WO2012043274A1 - ボイルオフガス再液化装置 - Google Patents

ボイルオフガス再液化装置 Download PDF

Info

Publication number
WO2012043274A1
WO2012043274A1 PCT/JP2011/071216 JP2011071216W WO2012043274A1 WO 2012043274 A1 WO2012043274 A1 WO 2012043274A1 JP 2011071216 W JP2011071216 W JP 2011071216W WO 2012043274 A1 WO2012043274 A1 WO 2012043274A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
boil
refrigerant
bog
compressed
Prior art date
Application number
PCT/JP2011/071216
Other languages
English (en)
French (fr)
Inventor
岡 勝
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP11828834.9A priority Critical patent/EP2623414A4/en
Priority to KR1020127033239A priority patent/KR20130031843A/ko
Priority to CN201180032758.8A priority patent/CN103097237B/zh
Publication of WO2012043274A1 publication Critical patent/WO2012043274A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0067Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0208Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0247Different modes, i.e. 'runs', of operation; Process control start-up of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0267Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using flash gas as heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0282Steam turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0284Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0296Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0298Safety aspects and control of the refrigerant compression system, e.g. anti-surge control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/24Multiple compressors or compressor stages in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids

Definitions

  • the present invention relates to a boil-off gas reliquefaction device.
  • the boil-off gas reliquefaction device In the boil-off gas reliquefaction device, the boil-off gas is cooled by the cold heat of the refrigerant that changes its state along the refrigeration cycle and is liquefied by being condensed.
  • a boil-off gas reliquefaction device installed in an LNG ship is required to have a compact structure so as to fit in a narrow space on the ship.
  • the boil-off gas reliquefaction apparatus has been devised in various ways to improve the liquefaction efficiency.
  • the boil-off gas supplied to the refrigeration cycle unit is supplied twice by two compressors. While improving the heat exchange efficiency with the refrigerant that is compressed and circulated through the refrigeration cycle, there is no doubt in coexistence with space saving in the entire apparatus.
  • Main equipment related to cooling of the boil-off gas of the boil-off gas reliquefaction apparatus is generally arranged in the cargo equipment room at the center of the hull.
  • the refrigerant compressor constituting the refrigeration cycle unit is a room temperature device and does not come into direct contact with the boil-off gas and requires a large amount of power. Is preferred.
  • the intermediate cooler for cooling the compressed refrigerant is large and requires a large amount of cooled fresh water, it is preferable to arrange the intermediate cooler in the engine room where the cooled fresh water is produced.
  • the refrigeration cycle section has a refrigerant compressor and an intermediate cooler associated therewith arranged in the engine room, and only the remaining part to be cooled is arranged in the cargo equipment room.
  • the boil-off gas is cooled to near the condensation temperature before being supplied to the liquefaction section (condensing section) of the boil-off gas reliquefaction device.
  • coolant in a refrigerating cycle part is used for this cooling, it is necessary to ensure the cold of a refrigerant
  • the liquefaction efficiency of the refrigeration cycle section is reduced by the amount of increase in cold heat, and each device constituting the refrigeration cycle section is enlarged.
  • the booster compressor further compresses the refrigerant compressed by the refrigerant compressor.
  • the expander of the cold box is used.
  • This intercooler must be placed close to the cold box. Since a large intercooler is installed near the cold box, it is difficult to place it in the cargo equipment room, which is a relatively small space. In particular, an existing LNG ship in service has only a limited space for a cargo equipment room, so it is impossible to remodel it with a boil-off gas reliquefaction device.
  • the precooler and the condenser are made into the multiple heat exchange process of 3 or more, these designs are difficult and there exists a possibility that the reliability of a design may be insufficient.
  • the present invention reduces the heat load of compressed gas pre-cooling to make a small and highly efficient refrigeration cycle unit, and devise the arrangement of the equipment, so that the boil-off gas re-installation that can be installed even in an existing LNG ship is achieved.
  • An object is to provide a liquefaction apparatus.
  • the present invention employs the following means. That is, the first aspect of the present invention is a gas supply having a gas supply line that supplies boil-off gas generated in a tank to a gas compression unit and a compressed gas conveyance line that conveys boil-off gas compressed by the gas compression unit. And the refrigerant cooled by the first intercooler after being compressed by the refrigerant compressor, are expanded to a lower temperature state by an expander, and the boil-off gas conveyed to the compressed gas conveyance line is cooled by the refrigerant.
  • a boil-off gas reliquefaction apparatus comprising a condensing unit for condensing and condensing the gas supply unit, the boil-off gas passing through the compressed gas transport line upstream of the condensing unit. And a boil-off gas reliquefaction device provided with a heat exchanging section for exchanging heat between the boil-off gas passing through the gas supply line It is.
  • the refrigerant in the refrigeration cycle unit is compressed by the refrigerant compression unit, cooled by the first intercooler that is an intermediate cooler, and then supplied to the expander.
  • This refrigerant is brought into a low temperature state necessary for liquefaction of the boil-off gas by being expanded and reduced by an expander.
  • the expander takes out the force when the refrigerant expands as a rotational force, and rotates the booster compressor via a directly connected shaft, for example.
  • This refrigerant is returned to the booster compressor via the condenser.
  • the boil-off gas generated in the tank supplied via the gas supply line is compressed by the gas compression unit, and is conveyed so as to pass through the condensation unit via the compressed gas conveyance line.
  • a heat exchanging unit that performs heat exchange between the boil-off gas passing through the compressed gas conveying line and the boil-off gas passing through the gas supply line is provided on the upstream side of the condensing unit.
  • the boil-off gas passing through the compressed gas transport line brought to a high temperature is cooled (pre-cooled) by the boil-off gas having a low temperature passing through the gas supply line and introduced into the condensing unit.
  • the boil-off gas passing through the compressed gas conveyance line is cooled by the boil-off gas before being compressed by the gas compression unit, in other words, pre-cooled by the cold heat of the boil-off gas itself.
  • the cooling heat of the boil-off gas passing through the compressed gas transfer line is not limited to the boil-off gas passing through the gas supply line, and other ones may be added.
  • the boil-off gas introduced into the condensing unit for example, cooled to near the condensing temperature, is cooled and condensed by a low-temperature refrigerant passing through the condensing unit.
  • the boil-off gas that has been compressed by the gas compression section and passed through the compressed gas transport line that has been brought to a high temperature state is cooled by the boil-off gas before being compressed by the gas compression section, in other words, by the cold heat of the boil-off gas itself. Since it is pre-cooled, the burden on the refrigeration cycle unit can be reduced by at least the amount of heat. Thereby, since each apparatus which comprises a refrigerating-cycle part can be made small, a boil off gas reliquefaction apparatus can be reduced in size.
  • the refrigeration cycle unit includes a booster compressor that is driven by the expander and compresses the refrigerant downstream of the condensing unit, and is compressed by the booster compressor and supplied to the refrigerant compression unit. And a second intercooler for cooling the refrigerant.
  • the refrigerant compressed by the booster compressor is further compressed by the refrigerant compression section and supplied to the expander, so that the refrigerant compressed by the booster compressor is cooled.
  • the second intercooler is interposed between the refrigerant compressor and the booster compressor. Therefore, since the second intercooler can be disposed close to the refrigerant compression unit, for example, when the refrigerant compression unit is installed in the engine room, the second intercooler can also be installed in the engine room. . In this way, since the large second intercooler can be installed in a relatively large engine room, it is necessary to install a boil-off gas reliquefaction device even for an existing LNG ship with a narrow cargo equipment room. Can do. Also, since the fresh water supply system is installed in the engine room, if both the first and second intercoolers of the refrigeration cycle unit are installed in the engine room, their piping can be simplified, Cooling efficiency can be improved.
