータを高速に伝送する必要がある。したがって、このような電子機器が本発明の光導波路モジュールを備えることにより、電気配線に特有なノイズ、信号劣化等の不具合が解消されるため、その性能の飛躍的な向上が期待できる。
 さらに、光導波路部分では、電気配線に比べて発熱量が大幅に削減される。このため、基板内の集積度が高められるとともに、冷却に要する電力を削減することができ、電子機器全体の消費電力を削減することができる。
 以上、本発明の光導波路モジュール、光導波路モジュールの製造方法および電子機器の実施形態について説明したが、本発明は、これに限定されるものではない。
 例えば、光導波路モジュールを構成する各部は、同様の機能を発揮し得る任意の構成のものと置換することができる。また、任意の構成物が付加されていてもよい。
 また、本発明の光導波路モジュールでは、前記第1~第3実施形態の任意の構成を組み合わせることもできる。
 また、前記各実施形態では、発光素子および受光素子がそれぞれ1つずつ設けられた構成について説明したが、発光素子および受光素子は、それぞれ複数設けられていてもよい。この場合、光導波路には、複数のコア部が設けられる。
 また、前記各実施形態では、中心部(導光部)が円錐台形状をなしている場合、すなわち、中心部の横断面形状が円形の場合について示したが、これに限定されない。中心部の横断面形状は、楕円形、長円形、正方形、四角形、帯状、三角形、五角形、六角形等であってもよい。
 本発明によれば、光路の途中に従来形成されていた空隙部分に、導光部を設けたので、光通信における光の伝送損失を特に小さくすることができる。このため、信頼性の高い光導波路モジュールおよび電子機器が得られる。
 また、上記導光部は、感光性樹脂組成物を充填後、予め形成された光導波路のコア部に導入された感光用光を、光路変更部を介して感光性樹脂組成物に照射することにより形成されるので、導光部を発光部に正確に対応させて形成することが容易である。
 1        光導波路モジュール
 2        光導波路基板
 20       光導波路
 21       コア部
 22       クラッド部
 23a、23b  ミラー
 231a     反射膜
 28a、28b  欠損部
 29       保護層
 3a、3b    配線基板
 31       基部
 32       金属層
 33a、33b  光スルーホール
 4        発光素子
 41       素子本体
 411      発光部
 42       バンプ
 40       発光素子用IC
 401      素子本体
 402      バンプ
 5        受光素子
 51       素子本体
 511      受光部
 52       バンプ
 50       受光素子用IC
 501      素子本体
 502      バンプ
 6        接着剤層
 7a、7b    充填部
 71a、71b  中心部
 72a、72b  外周部
 70       感光性樹脂組成物
 L        光
 EL       感光用光
 Oa、Ob、Oc 中心軸
 θa、θb    角度

Claims (13)

  1.  光を伝送するコア部と、前記光の光路を変更する光路変更部とを備える光導波路基板と、
     該光導波路基板の一方の面側に設けられ、発光部または受光部を備える光素子と、
     前記発光部または受光部に対応して設けられ、前記光素子と前記光路変更部との間で前記光を導く導光部とを有し、
     前記導光部は、その中心軸に対してほぼ垂直な方向での断面の面積が、前記中心軸に沿った方向で変化していることを特徴とする光導波路モジュール。
  2.  前記導光部は、その一端部が前記発光部または受光部に接触している請求項1に記載の光導波路モジュール。
  3.  前記導光部は、その他端部が前記光路変更部に接触している請求項1または2に記載の光導波路モジュール。
  4.  前記光導波路基板は、その一部を前記コア部に至るまで欠損させることにより形成された欠損部を備え、
     前記光路変更部は、前記コア部の中心軸に対して傾斜し、少なくとも前記コア部の前記欠損部に臨む面で構成されている請求項1ないし3のいずれかに記載の光導波路モジュール。
  5.  前記面に金属膜を備える請求項4に記載の光導波路モジュール。
  6.  前記導光部の外周部に設けられ、前記導光部より屈折率が低い低屈折率部を有する請求項1ないし5のいずれかに記載の光導波路モジュール。
  7.  前記コア部の中心軸と前記導光部の中心軸とのなす角度は、80~100°である請求項1ないし6のいずれかに記載の光導波路モジュール。
  8.  前記光素子は、受光部を備える受光素子であり、
     前記導光部は、その中心軸に対してほぼ垂直な方向での断面の面積が、前記受光部に向かって減少している請求項1ないし7のいずれかに記載の光導波路モジュール。
  9.  前記光素子は、発光部を備える発光素子であり、
     前記導光部は、その中心軸に対してほぼ垂直な方向での断面の面積が、前記光路変更部に向かって減少している請求項1ないし7のいずれかに記載の光導波路モジュール。
  10.  請求項9に記載の光導波路モジュールを製造する光導波路モジュールの製造方法であって、
     前記光導波路基板と、前記発光素子と、感光用光の作用により屈折率が高くなるよう変化する感光性樹脂組成物とを用意する第1の工程と、
     前記発光部が前記光路変更部に対応するように、前記発光素子を前記光導波路基板の一方の面側に位置決めする第2の工程と、
     前記位置決めした際に形成される空隙に、前記感光性樹脂組成物を充填した状態で、前記コア部の前記光路変更部と反対側より前記感光用光を導入し、前記光路変更部で光路変更させた後、前記感光性樹脂組成物を透過させ、前記発光素子の前記発光部を包含する領域に照射する第3の工程とを有し、
     該第3の工程において、前記感光用光として、前記光路変更部で光路変更された後に発散するような条件の光を導入し、前記感光性樹脂組成物の前記感光用光が透過した透過領域内において、前記感光性樹脂組成物を反応させて、前記感光用光が透過しない非透過領域より屈折率を高めることにより、前記導光部を形成することを特徴とする光導波路モジュールの製造方法。
  11.  前記感光用光の波長は、前記発光素子が発する前記光の波長と異なる請求項10に記載の光導波路モジュールの製造方法。
  12.  前記感光性樹脂組成物は、ベースポリマーと、該ベースポリマーより屈折率の高いモノマーとを含み、前記透過領域内において、前記モノマーの反応を進行させることにより、前記非透過領域から、未反応の前記モノマーを前記透過領域に拡散させ、結果として、前記透過領域の屈折率を前記非透過領域の屈折率より高くして、前記導光部を形成する請求項10または11に記載の光導波路モジュールの製造方法。
  13.  請求項1ないし9のいずれかに記載の光導波路モジュールを備えることを特徴とする電子機器。
PCT/JP2011/072093 2010-10-01 2011-09-27 光導波路モジュール、光導波路モジュールの製造方法および電子機器 WO2012043572A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010224415A JP2013253996A (ja) 2010-10-01 2010-10-01 光導波路モジュール、光導波路モジュールの製造方法および電子機器
JP2010-224415 2010-10-01

