WO2012039482A1 - Input device - Google Patents

Input device Download PDF

Info

Publication number
WO2012039482A1
WO2012039482A1 PCT/JP2011/071722 JP2011071722W WO2012039482A1 WO 2012039482 A1 WO2012039482 A1 WO 2012039482A1 JP 2011071722 W JP2011071722 W JP 2011071722W WO 2012039482 A1 WO2012039482 A1 WO 2012039482A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
transparent
input device
substrate
insulating
Prior art date
Application number
PCT/JP2011/071722
Other languages
French (fr)
Japanese (ja)
Inventor
国司 洋介
鈴木 秀樹
小松 博登
順一 池野
Original Assignee
信越ポリマー株式会社
国立大学法人埼玉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越ポリマー株式会社, 国立大学法人埼玉大学 filed Critical 信越ポリマー株式会社
Publication of WO2012039482A1 publication Critical patent/WO2012039482A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to an input device provided on the front surface of an image display device, such as a touch panel and an electromagnetic wave shield of a plasma display.
  • an image display device such as a touch panel and an electromagnetic wave shield of a plasma display.
  • an input device having a conductive substrate in which a transparent conductive layer (transparent conductive film) is formed on the surface of a transparent insulating substrate is installed as an electrode sheet on the front surface of an image display device such as a liquid crystal display.
  • Materials constituting the transparent conductive layer of the conductive substrate of the input device include ⁇ -conjugated conductive polymers (organic conductors) represented by tin-doped indium oxide (ITO) and polyethylenedioxythiophene-polystyrene sulfonic acid. Widely known.
  • a circuit pattern or an antenna array pattern may be formed.
  • a pattern forming method for example, in Patent Document 1, a transparent conductive layer is formed on the entire surface of a transparent substrate by coating, and then a pulse width of about 100 nsec using a CO 2 laser or a Q switch is used. A method is disclosed in which a transparent conductive layer to be insulated is irradiated by YAG laser to be removed by ablation.
  • Patent Documents 2 and 3 disclose a method of forming a conductive portion in a predetermined pattern on the surface of a transparent substrate by printing such as a screen printing method or a gravure printing method.
  • Patent Document 4 discloses a method of forming a transparent conductive layer on the entire surface of a transparent substrate by coating, and then removing the portion of the transparent conductive layer to be insulated by plasma etching.
  • Patent Document 5 discloses a technique for forming a conductive pattern by irradiating a transparent conductive film obtained by dispersing and curing metal nanowires (metal ultrafine fibers) in a binder (resin) and curing the transparent conductive film. . Note that the metal nanowires protruding from the transparent conductive film to the outside are removed by a laser.
  • Patent Document 6 an ultraviolet laser is used for an ITO vapor deposition substrate for a touch panel, the beam diameter and the focal length of the lens are controlled, and the processing width in the light condensing area is controlled, thereby performing fine ablation of about 10 ⁇ m.
  • a technique for forming a fine pattern is disclosed.
  • the organic conductor is colored green to blue and ITO is colored pale yellow.
  • the conductive portions are colored inherent to the conductor forming each conductive film, and the insulating portions only of the insulating substrate are colorless. Therefore, when the obtained conductive substrate is used as an input device and installed on the front surface of the image display device, the conductive portion must be conductive unless the width of the insulating portion (width dimension perpendicular to the extending direction of the insulating portion) is made small. There was a problem that the pattern was visually recognized. On the other hand, when the width of the insulating portion is made very small, the insulation cannot be secured, and the electrical characteristics may be impaired.
  • Patent Document 5 has an advantage that the conductive pattern of the input device is hardly visible.
  • the metal nanowire remains not only in the conductive part but also in the insulating part inside the transparent conductive film, it has been difficult to reliably perform the insulation. That is, in order to reliably insulate the insulating portion, it is necessary to control the thickness of the transparent conductive film, which is not simple.
  • Patent Document 6 it is necessary to use an ultraviolet laser using high-order harmonics for processing, and in order to adjust the width of the ablation region, the laser beam diameter and zoom lens focal length are adjusted. It was not convenient.
  • the present invention has been made in view of such circumstances, and provides an input device that is easily manufactured, includes a conductive pattern that is difficult to be visually recognized even if the width of an insulating portion is large, and has stable electrical characteristics. For the purpose.
  • an input device includes an insulating substrate and a conductive layer provided on at least one surface of the insulating substrate and including a transparent conductive layer including a conductive inorganic network member in an insulating transparent base.
  • An input member including a pattern forming substrate; and a detection unit that is electrically connected to the transparent conductive layer and detects an input signal.
  • the transparent conductive layer has a pulse width of less than 1 psec via a focusing unit.
  • the insulating part formed by removing at least a part of the network member is formed by irradiating the ultrashort pulse laser beam.
  • a focal point of laser light may be formed between the condensing means and the transparent conductive layer.
  • the input member may be provided in a pair so that the conductive pattern forming substrates are stacked in the thickness direction.
  • a pair of the conductive pattern forming substrates provided so as to be laminated in the thickness direction are arranged so that the transparent conductive layers are spaced from each other, and the detection means It may be a capacitance type.
  • the pair of conductive pattern formation substrates provided so as to be laminated in the thickness direction are arranged so that the transparent conductive layers face each other while being spaced from each other.
  • a part of the transparent conductive layer may be electrically contactable.
  • the conductive pattern forming substrate may be transparent.
  • the insulating substrate and the transparent substrate may be made of the same material or the same resin material.
  • the input device according to the present invention is manufactured easily, has a conductive pattern that is difficult to be seen even if the width of the insulating portion is large, and has stable electrical characteristics.
  • FIG. 13 is an enlarged side cross-sectional view taken along line AA in FIG. 12.
  • FIG. 13 is an enlarged side cross-sectional view taken along the line BB in FIG. 12.
  • the input device according to the present invention can be applied to a product in which a wiring pattern is formed in a transparent portion, such as a transparent input device such as a transparent antenna, a transparent electromagnetic wave shield, a capacitance type or a membrane type transparent touch panel. it can.
  • the input device of the present invention is an electrode necessary for a capacitance sensor or the like provided on the surface of a three-dimensional molded product or a three-dimensional decorative molded product, such as a capacitive input device attached to a steering wheel of an automobile. Can be used for the purpose of forming.
  • “transparent” refers to a material having a light transmittance of 50% or more.
  • FIG. 1 and 10 show an input member 1 for a membrane touch panel (input device) according to a first embodiment of the present invention.
  • this membrane type touch panel is provided on at least one surface of the insulating substrates 11, 21 and the insulating substrates 11, 21, and is made of an inorganic substance having conductivity within the transparent base 2 having insulation properties.
  • the conductive pattern forming substrates 10 and 20 including the transparent conductive layers 12 and 22 including the network member 3 are electrically connected to the input member 1 and the transparent conductive layers 12 and 22 provided in pairs so as to be laminated in the thickness direction.
  • a detecting means for detecting an input signal is installed on the input side of an image display device (not shown) such as an LCD.
  • an image display device not shown
  • the input member 1 includes, for example, a conductive pattern forming substrate 10 in which electrodes 100 (corresponding to conductive portions C described later of the transparent conductive layer 12) along the row (X) direction are arranged in parallel, and this conductive pattern formation.
  • Conductive pattern in which electrodes (corresponding to the conductive portion C of the transparent conductive layer 22) are arranged in parallel so as to face the substrate 10 and are arranged on the image display device side and along the column (Y) direction orthogonal to the row (X) direction.
  • a forming substrate 20 and a transparent dot spacer 30 provided therebetween are provided.
  • the input member 1 is configured such that the electrode 100 of the conductive pattern forming substrate 10 and the electrode of the conductive pattern forming substrate 20 are in electrical contact or conduction by an input operation.
  • the conductive pattern forming substrate 10 includes a transparent insulating substrate 11 and a transparent conductive layer 12 provided on the surface of the insulating substrate 11 facing at least the image display device side.
  • the conductive pattern forming substrate 20 includes a transparent insulating substrate 21 and a transparent conductive layer 22 provided on a surface of the insulating substrate 21 facing at least the input side.
  • the insulating substrates 11 and 21 those having insulating properties and capable of forming the transparent conductive layers 12 and 22 on the surface and being less likely to change in appearance under predetermined irradiation conditions with respect to laser processing described later are used. Is preferred. Specific examples include insulating materials such as glass, polycarbonate, polyester typified by polyethylene terephthalate (PET), and acrylonitrile / butadiene / styrene copolymer resin (ABS resin). As the shape of the insulating substrates 11 and 21, a plate shape, a flexible film shape, a three-dimensional (three-dimensional) molded product, or the like can be used.
  • PET polyethylene terephthalate
  • ABS resin acrylonitrile / butadiene / styrene copolymer resin
  • the input member 1 When the input member 1 is used for a transparent touch panel, a glass plate, a PET film or the like is used for the insulating substrates 11 and 21. Further, when the input member 1 is used as an electrode necessary for a capacitance sensor or the like such as a capacitance input device attached to a steering wheel of an automobile, the insulating substrates 11 and 21 are molded products made of ABS resin or the like. Alternatively, a decorative molded product provided with a decorative layer by laminating or transferring the film is used.
  • the input person-side insulating substrate 11 may be an input person. It is preferable to use a material that is flexible with respect to external force from the side (for example, a transparent resin film), and as the insulating substrate 21 on the image display device side, the conductive pattern forming substrate 10 is easily supported via the dot spacer 30. It is preferable to use a material having a predetermined hardness or higher (for example, equal to or higher than that of the insulating substrate 11).
  • the Vickers hardness of the insulating substrate 21 is preferably 1 or more times that of the insulating substrate 11 Vickers, more preferably 1.2 to 5 times, and even more preferably 1.5 to 4 times. Further, in such a touch panel, it is essential to use a certain potential difference between adjacent electrodes 100. In the transparent conductive layers 12 and 22 using a metal such as copper, zinc, tin, and particularly silver, In order to prevent migration, it is required to secure the width of the insulating portion that divides the conductive pattern (width dimension perpendicular to the extending direction of the insulating portion).
  • the transparent conductive layers 12 and 22 of the pair of conductive pattern forming substrates 10 and 20 are arranged to face each other with a space therebetween by a dot spacer 30 while being close to each other.
  • the conductive pattern forming substrate 10 is pressed from the input side toward the image display device side, the insulating substrate 11 and the transparent conductive layer 12 of the conductive pattern forming substrate 10 are bent, and the transparent conductive layer 12 is The transparent conductive layer 22 of the formation substrate 20 can be contacted. An electrical signal is generated by this contact. That is, in the input member 1, a part of the transparent conductive layers 12 and 22 can be electrically contacted by an input operation by an input person.
  • the transparent conductive layers 12 and 22 include an inorganic network member having conductivity in the transparent base 2 having insulation properties. That is, the transparent conductive layers 12 and 22 are formed by holding the network member in the transparent substrate 2. Specifically, the transparent conductive layers 12 and 22 include a net-like member 3 made of a conductive metal as the network member.
  • the transparent substrate 2 can be filled (impregnated) between the strands (fibers) of the mesh member 3 described later in a liquid state, for example, a curable resin having a property of being cured by heat, ultraviolet rays, electron beams, radiation, or the like. Consists of.
  • the mesh member 3 is composed of two or more metal microfibers 4 dispersed in the transparent substrate 2 and electrically connected to each other.
  • the metal microfibers 4 are dispersedly arranged on the insulating substrate 11 (21) through a process of applying ink (liquid) including the metal microfibers 4 on the insulating substrate 11 (21). Is formed.
  • a transparent substrate 2 is formed by filling a liquid transparent substrate 2 (liquid member) between metal microfibers 4 dispersedly arranged on the insulating substrate 11 (21) and then curing, and a net-like member. 3 is fixedly disposed in the transparent conductive layer 12 (22).
  • the metal microfibers 4 extend irregularly in different directions along the surface direction of the surfaces of the insulating substrates 11 and 21 (surfaces on which the transparent conductive layers 12 and 22 are formed). Further, at least a part of the metal microfibers 4 are arranged so densely that they overlap (contact with each other), that is, any metal microfiber 4 overlaps one or more other metal microfibers 4 ( They are arranged so as to be close to each other) and are electrically connected (connected) to each other by such an arrangement.
  • the mesh member 3 forms a conductive two-dimensional network on the surfaces of the insulating substrates 11 and 21, and the area where the mesh member 3 is disposed in the transparent base 2 of the transparent conductive layers 12 and 22. Is a conductive part C.
  • the metal microfibers 4 of the mesh member 3 are basically disposed under the surfaces of the transparent conductive layers 12 and 22 (surfaces facing away from the insulating substrates 11 and 21). And a portion protruding from the surface of the transparent substrate 2.
  • metal microfibers 4 examples include metal nanowires and metal nanotubes made of copper, platinum, gold, silver, nickel, and the like.
  • metal nanowires silver nanowires mainly composed of silver are used as the metal microfibers 4.
  • the metal ultrafine fibers 4 are formed, for example, with a diameter of 0.3 to 100 nm and a length of 1 ⁇ m to 100 ⁇ m.
  • a fibrous member such as a silicon nanowire, a silicon nanotube, a metal oxide nanotube, a carbon nanotube, a carbon nanofiber, and a graphite fibril other than the metal microfiber 4 described above and a metal-coated member thereof are used. These may be configured to be dispersed or connected.
  • the transparent base 2 of the transparent conductive layers 12 and 22 at least a part of the mesh member 3 is removed to form the insulating portion I. That is, as shown in FIG. 3, the transparent base 2 has two or more voids 5 formed by removing the metal microfibers 4 of the mesh member 3, and the voids 5 are arranged so as to be densely packed. The region is an insulating portion I. Specifically, these voids 5 are formed by irradiating a region of the mesh member 3 where the metal ultrafine fibers 4 are disposed with a pulsed laser having an ultrashort pulse as laser light, and evaporating or removing the metal ultrafine fibers 4. Has been.
  • the ultrashort pulse has a pulse width of 1 psec or less.
  • the pulse width is 0.01 psec or more. More preferably, the pulse width is 0.02 psec or more and 0.9 psec or less, and further preferably the pulse width is 0.1 psec or more and 0.8 psec or less.
  • a so-called femtosecond laser which is an ultrashort pulse laser with a pulse width of less than 1 psec, it is possible to obtain the conductive pattern forming substrates 10 and 20 where the conductive pattern is not visually observed.
  • These voids 5 are elongated holes (oblong holes) or holes (round holes) that irregularly extend or are scattered in different directions along the surface direction of the surface (exposed surface) of the transparent substrate 2. Each of which has a portion opening on the surface. Specifically, the gap 5 is disposed so as to correspond to the position where the evaporated or removed metal fine fiber 4 is disposed, and has a diameter (inner diameter) substantially equal to the diameter of the metal fine fiber 4. In addition, the length of the metal microfiber 4 is not longer than the length.
  • one metal microfiber 4 is completely evaporated or removed, or at least a part thereof is evaporated or removed, so that the metal microfiber 4 is divided in the extending direction,
  • Two or more voids 5 are formed at intervals. That is, two or more voids 5 that are spaced apart from each other are formed so as to extend or be scattered so as to form a linear shape as a whole, corresponding to the corresponding positions of the metal microfibers 4.
  • only one gap 5 may be formed so as to form a linear shape corresponding to the corresponding position of one metal fine fiber 4.
  • the metal microfibers 4 that are conductors are removed, and the conductive two-dimensional network is removed (disappeared).
  • the metal microfibers 4 are removed from the transparent base 2, the conductive part C and the insulating part I in the transparent base 2 (transparent conductive layers 12, 22) are mutually connected.
  • the chemical composition is different.
  • a manufacturing apparatus and a manufacturing method for manufacturing the transparent conductive layer and the conductive pattern forming substrate of the input member 1 of the input device according to this embodiment will be described.
  • substrate demonstrated in this embodiment in the transparent conductive layer (transparent conductive layer before conductive pattern formation) a containing the said network member formed in one surface of the insulated substrate 11 (21), A method of irradiating a laser beam L, which is an ultrashort pulsed laser, in a predetermined pattern is used.
  • a laminate having an insulating substrate 11 (21) before laser processing and a transparent conductive layer a formed on one surface of the insulating substrate 11 (21) is referred to as a conductive substrate A. That's it.
  • the manufacturing apparatus 40 used with the manufacturing method of the conductive pattern formation board
  • the manufacturing apparatus 40 includes a laser light generating unit 41 that generates laser light L, a condensing lens 42 such as a convex lens that is a condensing unit that condenses the laser light L, and a conductive substrate. And a stage 43 on which A is placed.
  • Laser light L is irradiated from the laser light generating means 41 to the transparent conductive layer a through the condenser lens 42 to form an insulating portion I and a conductive pattern on the transparent conductive layer a.
  • the focal point F of the condenser lens 42 is preferably set at a position away from the transparent conductive layer a. Specifically, the condenser lens 42 is disposed so that the focal point F of the laser light L is located between the transparent conductive layer a and the condenser lens 42. That is, in the manufacturing method of the conductive pattern forming substrate of this embodiment, the focal point F of the condensing lens 42 (laser light L) is formed between the transparent conductive layer a and the condensing lens 42.
  • the condenser lens 42 a lens having a low numerical aperture (NA ⁇ 0.1) is preferable. That is, by setting the numerical aperture of the condensing lens 42 to NA ⁇ 0.1, it becomes easy to set the irradiation condition of the laser light L.
  • the focal point F of the laser light L is the transparent conductive layer a and the condensing lens 42. It is possible to prevent energy loss and diffusion of the laser beam L due to the air plasma at the focal point F.
  • the transparent conductive layer a is formed by filling (impregnating) the transparent base 2 made of resin between the fibers (element wires) of the net-like member 3 made of, for example, the metal ultrafine fibers 4, and made of a transparent resin film.
  • the metal microfibers 4 embedded in the transparent substrate 2 of the transparent conductive layer a are reliably removed by being ejected from the surface of the transparent substrate 2 according to the above-described setting. be able to. Accordingly, the gap 5 is surely formed corresponding to the desired shape of the insulating portion I. For example, a pattern that cannot be insulated unless it is set to a large R, such as a corner portion of a linear pattern. However, the insulation process can be reliably and easily realized with a small R setting (or without providing R).
  • the stage 43 can be moved two-dimensionally in the horizontal direction.
  • the stage 43 is preferably composed of a member having at least a transparent upper surface or a member having light absorption.
  • the stage 43 is preferably made of a nylon-based or fluorine-based resin material or a silicone rubber-based polymer material.
  • substrate of the input member 1 of the input device using the manufacturing apparatus 40 mentioned above is demonstrated.
  • the conductive substrate A is placed on the upper surface of the stage 43 so that the transparent conductive layer a is disposed above the insulating substrate 11 (21).
  • the conductive substrate A it is preferable to use a substrate in which the insulating substrate 11 (21) and the transparent substrate 2 of the transparent conductive layer a are made of the same material or the same resin material.
  • the insulating substrate 11 (21) is a polyethylene terephthalate film, it is preferable to use a polyester-based resin for the transparent substrate 2.
  • the conductive substrate A (conductive pattern forming substrates 10 and 20) in the present embodiment is transparent.
  • the laser light L is emitted from the laser light generating means 41, and the laser light L is collected by the condenser lens 42. A portion of the condensed laser light L where the spot diameter has passed past the focal point F is irradiated onto the transparent conductive layer a. At that time, the stage 43 is moved so that the irradiation of the laser beam L has a predetermined pattern.
  • the energy density of the laser beam L applied to the transparent conductive layer a is preferably 1 ⁇ 10 16 to 7 ⁇ 10 17 W / m 2 , and the irradiation energy per unit area is preferably 1 ⁇ 10 5 to 1 ⁇ 10 6 J / m 2. . That is, when the energy density or irradiation energy is set to a value smaller than the above numerical range, the insulation of the insulating portion I may be insufficient. Further, when the value is set to be larger than the above numerical range, the processing trace becomes conspicuous, which is inappropriate for applications such as a transparent touch panel and a transparent electromagnetic wave shield.
  • the above-described focal point F has been described by taking as an example a case where the light converging means 42 such as a lens has sufficiently small aberration.
  • the focal point F is defined as the position where the energy density of the focal point is the highest.
  • the distance D is set within a range of 0.2% to 3% of the focal length FL in a normal laser processing machine.
  • the distance D is set within a range of 0.5% to 2% of the focal length FL. More preferably, the distance D is set within a range of 0.7% to 1.5% of the focal length FL.
  • adjacent spot positions are It is preferable to form overlapping portions. Specifically, it is preferable to intermittently irradiate 3 to 500 times, and more preferably 20 to 200 times. If the irradiation is performed three times or more, the insulation can be more reliably performed. If the irradiation is performed 500 times or less, the transparent substrate 2 irradiated with the laser beam L can be prevented from being removed by dissolution or evaporation.
  • the transparent conductive layer a is patterned to form a transparent conductive layer 12 (22) having a conductive pattern composed of a conductive portion C and an insulating portion I, and the conductive substrate A is a conductive pattern forming substrate. 10 (20).
  • the conductive substrate A is placed on the movable stage 43 such as an XY stage for patterning.
  • the present invention is not limited to this. That is, for example, a method in which the conductive substrate A is fixed and the condensing system member is relatively moved, a method in which the laser light L is scanned and scanned using a galvanometer mirror, or the like is combined. Patterning can be performed.
  • substrate A used for the said manufacturing method is shown below.
  • the transparent conductive layer a of the conductive substrate A examples of the inorganic conductor constituting the mesh member 3 include metal nanowires such as silver, gold, and nickel.
  • the transparent conductive layer a as the insulator constituting the transparent substrate 2, transparent thermoplastic resin (polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, nitrocellulose, chlorinated polyethylene, Chlorinated polypropylene, polyvinylidene fluoride), and transparent curable resins (silicone resins such as melamine acrylate, urethane acrylate, epoxy resin, polyimide resin, and acrylic-modified silicate) that are cured by heat, ultraviolet rays, electron beams, or radiation.
  • transparent thermoplastic resin polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, nitrocellulose, chlorinated polyethylene, Ch
  • FIG. 5 shows a modification of the present embodiment.
  • a pair of transparent conductive layers a are provided on the upper and lower surfaces of the insulating substrate 11 (21) in the conductive substrate A.
  • the condensing lens 42 having a focal length FL of 50 mm or more and a numerical aperture of less than 0.2 when used, the spread of the laser light L can be reduced. More preferably, the focal length FL is 60 mm or more and 500 mm or less and the numerical aperture is less than 0.19 and 0.001 or more, and further preferably, the focal length FL is 70 mm or more and 400 mm or less and the numerical aperture is less than 0.03. That's it.
  • the difference in spot diameter between the both surfaces of the insulating substrate 11 (21) is reduced, and the energy density corresponding to both transparent conductive layers a is substantially equal. It is possible to form the same insulating pattern on a. Further, when only the transparent conductive layer a on one side of the transparent conductive layer a formed on both surfaces of the insulating substrate 11 (21) is insulated, the numerical aperture of the condenser lens 42 is larger than 0.5. It is good also as using a thing.
  • an extremely short pulse laser (femtosecond laser) having a pulse width of less than 1 psec is used as the laser processing machine (manufacturing apparatus) 40.
  • the conductive pattern (insulating pattern) in the conductive pattern forming substrate 10 (20) can be reliably made inconspicuous. Moreover, since it is not necessary to control the thickness of the transparent conductive layer a in order to reliably insulate the insulating portion, it is simple.
  • the focal point F of the condenser lens 42 (laser light L) is provided at a position away from the transparent conductive layer a. Since the conductive substrate A is irradiated with the laser beam L, the spot diameter of the laser beam L hitting the insulating substrate 11 (21) is the spot of the laser beam L hitting the transparent conductive layer a. It becomes larger than the diameter. As a result, the energy density of the laser beam L is ensured in the transparent conductive layer a and the insulating portion I is reliably formed, while the energy density of the laser beam L is reduced in the insulating substrate 11 (21) to thereby achieve the insulation. Damage to the substrate 11 (21) can be prevented.
  • the insulating substrate 11 (21) is not affected while the transparent conductive layer a is processed.
  • Such control of the irradiation energy density is easier than in the conventional method.
  • the conductive pattern forming substrate 10 (20) of this input device has a conductive pattern formed by the conductive portion C formed of the mesh member 3 which is a network member of an inorganic substance (inorganic conductor) having conductivity and the insulating portion I. Therefore, compared with a conductive pattern forming substrate having a conductive portion C (conductive pattern) made of, for example, an organic conductor, it is less likely to be altered by light (ultraviolet rays) and the like, and has stable electrical characteristics over a long period of time. Can be obtained.
  • the arrangement region of the conductive mesh member 3 is a conductive portion.
  • a region where the gap 5 is formed by removing the mesh member 3 is defined as an insulating portion I. That is, in the conductive part C, conduction is ensured by the mesh member 3 made of metal, and in the insulating part I, an electrical insulation state is reliably obtained by the gap 5 formed by removing the mesh member 3. It is supposed to be.
  • the mesh member 3 made of metal nanowires dispersed in the transparent substrate 2 and electrically connected to each other remains not only in the conductive part C but also in the insulating part I. It has been difficult to reliably insulate the insulating portion I.
  • the mesh member 3 (metal fine fiber 4) of the insulating portion I is removed so as to replace the gap 5, and the insulating portion I is reliably insulated, so that the transparent conductive
  • the electrical characteristics (performance) in the layer 12 (22) are stabilized, and the reliability as a product (input device) is enhanced.
  • the mesh member 3 is removed, and a void 5 having a shape corresponding to (corresponding to) the mesh member 3 (metal microfiber 4) is formed. That is, since the gap 5 is formed, the conductive portion C and the insulating portion I are similar in color tone and transparency to each other and are not discriminated (viewed) from each other by the naked eye. . Therefore, even if the width of the insulating portion I is increased, the wiring pattern is not visually recognized.
  • the mesh member 3 is composed of metal ultrafine fibers 4 dispersed in the transparent substrate 2 and electrically connected to each other, the mesh member 3 is made of metal ultrafine fibers 4 such as commercially available metal nanowires and metal nanotubes. And can be formed relatively easily.
  • the metal microfiber 4 having silver as a main component when used, the metal microfiber 4 can be obtained relatively easily and used as the mesh member 3. Moreover, when removing the mesh member 3 (metal fine fiber 4) of the insulating part I by laser processing, a commercially available general laser processing machine can be used. Further, the metal microfiber 4 mainly composed of silver is more preferable because it can form a colorless and transparent conductive pattern having a high light transmittance and a low surface resistivity.
  • the conductive pattern of the conductive pattern forming substrate 10 (20) is hardly visible, and the conductive portion C in the conductive pattern has a low resistance, but the insulating portion. In I, insulation is ensured and stable electrical performance can be obtained.
  • the transparent substrate 2 of the transparent conductive layer a and the insulating substrate 11 (21) of the conductive substrate A are made of the same material or the same resin material.
  • the transparent conductive layer a transparent conductive layer 12 (22)
  • the transparent conductive layer 11 (21) is easily firmly bonded onto the insulating substrate 11 (21).
  • the metal microfibers 4 are dispersed on the insulating substrate 11 (21). It is formed by. Further, by filling the liquid transparent substrate 2 (liquid member) between the metal ultrafine fibers 4 dispersedly arranged on the insulating substrate 11 (21) in this way and then curing, the mesh member 3 becomes a transparent substrate. 2 holds the following effects. That is, the mesh member 3 can be easily provided in the transparent conductive layer a on the insulating substrate 11 (21), and the metal microfibers 4 constituting the mesh member 3 are electrically and reliably connected to each other. The electrical characteristics of the conductive part C are stabilized. In addition, since the mesh member 3 is stably held by the transparent substrate 2, the above-described electrical characteristics extend the life.
  • an input device including a conductive pattern and a conductive pattern forming substrate 10 (20) with high accuracy, excellent electrical characteristics, and good appearance can be obtained.
  • both the insulating substrates 11 and 21 are transparent, but either or both of these insulating substrates 11 and 21 may be colored with a certain degree of transparency. Absent.
  • the net member 3 is made of two or more metal microfibers 4 dispersed in the transparent substrate 2 and electrically connected to each other, it is not limited to this. That is, the net member 3 may be a wire grid formed by forming a conductive metal film in a grid pattern by etching or the like. Further, as the inorganic network member having conductivity, a network member made of a film member or the like may be used instead of the above-described mesh member 3.
  • functional layers such as adhesion, antireflection, hard coat, and dot spacer may be optionally added to the conductive pattern forming substrates 10 and 20.
  • the input member 1 is provided with a pair of conductive pattern formation substrates 10 and 20 stacked in the thickness direction.
  • the conductive pattern formation substrate provided on the input member 1 is not provided.
  • the number and arrangement are not limited to the above-described embodiments. Specifically, one or more conductive pattern forming substrates of the input member 1 may be provided.
  • the input device is a capacitive touch panel.
  • FIG. 12 shows an input member 200 for a capacitive touch panel (input device).
  • This capacitive touch panel includes upper and lower electrodes (transparent conductive layers 212 and 222) that are capacitively coupled to a human body portion H such as a finger through an insulating layer 240 disposed on a surface facing the input user side. An AC signal is applied to and the other electrode is measured to detect the contact state of the finger.
  • the input member 200 of the capacitive touch panel includes a pair of electrode sheets 210 and 220 (conductive pattern forming substrate), transparent conductive layers 212 and 222, one of the insulating substrates 11 and 21. It is arranged on the side (input person side). Thereby, since at least the insulating substrate 11 is disposed between the transparent conductive layers 212 and 222, the transparent conductive layers 212 and 222 are spaced from each other.
  • the input member 200 is an X-side electrode sheet on which an electrode 201a having a checkered pattern (a state in which square corners having the same shape are connected to each other, so-called check pattern) is formed.
  • 210 conductive pattern forming substrate
  • Y side electrode sheet 220 conductive pattern forming substrate
  • the electrode 201a is formed such that corners of two or more squares arranged along the X direction are electrically connected to each other, and the adjacent squares in the Y direction are formed. Are arranged in parallel in the Y direction while being electrically insulated from each other.
  • the electrode 201b is formed such that two or more square corners arranged along the Y direction are electrically connected to each other and extend, while adjacent to each other in the X direction. The squares are electrically insulated from each other and arranged in parallel in the X direction.
  • the X-side electrode sheet 210 and the Y-side electrode sheet 220 are combined in a state where the electrodes 201 a and 201 b face each other without facing each other in the thickness direction.
  • the X-side electrode sheet 210 is fixed to the upper surface (the surface on the input side) of the Y-side electrode sheet 220 so as to be laminated via a transparent adhesive material 250. In this state, both electrodes 201a and 201b are not overlapped in the thickness direction.
  • a square-shaped isolated electrode 202a is formed in a region facing the square portion of the electrode 201b of the Y-side electrode sheet 220. Each is formed.
  • the insulating portions I having a square ring shape are formed by irradiating the laser beam L, respectively.
  • a small isolated electrode having a square shape with a smaller outer shape than the isolated electrode 202a.
  • the insulating portions I having a square ring shape are formed by irradiating the laser beam L, respectively. That is, the adjacent isolated electrode 202a and the small isolated electrode 203a share a part of the insulating part I of each other.
  • a square-shaped isolated electrode 202 b is formed in a region facing the square portion of the electrode 201 a of the X-side electrode sheet 210. Each is formed.
  • insulating portions I having a square ring shape are formed by irradiating the laser beam L, respectively.
  • a small isolated electrode having a square shape with a smaller outer shape than the isolated electrode 202b is formed between the opposing corners of the square of the electrode 201b adjacent in the X direction. 203b is formed.
  • the insulating portions I having a square ring shape are formed by irradiating the laser beam L, respectively. That is, the adjacent isolated electrode 202b and the small isolated electrode 203b share a part of the insulating portion I of each other.
  • the mesh member 3 is disposed on the electrodes 201a and 201b and the isolated electrodes 202a and 202b to form the conductive portion C.
  • the small isolated electrodes 203a and 203b are also the conductive portion C.
  • the small isolated electrodes 203a and 203b are irradiated with the laser beam L so as to be filled in, so that the square insulation is formed. It does not matter as part I.
  • the operation of the capacitive touch panel using the input member 200 will be described with reference to FIG.
  • the human body portion H contact object
  • capacitive coupling is established between the contact object H and each electrode. Is formed.
  • a voltage is applied to one of the electrodes 201b of the Y-side electrode sheet 220 by using the signal source 260, and the signal (input signal) of the electrode 201a of the X-side electrode sheet 210 is detected by the detection means 270.
  • the contact state between the contact object H and the input member 200 can be detected.
  • the above-described special configuration can be adopted and the following excellent operational effects can be achieved. It becomes. That is, when the contact object H comes into contact as described above, the electrode 201b of the Y-side electrode sheet 220 and the contact object H pass through the isolated electrode 202a of the X-side electrode sheet 210 located on the electrode 201b. Capacitive coupling will be formed. Thereby, the electrode 201a of the X-side electrode sheet 210 and the electrode 201b of the Y-side electrode sheet 220 are in a state of being disposed in substantially the same layer (transparent conductive layer 212). Therefore, the position of the contact object H can be detected with high accuracy.
  • an isolated electrode is located in a region facing the electrode 201 b of the Y-side electrode sheet 220. It was not provided. Further, in the transparent conductive layer 222 of the Y-side electrode sheet 220, no isolated electrode (conductive portion C) was provided in the region facing the electrode 201 a of the X-side electrode sheet 210. In the case of such a configuration, the electrodes 201a and 201b are not only maintained in an insulated state but also strictly controlled with a certain width between each other. That is, in the conventional configuration, the accuracy of the distance between the upper and lower electrodes 201a and 201b tends to affect the detection result, and the area for performing the insulation process is relatively large.
  • the electrodes 201a and 201b are disposed in substantially the same layer (plane), the conventional distance accuracy between the upper and lower electrodes 201a and 201b is required. The detection accuracy is improved. In addition, the area of the region (insulating part I) where the insulating process is performed is greatly reduced, and the productivity is improved. Furthermore, since the chemical compositions of the electrodes 201a and 201b and the isolated electrodes 202a and 202b are the same, the conductive pattern is less likely to be recognized and the appearance is good. Further, since the small isolated electrodes 203a and 203b are formed, it is possible to further reduce the influence on the detection accuracy due to the contact of the contact object H and the assembly tolerance.
  • the surface resistance of the transparent conductive layer a of this silver nanowire conductive film was 230 ⁇ / ⁇ , and the light transmittance was 95%. Subsequently, this silver nanowire conductive film was cut into an A4 size rectangle to obtain a silver nanowire conductive film test piece.
  • the focal point F of the condensing lens 42 (laser light L) to a position 1.5 mm away from the surface of the transparent conductive layer in the test piece toward the condensing lens 42 side, the light is condensed.
  • the point was moved at 1 mm / second so as to cross the width direction of the test piece, and a straight line was drawn (formation of an insulating pattern).
  • the condensing point is adjusted. A straight line was drawn by moving across the width of the test piece at 100 mm / second.
  • the transparent conductive layer which has the electroconductive two-dimensional network (network member which consists of a film-like member) which consists of a zinc oxide film
  • the silver vapor deposition layer (silver film) is formed so as to provide a slight gap while two or more granular materials are densely connected.
  • the surface resistance of the transparent conductive layer of this silver vapor-deposited conductive film was 95 ⁇ / ⁇ , and the light transmittance was 85%.
  • this silver vapor-deposited conductive film was cut into an A4 size large rectangle to obtain a silver vapor-deposited conductive film test piece. A straight line was drawn on this test piece in the same manner as in Production Example 2.
  • the evaluation results are shown in Table 1.
  • the evaluation criteria (A, B, C, D) were as follows. A: Excellent. The electrical resistance value exceeds 10 M ⁇ and insulation is ensured, and the conductive pattern cannot be seen at all even in the state of the conductive pattern forming substrate before assembly on the touch panel. B: Good. The electrical resistance exceeds 10 M ⁇ and insulation is ensured, and the conductive pattern is almost invisible. C: Yes.
  • the electrical resistance value exceeds 10 M ⁇ and insulation is ensured, but the conductive pattern is visible (a level that can be used as a product when assembled on a touch panel).
  • D Impossible. Those with an electrical resistance of 10 M ⁇ or less and insufficient insulation, or those with scorch or perforation to the extent that they can be visually confirmed. That is, it cannot be used as a product.
  • a commercially available silver paste was printed in a band shape by screen printing to form a connector pattern.
  • “+” marks as marks on the transparent conductive layer a are arranged in a line of 5 mm pitch and 1 mm length in a row with a 25 mm interval. Two rows were marked to mark the input area.
  • the touch panel wiring board on which the dot spacers 30 are formed and the touch panel wiring board on which the dot spacers 30 are not formed are cut into predetermined shapes, and the transparent conductive layers 12 (22) are arranged to face each other. Then, using a commercially available double-sided adhesive tape, the four sides were bonded to form an input member 1 of a transparent membrane-type touch panel (input device) (see FIG. 1).
  • the wiring pattern could not be visually recognized on the matte-processed black plate or on the light emitting liquid crystal display. Moreover, when the input area and outer peripheral part of this touch panel were hold
  • the silver nanowire conductive film was fixed to the stage of the irradiator using the guide pin hole 280, and the outer shape mark 282 and the printing positioning mark 283 were marked under the irradiation conditions of Production Example 3. Furthermore, in the Ag wiring pattern portion 284, the insulation between the lead patterns 281 and the outside in parallel with the pattern extending direction was irradiated under the irradiation conditions of Production Example 3 (0.1 mm interval).
  • an insulating portion I pattern irradiation was performed in the input area under the irradiation conditions of Production Example 2 to form an insulating portion I.
  • the silver nanowire conductive film that becomes the X-side electrode sheet 210 in FIG. 13 is surrounded by the electrode 201a extending in the X direction and the electrodes 201a adjacent in the Y direction.
  • An isolated electrode 202a and a small isolated electrode 203a sandwiched between opposing corners of a square of the electrode 201a adjacent in the Y direction were formed.
  • Electrode 14 includes an electrode 201b extending along the Y direction, an isolated electrode 202b surrounded by electrodes 201b adjacent in the X direction, and an electrode adjacent in the X direction.
  • an ultraviolet curable polyester resin ink containing pentaerythritol triacrylate as a curing agent is applied to coat the input area and cured. I let you.
  • these silver nanowire conductive films were cut out to obtain X-side and Y-side electrode sheets 210 and 220.
  • the X-side electrode sheet 210 and the Y-side electrode sheet 220 are transparently adhered so that the electrodes 201a and 201b are projected onto the surface of the input member 200 in a checkered pattern through the isolated electrodes 202a and 202b.
  • a sheet adheresive material 250 was attached to obtain an input member 200 of a capacitive touch panel (input device).
  • the input member 200 thus manufactured could not visually confirm the wiring pattern in the input area, and thus the appearance was excellent.
  • a capacitive touch panel interface (CY8C24094: manufactured by Cypress) was electrically connected to the input member 200 as the detecting means 270, and it was confirmed that the operation with the finger H could be performed satisfactorily.
  • the wiring pattern could not be visually recognized even on a black matte plate or on a light emitting liquid crystal display.
  • the input area and outer peripheral part of this touch panel were hold
  • the input device according to the present invention is extremely useful industrially because it is easily manufactured, has a conductive pattern that is difficult to be seen even if the width of the insulating portion is large, and has stable electrical characteristics.

Abstract

The present invention provides an input device that can be manufactured simply and easily, is equipped with a conductive pattern that is inconspicuous even when a wide insulating section is used, and has stable electrical characteristics. The present invention relates to an input device characterized in comprising: an input member (1) that includes insulating substrates (11, 21) and conductively patterned substrates (10, 20) equipped with transparent conductive layers (12, 22) disposed on at least one surface of the insulating substrates (11, 21), the transparent conductive layers including an inorganic network member having electroconductive properties in a transparent substrate having insulating properties; and detection means for detecting input signals, the detection means being electrically connected to the transparent conductive layers (12, 22); and the transparent conductive layers (12, 22) being provided with an insulated portion in which at least part of the network member is removed by irradiation with a laser beam in the form of ultra-short pulses having a width of less than 1 ps through light condensation means.

Description

入力装置Input device
 本発明は、タッチパネル、プラズマディスプレイの電磁波シールド等、画像表示装置の前面に設けられる入力装置に関するものである。
本願は、2010年9月24日に、日本に出願された特願2010-213852号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an input device provided on the front surface of an image display device, such as a touch panel and an electromagnetic wave shield of a plasma display.
This application claims priority on the basis of Japanese Patent Application No. 2010-213852 for which it applied to Japan on September 24, 2010, and uses the content here.
 タッチパネルにおいては、液晶ディスプレイ等の画像表示装置の前面に、電極シートとして、透明な絶縁基板の表面に透明導電層(透明導電膜)を形成した導電性基板を有する入力装置が設置されている。
 入力装置の導電性基板の透明導電層を構成する材料としては、錫ドープ酸化インジウム(ITO)やポリエチレンジオキシチオフェン-ポリスチレンスルホン酸に代表されるπ共役系導電性高分子(有機導電体)が広く知られている。
In a touch panel, an input device having a conductive substrate in which a transparent conductive layer (transparent conductive film) is formed on the surface of a transparent insulating substrate is installed as an electrode sheet on the front surface of an image display device such as a liquid crystal display.
Materials constituting the transparent conductive layer of the conductive substrate of the input device include π-conjugated conductive polymers (organic conductors) represented by tin-doped indium oxide (ITO) and polyethylenedioxythiophene-polystyrene sulfonic acid. Widely known.
 ところで、タッチパネル用入力装置に使用される導電性基板においては、回路パターンやアンテナアレイパターンを形成することがある。
 パターンの形成方法としては、例えば、特許文献1には、透明基材の表面の全面に、塗工により透明導電層を形成した後、COレーザやQスイッチを利用したパルス幅100n秒程度のYAGレーザを照射して、絶縁にする部分の透明導電層をアブレーションにより除去する方法が開示されている。
 特許文献2、3には、スクリーン印刷法やグラビア印刷法等の印刷により透明基材の表面に導電部を所定のパターンで形成する方法が開示されている。
 特許文献4には、透明基材の表面の全面に、塗工により透明導電層を形成した後、プラズマエッチングにより、絶縁にする部分の透明導電層を除去する方法が開示されている。
 特許文献5には、バインダ(樹脂)中に金属ナノワイヤ(金属極細繊維)を分散させ硬化してなる透明導電膜に、レーザを照射して絶縁化し、導電パターンを形成する技術が開示されている。尚、透明導電膜から外部へ突出した金属ナノワイヤはレーザで除去することとしている。
 特許文献6には、タッチパネル用ITO蒸着基板に対して紫外線レーザを使用し、ビーム径とレンズの焦点距離を制御し、集光エリア内の加工幅を制御することで10μm程度の微細なアブレーションにより微細パターンを形成する技術が開示されている。
By the way, in the conductive substrate used for the input device for touch panels, a circuit pattern or an antenna array pattern may be formed.
As a pattern forming method, for example, in Patent Document 1, a transparent conductive layer is formed on the entire surface of a transparent substrate by coating, and then a pulse width of about 100 nsec using a CO 2 laser or a Q switch is used. A method is disclosed in which a transparent conductive layer to be insulated is irradiated by YAG laser to be removed by ablation.
Patent Documents 2 and 3 disclose a method of forming a conductive portion in a predetermined pattern on the surface of a transparent substrate by printing such as a screen printing method or a gravure printing method.
Patent Document 4 discloses a method of forming a transparent conductive layer on the entire surface of a transparent substrate by coating, and then removing the portion of the transparent conductive layer to be insulated by plasma etching.
Patent Document 5 discloses a technique for forming a conductive pattern by irradiating a transparent conductive film obtained by dispersing and curing metal nanowires (metal ultrafine fibers) in a binder (resin) and curing the transparent conductive film. . Note that the metal nanowires protruding from the transparent conductive film to the outside are removed by a laser.
In Patent Document 6, an ultraviolet laser is used for an ITO vapor deposition substrate for a touch panel, the beam diameter and the focal length of the lens are controlled, and the processing width in the light condensing area is controlled, thereby performing fine ablation of about 10 μm. A technique for forming a fine pattern is disclosed.
特開2004-118381号公報JP 2004-118381 A 特開2005-527048号公報JP 2005-527048 A 特開2008-300063号公報JP 2008-300063 A 特開2009-26639号公報JP 2009-26639 A 特開2010-44968号公報JP 2010-44968 A 特開2008-91116号公報JP 2008-91116 A
 一般に、上記有機導電体は緑~青に、ITOは薄い黄に着色している。そのため、特許文献1~4の方法で絶縁基板上に導電パターンを形成すると、導電部は各導電膜を形成する導電体固有の有色、絶縁基板のみの絶縁部は無色になる。したがって、得られた導電性基板を入力装置に用いて画像表示装置の前面に設置した際には、絶縁部の幅(絶縁部の延在方向に垂直な幅寸法)を僅少にしなければ、導電パターンが視認されてしまうという問題が生じた。その一方で、絶縁部の幅を僅少に形成した場合、絶縁性が確保できなくなり、電気的特性が損なわれるおそれがあった。 Generally, the organic conductor is colored green to blue and ITO is colored pale yellow. For this reason, when a conductive pattern is formed on an insulating substrate by the methods of Patent Documents 1 to 4, the conductive portions are colored inherent to the conductor forming each conductive film, and the insulating portions only of the insulating substrate are colorless. Therefore, when the obtained conductive substrate is used as an input device and installed on the front surface of the image display device, the conductive portion must be conductive unless the width of the insulating portion (width dimension perpendicular to the extending direction of the insulating portion) is made small. There was a problem that the pattern was visually recognized. On the other hand, when the width of the insulating portion is made very small, the insulation cannot be secured, and the electrical characteristics may be impaired.
 特許文献5においては、入力装置の導電パターンが視認されにくいという利点を有している。しかしながら、透明導電膜内部において、金属ナノワイヤが導電部のみならず絶縁部にも残っているため、絶縁を確実に行うことは難しかった。すなわち、絶縁部を確実に絶縁させるためには、透明導電膜の厚み制御が必要になり、簡便ではなかった。 Patent Document 5 has an advantage that the conductive pattern of the input device is hardly visible. However, since the metal nanowire remains not only in the conductive part but also in the insulating part inside the transparent conductive film, it has been difficult to reliably perform the insulation. That is, in order to reliably insulate the insulating portion, it is necessary to control the thickness of the transparent conductive film, which is not simple.
 また、特許文献6においては、加工に高次高調波を利用した紫外線レーザを使用する必要があり、また、アブレーション領域の幅を制御する目的で、レーザビーム径やズームレンズ焦点距離を調整するため、簡便ではなかった。 In Patent Document 6, it is necessary to use an ultraviolet laser using high-order harmonics for processing, and in order to adjust the width of the ablation region, the laser beam diameter and zoom lens focal length are adjusted. It was not convenient.
 本発明は、このような事情に鑑みてなされたものであり、簡便に製造され、絶縁部の幅が大きくても視認されにくい導電パターンを備え、安定した電気的特性を有する入力装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides an input device that is easily manufactured, includes a conductive pattern that is difficult to be visually recognized even if the width of an insulating portion is large, and has stable electrical characteristics. For the purpose.
 前記目的を達成するために、本発明は以下の手段を提案している。
 すなわち本発明の入力装置は、絶縁基板、及び、前記絶縁基板の少なくとも一方の面に設けられ、絶縁性を有する透明基体内に導電性を有する無機物のネットワーク部材を含む透明導電層を備えた導電パターン形成基板を含む入力部材と、前記透明導電層に電気的に接続され、入力信号を検出する検出手段と、を備え、前記透明導電層には、集光手段を介してパルス幅1p秒未満の極短パルスのレーザ光が照射されたことにより、前記ネットワーク部材の少なくとも一部が除去されてなる絶縁部が形成されていることを特徴とする。
In order to achieve the above object, the present invention proposes the following means.
That is, an input device according to the present invention includes an insulating substrate and a conductive layer provided on at least one surface of the insulating substrate and including a transparent conductive layer including a conductive inorganic network member in an insulating transparent base. An input member including a pattern forming substrate; and a detection unit that is electrically connected to the transparent conductive layer and detects an input signal. The transparent conductive layer has a pulse width of less than 1 psec via a focusing unit. The insulating part formed by removing at least a part of the network member is formed by irradiating the ultrashort pulse laser beam.
 また、本発明に係る入力装置において、前記集光手段と前記透明導電層との間にレーザ光の焦点が形成されていることとしてもよい。 Further, in the input device according to the present invention, a focal point of laser light may be formed between the condensing means and the transparent conductive layer.
 また、本発明に係る入力装置において、前記入力部材は、前記導電パターン形成基板が厚さ方向に積層するように一対設けられたこととしてもよい。 In the input device according to the present invention, the input member may be provided in a pair so that the conductive pattern forming substrates are stacked in the thickness direction.
 また、本発明に係る入力装置において、厚さ方向に積層するように設けられた一対の前記導電パターン形成基板が、各透明導電層同士の間隔があくように配置され、前記検出手段は、静電容量式であることとしてもよい。 Further, in the input device according to the present invention, a pair of the conductive pattern forming substrates provided so as to be laminated in the thickness direction are arranged so that the transparent conductive layers are spaced from each other, and the detection means It may be a capacitance type.
 また、本発明に係る入力装置において、厚さ方向に積層するように設けられた一対の前記導電パターン形成基板が、各透明導電層同士が対向しつつ間隔があくように配置され、入力操作によって、前記透明導電層の一部同士が電気的に接触可能とされていることとしてもよい。 Further, in the input device according to the present invention, the pair of conductive pattern formation substrates provided so as to be laminated in the thickness direction are arranged so that the transparent conductive layers face each other while being spaced from each other. A part of the transparent conductive layer may be electrically contactable.
 また、本発明に係る入力装置において、前記導電パターン形成基板は、透明であることとしてもよい。 In the input device according to the present invention, the conductive pattern forming substrate may be transparent.
 また、本発明に係る入力装置において、前記絶縁基板と前記透明基体とが、互いに同一材料又は同一系統の樹脂材料からなることとしてもよい。 In the input device according to the present invention, the insulating substrate and the transparent substrate may be made of the same material or the same resin material.
 本発明に係る入力装置によれば、簡便に製造され、絶縁部の幅が大きくても視認されにくい導電パターンを備え、安定した電気的特性を有する。 The input device according to the present invention is manufactured easily, has a conductive pattern that is difficult to be seen even if the width of the insulating portion is large, and has stable electrical characteristics.
本発明の第1実施形態に係る入力装置の入力部材を簡略化して示す側断面図である。It is a sectional side view which simplifies and shows the input member of the input device which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る入力装置に用いられる入力部材の透明導電層のネットワーク部材としての網状部材(導電部)及びレーザ加工前の透明導電層を説明する拡大写真である。It is an enlarged photograph explaining the net-like member (conductive part) as a network member of the transparent conductive layer of the input member used for the input device concerning a 1st embodiment of the present invention, and a transparent conductive layer before laser processing. 本発明の第1実施形態に係る入力装置に用いられる入力部材の透明導電層において、ネットワーク部材としての網状部材が除去されることにより形成された空隙(絶縁部)を説明する拡大写真である。It is an enlarged photograph explaining the space | gap (insulating part) formed by removing the net-like member as a network member in the transparent conductive layer of the input member used for the input device which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る入力装置の入力部材の導電パターン形成基板を製造する製造装置(レーザ加工機)を簡略化して示す側面図である。It is a side view which simplifies and shows the manufacturing apparatus (laser processing machine) which manufactures the conductive pattern formation board | substrate of the input member of the input device which concerns on 1st Embodiment of this invention. 図4の導電パターン形成基板及び製造装置の変形例を示す側面図である。It is a side view which shows the modification of the conductive pattern formation board | substrate of FIG. 4, and a manufacturing apparatus. 導電性基板(導電パターン形成基板)の変形例(銀蒸着により透明導電層のネットワーク部材を形成したもの)であり、透明導電層の導電部及びレーザ加工前の透明導電層を説明する拡大写真である。It is the modification (what formed the network member of the transparent conductive layer by silver vapor deposition) of an electroconductive board | substrate (conductive pattern formation board | substrate), and is an enlarged photograph explaining the transparent conductive layer before laser processing and the conductive part of a transparent conductive layer is there. 図6の導電性基板の透明導電層に、レーザ光を照射した照射領域(絶縁部)と、レーザ光を照射していない未照射領域(導電部)とを説明する拡大写真である。It is an enlarged photograph explaining the irradiation area | region (insulation part) which irradiated the laser beam to the transparent conductive layer of the conductive substrate of FIG. 6, and the non-irradiation area | region (conductive part) which has not irradiated the laser beam. 本発明に係る入力装置の入力部材(透明導電層及び導電パターン形成基板)を製造する製造例を説明する側面図である。It is a side view explaining the manufacture example which manufactures the input member (a transparent conductive layer and a conductive pattern formation board | substrate) of the input device which concerns on this invention. 本発明に係る入力装置の入力部材(透明導電層及び導電パターン形成基板)を製造する製造例を説明する側面図である。It is a side view explaining the manufacture example which manufactures the input member (a transparent conductive layer and a conductive pattern formation board | substrate) of the input device which concerns on this invention. 本発明に係る入力装置の入力部材(透明導電層及び導電パターン形成基板)を製造する製造例を説明する斜視図である。It is a perspective view explaining the manufacture example which manufactures the input member (a transparent conductive layer and a conductive pattern formation board | substrate) of the input device which concerns on this invention. 本発明に係る入力装置を製造する実施例(製造例)を説明する回路図である。It is a circuit diagram explaining the Example (manufacturing example) which manufactures the input device which concerns on this invention. 本発明の第2実施形態に係る入力装置の入力部材を示す上面図である。It is a top view which shows the input member of the input device which concerns on 2nd Embodiment of this invention. 図12の入力部材のX側電極シート(導電パターン形成基板)を示す上面図である。It is a top view which shows the X side electrode sheet (conductive pattern formation board | substrate) of the input member of FIG. 図12の入力部材のY側電極シート(導電パターン形成基板)を示す上面図である。It is a top view which shows the Y side electrode sheet (conductive pattern formation board | substrate) of the input member of FIG. 図12のA-A矢視を拡大して示す側断面図である。FIG. 13 is an enlarged side cross-sectional view taken along line AA in FIG. 12. 図12のB-B矢視を拡大して示す側断面図である。FIG. 13 is an enlarged side cross-sectional view taken along the line BB in FIG. 12.
(第1実施形態)
 本発明に係る入力装置は、例えば、透明アンテナ、透明電磁波シールド、静電容量方式或いはメンブレン式の透明タッチパネルなどの透明入力装置のように、透明部分に配線パターンを形成する製品に適用することができる。また、本発明の入力装置は、自動車のハンドル等に付随する静電容量入力装置など、3次元成型品、或いは3次元の加飾成型品の表面に設けられる静電容量センサ等に必要な電極を形成する目的で用いることができる。
尚、本実施形態でいう「透明」とは、50%以上の光線透過率を有するものを指す。
(First embodiment)
The input device according to the present invention can be applied to a product in which a wiring pattern is formed in a transparent portion, such as a transparent input device such as a transparent antenna, a transparent electromagnetic wave shield, a capacitance type or a membrane type transparent touch panel. it can. Further, the input device of the present invention is an electrode necessary for a capacitance sensor or the like provided on the surface of a three-dimensional molded product or a three-dimensional decorative molded product, such as a capacitive input device attached to a steering wheel of an automobile. Can be used for the purpose of forming.
In the present embodiment, “transparent” refers to a material having a light transmittance of 50% or more.
 図1及び図10は、本発明の第1実施形態に係るメンブレン式タッチパネル(入力装置)用の入力部材1を示している。図1~図3において、このメンブレン式タッチパネルは、絶縁基板11、21、及び、絶縁基板11、21の少なくとも一方の面に設けられ、絶縁性を有する透明基体2内に導電性を有する無機物のネットワーク部材3を含む透明導電層12、22を備えた導電パターン形成基板10、20が、厚さ方向に積層するように一対設けられた入力部材1と、透明導電層12、22に電気的に接続され、入力信号を検出する検出手段と、を備えている。
 入力部材1は、LCDなどの画像表示装置(不図示)の入力者側に設置されるものである。図10において、入力部材1は、例えば、行(X)方向に沿う電極100(透明導電層12の後述する導電部Cに相当)が並列配置された導電パターン形成基板10と、この導電パターン形成基板10に対向するように画像表示装置側に配置され、行(X)方向に直交する列(Y)方向に沿う電極(透明導電層22の導電部Cに相当)が並列配置された導電パターン形成基板20と、これらの間に設けられた透明なドットスペーサ30とを備えている。入力部材1は、入力操作により、導電パターン形成基板10の電極100と導電パターン形成基板20の電極とが電気的に接触又は導通する構成とされている。
1 and 10 show an input member 1 for a membrane touch panel (input device) according to a first embodiment of the present invention. 1 to 3, this membrane type touch panel is provided on at least one surface of the insulating substrates 11, 21 and the insulating substrates 11, 21, and is made of an inorganic substance having conductivity within the transparent base 2 having insulation properties. The conductive pattern forming substrates 10 and 20 including the transparent conductive layers 12 and 22 including the network member 3 are electrically connected to the input member 1 and the transparent conductive layers 12 and 22 provided in pairs so as to be laminated in the thickness direction. And a detecting means for detecting an input signal.
The input member 1 is installed on the input side of an image display device (not shown) such as an LCD. In FIG. 10, the input member 1 includes, for example, a conductive pattern forming substrate 10 in which electrodes 100 (corresponding to conductive portions C described later of the transparent conductive layer 12) along the row (X) direction are arranged in parallel, and this conductive pattern formation. Conductive pattern in which electrodes (corresponding to the conductive portion C of the transparent conductive layer 22) are arranged in parallel so as to face the substrate 10 and are arranged on the image display device side and along the column (Y) direction orthogonal to the row (X) direction. A forming substrate 20 and a transparent dot spacer 30 provided therebetween are provided. The input member 1 is configured such that the electrode 100 of the conductive pattern forming substrate 10 and the electrode of the conductive pattern forming substrate 20 are in electrical contact or conduction by an input operation.
 導電パターン形成基板10は、透明な絶縁基板11と、絶縁基板11において少なくとも画像表示装置側を向く面に設けられた透明導電層12と、を備えている。
 導電パターン形成基板20は、透明な絶縁基板21と、絶縁基板21において少なくとも入力者側を向く面に設けられた透明導電層22と、を備えている。
The conductive pattern forming substrate 10 includes a transparent insulating substrate 11 and a transparent conductive layer 12 provided on the surface of the insulating substrate 11 facing at least the image display device side.
The conductive pattern forming substrate 20 includes a transparent insulating substrate 21 and a transparent conductive layer 22 provided on a surface of the insulating substrate 21 facing at least the input side.
 絶縁基板11、21としては、絶縁性を有するとともに、表面に透明導電層12、22を形成でき、かつ、後述するレーザ加工に対して、所定の照射条件において外観変化の生じにくいものを用いることが好ましい。具体的には、例えば、ガラス、ポリカーボネート、ポリエチレンテレフタレート(PET)を代表とするポリエステル、アクリロニトリル/ブタジエン/スチレン共重合樹脂(ABS樹脂)などの絶縁性材料が挙げられる。また、絶縁基板11、21の形状としては、板状のもの、可撓性を有するフィルム状のもの、立体的(3次元)に成型された成型品等を用いることができる。 As the insulating substrates 11 and 21, those having insulating properties and capable of forming the transparent conductive layers 12 and 22 on the surface and being less likely to change in appearance under predetermined irradiation conditions with respect to laser processing described later are used. Is preferred. Specific examples include insulating materials such as glass, polycarbonate, polyester typified by polyethylene terephthalate (PET), and acrylonitrile / butadiene / styrene copolymer resin (ABS resin). As the shape of the insulating substrates 11 and 21, a plate shape, a flexible film shape, a three-dimensional (three-dimensional) molded product, or the like can be used.
 この入力部材1を透明タッチパネルに使用する場合、絶縁基板11、21には、ガラス板やPETフィルム等が用いられる。また、入力部材1を、自動車のハンドル等に付随する静電容量入力装置など、静電容量センサ等に必要な電極として使用する場合、絶縁基板11、21には、ABS樹脂などからなる成型品、或いはこれにフィルムのラミネートや転写などで加飾層を設けた加飾成型品等が用いられる。 When the input member 1 is used for a transparent touch panel, a glass plate, a PET film or the like is used for the insulating substrates 11 and 21. Further, when the input member 1 is used as an electrode necessary for a capacitance sensor or the like such as a capacitance input device attached to a steering wheel of an automobile, the insulating substrates 11 and 21 are molded products made of ABS resin or the like. Alternatively, a decorative molded product provided with a decorative layer by laminating or transferring the film is used.
 例えば、本発明を、押圧などにより上下2枚の電極膜(透明導電層)12、22を接触導通させるメンブレン式などの透明タッチパネルとして利用する場合、入力者側の絶縁基板11としては、入力者側からの外力に対して可撓しやすいもの(例えば透明樹脂フィルム)を用いることが好ましく、画像表示装置側の絶縁基板21としては、ドットスペーサ30を介して導電パターン形成基板10を支持しやすい所定以上(例えば絶縁基板11と同等以上)の硬度を有するものを用いることが好ましい。例えば、絶縁基板21のビッカース硬さは、絶縁基板11ビッカース硬さの1倍以上が好ましく、1.2~5倍がより好ましく、1.5~4倍がさらに好ましい。また、このようなタッチパネルでは、隣接する電極100間に一定の電位差を設けて使用することが必須であり、銅や亜鉛、スズ、特に銀などの金属を用いた透明導電層12、22では、マイグレーション防止のため、導電パターンを区分する絶縁部の幅(絶縁部の延在方向に垂直な幅寸法)を確保することが求められる。 For example, when the present invention is used as a transparent touch panel such as a membrane type in which the upper and lower electrode films (transparent conductive layers) 12 and 22 are brought into contact with each other by pressing or the like, the input person-side insulating substrate 11 may be an input person. It is preferable to use a material that is flexible with respect to external force from the side (for example, a transparent resin film), and as the insulating substrate 21 on the image display device side, the conductive pattern forming substrate 10 is easily supported via the dot spacer 30. It is preferable to use a material having a predetermined hardness or higher (for example, equal to or higher than that of the insulating substrate 11). For example, the Vickers hardness of the insulating substrate 21 is preferably 1 or more times that of the insulating substrate 11 Vickers, more preferably 1.2 to 5 times, and even more preferably 1.5 to 4 times. Further, in such a touch panel, it is essential to use a certain potential difference between adjacent electrodes 100. In the transparent conductive layers 12 and 22 using a metal such as copper, zinc, tin, and particularly silver, In order to prevent migration, it is required to secure the width of the insulating portion that divides the conductive pattern (width dimension perpendicular to the extending direction of the insulating portion).
 また、一対の導電パターン形成基板10、20の透明導電層12、22同士は、互いに接近した状態とされつつもドットスペーサ30により間隔をあけられて対向配置されている。導電パターン形成基板10が入力者側から画像表示装置側へ向けて押圧された際に、前記導電パターン形成基板10の絶縁基板11及び透明導電層12が撓むとともに、前記透明導電層12が導電パターン形成基板20の透明導電層22に接触可能とされている。この接触により、電気的信号が生じるように構成されている。すなわち、入力部材1は、入力者の入力操作によって、透明導電層12、22の一部同士が電気的に接触可能とされている。 In addition, the transparent conductive layers 12 and 22 of the pair of conductive pattern forming substrates 10 and 20 are arranged to face each other with a space therebetween by a dot spacer 30 while being close to each other. When the conductive pattern forming substrate 10 is pressed from the input side toward the image display device side, the insulating substrate 11 and the transparent conductive layer 12 of the conductive pattern forming substrate 10 are bent, and the transparent conductive layer 12 is The transparent conductive layer 22 of the formation substrate 20 can be contacted. An electrical signal is generated by this contact. That is, in the input member 1, a part of the transparent conductive layers 12 and 22 can be electrically contacted by an input operation by an input person.
 また、図2に示すように、透明導電層12、22は、絶縁性を有する透明基体2内に導電性を有する無機物のネットワーク部材を含んでいる。すなわち、透明導電層12、22は、透明基体2内に前記ネットワーク部材が保持されて形成されている。詳しくは、透明導電層12、22は、前記ネットワーク部材として、導電性を有する金属からなる網状部材3を備えている。透明基体2は、液状の状態において後述する網状部材3の素線(繊維)間に充填(含浸)可能とされた、例えば、熱、紫外線、電子線、放射線等により硬化する性質の硬化性樹脂からなる。 Further, as shown in FIG. 2, the transparent conductive layers 12 and 22 include an inorganic network member having conductivity in the transparent base 2 having insulation properties. That is, the transparent conductive layers 12 and 22 are formed by holding the network member in the transparent substrate 2. Specifically, the transparent conductive layers 12 and 22 include a net-like member 3 made of a conductive metal as the network member. The transparent substrate 2 can be filled (impregnated) between the strands (fibers) of the mesh member 3 described later in a liquid state, for example, a curable resin having a property of being cured by heat, ultraviolet rays, electron beams, radiation, or the like. Consists of.
 また、網状部材3は、透明基体2内に分散されて互いに電気的に連結された2以上の金属極細繊維4からなる。網状部材3は、例えば、絶縁基板11(21)上に金属極細繊維4を含むインク(液体)を塗布する過程を経て、前記絶縁基板11(21)上に金属極細繊維4が分散配置されることにより形成される。絶縁基板11(21)上に分散配置された金属極細繊維4同士の間に、液状の透明基体2(液状部材)を充填した後硬化させることで透明基体2が形成されているとともに、網状部材3は透明導電層12(22)内に固定配置される。 The mesh member 3 is composed of two or more metal microfibers 4 dispersed in the transparent substrate 2 and electrically connected to each other. In the net-like member 3, for example, the metal microfibers 4 are dispersedly arranged on the insulating substrate 11 (21) through a process of applying ink (liquid) including the metal microfibers 4 on the insulating substrate 11 (21). Is formed. A transparent substrate 2 is formed by filling a liquid transparent substrate 2 (liquid member) between metal microfibers 4 dispersedly arranged on the insulating substrate 11 (21) and then curing, and a net-like member. 3 is fixedly disposed in the transparent conductive layer 12 (22).
 詳しくは、これら金属極細繊維4同士は、絶縁基板11、21の表面(透明導電層12、22が形成される面)の面方向に沿って互いに異なる向きに不規則に延在しているとともに、金属極細繊維4の少なくとも一部以上が互いに重なり合う(接触し合う)程度に密集して配置されており、すなわち、任意の金属極細繊維4は他の1本以上の金属極細繊維4と重なり合う(接触し合う)程度に密集して配置されており、このような配置によって互いに電気的に連結(接続)されている。 Specifically, the metal microfibers 4 extend irregularly in different directions along the surface direction of the surfaces of the insulating substrates 11 and 21 (surfaces on which the transparent conductive layers 12 and 22 are formed). Further, at least a part of the metal microfibers 4 are arranged so densely that they overlap (contact with each other), that is, any metal microfiber 4 overlaps one or more other metal microfibers 4 ( They are arranged so as to be close to each other) and are electrically connected (connected) to each other by such an arrangement.
 これにより、網状部材3は、絶縁基板11、21の表面上において、導電性の2次元ネットワークを構成しており、透明導電層12、22の透明基体2内において網状部材3が配置された領域は、導電部Cとされている。また、網状部材3の金属極細繊維4は、基本的には透明導電層12、22の表面(絶縁基板11、21とは反対側を向く表面)下に配設されるが、透明基体2内に埋設される部分と、前記透明基体2の表面から突出される部分とを有していてもよい。 Thereby, the mesh member 3 forms a conductive two-dimensional network on the surfaces of the insulating substrates 11 and 21, and the area where the mesh member 3 is disposed in the transparent base 2 of the transparent conductive layers 12 and 22. Is a conductive part C. The metal microfibers 4 of the mesh member 3 are basically disposed under the surfaces of the transparent conductive layers 12 and 22 (surfaces facing away from the insulating substrates 11 and 21). And a portion protruding from the surface of the transparent substrate 2.
 具体的に、このような金属極細繊維4としては、銅、白金、金、銀、ニッケル等からなる金属ナノワイヤや金属ナノチューブが挙げられる。本実施形態においては、金属極細繊維4として、銀を主成分とする金属ナノワイヤ(銀ナノワイヤ)が用いられている。金属極細繊維4は、例えばその直径が0.3~100nm、長さが1μm~100μmに形成されている。 Specifically, examples of such metal microfibers 4 include metal nanowires and metal nanotubes made of copper, platinum, gold, silver, nickel, and the like. In the present embodiment, metal nanowires (silver nanowires) mainly composed of silver are used as the metal microfibers 4. The metal ultrafine fibers 4 are formed, for example, with a diameter of 0.3 to 100 nm and a length of 1 μm to 100 μm.
 尚、網状部材3として、前述した金属極細繊維4以外の、シリコンナノワイヤやシリコンナノチューブ、金属酸化物ナノチューブ、カーボンナノチューブ、カーボンナノファイバー、グラファイトフィブリル等の繊維状部材及びその金属被覆部材が用いられるとともに、これらが分散又は連結されて構成されていても構わない。 In addition, as the mesh member 3, a fibrous member such as a silicon nanowire, a silicon nanotube, a metal oxide nanotube, a carbon nanotube, a carbon nanofiber, and a graphite fibril other than the metal microfiber 4 described above and a metal-coated member thereof are used. These may be configured to be dispersed or connected.
 また、透明導電層12、22の透明基体2内において、網状部材3の少なくとも一部が除去されることにより絶縁部Iが形成されている。すなわち、図3に示すように、透明基体2には、網状部材3の金属極細繊維4が除去されることにより空隙5が2以上形成されており、これら空隙5が密集するように配置された領域が、絶縁部Iとされている。詳しくは、これら空隙5は、網状部材3の金属極細繊維4が配置される領域にレーザ光として極短パルスのパルス状レーザを照射して、前記金属極細繊維4を蒸発又は除去することにより形成されている。尚、前記極短パルスとは、パルス幅は1p秒以下のことである。また、好ましくは、パルス幅は0.01p秒以上である。より好ましくは、パルス幅が0.02p秒以上、0.9p秒以下であり、さらに好ましくはパルス幅が0.1p秒以上、0.8p秒以下である。
 パルス幅1p秒未満の極短パルスレーザである、所謂フェムト秒レーザを用いることで、導電パターンが目視されない導電パターン形成基板10、20を得ることができる。
Further, in the transparent base 2 of the transparent conductive layers 12 and 22, at least a part of the mesh member 3 is removed to form the insulating portion I. That is, as shown in FIG. 3, the transparent base 2 has two or more voids 5 formed by removing the metal microfibers 4 of the mesh member 3, and the voids 5 are arranged so as to be densely packed. The region is an insulating portion I. Specifically, these voids 5 are formed by irradiating a region of the mesh member 3 where the metal ultrafine fibers 4 are disposed with a pulsed laser having an ultrashort pulse as laser light, and evaporating or removing the metal ultrafine fibers 4. Has been. The ultrashort pulse has a pulse width of 1 psec or less. Preferably, the pulse width is 0.01 psec or more. More preferably, the pulse width is 0.02 psec or more and 0.9 psec or less, and further preferably the pulse width is 0.1 psec or more and 0.8 psec or less.
By using a so-called femtosecond laser, which is an ultrashort pulse laser with a pulse width of less than 1 psec, it is possible to obtain the conductive pattern forming substrates 10 and 20 where the conductive pattern is not visually observed.
 これら空隙5は、透明基体2の表面(露出された面)の面方向に沿って互いに異なる向きに不規則に延在又は点在する長穴状(長丸穴状)又は穴状(丸穴状)をそれぞれなしており、前記表面に開口する部分を有して形成されている。詳しくは、空隙5は、蒸発又は除去された金属極細繊維4の配置されていた位置に対応するように配置されているとともに、前記金属極細繊維4の直径と略同等の直径(内径)を有し、前記金属極細繊維4の長さ以下に形成されている。 These voids 5 are elongated holes (oblong holes) or holes (round holes) that irregularly extend or are scattered in different directions along the surface direction of the surface (exposed surface) of the transparent substrate 2. Each of which has a portion opening on the surface. Specifically, the gap 5 is disposed so as to correspond to the position where the evaporated or removed metal fine fiber 4 is disposed, and has a diameter (inner diameter) substantially equal to the diameter of the metal fine fiber 4. In addition, the length of the metal microfiber 4 is not longer than the length.
 より詳しくは、1つの金属極細繊維4が完全に蒸発又は除去されるか、少なくとも一部が蒸発又は除去されることにより、前記金属極細繊維4をその延在する方向に分割するようにして、2以上の空隙5が互いに間隔をあけて形成されている。すなわち、金属極細繊維4の相当位置に対応して、互いに離間する2以上の空隙5が、全体として線状をなすように延在又は点在して形成されている。尚、1つの金属極細繊維4の相当位置に対応して、空隙5が線状をなすように1つだけ形成されていてもよい。 More specifically, one metal microfiber 4 is completely evaporated or removed, or at least a part thereof is evaporated or removed, so that the metal microfiber 4 is divided in the extending direction, Two or more voids 5 are formed at intervals. That is, two or more voids 5 that are spaced apart from each other are formed so as to extend or be scattered so as to form a linear shape as a whole, corresponding to the corresponding positions of the metal microfibers 4. Incidentally, only one gap 5 may be formed so as to form a linear shape corresponding to the corresponding position of one metal fine fiber 4.
 絶縁部Iにおいては、これら空隙5が形成されることにより、導体である金属極細繊維4が除去されているとともに、前記導電性の2次元ネットワークが除去されて(消失して)いる。
 このように、絶縁部Iにおいては、透明基体2から金属極細繊維4が除去されていることから、前記透明基体2(透明導電層12、22)における導電部Cと絶縁部Iとでは、互いに化学的組成が異なっている。
In the insulating part I, by forming these voids 5, the metal microfibers 4 that are conductors are removed, and the conductive two-dimensional network is removed (disappeared).
Thus, in the insulating part I, since the metal microfibers 4 are removed from the transparent base 2, the conductive part C and the insulating part I in the transparent base 2 (transparent conductive layers 12, 22) are mutually connected. The chemical composition is different.
 次に、本実施形態に係る入力装置の入力部材1の透明導電層及び導電パターン形成基板を製造する製造装置及び製造方法について説明する。
 本実施形態で説明する導電パターン形成基板の製造方法では、絶縁基板11(21)の一方の面に形成された前記ネットワーク部材を含む透明導電層(導電パターン形成前の透明導電層)aに、極短パルスのパルス状レーザであるレーザ光Lを所定のパターンで照射する方法を用いている。
 尚、以下の説明において、レーザ加工前における絶縁基板11(21)と前記絶縁基板11(21)の一方の面に形成された透明導電層aとを有する積層体のことを、導電性基板Aという。
Next, a manufacturing apparatus and a manufacturing method for manufacturing the transparent conductive layer and the conductive pattern forming substrate of the input member 1 of the input device according to this embodiment will be described.
In the manufacturing method of the conductive pattern formation board | substrate demonstrated in this embodiment, in the transparent conductive layer (transparent conductive layer before conductive pattern formation) a containing the said network member formed in one surface of the insulated substrate 11 (21), A method of irradiating a laser beam L, which is an ultrashort pulsed laser, in a predetermined pattern is used.
In the following description, a laminate having an insulating substrate 11 (21) before laser processing and a transparent conductive layer a formed on one surface of the insulating substrate 11 (21) is referred to as a conductive substrate A. That's it.
 まず、本実施形態の導電パターン形成基板の製造方法で使用する製造装置40について説明する。図4に示すように、この製造装置40は、レーザ光Lを発生させるレーザ光発生手段41と、レーザ光Lを集光する集光手段である凸レンズ等の集光レンズ42と、導電性基板Aが載置されるステージ43と、を備えている。
 レーザ光発生手段41から集光レンズ42を介して透明導電層aにレーザ光Lを照射して、前記透明導電層aに絶縁部Iを形成するとともに導電パターンを形成する。
First, the manufacturing apparatus 40 used with the manufacturing method of the conductive pattern formation board | substrate of this embodiment is demonstrated. As shown in FIG. 4, the manufacturing apparatus 40 includes a laser light generating unit 41 that generates laser light L, a condensing lens 42 such as a convex lens that is a condensing unit that condenses the laser light L, and a conductive substrate. And a stage 43 on which A is placed.
Laser light L is irradiated from the laser light generating means 41 to the transparent conductive layer a through the condenser lens 42 to form an insulating portion I and a conductive pattern on the transparent conductive layer a.
 集光レンズ42の焦点Fは、透明導電層aから離れた位置に設定されていることが好ましい。詳しくは、集光レンズ42は、透明導電層aと集光レンズ42との間にレーザ光Lの焦点Fが位置するように配置される。すなわち、本実施形態の導電パターン形成基板の製造方法では、集光レンズ42(レーザ光L)の焦点Fを、透明導電層aと集光レンズ42との間に形成している。 The focal point F of the condenser lens 42 is preferably set at a position away from the transparent conductive layer a. Specifically, the condenser lens 42 is disposed so that the focal point F of the laser light L is located between the transparent conductive layer a and the condenser lens 42. That is, in the manufacturing method of the conductive pattern forming substrate of this embodiment, the focal point F of the condensing lens 42 (laser light L) is formed between the transparent conductive layer a and the condensing lens 42.
 集光レンズ42としては、低い開口数(NA<0.1)のものが好ましい。すなわち、集光レンズ42の開口数がNA<0.1とされることにより、レーザ光Lの照射条件設定が容易となり、特にレーザ光Lの焦点Fが透明導電層aと集光レンズ42との間に位置することによる、前記焦点Fにおける空気のプラズマ化に伴うエネルギ損失とレーザ光Lの拡散を防止することができる。 As the condenser lens 42, a lens having a low numerical aperture (NA <0.1) is preferable. That is, by setting the numerical aperture of the condensing lens 42 to NA <0.1, it becomes easy to set the irradiation condition of the laser light L. In particular, the focal point F of the laser light L is the transparent conductive layer a and the condensing lens 42. It is possible to prevent energy loss and diffusion of the laser beam L due to the air plasma at the focal point F.
 さらに、透明導電層aが、例えば金属極細繊維4からなる網状部材3の繊維(素線)間に樹脂からなる透明基体2を充填(含浸)して形成されているとともに、透明樹脂フィルムからなる絶縁基板11(21)上に設けられている場合、前述の設定によって、透明導電層aの透明基体2内に埋設された金属極細繊維4を透明基体2の表面から噴出させて確実に除去することができる。従って、所望の絶縁部Iの形状に対応して空隙5が確実に形成されることになり、例えば直線パターンのコーナ部など、従来では大きなRに設定しなければ絶縁化できなかったパターンであっても、小さなR設定で(又はRを付与せずに)絶縁化処理が確実かつ容易に実現できる。 Further, the transparent conductive layer a is formed by filling (impregnating) the transparent base 2 made of resin between the fibers (element wires) of the net-like member 3 made of, for example, the metal ultrafine fibers 4, and made of a transparent resin film. When provided on the insulating substrate 11 (21), the metal microfibers 4 embedded in the transparent substrate 2 of the transparent conductive layer a are reliably removed by being ejected from the surface of the transparent substrate 2 according to the above-described setting. be able to. Accordingly, the gap 5 is surely formed corresponding to the desired shape of the insulating portion I. For example, a pattern that cannot be insulated unless it is set to a large R, such as a corner portion of a linear pattern. However, the insulation process can be reliably and easily realized with a small R setting (or without providing R).
 また、ステージ43は、水平方向に2次元的に移動可能になっている。ステージ43は、少なくとも上面側が透明な部材または光線吸収性を有する部材で構成されていることが好ましい。
 ステージ43は、絶縁基板11(21)が透明でレーザ光Lの出力が1Wを超える場合、ナイロン系若しくはフッ素系の樹脂材料、又は、シリコーンゴム系の高分子材料を用いることが好ましい。
The stage 43 can be moved two-dimensionally in the horizontal direction. The stage 43 is preferably composed of a member having at least a transparent upper surface or a member having light absorption.
When the insulating substrate 11 (21) is transparent and the output of the laser beam L exceeds 1 W, the stage 43 is preferably made of a nylon-based or fluorine-based resin material or a silicone rubber-based polymer material.
 次に、前述した製造装置40を用いた入力装置の入力部材1の導電パターン形成基板の製造方法について説明する。
 まず、ステージ43の上面に導電性基板Aを、透明導電層aが絶縁基板11(21)より上に配置されるように載置する。ここで、導電性基板Aとしては、絶縁基板11(21)と透明導電層aの透明基体2とが、互いに同一材料又は同一系統の樹脂材料からなるものを用いることが好ましい。詳しくは、例えば絶縁基板11(21)がポリエチレンテレフタレートフィルムの場合、透明基体2にはポリエステル系樹脂を使用することが好ましい。
 尚、本実施形態における導電性基板A(導電パターン形成基板10、20)は、透明である。
Next, the manufacturing method of the conductive pattern formation board | substrate of the input member 1 of the input device using the manufacturing apparatus 40 mentioned above is demonstrated.
First, the conductive substrate A is placed on the upper surface of the stage 43 so that the transparent conductive layer a is disposed above the insulating substrate 11 (21). Here, as the conductive substrate A, it is preferable to use a substrate in which the insulating substrate 11 (21) and the transparent substrate 2 of the transparent conductive layer a are made of the same material or the same resin material. Specifically, for example, when the insulating substrate 11 (21) is a polyethylene terephthalate film, it is preferable to use a polyester-based resin for the transparent substrate 2.
Note that the conductive substrate A (conductive pattern forming substrates 10 and 20) in the present embodiment is transparent.
 次いで、レーザ光発生手段41よりレーザ光Lを出射させ、レーザ光Lを集光レンズ42により集光する。その集光したレーザ光Lの、焦点Fを過ぎてスポット径が広がった部分を透明導電層aに照射する。その際、ステージ43を、レーザ光Lの照射が所定のパターンになるように移動させる。 Next, the laser light L is emitted from the laser light generating means 41, and the laser light L is collected by the condenser lens 42. A portion of the condensed laser light L where the spot diameter has passed past the focal point F is irradiated onto the transparent conductive layer a. At that time, the stage 43 is moved so that the irradiation of the laser beam L has a predetermined pattern.
 透明導電層aに照射するレーザ光Lのエネルギ密度は1×1016~7×1017W/m、単位面積あたりの照射エネルギは1×10~1×10J/mが好ましい。
 すなわち、エネルギ密度又は照射エネルギが上記数値範囲よりも小さな値に設定された場合、絶縁部Iの絶縁が不十分になるおそれがある。また、上記数値範囲よりも大きな値に設定された場合、加工痕が目立つようになり、透明タッチパネルや透明電磁波シールドなどの用途では不適当となる。
The energy density of the laser beam L applied to the transparent conductive layer a is preferably 1 × 10 16 to 7 × 10 17 W / m 2 , and the irradiation energy per unit area is preferably 1 × 10 5 to 1 × 10 6 J / m 2. .
That is, when the energy density or irradiation energy is set to a value smaller than the above numerical range, the insulation of the insulating portion I may be insufficient. Further, when the value is set to be larger than the above numerical range, the processing trace becomes conspicuous, which is inappropriate for applications such as a transparent touch panel and a transparent electromagnetic wave shield.
 また、これらの値は、加工エリアにおけるレーザビームの出力値を、加工エリアの集光スポット面積で除することにより定義されており、簡便には、出力はレーザ発振機からの出力値に光学系の損失係数を掛けることで求められる。
 また、スポット径面積Sは、下記式により定義される。
S=S×D/FL
:レンズで集光されるレーザのビーム面積
FL:レンズの焦点距離
D:透明導電層aの表面(上面)と焦点との距離
These values are defined by dividing the output value of the laser beam in the processing area by the condensing spot area of the processing area. For convenience, the output is converted into the output value from the laser oscillator by the optical system. It is obtained by multiplying by the loss factor.
The spot diameter area S is defined by the following formula.
S = S 0 × D / FL
S 0 : Laser beam area focused by the lens FL: Lens focal length D: Distance between the surface (upper surface) of the transparent conductive layer a and the focal point
 尚、前述した焦点Fは、レンズ等の集光手段42で、収差が十分に小さい場合を例に説明したが、例えば、焦点距離の短い球面レンズや、保護ガラスなどの収差が大きくなる要素が存在する場合には、前記焦点Fは、集光点のエネルギ密度が最も高くなる位置と定義される。 The above-described focal point F has been described by taking as an example a case where the light converging means 42 such as a lens has sufficiently small aberration. However, for example, a spherical lens having a short focal length or an element that increases aberration such as protective glass. When present, the focal point F is defined as the position where the energy density of the focal point is the highest.
 ここで、距離Dは、通常のレーザ加工機では、焦点距離FLの0.2%~3%の範囲内に設定される。好ましくは、距離Dは、焦点距離FLの0.5%~2%の範囲内に設定される。さらに望ましくは、距離Dは、焦点距離FLの0.7%~1.5%の範囲内に設定される。距離Dが上記数値範囲に設定されることにより、絶縁部Iにおける金属極細繊維4の除去(空隙5の形成)が確実に行えるとともに電気的に高い信頼性を有する絶縁パターン(導電パターン)を形成でき、かつ、絶縁基板11(21)の損傷に起因する加工痕を確実に防止できる。 Here, the distance D is set within a range of 0.2% to 3% of the focal length FL in a normal laser processing machine. Preferably, the distance D is set within a range of 0.5% to 2% of the focal length FL. More preferably, the distance D is set within a range of 0.7% to 1.5% of the focal length FL. By setting the distance D within the above numerical range, it is possible to reliably remove the metal microfibers 4 (formation of the gap 5) in the insulating portion I and to form an insulating pattern (conductive pattern) having high electrical reliability. In addition, it is possible to reliably prevent processing traces resulting from damage to the insulating substrate 11 (21).
 また、精度の高い導電パターンを形成する点では、透明導電層a上にスポットの位置を移動させながらパルス状のレーザ光Lを断続的に2回以上照射することで、隣り合うスポット位置同士に重複する部分を形成することが好ましい。具体的には、断続的に3~500回照射することが好ましく、20~200回照射することがより好ましい。3回以上の照射であれば、より確実に絶縁化でき、500回以下であれば、レーザ光Lが照射された透明基体2部分の溶解又は蒸発による除去を防止できる。 Moreover, in the point which forms a conductive pattern with high precision, by irradiating pulsed laser beam L twice or more intermittently while moving the position of the spot on the transparent conductive layer a, adjacent spot positions are It is preferable to form overlapping portions. Specifically, it is preferable to intermittently irradiate 3 to 500 times, and more preferably 20 to 200 times. If the irradiation is performed three times or more, the insulation can be more reliably performed. If the irradiation is performed 500 times or less, the transparent substrate 2 irradiated with the laser beam L can be prevented from being removed by dissolution or evaporation.
 このように、透明導電層aにレーザ光Lを照射することにより、透明基体2内の網状部材3の少なくとも一部が除去されてなる絶縁部Iを形成して、絶縁部Iと、透明基体2内に網状部材3が配置されてなる導電部Cと、を備えた導電パターンとする。すなわち、透明導電層aにパターニングが施され、導電部Cと絶縁部Iとからなる導電パターンを備えた透明導電層12(22)が形成されるとともに、導電性基板Aが、導電パターン形成基板10(20)とされる。 In this way, by irradiating the transparent conductive layer a with the laser light L, the insulating portion I is formed by removing at least a part of the net-like member 3 in the transparent substrate 2, and the insulating portion I and the transparent substrate are formed. And a conductive portion C in which a net-like member 3 is arranged in the conductive pattern C. That is, the transparent conductive layer a is patterned to form a transparent conductive layer 12 (22) having a conductive pattern composed of a conductive portion C and an insulating portion I, and the conductive substrate A is a conductive pattern forming substrate. 10 (20).
 尚、上記説明においては、XYステージなどの移動式ステージ43に導電性基板Aを載せてパターニングを行うこととしたが、これに限定されるものではない。すなわち、例えば、導電性基板Aを固定状態とし、集光系部材を相対的に移動させる方法、ガルバノミラー等を用いてレーザ光Lを走査しスキャンする方法、又は、上記したもの同士を組み合わせてパターニングを行うことが可能である。 In the above description, the conductive substrate A is placed on the movable stage 43 such as an XY stage for patterning. However, the present invention is not limited to this. That is, for example, a method in which the conductive substrate A is fixed and the condensing system member is relatively moved, a method in which the laser light L is scanned and scanned using a galvanometer mirror, or the like is combined. Patterning can be performed.
 上記製造方法に使用される導電性基板Aは、以下に示すものである。
 導電性基板Aの透明導電層aのうち、網状部材3を構成する無機導電体としては、銀、金、ニッケルなどの金属ナノワイヤが挙げられる。また、透明導電層aのうち、透明基体2を構成する絶縁体としては、透明な熱可塑性樹脂(ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体、ポリメチルメタクリレート、ニトロセルロース、塩素化ポリエチレン、塩素化ポリプロピレン、ポリフッ化ビニリデン)、熱や紫外線や電子線や放射線で硬化する透明な硬化性樹脂(メラミンアクリレート、ウレタンアクリレート、エポキシ樹脂、ポリイミド樹脂、アクリル変性シリケートなどのシリコーン樹脂)が挙げられる。
The electroconductive board | substrate A used for the said manufacturing method is shown below.
In the transparent conductive layer a of the conductive substrate A, examples of the inorganic conductor constituting the mesh member 3 include metal nanowires such as silver, gold, and nickel. Among the transparent conductive layer a, as the insulator constituting the transparent substrate 2, transparent thermoplastic resin (polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, nitrocellulose, chlorinated polyethylene, Chlorinated polypropylene, polyvinylidene fluoride), and transparent curable resins (silicone resins such as melamine acrylate, urethane acrylate, epoxy resin, polyimide resin, and acrylic-modified silicate) that are cured by heat, ultraviolet rays, electron beams, or radiation.
 また、図5は本実施形態の変形例であり、図示の例では、導電性基板Aにおける絶縁基板11(21)の上下両面に、透明導電層aが一対設けられている。この場合、集光レンズ42として焦点距離FLが50mm以上で開口数が0.2未満のものを使用すると、レーザ光Lの広がりを小さくできる。より好ましくは、焦点距離FLが60mm以上500mm以下で開口数が0.19未満0.001以上であり、さらに好ましくは、焦点距離FLが70mm以上400mm以下で開口数が0.03未満0.01以上である。そのため、レンズの位置調整が容易になるとともに、絶縁基板11(21)の両面におけるスポット径の差が小さくなり、両方の透明導電層aに当たるエネルギ密度が略同等になるため、両面の透明導電層aに同一の絶縁パターンを一括して形成させることができる。
 また、絶縁基板11(21)の両面に形成された透明導電層aのうち、片面側の透明導電層aのみを絶縁化する場合には、集光レンズ42として開口数が0.5より大きいものを使用することとしてもよい。
FIG. 5 shows a modification of the present embodiment. In the illustrated example, a pair of transparent conductive layers a are provided on the upper and lower surfaces of the insulating substrate 11 (21) in the conductive substrate A. In this case, when the condensing lens 42 having a focal length FL of 50 mm or more and a numerical aperture of less than 0.2 is used, the spread of the laser light L can be reduced. More preferably, the focal length FL is 60 mm or more and 500 mm or less and the numerical aperture is less than 0.19 and 0.001 or more, and further preferably, the focal length FL is 70 mm or more and 400 mm or less and the numerical aperture is less than 0.03. That's it. Therefore, it is easy to adjust the position of the lens, the difference in spot diameter between the both surfaces of the insulating substrate 11 (21) is reduced, and the energy density corresponding to both transparent conductive layers a is substantially equal. It is possible to form the same insulating pattern on a.
Further, when only the transparent conductive layer a on one side of the transparent conductive layer a formed on both surfaces of the insulating substrate 11 (21) is insulated, the numerical aperture of the condenser lens 42 is larger than 0.5. It is good also as using a thing.
 以上説明したように、本実施形態に係る入力装置によれば、レーザ加工機(製造装置)40として、パルス幅1p秒未満の極短パルスレーザ(フェムト秒レーザ)を用いるため、レーザ加工後の導電パターン形成基板10(20)における導電パターン(絶縁パターン)を確実に目立たなくすることができる。
 しかも、絶縁部を確実に絶縁させるために、透明導電層aの厚みを制御する必要がないから、簡便である。
As described above, according to the input device according to the present embodiment, an extremely short pulse laser (femtosecond laser) having a pulse width of less than 1 psec is used as the laser processing machine (manufacturing apparatus) 40. The conductive pattern (insulating pattern) in the conductive pattern forming substrate 10 (20) can be reliably made inconspicuous.
Moreover, since it is not necessary to control the thickness of the transparent conductive layer a in order to reliably insulate the insulating portion, it is simple.
 また、透明導電層aに導電パターンを形成する際、集光レンズ42(レーザ光L)の焦点Fを、透明導電層aから離れた位置に設けて、詳しくは、焦点Fを透明導電層aと集光レンズ42との間に設けて、導電性基板Aにレーザ光Lを照射するので、絶縁基板11(21)に当たるレーザ光Lのスポット径は、透明導電層aに当たるレーザ光Lのスポット径より大きくなる。これにより、透明導電層aにおいてはレーザ光Lのエネルギ密度を確保して絶縁部Iを確実に形成しつつ、絶縁基板11(21)においてはレーザ光Lのエネルギ密度を低減させて、前記絶縁基板11(21)の損傷を防止できる。 Further, when the conductive pattern is formed on the transparent conductive layer a, the focal point F of the condenser lens 42 (laser light L) is provided at a position away from the transparent conductive layer a. Since the conductive substrate A is irradiated with the laser beam L, the spot diameter of the laser beam L hitting the insulating substrate 11 (21) is the spot of the laser beam L hitting the transparent conductive layer a. It becomes larger than the diameter. As a result, the energy density of the laser beam L is ensured in the transparent conductive layer a and the insulating portion I is reliably formed, while the energy density of the laser beam L is reduced in the insulating substrate 11 (21) to thereby achieve the insulation. Damage to the substrate 11 (21) can be prevented.
 また、レーザ光Lを透明導電層a上に照射した照射スポットが、点状ではなく面状に形成されるため、透明導電層aを加工しつつも絶縁基板11(21)に影響を与えないような照射エネルギ密度の制御が、従来の方法に比較して容易となる。さらに、透明導電層aに対して線幅の太い絶縁パターンを一括して描画することが可能になり、所謂塗りつぶし加工が容易になるとともに、前記絶縁パターンの幅を大きく取ることができることから、絶縁部Iの絶縁性が向上する。 Further, since the irradiation spot irradiated with the laser beam L on the transparent conductive layer a is formed in a planar shape instead of a spot shape, the insulating substrate 11 (21) is not affected while the transparent conductive layer a is processed. Such control of the irradiation energy density is easier than in the conventional method. Furthermore, it is possible to draw an insulating pattern with a large line width on the transparent conductive layer a at once, so that the so-called painting process is facilitated and the width of the insulating pattern can be increased. The insulation of the part I is improved.
 また、この入力装置の導電パターン形成基板10(20)は、導電性を有する無機物(無機導電体)のネットワーク部材である網状部材3からなる導電部Cと、絶縁部Iとによって導電パターンが形成されているので、例えば有機導電体等からなる導電部C(導電パターン)を備えた導電パターン形成基板に対比して、光(紫外線)等による変質が生じにくく、長期に亘り安定した電気的特性を得ることができる。 In addition, the conductive pattern forming substrate 10 (20) of this input device has a conductive pattern formed by the conductive portion C formed of the mesh member 3 which is a network member of an inorganic substance (inorganic conductor) having conductivity and the insulating portion I. Therefore, compared with a conductive pattern forming substrate having a conductive portion C (conductive pattern) made of, for example, an organic conductor, it is less likely to be altered by light (ultraviolet rays) and the like, and has stable electrical characteristics over a long period of time. Can be obtained.
 より詳しくは、このように作製された入力装置の導電パターン形成基板10(20)においては、透明導電層12(22)の透明基体2において、導電性を有する網状部材3の配置領域が導電部Cとされ、網状部材3が除去されて形成された空隙5の配置領域が絶縁部Iとされている。すなわち、導電部Cにおいては、金属からなる網状部材3により導通が確保されており、絶縁部Iにおいては、網状部材3が除去されて形成された空隙5により電気的な絶縁状態が確実に得られるようになっている。 More specifically, in the conductive pattern forming substrate 10 (20) of the input device manufactured as described above, in the transparent base 2 of the transparent conductive layer 12 (22), the arrangement region of the conductive mesh member 3 is a conductive portion. A region where the gap 5 is formed by removing the mesh member 3 is defined as an insulating portion I. That is, in the conductive part C, conduction is ensured by the mesh member 3 made of metal, and in the insulating part I, an electrical insulation state is reliably obtained by the gap 5 formed by removing the mesh member 3. It is supposed to be.
 従来の透明導電層では、透明基体2内に分散されて互いに電気的に連結された金属ナノワイヤ等からなる網状部材3が、導電部Cのみならず絶縁部Iにも残っていることから、前記絶縁部Iにおいて確実に絶縁を行うことは難しかった。一方、本実施形態の構成によれば、絶縁部Iの網状部材3(金属極細繊維4)が空隙5に置き換わるように除去されて、前記絶縁部Iが確実に絶縁されることから、透明導電層12(22)における電気的特性(性能)が安定するとともに、製品(入力装置)としての信頼性が高められている。 In the conventional transparent conductive layer, the mesh member 3 made of metal nanowires dispersed in the transparent substrate 2 and electrically connected to each other remains not only in the conductive part C but also in the insulating part I. It has been difficult to reliably insulate the insulating portion I. On the other hand, according to the configuration of the present embodiment, the mesh member 3 (metal fine fiber 4) of the insulating portion I is removed so as to replace the gap 5, and the insulating portion I is reliably insulated, so that the transparent conductive The electrical characteristics (performance) in the layer 12 (22) are stabilized, and the reliability as a product (input device) is enhanced.
 さらに、絶縁部Iにおいては、網状部材3が除去されて前記網状部材3(金属極細繊維4)に相当(対応)する形状の空隙5が形成されている。すなわち、このような空隙5が形成されていることによって、導電部Cと絶縁部Iとは、互いに色調や透明性が近似することになり、肉眼等によっては互いに判別(視認)されなくなっている。よって、絶縁部Iの幅を大きく形成しても配線パターンが視認されるようなことがない。 Furthermore, in the insulating portion I, the mesh member 3 is removed, and a void 5 having a shape corresponding to (corresponding to) the mesh member 3 (metal microfiber 4) is formed. That is, since the gap 5 is formed, the conductive portion C and the insulating portion I are similar in color tone and transparency to each other and are not discriminated (viewed) from each other by the naked eye. . Therefore, even if the width of the insulating portion I is increased, the wiring pattern is not visually recognized.
 また、網状部材3は、透明基体2内に分散されて互いに電気的に連結された金属極細繊維4からなるので、この網状部材3は、市販の金属ナノワイヤや金属ナノチューブ等の金属極細繊維4を用いて比較的容易に形成できる。 Further, since the mesh member 3 is composed of metal ultrafine fibers 4 dispersed in the transparent substrate 2 and electrically connected to each other, the mesh member 3 is made of metal ultrafine fibers 4 such as commercially available metal nanowires and metal nanotubes. And can be formed relatively easily.
 さらに、本実施形態のように、金属極細繊維4に銀を主成分としたものを用いた場合、前記金属極細繊維4を比較的容易に入手して網状部材3として用いることができる。また、絶縁部Iの網状部材3(金属極細繊維4)をレーザ加工により除去する際に、市販の一般的なレーザ加工機で対応可能である。また、銀を主成分とする金属極細繊維4は、光線透過率が高く、かつ、表面抵抗率が低い無色透明の導電パターンを形成できることから、より好ましい。 Furthermore, as in the present embodiment, when the metal microfiber 4 having silver as a main component is used, the metal microfiber 4 can be obtained relatively easily and used as the mesh member 3. Moreover, when removing the mesh member 3 (metal fine fiber 4) of the insulating part I by laser processing, a commercially available general laser processing machine can be used. Further, the metal microfiber 4 mainly composed of silver is more preferable because it can form a colorless and transparent conductive pattern having a high light transmittance and a low surface resistivity.
 上記のことから、本実施形態で説明した入力装置によれば、導電パターン形成基板10(20)の導電パターンが視認されにくく、かつ、導電パターンにおける導電部Cが低抵抗とされつつも絶縁部Iでは確実に絶縁されて、安定した電気的性能を得ることができるのである。 From the above, according to the input device described in the present embodiment, the conductive pattern of the conductive pattern forming substrate 10 (20) is hardly visible, and the conductive portion C in the conductive pattern has a low resistance, but the insulating portion. In I, insulation is ensured and stable electrical performance can be obtained.
 また、本実施形態の入力装置では、導電性基板Aにおける透明導電層aの透明基体2と絶縁基板11(21)とが、互いに同一材料又は同一系統の樹脂材料で構成した場合には、下記の効果を奏する。すなわち、透明導電層aの透明基体2におけるレーザ光Lの吸光度と、絶縁基板11(21)におけるレーザ光Lの吸光度とが互いに略同一となることから、透明導電層aにおけるレーザ光Lのエネルギ密度を十分に確保しつつも、絶縁基板11(21)におけるレーザ光Lのエネルギ密度を低減でき、前述した効果が確実に得られることになる。また、絶縁基板11(21)上に透明導電層a(透明導電層12(22))が強固に接着しやすくなる。 In the input device of the present embodiment, when the transparent substrate 2 of the transparent conductive layer a and the insulating substrate 11 (21) of the conductive substrate A are made of the same material or the same resin material, The effect of. That is, since the absorbance of the laser beam L in the transparent substrate 2 of the transparent conductive layer a and the absorbance of the laser beam L in the insulating substrate 11 (21) are substantially the same, the energy of the laser beam L in the transparent conductive layer a. While ensuring a sufficient density, the energy density of the laser light L in the insulating substrate 11 (21) can be reduced, and the above-described effects can be obtained with certainty. In addition, the transparent conductive layer a (transparent conductive layer 12 (22)) is easily firmly bonded onto the insulating substrate 11 (21).
 また、網状部材3が、絶縁基板11(21)上に金属極細繊維4を含むインク(液体)を塗布する過程を経て、前記絶縁基板11(21)上に金属極細繊維4が分散配置されることにより形成されている。また、このように絶縁基板11(21)上に分散配置された金属極細繊維4同士の間に、液状の透明基体2(液状部材)を充填した後硬化させることにより、網状部材3は透明基体2内に保持されるので、下記の効果を奏する。すなわち、絶縁基板11(21)上の透明導電層a内に、網状部材3を容易に設けることができるとともに、前記網状部材3を構成する金属極細繊維4同士が電気的に確実に連結されて、導電部Cの電気的特性が安定する。また、網状部材3が透明基体2により安定して保持されるので、前述の電気的特性が長寿命化する。 Further, after the mesh member 3 has applied the ink (liquid) containing the metal microfibers 4 on the insulating substrate 11 (21), the metal microfibers 4 are dispersed on the insulating substrate 11 (21). It is formed by. Further, by filling the liquid transparent substrate 2 (liquid member) between the metal ultrafine fibers 4 dispersedly arranged on the insulating substrate 11 (21) in this way and then curing, the mesh member 3 becomes a transparent substrate. 2 holds the following effects. That is, the mesh member 3 can be easily provided in the transparent conductive layer a on the insulating substrate 11 (21), and the metal microfibers 4 constituting the mesh member 3 are electrically and reliably connected to each other. The electrical characteristics of the conductive part C are stabilized. In addition, since the mesh member 3 is stably held by the transparent substrate 2, the above-described electrical characteristics extend the life.
 また、レーザ光Lを、透明導電層a上にスポットの位置を移動させながら断続的に2回以上照射するとともに、隣り合うスポットの位置同士を重複させて絶縁部Iを形成した場合には、高精度で電気的特性に優れ、外観の良い導電パターン及び導電パターン形成基板10(20)を備えた入力装置が得られる。 Further, when the insulating portion I is formed by irradiating laser light L intermittently twice or more while moving the position of the spot on the transparent conductive layer a and overlapping the positions of adjacent spots, An input device including a conductive pattern and a conductive pattern forming substrate 10 (20) with high accuracy, excellent electrical characteristics, and good appearance can be obtained.
 尚、本発明は前述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることができる。
 例えば、前述の実施形態では、絶縁基板11、21がともに透明であることとしたが、これら絶縁基板11、21のいずれか又は両方にある程度の透明性を有した着色が施されていても構わない。
In addition, this invention is not limited to the above-mentioned embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.
For example, in the above-described embodiment, both the insulating substrates 11 and 21 are transparent, but either or both of these insulating substrates 11 and 21 may be colored with a certain degree of transparency. Absent.
 また、網状部材3は、透明基体2内に分散されて互いに電気的に連結された2以上の金属極細繊維4からなることとしたが、これに限定されるものではない。すなわち、網状部材3は、例えば、導電性を有する金属膜をエッチング等により格子状に形成してなるワイヤグリッドであることとしてもよい。
 また、導電性を有する無機物のネットワーク部材として、前述の網状部材3の代わりに、例えば、膜状部材等からなるネットワーク部材を用いてもよい。
Further, although the net member 3 is made of two or more metal microfibers 4 dispersed in the transparent substrate 2 and electrically connected to each other, it is not limited to this. That is, the net member 3 may be a wire grid formed by forming a conductive metal film in a grid pattern by etching or the like.
Further, as the inorganic network member having conductivity, a network member made of a film member or the like may be used instead of the above-described mesh member 3.
 また、導電パターン形成基板10、20には、粘着、反射防止、ハードコート及びドットスペーサなどの機能層を任意で付加することとしてもよい。 Further, functional layers such as adhesion, antireflection, hard coat, and dot spacer may be optionally added to the conductive pattern forming substrates 10 and 20.
 また、前述の実施形態では、入力部材1には、導電パターン形成基板10、20が厚さ方向に積層するように一対設けられているとしたが、入力部材1に設けられる導電パターン形成基板の数や配置は、前述した実施形態に限定されるものではない。詳しくは、入力部材1の導電パターン形成基板は、1つ以上設けられていればよい。 In the above-described embodiment, the input member 1 is provided with a pair of conductive pattern formation substrates 10 and 20 stacked in the thickness direction. However, the conductive pattern formation substrate provided on the input member 1 is not provided. The number and arrangement are not limited to the above-described embodiments. Specifically, one or more conductive pattern forming substrates of the input member 1 may be provided.
(第2実施形態)
 次に、本発明の第2実施形態に係る入力装置について、図12~図16を参照して説明する。尚、前述の実施形態と同一部材には同一の符号を付して、その説明を省略する。
(Second Embodiment)
Next, an input device according to a second embodiment of the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the same member as above-mentioned embodiment, and the description is abbreviate | omitted.
 本実施形態に係る入力装置は、静電容量式のタッチパネルである。図12は、静電容量式タッチパネル(入力装置)用の入力部材200を示している。この静電容量式タッチパネルは、入力者側を向く面に配された絶縁層240を介して手指などの人体部分Hと容量結合する上下電極(透明導電層212、222)を備え、一方の電極に交流信号を印加し、他方の電極を測定することで手指の接触状況を検出する。 The input device according to the present embodiment is a capacitive touch panel. FIG. 12 shows an input member 200 for a capacitive touch panel (input device). This capacitive touch panel includes upper and lower electrodes (transparent conductive layers 212 and 222) that are capacitively coupled to a human body portion H such as a finger through an insulating layer 240 disposed on a surface facing the input user side. An AC signal is applied to and the other electrode is measured to detect the contact state of the finger.
 図15、図16に示すように、静電容量式タッチパネルの入力部材200は、一対の電極シート210、220(導電パターン形成基板)の透明導電層212、222を、絶縁基板11、21の一方側(入力者側)に配置している。これにより、透明導電層212、222同士の間には少なくとも絶縁基板11が配置されるため、透明導電層212、222同士は間隔があけられている。 As shown in FIGS. 15 and 16, the input member 200 of the capacitive touch panel includes a pair of electrode sheets 210 and 220 (conductive pattern forming substrate), transparent conductive layers 212 and 222, one of the insulating substrates 11 and 21. It is arranged on the side (input person side). Thereby, since at least the insulating substrate 11 is disposed between the transparent conductive layers 212 and 222, the transparent conductive layers 212 and 222 are spaced from each other.
 図12~図14に示すように、この入力部材200は、市松模様(互いに同一形状とされた正方形の角部同士を連結した状態、所謂チェックパターン状)の電極201aを形成したX側電極シート210(導電パターン形成基板)と、このX側電極シート210に対して相補的な市松模様とされた電極201bを形成したY側電極シート220(導電パターン形成基板)と、を備えている。 As shown in FIGS. 12 to 14, the input member 200 is an X-side electrode sheet on which an electrode 201a having a checkered pattern (a state in which square corners having the same shape are connected to each other, so-called check pattern) is formed. 210 (conductive pattern forming substrate) and a Y side electrode sheet 220 (conductive pattern forming substrate) on which electrodes 201b having a checkered pattern complementary to the X side electrode sheet 210 are formed.
 図13に示すように、電極201aは、X方向に沿って配列する2以上の正方形の角部同士が互いに電気的に連結されて延びるように形成されている一方、Y方向に隣り合う正方形同士は互いに電気的に絶縁された状態で、Y方向に並列配置されている。また、図14に示すように、電極201bは、Y方向に沿って配列する2以上の正方形の角部同士が互いに電気的に連結されて延びるように形成されている一方、X方向に隣り合う正方形同士は互いに電気的に絶縁された状態で、X方向に並列配置されている。 As shown in FIG. 13, the electrode 201a is formed such that corners of two or more squares arranged along the X direction are electrically connected to each other, and the adjacent squares in the Y direction are formed. Are arranged in parallel in the Y direction while being electrically insulated from each other. Further, as shown in FIG. 14, the electrode 201b is formed such that two or more square corners arranged along the Y direction are electrically connected to each other and extend, while adjacent to each other in the X direction. The squares are electrically insulated from each other and arranged in parallel in the X direction.
 図12に示されるように、X側電極シート210とY側電極シート220とは、互いの電極201a、201b同士を厚さ方向に対面させることなく対向配置された状態で組み合わされている。
 詳しくは、図15、図16に示すように、X側電極シート210は、Y側電極シート220の上面(入力者側の面)に、透明な粘着材250を介して積層されるように固着されており、この状態で、双方の電極201a、201b同士が厚さ方向に重なり合わない状態とされている。
As shown in FIG. 12, the X-side electrode sheet 210 and the Y-side electrode sheet 220 are combined in a state where the electrodes 201 a and 201 b face each other without facing each other in the thickness direction.
Specifically, as shown in FIGS. 15 and 16, the X-side electrode sheet 210 is fixed to the upper surface (the surface on the input side) of the Y-side electrode sheet 220 so as to be laminated via a transparent adhesive material 250. In this state, both electrodes 201a and 201b are not overlapped in the thickness direction.
 また、図13、図16に示すように、X側電極シート210の透明導電層212において、Y側電極シート220の電極201bにおける正方形部分に対向する領域には、正方形状をなす孤立電極202aがそれぞれ形成されている。孤立電極202aの外周には、レーザ光Lが照射されることにより正方形環状をなす絶縁部Iがそれぞれ形成されている。
 また、X側電極シート210の透明導電層212において、Y方向に隣り合う電極201aの正方形の対向する角部同士の間には、孤立電極202aよりも外形の小さな正方形状とされた小孤立電極203aがそれぞれ形成されている。小孤立電極203aの外周には、レーザ光Lが照射されることにより正方形環状をなす絶縁部Iがそれぞれ形成されている。すなわち、隣接する孤立電極202aと小孤立電極203aとは、互いの絶縁部Iの一部を共有している。
13 and 16, in the transparent conductive layer 212 of the X-side electrode sheet 210, a square-shaped isolated electrode 202a is formed in a region facing the square portion of the electrode 201b of the Y-side electrode sheet 220. Each is formed. On the outer periphery of the isolated electrode 202a, the insulating portions I having a square ring shape are formed by irradiating the laser beam L, respectively.
Further, in the transparent conductive layer 212 of the X-side electrode sheet 210, between the opposing corners of the square of the electrode 201a adjacent in the Y direction, a small isolated electrode having a square shape with a smaller outer shape than the isolated electrode 202a. 203a is formed. On the outer periphery of the small isolated electrode 203a, the insulating portions I having a square ring shape are formed by irradiating the laser beam L, respectively. That is, the adjacent isolated electrode 202a and the small isolated electrode 203a share a part of the insulating part I of each other.
 また、図14、図16に示すように、Y側電極シート220の透明導電層222において、X側電極シート210の電極201aにおける正方形部分に対向する領域には、正方形状をなす孤立電極202bがそれぞれ形成されている。孤立電極202bの外周には、レーザ光Lが照射されることにより正方形環状をなす絶縁部Iがそれぞれ形成されている。
 また、Y側電極シート220の透明導電層222において、X方向に隣り合う電極201bの正方形の対向する角部同士の間には、孤立電極202bよりも外形の小さな正方形状とされた小孤立電極203bがそれぞれ形成されている。小孤立電極203bの外周には、レーザ光Lが照射されることにより正方形環状をなす絶縁部Iがそれぞれ形成されている。すなわち、隣接する孤立電極202bと小孤立電極203bとは、互いの絶縁部Iの一部を共有している。
As shown in FIGS. 14 and 16, in the transparent conductive layer 222 of the Y-side electrode sheet 220, a square-shaped isolated electrode 202 b is formed in a region facing the square portion of the electrode 201 a of the X-side electrode sheet 210. Each is formed. On the outer periphery of the isolated electrode 202b, insulating portions I having a square ring shape are formed by irradiating the laser beam L, respectively.
Further, in the transparent conductive layer 222 of the Y-side electrode sheet 220, a small isolated electrode having a square shape with a smaller outer shape than the isolated electrode 202b is formed between the opposing corners of the square of the electrode 201b adjacent in the X direction. 203b is formed. On the outer periphery of the small isolated electrode 203b, the insulating portions I having a square ring shape are formed by irradiating the laser beam L, respectively. That is, the adjacent isolated electrode 202b and the small isolated electrode 203b share a part of the insulating portion I of each other.
 このように構成される入力部材200においては、電極201a、201b、及び、孤立電極202a、202bに網状部材3が配置されて、導電部Cとされている。尚、本実施形態においては、小孤立電極203a、203bも導電部Cとされているが、これら小孤立電極203a、203bについては、レーザ光Lを塗り潰すように照射して、正方形状の絶縁部Iとしても構わない。 In the input member 200 configured as described above, the mesh member 3 is disposed on the electrodes 201a and 201b and the isolated electrodes 202a and 202b to form the conductive portion C. In this embodiment, the small isolated electrodes 203a and 203b are also the conductive portion C. However, the small isolated electrodes 203a and 203b are irradiated with the laser beam L so as to be filled in, so that the square insulation is formed. It does not matter as part I.
 次に、図16を用いて、入力部材200を用いた静電容量式タッチパネルの動作について説明する。
 この入力部材200に、表面(入力者側の表面)に形成された絶縁層240を介して手指などの人体部分H(接触物)が接触すると、接触物Hと各電極の間には容量結合が形成される。この状態で、Y側電極シート220の電極201bの1つに、信号源260を利用して電圧を印加し、X側電極シート210の電極201aの信号(入力信号)を検出手段270により検出することで、接触物Hと入力部材200との接触状況を検出することができる。
Next, the operation of the capacitive touch panel using the input member 200 will be described with reference to FIG.
When the human body portion H (contact object) such as a finger comes into contact with the input member 200 via an insulating layer 240 formed on the surface (surface on the input side), capacitive coupling is established between the contact object H and each electrode. Is formed. In this state, a voltage is applied to one of the electrodes 201b of the Y-side electrode sheet 220 by using the signal source 260, and the signal (input signal) of the electrode 201a of the X-side electrode sheet 210 is detected by the detection means 270. Thus, the contact state between the contact object H and the input member 200 can be detected.
 本実施形態に係る入力装置の入力部材200によれば、絶縁部Iの絶縁性が十分に確保されていることから、前述した特別の構成を採用できるとともに、下記の優れた作用効果を奏することとなる。
 すなわち、前述のように接触物Hが接触した際に、Y側電極シート220の電極201bと接触物Hとは、前記電極201b上に位置するX側電極シート210の孤立電極202aを介して、容量結合を形成することとなる。これにより、X側電極シート210の電極201aと、Y側電極シート220の電極201bとは、実質的に同一層(透明導電層212)内に配置された状態とされている。従って、接触物Hの位置を精度よく検出することができる。
According to the input member 200 of the input device according to the present embodiment, since the insulation of the insulating portion I is sufficiently ensured, the above-described special configuration can be adopted and the following excellent operational effects can be achieved. It becomes.
That is, when the contact object H comes into contact as described above, the electrode 201b of the Y-side electrode sheet 220 and the contact object H pass through the isolated electrode 202a of the X-side electrode sheet 210 located on the electrode 201b. Capacitive coupling will be formed. Thereby, the electrode 201a of the X-side electrode sheet 210 and the electrode 201b of the Y-side electrode sheet 220 are in a state of being disposed in substantially the same layer (transparent conductive layer 212). Therefore, the position of the contact object H can be detected with high accuracy.
 詳しくは、従来の静電容量式タッチパネルの入力部材では、X側電極シート210の透明導電層212において、Y側電極シート220の電極201bに対向する領域には、孤立電極(導電部C)は設けられていなかった。また、Y側電極シート220の透明導電層222において、X側電極シート210の電極201aに対向する領域にも、孤立電極(導電部C)は設けられていなかった。このような構成の場合、電極201a、201b同士は、単に絶縁状態に保持されるのみならず、互いの間隔を一定の幅に厳密に管理することが要求される。すなわち、従来の構成では、上下電極201a、201b間の距離の精度が検出結果に影響しやすく、また、絶縁化処理を行う面積が比較的大きくなっていた。 Specifically, in the input member of the conventional capacitive touch panel, in the transparent conductive layer 212 of the X-side electrode sheet 210, an isolated electrode (conductive portion C) is located in a region facing the electrode 201 b of the Y-side electrode sheet 220. It was not provided. Further, in the transparent conductive layer 222 of the Y-side electrode sheet 220, no isolated electrode (conductive portion C) was provided in the region facing the electrode 201 a of the X-side electrode sheet 210. In the case of such a configuration, the electrodes 201a and 201b are not only maintained in an insulated state but also strictly controlled with a certain width between each other. That is, in the conventional configuration, the accuracy of the distance between the upper and lower electrodes 201a and 201b tends to affect the detection result, and the area for performing the insulation process is relatively large.
 一方、本実施形態によれば、電極201a、201bが実質的に同一層(平面)内に配置されることとなるので、従来のような上下電極201a、201b間の距離精度を必要とすることなく、検出精度が高められている。
 また、絶縁化処理を行う領域(絶縁部I)の面積が大幅に削減されることとなり、生産性が向上する。
 さらに、電極201a、201b及び孤立電極202a、202bの化学的組成が同一であることから、導電パターンがより認識されにくくなり、外観が良い。
 また、小孤立電極203a、203bが形成されていることで、接触物Hの接触時や組立公差による検出精度への影響をより低減できる。
On the other hand, according to the present embodiment, since the electrodes 201a and 201b are disposed in substantially the same layer (plane), the conventional distance accuracy between the upper and lower electrodes 201a and 201b is required. The detection accuracy is improved.
In addition, the area of the region (insulating part I) where the insulating process is performed is greatly reduced, and the productivity is improved.
Furthermore, since the chemical compositions of the electrodes 201a and 201b and the isolated electrodes 202a and 202b are the same, the conductive pattern is less likely to be recognized and the appearance is good.
Further, since the small isolated electrodes 203a and 203b are formed, it is possible to further reduce the influence on the detection accuracy due to the contact of the contact object H and the assembly tolerance.
 以下、本発明を実施例により具体的に説明する。ただし、本発明はこの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to this embodiment.
[製造例1]入力装置の入力部材に用いる銀ナノワイヤ導電フィルム(導電パターン形成基板)の作製
 厚さ100μmの透明なポリエステル(PET)フィルム(絶縁基板11、21)に、Cambrios社のOhm(商品名)インク(金属極細繊維4を含む混合液)を塗布乾燥後、紫外線硬化性のポリエステル樹脂インク(透明基体2)を上塗りして、乾燥又は紫外線処理を施すことにより、PETフィルム上に線径50nm程度、長さ15μm程度の銀繊維(金属極細繊維4)からなる導電性の2次元ネットワーク(網状部材3)を有する耐摩擦性の透明導電層aを形成した(図2)。
[Production Example 1] Production of silver nanowire conductive film (conductive pattern forming substrate) used as input member of input device On transparent polyester (PET) film (insulating substrates 11 and 21) with a thickness of 100 μm, Ohm from Cambrios Name) After applying and drying ink (mixed liquid containing metal microfibers 4), coating with UV curable polyester resin ink (transparent substrate 2), and drying or UV treatment, the wire diameter on the PET film A friction-resistant transparent conductive layer a having a conductive two-dimensional network (network member 3) made of silver fibers (metal ultrafine fibers 4) having a length of about 50 nm and a length of about 15 μm was formed (FIG. 2).
 この銀ナノワイヤ導電フィルム(導電性基板10、20)の透明導電層aの表面抵抗は、230Ω/□、光線透過率は95%であった。
 次いで、この銀ナノワイヤ導電フィルムを、A4版大の長方形に切断加工し、銀ナノワイヤ導電フィルム試験片とした。
The surface resistance of the transparent conductive layer a of this silver nanowire conductive film (conductive substrates 10 and 20) was 230Ω / □, and the light transmittance was 95%.
Subsequently, this silver nanowire conductive film was cut into an A4 size rectangle to obtain a silver nanowire conductive film test piece.
[製造例2]
 波長750nm、出力10mW、パルス幅130f秒、繰り返し周波数1kHz、ビーム径5mmのフェムト秒レーザ(製造装置40)を用い、焦点距離FL=100mmの集光レンズ42とガルバノミラーを使用して、製造例1の試験片を厚さ5mmのガラス板上に、前記透明導電層がガラス板とは反対側を向くように載置した。前記試験片における前記透明導電層の表面から集光レンズ42側に向かって1.5mm離間した位置に集光レンズ42(レーザ光L)の焦点Fが設定されるように調整した後、集光点を1mm/秒で試験片の幅方向に横断させるように移動して、直線描画(絶縁パターンの形成)を行った。
[Production Example 2]
Manufacturing example using a condensing lens 42 and a galvano mirror having a focal length FL = 100 mm, using a femtosecond laser (manufacturing apparatus 40) having a wavelength of 750 nm, an output of 10 mW, a pulse width of 130 fs, a repetition frequency of 1 kHz, and a beam diameter of 5 mm. The test piece 1 was placed on a glass plate having a thickness of 5 mm so that the transparent conductive layer faced away from the glass plate. After adjusting the focal point F of the condensing lens 42 (laser light L) to a position 1.5 mm away from the surface of the transparent conductive layer in the test piece toward the condensing lens 42 side, the light is condensed. The point was moved at 1 mm / second so as to cross the width direction of the test piece, and a straight line was drawn (formation of an insulating pattern).
[製造例3]
 波長1064nm、出力12W、パルス幅20n秒、繰り返し周波数100kHz、ビーム径6.7mmのYVOレーザ(製造装置40)を用い、焦点距離FL=300mmの集光レンズ42とガルバノミラーを使用して、製造例1の試験片を厚さ5mmのジュラコン(ポリプラスチックス株式会社、登録商標)板上に、前記透明導電層がジュラコン(登録商標)板とは反対側を向くように載置した。前記試験片における前記透明導電層の表面から集光レンズ42側に向かって3mm離間した位置に集光レンズ42(レーザ光L)の焦点Fが設定されるように調整した後、集光点を100mm/秒で試験片の幅方向に横断させるように移動して、直線描画を行った。
[Production Example 3]
Using a YVO 4 laser (manufacturing apparatus 40) having a wavelength of 1064 nm, an output of 12 W, a pulse width of 20 ns, a repetition frequency of 100 kHz, and a beam diameter of 6.7 mm, using a condensing lens with a focal length FL = 300 mm and a galvanometer mirror, The test piece of Production Example 1 was placed on a Duracon (Polyplastics Co., Ltd., registered trademark) plate having a thickness of 5 mm so that the transparent conductive layer faces away from the Duracon (registered trademark) plate. After adjusting the focal point F of the condensing lens 42 (laser light L) at a position 3 mm away from the surface of the transparent conductive layer in the test piece toward the condensing lens 42 side, the condensing point is adjusted. A straight line was drawn by moving across the width of the test piece at 100 mm / second.
[製造例4]入力装置の入力部材に用いる銀蒸着導電フィルム(導電パターン形成基板)の作製
 厚さ100μmの透明なPETフィルムの片面にシリコーンアクリルのハードコート層を設けたものを用意し、このハードコート層とは反対の面に、マグネトロンスパッタ装置により厚さ60nmの酸化亜鉛膜を形成した。次いで、その酸化亜鉛膜の表面に、マグネトロンスパッタ装置を用いて、厚さ27nmの銀膜を形成した。さらに、この銀膜の表面に、上記酸化亜鉛膜と同様にして、厚さ60nmの酸化亜鉛膜を形成した(図6)。これにより、PETフィルム上に酸化亜鉛膜及び銀膜からなる導電性の2次元ネットワーク(膜状部材からなるネットワーク部材)を有する透明導電層が形成された。詳しくは、図6に示すように、銀蒸着層(銀膜)は、2以上の粒状体が密集して連結されつつも、若干の隙間を設けるようにして形成されている。
 この銀蒸着導電フィルムの透明導電層の表面抵抗は、95Ω/□、光線透過率は85%であった。
 次いで、この銀蒸着導電フィルムを、A4版大の長方形に切断加工し、銀蒸着導電フィルム試験片とした。この試験片に製造例2と同様に直線描画を行った。
[Production Example 4] Preparation of a silver vapor-deposited conductive film (conductive pattern forming substrate) used for an input member of an input device. A transparent PET film having a thickness of 100 μm provided with a silicone acrylic hard coat layer on one side was prepared. A zinc oxide film having a thickness of 60 nm was formed on the surface opposite to the hard coat layer by a magnetron sputtering apparatus. Next, a silver film having a thickness of 27 nm was formed on the surface of the zinc oxide film using a magnetron sputtering apparatus. Further, a zinc oxide film having a thickness of 60 nm was formed on the surface of the silver film in the same manner as the zinc oxide film (FIG. 6). Thereby, the transparent conductive layer which has the electroconductive two-dimensional network (network member which consists of a film-like member) which consists of a zinc oxide film | membrane and a silver film was formed on PET film. Specifically, as shown in FIG. 6, the silver vapor deposition layer (silver film) is formed so as to provide a slight gap while two or more granular materials are densely connected.
The surface resistance of the transparent conductive layer of this silver vapor-deposited conductive film was 95Ω / □, and the light transmittance was 85%.
Subsequently, this silver vapor-deposited conductive film was cut into an A4 size large rectangle to obtain a silver vapor-deposited conductive film test piece. A straight line was drawn on this test piece in the same manner as in Production Example 2.
 上記実験により得られた導電パターン形成基板について、テスタを用い、レーザ光Lを照射した部分を間に挟んで電気抵抗値を測定した。また、導電パターンの視認性(加工痕)を目視により評価した。評価結果を表1に示す。
 尚、評価の基準(A、B、C、D)は、下記の通りとした。
A:優良。電気抵抗値が10MΩを超えて絶縁が確実になされており、かつ、タッチパネルに組み上げる前の導電パターン形成基板の状態でも導電パターンが全く視認できないもの。
B:良。電気抵抗値が10MΩを超えて絶縁が確実になされており、かつ、導電パターンが殆んど視認できないもの(タッチパネルに組み上げた際に、注視すれば加工痕ができるもの)。
C:可。電気抵抗値が10MΩを超えて絶縁が確実になされているが、導電パターンが視認できるもの(タッチパネルに組み上げた際に、製品として用いることができる程度のレベル)。
D:不可。電気抵抗値が10MΩ以下であり絶縁化が不十分のもの、又は、目視で確認できる程度に焼き焦げや穴あきが形成されたもの。すなわち、製品として使用できないもの。
About the conductive pattern formation board | substrate obtained by the said experiment, the electrical resistance value was measured on both sides of the part irradiated with the laser beam L using the tester. Moreover, the visibility (processed trace) of the conductive pattern was evaluated visually. The evaluation results are shown in Table 1.
The evaluation criteria (A, B, C, D) were as follows.
A: Excellent. The electrical resistance value exceeds 10 MΩ and insulation is ensured, and the conductive pattern cannot be seen at all even in the state of the conductive pattern forming substrate before assembly on the touch panel.
B: Good. The electrical resistance exceeds 10 MΩ and insulation is ensured, and the conductive pattern is almost invisible.
C: Yes. The electrical resistance value exceeds 10 MΩ and insulation is ensured, but the conductive pattern is visible (a level that can be used as a product when assembled on a touch panel).
D: Impossible. Those with an electrical resistance of 10 MΩ or less and insufficient insulation, or those with scorch or perforation to the extent that they can be visually confirmed. That is, it cannot be used as a product.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[製造例5] タッチパネル(入力装置)の入力部材1の作製
 次に、前述した導電パターン形成基板10(20)を用いたメンブレン式タッチパネル(配線基板)の入力部材1の製造例について説明する。
[Manufacturing Example 5] Production of Input Member 1 of Touch Panel (Input Device) Next, a manufacturing example of the input member 1 of the membrane touch panel (wiring board) using the conductive pattern forming substrate 10 (20) described above will be described.
 まず、製造例1の銀ナノワイヤ導電フィルムからなる導電性基板Aの透明導電層a上に、スクリーン印刷で市販の銀ペーストを帯状に印刷し、コネクタパターンを形成した。図8及び図10に示すように、製造例3の条件で、透明導電層a上に目印としての「+」マークを、5mmピッチ、長さ1mmのものを6個一列として、25mm間隔を空けて2列マーキングし、入力エリアの目印とした。 First, on the transparent conductive layer a of the conductive substrate A made of the silver nanowire conductive film of Production Example 1, a commercially available silver paste was printed in a band shape by screen printing to form a connector pattern. As shown in FIG. 8 and FIG. 10, under the conditions of Production Example 3, “+” marks as marks on the transparent conductive layer a are arranged in a line of 5 mm pitch and 1 mm length in a row with a 25 mm interval. Two rows were marked to mark the input area.
 次いで、図9及び図10に示すように、「+」マークを基点に、製造例2の照射条件で長さ35mmの線(レーザ光L)を6本照射し、入力エリア内の配線パターンとした。
 次いで「+」マークを基点に、製造例3の条件でコネクタパターンを横断する形で絶縁パターンを形成し、25mm角の入力エリアを持つタッチパネル用配線基板を得た。尚、このタッチパネル用配線基板は一対用意し、テスタで確認したところ、これらタッチパネル用配線基板は、入力エリア端部における配線パターン間が絶縁状態であった。また、この配線基板では、配線パターンは視認できなかった。
Next, as shown in FIGS. 9 and 10, six lines (laser light L) having a length of 35 mm are irradiated with the “+” mark as a base point under the irradiation conditions of Production Example 2, and wiring patterns in the input area did.
Next, with the “+” mark as a base point, an insulating pattern was formed so as to cross the connector pattern under the conditions of Production Example 3 to obtain a wiring board for a touch panel having a 25 mm square input area. A pair of the touch panel wiring boards were prepared and confirmed by a tester. As a result, the wiring patterns for the touch panel were insulative between the wiring patterns at the end of the input area. Moreover, in this wiring board, the wiring pattern was not visually recognized.
 次いで、図10に示すように、引き出しパターン101として、Agペースト(ドータイト(登録商標)FA301CA:藤倉化成株式会社製)をスクリーン印刷で形成した後、スクリーン印刷を用いて、これらタッチパネル用配線基板のうち一枚に、「+」マークを目印に直径30μm、高さ8μmのアクリル系樹脂からなるドットスペーサ30を、1mmピッチで2以上形成した(図1参照)。 Next, as shown in FIG. 10, after forming an Ag paste (Dotite (registered trademark) FA301CA: manufactured by Fujikura Kasei Co., Ltd.) as a drawing pattern 101 by screen printing, the screen printing is used to form these touch panel wiring boards. Two or more dot spacers 30 made of an acrylic resin having a diameter of 30 μm and a height of 8 μm were formed on one sheet with a “+” mark as a mark (see FIG. 1).
 次いで、ドットスペーサ30を形成したタッチパネル用配線基板と、ドットスペーサ30を形成していないタッチパネル用配線基板とをそれぞれ所定の形状に切り出し、互いの透明導電層12(22)同士を対向配置するようにして、市販の両面粘着テープを用いて四辺を貼り合わせ、透明なメンブレン式タッチパネル(入力装置)の入力部材1とした(図1参照)。 Next, the touch panel wiring board on which the dot spacers 30 are formed and the touch panel wiring board on which the dot spacers 30 are not formed are cut into predetermined shapes, and the transparent conductive layers 12 (22) are arranged to face each other. Then, using a commercially available double-sided adhesive tape, the four sides were bonded to form an input member 1 of a transparent membrane-type touch panel (input device) (see FIG. 1).
[評価]
 このように製造されたタッチパネルの入力部材1は、ドットスペーサ30、配線パターンとも目に付かず、また、キーマトリクスとして機能することが確認された。
[Evaluation]
It was confirmed that the input member 1 of the touch panel manufactured in this way is invisible with neither the dot spacers 30 nor the wiring pattern, and functions as a key matrix.
[製造例6]メンブレン式タッチパネル(入力装置)の作製(本発明の実施例)
 図11に示すように、製造例5で得られた5行5列のメンブレン式タッチパネル用の入力部材1を、インターフェイス回路(検出手段)を使用して行側、列側それぞれ5bitのポート121、122に接続し、押圧箇所に対応する出力が得られることを確認した。
 このとき、電源電圧は5V、電流制限抵抗102は3kΩ、プルアップ及びプルダウン抵抗103は200Ω、行方向及び列方向のトランジスタ104a、104bのhfeは約200のものを使用した。
 本タッチパネルでは、マット加工した黒色の板の上においた状態でも、発光する液晶ディスプレイ上でも配線パターンを視認できなかった。また、本タッチパネルの入力エリアと外周部を平らな板上に保持し、指で押圧したところ、押圧箇所に対応する行側出力および列側出力が得られた。
[Production Example 6] Fabrication of membrane type touch panel (input device) (Example of the present invention)
As shown in FIG. 11, the input member 1 for the membrane type touch panel of 5 rows and 5 columns obtained in Manufacturing Example 5 is connected to the port 121 on the row side and the column side using the interface circuit (detection means), It connected to 122 and it confirmed that the output corresponding to a press location was obtained.
At this time, the power supply voltage was 5 V, the current limiting resistor 102 was 3 kΩ, the pull-up and pull-down resistor 103 was 200Ω, and the hfe of the transistors 104a and 104b in the row and column directions was about 200.
In this touch panel, the wiring pattern could not be visually recognized on the matte-processed black plate or on the light emitting liquid crystal display. Moreover, when the input area and outer peripheral part of this touch panel were hold | maintained on the flat board and it pressed with the finger | toe, the row side output and the column side output corresponding to a press location were obtained.
[製造例7] 静電容量式タッチパネル(入力装置)の作製(本発明の実施例)
 製造例1の銀ナノワイヤ導電フィルムを、2つ用意した。図13、図14に示すように、各銀ナノワイヤ導電フィルムに、位置決め用のガイドピン孔280を設けた。また、これら銀ナノワイヤ導電フィルムに、スクリーン印刷によりAgペースト(ドータイト(登録商標)FA301CA:藤倉化成株式会社製)を印刷し、これを100℃、15分間乾燥させることで、引き出しパターン281をそれぞれ形成した。
[Production Example 7] Fabrication of capacitive touch panel (input device) (Example of the present invention)
Two silver nanowire conductive films of Production Example 1 were prepared. As shown in FIGS. 13 and 14, a guide pin hole 280 for positioning was provided in each silver nanowire conductive film. In addition, an Ag paste (Dotite (registered trademark) FA301CA: manufactured by Fujikura Kasei Co., Ltd.) is printed on these silver nanowire conductive films by screen printing, and this is dried at 100 ° C. for 15 minutes, thereby forming a drawing pattern 281. did.
 次いで、ガイドピン孔280を用いて、前記銀ナノワイヤ導電フィルムを照射機のステージに固定し、製造例3の照射条件で外形マーク282、印刷位置決めマーク283をマーキングした。
 さらに、Ag配線パターン部284で、引き出しパターン281同士の間及び外側をパターンの延在方向に平行に、製造例3の照射条件で照射して絶縁化した(0.1mm間隔)。
Next, the silver nanowire conductive film was fixed to the stage of the irradiator using the guide pin hole 280, and the outer shape mark 282 and the printing positioning mark 283 were marked under the irradiation conditions of Production Example 3.
Furthermore, in the Ag wiring pattern portion 284, the insulation between the lead patterns 281 and the outside in parallel with the pattern extending direction was irradiated under the irradiation conditions of Production Example 3 (0.1 mm interval).
 次いで、製造例2の照射条件で入力エリア内にパターン照射を行い、絶縁部Iを形成した。
 詳しくは、絶縁部Iを形成することにより、図13のX側電極シート210となる銀ナノワイヤ導電フィルムには、X方向に沿って延びる電極201a、Y方向に隣り合う電極201a同士に囲まれた孤立電極202a、Y方向に隣り合う電極201aの正方形の対向する角部同士に挟まれた小孤立電極203aを形成した。
 また、図14のY側電極シート220となる銀ナノワイヤ導電フィルムには、Y方向に沿って延びる電極201b、X方向に隣り合う電極201b同士に囲まれた孤立電極202b、X方向に隣り合う電極201bの正方形の対向する角部同士に挟まれた小孤立電極203bを形成した。
Subsequently, pattern irradiation was performed in the input area under the irradiation conditions of Production Example 2 to form an insulating portion I.
Specifically, by forming the insulating portion I, the silver nanowire conductive film that becomes the X-side electrode sheet 210 in FIG. 13 is surrounded by the electrode 201a extending in the X direction and the electrodes 201a adjacent in the Y direction. An isolated electrode 202a and a small isolated electrode 203a sandwiched between opposing corners of a square of the electrode 201a adjacent in the Y direction were formed.
Further, the silver nanowire conductive film to be the Y-side electrode sheet 220 in FIG. 14 includes an electrode 201b extending along the Y direction, an isolated electrode 202b surrounded by electrodes 201b adjacent in the X direction, and an electrode adjacent in the X direction. A small isolated electrode 203b sandwiched between opposing corners of a square 201b was formed.
 次いで、X側電極シート210となる銀ナノワイヤ導電フィルムの表面に絶縁層240を設けるため、ペンタエリスリトールトリアクリレートを硬化剤とする紫外線硬化タイプのポリエステル樹脂インクを塗布して入力エリアをコートし、硬化させた。 Next, in order to provide the insulating layer 240 on the surface of the silver nanowire conductive film to be the X-side electrode sheet 210, an ultraviolet curable polyester resin ink containing pentaerythritol triacrylate as a curing agent is applied to coat the input area and cured. I let you.
 次いで、これら銀ナノワイヤ導電フィルムを切り抜いて、X側及びY側電極シート210、220を得た。
 次いで、X側電極シート210とY側電極シート220とを、電極201a、201bが入力部材200の表面に孤立電極202a、202bを介し市松模様に組み合わされた形で投影されるように、透明粘着シート(粘着材250)で貼り合わせ、静電容量式タッチパネル(入力装置)の入力部材200を得た。
Next, these silver nanowire conductive films were cut out to obtain X-side and Y- side electrode sheets 210 and 220.
Next, the X-side electrode sheet 210 and the Y-side electrode sheet 220 are transparently adhered so that the electrodes 201a and 201b are projected onto the surface of the input member 200 in a checkered pattern through the isolated electrodes 202a and 202b. A sheet (adhesive material 250) was attached to obtain an input member 200 of a capacitive touch panel (input device).
 このように作製された入力部材200は、入力エリア内に目視で配線パターンを確認することができず、よって外観が良好に形成された。
 次いで、この入力部材200に、検出手段270として静電容量式タッチパネルインターフェイス(CY8C24094:Cypress社製)を電気的に接続し、手指Hによる操作が良好に行えることを確認した。
 本タッチパネルでは、黒色のマット加工した板の上においた状態でも、発光する液晶ディスプレイ上でも配線パターンを視認できなかった。また、本タッチパネルの入力エリアと外周部を平らな板上に保持し、指で押圧したところ、押圧箇所に対応する行側出力および列側出力が得られた。
The input member 200 thus manufactured could not visually confirm the wiring pattern in the input area, and thus the appearance was excellent.
Next, a capacitive touch panel interface (CY8C24094: manufactured by Cypress) was electrically connected to the input member 200 as the detecting means 270, and it was confirmed that the operation with the finger H could be performed satisfactorily.
In this touch panel, the wiring pattern could not be visually recognized even on a black matte plate or on a light emitting liquid crystal display. Moreover, when the input area and outer peripheral part of this touch panel were hold | maintained on the flat board and it pressed with the finger | toe, the row side output and the column side output corresponding to a press location were obtained.
[製造例8]メンブレン式タッチパネル(入力装置)の作製(本発明の比較例)
 レーザ光の照射条件を製造例3に変更したほかは製造例6と同じ条件でタッチパネルを作製した。
 このタッチパネルは、正常に動作し、発光する液晶ディスプレイ上では配線パターンを視認できなかったが、黒色のシボ面のシート上で詳細に観察すると、配線パターンが視認された。
[Production Example 8] Fabrication of membrane type touch panel (input device) (Comparative example of the present invention)
A touch panel was produced under the same conditions as in Production Example 6 except that the laser light irradiation condition was changed to Production Example 3.
Although this touch panel operated normally and the wiring pattern could not be visually recognized on the liquid crystal display that emits light, the wiring pattern was visually recognized when observed in detail on the sheet of the black textured surface.
[製造例9] 静電容量式タッチパネル(入力装置)の作製(本発明の比較例)
 導電フィルムを製造例4の銀蒸着フィルムに変更したほかは製造例7と同様にして、静電容量式タッチパネルを作製した。
 このタッチパネルは、正常に動作したが、入力エリア内に配線パターンが明確に視認された。
[Production Example 9] Fabrication of capacitive touch panel (input device) (comparative example of the present invention)
A capacitive touch panel was produced in the same manner as in Production Example 7 except that the conductive film was changed to the silver deposited film of Production Example 4.
The touch panel operated normally, but the wiring pattern was clearly visible in the input area.
[製造例10] メンブレン式タッチパネル(入力装置)の作製(本発明の比較例)
 導電フィルムを製造例4で得たものとし、レーザ光の出力を製造例2の半分(5mW)にしたほかは製造例5と同様にして、メンブレン式タッチパネルの破線基板を作製した。
 この配線基板は、配線パターンが明確に視認されていた上に、配線間の接続不良があり、正常に動作しなかった。
[Production Example 10] Fabrication of membrane-type touch panel (input device) (comparative example of the present invention)
A broken-line substrate of a membrane touch panel was produced in the same manner as in Production Example 5 except that the conductive film was obtained in Production Example 4 and the output of the laser light was half that of Production Example 2 (5 mW).
This wiring board did not operate normally because the wiring pattern was clearly visually recognized and there was a connection failure between the wirings.
 本発明に係る入力装置によれば、簡便に製造され、絶縁部の幅が大きくても視認されにくい導電パターンを備え、安定した電気的特性を有するため、産業上極めて有用である。 The input device according to the present invention is extremely useful industrially because it is easily manufactured, has a conductive pattern that is difficult to be seen even if the width of the insulating portion is large, and has stable electrical characteristics.
 1、200 入力部材
 2 透明基体
 3 網状部材(導電性を有する無機物のネットワーク部材)
 10、20 導電パターン形成基板
 11、21 絶縁基板
 12、22、212、222 透明導電層
 42 集光レンズ(集光手段)
 210 X側電極シート(導電パターン形成基板)
 220 Y側電極シート(導電パターン形成基板)
 270 検出手段
 a 透明導電層(導電パターン形成前の透明導電層)
 F 焦点
 I 絶縁部
 L レーザ光
DESCRIPTION OF SYMBOLS 1,200 Input member 2 Transparent base | substrate 3 Net-like member (network member of the inorganic substance which has electroconductivity)
10, 20 Conductive pattern forming substrate 11, 21 Insulating substrate 12, 22, 212, 222 Transparent conductive layer 42 Condensing lens (condensing means)
210 X side electrode sheet (conductive pattern forming substrate)
220 Y-side electrode sheet (conductive pattern forming substrate)
270 Detection means a Transparent conductive layer (transparent conductive layer before forming conductive pattern)
F Focus I Insulator L Laser light

Claims (7)

  1.  絶縁基板、及び、前記絶縁基板の少なくとも一方の面に設けられ、絶縁性を有する透明基体内に導電性を有する無機物のネットワーク部材を含む透明導電層を備えた導電パターン形成基板を含む入力部材と、
     前記透明導電層に電気的に接続され、入力信号を検出する検出手段と、を備え、
     前記透明導電層には、集光手段を介してパルス幅1p秒未満の極短パルスのレーザ光が照射されたことにより、前記ネットワーク部材の少なくとも一部が除去されてなる絶縁部が形成されていることを特徴とする入力装置。
    An input member including an insulating substrate, and a conductive pattern forming substrate provided on at least one surface of the insulating substrate and including a transparent conductive layer including a conductive inorganic network member in an insulating transparent substrate; ,
    Detecting means that is electrically connected to the transparent conductive layer and detects an input signal;
    The transparent conductive layer is formed with an insulating portion formed by removing at least a part of the network member by irradiating the laser beam with an ultrashort pulse having a pulse width of less than 1 psec through the condensing means. An input device.
  2.  請求項1に記載の入力装置であって、
     前記集光手段と前記透明導電層との間にレーザ光の焦点が形成されていることを特徴とする入力装置。
    The input device according to claim 1,
    An input device, wherein a focal point of a laser beam is formed between the condensing means and the transparent conductive layer.
  3.  請求項1又は2に記載の入力装置であって、
     前記入力部材は、前記導電パターン形成基板が厚さ方向に積層するように一対設けられたことを特徴とする入力装置。
    The input device according to claim 1 or 2,
    A pair of the input members are provided so that the conductive pattern forming substrates are stacked in the thickness direction.
  4.  請求項3に記載の入力装置であって、
     厚さ方向に積層するように設けられた一対の前記導電パターン形成基板が、各透明導電層同士の間隔があくように配置され、
     前記検出手段は、静電容量式であることを特徴とする入力装置。
    The input device according to claim 3,
    A pair of the conductive pattern forming substrates provided so as to be laminated in the thickness direction are disposed so that the transparent conductive layers are spaced apart from each other,
    The input device is characterized in that the detection means is a capacitance type.
  5.  請求項3に記載の入力装置であって、
     厚さ方向に積層するように設けられた一対の前記導電パターン形成基板が、各透明導電層同士が対向しつつ間隔があくように配置され、
     入力操作によって、前記透明導電層の一部同士が電気的に接触可能とされていることを特徴とする入力装置。
    The input device according to claim 3,
    A pair of the conductive pattern forming substrates provided so as to be laminated in the thickness direction are arranged so that the transparent conductive layers face each other while being spaced apart from each other,
    An input device characterized in that a part of the transparent conductive layer can be electrically contacted by an input operation.
  6.  請求項1~5のいずれか一項に記載の入力装置であって、
     前記導電パターン形成基板は、透明であることを特徴とする入力装置。
    The input device according to any one of claims 1 to 5,
    The input device, wherein the conductive pattern forming substrate is transparent.
  7.  請求項1~6のいずれか一項に記載の入力装置であって、
     前記絶縁基板と前記透明基体とが、互いに同一材料又は同一系統の樹脂材料からなることを特徴とする入力装置。
    The input device according to any one of claims 1 to 6,
    The input device, wherein the insulating substrate and the transparent substrate are made of the same material or the same resin material.
PCT/JP2011/071722 2010-09-24 2011-09-22 Input device WO2012039482A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-213852 2010-09-24
JP2010213852A JP5686405B2 (en) 2010-09-24 2010-09-24 Input device

Publications (1)

Publication Number Publication Date
WO2012039482A1 true WO2012039482A1 (en) 2012-03-29

Family

ID=45873965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071722 WO2012039482A1 (en) 2010-09-24 2011-09-22 Input device

Country Status (2)

Country Link
JP (1) JP5686405B2 (en)
WO (1) WO2012039482A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211188A (en) * 2012-03-30 2013-10-10 Nissha Printing Co Ltd Conductive nano-fiber sheet and touch panel using the same
JP2013246734A (en) * 2012-05-28 2013-12-09 Nissha Printing Co Ltd Electrostatic transparent touch sheet having superior visibility and durability

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169060A (en) * 2011-02-10 2012-09-06 Shin Etsu Polymer Co Ltd Method for manufacturing conductive pattern-formed substrate
JP2013247063A (en) * 2012-05-29 2013-12-09 Shin Etsu Polymer Co Ltd Conductive pattern forming substrate and method of manufacturing the same
JP2014017127A (en) * 2012-07-09 2014-01-30 Shin Etsu Polymer Co Ltd Conductive pattern-formed substrate and method of manufacturing the same
JP2014026583A (en) * 2012-07-30 2014-02-06 Shin Etsu Polymer Co Ltd Transparent wiring sheet, method for manufacturing the same, and input member for touch panel
JP2014026584A (en) * 2012-07-30 2014-02-06 Shin Etsu Polymer Co Ltd Transparent wiring sheet and manufacturing method of the same, and input member for touch panel
US11274223B2 (en) * 2013-11-22 2022-03-15 C3 Nano, Inc. Transparent conductive coatings based on metal nanowires and polymer binders, solution processing thereof, and patterning approaches
RU2699689C2 (en) * 2014-06-23 2019-09-09 МАЙКРОСОФТ ТЕКНОЛОДЖИ ЛАЙСЕНСИНГ, ЭлЭлСи Capacitive sensor of digital converter
JP6629954B2 (en) * 2015-03-27 2020-01-15 シェンツェン ロイヤル テクノロージーズ シーオー.,エルティーディー.Shenzhen Royole Technologies Co.,Ltd. Touch screen module and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044968A (en) * 2008-08-13 2010-02-25 Nissha Printing Co Ltd Method of manufacturing conductive pattern-covered body, and conductive pattern covered body
JP2010140859A (en) * 2008-12-15 2010-06-24 Nissha Printing Co Ltd Conductive nanofiber sheet, and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100395598B1 (en) * 2001-07-05 2003-08-21 주식회사 이오테크닉스 Etching Method of Transparent Electrode on Touchscreen using Laser
JP2007157659A (en) * 2005-12-08 2007-06-21 Tokki Corp Forming method of wiring pattern of organic el element and forming device of organic el element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044968A (en) * 2008-08-13 2010-02-25 Nissha Printing Co Ltd Method of manufacturing conductive pattern-covered body, and conductive pattern covered body
JP2010140859A (en) * 2008-12-15 2010-06-24 Nissha Printing Co Ltd Conductive nanofiber sheet, and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211188A (en) * 2012-03-30 2013-10-10 Nissha Printing Co Ltd Conductive nano-fiber sheet and touch panel using the same
JP2013246734A (en) * 2012-05-28 2013-12-09 Nissha Printing Co Ltd Electrostatic transparent touch sheet having superior visibility and durability

Also Published As

Publication number Publication date
JP5686405B2 (en) 2015-03-18
JP2012068949A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
JP5590627B2 (en) Input device
JP5686405B2 (en) Input device
JP4882027B2 (en) Transparent conductive film and conductive substrate using the same
JP2012123744A (en) Capacitance type input device and manufacturing method thereof, and input method of capacitance type input device
JP5534437B2 (en) Input device
JP5505717B2 (en) Manufacturing method of conductive pattern
JP5490033B2 (en) Method for manufacturing conductive pattern forming substrate and conductive pattern forming substrate
JP2014017127A (en) Conductive pattern-formed substrate and method of manufacturing the same
JP2014026584A (en) Transparent wiring sheet and manufacturing method of the same, and input member for touch panel
JP5800304B2 (en) Input device
JP5386686B2 (en) Transparent conductive film and manufacturing method thereof, conductive substrate and manufacturing method thereof
JP2014232375A (en) Sensor sheet and method for manufacturing the same
JP5825601B2 (en) Input device
JP5648993B2 (en) Method for manufacturing conductive pattern forming substrate and conductive pattern forming substrate
JP2013097996A (en) Transparent wiring board and input device including the same
JP5490032B2 (en) Method for manufacturing conductive pattern forming substrate and conductive pattern forming substrate
JP2014167808A (en) Input device
JP5736183B2 (en) Manufacturing method of conductive pattern forming substrate
JP5750533B2 (en) Method for manufacturing conductive pattern forming substrate and conductive pattern forming substrate
JP5538261B2 (en) Manufacturing method of conductive pattern forming substrate
JP5490034B2 (en) Method for manufacturing conductive pattern forming substrate and conductive pattern forming substrate
JP5538260B2 (en) Manufacturing method of conductive pattern forming substrate
JP5538263B2 (en) Conductive pattern forming substrate and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826927

Country of ref document: EP

Kind code of ref document: A1