  • a gas supply line having a gas supply line for supplying boil-off gas generated in the tank to the gas compression unit, and a compressed gas conveyance line for conveying the boil-off gas compressed by the gas compression unit;
  • the refrigerant that has been compressed by the refrigerant compressor and then cooled by the first intercooler is expanded and depressurized by an expander to lower the temperature, and the boil-off gas that is conveyed through the compressed gas conveyance line is cooled by the refrigerant.
  • a boil-off gas reliquefaction device comprising a condensing unit for condensing, wherein the refrigerating cycle unit is driven by the expander downstream of the condensing unit to compress the refrigerant.
  • a booster compressor and a second compressor that cools the refrigerant that is compressed by the booster compressor and that is supplied to the refrigerant compressor.
  • a BOG reliquefaction apparatus and intercooler are provided.
  • the refrigeration cycle section it is compressed by a booster compressor and cooled by a second intercooler that is an intermediate cooler.
  • This refrigerant is compressed by the refrigerant compressor, cooled by the first intercooler that is an intermediate cooler, and then supplied to the expander.
  • This refrigerant is decompressed by an expander and expanded to a lower temperature state.
  • the expander takes out the force when the refrigerant expands as a rotational force, and rotates the booster compressor via a directly connected shaft, for example.
  • the refrigerant having a lower temperature is returned to the booster compressor via the condenser.
  • the boil-off gas generated in the tank supplied via the gas supply line is compressed by the gas compression unit, and is conveyed so as to pass through the condensation unit via the compressed gas conveyance line.
  • the refrigerant compressed by the booster compressor is further compressed by the refrigerant compression unit and supplied to the expander. Therefore, the refrigerant compressed by the booster compressor is cooled.
  • the second intercooler is interposed between the refrigerant compressor and the booster compressor. Therefore, since the second intercooler can be disposed close to the refrigerant compression unit, for example, when the refrigerant compression unit is installed in the engine room, the second intercooler can also be installed in the engine room. . In this way, since the large second intercooler can be installed in a relatively large engine room, it is necessary to install a boil-off gas reliquefaction device even for an existing LNG ship with a narrow cargo equipment room. Can do. Also, since the fresh water supply system is installed in the engine room, if both the first and second intercoolers of the refrigeration cycle unit are installed in the engine room, their piping can be simplified, Cooling efficiency can be improved.
  • a slow heat generator for spraying liquefied natural gas to cool the boil-off gas is provided on the upstream side of the heat exchange section of the gas supply line.
  • boil-off passing through the gas supply line is performed.
  • the temperature of the gas becomes relatively high, and the cooling heat in the heat exchange section is insufficient.
  • the heat exchanger is provided by the heat sink. The boil-off gas supplied to can be cooled.
  • the gas compression unit may be divided into two stages.
  • the first-stage compression of the gas compression unit may be performed by a fuel compressor that supplies fuel to the boiler.
  • the remodeling work can be greatly reduced.
  • the compressor for fuel has a relatively large capacity
  • the boil-off gas supplied to the compressor is warmed by the heat exchanging unit and its volume is increased, so that it can be used without exceeding the capacity. Therefore, since the existing fuel compressor can be used effectively with the existing LNG ship in service, the range of the remodeling work can be reduced and the remodeling can be performed at low cost.
  • the boil-off gas that has been compressed by the gas compression section and passes through the compressed gas transport line that has been brought to a high temperature state is cooled by the boil-off gas before being compressed by the gas compression section. Therefore, it is possible to reduce the size of each device, and to downsize the boil-off gas reliquefaction device.
  • the refrigerant compressed by the booster compressor is further compressed by the refrigerant compression section and supplied to the expander, so the second intercooler is arranged near the refrigerant compression section.
  • the boil-off gas reliquefaction device can be installed even in an existing LNG ship in service with a narrow cargo equipment room.
  • FIG. 1 is a block diagram showing an overall schematic configuration of a boil-off gas reliquefaction device 1 of an LNG ship.
  • the LNG ship includes a plurality of cargo tanks (not shown) that store liquefied natural gas (hereinafter sometimes referred to as LNG).
  • cargo tanks such as a moss-type tank having a substantially spherical shape.
  • the boil-off gas reliquefaction apparatus 1 includes a refrigeration cycle unit 3 and a liquefaction processing unit (gas supply unit) 5.
  • the refrigeration cycle unit 3 liquefies the cooling heat of the refrigerant circulated through the refrigerant pipe 7 (for example, nitrogen is used as the refrigerant. In addition, for example, hydrogen and helium are targets). 5 is supplied.
  • the refrigeration cycle unit 3 mainly includes a refrigerant compressor (refrigerant compression unit) 9, a refrigerant precooler 11, an expander 13, a supercooler 15, a condenser (condensing unit) 17, and a booster compressor 19. It is provided as an element.
  • the refrigerant pipe 7 is connected in the order of the refrigerant compressor 9, the refrigerant precooler 11, the expander 13, the supercooler 15, the condenser 17, the refrigerant precooler 11, and the booster compressor 19 to constitute a closed system.
  • the refrigerant compressor 9 is a two-stage centrifugal compressor driven by the steam turbine 21.
  • a motor drive having a compressor speed control function may be used in a ship without a driving steam facility (diesel propulsion ship or the like.
  • the refrigerant compressor 9 is not limited to this type, and a suitable type such as a screw compressor can be used as long as it generates a differential pressure in the refrigerant pipe 7.
  • the refrigerant compressor 9 sucks and compresses a low-temperature / low-pressure gaseous refrigerant to form a high-temperature / high-pressure gaseous refrigerant.
  • the refrigerant compressor 9 has an intercooler 23.
  • a first aftercooler (first intercooler) 25 is provided at the outlet of the refrigerant compressor 9.
  • a pipe having a refrigerant buffer tank 27 is connected before and after the refrigerant compressor 9.
  • the refrigerant precooler 11 cools the refrigerant introduced from the first aftercooler 25 by the refrigerant introduced from the condenser 17. Since the refrigerant precooler 11 exchanges heat only between the refrigerant and the refrigerant, the structure is simpler and easier to design than those of three or more multiple heat exchange processes. Thereby, the reliability of design can be improved.
  • the expander 13 expands the refrigerant whose temperature has been lowered through the refrigerant precooler 11 by decompression to form a low-temperature and low-pressure gaseous refrigerant.
  • the booster compressor 19 connected coaxially with the expander 13 is rotationally driven by using the force when the refrigerant expands as a rotational force.
  • the low-temperature and low-pressure gaseous refrigerant from the expander 13 is sequentially sent to the supercooler 15, the condenser 17 and the refrigerant precooler 11 for heat exchange.
  • the booster compressor 19 compresses the refrigerant introduced from the refrigerant precooler 11, changes the refrigerant to a high temperature and high pressure, and supplies the refrigerant to the refrigerant compressor 9.
  • a second aftercooler (second intercooler) 29 is provided downstream of the booster compressor 19 and upstream of the refrigerant compressor.
  • a bypass pipe 31 is provided that is connected and disconnected by opening and closing of a valve.
  • the bypass pipe 31 is opened.
  • the liquefaction processing unit 5 is compressed by a fuel compressor 33 by a BOG supply pipe (gas supply line) 35 for supplying boil-off gas (hereinafter referred to as BOG) generated in a cargo tank (not shown) to the fuel compressor 33.
  • BOG boil-off gas
  • a BOG transport pipe (compressed gas transport line) 39 for transporting the BOG to the separator 37 and a reliquefied gas pipe 41 for sending the reliquefied LNG from the separator 37 to the cargo tank are provided.
  • the BOG supply pipe 35 is provided with a mist separator (slow heatr) 43 for cooling the BOG being conveyed.
  • the mist separator 43 is configured so that liquefied LNG stored in the lower portion of the separator 37 is selectively supplied. When LNG is supplied from the separator 37 to the mist separator 43, the BOG is cooled by the LNG.
  • the fuel compressor 33 is installed to supply fuel to the boiler. In the case of modification, it is installed. Two fuel compressors 33 having the same structure are arranged in parallel, and one of them is set as a spare in the event of a failure.
  • the fuel compressor 33 is configured to be driven by a motor.
  • the two fuel compressors 33 are provided with a free flow line 45 in which the fuel compressor 33 is not installed in parallel.
  • the free flow line 45 is provided with an on-off valve 47 that opens and closes.
  • a fuel pipe 49 for supplying natural gas as fuel to a boiler (not shown) is connected to the outlet of the fuel compressor 33 and the free flow line 45.
  • the fuel pipe 49 is provided with a gas heater 51 for heating the natural gas compressed by the fuel compressor 33.
  • LNG separately stored in a cargo tank may be gasified and supplied to the fuel compressor 33 and the free flow line 45.
  • the BOG conveying pipe 39 conveys BOG from the fuel compressor 33 to the separator 37 through the condensing unit 17. At this time, the condenser 17 cools and condenses the BOG with the refrigerant passing through the refrigerant pipe 7. Since the condenser 17 exchanges heat only between the refrigerant and the BOG, it has a simple structure and is easy to design as compared with those of three or more multiple heat exchange processes. Thereby, the reliability of design can be improved.
  • the BOG transfer piping 39 includes a BOG booster 53 that compresses the BOG, and a BOG aftercooler 55 that cools the BOG that has been compressed by the BOG booster 53 and is heated to, for example, fresh water.
  • the BOG booster 53 boosts a 160 kPaa BOG to 450 kPaa, for example, and an appropriate type such as a direct-cooling screw compressor is used if possible.
  • a precooler (heat exchanger) 57 is provided. Since the BOG precooler 57 exchanges heat only between the refrigerant and the BOG, the structure is simpler and easier to design than those of three or more multiple heat exchange processes. Thereby, the reliability of design can be improved. When the BOG passing through the BOG transfer pipe 39 is sufficiently cooled by the BOG precooler 57, the installation of the BOG aftercooler 55 may be omitted.
  • the BOG supply pipe 35 is provided with a bypass pipe 59 that is connected / disconnected by opening / closing a valve that bypasses the BOG precooler 57.
  • the BOG transported by the BOG transport pipe 39 is cooled and condensed by the refrigerant passing through the refrigerant pipe 7 in the condenser 17.
  • the condensed BOG is introduced into the separator 37 and separated into a liquid component and a gas component.
  • the reliquefied gas pipe 41 passes from the lower part of the separator 37 through the supercooler 15 and is connected to the cargo tank.
  • the reliquefied gas pipe 41 is provided with a reliquefied gas flow rate adjustment valve 61 on the downstream side of the supercooler 15.
  • a gas supply branch pipe 63 having a flow rate adjusting valve connected to the fuel pipe 49 from a position upstream of the mist separator 43 and the top of the separator 37 in the BOG supply pipe 35 is provided.
  • the gas supply branch pipe 63 is configured to cool the refrigerant supplied from the refrigerant compressor 9 to the expander 13 through the refrigerant precooler 11.
  • the expander 13, the refrigerant precooler 11, the condenser 17, the supercooler 15, and the BOG precooler 57 are housed in a compact in a cold box 65 having a heat insulating structure. Since the booster compressor 19 is rotationally driven by the expander 13, the booster compressor 19 is attached so as to protrude from the cold box 65.
  • the refrigerant compressor 9, the refrigerant buffer tank 27, the steam turbine 21, the intercooler 23, the first aftercooler 25, the second aftercooler 29, and the fuel compressor 33 are arranged in an engine room where a boiler is installed, and are cold box 65.
  • the separator 37 is installed in the cargo equipment room.
  • the refrigerant compressor 9 is driven by the steam turbine 21, and the low-temperature and low-pressure gaseous refrigerant introduced from the refrigerant pipe 7 is compressed in two stages to obtain a high-temperature and high-pressure gaseous refrigerant.
  • the refrigerant is cooled by the intercooler 23 between the first-stage compression and the second-stage compression.
  • This high-temperature and high-pressure gaseous refrigerant is cooled by the first aftercooler 25 and introduced into the refrigerant precooler 11.
  • the introduced gaseous refrigerant is cooled by the low-temperature and low-pressure gaseous refrigerant returning from the condenser 17.
  • This refrigerant is introduced into the expander 13 and expanded by decompression to be a lower temperature / low pressure gaseous refrigerant.
  • This low-temperature and low-pressure gaseous refrigerant passes through the supercooler 15 and the condenser 17 and cools it by giving the cold heat to the surroundings. Thereafter, the refrigerant is warmed by the refrigerant introduced into the expander 13 through the refrigerant precooler 11 and introduced into the booster compressor 19.
  • the refrigerant is compressed by the booster compressor 19 into a high-temperature and high-pressure gaseous refrigerant.
  • This high-temperature and high-pressure gaseous refrigerant is cooled by the second aftercooler 29 and sent to the refrigerant compressor 9.
  • the refrigerant introduced into the refrigerant compressor 9 is further heated to a high temperature and high pressure by the refrigerant compressor 9 and sent out.
  • the supercooler 15, the condenser 17, and the refrigerant precooler 11 through which the refrigerant pipe 7 passes provide cold heat.
  • BOG generated in the cargo tank is supplied by the fuel compressor 33 through the mist separator 43 and the BOG precooler 57 by the BOG supply pipe 35.
  • the mist separator 43 does not cool the BOG because LNG is not supplied during normal operation.
  • the BOG supply piping 35 is passed.
  • LNG reliquefied from the separator 37 is supplied to the mist separator 43, and the temperature of the BOG supplied to the BOG precooler 57 is reduced to a necessary temperature, for example, -120 ° C.
  • the BOG introduced into the fuel compressor 33 is compressed to 160 kPaa by the fuel compressor 33, for example.
  • the temperature of the BOG is approximately 55 ° C., for example.
  • the BOG is boosted to, for example, 450 kPaa by the BOG booster 53.
  • the temperature of the BOG is approximately 100 ° C., for example.
  • This BOG is cooled to approximately 40 ° C. by the BOG aftercooler 55 and introduced into the BOG precooler 57.
  • the BOG passing through the BOG supply pipe 35 is cooled to, for example, approximately ⁇ 110 ° C., that is, approximately saturated liquid state.
  • the BOG passing through the BOG supply pipe 35 is heated from approximately ⁇ 120 ° C. to approximately 30 ° C., for example.
  • this cooled BOG passes through the condenser 17, it is cooled and condensed by the low-temperature and low-pressure gaseous refrigerant flowing through the refrigerant pipe 7 of the refrigeration cycle section 3.
  • the condensed BOG is sent to the separator 37.
  • the separator 37 the condensed BOG is subjected to gas-liquid separation, and the reliquefied LNG liquid is stored in the lower part and the gas is stored in the upper part.
  • the lower LNG is supercooled by the supercooler 15 through the reliquefied gas pipe 41 and returned to the cargo tank.
  • the BOG is compressed twice by the fuel compressor 33 and the BOG booster 53 to a high pressure, so that heat exchange with the refrigeration cycle unit 3 can be performed efficiently. Thereby, size reduction of the refrigerating cycle part 3 can be achieved. Further, the BOG that has been compressed by the fuel compressor 33 and the BOG booster 53 and passed through the BOG conveyance pipe 39 that has been brought to a high temperature state is compressed by the fuel compressor 33 that passes through the BOG supply pipe 35 in the BOG precooler 57. Since it is cooled by the BOG, in other words, it is pre-cooled by the cold heat of BOG confidence, the burden on the refrigeration cycle unit 3 can be reduced by at least the amount of heat. Thereby, since each apparatus which comprises the refrigerating cycle part 3 can be made small, the boil off gas reliquefaction apparatus 1 can be reduced in size.
  • the refrigerant compressed by the booster compressor 19 is further compressed by the refrigerant compressor 9 and supplied to the expander 13.
  • the second aftercooler 29 to be cooled is interposed between the refrigerant compressor 9 and the booster compressor 19. Therefore, since the second aftercooler 29 can be disposed close to the refrigerant compressor 9, for example, when the refrigerant compressor 9 is installed in an engine room, the second aftercooler 29 can also be installed in the engine room. .
  • the boil-off gas reliquefaction apparatus 1 should be installed even in an existing LNG ship that has a narrow cargo equipment room. Can do. Since the fresh water supply system is installed in the engine room, when the intercooler 23, the first aftercooler 25, and the second aftercooler 29 of the refrigeration cycle unit 3 are installed in the engine room, their piping is simplified. And cooling efficiency can be improved. Thus, the boil-off gas reliquefaction apparatus 1 can be made small and highly efficient, and the installation space can be reduced. Therefore, for example, when the boil-off gas reliquefaction apparatus 1 is installed in an LNG ship that uses existing natural gas such as BOG as boiler fuel, the remodeling work can be greatly reduced. Moreover, even when applied to a new shipbuilding, design changes can be easily made.
  • the fuel compressor 33 has a relatively large capacity, but the BOG supplied thereto is warmed by the BOG precooler 57 and has increased in volume, so that it can be used without exceeding its capacity. . Therefore, since the existing fuel compressor 33 can be used effectively with the existing LNG ship in service, the range of the remodeling work can be reduced and the remodeling can be performed at low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Organic Chemistry (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

熱負荷を小さくし小型で高効率な冷凍サイクル部とし、かつ機器の配置を工夫し既存のLNG船でも設置し得るボイルオフガス再液化装置。BOG供給配管(35)、燃料用圧縮機(33)、BOG搬送配管(39)を有する液化処理部(5)と、冷媒圧縮機(9)からの冷媒をエキスパンダ(13)により一層低温とし、BOG搬送配管(39)を通るBOGを冷却する凝縮部(17)を有する冷凍サイクル部(3)とを有するボイルオフガス再液化装置(1)であって、液化処理部(5)には、凝縮部(17)の上流側にBOG搬送配管(39)を通るBOGとBOG供給配管(35)を通るBOGとの間で熱交換を行うBOGプレクーラ(57)が備えられ、冷凍サイクル部(3)には、凝縮部(17)の下流側にエキスパンダ(13)により駆動されるブースタコンプレッサ(19)と、ブースタコンプレッサ(19)からの冷媒を冷却する第二アフタクーラ(29)とを備える。

Description

ボイルオフガス再液化装置
 本発明は、ボイルオフガス再液化装置に関するものである。
 LNG船では、低温の液化天然ガスをカーゴタンクに大気圧で貯蔵し、運搬している。この液化天然ガス(LNG)はカーゴタンク内への入熱によって蒸発され、ボイルオフガスとしてカーゴタンク内の上部に溜る。この蒸発ガスで膨張した容積によりカーゴタンク内の圧力が増加するので、その蒸発ガスを連続的に抜き出して処理する必要がある。
 このボイルガスを有効に使うため、ほとんどLNG船では、ボイルオフガスをボイラ、ガス焚き内燃機関等の燃料とすることによって推進力や船内電力の足しに利用している。
 ところで、発生するボイルオフガスの量に対して燃料として求められる量が少ない場合、余剰のボイルオフガスは船外に排出する、すなわち、無駄に捨てることになる。特に、積荷状態で停泊あるいは低速航行を長期にわたって行う場合には、損失が大きくなる。
 この損失を抑制するものとして余剰のボイルオフガスを再液化してカーゴタンクに戻すボイルオフガス再液化装置を備える天然ガス運搬船(LNG船)が就航している(たとえば、特許文献1参照)。
 ボイルオフガス再液化装置では、ボイルオフガスは、冷凍サイクルに沿って状態を変えて循環される冷媒の冷熱によって冷却され、凝縮することによって再液化する。
 LNG船に設置されるボイルオフガス再液化装置では、船上の狭い空間に収まるようにするためコンパクトな構造であることが求められる。
 また、ボイルオフガス再液化装置は液化効率を向上させる工夫が種々行われているが、特許文献1に示されるように、冷凍サイクル部へ供給されるボイルオフガスを二個の圧縮機によって2回にわたり圧縮し、冷凍サイクル部を循環する冷媒との熱交換効率を向上させながらも、装置全体での省スペース化との両立に余念がない。
 ボイルオフガス再液化装置のボイルオフガスの冷却に関係する主要機器は、一般に船体中央部の貨物機器室に配置する。一方、冷凍サイクル部を構成する冷媒圧縮機は常温機器であり、ボイルオフガスと直接は接触せず、かつ、大きな動力を要するので、大動力駆動機類を設置しやすい機関室内に配置されるのが好ましい。また、圧縮された冷媒を冷却する中間冷却器は大型で、かつ、大量の冷却清水を要するので、この点でも冷却清水を製造している機関室に配置することが好ましい。
 特許文献1に示されるものでは、冷凍サイクル部は冷媒圧縮機およびこれに付随する中間冷却器は機関室に配置され、残りの冷却する部分のみを貨物機器室に配置している。これにより、たとえば、既存のボイルオフガス等の天然ガスをボイラの燃料として用いるLNG船に、ボイルオフガス再液化装置を設置する場合、改造工事を大幅に軽減することができるし、新造船に適用する場合でも、設計変更を容易に行うことができる。
特開2010-25152号公報
 ところで、ボイルオフガスは圧縮された後、ボイルオフガス再液化装置の液化部(凝縮部)へ供給されるまでに凝縮温度の近くまで冷却される。特許文献1に示されるものでは、この冷却に冷凍サイクル部における冷媒の冷熱が用いられているので、その分冷媒の冷熱を確保する必要がある。これにより、冷熱の増加分だけ冷凍サイクル部の液化効率が低下し、かつ、冷凍サイクル部を構成する各機器が大型化する。
 また、冷媒圧縮機で圧縮された冷媒をさらに圧縮するブースタコンプレッサが備えられているが、ブースタコンプレッサで圧縮された冷媒が冷却清水を用いた中間冷却器で冷却された後、コールドボックスのエキスパンダに供給されるようにされているので、この中間冷却器はコールドボックスの近くに配置せざるを得ない。大型の中間冷却器をコールドボックスの近くに設置するので、比較的狭い空間である貨物機器室への配置が難しい。特に、就航している既存のLNG船では貨物機器室が限られた空間しか備えられていないので、これにボイルオフガス再液化装置を設置するように改造することは無理がある。
 さらに、特許文献1に示されるものでは、プレクーラおよび凝縮器が3以上の多重熱交換プロセスとされているので、これらの設計が難しく、設計の信頼性が不足する恐れがある。
 本発明は、上記課題に鑑み、圧縮ガス予冷の熱負荷を小さくして小型で高効率な冷凍サイクル部とし、かつ、機器の配置を工夫し、たとえ既存のLNG船でも設置し得るボイルオフガス再液化装置を提供することを目的とする。
 上記課題を解決するために、本発明は以下の手段を採用する。
 すなわち、本発明の第1の態様は、ガス圧縮部にタンク内で発生したボイルオフガスを供給するガス供給ラインおよび該ガス圧縮部で圧縮されたボイルオフガスを搬送する圧縮ガス搬送ラインを有するガス供給部と、冷媒圧縮部で圧縮された後第一のインタークーラで冷却された冷媒を、エキスパンダによって膨張させ一層低温状態とし、この冷媒によって前記圧縮ガス搬送ラインに搬送される前記ボイルオフガスを冷却し凝縮させる凝縮部を有する冷凍サイクル部と、を備えているボイルオフガス再液化装置であって、前記ガス供給部には、前記凝縮部の上流側に、前記圧縮ガス搬送ラインを通る前記ボイルオフガスと前記ガス供給ラインを通る前記ボイルオフガスとの間で熱交換を行う熱交換部が備えられているボイルオフガス再液化装置である。
 冷凍サイクル部の冷媒は冷媒圧縮部で圧縮され、中間冷却器である第一のインタークーラによって冷却された後、エキスパンダに供給される。
 この冷媒は、エキスパンダによって膨張減圧されることによって、ボイルオフガスの液化に必要な低温状態とされる。エキスパンダは、この冷媒が膨張する時の力を回転力として取り出し、たとえば、直結された軸を介してブースタコンプレッサを回転させる。この冷媒は凝縮部を経由してブースタコンプレッサに戻される。
 一方、ガス供給部では、ガス供給ラインを経由して供給されたタンク内で発生したボイルオフガスがガス圧縮部で圧縮され、圧縮ガス搬送ラインを経由して凝縮部を通るように搬送される。
 このとき、凝縮部の上流側に、圧縮ガス搬送ラインを通るボイルオフガスとガス供給ラインを通るボイルオフガスとの間で熱交換を行う熱交換部が備えられているので、ガス圧縮部で圧縮されて高温状態とされた圧縮ガス搬送ラインを通るボイルオフガスは、ガス供給ラインを通る温度の低いボイルオフガスによって冷却(予冷)されて凝縮部に導入される。
 圧縮ガス搬送ラインを通るボイルオフガスは、ガス圧縮部で圧縮される前のボイルオフガスによって冷却され、言い換えると、ボイルオフガス自身の冷熱で予冷される。なお、圧縮ガス搬送ラインを通るボイルオフガスの冷熱としては、ガス供給ラインを通るボイルオフガスに限定されるものではなく、それ以外のものを付加するようにしてもよい。
 凝縮部に導入された、たとえば、凝縮温度近傍まで冷却されたボイルオフガスは、凝縮部を通る低温の冷媒によって冷却され、凝縮される。
 このように、ガス圧縮部で圧縮され、高温状態とされた圧縮ガス搬送ラインを通るボイルオフガスは、ガス圧縮部で圧縮される前のボイルオフガスによって冷却され、言い換えると、ボイルオフガス自身の冷熱で予冷されるので、少なくともその熱量の分だけ冷凍サイクル部の負担を減少させることができる。
 これにより、冷凍サイクル部を構成する各機器を小さくできるので、ボイルオフガス再液化装置を小型化することができる。
 前記第1の態様では、前記冷凍サイクル部には、前記凝縮部の下流側に、前記エキスパンダによって駆動され前記冷媒を圧縮するブースタコンプレッサと、該ブースタコンプレッサで圧縮され、前記冷媒圧縮部に供給される前記冷媒を冷却する第二のインタークーラとが備えられていてもよい。
 このようにすると、冷凍サイクル部では、ブースタコンプレッサで圧縮された冷媒が、さらに冷媒圧縮部によって圧縮されてエキスパンダへ供給されるようにされているので、ブースタコンプレッサで圧縮された冷媒を冷却する第二のインタークーラは、冷媒圧縮部とブースタコンプレッサとの間に介装されることになる。
 したがって、第二のインタークーラは冷媒圧縮部に近くに配置することができるので、冷媒圧縮部が、たとえば、機関室に設置される場合、第二のインタークーラも機関室に設置することができる。このように、大型の第二のインタークーラを比較的広い機関室に設置できるので、たとえ、貨物機器室が狭い就航している既存のLNG船であってもボイルオフガス再液化装置を設置することができる。
 また、清水の供給システムは機関室に設置されているので、冷凍サイクル部の第一のインタークーラおよび第二のインタークーラがともに機関室に設置されると、それらの配管が簡素化できるし、冷却効率を向上させることができる。
 本発明の第2の態様は、ガス圧縮部にタンク内で発生したボイルオフガスを供給するガス供給ラインおよび該ガス圧縮部で圧縮されたボイルオフガスを搬送する圧縮ガス搬送ラインを有するガス供給部と、冷媒圧縮部で圧縮された後第一のインタークーラで冷却された冷媒を、エキスパンダによって膨張減圧させ一層低温状態とし、この冷媒によって前記圧縮ガス搬送ラインを搬送される前記ボイルオフガスを冷却し凝縮させる凝縮部を有する冷凍サイクル部と、を備えているボイルオフガス再液化装置であって、前記冷凍サイクル部には、前記凝縮部の下流側に、前記エキスパンダによって駆動され前記冷媒を圧縮するブースタコンプレッサと、該ブースタコンプレッサで圧縮され、前記冷媒圧縮部に供給される前記冷媒を冷却する第二のインタークーラとが備えられているボイルオフガス再液化装置である。
 冷凍サイクル部では、ブースタコンプレッサで圧縮され、中間冷却器である第二のインタークーラによって冷却される。この冷媒は冷媒圧縮部で圧縮され、中間冷却器である第一のインタークーラによって冷却された後、エキスパンダに供給される。
 この冷媒は、エキスパンダによって減圧され、膨張させられることによって一層低温状態とされる。エキスパンダは、この冷媒が膨張する時の力を回転力として取り出し、たとえば、直結された軸を介してブースタコンプレッサを回転させる。
 一層低温状態とされた冷媒は凝縮部を経由してブースタコンプレッサに戻される。
 一方、ガス供給部では、ガス供給ラインを経由して供給されたタンク内で発生したボイルオフガスがガス圧縮部で圧縮され、圧縮ガス搬送ラインを経由して凝縮部を通るように搬送される。
 このように、冷凍サイクル部では、ブースタコンプレッサで圧縮された冷媒が、さらに冷媒圧縮部によって圧縮されてエキスパンダへ供給されるようにされているので、ブースタコンプレッサで圧縮された冷媒を冷却する第二のインタークーラは、冷媒圧縮部とブースタコンプレッサとの間に介装されることになる。
 したがって、第二のインタークーラは冷媒圧縮部に近くに配置することができるので、冷媒圧縮部が、たとえば、機関室に設置される場合、第二のインタークーラも機関室に設置することができる。このように、大型の第二のインタークーラを比較的広い機関室に設置できるので、たとえ、貨物機器室が狭い就航している既存のLNG船であってもボイルオフガス再液化装置を設置することができる。
 また、清水の供給システムは機関室に設置されているので、冷凍サイクル部の第一のインタークーラおよび第二のインタークーラがともに機関室に設置されると、それらの配管が簡素化できるし、冷却効率を向上させることができる。
 上記各態様では、前記ガス供給ラインの前記熱交換部の上流側には、液化天然ガスを噴霧して前記ボイルオフガスを冷却する緩熱器が備えられていることが望ましい。
 たとえば、ボイルオフガス再液化装置の運転開始時で配管が冷却されていない場合、あるいはバラスト航行中で、タンク内のボイルオフガスが比較的高温の状態である場合等では、ガス供給ラインを通過するボイルオフガスの温度が比較的高くなり、熱交換部での冷熱が不足する恐れがある。
 このような場合、本態様では、ガス供給ラインの熱交換部の上流側に、液化天然ガスを噴霧してボイルオフガスを冷却する緩熱器が備えられているので、緩熱器によって熱交換器へ供給するボイルオフガスを冷却することができる。
 上記各態様では、前記ガス圧縮部は、2段階に分割されている構成としてもよい。
 このようにすると、ボイルオフガスは、2回にわたり圧縮されるので、冷凍サイクル部との熱交換を効率的に行うことができる。これにより、再液化プラントの小型化をはかることができる。
 上記構成では、前記ガス圧縮部の1段目の圧縮は、ボイラへ燃料として供給する燃料用圧縮機によって行われるようにしてもよい。
 このようにすると、たとえば、既存のボイルオフガス等の天然ガスをボイラの燃料として用いるLNG船に、ボイルオフガス再液化装置を設置する場合、改造工事を大幅に軽減することができる。また、新造船に適用する場合でも、設計変更を容易に行うことができる。
 燃料用圧縮機は、比較的大容量であるが、これに供給されるボイルオフガスは熱交換部によって暖められ、容積が増加しているので、容量オーバーとならずに用いることができる。したがって、就航している既存のLNG船で、既存の燃料用圧縮機を有効に活用することができるので、改造工事の範囲を小さくでき、安価に改造することができる。
 本発明によれば、ガス圧縮部で圧縮され、高温状態とされた圧縮ガス搬送ラインを通るボイルオフガスは、ガス圧縮部で圧縮される前のボイルオフガスによって冷却されるので、冷凍サイクル部を構成する各機器を小さくでき、ボイルオフガス再液化装置を小型化することができる。
 また、冷凍サイクル部では、ブースタコンプレッサで圧縮された冷媒が、さらに冷媒圧縮部によって圧縮されてエキスパンダへ供給されるようにされているので、第二のインタークーラを冷媒圧縮部の近くに配置することができ、たとえ、貨物機器室が狭い就航している既存のLNG船であってもボイルオフガス再液化装置を設置することができる。
本発明の一実施形態にかかるボイルオフガス再液化装置の概略構成を示すブロック図である。
 以下に、本発明の一実施形態にかかるLNG船のボイルオフガス再液化装置1について、図1を用いて説明する。
 図1は、LNG船のボイルオフガス再液化装置1の全体概略構成を示すブロック図である。
 LNG船は、液化天然ガス(以下、LNGということもある。)を貯蔵する複数のカーゴタンク(図示省略)を備えている。カーゴタンクには、たとえば、略球形をしているモス式のタンク等種々の形式がある。
 ボイルオフガス再液化装置1には、冷凍サイクル部3と、液化処理部(ガス供給部)5と、が備えられている。
 冷凍サイクル部3は、冷媒配管7を通って循環される冷媒(冷媒としては、たとえば、窒素が用いられている。他に、たとえば、水素やヘリウムが対象となる。)の冷熱を液化処理部5に供給するものである。
 冷凍サイクル部3には、冷媒圧縮機(冷媒圧縮部)9と、冷媒プレクーラ11と、エキスパンダ13と、過冷却器15と、凝縮器(凝縮部)17と、ブースタコンプレッサ19と、が主たる要素として設けられている。
 冷媒配管7は、冷媒圧縮機9、冷媒プレクーラ11、エキスパンダ13、過冷却器15、凝縮器17、冷媒プレクーラ11およびブースタコンプレッサ19の順に接続し、閉じた系を構成している。
 冷媒圧縮機9は、スチームタービン21によって駆動される2段の遠心式圧縮機である。なお、駆動用スチーム設備の無い船舶(ディーゼル推進船等)では圧縮機スピード制御機能を有したモータ駆動としてもよい。また、冷媒圧縮機9はこの形式に限らず、冷媒配管7内の差圧を発生させるものであれば、スクリュー圧縮機等、適宜な形式のものを用いることができる。
 冷媒圧縮機9は、低温・低圧のガス状冷媒を吸引して圧縮し、高温・高圧のガス状冷媒とするものである。
 冷媒圧縮機9はインタークーラ23を有している。冷媒圧縮機9の出口には第一アフタクーラ(第一のインタークーラ)25が設けられている。
 冷媒量を調整するために、冷媒バッファタンク27を有する配管が、冷媒圧縮機9の前後に接続されている。
 冷媒プレクーラ11は、第一アフタクーラ25から導入される冷媒を凝縮器17から導入される冷媒によって冷却するものである。冷媒プレクーラ11は、冷媒と冷媒との間でのみ熱交換されるものであるので、3以上の多重熱交換プロセスのものと比較して、構造が簡単で、設計が容易である。これにより、設計の信頼性を向上させることができる。
 エキスパンダ13は、冷媒プレクーラ11を通って温度が低下させられた冷媒を減圧により膨張させて低温・低圧のガス状冷媒とするものである。この冷媒が膨張する時の力を回転力として、エキスパンダ13と同軸で接続されたブースタコンプレッサ19は回転駆動させられる。
 エキスパンダ13からの低温・低圧のガス状冷媒は、過冷却器15、凝縮器17および冷媒プレクーラ11と順次送られ熱交換される。
 ブースタコンプレッサ19は、冷媒プレクーラ11から導入される冷媒を圧縮して、冷媒を高温・高圧とし、冷媒圧縮機9へ供給するものである。ブースタコンプレッサ19の下流側で冷媒圧縮機の上流側には第二アフタクーラ(第二のインタークーラ)29が備えられている。
 冷媒配管7におけるエキスパンダ13の上流側と、凝縮器17の下流側との間に、弁の開閉により断接されるバイパス配管31が備えられている。
 冷凍サイクル3の起動時に、バイパス配管31は開放される。これにより冷媒はエキスパンダ13を通過しないので、それらによる抵抗がなくなり冷媒圧縮機9の起動を可能とできる。
 液化処理部5には、燃料用圧縮機33へ図示しないカーゴタンクで発生したボイルオフガス(以下、BOGという)を供給するBOG供給配管(ガス供給ライン)35と、燃料用圧縮機33によって圧縮されたBOGをセパレータ37へ搬送するBOG搬送配管(圧縮ガス搬送ライン)39と、セパレータ37からカーゴタンクへ再液化されたLNGを送る再液化ガス配管41とが備えられている。
 BOG供給配管35には、搬送されるBOGを冷却するミストセパレータ(緩熱器)43が備えられている。ミストセパレータ43は、セパレータ37の下部に貯留された再液化されたLNGが選択的に供給されるように構成されている。セパレータ37からミストセパレータ43へLNGが供給されると、このLNGによってBOGが冷却される。
 燃料用圧縮機33は、ボイラへ燃料を供給するものとして設置する、改造の場合は、設置されているものである。燃料用圧縮機33は、同一構造の2台が並列的に配設され、一方は万一故障した場合の予備とされている。燃料用圧縮機33はモータで駆動されるように構成されている。
 また、この2台の燃料用圧縮機33に並列的に燃料用圧縮機33が設置されていないフリーフローライン45が備えられている。フリーフローライン45には、開閉する開閉弁47が備えられている。
 燃料用圧縮機33およびフリーフローライン45の出口には、天然ガスを図示しないボイラへ燃料として供給する燃料配管49が接続されている。燃料配管49には、燃料用圧縮機33で圧縮された天然ガスを加熱するガスヒータ51が備えられている。
 燃料用圧縮機33およびフリーフローライン45には、別途カーゴタンクに貯蔵されたLNGをガス化して供給するようにしてもよい。
 BOG搬送配管39は、燃料用圧縮機33からのBOGを凝縮部17を通ってセパレータ37へ搬送するものである。このとき、凝縮器17は、BOGを、冷媒配管7を通る冷媒によって冷却し凝縮させる。凝縮器17は、冷媒とBOGとの間でのみ熱交換されるものであるので、3以上の多重熱交換プロセスのものと比較して、構造が簡単で、設計が容易である。これにより、設計の信頼性を向上させることができる。
 BOG搬送配管39には、BOGを圧縮するBOGブースタ53と、BOGブースタ53で圧縮され、高温となったBOGを、たとえば、清水で冷却するBOGアフタクーラ55とが備えられている。
 BOGブースタ53は、たとえば、160kPaaのBOGを450kPaaに昇圧するものであり、それが可能であれば、たとえば、直冷式スクリュー圧縮機等、適宜形式のものが用いられる。
 BOG搬送配管39におけるBOGアフタクーラ55と凝縮器17との間、すなわち、凝縮部17の上流側に、BOG搬送配管39を通るBOGとBOG供給配管35を通るBOGとの間で熱交換を行うBOGプレクーラ(熱交換部)57が備えられている。BOGプレクーラ57は、冷媒とBOGとの間でのみ熱交換されるものであるので、3以上の多重熱交換プロセスのものと比較して、構造が簡単で、設計が容易である。これにより、設計の信頼性を向上させることができる。
 なお、BOGプレクーラ57によってBOG搬送配管39を通るBOGが十分冷却される場合には、BOGアフタクーラ55の設置は省略されてもよい。
 BOG供給配管35には、BOGプレクーラ57をバイパスする弁の開閉により断接されるバイパス配管59が備えられている。
 BOG搬送配管39で搬送されるBOGは凝縮器17において冷媒配管7を通る冷媒によって冷却され凝縮させられる。
 この凝縮されたBOGは、セパレータ37に導入され液分とガス分とに分離される。
 再液化ガス配管41は、セパレータ37の下部から過冷却器15を通りカーゴタンクに接続されている。
 再液化ガス配管41には、過冷却器15よりも下流側に再液化ガス流量調整弁61が設けられている。
 BOG供給配管35におけるミストセパレータ43よりも上流側位置およびセパレータ37の頂部から燃料配管49へ接続される流量調整弁を備えたガス供給分岐配管63が設けられている。
 ガス供給分岐配管63は、冷媒プレクーラ11を通って冷媒圧縮機9からエキスパンダ13へ供給される冷媒を冷却するように構成されている。
 エキスパンダ13、冷媒プレクーラ11、凝縮器17、過冷却器15およびBOGプレクーラ57は防熱構造をしたコールドボックス65内にコンパクトに収納されている。
 ブースタコンプレッサ19はエキスパンダ13で回転駆動されるので、コールドボックス65より張り出すように取り付けられている。
 冷媒圧縮機9、冷媒バッファタンク27、スチームタービン21、インタークーラ23、第一アフタクーラ25、第二アフタクーラ29および燃料用圧縮機33は、ボイラが設置されている機関室に配置され、コールドボックス65およびセパレータ37はカーゴ機器室に設置されている。
 以上の構成を有する本実施形態にかかるボイルオフガス再液化装置1の動作について説明する。
 冷凍サイクル部3では、冷媒圧縮機9がスチームタービン21により駆動され、冷媒配管7から導入される低温・低圧のガス状冷媒を2段階に圧縮して、高温・高圧のガス状冷媒とする。このとき、冷媒は、1段目の圧縮と2段目の圧縮との間で、インタークーラ23によって冷却される。
 この高温・高圧のガス状冷媒は、第一アフタクーラ25で冷却されて冷媒プレクーラ11に導入される。
 冷媒プレクーラ11では、導入されたガス状冷媒が凝縮器17から戻る低温・低圧のガス状冷媒により冷却される。
 この冷媒が、エキスパンダ13に導入され、減圧によって膨張されて一層低温・低圧のガス状冷媒とされる。
 この低温・低圧のガス状冷媒は、過冷却器15および凝縮器17を通過し、その冷熱を周囲に与えて冷却する。
 その後、冷媒は冷媒プレクーラ11を通ってエキスパンダ13に導入される冷媒によって暖められ、ブースタコンプレッサ19に導入される。
 冷媒は、ブースタコンプレッサ19で、圧縮されて高温・高圧のガス状冷媒とされる。この高温・高圧のガス状冷媒は、第二アフタクーラ29によって冷却され、冷媒圧縮機9に送られる。
 冷媒圧縮機9に導入された冷媒は、冷媒圧縮機9によってさらに高温・高圧とされ送り出される。
 冷凍サイクル部3では、このサイクルを連続的に行うことで、冷媒配管7が通過する過冷却器15、凝縮器17および冷媒プリクーラ11において冷熱を提供する。
 カーゴタンクで発生したBOGは、BOG供給配管35によってミストセパレータ43およびBOGプレクーラ57を通って燃料用圧縮機33によって供給される。
 ミストセパレータ43は、通常運転中には、LNGが供給されていないので、BOGを冷却することはない。
 たとえば、ボイルオフガス再液化装置1の運転開始時で配管が冷却されていない場合、あるいは、バラスト航行中で、カーゴタンク内のBOGが比較的高温の状態である場合等でBOG供給配管35を通過するBOGの温度が比較的高くなると、たとえば、セパレータ37から再液化されたLNGがミストセパレータ43に供給され、BOGプレクーラ57へ供給されるBOGの温度を必要な温度、たとえば、-120℃まで低下させる。
 燃料用圧縮機33に導入されたBOGは、燃料用圧縮機33によって、たとえば、160kPaaまで圧縮される。このとき、BOGの温度は、たとえば、略55℃となっている。
 その後、BOGは、BOGブースタ53によって、たとえば、450kPaaに昇圧される。このとき、BOGの温度は、たとえば、略100℃となっている。
 このBOGはBOGアフタクーラ55によって略40℃まで冷却され、BOGプレクーラ57に導入される。
 BOGプレクーラ57では、BOG供給配管35を通るBOGによって、たとえば、略-110℃、すなわち、略飽和液状態まで冷却される。一方、BOG供給配管35を通るBOGは、たとえば、略-120℃から略30℃まで昇温される。
 この冷却されたBOGは、凝縮器17を通る際、冷凍サイクル部3の冷媒配管7を流れる低温・低圧のガス状冷媒により冷却されて、凝縮する。凝縮したBOGは、セパレータ37に送られる。
 セパレータ37では、凝縮したBOGが気液分離され、再液化されたLNGである液体分は下部に、ガス分は上部に貯留される。
 下部のLNGは、再液化ガス配管41を通って、過冷却器15で過冷却されカーゴタンクに戻される。
 このように、BOGは、燃料用圧縮機33およびBOGブースタ53によって2回にわたり圧縮されて高圧とされるので、冷凍サイクル部3との熱交換を効率的に行うことができる。これにより、冷凍サイクル部3の小型化をはかることができる。
 また、燃料用圧縮機33およびBOGブースタ53で圧縮され、高温状態とされたBOG搬送配管39を通るBOGは、BOGプレクーラ57においてBOG供給配管35を通る燃料用圧縮機33で圧縮される前のBOGによって冷却され、言い換えると、BOG自信の冷熱で予冷されるので、少なくともその熱量の分だけ冷凍サイクル部3の負担を減少させることができる。
 これにより、冷凍サイクル部3を構成する各機器を小さくできるので、ボイルオフガス再液化装置1を小型化することができる。
 また、冷凍サイクル部3では、ブースタコンプレッサ19で圧縮された冷媒が、さらに冷媒圧縮機9によって圧縮されてエキスパンダ13へ供給されるようにされているので、ブースタコンプレッサ19で圧縮された冷媒を冷却する第二アフタクーラ29は、冷媒圧縮機9とブースタコンプレッサ19との間に介装されることになる。
 したがって、第二アフタクーラ29は冷媒圧縮機9に近くに配置することができるので、冷媒圧縮機9が、たとえば、機関室に設置される場合、第二アフタクーラ29も機関室に設置することができる。
 このように、大型の第二アフタクーラ29を比較的広い機関室に設置できるので、たとえ、貨物機器室が狭い就航している既存のLNG船であってもボイルオフガス再液化装置1を設置することができる。
 また、清水の供給システムは機関室に設置されているので、冷凍サイクル部3のインタークーラ23、第一アフタクーラ25および第二アフタクーラ29がともに機関室に設置されると、それらの配管が簡素化できるし、冷却効率を向上させることができる。
 このように、ボイルオフガス再液化装置1は小型で高効率なものにできるし、その設置空間を少なくできる。このため、たとえば、既存のBOG等の天然ガスをボイラの燃料として用いるLNG船に、ボイルオフガス再液化装置1を設置する場合、改造工事を大幅に軽減することができる。また、新造船に適用する場合でも、設計変更を容易に行うことができる。
 この場合、燃料用圧縮機33は、比較的大容量であるが、これに供給されるBOGはBOGプレクーラ57によって暖められ、容積が増加しているので、容量オーバーとならずに用いることができる。したがって、就航している既存のLNG船で、既存の燃料用圧縮機33を有効に活用することができるので、改造工事の範囲を小さくでき、安価に改造することができる。
 なお、本発明は本実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
1 ボイルオフガス再液化装置
3 冷凍サイクル部
5 液化処理部
9 冷媒圧縮機
13 エキスパンダ
17 凝縮器
19 ブースタコンプレッサ
25 第一アフタクーラ
29 第二アフタクーラ
33 燃料用圧縮機
35 BOG供給配管
39 BOG搬送配管
43 ミストセパレータ
53 BOGブースタ
57 BOGプレクーラ