Publications (1)

Publication Number Publication Date
WO2012043572A1 true WO2012043572A1 (ja) 2012-04-05

Family

ID=45893011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072093 WO2012043572A1 (ja) 2010-10-01 2011-09-27 光導波路モジュール、光導波路モジュールの製造方法および電子機器

Country Status (3)

Country Link
JP (1) JP2013253996A (ja)
TW (1) TW201227019A (ja)
WO (1) WO2012043572A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11754794B2 (en) 2021-05-25 2023-09-12 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device including optical through via and method of making

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098863A (ja) * 2000-09-26 2002-04-05 Kyocera Corp 光モジュール
JP2006276892A (ja) * 2006-07-07 2006-10-12 Mitsubishi Electric Corp 光路変換コネクタの製造方法
JP2006330117A (ja) * 2005-05-23 2006-12-07 Sumitomo Bakelite Co Ltd 光導波路構造体
JP2006351718A (ja) * 2005-06-14 2006-12-28 Nec Corp 光素子及びそれを用いた光モジュール
JP2010090328A (ja) * 2008-10-10 2010-04-22 Sumitomo Bakelite Co Ltd 感光性樹脂組成物、光導波路フィルムおよび光導波路フィルムの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098863A (ja) * 2000-09-26 2002-04-05 Kyocera Corp 光モジュール
JP2006330117A (ja) * 2005-05-23 2006-12-07 Sumitomo Bakelite Co Ltd 光導波路構造体
JP2006351718A (ja) * 2005-06-14 2006-12-28 Nec Corp 光素子及びそれを用いた光モジュール
JP2006276892A (ja) * 2006-07-07 2006-10-12 Mitsubishi Electric Corp 光路変換コネクタの製造方法
JP2010090328A (ja) * 2008-10-10 2010-04-22 Sumitomo Bakelite Co Ltd 感光性樹脂組成物、光導波路フィルムおよび光導波路フィルムの製造方法

Also Published As

Publication number Publication date
JP2013253996A (ja) 2013-12-19
TW201227019A (en) 2012-07-01

Similar Documents

Publication Publication Date Title
JP5493626B2 (ja) 光電気混載基板および電子機器
US9184840B2 (en) Optical module
JP5725034B2 (ja) 光導波路構造体および電子機器
JP5696538B2 (ja) 光電気混載基板の製造方法
JP5277874B2 (ja) 光電気混載基板および電子機器
JP6003282B2 (ja) 光配線部品および電子機器
JP5760365B2 (ja) 光導波路モジュールおよび電子機器
JP7031125B2 (ja) 光導波路、光導波路接続体および電子機器
JP6251989B2 (ja) 光電気混載基板および電子機器
JP5625706B2 (ja) 積層体の製造方法
WO2012043572A1 (ja) 光導波路モジュール、光導波路モジュールの製造方法および電子機器
JP2010192883A (ja) 光電気混載基板および光電気混載基板の製造方法
JP6364884B2 (ja) 光導波路、光電気混載基板、光モジュールおよび電子機器
JP2012078607A (ja) 光導波路モジュール、光導波路モジュールの製造方法および電子機器
KR20100071668A (ko) 발광 소자 및 광결합 모듈
JP2015106099A (ja) 光配線部品、光モジュール、光電気混載基板および電子機器
JP5760628B2 (ja) 光導波路、光電気混載基板および電子機器
JP2016012006A (ja) 光導波路、光電気混載基板および電子機器
JP2011028128A (ja) 光導波路層、光導波路構造体、光電気混載基板の製造方法、光電気混載基板および電子機器
JP2012194286A (ja) 光導波路、光導波路構造体、光導波路構造体の製造方法および電子機器
JP5703922B2 (ja) 光導波路、光電気混載基板および電子機器
JP7031124B2 (ja) 光導波路、光導波路接続体および電子機器
JP2012194285A (ja) 光導波路、評価方法、光導波路構造体および電子機器
JP5799592B2 (ja) 光導波路、光電気混載基板および電子機器
WO2013191175A1 (ja) 光導波路、光配線部品、光モジュール、光電気混載基板および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11829125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP