WO2012040987A1 - 非电渣重熔式洁净金属锭模 - Google Patents

非电渣重熔式洁净金属锭模 Download PDF

Info

Publication number
WO2012040987A1
WO2012040987A1 PCT/CN2010/080241 CN2010080241W WO2012040987A1 WO 2012040987 A1 WO2012040987 A1 WO 2012040987A1 CN 2010080241 W CN2010080241 W CN 2010080241W WO 2012040987 A1 WO2012040987 A1 WO 2012040987A1
Authority
WO
WIPO (PCT)
Prior art keywords
ingot mold
heat
insulation
mold body
ingot
Prior art date
Application number
PCT/CN2010/080241
Other languages
English (en)
French (fr)
Inventor
朱书成
Original Assignee
西峡龙成特种材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西峡龙成特种材料有限公司 filed Critical 西峡龙成特种材料有限公司
Priority to EP10857748.7A priority Critical patent/EP2623232B1/en
Priority to KR1020137011198A priority patent/KR101578589B1/ko
Priority to US13/876,886 priority patent/US9010403B2/en
Publication of WO2012040987A1 publication Critical patent/WO2012040987A1/zh
Priority to IN789MUN2013 priority patent/IN2013MN00789A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/005Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like with heating or cooling means
    • B22D41/01Heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • B22C9/065Cooling or heating equipment for moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/06Ingot moulds or their manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/06Ingot moulds or their manufacture
    • B22D7/064Cooling the ingot moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/06Ingot moulds or their manufacture
    • B22D7/08Divided ingot moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/06Ingot moulds or their manufacture
    • B22D7/10Hot tops therefor
    • B22D7/102Hot tops therefor from refractorial material only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D9/00Machines or plants for casting ingots
    • B22D9/006Machines or plants for casting ingots for bottom casting

Definitions

  • the invention belongs to the technical field of metallurgical casting equipment, and particularly relates to a non-electroslag remelting type clean metal ingot mold.
  • the electroslag furnace remelting technology is realized for the production of clean steel, and the molten slag is contained in the copper water-cooled crystallizer, and one end of the consumable electrode is inserted into the slag.
  • the consumable electrode, the slag pool, the metal molten pool, the steel ingot, and the bottom water tank form a loop through the short wire and the transformer.
  • the slag pool is released Joule heat
  • the self-consumption electrode tip is gradually melted, and the molten metal is concentrated into droplets, passes through the slag pool, falls into the crystallizer, forms a molten metal pool, and is rapidly solidified to form a steel ingot by water cooling.
  • steel - The slag is in full contact and the non-metallic inclusions in the steel are absorbed by the slag.
  • Harmful elements in steel pass through steel -
  • the slag reaction and high-temperature gasification are effectively removed, but the steel ingot needs to consume a large amount of electric energy to melt again, which also restricts large-scale industrial production, and the slag contains a large amount of calcium fluoride, which pollutes the environment, and must be equipped with a dust removal and defluorination device. .
  • the efficiency is also extremely low, especially the arc generated is also very harmful to the crystallizer.
  • a crystal mold mold can only refine a few dozen furnace steels by electroslag furnace remelting method, which increases the production cost. The ordinary ingot casting method does not achieve a clean effect.
  • the object of the present invention is to provide a non-electro-slag remelting clean metal ingot mold which saves energy, reduces pollutant discharge, has high production efficiency and long service life.
  • converter, electric furnace, The molten steel smelted in the LF furnace and VD furnace can be directly poured into the equipment to obtain clean steel ingots, which greatly reduces energy consumption, greatly improves production efficiency and reduces production costs.
  • a non-electroslag remelting type clean metal ingot mold is disposed on a platen, and includes an ingot mold body and a heat insulating device disposed on the ingot mold body, wherein the ingot mold body is vertically disposed with an insulation heat insulation mechanism, The isolating heat insulation mechanism divides the inner space of the ingot mold into a plurality of independent cavity units, and the cavity units are distributed in two rows in the ingot mold body.
  • the lower portion of the isolated heat-insulating and heat-insulating mechanism that divides the plurality of cavity units into two rows is provided with a ridge integrated with the bottom mold template.
  • the lower portion of the isolated heat-insulating and heat-insulating mechanism is provided with a ridge integrated with the ingot mold bottom template.
  • the ingot mold body is a water-cooled ingot mold.
  • the ingot mold body is a common ingot mold.
  • the circumferential template on the ingot mold body is movably connected to the frame disposed outside the ingot mold body by a hydraulic mechanism or a lead screw.
  • the isolated heat insulation mechanism is a high temperature resistant board.
  • the isolated heat insulation mechanism includes a high temperature resistant plate and a strong heating component disposed inside the high temperature resistant plate.
  • a casting system is disposed on the body of the ingot mold.
  • the casting system includes a sprue disposed outside the frame, the sprue being in communication with a runner disposed in the deck, the runner passing through the plurality of gates and the interior of the ingot body respectively Independent cavity units are connected.
  • the casting system includes a sprue disposed outside the frame, the sprue being in communication with a runner disposed in the bottom template, the runner passing through the plurality of gates and the interior of the ingot body respectively Independent cavity units are connected.
  • the inner wall of the ingot mold body is provided with a card slot for use with the isolating heat insulation mechanism, and both ends of the isolation heat insulation mechanism are disposed in the card slot, and the inner wall of the heat insulation is provided with a card slot, and the upper card is disposed The slot is engaged with the connection portion of the isolated heat insulation mechanism.
  • an isolation heat-insulation mechanism is disposed in the ingot mold body, and the isolation heat-insulation mechanism divides the space inside the ingot mold body into a plurality of independent cavity unit units, wherein the cavity unit is The ingot mold body is distributed in two rows.
  • each of the independent cavity units has a solid surface which is rapidly outwardly thermally conductive, that is, a surface in contact with the circumferential template, and is also isolated.
  • the solidification end surface contacted by the heat-insulation mechanism the liquid metal in contact with the water-cooled template or other template is rapidly solidified, and slowly crystallizes in the direction of the isolation heat-insulation mechanism, and the inclusions in the liquid metal are formed during the process of crystal solidification and crystal formation.
  • the segregated material rushes in the direction of non-crystallization, and the part close to the isolation heat-insulation mechanism is finally solidified because it is far away from the low temperature.
  • Most of the inclusions and segregates in the liquid metal are enriched in the liquid state after the directional solidification of the liquid metal.
  • the part of the mechanism that is in contact with which makes it easy to remove enriched alloy segregants and inclusions by flame or other processing methods.
  • the segregation, inclusion transfer and removal inside the ingot are realized, and the purpose of purifying the ingot is achieved.
  • it can purify the interior of the metal without secondary melting, save a lot of energy, and avoid the harm of hydrogen white spot caused by electroslag remelting to the ingot, and the production efficiency is significantly improved.
  • the cost has dropped significantly.
  • a ridge integrated with the ingot mold bottom plate is provided, which can generate the 'V generated during the liquid metal crystallization process in the ingot mold.
  • the 'type impurity area is moved up to the area where the heat preservation is carried out, so that the impurities are more deviated from the center of the ingot, and more concentrated, so that the impurities can be processed later to achieve metal cleanliness.
  • the insulating heat-insulating mechanism is provided with a strong heat-generating component, and when the ingot mold is not poured into the liquid metal, the temperature is raised in advance to avoid absorbing the heat of the molten metal, and in the process of directional solidification of the liquid metal, the heat-insulating and insulating mechanism is isolated. There is a state in which the portion in contact with it can be kept at a high temperature, and most of the inclusions and segregates in the liquid metal are concentrated more concentrated in the area in contact with the insulating heat-insulating mechanism after the liquid metal is directionally solidified, which is easier to handle. .
  • the casting system is in communication with the bottom of the ingot mold, and the flow rate of the liquid metal can be better controlled.
  • the plurality of ingates are respectively connected with a plurality of independent portions inside the ingot mold body, so that the liquid metal rising height of each independent portion is substantially horizontal. Thereby ensuring the balance of the pressure of the liquid metal in the respective ingot chambers to isolate the heat-insulating and heat-insulating mechanism.
  • the water-cooling template and the inner wall of the insulated water are arranged on the inner wall of the insulated heat-insulating mechanism to ensure the isolation of the heat-insulating and heat-insulating mechanism, and on the other hand, the upper card slot of the heat-insulating device and the oblique direction of the insulating and heat-insulating mechanism.
  • the card connection makes the isolation heat-insulation mechanism fixed in the process of solidification of the liquid metal, and the gravity of the heat insulation presses the insulation heat-insulation mechanism to prevent it from floating, ensuring the stability and reliability of the isolation heat-insulation mechanism during the pouring process, thereby ensuring the ingot shape.
  • the invention can be arranged into two rows of a plurality of cavity units according to requirements, one ingot is ingot, and one runner is cleaned, which can realize clean crystallization solidification of a plurality of pieces or even dozens of metal ingots, thereby greatly improving work efficiency and reducing production cost. .
  • FIG. 1 is a schematic structural view of Embodiment 1 of the present invention.
  • Figure 2 is a top view of Figure 1.
  • FIG 3 is a schematic structural view of a second embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a body portion of an ingot mold according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic structural view of a body portion of an ingot mold according to Embodiment 4 of the present invention.
  • FIG. 6 is a schematic structural view of a body portion of an ingot mold according to Embodiment 5 of the present invention.
  • Figure 7 is a schematic view showing the direction of directional crystallization of liquid metal in the body portion of the ingot mold according to the fifth embodiment of the present invention.
  • a non-electroslag remelting clean metal ingot mold set on the platen 1
  • the upper mold body 13 composed of a common formwork and the heat retaining body 9 disposed on the ingot mold body 13 are provided with a casting system, and the ingot mold body 13 is provided.
  • the insulating heat insulation mechanism 8 is disposed vertically in the vertical direction, and the isolation heat insulation mechanism 8 divides the inner space of the ingot mold body 13 into two independent cavity unit 14 , and the cavity unit 14 is in the ingot mold body 13 It is distributed in two rows.
  • the ingot mold body 13 is composed of four vertical templates and a bottom template 2, which passes through a hydraulic mechanism 7 or a lead screw and a frame 6 disposed outside the ingot mold body 6 Active connection.
  • the isolating heat insulation mechanism 8 is a high temperature resistant plate.
  • the casting system is in communication with the bottom of the ingot mold body 13, including a sprue 3 disposed outside the frame 6, the sprue 3 In communication with the runner 4 disposed in the platen 1, the runner 4 is in communication with two separate cavity units 14 inside the ingot body 13 via two gates 5, respectively.
  • the ingot mold body 13 The inner wall is provided with a card slot 10 for use with the isolating heat-insulating mechanism 8 , and both ends of the isolating heat-insulation mechanism 8 are disposed in the card slot 10, and the inner wall of the heat-insulation 9 is provided with a card slot 11 The upper card slot 11 is engaged with the connection portion of the isolation heat-insulation mechanism 8 .
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a non-electroslag remelting clean metal ingot mold is arranged on the platen 1, including an ingot mold body composed of a common template. 13 and a heat retaining body 9 disposed on the ingot mold body 13, a casting system is disposed on the ingot mold body 13, and the insulating heat insulating mechanism 8 is vertically disposed in the ingot mold body 13, the isolating heat insulating mechanism 8
  • the inner space of the ingot body 13 is divided into two separate cavity units 14, which are distributed in two rows in the ingot mold body 13.
  • the ingot mold body 13 It consists of four vertical stencils and a bottom stencil 2 which is movably connected to the frame 6 provided outside the ingot mould body 13 by a hydraulic mechanism 7 or a lead screw.
  • the insulation heat insulation mechanism 8 It is a high temperature resistant board.
  • the casting system is in communication with the bottom of the ingot mold body 13, including a sprue 3 disposed outside the frame 6, the sprue 3 In communication with the runner 4 disposed in the platen 1, the runner 4 is in communication with two separate cavity units 14 inside the ingot body 13 via two gates 5, respectively.
  • the ingot mold body 13 The inner wall is provided with a card slot 10 for use with the isolating heat-insulating mechanism 8 , and both ends of the isolating heat-insulation mechanism 8 are disposed in the card slot 10, and the inner wall of the heat-insulation 9 is provided with a card slot 11 The upper card slot 11 is engaged with the connection portion of the isolation heat-insulation mechanism 8 .
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a non-electroslag remelting clean metal ingot mold comprising an ingot mold body 13 composed of a water-cooled template and disposed on the ingot mold body 13
  • the upper mold body 13 is provided with a casting system
  • the ingot mold body 13 is vertically provided with an insulation heat-insulation mechanism 8
  • the insulation heat-insulation mechanism 8 It includes a high temperature resistant plate and a strong heating component disposed inside the high temperature resistant plate, such as a voltage hot component or a gas heating component.
  • the isolating heat insulation mechanism 8 divides the inner space of the ingot body 13 into two independent cavity units.
  • the cavity unit 14 is distributed in two rows in the ingot mold body 13.
  • the ingot mold body 13 is composed of four vertical water-cooling templates and a water-cooled bottom template 2, which passes through a hydraulic mechanism. Or the lead screw is movably connected to the frame 6 disposed outside the ingot mold body 13.
  • the lower portion of the insulating heat-insulating mechanism 8 for dividing the plurality of cavity units into two rows is provided with a ridge 18 integral with the ingot mold template.
  • the casting system is in communication with the bottom of the ingot mold body 13, and includes a sprue 3 disposed outside the frame, the sprue 3 and the bottom template
  • the runners 4 in the 2 are connected, and the runners 4 are communicated with the two independent cavity units 14 inside the ingot body 13 through the two gates 5, respectively.
  • the ingot mold body 13 The inner wall is provided with a card slot 10 for use with the isolating heat-insulating mechanism 8 , and both ends of the isolating heat-insulation mechanism 8 are disposed in the card slot 10, and the inner wall of the heat-insulation 9 is provided with a card slot 11
  • the upper card slot 11 is engaged with the connection portion of the isolation heat-insulation mechanism 8 .
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • a non-electroslag remelting clean metal ingot mold is arranged on the platen 1, including an ingot mold body composed of a water-cooled template. And a heat retaining body 9 disposed on the ingot mold body 13, a casting system is disposed on the ingot mold body 13, and the insulating heat insulating mechanism 8 is vertically disposed in the ingot mold body 13, and the insulating heat insulating mechanism 8 It includes a high temperature resistant plate and a strong heating component disposed inside the high temperature resistant plate, such as a voltage hot component or a gas heating component.
  • the two horizontally and vertically intersecting heat insulation and heat insulation mechanisms 8 will ingot the body 13
  • the inner space is divided into four separate cavity units 14, which are distributed in two rows in the ingot mold body 13.
  • the ingot mold body 13 is composed of four vertical water-cooled templates and a water-cooled bottom template 2
  • the vertical water-cooling template is movably connected to the frame 6 disposed outside the ingot mold body 13 by the hydraulic mechanism 7 or the lead screw.
  • the lower part of the isolating heat insulation mechanism 8 is provided with a ridge of the ingot mold bottom template 18 .
  • the casting system is in communication with the bottom of the ingot mold body 13, and includes a sprue 3 disposed outside the frame, the sprue 3 and the bottom template
  • the runners 4 in the 2 are connected, and the runners 4 are communicated with the four independent cavity units 14 inside the ingot body 13 through the four gates 5, respectively.
  • the ingot mold body 13 The inner wall is provided with a card slot 10 for use with the isolating heat-insulating mechanism 8 , and both ends of the isolating heat-insulation mechanism 8 are disposed in the card slot 10, and the inner wall of the heat-insulation 9 is provided with a card slot 11
  • the upper card slot 11 is engaged with the connection portion of the isolation heat-insulation mechanism 8 .
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • a non-electroslag remelting clean metal ingot mold is arranged on the platen 1, including an ingot mold body composed of a water-cooled template. And a heat retaining body 9 disposed on the ingot mold body 13, a casting system is disposed on the ingot mold body 13, and the insulating heat insulating mechanism 8 is vertically disposed in the ingot mold body 13, and the insulating heat insulating mechanism 8 It includes a high temperature resistant plate and a strong heating component disposed inside the high temperature resistant plate, such as a voltage hot component or a gas heating component.
  • the insulating heat insulation mechanism 8 disposed in a horizontal and vertical intersection 8 will ingot the body 13
  • the inner space is divided into ten independent cavity units 14, which are distributed in two rows in the ingot mold body 13.
  • the ingot mold body 13 is composed of four vertical water-cooled templates and a water-cooled bottom template 2
  • the vertical water-cooling template is movably connected to the frame 6 disposed outside the ingot mold body 13 by the hydraulic mechanism 7 or the lead screw.
  • the insulating heat insulation mechanism for dividing the plurality of cavity units into two rows 8 The lower portion is provided with a ridge 18 which is integral with the ingot mold base.
  • the casting system is in communication with the bottom of the ingot mold body 13, and includes a sprue 3 disposed outside the frame, the sprue 3 and the bottom template
  • the runners 4 in the 2 are connected, and the runners 4 communicate with the ten independent cavity units 14 inside the ingot body 13 through ten gates 5, respectively.
  • the ingot mold body 13 The inner wall is provided with a card slot 10 for use with the isolating heat-insulating mechanism 8 , and both ends of the isolating heat-insulation mechanism 8 are disposed in the card slot 10, and the inner wall of the heat-insulation 9 is provided with a card slot 11
  • the upper card slot 11 is engaged with the connection portion of the isolation heat-insulation mechanism 8 .
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • a non-electroslag remelting clean metal ingot mold is arranged on the platen 1, including an ingot mold body composed of a water-cooled template. And a heat retaining body 9 disposed on the ingot mold body 13, a casting system is disposed on the ingot mold body 13, and an insulating heat insulating mechanism is vertically disposed in the ingot mold body 13
  • the insulating heat insulation mechanism 8 disposed in a horizontal and vertical cross section divides the inner space of the ingot mold body 13 into six independent cavity unit 14 , and the cavity unit 14 is in the ingot mold body 13 . It is distributed in two rows.
  • the ingot mold body 13 is composed of a vertical water-cooling template and a water-cooled bottom template 2 which passes through a hydraulic mechanism 7 or a screw spring and a frame 6 disposed outside the ingot mold body 6 Active connection.
  • the lower portion of the insulating heat-insulating mechanism 8 for dividing the plurality of cavity units into two rows is provided with a ridge 18 integral with the ingot mold template.
  • the casting system and the ingot mold body 13 The bottom portion communicates, including a sprue 3 disposed outside the frame, the sprue 3 being in communication with a runner 4 disposed in the bottom plate 2, the runner 4 passing through the six gates 5, respectively Ingot mold body 13
  • the internal six independent cavity units 14 are connected.
  • the inner wall of the ingot mold body 13 is provided with a card slot 10 for use with the isolation heat-insulation mechanism 8 , and the two ends of the isolation heat-insulation mechanism 8 are disposed in the card slot 10, the inner wall of the heat retaining ejector 9 is provided with a card slot 11 , and the upper card slot 11 is engaged with the connecting portion of the insulating heat insulating mechanism 8 .
  • Ingot mold body 13 The water-cooled stencil removes a large amount of heat, which ensures that the liquid metal is rapidly cooled in the ingot mold.
  • Each of the individual cavity units 14 has a solidification starting surface 16 which is rapidly outwardly thermally conductive, and an insulating and heat-insulating mechanism.
  • the solidification end surface of the contact 17 the liquid metal in thermal contact with the water-cooled template is rapidly solidified, and the solidification initiation surface 16 is separated from the direction of the arrow in the figure to the thermal insulation mechanism 8
  • the direction is slowly crystallized, and the inclusions and segregates in the liquid metal are rushed in the direction of non-crystallization during the process of crystal solidification to form crystals, and the solidification end surface is close to the portion where the heat-insulation mechanism 8 is isolated.
  • the protection scope of the present invention is not limited to the above embodiment, as long as the isolation heat-insulation mechanism is disposed in the ingot mold, the insulation heat-insulation mechanism divides the space inside the mold mold body into a plurality of independent cavity unit, and the cavity unit is in the ingot mold.
  • the body is distributed in two rows, all of which fall within the scope of protection of the present invention.
  • the present invention is not limited to a common ingot mold, a water-cooled ingot mold, and is also suitable for a mold ingot mold.
  • the technical solution of the present invention can be manufactured or used in the industry, which has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

非电渣重熔式洁净金属锭模 技术领域
本发明属于冶金铸造设备技术领域,具体涉及一种非电渣重熔式洁净金属锭模。
背景技术
在公知技术中,以往实现洁净钢生产用的是电渣炉重熔技术,在铜制水冷结晶器内盛有熔融的炉渣,自耗电极一端插入熔渣内。自耗电极、渣池、金属熔池、钢锭、底水箱通过短网导线和变压器形成回路。在通电过程中,渣池放出 焦耳热 ,将自耗电极端头逐渐熔化,熔融金属汇聚成液滴,穿过渣池,落入结晶器,形成金属熔池,受水冷作用,迅速凝固形成钢锭。在电极端头液滴形成阶段,以及液滴穿过渣池滴落阶段,钢 - 渣充分接触,钢中非金属夹杂物为炉渣所吸收。
技术问题
钢中有害元素( 硫 、 铅 、 锑 、 铋 、 锡 )通过钢 - 渣反应和高温气化比较有效地去除,但是钢锭再次熔化需要耗费大量的电能,也制约着大规模工业化生产,而且渣料中含大量的氟化钙,污染环境,必须设置除尘和去氟装置。另外,效率还特别低,特别是产生的电弧对结晶器的伤害也非常严重,一个结晶器铸模采用电渣炉重熔方式只能炼多几十炉的钢,提高了生产的成本。普通铸锭方法又达不到洁净效果。
技术解决方案
为解决现有技术存在的上述缺陷,本发明的目的在于提供一种节约能源、减少污染物排放、生产效率高、使用寿命长的非电渣重熔式洁净金属锭模。采用这种设备后,转炉、电炉、 LF 炉、 VD 炉冶炼出的钢水可直接浇入该设备内,获得洁净钢铸锭,大幅降低能耗,大幅提高生产效率,降低生产成本。
一种非电渣重熔式洁净金属锭模,设置在台板上,包括锭模本体和设置在锭模本体上的保温冒,所述锭模本体内竖向设置隔离发热保温机构,所述隔离发热保温机构将锭模本体内空间分割成多个独立的模腔单元,所述模腔单元在锭模本体内呈两排分布。
所述将多个模腔单元分成两排的隔离发热保温机构的下部设置与锭模底模板一体的凸脊。
所述隔离发热保温机构的下部设置与锭模底模板一体的凸脊。
所述锭模本体为水冷锭模。
所述锭模本体为普通锭模。
所述锭模本体上的周向模板通过液压机构或丝杆丝母与设置在锭模本体外的框架活动连接。
所述隔离发热保温机构是耐高温板。
所述隔离发热保温机构包括耐高温板和设置在耐高温板内部的强加热部件。
所述锭模本体上设置浇铸系统。
所述浇铸系统包括设置在框架外的直浇道,所述直浇道与设置在台板内的横浇道连通,所述横浇道通过多个内浇道分别与锭模本体内部的多个独立模腔单元连通。
所述浇铸系统包括设置在框架外的直浇道,所述直浇道与设置在底模板内的横浇道连通,所述横浇道通过多个内浇道分别与锭模本体内部的多个独立模腔单元连通。
所述锭模本体内壁上设置与隔离发热保温机构配合使用的卡槽,所述隔离发热保温机构的两端设置在卡槽内,所述保温冒的内壁上设置上卡槽,所述上卡槽与隔离发热保温机构的连接部位卡接。
有益效果
由于本发明以非电渣重熔的方式,在锭模本体内设置设置隔离发热保温机构,隔离发热保温机构将锭模本体内空间分割成多个独立的模腔单元,所述模腔单元在锭模本体内呈两排分布,在液态金属凝固结晶的过程中,每个独立的模腔单元都有快速向外导热的凝固起始面,即与周向模板接触的面,还有与隔离发热保温机构接触的凝固终止面,与水冷模板或其他模板接触的液态金属快速凝固,并向隔离发热保温机构的方向慢慢结晶,在结晶凝固形成晶体的过程中将液态金属内的夹杂物和偏析物往未结晶的方向赶,靠近隔离发热保温机构的部位因远离低温而最后凝固,液态金属内绝大部分的夹杂物和偏析物在液态金属定向凝固后最后都富集在与隔离发热保温机构接触的部分,这就很容易用火焰或其他加工的方法将富集的合金偏析物、夹杂物去除,从而实现了铸锭内部偏析物、夹杂物转移、清除,达到了净化铸锭之目的。与现有电渣重熔技术相比,无须二次熔化,即能实现金属内部的净化,节约大量能源,同时可避免电渣重熔给铸锭带来氢白点的危害,生产效率显著提高,成本显著下降。
在隔离发热保温机构的下部设置与锭模底模板一体的凸脊,可以将锭模内液态金属结晶过程中产生的' V '型杂质区上移到保温冒所在区,使得杂质更偏离铸锭中心,而且更集中,方便后期对杂质进行处理,实现金属的洁净。
所述隔离发热保温机构内设置强发热部件,可以在锭模未浇进液态金属时,就提前升温,避免吸收金属熔液的热量,而且在液态金属定向凝固的过程中,隔离发热保温机构的存在可以保证与其接触的部分一直处在高温的状态,液态金属内绝大部分的夹杂物和偏析物在液态金属定向凝固后更为集中地富集在与隔离发热保温机构接触的区域,更易处理。
浇铸系统与锭模的底部连通,可以更好的控制液态金属的流速,多个内浇道分别与锭模本体内部的多个独立部分连通,可以使得各个独立部分的液态金属上升高度基本水平,从而保证了各个锭腔中液态金属对隔离发热保温机构压力的平衡。 所述水冷模板和保温冒的内壁上设置与隔离发热保温机构配合使用的卡槽,一方面保证隔离发热保温机构的直立,另一方面保温冒上的上卡槽与隔离发热保温机构的斜向卡接使得隔离发热保温机构在液态金属凝固的过程中位置固定,保温冒的重力压住隔离发热保温机构,不让其上浮,保证浇注过程中隔离发热保温机构的稳定可靠,进而保证了铸锭的形状。本发明根据需要可设置成两排多个模腔单元,一次铸锭,清理一次浇道,可以实现多块甚至数十块金属锭的洁净结晶凝固,大大的提高了工作效率,降低了生产成本。
附图说明
下面结合附图对本发明的具体实施例作进一步详细的说明。
图 1 为本发明实施例一的结构示意图。
图 2 为图 1 的俯视图。
图 3 是本发明实施例二的结构示意图。
图 4 为本发明实施例三中锭模本体部分的结构示意图。
图 5 为本发明实施例四中锭模本体部分的结构示意图。
图 6 为本发明实施例五中锭模本体部分的结构示意图。
图 7 为本发明实施例五中锭模本体部分液态金属定向结晶方向示意图。
本发明的最佳实施方式
如图 1 、图 2 所示:一种非电渣重熔式洁净金属锭模,设置在台板 1 上,包括由普通模板组成的锭模本体 13 和设置在锭模本体 13 上的保温冒 9 ,所述锭模本体 13 上设置浇铸系统,所述锭模本体 13 内竖向设置隔离发热保温机构 8 ,所述隔离发热保温机构 8 将锭模本体 13 内空间分割成两个独立的模腔单元 14 ,所述模腔单元 14 在锭模本体 13 内呈两排分布。所述锭模本体 13 由四块立式模板和一块底模板 2 组成,所述立式模板通过液压机构 7 或丝杆丝母与设置在锭模本体 13 外的框架 6 活动连接。所述隔离发热保温机构 8 为耐高温板。
所述浇铸系统与锭模本体 13 的底部连通,包括设置在框架 6 外的直浇道 3 ,所述直浇道 3 与设置在台板 1 内的横浇道 4 连通,所述横浇道 4 通过两个内浇道 5 分别与锭模本体 13 内部的两个独立模腔单元 14 连通。所述锭模本体 13 内壁上设置与隔离发热保温机构 8 配合使用的卡槽 10 ,所述隔离发热保温机构 8 的两端设置在卡槽 10 内,所述保温冒 9 的内壁上设置上卡槽 11 ,所述上卡槽 11 与隔离发热保温机构 8 的连接部位卡接。
本发明的实施方式
实施例一:
如图 1 、图 2 所示:一种非电渣重熔式洁净金属锭模,设置在台板 1 上,包括由普通模板组成的锭模本体 13 和设置在锭模本体 13 上的保温冒 9 ,所述锭模本体 13 上设置浇铸系统,所述锭模本体 13 内竖向设置隔离发热保温机构 8 ,所述隔离发热保温机构 8 将锭模本体 13 内空间分割成两个独立的模腔单元 14 ,所述模腔单元 14 在锭模本体 13 内呈两排分布。所述锭模本体 13 由四块立式模板和一块底模板 2 组成,所述立式模板通过液压机构 7 或丝杆丝母与设置在锭模本体 13 外的框架 6 活动连接。所述隔离发热保温机构 8 为耐高温板。
所述浇铸系统与锭模本体 13 的底部连通,包括设置在框架 6 外的直浇道 3 ,所述直浇道 3 与设置在台板 1 内的横浇道 4 连通,所述横浇道 4 通过两个内浇道 5 分别与锭模本体 13 内部的两个独立模腔单元 14 连通。所述锭模本体 13 内壁上设置与隔离发热保温机构 8 配合使用的卡槽 10 ,所述隔离发热保温机构 8 的两端设置在卡槽 10 内,所述保温冒 9 的内壁上设置上卡槽 11 ,所述上卡槽 11 与隔离发热保温机构 8 的连接部位卡接。
实施例二:
如图 3 所示:一种非电渣重熔式洁净金属锭模,包括由水冷模板组成的锭模本体 13 和设置在锭模本体 13 上的保温冒 9 ,所述锭模本体 13 上设置浇铸系统,所述锭模本体 13 内竖向设置隔离发热保温机构 8 ,所述隔离发热保温机构 8 包括耐高温板和设置在耐高温板内部的强加热部件,如电压热部件或者燃气加热部件。所述隔离发热保温机构 8 将锭模本体 13 内空间分割成两个独立的模腔单元 14 ,所述模腔单元 14 在锭模本体 13 内呈两排分布。所述锭模本体 13 由四块立式水冷模板和一块水冷底模板 2 组成,所述立式水冷模板通过液压机构 7 或丝杆丝母与设置在锭模本体 13 外的框架 6 活动连接。所述将多个模腔单元分成两排的隔离发热保温机构 8 的下部设置与锭模底模板一体的凸脊 18 。
所述浇铸系统与锭模本体 13 的底部连通,包括设置在框架外的直浇道 3 ,所述直浇道 3 与设置在底模板 2 内的横浇道 4 连通,所述横浇道 4 通过两个内浇道 5 分别与锭模本体 13 内部的两个独立模腔单元 14 连通。所述锭模本体 13 内壁上设置与隔离发热保温机构 8 配合使用的卡槽 10 ,所述隔离发热保温机构 8 的两端设置在卡槽 10 内,所述保温冒 9 的内壁上设置上卡槽 11 ,所述上卡槽 11 与隔离发热保温机构 8 的连接部位卡接。
实施例三:
如图 4 所示:一种非电渣重熔式洁净金属锭模,设置在台板 1 上,包括由水冷模板组成的锭模本体 13 和设置在锭模本体 13 上的保温冒 9 ,所述锭模本体 13 上设置浇铸系统,所述锭模本体 13 内竖向设置隔离发热保温机构 8 ,所述隔离发热保温机构 8 包括耐高温板和设置在耐高温板内部的强加热部件,如电压热部件或者燃气加热部件。所述两个横竖交叉的隔离发热保温机构 8 将锭模本体 13 内空间分割成四个独立的模腔单元 14 ,所述模腔单元 14 在锭模本体 13 内呈两排分布。所述锭模本体 13 由四块立式水冷模板和一块水冷底模板 2 组成,所述立式水冷模板通过液压机构 7 或丝杆丝母与设置在锭模本体 13 外的框架 6 活动连接。所述隔离发热保温机构 8 的下部设置锭模底模板一体的凸脊 18 。
所述浇铸系统与锭模本体 13 的底部连通,包括设置在框架外的直浇道 3 ,所述直浇道 3 与设置在底模板 2 内的横浇道 4 连通,所述横浇道 4 通过四个内浇道 5 分别与锭模本体 13 内部的四个独立模腔单元 14 连通。所述锭模本体 13 内壁上设置与隔离发热保温机构 8 配合使用的卡槽 10 ,所述隔离发热保温机构 8 的两端设置在卡槽 10 内,所述保温冒 9 的内壁上设置上卡槽 11 ,所述上卡槽 11 与隔离发热保温机构 8 的连接部位卡接。
实施例四:
如图 5 所示:一种非电渣重熔式洁净金属锭模,设置在台板 1 上,包括由水冷模板组成的锭模本体 13 和设置在锭模本体 13 上的保温冒 9 ,所述锭模本体 13 上设置浇铸系统,所述锭模本体 13 内竖向设置隔离发热保温机构 8 ,所述隔离发热保温机构 8 包括耐高温板和设置在耐高温板内部的强加热部件,如电压热部件或者燃气加热部件。所述一横四纵交叉设置的隔离发热保温机构 8 将锭模本体 13 内空间分割成十个独立的模腔单元 14 ,所述模腔单元 14 在锭模本体 13 内呈两排分布。所述锭模本体 13 由四块立式水冷模板和一块水冷底模板 2 组成,所述立式水冷模板通过液压机构 7 或丝杆丝母与设置在锭模本体 13 外的框架 6 活动连接。所述将多个模腔单元分成两排的隔离发热保温机构 8 的下部设置与锭模底模板一体的凸脊 18 。
所述浇铸系统与锭模本体 13 的底部连通,包括设置在框架外的直浇道 3 ,所述直浇道 3 与设置在底模板 2 内的横浇道 4 连通,所述横浇道 4 通过十个内浇道 5 分别与锭模本体 13 内部的十个独立模腔单元 14 连通。所述锭模本体 13 内壁上设置与隔离发热保温机构 8 配合使用的卡槽 10 ,所述隔离发热保温机构 8 的两端设置在卡槽 10 内,所述保温冒 9 的内壁上设置上卡槽 11 ,所述上卡槽 11 与隔离发热保温机构 8 的连接部位卡接。
实施例五:
如图 6 所示:一种非电渣重熔式洁净金属锭模,设置在台板 1 上,包括由水冷模板组成的锭模本体 13 和设置在锭模本体 13 上的保温冒 9 ,所述锭模本体 13 上设置浇铸系统,所述锭模本体 13 内竖向设置隔离发热保温机构 8 ,所述一横两纵交叉设置的隔离发热保温机构 8 将锭模本体 13 内空间分割成六个独立的模腔单元 14 ,所述模腔单元 14 在锭模本体 13 内呈两排分布。所述锭模本体 13 由立式水冷模板和一块水冷底模板 2 组成,所述立式水冷模板通过液压机构 7 或丝杆丝母与设置在锭模本体 13 外的框架 6 活动连接。所述将多个模腔单元分成两排的隔离发热保温机构 8 的下部设置与锭模底模板一体的凸脊 18 。所述浇铸系统与锭模本体 13 的底部连通,包括设置在框架外的直浇道 3 ,所述直浇道 3 与设置在底模板 2 内的横浇道 4 连通,所述横浇道 4 通过六个内浇道 5 分别与锭模本体 13 内部的六个独立模腔单元 14 连通。所述锭模本体 13 内壁上设置与隔离发热保温机构 8 配合使用的卡槽 10 ,所述隔离发热保温机构 8 的两端设置在卡槽 10 内,所述保温冒 9 的内壁上设置上卡槽 11 ,所述上卡槽 11 与隔离发热保温机构 8 的连接部位卡接。
如图 7 所示:锭模本体 13 上的水冷模板带走大量的热,能够保证液态金属在锭模内快速冷却,每个独立的模腔单元 14 都有快速向外导热的凝固起始面 16 ,还有与隔离发热保温机构 8 接触的凝固终止面 17 ,与水冷模板热接触的液态金属快速凝固,并由凝固起始面 16 沿图中箭头的方向向隔离发热保温机构 8 的方向慢慢结晶,在结晶凝固形成晶体的过程中将液态金属内的夹杂物和偏析物往未结晶的方向赶,靠近隔离发热保温机构 8 的部位凝固终止面 17 因远离低温而最后凝固,液态金属内绝大部分的夹杂物和偏析物在液态金属定向凝固后最后都富集在与隔离发热保温机构接触的凝固终止面 17 附近,形成杂质富集区 15 ,很容易用火焰或其他加工的方法将杂质富集区 15 内富集的合金偏析物、夹杂物去除,从而实现了铸锭内部偏析物、夹杂物转移、清除,达到了净化铸锭之目的。
本发明的保护范围不局限于上述实施例,只要锭模内设置隔离发热保温机构,隔离发热保温机构将锭模本体内空间分割成多个独立的模腔单元,所述模腔单元在锭模本体内呈两排分布,都发属于本发明的保护范围之内。另外,本发明也不仅局限于普通锭模,水冷锭模,而且也适合于结晶器锭模。
工业实用性
本发明的技术方案可以在工业中制造或使用,其具有工业实用性。

Claims (10)

  1. 一种非电渣重熔式洁净金属锭模,设置在台板上,包括锭模本体和设置在锭模本体上的保温冒,其特征在于:所述锭模本体内竖向设置隔离发热保温机构,所述隔离发热保温机构将锭模本体内空间分割成多个独立的模腔单元,所述模腔单元在锭模本体内呈两排分布。
  2. 如权利要求 1 所述的非电渣重熔式洁净金属锭模,其特征在于:所述将多个模腔单元分成两排的隔离发热保温机构的下部设置与锭模底模板一体的凸脊。
  3. 如权利要求 1 所述的非电渣重熔式洁净金属锭模,其特征在于:所述隔离发热保温机构的下部设置锭模底模板一体的凸脊。
  4. 如权利要求 1 、 2 或 3 所述的非电渣重熔式洁净金属锭模,其特征在于:所述锭模本体为水冷锭模。
  5. 如权利要求 1 、 2 或 3 所述的非电渣重熔式洁净金属锭模,其特征在于:所述锭模本体为普通锭模。
  6. 如权利要求 1 所述的非电渣重熔式洁净金属锭模,其特征在于:所述锭模本体上的周向模板通过液压机构或丝杆丝母与设置在锭模本体外的框架活动连接。
  7. 如权利要求 1 、 2 或 3 所述的非电渣重熔式洁净金属锭模,其特征在于:所述隔离发热保温机构是耐高温板。
  8. 如权利要求 1 、 2 或 3 所述的非电渣重熔式洁净金属锭模,其特征在于:所述隔离发热保温机构包括耐高温板和设置在耐高温板内部的强加热部件。
  9. 如权利要求 1 、 2 或 3 所述的非电渣重熔式洁净金属锭模,其特征在于:所述锭模本体上设置浇铸系统。
  10. 如权利要求 1 、 2 或 3 所述的非电渣重熔式洁净金属锭模,其特征在于:所述锭模本体内壁上设置与隔离发热保温机构配合使用的卡槽,所述隔离发热保温机构的两端设置在卡槽内,所述保温冒的内壁上设置上卡槽,所述上卡槽与隔离发热保温机构的连接部位卡接。
PCT/CN2010/080241 2010-09-30 2010-12-24 非电渣重熔式洁净金属锭模 WO2012040987A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10857748.7A EP2623232B1 (en) 2010-09-30 2010-12-24 Non-electroslag re-melting type clean metal ingot mold
KR1020137011198A KR101578589B1 (ko) 2010-09-30 2010-12-24 비전기 슬래그 재용융식 청정 금속 잉곳몰드
US13/876,886 US9010403B2 (en) 2010-09-30 2010-12-24 Non-electroslag remelting type clean metal ingot mold
IN789MUN2013 IN2013MN00789A (zh) 2010-09-30 2013-04-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010297876.9 2010-09-30
CN2010102978769A CN101966562B (zh) 2010-09-30 2010-09-30 非电渣重熔式洁净金属锭模

Publications (1)

Publication Number Publication Date
WO2012040987A1 true WO2012040987A1 (zh) 2012-04-05

Family

ID=43545818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/080241 WO2012040987A1 (zh) 2010-09-30 2010-12-24 非电渣重熔式洁净金属锭模

Country Status (6)

Country Link
US (1) US9010403B2 (zh)
EP (1) EP2623232B1 (zh)
KR (1) KR101578589B1 (zh)
CN (1) CN101966562B (zh)
IN (1) IN2013MN00789A (zh)
WO (1) WO2012040987A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101982256B (zh) * 2010-09-30 2013-06-12 西峡龙成特种材料有限公司 洁净金属锭模
CN103706761A (zh) * 2013-12-20 2014-04-09 世林(漯河)冶金设备有限公司 用于合金材料或非金属材料浇铸机浇铸模具
CN104493111B (zh) * 2014-12-26 2016-08-03 南阳师范学院 一种孪生连体半水冷钢锭模及其生产方法
USD872781S1 (en) * 2018-04-13 2020-01-14 Foseco International Limited Breaker core
CN108637194A (zh) * 2018-05-24 2018-10-12 本钢板材股份有限公司 降低真空炉钢锭芯部疏松的工艺方法
JP2023025544A (ja) * 2021-08-10 2023-02-22 メトロ電気工業株式会社 金型加熱装置及び金型加熱方法
CN117161318B (zh) * 2023-10-16 2024-07-05 南通成科精密铸件有限公司 铝合金零件生产用铸造模具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU933195A2 (ru) * 1980-07-28 1982-06-07 Коммунарский горно-металлургический институт Изложница дл листового слитка
JPS60177933A (ja) * 1984-02-27 1985-09-11 Nippon Kokan Kk <Nkk> 無偏析鋼塊の製造方法
CN1241461A (zh) * 1999-06-26 2000-01-19 秦希满 开式水冷模铸机
CN101406938A (zh) * 2008-11-25 2009-04-15 南阳汉冶特钢有限公司 一种实现洁净钢铸锭的锭模装置
CN201223932Y (zh) * 2008-05-15 2009-04-22 中国科学院金属研究所 一种抑制大型钢锭偏析的装置
CN101543877A (zh) * 2009-05-11 2009-09-30 南阳汉冶特钢有限公司 用水冷结晶器作为锭模的装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1421908A (en) * 1972-08-25 1976-01-21 Ass Elect Ind Electroslag moulds
DE2827091A1 (de) * 1978-06-21 1980-01-10 Seybold Rolf Prof Dr Ing Standkokillen fuer brammen und bloecke
SU973220A1 (ru) * 1981-05-20 1982-11-15 Коммунарский горно-металлургический институт Изложница дл листового слитка
US4759399A (en) * 1986-05-15 1988-07-26 Kawasaki Steel Corporation Method and apparatus for producing hollow metal ingots
JPH07239322A (ja) * 1993-04-21 1995-09-12 Mas Fab Gustav Eirich 型砂の成型特性を確定する方法と装置
US6539620B1 (en) * 2000-01-19 2003-04-01 General Electric Company Method of manufacturing superalloy weld wire
JP2005095961A (ja) * 2003-09-26 2005-04-14 Nisshin Steel Co Ltd 鋳型と溶鋼の処理方法
CN201799581U (zh) * 2010-09-30 2011-04-20 西峡龙成特种材料有限公司 非电渣重熔式洁净金属锭模

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU933195A2 (ru) * 1980-07-28 1982-06-07 Коммунарский горно-металлургический институт Изложница дл листового слитка
JPS60177933A (ja) * 1984-02-27 1985-09-11 Nippon Kokan Kk <Nkk> 無偏析鋼塊の製造方法
CN1241461A (zh) * 1999-06-26 2000-01-19 秦希满 开式水冷模铸机
CN201223932Y (zh) * 2008-05-15 2009-04-22 中国科学院金属研究所 一种抑制大型钢锭偏析的装置
CN101406938A (zh) * 2008-11-25 2009-04-15 南阳汉冶特钢有限公司 一种实现洁净钢铸锭的锭模装置
CN101543877A (zh) * 2009-05-11 2009-09-30 南阳汉冶特钢有限公司 用水冷结晶器作为锭模的装置

Also Published As

Publication number Publication date
CN101966562B (zh) 2013-07-03
CN101966562A (zh) 2011-02-09
US20130299118A1 (en) 2013-11-14
EP2623232B1 (en) 2017-11-29
KR20130094332A (ko) 2013-08-23
IN2013MN00789A (zh) 2015-06-12
EP2623232A4 (en) 2016-04-20
US9010403B2 (en) 2015-04-21
KR101578589B1 (ko) 2015-12-17
EP2623232A1 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
WO2012040987A1 (zh) 非电渣重熔式洁净金属锭模
CN101781712B (zh) 流槽式在线除气装置
CN109022826B (zh) 还原精炼一体化冶炼系统
CN106623883A (zh) 一种大型钢包的整体浇注工艺
WO2012055127A1 (zh) 环境伺服式洁净金属铸模
CN201799581U (zh) 非电渣重熔式洁净金属锭模
WO2012040963A1 (zh) 洁净金属锭模
CN105838907B (zh) 钛提纯装置及使用方法
WO2012055128A1 (zh) 环形洁净金属铸模
CN201731757U (zh) 一种环保节能高效的铝合金熔化炉
CN201823898U (zh) 洁净金属铸模
JP6387018B2 (ja) シリコン精製のためのカバーフラックスおよび方法
CN202606840U (zh) 一种双电极半连续式电渣重熔铸造装置
CN203695934U (zh) 一种带流铁口的铁水罐挡渣器
CN201791921U (zh) 洁净金属锭模
WO2010147388A2 (ko) 조립 도가니를 구비한 실리콘 잉곳 제조용 도가니
CN101983798B (zh) 洁净金属铸模
CN201280586Y (zh) 生产高纯金属镁和镁合金的连续盐浴炉
CN102794437A (zh) 一种多个小炉生产大型钢锭的电渣重熔法
CN219188602U (zh) 一种连铸用中间包包盖
CN215481165U (zh) 水冷结晶器
CN202667624U (zh) 一种金属熔液浇注用中间包装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010857748

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010857748

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13876886

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137011198

Country of ref document: KR

Kind code of ref document: A