Claims (6)

  1.  ガス圧縮部にタンク内で発生したボイルオフガスを供給するガス供給ラインおよび該ガス圧縮部で圧縮されたボイルオフガスを搬送する圧縮ガス搬送ラインを有するガス供給部と、
     冷媒圧縮部で圧縮された後第一のインタークーラで冷却された冷媒を、エキスパンダによって膨張減圧させ一層低温状態とし、この冷媒によって前記圧縮ガス搬送ラインを搬送される前記ボイルオフガスを冷却し凝縮させる凝縮部を有する冷凍サイクル部と、を備えているボイルオフガス再液化装置であって、
     前記ガス供給部には、前記凝縮部の上流側に、前記圧縮ガス搬送ラインを通る前記ボイルオフガスと前記ガス供給ラインを通る前記ボイルオフガスとの間で熱交換を行う熱交換部が備えられているボイルオフガス再液化装置。
  2.  前記冷凍サイクル部には、前記凝縮部の下流側に、前記エキスパンダによって駆動され前記冷媒を圧縮するブースタコンプレッサと、該ブースタコンプレッサで圧縮され、前記冷媒圧縮部に供給される前記冷媒を冷却する第二のインタークーラとが備えられている請求項1に記載のボイルオフガス再液化装置。
  3.  ガス圧縮部にタンク内で発生したボイルオフガスを供給するガス供給ラインおよび該ガス圧縮部で圧縮されたボイルオフガスを搬送する圧縮ガス搬送ラインを有するガス供給部と、
     冷媒圧縮部で圧縮された後第一のインタークーラで冷却された冷媒を、エキスパンダによって膨張減圧させ一層低温状態とし、この冷媒によって前記圧縮ガス搬送ラインを搬送される前記ボイルオフガスを冷却し凝縮させる凝縮部を有する冷凍サイクル部と、を備えているボイルオフガス再液化装置であって、
     前記冷凍サイクル部には、前記凝縮部の下流側に、前記エキスパンダによって駆動され前記冷媒を圧縮するブースタコンプレッサと、該ブースタコンプレッサで圧縮され、前記冷媒圧縮部に供給される前記冷媒を冷却する第二のインタークーラとが備えられているボイルオフガス再液化装置。
  4.  前記ガス供給ラインの前記熱交換部の上流側には、液化天然ガスを噴霧して前記ボイルオフガスを冷却する緩熱器が備えられている請求項1から3のいずれか1項に記載のボイルオフガス再液化装置。
  5.  前記ガス圧縮部は、2段階に分割されている請求項1から4のいずれか1項に記載のボイルオフガス再液化装置。
  6.  前記ガス圧縮部の1段目の圧縮は、ボイラへ燃料として供給する燃料用圧縮機によって行われる請求項5に記載のボイルオフガス再液化装置。
PCT/JP2011/071216 2010-09-30 2011-09-16 ボイルオフガス再液化装置 WO2012043274A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11828834.9A EP2623414A4 (en) 2010-09-30 2011-09-16 Boil-off gas reliquefaction device
KR1020127033239A KR20130031843A (ko) 2010-09-30 2011-09-16 보일 오프 가스 재액화 장치
CN201180032758.8A CN103097237B (zh) 2010-09-30 2011-09-16 蒸发气体再液化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-222495 2010-09-30
JP2010222495A JP5737894B2 (ja) 2010-09-30 2010-09-30 ボイルオフガス再液化装置

Publications (1)

Publication Number Publication Date
WO2012043274A1 true WO2012043274A1 (ja) 2012-04-05

Family

ID=45892741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071216 WO2012043274A1 (ja) 2010-09-30 2011-09-16 ボイルオフガス再液化装置

Country Status (5)

Country Link
EP (1) EP2623414A4 (ja)
JP (1) JP5737894B2 (ja)
KR (1) KR20130031843A (ja)
CN (1) CN103097237B (ja)
WO (1) WO2012043274A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088159A1 (ja) * 2014-12-01 2016-06-09 千代田化工建設株式会社 機器の安全管理装置、機器の安全管理方法及び天然ガスの液化装置
US10364013B2 (en) 2015-06-02 2019-07-30 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Ship
US10399655B2 (en) 2015-06-02 2019-09-03 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Ship

