WO2012039641A1 - Фармацевтическая композиция антимикробного и противовоспалительного действия для парентерального введения, способ её получения - Google Patents

Фармацевтическая композиция антимикробного и противовоспалительного действия для парентерального введения, способ её получения Download PDF

Info

Publication number
WO2012039641A1
WO2012039641A1 PCT/RU2011/000321 RU2011000321W WO2012039641A1 WO 2012039641 A1 WO2012039641 A1 WO 2012039641A1 RU 2011000321 W RU2011000321 W RU 2011000321W WO 2012039641 A1 WO2012039641 A1 WO 2012039641A1
Authority
WO
WIPO (PCT)
Prior art keywords
fosfomycin
silicon dioxide
pharmaceutical composition
antimicrobial
nanostructured silicon
Prior art date
Application number
PCT/RU2011/000321
Other languages
English (en)
French (fr)
Inventor
Виктор Львович ЛИМОНОВ
Константин Валентинович ГАЙДУЛЬ
Александр Валерьевич ДУШКИН
Original Assignee
Limonov Viktor Lvovich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Limonov Viktor Lvovich filed Critical Limonov Viktor Lvovich
Priority to AU2011304261A priority Critical patent/AU2011304261C1/en
Priority to EP11827038.8A priority patent/EP2476419A4/en
Priority to US13/389,533 priority patent/US20130164336A1/en
Priority to BR112012023963A priority patent/BR112012023963A2/pt
Priority to CA2780785A priority patent/CA2780785A1/en
Priority to MX2012010528A priority patent/MX2012010528A/es
Priority to UAA201203807A priority patent/UA103116C2/ru
Priority to CN2011800041985A priority patent/CN102740858A/zh
Priority to JP2013529098A priority patent/JP2013537226A/ja
Publication of WO2012039641A1 publication Critical patent/WO2012039641A1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/665Phosphorus compounds having oxygen as a ring hetero atom, e.g. fosfomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/143Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents

Definitions

  • the invention relates to antimicrobial pharmaceutical preparations and technologies for their preparation and can be used in medicine and veterinary medicine for the treatment of infectious and inflammatory diseases, as well as in the pharmaceutical industry for the production of medicines.
  • This antibiotic has a wide spectrum of antimicrobial activity and has a bactericidal effect on many gram-positive and gram-negative microorganisms that cause infectious processes in various organs and tissues of the body.
  • Fosfomycin has the unique property of inhibiting the synthesis and production of pro-inflammatory cytokines (IL-1, IL-6, TNF, etc.) by human blood cells, which is clinically significant in the treatment of generalized infections, in particular, sepsis [8].
  • S1O2 silicon dioxide
  • S1O2 silicon dioxide
  • macrophages which are concentrated in the foci of inflammation, observed found in the lungs, liver, kidneys, spleen, lymph nodes, heart, skin, bladder and other mammalian organs (i.e., significantly increase the concentration of antibiotics in infected areas), as well as stimulate the antimicrobial activity of these cells of the immune system, thereby significantly enhancing therapeutic effect of antimicrobial agents in the treatment of infectious and inflammatory diseases [20, 21, 22, 23, 24, 25, 26, 27].
  • the invention solves the problem of creating a pharmaceutical composition of antimicrobial and anti-inflammatory effects for injection based on the use of phosphomycin and silicon dioxide nanoparticles, which has increased therapeutic efficacy (compared to conventional phosphomycin, which is considered as a prototype in this invention) in the treatment of infectious and inflammatory diseases.
  • a pharmaceutical composition of antimicrobial and anti-inflammatory effects is proposed for parenteral administration containing an antibiotic fosfomycin as a therapeutic substance, made in the form of a powder for the preparation of injection solutions and contains highly dispersed nanostructured silicon dioxide in a weight ratio of fosfomycin: highly dispersed nanostructured silicon dioxide, equal to (10-70): 1.
  • the proportion of highly dispersed nanostructured silicon dioxide particles having a size of 5 ⁇ m is at least 25%.
  • a method for producing a pharmaceutical composition of antimicrobial and anti-inflammatory effects for parenteral administration comprising mixing phosphomycin with other components, according to which phosphomycin in the form of a powder is mixed with powdered highly dispersed nanostructured silicon dioxide in a weight ratio equal to (10-70 ): 1, and the resulting mixture is subjected to mechanical treatment by impact-abrasion.
  • the resulting mixture is machined by impact-abrasion in such a way that the fraction of highly dispersed nanostructured silicon dioxide having a size of -S 5 ⁇ m is at least 25%.
  • the therapeutic efficacy of the proposed pharmaceutical composition is improved if the resulting mixture is machined by impact-abrasion so that the fraction of highly dispersed nanostructured silicon dioxide having a size of ⁇ 5 ⁇ m is at least 25%.
  • phosphomycin parenteral form manufactured by the Spanish company Ercros was used.
  • BHSiCte highly dispersed nanostructured silicon dioxide
  • Polisorb pharmaceutical group: enterosorbing agent; active ingredient: colloidal silicon dioxide
  • Polisorb CJSC consisting of round-shaped silicon dioxide nanoparticles ( size 5-20 nm), combined into aggregates (microparticles of irregular shape) having dimensions ⁇ 90 ⁇ m (registration> ⁇ ° 001140 / 01-100908).
  • a similar drug is produced by the Ukrainian company Biofarma CJSC under the trade name Silix [24].
  • composition composition is based on the phenomenon of reversible sorption of fosfomycin molecules by nano- and micro-sized particles of BHSiCte, as well as a decrease in the size of BHSiCte microparticles upon mechanical activation of its mixtures with the substance of phosphomycin by intensive impact-abrasion mechanical effects.
  • the inventive method for producing the above pharmaceutical composition by mechanically activating a powdered mixture of phosphomycin and BHSiCte with intense impact-abrasion can increase the proportion of finely dispersed (5 ⁇ m) BHSiCte particles on which phosphomycin molecules are adsorbed and which are phagocytized mainly by macrophages [28].
  • a mixture of the above substances in a weight ratio of fosfomycin: BHSiCte equal to (10-70): 1 is subjected to mechanical activation by impact-abrasion until the weight fraction of the finely divided fraction is increased to no less than 25%.
  • Injectable colloidal solutions for parenteral administration are prepared from the obtained powdery composition, consisting of fine particles of BHSiCte with phosphomycin molecules reversibly adsorbed on their surface.
  • the introduction into the proposed composition of highly dispersed nanostructured silicon dioxide in the ratios of phosphomycin: BHSiCte from 10: 1 to 70: 1 by weight, respectively, is determined by a combination of two factors: 1) with an increase in the BHSiCte content of more than 10% by weight of the composition in laboratory animals, small blockade phenomena are observed capillaries in parenchymal organs; 2) with a decrease in the BHSiCte content below 1% by weight of the composition, its therapeutic effectiveness (in particular, in the treatment of bacterial sepsis in mice) does not actually differ from the basic effectiveness of the initial antibiotic.
  • compositions a mechanochemical approach was used, which consists in processing a mixture of solid components by intense mechanical stresses - pressure and shear deformations, which are realized mainly in various types of mills that carry out impact-abrasive effects on substances.
  • the method used to obtain mixtures allows one to significantly avoid the chemical decomposition of the antibiotic, to achieve complete homogeneity of the powdered components in comparison with the preparation of mixtures by simple mixing of the components, or by evaporation of their solutions and, as a result, determines the high pharmacological activity of the pharmaceutical composition.
  • the method of granulometry of the suspension of the resulting composition As a quantitative criterion for the minimum required dose of mechanical stress, it is convenient to use the method of granulometry of the suspension of the resulting composition. In this case, it is necessary that the mass fraction of particles with a size of not more than 5 ⁇ m is at least 25%.
  • the mechanical processing of powdered mixtures is carried out in rotary, vibration or planetary mills. As grinding media can be used balls, rods, etc.
  • a mixture of fosfomycin and BHSi0 2 in weight ratios of 10: 1, 30: 1 and 50: 1 by weight is processed for 1, 2 and 4 hours in a rotary ball mill.
  • the particle size distribution of aqueous suspensions of the obtained composition variants (Micro-Sizer 201 laser granulometer was used), as well as HPLC analysis of the content of antibiotics in them (in% of the initial substance) and the degree of sorption of phosphomycin (in%) by BHSi0 2 particles > are given in Table. one.
  • the selected conditions for obtaining the proposed composition can be increased to the required value (at least 25% of the total weight) of the fraction of finely divided fraction of BHSi0 2 (particle size - £ 5 ⁇ m) and at the same time avoid chemical decomposition of the antibiotic.
  • Example 2 Determination of therapeutic efficacy of fosfomycin and pharmaceutical compositions.
  • compositions consisting of a mixture of fosfomycy VNBYug in weight ratios of 30: 1 and 50: 1, respectively.
  • Microorganisms Staphylococcus aureus (ATCC ⁇ ° 25923 F-49), Escherichia coli (ATCC jV ° 25922 F-50), Pseudomonas aeruginosa (ATCC jV ⁇ > 27853 F-51).
  • a suspension of a daily culture of Pseudomonas aeruginosa at a dose of 5x10 8 CFU / mouse or a suspension of a daily culture of Staphylococcus aureus at a dose of 10 10 CFU / mouse or suspension of a daily culture of Escherichia coli at a dose of 8x10 CFU / mouse was administered intravenously in a volume of 0.8 ml.
  • the control group was administered physical. solution (0.9% sodium chloride solution) in a volume of 0.8 ml.
  • mice One day after infection, the mice once a day for 3 days was administered fosfomycin and two variants of the pharmaceutical composition (fosfomycin / VN8YU 2) at a dose of 100 mg / Kg, diluted in 0.25 ml saline. solution
  • the control group of mppeys was injected using the same scheme nat. solution in a volume of 0.25 ml.
  • the proposed pharmaceutical composition (fosfomycin / VN8U 2) has a significantly increased therapeutic efficacy (2 times), compared with conventional fosfomycin, in the treatment sepsis in experimental animals caused by Pseudomonas aeruginosa, Staphylococcus aureus or Escherichia coll
  • Example 3 Determination of the anti-inflammatory action of fosfomycin and a pharmaceutical composition.
  • mice The number of leukocytes in peripheral blood in mice,
  • the proposed pharmaceutical composition (fosfomycin / VNBYug) has a significantly pronounced anti-inflammatory effect, compared with fosfomycin, in the treatment of sepsis in experimental animals caused by Pseudomonas aeruginosa or Staphylococcus aureus.
  • the proposed pharmaceutical composition of antimicrobial and anti-inflammatory effects for parenteral administration (phosphomycin / VNZiug) has a significantly increased therapeutic effect in the treatment of severe infectious and inflammatory diseases, compared with conventional phosphomycin (prototype inventions).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Dermatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Communicable Diseases (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

Изобретение относится к фармакологии, медицине, ветеринарии и к фармацевтической промышленности, в частности, к способу получения оригинальных композитных антимикробных и противовоспалительных препаратов для парентерального применения, которые обладают повышенной терапевтической эффективностью при лечении тяжёлых форм инфекционно-воспалительных заболеваний. Предложенная фармацевтическая композиция содержат в качестве действующего вещества антибиотик фосфомицин и высокодисперсный наноструктурированный диоксид кремния. Заявляемый способ получения фармацевтической композиции заключается в смешивании субстанции фосфомицина с высокодисперсным наноструктурированным диоксидом кремния отличающийся тем, что смесь вышеуказанных веществ в соотношениях от 10:1 до 70:1 по весу, соответственно, подвергают механической обработке путем ударно-истирающих воздействий до увеличения весовой доли мелкодисперсной фракции (≤ 5 мкм) не менее чем до 25%. Полученную смесь используют для приготовления инъекционных растворов.

Description

ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ АНТИМИКРОБНОГО И
ПРОТИВОВОСПАЛИТЕЛЬНОГО ДЕЙСТВИЯ ДЛЯ ПАРЕНТЕРАЛЬНОГО ВВЕДЕНИЯ, СПОСОБ ЕЁ ПОЛУЧЕНИЯ
Изобретение относится к антимикробным фармацевтическим препаратам и технологиям их приготовления и может использоваться в медицине и ветеринарии для лечения инфекционно-воспалительных заболеваний, а также в фармацевтической промышленности для производства лекарственных средств.
В настоящее время для обеспечения успешной терапии многих инфекционно- воспалительных заболеваний (сепсис, менингит, остеомиелит, пиелонефрит и др.) практическими врачами различных специальностей широко применяется антибиотик, имеющий международное непатентованное наименование - фосфомицин [1, 2, 3, 4, 5].
Данный антибиотик обладает широким спектром антимикробного действия и оказывает бактерицидное влияние на многие грамположительные и грамотрицательные микроорганизмы, вызывающие инфекционные процессы в различных органах и тканях организма.
Вторичная резистентность микроорганизмов к фосфомицину развивается медленно, а отсутствие перекрестной резистентности с другими антибиотиками позволяет его успешно сочетать с бета-лактамами и аминогликозидами для достижения выраженного синергизма [1, 6, 7].
Фосфомицин обладает уникальным свойством ингибировать синтез и продукцию провоспалительных цитокинов (IL-1, IL-6, TNF и др.) клетками крови человека, что является клинически значимым при лечении генерализованных инфекций, в частности, сепсиса [8].
Однако, отмечая многие положительные свойства фосфомицина, необходимо подчеркнуть, что монотерапия этим препаратом инфекционно-воспалительных процессов, вызванных в разной степени резистентными к данному антибиотику микроорганизмами, далеко не всегда является эффективной. Это вынуждает специалистов заменять фосфомицин другим антибиотиком или использовать одновременное дополнительное введение других антимикробных средств [6, 9], что является крайне нежелательным с клинической и экономической точки зрения. В связи с этим, разработка новых подходов с целью увеличения антимикробной активности и клинической эффективности фосфомицина является актуальной задачей современной экспериментальной фармакологии и практической медицины.
В последние годы обнаружено, что использование разнообразных наночастиц в качестве носителей для доставки различных антибиотиков во внутрь бактерий и макрофагов, с целью повышения их концентрации в зоне инфекционного воспаления, и, соответственно, усиления их антимикробных свойств, а также для стимуляции антибактериальной активности макрофагов и их дополнительного рекрутирования в инфицированные ткани, является перспективным направлением развития оригинальных технологий и методов антибиотикотерапии [10, 11, 12, 13, 14, 15, 16, 17, 18, 19].
Сущность изобретения заключается в том, что с целью усиления терапевтической эффективности фосфомицина предлагается использовать наночастицы S1O2 (диоксида кремния), которые, отличаясь фармакологически выгодными свойствами биосовместимости, биораспределения, биодеградации и малотоксичности (независимо от степени выраженности пористости структуры), способны при парентеральном введении служить в качестве носителя антибиотиков для внутриклеточной доставки в макрофаги, которые концентрированно расположены в очагах воспаления, наблюдаемых в легких, печени, почках, селезёнке, лимфоузлах, сердце, коже, мочевом пузыре и других органах млекопитающих (т.е. значительно повышать концентрацию антибиотиков в инфицированных зонах), а также стимулировать противомикробную активность этих клеток иммунной системы, тем самым достоверно усиливать терапевтический эффект антимикробных препаратов при лечении инфекционно-воспалительных заболеваний [20, 21, 22, 23, 24, 25, 26, 27].
Изобретение решает задачу создания фармацевтической композиции антимикробного и противовоспалительного действия для инъекций на основе использования фосфомицина и наночастиц диоксида кремния, обладающей повышенной терапевтической эффективностью (по сравнению с обычным фосфомицином, который рассматривается в данном изобретении в качестве прототипа) при лечении инфекционно-воспалительных заболеваний.
Поставленная задача решается тем, что предлагается фармацевтическая композиция антимикробного и противовоспалительного действия для парентерального введения, содержащая в качестве терапевтического вещества антибиотик фосфомицин, выполненая в форме порошка для приготовления инъекционных растворов и содержит высокодисперсный наноструктурированный диоксид кремния в весовом соотношении фосфомицин : высокодисперсный наноструктурированный диоксид кремния, равном (10-70) :1.
Доля частиц высокодисперсного наноструктурированного диоксида кремния, имеющих размер 5 мкм, составляет не менее 25%.
Поставленная задача так же решается тем, что предлагается способ получения фармацевтической композиции антимикробного и противовоспалительного действия для парентерального введения, включающий смешивание фосфомицина с другими компонентами, по которому фосфомицин в форме порошка смешивают с порошковым высокодисперсным наноструктурированным диоксидом кремния в весовом соотношении, равном (10-70) : 1, и полученную смесь подвергают механической обработке путем ударно-истирающих воздействий.
Полученную смесь подвергают механической обработке путем ударно- истирающих воздействий таким образом, чтобы доля частиц высокодисперсного наноструктурированного диоксида кремния, имеющих размер -S 5 мкм, составляла не менее 25%.
Терапевтическая эффективность предлагаемой фармацевтической композиции повышается, если полученную смесь подвергают механической обработке путем ударно-истирающих воздействий таким образом, чтобы доля частиц высокодисперсного наноструктурированного диоксида кремния, имеющих размер ^5 мкм, составляла не менее 25%.
Для приготовления фармацевтической композиции использовался фосфомицин (парентеральная форма) производства испанской фирмы «Ercros». В качестве высокодисперсного наноструктурированного диоксида кремния (далее по тексту: BHSiCte) использовался лекарственный препарат «Полисорб» (фармакологическая группа: энтеросорбирующее средство; действующее вещество: кремния диоксид коллоидный), производимый российской фирмой ЗАО «Полисорб», состоящий из наночастиц диоксида кремния округлой формы (размер 5-20 нм), объединённых в агрегаты (микрочастицы неправильной формы), имеющие размеры < 90 мкм (регистрационный >Г° 001140/01-100908). Аналогичный препарат производится украинской фирмой ЗАО «Биофарма» под торговым наименованием «Силикс» [24]. В основу выбора состава композиции положено явление обратимой сорбции молекул фосфомицина нано- и микроразмерными частицами BHSiCte, а также уменьшение размеров микрочастиц BHSiCte при механической активации его смесей с субстанцией фосфомицина интенсивными ударно-истирающими механическими воздействиями.
Заявляемый способ получения вышеуказанной фармацевтической композиции путем механической активации порошкообразной смеси фосфомицина и BHSiCte интенсивными ударно-истирающими воздействиями позволяет по сравнению с известными способами повысить долю мелкодисперсных ( 5 мкм) частиц BHSiCte, на которых адсорбируются молекулы фосфомицина и которые фагоцитируются преимущественно макрофагами [28].
Для этого смесь вышеуказанных веществ в весовом соотношении фосфомицин : BHSiCte, равном (10-70) : 1, подвергают механической активации путем ударно- истирающих воздействий до увеличения весовой доли мелкодисперсной фракции, не менее, чем до 25%.
Из полученной порошкообразной композиции готовят инъекционные коллоидные растворы для парентерального введения (разведением её любым известным способом, принятым для фосфомицина), состоящие из мелкодисперсных частиц BHSiCte с обратимо сорбированными на их поверхности молекулами фосфомицина.
Введение в предлагаемую композицию высокодисперсного наноструктурированного диоксида кремния в соотношениях фосфомицин : BHSiCte от 10:1 до 70:1 по весу, соответственно, определяется сочетанием двух факторов: 1) при увеличении содержания BHSiCte более 10% от веса композиции у лабораторных животных наблюдаются явления блокады мелких капилляров в паренхиматозных органах; 2) при уменьшении содержания BHSiCte ниже 1% от веса композиции, её терапевтическая эффективность (в частности, при лечении бактериального сепсиса у мышей) фактически не отличается от базовой эффективности исходного антибиотика.
Для получения композиций использован механохимический подход, заключающийся в обработке смеси твердых компонентов интенсивными механическими воздействиями - давлением и сдвиговыми деформациями, реализуемыми преимущественно в различного типа мельницах, осуществляющих ударно-истирающие воздействия на вещества. Смесь твердой субстанции фосфомицина и высокодисперсного наноструктурированного диоксида кремния, взятых преимущественно в соотношениях от 10:1 до 70:1 по весу, подвергают механической активации в шаровых мельницах. Использованный способ получения смесей позволяет в значительной мере избежать химического разложения антибиотика, достичь полной гомогенности порошкообразных компонентов по сравнению с получением смесей простым смешением компонентов, или выпариванием их растворов и, как следствие, обуславливает высокую фармакологическую активность фармацевтической композиции.
В качестве количественного критерия минимально необходимой дозы механического воздействия удобно использовать метод гранулометрии суспензии получаемой композиции. При этом необходимо, чтобы массовая доля частиц размером не более 5 мкм составила не менее 25%. Механическую обработку порошкообразных смесей осуществляют в ротационных, вибрационных или планетарных мельницах. В качестве мелющих тел могут использоваться шары, стержни и др.
Фармакологические испытания полученной композиции на лабораторных животных (мышах) показали, что заявляемая композиция, приготовленная заявляемым способом, обладает значительно повышенной терапевтической эффективностью при лечении бактериального сепсиса, вызванного Staphylococcus aureus, Escherichia coli и Pseudomonas aeruginosa, по сравнению с обычным фосфомицином.
Таким образом, использование заявляемой фармацевтической композиции и способ её получения обеспечивает следующие преимущества:
1) клинически значимое повышение эффективности и качества антимикробной терапии тяжёлых инфекционно-воспалительных заболеваний, снижение смертности;
2) экологическая безопасность, безотходность и малозатратность технологии фармацевтического производства.
Предлагаемое изобретение иллюстрируется следующими примерами.
Пример 1. Получение твердой композиции фосфомицин/ BHSi02.
Смесь фосфомицина и BHSi02 в весовых соотношениях 10:1, 30: 1 и 50:1 по весу обрабатывается в течение 1, 2 и 4 часов в шаровой ротационной мельнице. Данные гранулометрического состава водных суспензий полученных вариантов композиции (использовался лазерный гранулометр Micro-Sizer 201), а также ВЭЖХ анализа содержания в них антибиотиков (в % от исходной субстанции) и степени сорбции фосфомицина (в %) частицами BHSi02> приведены в табл. 1.
Как видно из табл. 1, выбранные условия получения предлагаемой композиции позволяют увеличить до необходимой величины (не менее 25% от общего веса) долю мелкодисперсной фракции BHSi02 (размер частиц -£ 5 мкм) и при этом избежать химического разложения антибиотика.
Таблица 1.
Гранулометрический состав водных суспензий, степень сорбции и содержание фосфомицина в различных вариантах композиции
Figure imgf000007_0001
высокодисперсный наноструктурированный диоксид кремния
Пример 2. Определение терапевтической эффективности фосфомицина и фармацевтической композиции.
Исследованы фосфомицин и мехактивированные в течение 2-х часов композиции, состоящие из смеси фосфомици ВНБЮг в весовых соотношениях 30:1 и 50:1, соответственно.
Для определения терапевтической эффективности фосфомицина и фармацевтических композиций с BHSi02 использовали экспериментальные модели сепсиса и метод статистической обработки полученных результатов ( χ2) согласно [29, 30].
Микроорганизмы: Staphylococcus aureus (АТСС Ν° 25923 F-49), Escherichia coli (ATCC jV°25922 F-50), Pseudomonas aeruginosa (ATCC jV<>27853 F-51).
Животные: эксперименты проводили на гибридных мышах (СВА х
С57В1аск/б)СВр1 в соответствии с «Правилами работ с использованием экспериментальных животных» (Приложение к приказу Министерства здравоохранения СССР от 12.08. 1977 г., JVS 755).
Экспериментальные модели сепсиса
Мышам внутривенно в объеме 0,8 мл вводилась взвесь суточной культуры Pseudomonas aeruginosa в дозе 5x108 КОЕ/мышь или взвесь суточной культуры Staphylococcus aureus в дозе 1010 КОЕ/мышь или взвесь суточной культуры Escherichia coli в дозе 8x10 КОЕ/мышь. Контрольной группе мьппей вводился физ. р-р (0,9% раствор натрия хлорида) в объёме 0,8 мл. Через сутки после инфицирования, мышам внутривенно ежедневно однократно в течение 3-х дней вводился фосфомицин и два варианта фармацевтической композиции (фосфомицин/ВН8Ю2) в дозе 100 мг/кг, разведённой в 0,25 мл физ. р-ра. Контрольной группе мьппей по этой же схеме вводился физ. р-р в объёме 0,25 мл.
Эффективность антибактериальной терапии оценивали по количеству выживших мышей на 7-е сутки после инфицирования [29, 30].
Полученные данные, представленные в табл. 2, отражают результаты трёх независимых экспериментов, выполненных для каждой исследуемой группы.
Таблица 2.
Терапевтическая эффективность антимикробной терапии бактериального сепсиса
Исследуемые группы Выживаемость мышей на 7-е сутки после
инфицирования
Staphylococcus Escherichia coli Pseudomonas aureus aeruginosa
Физ. Р-р (контроль) 0% (0/30) 0% (0/31) 0% (0/30)
Фосфомицин 40% (12/30) 46,6% (14/30) 32,2% (10/31)
Фосфомицин:ВН8Ю2 83,3% (25/30) 87% (27/31) 76,6% (23/30) (30:1), мехактивация 2 часа Р<0,01** Р<0,01** Р<0,01**
Фосфомицин:ВН8Ю2 80,6% (25/31) 87,5% (28/32) 75,7% (25/33) (50:1), мехактивация 2 часа Р<0,01** Р<0,01** Р<0,01**
*- в % и в абсолютных значениях (число выживших/число инфицированных животных).
** - по сравнению с группой мышей, которым вводился фосфомицин
Как видно из табл. 2, предлагаемая фармацевтическая композиция (фосфомицин/ВН8Ю2) обладает достоверно повышенной терапевтической эффективностью (в 2 раза), по сравнению с обычным фосфомицином, при лечении сепсиса у экспериментальных животных, вызванного Pseudomonas aeruginosa, Staphylococcus aureus или Escherichia coll
Пример 3. Определение противовоспалительного действия фосфомицина и фармацевтической композиции.
Известно, что количество лейкоцитов в периферической крови при сепсисе отражает выраженность интенсивности воспалительного процесса [31].
Исследовано количество лейкоцитов в периферической крови у мышей, выживших на фоне лечения на 7-е сутки после индукции сепсиса согласно вышеописанной методике. Полученные данные представлены в таблице 3.
Таблица 3.
Количество лейкоцитов в периферической крови у мышей,
выживших на 7-е сутки после инфицирования
Pseudomonas aeruginosa и Staphylococcus aureus на фоне лечения фосфомицином и фармацевтической композицией
Figure imgf000009_0001
*- медиана; нижний и верхний квартили
Как видно из таблицы 3, предлагаемая фармацевтическая композиция (фосфомицин/ВНБЮг) обладает достоверно выраженным противовоспалительным действием, по сравнению с фосфомицином, при лечении сепсиса у экспериментальных животных, вызванного Pseudomonas aeruginosa или Staphylococcus aureus. Таким образом, исходя из полученных данных, можно сделать вывод о том, что предлагаемая фармацевтическая композиция антимикробного и противовоспалительного действия для парентерального введения (фосфомицин/ВНЗЮг) обладает достоверно повышенным терапевтическим эффектом при лечении тяжёлых инфекционно-воспалительных заболеваний, по сравнению с обычным фосфомицином (прототипом изобретения).
Литература
1. Михайлов И.Б. // Настольная книга врача по клинической фармакологии. - СПб:
Издательство «Фолиант», 2001. - 736 с.
2. Joukhadar С, Klein N., Dittrich P. et al. Target site penetration of fosfomycin in critically ill patients // J. Antimicrob. Chemother. - 2003. - Vol.51. - P.1247-1252.
3. Sauermann R., Karch R., Langenberger H. et al. Antibiotic abscess penetration: fosfomycin levels measured in pus and simulated concentration-time profiles //
Antimicrob. Agents Chemother. - 2005. - Vol.49. - P. 4448-4454.
4. Schintler M.V., Traunmuller F., Metzler J. et al. High fosfomycin concentrations in bone and peripheral soft tissue in diabetic patients presenting with bacterial foot infection // J. Antimicrob. Chemother. - 2009. - Vol.64. - P.574-578.
5. Matzi V., Lindenmann J., Porubsky C. et al. Extracellular concentrations of fosfomycin in lung tissue of septic patients // J. Antimicrob. Chemother. - 2010. - Vol.65. - P. 995- 998.
6. Kastoris A.C., Rafailidis P.I., Vouloumanou E.K. et al. Synergy of fosfomycin with other antibiotics for Gram-positive and Gram-negative bacteria // Europ. J. Clinical Pharmacology. - 2010. - Vol.66. - P.359-368.
7. Cai Y., Fan Y., Wang R. et al. Synergistic effects of aminoglicosides and fosfomycin on Pseudomonas aeruginosa in vitro and biofilm infections in a rat model // J. Antimicrob. Chemother. - 2009. - Vol.64. - P. 563-566.
8. Zeitlinger M., Marsik C, Steiner I. et al. Immunomodulatory effects of fosfomycin in an endotoxin model in human blood // J. Antimicrob. Chemother. - 2006. - Vol.59. - P.
219-223.
9. Presterl E., Hajdu S., Lassnigg A. M. et al. Effects of azithromycin in combination with vancomycin, daptomycin, fosfomycin, tigecycline and ceftriaxone on Staphylococcus epidermidis biofilms // Atimicrob. Agents Chtmother. - 2009. - Vol.53. - P. 3205-3210. 10. Abeylath S.C., Turos E. Drag delivery approaches to overcome bacterial resistance to β-lactam antibiotics // Expert Opinion on Drug Delivery. - 2008. - Vol.5. - P.931-949.
11. Bastus N.G., Sanchez-Tillo E., Pujals S. et al. Peptides conjugated to gold nanopar-ticles induce macrophage activation // Molecular Immunology. - 2009. - Vol.46. - P.743-748.
12. Pinto- Alphandary H., Andremont A., Couvreur P. Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications // International Journal of Antimicrobial Agents. - 2000. - Vol.13. - P.155-168.
13. Ulbrich W., Lamprech A. Targeted drug-delivery approaches by nanoparticulate carriers in the therapy of inflammatory diseases // Journal Royal Society Interface. - 2010. -
Vol.7, Suppl. 1. - P.S55-S66.
14. Гуляев A.E., Ермекбаева Б. А., Кивман Г .Я. и др. Наночастицы как вектор направленного транспорта антибиотиков (обзор) //Химико-фармацевтический журнал. - 1998. - . - С.3-6.
15. Rosemary M.J., MacLaren I., Pradeep Т. Investigation of antibacterial properties of ciprofloxacin@Si02. // Langmuir. - 2006. - Vol.22. - P.10125-10129.
16. Rai A., Prabhune A., Perry C.C. Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings // Journal of Materials Chemistry. - 2010. - Vol.20. - P.6789-6798.
17. Zolnik B.S., Gonzalez-Fernandez A., Sadrieh N., Dobrovolskaia V. Minireview:
Nanoparticles and the immune system // Endocrinology. - 2010. - Vol.151. - P.458- 465.
18. Пятаев H.A., Беляев A.H., Романов М.Д., Котлов И.С. // Направленный клеточно- ассоциированный транспорт лекарственных препаратов. - Саранск.: Изд-во Мордовского университета, 2007. - 140 с.
19. Pinto- Alphandary Н., Balland О., Laurent М. et al. Intracellular visualization of ampicillin-loaded nanoparticles in peritoneal macrophages infected in vitro with Salmonella typhimurium II Pharmaceutical Research. - 1994. - Vol.11. - P.38-46.
0. Park J-H., Gu L., Maltzahn G. et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications // Nature Materials. - 2009. - Vol.8. - P.331 -336. 1. Pernis B. Silica and the immune system // Acta Biomed. - 2005. - Vol.76, Suppl. 2.- P.38-44. 22. Tasciotti E., Liu X., Bhavane R. Et et al. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications // Nature Nanotechnology. - 2008. - Vol.3. - P.151-157.
23. Seleem M.N., Munusamy P., Ranjan A et al. Silica-antibiotic hybrid nanoparticles for targeting intracellular pathogens // Antimicrob. Agents Chemother. - 2009. - Vol.53. -
P.4270-4274.
24. Медицинская химия и клиническое применение диоксида кремния // Под редакцией академика НАН Украины А.А.Чуйко. - Киев: «Наукова думка», 2003. - 416 с.
25. Chuiko A., Pentyuk A., Shtat'ko Е., Chuiko N. Medical aspects of application of highly disperse amorphous silica // Surface Chemistry in Biomedical and Environmental Science. Edited by J.P.Blitz and V. Gun'ko.II. Mathematics, Physics and Chemistry. - 2006. - Vol.228. - P.191 -204.
26. Waters K. M., Masiello L.M., Zangar R.C. et al. Macrophage responses to silica nanoparticles are highly conserved across particle sizes // Toxicological Sciences. -
2009. - Vol.107. - P. 553-569.
27. Lucarelli M., Gatti A.M., Savarino G. et al. Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles // European Cytokine Network. - 2004. - Vol.15. - P.339-346.
28. Hamilton R.F., Thakur S.A., Mayfair J.K., Holian A. MARCO mediates silica uptake and toxicity in alveolar macrophages from C57BL/6 mice // J. Biological Chemistry. - 2006. - Vol.281. - P. 34218-34226.
29. Eckhardt C, Fickweiler K., Schaumann R. et al. Therapeutic efficacy of moxifloxacin in a murine model of severe systemic mixed infection with E.coli and B.fragilis II Anaerobe. - 2003. - Vol.9. - P.157-160.
30. Schaumann R., Blatz R., Beer J. et al. Effect of moxifloxacin versus imipenem/cilastatin treatment on the mortality of mice infected intravenously with different strains of Bacteroides fragilis and Escherichia coli II Journal of Antimicrobial Chemotherapy. - 2004. - Vol.53. - P.318-324.
31. Aird W.C. The hematologic system as a marker of organ dysfunction in sepsis // Mayo Clin. Proc. - 2003. - Vol.78. - P.869-881.

Claims

Формула изобретения
1. Фармацевтическая композиция антимикробного и противовоспалительного действия для парентерального введения, содержащая в качестве терапевтического вещества антибиотик фосфомицин, отличающаяся тем, что она выполнена в форме порошка для приготовления инъекционных растворов и содержит высокодисперсный наноструктурированный диоксид кремния в весовом соотношении фосфомицин : высокодисперсный наноструктурированный диоксид кремния, равном (10-70) :1.
2. Композиция по п.1, отличающаяся тем, что доля частиц высокодисперсного наноструктурированного диоксида кремния, имеющих размер -£ 5 мкм, составляет не менее 25%.
3. Способ получения фармацевтической композиции антимикробного и противовоспалительного действия для парентерального введения, включающий смешение фосфомицина с другими компонентами, отличающийся тем, что фосфомицин в форме порошка смешивают с порошкообразным высокодисперсным наноструктурированным диоксидом кремния в весовом соотношении фосфомицин: высоко дисперсный наноструктурированный диоксид кремния, равном (10-70) : 1, и полученную смесь подвергают механической обработке путем ударно-истирающих воздействий.
4. Способ по п.З, отличающийся тем, что полученную смесь подвергают механической обработке путем ударно-истирающих воздействий таким образом, чтобы доля частиц высокодисперсного наноструктурированного диоксида кремния, имеющих размер -S 5 мкм, составляла не менее 25%.
PCT/RU2011/000321 2010-09-20 2011-05-11 Фармацевтическая композиция антимикробного и противовоспалительного действия для парентерального введения, способ её получения WO2012039641A1 (ru)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2011304261A AU2011304261C1 (en) 2010-09-20 2011-05-11 Antimicrobial and anti-inflammatory action pharmaceutical composition for parenteral administration, process of producing the same
EP11827038.8A EP2476419A4 (en) 2010-09-20 2011-05-11 PHARMACEUTICAL COMPOSITION WITH ANTIMICROBIAL AND ANTI-INFLAMMATORY EFFECT FOR PARENTERAL ADMINISTRATION AND MANUFACTURING METHOD THEREFOR
US13/389,533 US20130164336A1 (en) 2010-09-20 2011-05-11 Antimicrobial and anti-inflammatory action pharmaceutical composition for parenteral administration and its production process
BR112012023963A BR112012023963A2 (pt) 2010-09-20 2011-05-11 composição farmacêutica de ação antimicrobiana e antiinflamatória para administração parenteral e processo de produção da mesma
CA2780785A CA2780785A1 (en) 2010-09-20 2011-05-11 Pharmaceutical composition having antimicrobial and anti-inflammatory activity for parenteral administration, process for preparing same
MX2012010528A MX2012010528A (es) 2010-09-20 2011-05-11 Composicion farmaceutica con actividad antimicrobiana y antiinflamatoria para administracion parenteral y procedimiento de produccion de la misma.
UAA201203807A UA103116C2 (ru) 2010-09-20 2011-05-11 Порошкообразная фармацевтическая композиция антимикробного и противовоспалительного действия для парентерального введения, которая содержит фосфомицин и высокодисперсный наноструктурированный диоксид кремния, способ ее получения
CN2011800041985A CN102740858A (zh) 2010-09-20 2011-05-11 供不经肠投药的抗菌和消炎用药物组合物及其制造方法
JP2013529098A JP2013537226A (ja) 2010-09-20 2011-05-11 非経口投与のための抗菌性および抗炎症性作用を有する医薬組成物、並びにその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EA201001507 2010-09-20
EA201001507A EA021876B1 (ru) 2010-09-20 2010-09-20 Фармацевтическая композиция антимикробного и противовоспалительного действия для парентерального введения, способ ее получения

Publications (1)

Publication Number Publication Date
WO2012039641A1 true WO2012039641A1 (ru) 2012-03-29

Family

ID=45874027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2011/000321 WO2012039641A1 (ru) 2010-09-20 2011-05-11 Фармацевтическая композиция антимикробного и противовоспалительного действия для парентерального введения, способ её получения

Country Status (11)

Country Link
US (1) US20130164336A1 (ru)
EP (1) EP2476419A4 (ru)
JP (1) JP2013537226A (ru)
CN (1) CN102740858A (ru)
AU (1) AU2011304261C1 (ru)
BR (1) BR112012023963A2 (ru)
CA (1) CA2780785A1 (ru)
EA (1) EA021876B1 (ru)
MX (1) MX2012010528A (ru)
UA (1) UA103116C2 (ru)
WO (1) WO2012039641A1 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2476206C1 (ru) * 2011-11-22 2013-02-27 Виктор Львович Лимонов Фармацевтическая композиция для приготовления инфузионных растворов антимикробных препаратов, способ ее получения (варианты)
EP3219305A1 (de) 2016-03-16 2017-09-20 Apostolos Georgopoulos Fosfomycin-formulierung zur parenteralen verabreichung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2179944A (en) * 1985-09-03 1987-03-18 Espan Penicilin & Antibioticos Mixtures of mono- and disodium salts of fosfomycin
ITMI20021725A1 (it) * 2002-08-01 2002-10-31 Zambon Spa Composizioni farmaceutiche ad attivita' antibiotica.
ES2244333B1 (es) * 2004-05-18 2006-08-01 Simbec Iberica, Sl Preparado farmaceutico oral de fosfomicina estable y apto para diabeticos.

Non-Patent Citations (37)

* Cited by examiner, † Cited by third party
Title
"Clinical chemistry and silica dioxide clinical use", 2003, NAUKOVA DUMKA, pages: 416
"Fosfomitsin. Registr lekarstvennykh sredstv Rossii.", ENTSIKLOPEDIYA LEKARSTV, vol. 16, 2008, pages 947 *
"Promyshlennaya tekhnologiya lekarstv pod red. prof. V.I. Chueshova", IZDATELSTVO NFAU, MTK-KNIGA, 2002, pages 45 - 46 *
A.E. GULIAEV; B.A. ERMEKBAEVA; G.Y. KIVMAN: "Nano-particles as antibiotics direct transportation vector (review", CHENICAL AND PHARMACEUTICAL MAGAZINE, 1998, pages 3 - 6
ABEYLATH S.C. ET AL.: "Drug delivery approaches to overcome bacterial resistance to beta-lactam antibiotics", EXPERT OPIN. DRUG DELIV., vol. 5, no. 9, 2008, pages 931 - 949, XP008167290, Retrieved from the Internet <URL:http://www.ncbi.nlm.nih.gov/pubmed/18754746> [retrieved on 20110822], doi:10.1517/17425247.5.9.931 *
ABEYLATH S.C.: "Turos E. Drug delivery approaches to overcome bacterial resistance to p-lactam antibiotics", EXPERT OPINION ON DRUG DELIVERY, vol. 5, 2008, pages 931 - 949, XP008167290, DOI: doi:10.1517/17425247.5.9.931
AIRD W.C.: "The hematologic system as a marker of organ dysfunction in sepsis", MAYO CLIN. PROC., vol. 78, 2003, pages 869 - 881
BASTUS N.G.; SANCHEZ-TILLO E.; PUJALS S. ET AL.: "Peptides conjugated to gold nanopar-ticles induce macrophage activation", MOLECULAR IMMUNOLOGY, vol. 46, 2009, pages 743 - 748
CAI Y.; FAN Y.; WANG R. ET AL.: "Synergistic effects of aminoglicosides and fosfomycin on Pseudomonas aeruginosa in vitro and biofilm infections in a rat model", J. ANTIMICROB. CHEMOTHER., vol. 64, 2009, pages 563 - 566, XP002682914, DOI: doi:10.1093/JAC/DKP224
CHUIKO A.; PENTYUK A.; SHTAT'KO E.; CHUIKO N.: "Mathematics, Physics and Chemistry", vol. 228, 2006, article "Medical aspects of application of highly disperse amorphous silica // Surface Chemistry in Biomedical and Environmental Science", pages: 191 - 204
ECKHARDT C.; FICKWEILER K.; SCHAUMANN R. ET AL.: "Therapeutic efficacy of moxifloxacin in a murine model of severe systemic mixed infection with E.coli and B.fragilis", ANAEROBE, vol. 9, 2003, pages 157 - 160
HAMILTON R.F.; THAKUR S.A.; MAYFAIR J.K.; HOLIAN A.: "MARCO mediates silica uptake and toxicity in alveolar macrophages from C57BL/6 mice", J. BIOLOGICAL CHEMISTRY, vol. 281, 2006, pages 34218 - 34226
I.B. MIKHAILOV: "Physician's handbook for clinical pharmacology. - St. Petersburg", 2001, PUBLISHING, pages: 736
JOUKHADAR C.; KLEIN N.; DITTRICH P. ET AL.: "Target site penetration of fosfomycin in critically ill patients", J. ANTIMICROB. CHEMOTHER., vol. 51, 2003, pages 1247 - 1252
KASTORIS AC.; RAFAILIDIS P.I.; VOULOUMANOU E.K. ET AL.: "Synergy of fosfomycin with other antibiotics for Gram-positive and Gram-negative bacteria", EUROP. J. CLINICAL PHARMACOLOGY, vol. 66, 2010, pages 359 - 368, XP019799328
LUCARELLI M.; GATTI A.M.; SAVARINO G. ET AL.: "Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles", EUROPEAN CYTOKINE NETWORK, vol. 15, 2004, pages 339 - 346
MATZI V.; LINDENMANN J.; PORUBSKY C. ET AL.: "Extracellular concentrations of fosfomycin in lung tissue of septic patients", J. ANTIMICROB. CHEMOTHER., vol. 65, 2010, pages 995 - 998
PARK J-H.; GU L.; MALTZAHN G. ET AL.: "Biodegradable luminescent porous silica nanoparticles for in vivo applications", NATURE MATERIALS., vol. 8, 2009, pages 331 - 336, XP055259109, DOI: doi:10.1038/nmat2398
PERNIS B.: "Silica and the immune system", ACTA BIOMED., vol. 76, no. 2, 2005, pages 38 - 44
PIATAYEV N.A.; BELIYEV A. N; ROMANOV M.D.; KOTLOV LS.: "Targetet cell-associated delivery of medicaments", 2007, SARANSK: MORDOVIAN UNIVERSITY PRESS, pages: 140
PINTO-ALPHANDARY H.; ANDREMONT A.; COUVREUR P.: "Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications", INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, vol. 13, 2000, pages 155 - 168, XP002676533, DOI: doi:10.1016/S0924-8579(99)00121-1
PINTO-ALPHANDARY H.; BALLAND O.; LAURENT M. ET AL.: "Intracellular visualization of ampicillin-loaded nanoparticles in peritoneal macrophages infected in vitro with Salmonella ty- phimurium", PHARMACEUTICAL RESEARCH., vol. 11, 1994, pages 38 - 46
PRESTERL E.; HAJDU S.; LASSNIGG A. M. ET AL.: "Effects of azithromycin in combination with vancomycin, daptomycin, fosfomycin, tigecycline and ceftriaxone on Staphylococcus epi- dermidis biofilms", ATIMICROB. AGENTS CHTMOTHER., vol. 53, 2009, pages 3205 - 3210
RAI A.; PRABHUNE A.; PERRY C.C.: "Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings", JOURNAL OF MATERIALS CHEMISTRY, vol. 20, 2010, pages 6789 - 6798
ROSEMARY M.J. ET AL.: "Investigations of the Antibacterial Properties of Ciprofloxacin@Si02", LANGMUIR, vol. 22, 2006, pages 10125 - 10129, XP002606517, doi:10.1021/LA061411H *
ROSEMARY M.J.; MACLAREN L; PRADEEP T: "Investigation of antibacterial properties of cipro- floxacin@ Si02.", LANGMUIR, vol. 22, 2006, pages 10125 - 10129
SAUERMANN R.; KARCH R.; LANGENBERGER H. ET AL.: "Antibiotic abscess penetration: fosfomycin levels measured in pus and simulated concentration-time profiles // Antimicrob", AGENTS CHEMOTHER., vol. 49, 2005, pages 4448 - 4454
SCHAUMANN R.; BLATZ R.; BEER J. ET AL.: "Effect of moxifloxacin versus imipenem/cilastatin treatment on the mortality of mice infected intravenously with different strains of Bacteroides fragilis and Escherichia coli", JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, vol. 53, 2004, pages 318 - 324
SCHINTLER M.V.; TRAUNMULLER F.; METZLER J. ET AL.: "High fosfomycin concentrations in bone and peripheral soft tissue in diabetic patients presenting with bacterial foot infection", J. ANTIMICROB. CHEMOTHER., vol. 64, 2009, pages 574 - 578
See also references of EP2476419A4
SELEEM M.N.; MUNUSAMY P.; RANJAN A ET AL.: "Silica-antibiotic hybrid nanoparticles for targeting intracellular pathogens", ANTIMICROB. AGENTS CHEMOTHER., vol. 53, 2009, pages 4270 - 4274, XP055101084, DOI: doi:10.1128/AAC.00815-09
TASCIOTTI E.; LIU X.; BHAVANE R. ET ET AL.: "Mesoporous silica particles as a multistage delivery system for imaging and therapeutic applications", NATURE NANOTECHNOLOGY, vol. 3, 2008, pages 151 - 157
ULBRICH W.; LAMPRECH A.: "Targeted drug-delivery approaches by nanoparticulate carriers in the therapy of inflammatory diseases", JOURNAL ROYAL SOCIETY INTERFACE, vol. 7, no. 1, 2010, pages S55 - S66
WANG, YANG.: "Antibiotic-conjugated polyacrylate nanoparticles: New opportunities for development of anti-MRSA agents.", THESES AND DISSERTATIONS, 2006, pages 49, Retrieved from the Internet <URL:URL:http:scholarcommons.usf.edu/etd/2746> *
WATERS K. M.; MASIELLO L.M.; ZANGAR R.C. ET AL.: "Macrophage responses to silica nanopar- ticles are highly conserved across particle sizes", TOXICOLOGICAL SCIENCES, vol. 107, 2009, pages 553 - 569
ZEITLINGER M.; MARSIK C.; STEINER I. ET AL.: "Immunomodulatory effects of fosfomycin in an endotoxin model in human blood", J. ANTIMICROB. CHEMOTHER., vol. 59, 2006, pages 219 - 223
ZOLNIK B.S.; GONZALEZ-FEMANDEZ A.; SADRIEH N.; DOBROVOLSKAIA V.: "Minireview: Nanopar- ticles and the immune system", ENDOCRINOLOGY, vol. 151, 2010, pages 458 - 465

Also Published As

Publication number Publication date
EA201001507A1 (ru) 2012-02-28
AU2011304261B8 (en) 2012-07-05
JP2013537226A (ja) 2013-09-30
EA021876B1 (ru) 2015-09-30
AU2011304261B2 (en) 2012-06-28
AU2011304261A1 (en) 2012-04-19
EP2476419A4 (en) 2013-07-17
BR112012023963A2 (pt) 2016-08-02
US20130164336A1 (en) 2013-06-27
CA2780785A1 (en) 2012-03-29
UA103116C2 (ru) 2013-09-10
MX2012010528A (es) 2012-12-17
AU2011304261C1 (en) 2012-11-29
AU2011304261A8 (en) 2012-07-05
CN102740858A (zh) 2012-10-17
EP2476419A1 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
CA2780771C (en) Pharmaceutical composition having antimicrobial and fast-healing activity for external administration, process for preparing sames
US9844566B2 (en) Pharmaceutical composition for the preparation of infusion solutions of antimicrobial preparations, its production process (variations)
WO2012039641A1 (ru) Фармацевтическая композиция антимикробного и противовоспалительного действия для парентерального введения, способ её получения
WO2012154076A1 (ru) Фармацевтическая композиция антибактериального действия для парентерального применения, способ её получения
WO2012154077A1 (ru) Фармацевтическая композиция для лечения туберкулёза и других инфекций, способ её получения
WO2012154078A1 (ru) Фармацевтическая композиция антимикробного действия для парентерального применения, способ её получения
WO2012154075A1 (ru) Фармацевтическая композиция антибактериального действия для наружного применения, способ её получения
NZ601748B (en) Pharmaceutical composition for the preparation of infusion solutions of antimicrobial preparations, its&#39; production process
WO2012036585A1 (ru) Фармацевтическая композиция антимикробного действия для парентерального введения и способ её получения

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004198.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 13389533

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011304261

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2987/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011827038

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011304261

Country of ref document: AU

Date of ref document: 20110511

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A201203807

Country of ref document: UA

ENP Entry into the national phase

Ref document number: 2013529098

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2780785

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11827038

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/010528

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012023963

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012023963

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120921