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101519541B1 (ko) * 2013-06-26 2015-05-13 대우조선해양 주식회사 증발가스 처리 시스템
KR101525686B1 (ko) * 2013-10-31 2015-06-03 현대중공업 주식회사 액화가스 처리 시스템
KR101480253B1 (ko) * 2013-10-31 2015-01-08 현대중공업 주식회사 액화가스 처리 시스템
CN104061431B (zh) * 2014-04-03 2016-09-14 查特深冷工程系统(常州)有限公司 模块化低温液体贮罐bog气体再液化系统
KR101888944B1 (ko) * 2014-07-25 2018-08-17 현대중공업 주식회사 기액분리기와 이를 포함하는 액화가스 처리 시스템
CN104197186B (zh) * 2014-08-28 2016-01-20 四川中油天能科技有限公司 Lng加气站bog回收利用系统及其实现方法
CN104197635B (zh) * 2014-09-17 2017-03-15 刘国满 一种lng燃料动力船港口停留再液化系统及液化方法
CN104295889B (zh) * 2014-10-20 2017-09-22 中国海洋石油总公司 Lng接收站终端蒸发气体回收系统
KR101665498B1 (ko) * 2015-02-24 2016-10-12 대우조선해양 주식회사 선박용 증발가스 재액화 장치 및 방법
KR101686911B1 (ko) * 2015-02-24 2016-12-15 대우조선해양 주식회사 선박용 증발가스 재액화 장치 및 방법
CN104792114B (zh) * 2015-04-10 2017-11-07 四川金科深冷设备工程有限公司 Bog再液化工艺及其再液化回收系统
PL3305649T3 (pl) * 2015-06-02 2024-02-19 Hanwha Ocean Co., Ltd. Statek
WO2016200174A1 (ko) * 2015-06-09 2016-12-15 현대중공업 주식회사 가스 처리 시스템을 포함하는 선박
KR102179194B1 (ko) * 2015-06-09 2020-11-16 현대중공업 주식회사 가스 처리 시스템을 포함하는 선박
WO2016200170A1 (ko) * 2015-06-09 2016-12-15 현대중공업 주식회사 가스 처리 시스템을 포함하는 선박
CN106481974A (zh) * 2015-08-24 2017-03-08 自贡通达机器制造有限公司 一种bog蓄能压差lng加气站
CN105333693A (zh) * 2015-11-17 2016-02-17 江苏航天惠利特环保科技有限公司 一种高效节能的bog回收装置
JP6703837B2 (ja) * 2016-01-07 2020-06-03 株式会社神戸製鋼所 ボイルオフガス供給装置
CN106917957B (zh) * 2016-07-19 2018-01-30 陕西液化天然气投资发展有限公司 一种lng储罐的bog回收系统
JP6366870B1 (ja) * 2018-01-17 2018-08-01 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード ボイルオフガス再液化装置およびそれを備えるlng供給システム
KR20240034255A (ko) 2018-06-01 2024-03-13 스틸헤드 엘엔지 (에이에스엘엔지) 엘티디. 액화 장치, 방법, 및 시스템
KR20200070569A (ko) * 2018-12-10 2020-06-18 주식회사 동화엔텍 천연가스 재액화 시스템
JP7366555B2 (ja) * 2019-02-26 2023-10-23 三菱重工マリンマシナリ株式会社 液化ガス気化装置及びこれを備えた浮体設備
GB201912221D0 (en) * 2019-08-26 2019-10-09 Babcock Ip Man Number One Limited Method of cooling boil off gas and an apparatus therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204455A (ja) * 1997-01-27 1998-08-04 Chiyoda Corp 天然ガス液化方法
JP2009204080A (ja) * 2008-02-27 2009-09-10 Mitsubishi Heavy Ind Ltd 液化ガス再液化装置、これを備えた液化ガス貯蔵設備および液化ガス運搬船、並びに液化ガス再液化方法
JP2010025152A (ja) 2008-07-15 2010-02-04 Mitsubishi Heavy Ind Ltd 天然ガス処理設備および液化天然ガス運搬船

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6745576B1 (en) * 2003-01-17 2004-06-08 Darron Granger Natural gas vapor recondenser system
US20060032239A1 (en) * 2004-08-12 2006-02-16 Chicago Bridge & Iron Company Boil-off gas removal system
JP5112419B2 (ja) * 2006-04-13 2013-01-09 フルオー・テクノロジーズ・コーポレイシヨン Lng蒸気処理装置および方法
KR101167148B1 (ko) * 2007-04-20 2012-07-20 신영중공업주식회사 증발가스 재액화 장치
MX2010010706A (es) * 2008-04-11 2010-11-01 Fluor Tech Corp Metodos y configuracion del manejo de gases de evaporacion en terminales de regasificacion de gas natural licuado.
CN101406763B (zh) * 2008-10-31 2012-05-23 华南理工大学 一种船运液货蒸发气体的再液化方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204455A (ja) * 1997-01-27 1998-08-04 Chiyoda Corp 天然ガス液化方法
JP2009204080A (ja) * 2008-02-27 2009-09-10 Mitsubishi Heavy Ind Ltd 液化ガス再液化装置、これを備えた液化ガス貯蔵設備および液化ガス運搬船、並びに液化ガス再液化方法
JP2010025152A (ja) 2008-07-15 2010-02-04 Mitsubishi Heavy Ind Ltd 天然ガス処理設備および液化天然ガス運搬船

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2623414A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088159A1 (ja) * 2014-12-01 2016-06-09 千代田化工建設株式会社 機器の安全管理装置、機器の安全管理方法及び天然ガスの液化装置
RU2665083C1 (ru) * 2014-12-01 2018-08-28 Чиёда Корпорейшн Устройство для управления безопасностью оборудования, способ управления безопасностью оборудования и устройство для сжижения природного газа
US10378762B2 (en) 2014-12-01 2019-08-13 Chiyoda Corporation Equipment safety management device, equipment safety management method, and natural gas liquefaction device
US10364013B2 (en) 2015-06-02 2019-07-30 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Ship
US10399655B2 (en) 2015-06-02 2019-09-03 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Ship
US10654553B2 (en) 2015-06-02 2020-05-19 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Ship with boil-off gas liquefaction system
US10661873B2 (en) 2015-06-02 2020-05-26 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Ship
US10661874B2 (en) 2015-06-02 2020-05-26 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Ship

Also Published As

Publication number Publication date
CN103097237B (zh) 2016-05-25
CN103097237A (zh) 2013-05-08
EP2623414A4 (en) 2018-07-18
KR20130031843A (ko) 2013-03-29
EP2623414A1 (en) 2013-08-07
JP2012076559A (ja) 2012-04-19
JP5737894B2 (ja) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5737894B2 (ja) ボイルオフガス再液化装置
US11242123B2 (en) Boil-off gas re-liquefying system
JP5173639B2 (ja) 天然ガス処理設備および液化天然ガス運搬船
EP2307694B1 (en) Gas supply systems for gas engines
EP2629035B1 (en) Liquefaction device and floating liquefied gas production equipment comprising the device
JP2020121715A (ja) 船舶
KR100812849B1 (ko) 가스 사용 시스템 및 방법
KR102011863B1 (ko) 선박용 증발가스 재액화 시스템 및 방법
KR101742284B1 (ko) 증발가스 처리 시스템
EP1913117A1 (en) Lng bog reliquefaction apparatus
WO2011078689A1 (en) A system for gas supply to dual-fuel or gas engines and boil-off reliquefaction
RU2719258C2 (ru) Система и способ обработки газа, полученного при испарении криогенной жидкости
JP2021517878A (ja) ガス処理システム及びこれを含む船舶
JP6887431B2 (ja) エンジンを備える船舶
KR101751859B1 (ko) 선박용 증발가스 재액화 시스템 및 방법
KR101895788B1 (ko) 선박
KR100747371B1 (ko) 증발가스 재액화 장치 및 그 장착 방법
KR101938911B1 (ko) 액화가스 처리 시스템
KR102213511B1 (ko) 선박용 증발가스 재액화 방법
KR101884763B1 (ko) 선박
KR102327402B1 (ko) 선박
KR20200009719A (ko) 선박용 증발가스 재액화 시스템 및 방법
KR20150115151A (ko) 액화가스 처리 시스템
KR20180093405A (ko) 증발가스 재액화 방법
KR20150138996A (ko) 액화가스 처리 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180032758.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828834

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011828834

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127033239

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE