WO2012039324A1 - Heat-conductive resin composition, resin sheet, resin-clad metal foil, cured resin sheet, and heat-dissipating member - Google Patents

Heat-conductive resin composition, resin sheet, resin-clad metal foil, cured resin sheet, and heat-dissipating member Download PDF

Info

Publication number
WO2012039324A1
WO2012039324A1 PCT/JP2011/070863 JP2011070863W WO2012039324A1 WO 2012039324 A1 WO2012039324 A1 WO 2012039324A1 JP 2011070863 W JP2011070863 W JP 2011070863W WO 2012039324 A1 WO2012039324 A1 WO 2012039324A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
sheet
heat
structural unit
Prior art date
Application number
PCT/JP2011/070863
Other languages
French (fr)
Japanese (ja)
Inventor
士輝 宋
片木 秀行
竹澤 由高
山下 幸彦
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to JP2012535005A priority Critical patent/JPWO2012039324A1/en
Publication of WO2012039324A1 publication Critical patent/WO2012039324A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium

Definitions

  • the present invention relates to a thermally conductive resin composition, a resin sheet, a metal foil with resin, a cured resin sheet, and a heat dissipation member.
  • thermally conductive resin compositions are widely used.
  • the thermal conductive resin composition is required to have excellent thermal conductivity. Therefore, in many cases, a method of adding an inorganic filler having a high thermal conductivity with a filling rate as high as possible is used for the preparation of the thermal conductive resin composition. For example, in Japanese Patent Application Laid-Open No.
  • a molded product having a thermal conductivity of 3 W / mK to 10 W / mK is obtained by setting the inorganic filler in the epoxy resin to a high filling rate of 80% by mass to 95% by mass. It is described that it can be obtained.
  • the resulting heat conductive resin composition is often hard and brittle, and therefore, it tends to break easily.
  • the ratio of the epoxy resin component which has the adhesive performance contained in a heat conductive resin composition decreases. Therefore, in general, when filler is added at a high filling rate, the adhesiveness of the resin to a metal surface such as aluminum or copper, that is, the adhesive strength at the resin-metal interface tends to be greatly reduced.
  • the resin composition As described above, it is possible to achieve a high thermal conductivity of the resin composition by adding an inorganic filler at a high filling rate, but on the other hand, the resin composition tends to lack flexibility and has an adhesive strength. It is a problem that the decline of
  • an object of the present invention is to provide a thermal conductive resin composition having excellent thermal conductivity and excellent flexibility and adhesiveness, and a molded product using the resin composition. It is to provide.
  • the present invention includes the following aspects.
  • the first aspect of the present invention is a thermally conductive resin composition containing an epoxy resin, an inorganic filler, and an elastomer having at least a structural unit represented by the following general formula (I) in the molecule.
  • R 1 , R 2 and R 3 are each independently a linear or branched alkyl group or a hydrogen atom, R 4 is a linear or branched alkyl group, and n Represents an arbitrary integer.
  • the elastomer is preferably an acrylic resin.
  • the acrylic resin preferably further has at least one of a carboxy group and a hydroxy group in the molecule.
  • the acrylic resin preferably further has an amino group in the molecule.
  • the acrylic resin is preferably a compound having a structure represented by the following general formula (II).
  • R 21 and R 22 are each independently a linear or branched alkyl group having a different carbon number
  • R 23 to R 26 are each independently a hydrogen atom or a methyl group
  • R 21 and R 22 are preferably each independently a linear or branched alkyl group having 4 to 12 carbon atoms, each having a different carbon number.
  • the heat conductive resin composition preferably further contains a phenolic curing agent.
  • the second aspect of the present invention is a resin sheet formed by molding the thermal conductive resin composition into a sheet shape.
  • a third aspect of the present invention is a metal foil with a resin having a metal foil and a semi-cured resin layer that is a semi-cured product of the thermally conductive resin composition disposed on the metal foil.
  • a fourth aspect of the present invention is a cured resin sheet that is a heat-treated product of the thermally conductive resin composition.
  • a fifth aspect of the present invention is a heat dissipating member having a metal work and the resin sheet or the cured resin sheet disposed on the metal work.
  • the heat conductive resin composition which was excellent also in the flexibility and the adhesiveness, and the molded article using this resin composition can be provided. .
  • the term “process” is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes. .
  • a numerical range indicated using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the amount of each component in the composition in the present specification when there are a plurality of substances corresponding to each component in the composition, the plurality of the components present in the composition unless otherwise specified. It means the total amount of substance.
  • the thermally conductive resin composition of the present invention (hereinafter also simply referred to as “resin composition”) comprises an epoxy resin, an inorganic filler, and an elastomer having at least a structural unit represented by the following general formula (I) in the molecule. Containing.
  • resin composition comprises an epoxy resin, an inorganic filler, and an elastomer having at least a structural unit represented by the following general formula (I) in the molecule. Containing.
  • R 1 , R 2 and R 3 are each independently a linear or branched alkyl group or a hydrogen atom, R 4 is a linear or branched alkyl group, and n Represents an arbitrary integer.
  • Epoxy resin The epoxy resin used in the present invention is not particularly limited.
  • bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthalene type epoxy resin, cycloaliphatic epoxy resin and the like can be mentioned.
  • an epoxy resin having a mesogenic skeleton in the molecule which is a structure that is easily self-aligned, such as a biphenyl group.
  • An epoxy resin having such a mesogenic skeleton in the molecule is disclosed, for example, in JP-A-2005-206814.
  • Examples of the epoxy resin include 1- ⁇ (3-methyl-4-oxiranylmethoxy) phenyl ⁇ -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene, 1- ⁇ (2-methyl-4 -Oxiranylmethoxy) phenyl ⁇ -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene, 1- ⁇ (3-ethyl-4-oxiranylmethoxy) phenyl ⁇ -4- (4-oxira Nylmethoxyphenyl) -1-cyclohexene.
  • 1- ⁇ (3-methyl-4-oxiranylmethoxy) phenyl ⁇ -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene is preferable from the viewpoint of a low melting temperature.
  • a specific epoxy resin By using such a specific epoxy resin, it becomes possible to melt and mix with a curing agent described later at a curing temperature (preferably 120 ° C.) or lower, and it can be applied to a process requirement for low temperature curing.
  • the content of the epoxy resin in the resin composition is not particularly limited.
  • the solid content of the resin composition can be 1% by mass to 50% by mass, and preferably 1% by mass to 10% by mass. Adhesiveness and heat conductivity can be improved more because the content rate of an epoxy resin is the said range.
  • the solid content of the resin composition means a residue obtained by removing volatile components from the resin composition.
  • the inorganic filler used in the present invention is not particularly limited, and compounds well known in the art can be used. They may be non-conductive or conductive.
  • the non-conductive inorganic filler include aluminum oxide (alumina), magnesium oxide, aluminum nitride, boron nitride, silicon nitride, silicon oxide, aluminum hydroxide, and barium sulfate.
  • the conductive inorganic filler include gold, silver, nickel, and copper. When a conductive inorganic filler is used, the thermal conductivity can be improved, but the insulation tends to be lowered.
  • the inorganic filler may be used alone or in a mixed system of two or more.
  • inorganic fillers having different particle sizes may be used in combination.
  • an inorganic filler having a small particle diameter enters a gap between inorganic fillers having a large particle diameter, facilitating high filling of the inorganic filler, and high thermal conductivity efficiently. This is preferable because it can be realized.
  • it is preferable to use alumina as the inorganic filler it is more preferable to use a combination of alumina having different particle sizes.
  • the alumina when the 50% cumulative particle size from the small particle side of the weight cumulative particle size distribution is D50, the alumina has a D50 of 2 ⁇ m or more.
  • alumina (A) 100 ⁇ m or less of alumina (A)
  • D50 is alumina powder (B) of 1 ⁇ m or more and 10 ⁇ m or less
  • D50 is alumina powder (C) of 0.01 ⁇ m or more and 5 ⁇ m or less of alumina powder (A) with respect to the total volume of alumina powder
  • the ratio of (B) and (C) is (A) 50% by volume to 90% by volume, (B) 5% by volume to 40% by volume, and (C) 1% by volume to 30% by volume, respectively. Some embodiments may be mentioned (wherein the total volume% of alumina (A), (B) and (C) is 100 volume%).
  • alumina (A) is 60 volume% or more and 90 volume% or less
  • alumina (B) is 10 volume% or more and 40 volume% or less
  • alumina (C) is 5 volume% with respect to the total volume of alumina powder.
  • Alumina powder having a volume% of 30% or less is preferable (however, the total volume% of alumina (A), (B) and (C) is 100% by volume).
  • alumina (A) is 70 volume% or more and 90 volume% or less
  • alumina (B) is 10 volume% or more and 30 volume% or less
  • alumina (C) is 5 volume% or more and 20 volume% or less.
  • a certain alumina powder is mentioned (however, the total volume% of alumina (A), (B) and (C) is 100 volume%).
  • the alumina when the 50% cumulative particle size from the small particle side of the weight cumulative particle size distribution is D50, the alumina is D50 Is an alumina powder composed of alumina (A) having a diameter of 10 ⁇ m to 100 ⁇ m, alumina (B) having a D50 of 1 ⁇ m to less than 10 ⁇ m, and alumina (C) having a D50 of 0.01 ⁇ m to less than 1 ⁇ m,
  • the ratio of (A), (B) and (C) is (A) 55 volume% or more and 85 volume% or less, (B) 10 volume% or more and 30 volume% or less, and (C) 5 volume% or more and 15 volume%, respectively.
  • % Wherein the total volume% of alumina (A), (B) and (C) is 100% by volume.
  • alumina (A) is 55 volume% or more and 85 volume% or less
  • alumina (B) is 10 volume% or more and 40 volume% or less
  • alumina (C) is 5 volume% with respect to the total volume of alumina powder.
  • Alumina powder having a volume% of 30% or less is preferable (however, the total volume% of alumina (A), (B) and (C) is 100% by volume).
  • alumina (A) is 65 volume% or more and 80 volume% or less
  • alumina (B) is 10 volume% or more and 20 volume% or less
  • alumina (C) is 10 volume% or more and 15 volume% or less.
  • a certain alumina powder is mentioned (however, the total volume% of alumina (A), (B) and (C) is 100 volume%).
  • the above alumina (A), (B) and (C) can be obtained as commercial products. Further, it is also possible to produce transition alumina or alumina powder that becomes transition alumina by heat treatment in an atmosphere gas containing hydrogen chloride (for example, Japanese Patent Laid-Open Nos. 6-191833 and 6-6-1). No. 191836).
  • the alumina powder can be prepared by appropriately mixing alumina (A), (B) and (C) having a predetermined particle size distribution.
  • the alumina powder is preferably ⁇ -alumina powder.
  • the alumina (C) may be alumina made of ⁇ -alumina particles, or alumina made of transition alumina particles such as ⁇ -alumina, ⁇ -alumina, and ⁇ -alumina.
  • Alumina made of ⁇ -alumina particles is preferred, and alumina made of ⁇ -alumina single crystal particles is more preferred.
  • the particle diameter D50 of the alumina particles is measured as a weight average particle diameter by a wet method using a laser diffraction / scattering particle size distribution analyzer.
  • the content of the entire filler in the resin composition is not particularly limited.
  • the total solid volume of the resin composition is preferably 30% by volume to 95% by volume, more preferably 45% by volume to 90% by volume from the viewpoint of improving thermal conductivity, and further heat conduction. From the viewpoint of improving the rate, it is more preferably 80 to 90% by volume. When it is 30% by volume or more, the thermal conductivity of the resin composition tends to be higher. Moreover, it exists in the tendency which the moldability of a resin composition improves more that it is 95 volume% or less.
  • the total solid content volume of a resin composition means the total volume of a non-volatile component among the components which comprise a resin composition.
  • the elastomer is a compound having at least a structural unit represented by the following general formula (I) in the molecule, and an acrylic resin is particularly preferable.
  • the acrylic resin is preferably a homopolymer or a copolymer derived from (meth) acrylic acid or (meth) acrylic acid ester.
  • R 1 , R 2 and R 3 each independently represent a linear or branched alkyl group or a hydrogen atom.
  • the number of carbons is preferably 1 to 12 from the viewpoint of imparting flexibility, and the number of carbons from the viewpoint of low Tg (glass transition temperature). Is more preferably 1-8.
  • R 1 and R 2 are each a hydrogen atom
  • R 3 is a hydrogen atom or a methyl group. More preferably, R 1 , R 2 and R 3 are hydrogen atoms.
  • R 4 is a linear or branched alkyl group.
  • the alkyl group in R 4 preferably has 2 to 16 carbon atoms from the viewpoint of imparting flexibility, and more preferably 3 to 14 carbon atoms from the viewpoint of small inhibition of the formation of the resin higher-order structure.
  • the number of carbon atoms is 4 to 12 from the viewpoints of availability and ease of synthesis.
  • the elastomer preferably has a structural unit number of carbon atoms in the alkyl group represented by R 4 is represented by two or more of the general formulas differ (I).
  • the carbon number of the alkyl group in one structural unit may be 2 to 8 from the viewpoint of low Tg.
  • the number of carbon atoms is 3-6.
  • the number of carbon atoms of the alkyl group in the other structural unit is preferably 8 to 16 carbon atoms, and more preferably 10 to 14 carbon atoms from the viewpoint of imparting flexibility.
  • n is an arbitrary integer indicating the number of repeating units.
  • the number of repeating units represented by n means the total number of structural units represented by the general formula (I) contained in the elastomer molecule.
  • an acrylic resin mainly having a structural unit represented by the above general formula (I) it is possible to impart a soft structure (flexibility) to a thermally conductive resin composition containing an epoxy resin and an inorganic filler. Become. Therefore, it is possible to improve the problems such as a decrease in the flexibility of the sheet due to the high filling of the inorganic filler as seen in the conventional heat conductive sheet.
  • the acrylic resin having at least the structural unit represented by the general formula (I) in the molecule preferably further has at least one of a carboxy group and a hydroxy group in the molecule. It is more preferable to include a structural unit having at least one of hydroxy groups, and it is more preferable to include a structural unit having at least a carboxy group.
  • Examples of monomers that can form a structural unit having a carboxy group include acrylic acid, methacrylic acid, maleic acid, and itaconic acid. Among these, acrylic acid and methacrylic acid are preferable.
  • Examples of the monomer capable of forming a structural unit having a hydroxy group include (meth) acrylic acid esters containing a hydroxyalkyl group having 2 to 20 carbon atoms, including a hydroxyalkyl group having 2 to 6 carbon atoms.
  • a (meth) acrylic acid ester is preferred. Specific examples include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, and the like.
  • the effect of such surface treatment is that the wettability between the inorganic filler and the acrylic resin is improved, so that the viscosity of the varnish is lowered when the varnish is blended, and the coating tends to be easy. Furthermore, the improvement of wettability causes the inorganic filler to be more highly dispersed and contributes to the improvement of thermal conductivity.
  • the content of the structural unit having at least one of carboxy group and hydroxy group contained in the acrylic resin is not particularly limited.
  • the content of the structural unit having at least one of a carboxy group and a hydroxy group in the acrylic resin is preferably 10 mol% or more and 30 mol% or less, and 14 mol% or more and 28 mol% or less. More preferably.
  • the acrylic resin having at least the structural unit represented by the general formula (I) in the molecule preferably further includes at least one amino group in the molecule. It is preferable to include at least one kind of structural unit. Among these, from the viewpoint of preventing moisture absorption, a secondary amino group or a tertiary amino group is preferable. From the viewpoint of improving thermal conductivity, an N-methylpiperidino group is particularly preferable. When an N-methylpiperidino group is present in the acrylic resin, the compatibility is remarkably improved by the interaction with the phenol curing agent, which is preferable. Thus, when the acrylic resin excellent in compatibility is added to the system of a composition, the loss of heat conductivity becomes small. In addition, the interaction between the N-methylpiperidino group and the phenol-based curing agent exhibits a stress relaxation effect due to slippage between different types of molecules, and contributes to an improvement in adhesion.
  • the content of the amino group contained in the acrylic elastomer is not particularly limited.
  • the content of the structural unit having an amino group in the resin constituting the acrylic elastomer is preferably 0.5 mol% or more and 5 mol% or less, and 0.7 mol% or more and 3.5 mol% or less. More preferably, it is at most mol%.
  • R 21 and R 22 are each independently a linear or branched alkyl group having a different carbon number.
  • R 23 to R 26 each independently represents a hydrogen atom or a methyl group.
  • the structural unit present in the proportion of a (hereinafter also referred to as “structural unit a”) can impart flexibility to the sheet, and also has thermal conductivity. And compatibility with flexibility. Further, the structural unit present in the proportion of b (hereinafter also referred to as “structural unit b”) makes the sheet more flexible in combination with the structural unit a shown above.
  • the chain length of the alkyl group represented by R 21 and R 22 in the structural units a and b that imparts a flexible structure (flexibility) is not particularly limited.
  • the chain length of R 21 and R 22 are preferably in the range of 2 to 16 carbon atoms, more preferably in the range of 3 to 14 carbon atoms, and still more preferably in the range of 4 to 12 carbon atoms.
  • the alkyl groups represented by R 21 and R 22 have different carbon numbers.
  • the difference in carbon number between R 21 and R 22 is not particularly limited, but the difference in carbon number is preferably 4 to 10 and more preferably 6 to 8 from the viewpoint of the balance between flexibility and flexibility.
  • R 21 preferably has 2 to 6 carbon atoms
  • R 22 preferably has 8 to 16 carbon atoms
  • R 21 has 3 to 5 carbon atoms. More preferably, R 22 has 10 to 14 carbon atoms.
  • the range of mol% of the structural unit a and the structural unit b is not particularly limited. Further, the ratio between the structural unit a and the structural unit b may be arbitrary. It is preferable to use an acrylic resin including a combination of the structural unit a and the structural unit b, rather than any one of the structural unit a and the structural unit b being included alone.
  • the combination of the structural unit a and the structural unit b may increase the number of side chains and increase the flexibility of the acrylic resin, and may increase the Tg.
  • Tg can be controlled within a suitable range by appropriately adjusting the molar ratios a and b of the structural unit a and the structural unit b in the acrylic resin.
  • the content of the structural unit a is preferably 50 mol% to 85 mol%, more preferably 60 mol% to 80 mol%.
  • the content of the structural unit b is preferably 2 mol% to 20 mol%, more preferably 5 mol% to 15 mol%.
  • the content ratio of the structural unit a to the structural unit b is preferably 4 to 10, and more preferably 6 to 8.
  • the thermal conductivity is improved by the presence of a carboxy group in the acrylic resin derived from a structural unit present in the proportion of c (hereinafter also referred to as “structural unit c”).
  • structural unit c a carboxy group in the acrylic resin derived from a structural unit present in the proportion of c
  • structural unit d an N-methylpiperidino group in the acrylic resin derived from a structural unit present in the proportion of d
  • the N-methylpiperidino group can accept hydrogen ions from a carboxy group and then allows interaction with, for example, phenol contained as a curing agent.
  • the compatibility with the acrylic resin and the composition system is improved by the interaction with phenol.
  • the intramolecular interaction between the carboxy group and the N-methylpiperidino group contributes to the stress relaxation due to the low elasticity. This can be considered, for example, because the entire molecule of the acrylic resin has a curved structure instead of a linear structure. From such a viewpoint, in one embodiment of the acrylic resin represented by the general formula (II), the proportion of the structural unit c and the structural unit d is preferably in the range of 10 mol% to 28 mol%.
  • d is preferably in the range of 0.5 mol% to 5 mol%, more preferably 0.7 mol. % To 3.5 mol%, more preferably 0.7 mol to 1.4 mol%.
  • the content ratio of the structural unit c to the structural unit d is preferably 0.01 to 0.5, more preferably 0.03 to 0.3, and further preferably 0.035 to 0.25.
  • R 23 to R 26 are each independently a hydrogen atom or a methyl group, but it is preferable that at least one of R 23 and R 24 is a hydrogen atom and the other is a methyl group, and R 23 is a hydrogen atom and R 24 is More preferred is a methyl group. Moreover, it is preferable that at least one of R 25 and R 26 is a hydrogen atom and the other is a methyl group, and it is more preferable that R 25 is a hydrogen atom and R 26 is a methyl group.
  • the acrylic resin having the structure represented by the general formula (II) may further contain structural units other than the structural units a to d.
  • the structural unit other than the structural units a to d is not particularly limited.
  • the structural unit derived from the (meth) acrylic acid ester containing a hydroxyalkyl group and the structural unit derived from the (meth) acrylic acid ester containing a tertiary amino group can be mentioned.
  • the content of structural units other than the structural units a to d in the acrylic resin is 10 mol% or less, preferably 5 mol% or less, and more preferably 1 mol% or less.
  • the weight average molecular weight of the elastomer is not particularly limited. Among these, from the viewpoint of thermal conductivity and flexibility, it is preferably 10,000 to 100,000, more preferably 10,000 to 50,000, and preferably 10,000 to 30,000. Further preferred. Furthermore, when the weight average molecular weight of the elastomer is within the above range, the dispersibility of the inorganic filler is further improved and the viscosity of the resin composition tends to be further decreased. The weight average molecular weight of the elastomer is measured by a usual method using GPC.
  • the content of the elastomer is 0. 0 when the total mass of the epoxy resin-containing components (epoxy resin and a curing agent included as necessary) is 100 parts by mass. It can be in the range of 1 to 99 parts by mass, preferably in the range of 1 to 20 parts by mass, and more preferably in the range of 1 to 10 parts by mass.
  • the added amount of the acrylic resin is 0.1 parts by mass or more, a decrease in thermal conductivity tends to be suppressed and the adhesive force with the adherend tends to be improved.
  • the amount is 99 parts by mass or less of the acrylic resin, a decrease in adhesive strength with the adherend is suppressed, and the thermal conductivity tends to be improved. Therefore, it becomes easy to express various characteristics in a well-balanced manner by adjusting the amount of the acrylic resin added to the above range.
  • the resin composition preferably contains at least one curing agent.
  • curing agent there is no restriction
  • the curing agent can be appropriately selected from curing agents usually used as a curing agent for epoxy resins. Specific examples include amine curing agents such as dicyandiamide and aromatic diamine, and phenolic curing agents such as phenol novolac resin, cresol novolac resin, and catechol resorcinol novolak resin.
  • a phenolic curing agent is preferable, and a phenolic curing agent containing a bifunctional phenol such as catechol, resorcinol and p-hydroquinone is preferable.
  • the content of the curing agent in the resin composition is not particularly limited.
  • the epoxy resin it can be 0.1 to 2.0 on an equivalent basis, preferably 0.5 to 1.5 from the viewpoint of improving flexibility, and 0.8 from the viewpoint of high thermal conductivity. It is preferable that it is -1.1. Adhesiveness and heat conductivity can be improved more because the content rate of a hardening
  • curing agent is the said range.
  • the resin composition preferably contains at least one curing catalyst.
  • a curing catalyst there is no restriction
  • the curing catalyst include triphenylphosphine, 2-ethyl-4-methylimidazole, boron trifluoride amine complex, 1-benzyl-2-methylimidazole, and the like. Can be mentioned. Among them, it is preferable to use triphenylphosphine from the viewpoint of achieving high thermal conductivity.
  • the content rate of the curing catalyst in the resin composition is not particularly limited. For example, it can be 0.1% by mass to 2.0% by mass and preferably 0.5% by mass to 1.5% by mass with respect to the epoxy resin. Adhesiveness and heat conductivity can be improved more because the content rate of a curing catalyst is the said range.
  • the resin composition preferably contains at least one coupling agent in addition to the essential components, epoxy resin, elastomer and inorganic filler.
  • the coupling agent can be contained for the purpose of, for example, surface treatment of inorganic filler.
  • the coupling agent is not particularly limited, and can be appropriately selected from commonly used coupling agents. Specifically, for example, methyltrimethoxysilane (available from Shin-Etsu Chemical Co., Ltd., available as trade name “KBM-13”), 3-mercaptopropyltrimethoxysilane (available from Shin-Etsu Chemical Co., Ltd., trade name “KBM-”).
  • the content of the coupling agent in the resin composition is not particularly limited.
  • it can be 0.05% by mass to 1.0% by mass, and preferably 0.1% by mass to 0.5% by mass. Thermal conductivity can be improved more because the content rate of a coupling agent is the said range.
  • the thermally conductive resin composition may contain at least one solvent.
  • the solvent is not particularly limited as long as it does not inhibit the curing reaction of the resin composition, and can be appropriately selected from commonly used organic solvents. Specific examples include ketone solvents such as methyl ethyl ketone and cyclohexanone, and alcohol solvents such as cyclohexanol.
  • the content of the solvent in the heat conductive resin composition is not particularly limited, and can be appropriately selected according to the applicability of the heat conductive resin composition.
  • the resin sheet of the present invention is formed by molding the resin composition into a sheet shape.
  • the said resin sheet can be manufactured by apply
  • the said resin sheet is excellent in thermal conductivity, flexibility, and adhesiveness by being comprised from the said resin composition.
  • the resin sheet is formed from the resin composition into a sheet shape, and is preferably a B stage sheet that is further heat-treated until it is in a semi-cured state (B stage state).
  • the B-stage sheet is a resin sheet having a viscosity of 10 4 Pa ⁇ s to 10 5 Pa ⁇ s at room temperature (25 degrees), whereas it is 10 2 Pa ⁇ s to 10 3 Pa ⁇ s at 100 ° C.
  • the viscosity is reduced to s.
  • the cured resin sheet to be described later is not melted by heating.
  • the viscosity is measured by dynamic viscoelasticity measurement (frequency 1 Hz, load 40 g, temperature increase rate 3 ° C./min).
  • the resin sheet can be manufactured as follows.
  • a resin layer can be obtained by applying and drying a varnish-like resin composition to which a solvent such as methyl ethyl ketone or cyclohexanenon is added on a release film such as a PET film.
  • coating can be implemented by a well-known method. Specific examples of the coating method include comma coating, die coating, lip coating, and gravure coating.
  • a coating method for forming a resin layer with a predetermined thickness a comma coating method in which an object to be coated is passed between gaps, a die coating method in which a resin varnish whose flow rate is adjusted from a nozzle, or the like can be applied. .
  • the thickness of the resin layer before drying is 50 ⁇ m to 500 ⁇ m, it is preferable to use a comma coating method.
  • the conditions for heat-treating the obtained resin layer are not particularly limited as long as the resin composition can be semi-cured to the B stage state, and can be appropriately selected according to the configuration of the resin composition.
  • the heat treatment is preferably a heat treatment method selected from a hot vacuum press and a hot roll laminate.
  • void (void) in the resin layer produced in the case of coating can be reduced, and a flat B stage sheet
  • the resin composition can be semi-cured in a B-stage state by heat-pressing at a heating temperature of 80 ° C. to 130 ° C. for 1 to 30 seconds under reduced pressure (for example, 1 MPa).
  • the thickness of the resin sheet can be appropriately selected according to the purpose. For example, it can be 50 ⁇ m or more and 200 ⁇ m or less, and from the viewpoint of thermal conductivity and sheet flexibility, it is 60 ⁇ m or more and 150 ⁇ m or less. preferable.
  • the resin sheet can also be produced by hot pressing while laminating two or more resin layers.
  • the metal foil with resin of this invention has metal foil and the semi-hardened resin layer which is a semi-hardened material of the said heat conductive resin composition arrange
  • the semi-cured resin layer is obtained by heat-treating the resin composition so as to be in a B-stage state.
  • the metal foil is not particularly limited, such as a gold foil, a copper foil, and an aluminum foil, but generally a copper foil is used.
  • the thickness of the metal foil is not particularly limited as long as it is 1 ⁇ m to 35 ⁇ m, but flexibility is further improved by using a metal foil of 20 ⁇ m or less.
  • nickel, nickel-phosphorus, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as the intermediate layers for the metal foil, and 0.5 ⁇ m to 15 ⁇ m copper layer and 10 ⁇ m to 300 ⁇ m on both sides.
  • a composite foil having a three-layer structure provided with a copper layer or a two-layer structure composite foil in which aluminum and copper foil are combined can also be used.
  • the metal foil with resin can be produced by forming a resin layer by applying and drying the thermally conductive resin composition on the metal foil, and the method for forming the resin layer is as described above.
  • the production conditions of the resin-coated metal foil are not particularly limited, but it is preferable that 80% by mass or more of the organic solvent used for the resin varnish is volatilized in the resin layer after drying.
  • the drying temperature is about 80 ° C. to 180 ° C., and the drying time can be determined in consideration of the gelling time of the varnish, and is not particularly limited.
  • the coating amount of the resin varnish is preferably applied so that the thickness of the resin layer after drying is 50 ⁇ m to 200 ⁇ m, and more preferably 60 ⁇ m to 150 ⁇ m.
  • the resin layer after drying becomes a B stage state by heat treatment.
  • the conditions for heat treatment of the thermally conductive resin composition are the same as the heat treatment conditions for the B-stage sheet.
  • the cured resin sheet of the present invention is obtained by heat-treating the thermally conductive resin composition.
  • the curing method for curing the thermally conductive resin composition can be appropriately selected according to the configuration of the thermally conductive resin composition, the purpose of the cured resin sheet, and the like, but is preferably a heat and pressure treatment.
  • the conditions for the heat and pressure treatment are, for example, that the heating temperature is 80 ° C. to 250 ° C., the pressure is preferably 0.5 MPa to 8.0 MPa, the heating temperature is 130 ° C. to 230 ° C., and the pressure is 1.5 MPa to More preferably, it is 5.0 MPa.
  • the treatment time for the heat and pressure treatment can be appropriately selected according to the heating temperature and the like. For example, it can be 2 to 8 hours, and preferably 4 to 6 hours. Further, the heat and pressure treatment may be performed once, or may be performed twice or more by changing the heating temperature or the like.
  • the heat radiating member of the present invention includes at least a metal workpiece and the B stage sheet or the cured resin sheet disposed on the metal workpiece so as to be in contact with the metal workpiece.
  • the “metal workpiece” means a molded product made of a metal material that can function as a heat dissipation member, including a substrate, fins, and the like.
  • the metal workpiece is preferably a substrate composed of various metals such as Al and Cu.
  • FIG. 1 a heat radiating member using a resin sheet obtained by molding the heat conductive resin composition into a sheet is illustrated in FIG.
  • the resin sheet may be a B stage sheet or a cured resin sheet.
  • the resin sheet 10 is located between a first metal workpiece 20 made of, for example, Al and a second metal workpiece 30 made of, for example, Cu, and one surface thereof is on the surface of the metal workpiece 20. The other surface is bonded to the surface of the metal work 30.
  • the resin sheet 10 is excellent in flexibility and can realize excellent adhesiveness with the contact surfaces of the first and second metal workpieces 20 and 30.
  • the resin sheet applied to the adhesion of the metal workpiece desirably has a shear strength of 5 MPa or more from the viewpoint of adhesion.
  • a resin sheet satisfying the above-described shear strength can be provided.
  • the resin sheet 10 has excellent thermal conductivity, for example, the heat generated from the second metal work 30 made of Cu is used as the first metal work made of Al through the resin sheet 10. It becomes possible to conduct efficiently to the 20 side and to dissipate heat to the outside.
  • catechol resorcinol novolak (CRN) resin had a number average molecular weight of 530 and a weight average molecular weight of 930.
  • the hydroxyl equivalent of the CRN resin was 65.
  • the catechol resorcinol novolak (CRN) resin obtained above was used in the following examples.
  • Example 1 The elastomer used in the following examples was synthesized with reference to Japanese Patent Application Laid-Open No. 2010-106220. According to the structure of the elastomer, an appropriate solvent was used, and the monomer components were mixed with a polymerization initiator and the like so as to have a desired ratio, stirred, heated and copolymerized.
  • Example 1 1.
  • the obtained resin sheet coating solution is applied to a release surface of a polyethylene terephthalate film (Fujimori Kogyo Co., Ltd., 75E-0010CTR-4, hereinafter abbreviated as PET film) to a thickness of about 300 ⁇ m. It was coated and allowed to stand for 15 minutes in a normal state, and then dried in a box oven at 100 ° C. for 30 minutes to form a resin composition layer on the PET film. Next, the upper surface of the resin composition layer that has been in contact with air is covered with a PET film, and flattened by hot pressing (upper hot plate 150 ° C., lower hot plate 80 ° C., pressure 1.5 MPa, treatment time 3 minutes). A B-stage sheet was obtained as an elastomer-containing resin sheet having a thickness of 200 ⁇ m. When the flexibility of the obtained B-stage sheet was evaluated as follows, it was good and was A.
  • FIG. 2 is a schematic cross-sectional view for explaining the state of the sheet in determining the flexibility of the sheet.
  • reference numeral 10 denotes a resin sheet
  • 40 denotes a support.
  • FIG. 2 (a) shows a state in which the elastomer is not added and the flexibility of the sheet is poor
  • FIG. 2 (b) shows a state in which the flexibility of the sheet is improved by adding an elastomer having a specific structure. .
  • the thermal diffusivity of the sheet was measured using a Nanoflash LFA447 Xe flash method thermal diffusivity measuring apparatus manufactured by NETZSCH.
  • the thermal conductivity (W / mK) was calculated by multiplying the numerical value of the obtained thermal diffusivity by the specific heat Cp (J / g ⁇ K) and the density d (g / cm 3 ). All measurements were performed at 25 ⁇ 1 ° C.
  • Example 2 An acrylic resin (REB124-6) was used in the same manner as in Example 1 except that “REB124-6” (weight average molecular weight 44000) having the following structural formula was used instead of “REB122-4” as the acrylic resin.
  • A) B-stage sheet was prepared. When the flexibility of the obtained B-stage sheet was evaluated in the same manner as in Example 1, it was good and the evaluation was A.
  • a cured B-stage sheet containing REB124-6 was produced in the same manner as in Example 1.
  • the thermal conductivity was 7.0 W / mK.
  • a metal workpiece on which a B stage sheet containing REB124-6 was attached was produced.
  • the shear adhesive strength of the obtained metal workpiece was measured in the same manner as in Example 1, it was 7.4 [MPa].
  • Example 3 An acrylic resin (REB58-5) was used in the same manner as in Example 1 except that “REB58-5” (weight average molecular weight 34000) having the following structural formula was used instead of “REB122-4” as the acrylic resin. A) B-stage sheet was prepared. The flexibility of the obtained B stage sheet was good.
  • a cured B-stage sheet containing REB58-5 was produced in the same manner as in Example 1.
  • the thermal conductivity was 6.8 W / mK.
  • a metal workpiece on which a B stage sheet containing REB58-5 was attached was produced.
  • the shear adhesive strength of the obtained metal workpiece was measured in the same manner as in Example 1, it was 7.6 [MPa].
  • Example 4 An acrylic resin (REB124-2) was used in the same manner as in Example 1 except that “REB124-2” (weight average molecular weight 39000) having the following structural formula was used instead of “REB122-4”. A) B-stage sheet was prepared. When the flexibility of the obtained B-stage sheet was evaluated in the same manner as in Example 1, it was good and the evaluation was A.
  • a cured B-stage sheet containing REB 124-2 was produced in the same manner as in Example 1.
  • the thermal conductivity was 5.5 W / mK.
  • a metal workpiece on which a B stage sheet containing REB 124-2 was attached was produced.
  • the shear adhesive strength of the obtained metal workpiece was measured in the same manner as in Example 1, it was 5.0 [MPa].
  • Example 5 An acrylic resin (REB 146-2) was used in the same manner as in Example 1 except that “REB 146-2” (weight average molecular weight 43081) having the following structural formula was used instead of “REB 122-4” as the acrylic resin.
  • A) B-stage sheet was prepared. When the flexibility of the obtained B-stage sheet was evaluated in the same manner as in Example 1, it was good and the evaluation was A.
  • Example 1 a cured product of a B stage sheet containing REB 146-2 was produced in the same manner as in Example 1.
  • the thermal conductivity was 6.0 W / mK.
  • a metal workpiece on which a B stage sheet containing REB 146-2 was attached was produced.
  • the shear adhesive strength of the obtained metal workpiece was measured in the same manner as in Example 1, it was 5.1 [MPa].
  • Example 6 An acrylic resin (REB100-5) was used in the same manner as in Example 1 except that “REB100-5” (weight average molecular weight 25000) having the following structural formula was used instead of “REB122-4” as the acrylic resin. A) B-stage sheet was prepared. When the flexibility of the obtained B-stage sheet was evaluated in the same manner as in Example 1, it was good and the evaluation was A.
  • Example 1 a cured B stage sheet containing REB 100-5 was produced.
  • the thermal conductivity was 7.0 W / mK.
  • a metal workpiece on which a B stage sheet containing REB 100-5 was attached was produced.
  • the shear adhesive strength of the obtained metal workpiece was measured in the same manner as in Example 1, it was 5.0 [MPa].
  • Comparative Example 1 Preparation of Elastomer-Free Resin Sheet
  • 0.0960 parts by mass of 3-glycidyloxypropyltrimethoxysilane (trade name “KBM403” manufactured by Shin-Etsu Chemical Co., Ltd.) was used in the same manner as in Example 1.
  • CRN catechol resorcinol novolak
  • the coating solution obtained above is adjusted to a thickness of about 300 ⁇ m on the release surface of a polyethylene terephthalate film (Fujimori Kogyo Co., Ltd., 75E-0010CTR-4, hereinafter abbreviated as PET film).
  • PET film polyethylene terephthalate film
  • the flexibility of the obtained B-stage sheet was evaluated in the same manner as in Example 1, the sheet was fragile and judged as B.
  • Example 2 a metal workpiece on which a B-stage sheet containing X-22-162C was attached was produced. However, since the cured product was brittle, it could not be bonded to the metal, and the shear strength could not be measured. It was.
  • Example 3 Comparative Example 3 Except that a nitrile resin (manufactured by ZEON Corporation, trade name “Nipol DN601”) was used instead of “REB122-4” (acrylic resin), B containing Nipol DN601 was the same as in Example 1. A stage sheet was prepared. When the flexibility of the obtained B-stage sheet was evaluated in the same manner as in Example 1, the sheet was fragile and judged as B.
  • a nitrile resin manufactured by ZEON Corporation, trade name “Nipol DN601”
  • REB122-4 acrylic resin
  • Table 1 summarizes the examination results of the thermal conductivity and flexibility of the heat conductive sheets prepared in Examples 1 to 5 and Comparative Examples 1 to 3, and the shear bond strength of the metal workpiece using the sheets.
  • the resin sheet composed of the heat conductive resin composition of the present invention is excellent in flexibility and adhesiveness. Moreover, it turns out that the resin sheet hardened

Abstract

A heat-conductive resin composition comprises an epoxy resin, an inorganic filler, and an elastomer having at least a structural unit represented by general formula (I) in the molecule. In formula (I), R1, R2 and R3 independently represent a linear or branched alkyl group or a hydrogen atom; R4 represents a linear or branched alkyl group; and n represents an arbitrary integer.

Description

熱伝導性樹脂組成物、樹脂シート、樹脂付金属箔、樹脂シート硬化物及び放熱部材Thermally conductive resin composition, resin sheet, metal foil with resin, cured resin sheet, and heat dissipation member
 本発明は、熱伝導性樹脂組成物、樹脂シート、樹脂付金属箔、樹脂シート硬化物及び放熱部材に関する。 The present invention relates to a thermally conductive resin composition, a resin sheet, a metal foil with resin, a cured resin sheet, and a heat dissipation member.
 パワートランジスタ、サーミスタ、プリント配線板及びICチップなどの半導体の分野、並びにその他の電気及び電子部品の分野では、放熱用部材を構成する熱伝導性絶縁材料として、エポキシ樹脂と無機フィラとを含有する熱伝導性樹脂組成物が広く採用されている。上記熱伝導性樹脂組成物は、優れた熱伝導性が求められる。そのため、多くの場合、上記熱伝導性樹脂組成物の調製には、高熱伝導率を有する無機フィラをなるべく高充填率で加える手法が用いられている。例えば特開2001-348488号公報には、エポキシ樹脂中に無機フィラを80質量%~95質量%もの高充填率とすることにより、3W/mK~10W/mKの熱伝導率を有する成形物を得ることができることを記載されている。 In the field of semiconductors such as power transistors, thermistors, printed wiring boards and IC chips, and other fields of electrical and electronic components, epoxy resins and inorganic fillers are included as thermally conductive insulating materials constituting the heat dissipation member. Thermally conductive resin compositions are widely used. The thermal conductive resin composition is required to have excellent thermal conductivity. Therefore, in many cases, a method of adding an inorganic filler having a high thermal conductivity with a filling rate as high as possible is used for the preparation of the thermal conductive resin composition. For example, in Japanese Patent Application Laid-Open No. 2001-348488, a molded product having a thermal conductivity of 3 W / mK to 10 W / mK is obtained by setting the inorganic filler in the epoxy resin to a high filling rate of 80% by mass to 95% by mass. It is described that it can be obtained.
 しかし、フィラを高充填率で加えた場合、得られる熱伝導性樹脂組成物は、硬くて脆いため、割れやすくなってしまうことが多い。また、フィラを高充填率で加えた場合、熱伝導性樹脂組成物中に含まれる接着性能を有するエポキシ樹脂成分の割合が少なくなる。そのため、一般的に、フィラを高充填率で加えた場合、アルミニウムや銅などの金属表面に対する樹脂の接着性、すなわち樹脂-金属界面の接着強度は大幅に低下する傾向がある。 However, when filler is added at a high filling rate, the resulting heat conductive resin composition is often hard and brittle, and therefore, it tends to break easily. Moreover, when a filler is added with a high filling rate, the ratio of the epoxy resin component which has the adhesive performance contained in a heat conductive resin composition decreases. Therefore, in general, when filler is added at a high filling rate, the adhesiveness of the resin to a metal surface such as aluminum or copper, that is, the adhesive strength at the resin-metal interface tends to be greatly reduced.
 上述のように、無機フィラを高充填率で加えることによって樹脂組成物の高熱伝導率化を実現することはできるが、その一方で樹脂組成物は可とう性に欠ける傾向があり、また接着強度の低下が起きることが問題となっている。 As described above, it is possible to achieve a high thermal conductivity of the resin composition by adding an inorganic filler at a high filling rate, but on the other hand, the resin composition tends to lack flexibility and has an adhesive strength. It is a problem that the decline of
 本発明の目的は、上記状況に鑑み、優れた熱伝導性を有しつつ、可とう性及び接着性にも優れた熱伝導性樹脂組成物、並びに該樹脂組成物を用いてなる成形品を提供することにある。 In view of the above situation, an object of the present invention is to provide a thermal conductive resin composition having excellent thermal conductivity and excellent flexibility and adhesiveness, and a molded product using the resin composition. It is to provide.
 本発明は以下の態様を包含する。
 本発明の第一の態様は、エポキシ樹脂と、無機フィラと、分子内に少なくとも下記一般式(I)で示される構造単位を有するエラストマとを含有する熱伝導性樹脂組成物である。
The present invention includes the following aspects.
The first aspect of the present invention is a thermally conductive resin composition containing an epoxy resin, an inorganic filler, and an elastomer having at least a structural unit represented by the following general formula (I) in the molecule.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(I)中、R、R及びRはそれぞれ独立して、直鎖若しくは分岐のアルキル基、又は水素原子であり、Rは直鎖または分岐鎖のアルキル基であり、nは任意の整数を表す。 In general formula (I), R 1 , R 2 and R 3 are each independently a linear or branched alkyl group or a hydrogen atom, R 4 is a linear or branched alkyl group, and n Represents an arbitrary integer.
 前記エラストマは、アクリル樹脂であることが好ましい。前記アクリル樹脂は、分子内にさらにカルボキシ基及びヒドロキシ基の少なくとも一方を有することが好ましい。また前記アクリル樹脂が、分子内にさらにアミノ基を有することが好ましい。 The elastomer is preferably an acrylic resin. The acrylic resin preferably further has at least one of a carboxy group and a hydroxy group in the molecule. The acrylic resin preferably further has an amino group in the molecule.
 前記アクリル樹脂は、下記一般式(II)で示される構造を有する化合物であることが好ましい。 The acrylic resin is preferably a compound having a structure represented by the following general formula (II).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(II)中、各構造単位に記載した符号a、b、c及びdは、全構造単位における各構造単位のモル%であり、a+b+c+d=90モル%以上である。また、R21及びR22は、それぞれ独立して、互いに炭素数の異なる直鎖又は分岐鎖のアルキル基であり、R23~R26はそれぞれ独立して、水素原子又はメチル基である。
 またR21及びR22は、それぞれ独立して、互いに炭素数の異なる炭素数4~12の直鎖又は分岐鎖のアルキル基であることが好ましい。
 前記熱伝導性樹脂組成物は、さらにフェノール系硬化剤を含むことが好ましい。
In the formula (II), symbols a, b, c and d described in each structural unit are the mol% of each structural unit in all the structural units, and a + b + c + d = 90 mol% or more. R 21 and R 22 are each independently a linear or branched alkyl group having a different carbon number, and R 23 to R 26 are each independently a hydrogen atom or a methyl group.
R 21 and R 22 are preferably each independently a linear or branched alkyl group having 4 to 12 carbon atoms, each having a different carbon number.
The heat conductive resin composition preferably further contains a phenolic curing agent.
 本発明の第二の態様は、前記熱伝導性樹脂組成物をシート状に成形してなる樹脂シートである。 The second aspect of the present invention is a resin sheet formed by molding the thermal conductive resin composition into a sheet shape.
 本発明の第三の態様は、金属箔と、前記金属箔上に配置された前記熱伝導性樹脂組成物の半硬化物である半硬化樹脂層とを有する樹脂付金属箔である。 A third aspect of the present invention is a metal foil with a resin having a metal foil and a semi-cured resin layer that is a semi-cured product of the thermally conductive resin composition disposed on the metal foil.
 本発明の第四の態様は、前記熱伝導性樹脂組成物を熱処理物である樹脂シート硬化物である。 A fourth aspect of the present invention is a cured resin sheet that is a heat-treated product of the thermally conductive resin composition.
 本発明の第五の態様は、金属ワークと、前記金属ワーク上に配置された前記樹脂シート又は前記樹脂シート硬化物とを有する放熱部材である。 A fifth aspect of the present invention is a heat dissipating member having a metal work and the resin sheet or the cured resin sheet disposed on the metal work.
 本発明によれば、優れた熱伝導性を有しつつ、可とう性及び接着性にも優れた熱伝導性樹脂組成物、並びに該樹脂組成物を用いてなる成形品を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, while having the outstanding heat conductivity, the heat conductive resin composition which was excellent also in the flexibility and the adhesiveness, and the molded article using this resin composition can be provided. .
本実施形態にかかる放熱用部材の一例を示す模式的断面図である。It is typical sectional drawing which shows an example of the member for thermal radiation concerning this embodiment. (a)及び(b)は、本実施例にかかる可とう性判断における樹脂シートの状態を説明する模式的断面図である。(A) And (b) is typical sectional drawing explaining the state of the resin sheet in the flexibility judgment concerning a present Example.
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
 また本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 さらに本明細書において組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
In this specification, the term “process” is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes. .
In the present specification, a numerical range indicated using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
Further, when referring to the amount of each component in the composition in the present specification, when there are a plurality of substances corresponding to each component in the composition, the plurality of the components present in the composition unless otherwise specified. It means the total amount of substance.
<熱伝導性樹脂組成物>
 本発明の熱伝導性樹脂組成物(以下、単に「樹脂組成物」ともいう)は、エポキシ樹脂と、無機フィラと、分子内に少なくとも下記一般式(I)で示される構造単位を有するエラストマとを含有する。特定の化学構造を有するエラストマを添加することによって、熱伝導性樹脂組成物の可とう性が大いに改善される。また、前記エラストマの添加によって、低弾性率化による応力緩和機能が付与され、熱伝導性樹脂組成物の、例えば金属に対する接着性が大幅に向上する。
<Thermal conductive resin composition>
The thermally conductive resin composition of the present invention (hereinafter also simply referred to as “resin composition”) comprises an epoxy resin, an inorganic filler, and an elastomer having at least a structural unit represented by the following general formula (I) in the molecule. Containing. By adding an elastomer having a specific chemical structure, the flexibility of the thermally conductive resin composition is greatly improved. In addition, the addition of the elastomer provides a stress relaxation function by lowering the elastic modulus, and greatly improves the adhesion of the heat conductive resin composition to, for example, a metal.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(I)中、R、R及びRはそれぞれ独立して、直鎖若しくは分岐のアルキル基、又は水素原子であり、Rは直鎖または分岐鎖のアルキル基であり、nは任意の整数を表す。 In general formula (I), R 1 , R 2 and R 3 are each independently a linear or branched alkyl group or a hydrogen atom, R 4 is a linear or branched alkyl group, and n Represents an arbitrary integer.
(エポキシ樹脂)
 本発明に用いられるエポキシ樹脂は、特に限定されるものではない。例えば、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、環式脂肪族エポキシ樹脂などが挙げられる。中でも、高熱伝導率化の観点からは、ビフェニル基のような自己配列しやすい構造であるメソゲン骨格を分子内に有するエポキシ樹脂を使用することが好ましい。そのようなメソゲン骨格を分子内に有するエポキシ樹脂は、例えば特開2005-206814号公報で開示されている。上記エポキシ樹脂の一例として、1-{(3-メチル-4-オキシラニルメトキシ)フェニル}-4-(4-オキシラニルメトキシフェニル)-1-シクロヘキセン、1-{(2-メチル-4-オキシラニルメトキシ)フェニル}-4-(4-オキシラニルメトキシフェニル)-1-シクロヘキセン、1-{(3-エチル-4-オキシラニルメトキシ)フェニル}-4-(4-オキシラニルメトキシフェニル)-1-シクロヘキセンが挙げられる。
(Epoxy resin)
The epoxy resin used in the present invention is not particularly limited. For example, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthalene type epoxy resin, cycloaliphatic epoxy resin and the like can be mentioned. Among these, from the viewpoint of increasing the thermal conductivity, it is preferable to use an epoxy resin having a mesogenic skeleton in the molecule, which is a structure that is easily self-aligned, such as a biphenyl group. An epoxy resin having such a mesogenic skeleton in the molecule is disclosed, for example, in JP-A-2005-206814. Examples of the epoxy resin include 1-{(3-methyl-4-oxiranylmethoxy) phenyl} -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene, 1-{(2-methyl-4 -Oxiranylmethoxy) phenyl} -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene, 1-{(3-ethyl-4-oxiranylmethoxy) phenyl} -4- (4-oxira Nylmethoxyphenyl) -1-cyclohexene.
 中でも、溶融温度が低い観点から、1-{(3-メチル-4-オキシラニルメトキシ)フェニル}-4-(4-オキシラニルメトキシフェニル)-1-シクロヘキセンが好ましい。かかる特定のエポキシ樹脂を用いることにより硬化温度(好ましくは120℃)以下で、後述する硬化剤との溶融混合が可能となり、低温硬化のプロセス要求にも適用できる。 Among these, 1-{(3-methyl-4-oxiranylmethoxy) phenyl} -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene is preferable from the viewpoint of a low melting temperature. By using such a specific epoxy resin, it becomes possible to melt and mix with a curing agent described later at a curing temperature (preferably 120 ° C.) or lower, and it can be applied to a process requirement for low temperature curing.
 前記樹脂組成物におけるエポキシ樹脂の含有率は特に制限されない。例えば樹脂組成物の固形分中に、1質量%~50質量%とすることができ、1質量%~10質量%であることが好ましい。エポキシ樹脂の含有率が前記範囲であることで、接着性及び熱伝導率をより向上することができる。なお、樹脂組成物の固形分とは樹脂組成物から揮発性成分を除いた残分を意味する。 The content of the epoxy resin in the resin composition is not particularly limited. For example, the solid content of the resin composition can be 1% by mass to 50% by mass, and preferably 1% by mass to 10% by mass. Adhesiveness and heat conductivity can be improved more because the content rate of an epoxy resin is the said range. The solid content of the resin composition means a residue obtained by removing volatile components from the resin composition.
(無機フィラ)
 本発明において使用する無機フィラは、特に限定されず、当技術分野において周知の化合物を使用することができる。それらは非導電性であっても、導電性であってもよい。例えば、非導電性の無機フィラとして、酸化アルミニウム(アルミナ)、酸化マグネシウム、窒化アルミニウム、窒化ホウ素、窒化ケイ素、酸化ケイ素、水酸化アルミニウム、硫酸バリウムが挙げられる。非導電性の無機フィラを使用した場合、絶縁性低下のリスクが少なく好ましい。導電性の無機フィラとしては、金、銀、ニッケル、銅などが挙げられる。導電性の無機フィラを使用した場合、熱伝導率を向上することができる一方で、絶縁性が低下しやすい傾向がある。
(Inorganic filler)
The inorganic filler used in the present invention is not particularly limited, and compounds well known in the art can be used. They may be non-conductive or conductive. Examples of the non-conductive inorganic filler include aluminum oxide (alumina), magnesium oxide, aluminum nitride, boron nitride, silicon nitride, silicon oxide, aluminum hydroxide, and barium sulfate. When a non-conductive inorganic filler is used, it is preferable because there is little risk of a decrease in insulation. Examples of the conductive inorganic filler include gold, silver, nickel, and copper. When a conductive inorganic filler is used, the thermal conductivity can be improved, but the insulation tends to be lowered.
 上記無機フィラは、1種類単独で使用しても、又は2種類以上の混合系で使用してもよい。また、互いに異なる粒径を有する無機フィラを組み合わせて使用してもよい。互いに異なる粒径を有するフィラを組み合わせて使用する実施形態は、大粒径の無機フィラ間のすき間に小粒径の無機フィラが入り込み、無機フィラの高充填化が容易となり、効率良く高熱伝導率化が実現できると考えられるため、好ましい。
 本発明の一実施形態では、無機フィラとしてアルミナを使用することが好ましく、互いに異なる粒径を有するアルミナを組み合わせて使用することがより好ましい。
The inorganic filler may be used alone or in a mixed system of two or more. In addition, inorganic fillers having different particle sizes may be used in combination. In the embodiment in which fillers having different particle diameters are used in combination, an inorganic filler having a small particle diameter enters a gap between inorganic fillers having a large particle diameter, facilitating high filling of the inorganic filler, and high thermal conductivity efficiently. This is preferable because it can be realized.
In one embodiment of the present invention, it is preferable to use alumina as the inorganic filler, and it is more preferable to use a combination of alumina having different particle sizes.
 無機フィラとして互いに異なる粒径を有するアルミナを組み合わせて使用する実施形態の一例として、重量累積粒度分布の小粒側からの累積50%の粒経をD50としたとき、上記アルミナが、D50が2μm以上100μm以下のアルミナ(A)、D50が1μm以上10μm以下のアルミナ(B)及びD50が0.01μm以上5μm以下のアルミナ(C)からなるアルミナ粉末であり、アルミナ粉末の全体積に対するアルミナ(A)、(B)及び(C)の割合が、それぞれ(A)50体積%以上90体積%以下、(B)5体積%以上40体積%以下、及び(C)1体積%以上30体積%以下である実施形態を挙げることができる(ただし、アルミナ(A)、(B)及び(C)の合計の体積%は、100体積%である)。 As an example of an embodiment in which alumina having different particle diameters is used in combination as the inorganic filler, when the 50% cumulative particle size from the small particle side of the weight cumulative particle size distribution is D50, the alumina has a D50 of 2 μm or more. 100 μm or less of alumina (A), D50 is alumina powder (B) of 1 μm or more and 10 μm or less, and D50 is alumina powder (C) of 0.01 μm or more and 5 μm or less of alumina powder (A) with respect to the total volume of alumina powder The ratio of (B) and (C) is (A) 50% by volume to 90% by volume, (B) 5% by volume to 40% by volume, and (C) 1% by volume to 30% by volume, respectively. Some embodiments may be mentioned (wherein the total volume% of alumina (A), (B) and (C) is 100 volume%).
 さらに前記実施形態においては、アルミナ粉末の全体積に対して、アルミナ(A)が60体積%以上90体積%以下、アルミナ(B)が10体積%以上40体積%以下、アルミナ(C)が5体積%以上30体積%以下であるアルミナ粉末が好ましい(ただし、アルミナ(A)、(B)及び(C)の合計の体積%は100体積%である)。より好ましいアルミナ粉末の一例として、アルミナ(A)が70体積%以上90体積%以下、アルミナ(B)が10体積%以上30体積%以下、アルミナ(C)が5体積%以上20体積%以下であるアルミナ粉末が挙げられる(ただし、アルミナ(A)、(B)及び(C)の合計の体積%は100体積%である)。 Furthermore, in the said embodiment, alumina (A) is 60 volume% or more and 90 volume% or less, alumina (B) is 10 volume% or more and 40 volume% or less, and alumina (C) is 5 volume% with respect to the total volume of alumina powder. Alumina powder having a volume% of 30% or less is preferable (however, the total volume% of alumina (A), (B) and (C) is 100% by volume). As an example of a more preferable alumina powder, alumina (A) is 70 volume% or more and 90 volume% or less, alumina (B) is 10 volume% or more and 30 volume% or less, and alumina (C) is 5 volume% or more and 20 volume% or less. A certain alumina powder is mentioned (however, the total volume% of alumina (A), (B) and (C) is 100 volume%).
 無機フィラとして互いに異なる粒径を有するアルミナを組み合わせて使用する実施形態の一例としてより好ましくは、重量累積粒度分布の小粒側からの累積50%の粒経をD50としたとき、上記アルミナが、D50が10μm以上100μm以下のアルミナ(A)、D50が1μm以上10μm未満のアルミナ(B)及びD50が0.01μm以上1μm未満のアルミナ(C)からなるアルミナ粉末であり、アルミナ粉末の全体積に対するアルミナ(A)、(B)及び(C)の割合が、それぞれ(A)55体積%以上85体積%以下、(B)10体積%以上30体積%以下、及び(C)5体積%以上15体積%以下である実施形態を挙げることができる(ただし、アルミナ(A)、(B)及び(C)の総体積%は、100体積%である)。 More preferably, as an example of an embodiment in which aluminas having different particle sizes are used in combination as inorganic fillers, when the 50% cumulative particle size from the small particle side of the weight cumulative particle size distribution is D50, the alumina is D50 Is an alumina powder composed of alumina (A) having a diameter of 10 μm to 100 μm, alumina (B) having a D50 of 1 μm to less than 10 μm, and alumina (C) having a D50 of 0.01 μm to less than 1 μm, The ratio of (A), (B) and (C) is (A) 55 volume% or more and 85 volume% or less, (B) 10 volume% or more and 30 volume% or less, and (C) 5 volume% or more and 15 volume%, respectively. %, Wherein the total volume% of alumina (A), (B) and (C) is 100% by volume.
 さらに前記実施形態においては、アルミナ粉末の全体積に対して、アルミナ(A)が55体積%以上85体積%以下、アルミナ(B)が10体積%以上40体積%以下、アルミナ(C)が5体積%以上30体積%以下であるアルミナ粉末が好ましい(ただし、アルミナ(A)、(B)及び(C)の合計の体積%は100体積%である)。より好ましいアルミナ粉末の一例として、アルミナ(A)が65体積%以上80体積%以下、アルミナ(B)が10体積%以上20体積%以下、アルミナ(C)が10体積%以上15体積%以下であるアルミナ粉末が挙げられる(ただし、アルミナ(A)、(B)及び(C)の総体積%は100体積%である)。 Furthermore, in the said embodiment, alumina (A) is 55 volume% or more and 85 volume% or less, alumina (B) is 10 volume% or more and 40 volume% or less, and alumina (C) is 5 volume% with respect to the total volume of alumina powder. Alumina powder having a volume% of 30% or less is preferable (however, the total volume% of alumina (A), (B) and (C) is 100% by volume). As an example of a more preferable alumina powder, alumina (A) is 65 volume% or more and 80 volume% or less, alumina (B) is 10 volume% or more and 20 volume% or less, and alumina (C) is 10 volume% or more and 15 volume% or less. A certain alumina powder is mentioned (however, the total volume% of alumina (A), (B) and (C) is 100 volume%).
 上記アルミナ(A)、(B)及び(C)は、市販品として入手することができる。また、遷移アルミナ又は熱処理することで遷移アルミナとなるアルミナ粉末を、塩化水素を含有する雰囲気ガス中で焼成することによって製造することもできる(例えば、特開平6-191833号公報、特開平6-191836号公報参照)。上記アルミナ粉末は、所定の粒度分布を有するアルミナ(A)、(B)及び(C)を適宜混合することによって調製することができる。アルミナ粉末は、好ましくは、α-アルミナ粉末である。アルミナ(A)及び(B)としては、α-アルミナ粒子からなるアルミナが好ましく、α-アルミナの単結晶粒子からなるアルミナがより好ましい。アルミナ(C)としては、α-アルミナ粒子からなるアルミナであってもよいし、γ-アルミナ、θ-アルミナ、δ-アルミナ等の遷移アルミナ粒子からなるアルミナであってもよい。好ましくはα-アルミナ粒子からなるアルミナであり、より好ましくはα-アルミナの単結晶粒子からなるアルミナである。 The above alumina (A), (B) and (C) can be obtained as commercial products. Further, it is also possible to produce transition alumina or alumina powder that becomes transition alumina by heat treatment in an atmosphere gas containing hydrogen chloride (for example, Japanese Patent Laid-Open Nos. 6-191833 and 6-6-1). No. 191836). The alumina powder can be prepared by appropriately mixing alumina (A), (B) and (C) having a predetermined particle size distribution. The alumina powder is preferably α-alumina powder. As the alumina (A) and (B), alumina made of α-alumina particles is preferable, and alumina made of α-alumina single crystal particles is more preferable. The alumina (C) may be alumina made of α-alumina particles, or alumina made of transition alumina particles such as γ-alumina, θ-alumina, and δ-alumina. Alumina made of α-alumina particles is preferred, and alumina made of α-alumina single crystal particles is more preferred.
 なお、アルミナ粒子の粒径D50は、レーザー回折散乱方式粒度分布測定装置を用い、湿式法により、重量平均粒子径として測定される。 The particle diameter D50 of the alumina particles is measured as a weight average particle diameter by a wet method using a laser diffraction / scattering particle size distribution analyzer.
 本発明において前記樹脂組成物中におけるフィラ全体の含有率としては特に制限されない。中でも樹脂組成物の全固形分体積中に30体積%~95体積%であることが好ましく、熱伝導率向上の観点から、45体積%~90体積%であることがより好ましく、更なる熱伝導率向上の観点から、80体積%~90体積%であることがさらに好ましい。30体積%以上であると樹脂組成物の熱伝導率がより高くなる傾向にある。また95体積%以下であると樹脂組成物の成形性がより向上する傾向にある。
 尚、樹脂組成物の全固形分体積とは、樹脂組成物を構成する成分のうち、非揮発性成分の総体積を意味する。
In the present invention, the content of the entire filler in the resin composition is not particularly limited. In particular, the total solid volume of the resin composition is preferably 30% by volume to 95% by volume, more preferably 45% by volume to 90% by volume from the viewpoint of improving thermal conductivity, and further heat conduction. From the viewpoint of improving the rate, it is more preferably 80 to 90% by volume. When it is 30% by volume or more, the thermal conductivity of the resin composition tends to be higher. Moreover, it exists in the tendency which the moldability of a resin composition improves more that it is 95 volume% or less.
In addition, the total solid content volume of a resin composition means the total volume of a non-volatile component among the components which comprise a resin composition.
(エラストマ)
 前記エラストマは、分子内に少なくとも下記一般式(I)で示される構造単位を有する化合物であり、特にアクリル樹脂が好ましい。前記アクリル樹脂は、(メタ)アクリル酸又は(メタ)アクリル酸エステルから誘導されるホモポリマー又はコポリマーであることが好ましい。本発明の一実施形態では、エラストマとして、下記一般式(I)で示される構造単位を主として含むアクリル樹脂のコポリマーを使用することが好ましい。
(Elastomer)
The elastomer is a compound having at least a structural unit represented by the following general formula (I) in the molecule, and an acrylic resin is particularly preferable. The acrylic resin is preferably a homopolymer or a copolymer derived from (meth) acrylic acid or (meth) acrylic acid ester. In one embodiment of the present invention, it is preferable to use an acrylic resin copolymer mainly containing a structural unit represented by the following general formula (I) as an elastomer.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記一般式(I)において、R、R及びRはそれぞれ独立して、直鎖若しくは分岐鎖のアルキル基、又は水素原子を示す。R、R又はRのいずれかがアルキル基である場合、柔軟性付与の観点から、炭素数は1~12であることが好ましく、低Tg(ガラス転移温度)の観点から、炭素数は1~8であることがより好ましい。本発明の好ましい一実施形態においては、R及びRはそれぞれ水素原子であり、Rは水素原子又はメチル基である。より好ましくはR、R及びRが水素原子である。 In the general formula (I), R 1 , R 2 and R 3 each independently represent a linear or branched alkyl group or a hydrogen atom. When any of R 1 , R 2 or R 3 is an alkyl group, the number of carbons is preferably 1 to 12 from the viewpoint of imparting flexibility, and the number of carbons from the viewpoint of low Tg (glass transition temperature). Is more preferably 1-8. In a preferred embodiment of the present invention, R 1 and R 2 are each a hydrogen atom, and R 3 is a hydrogen atom or a methyl group. More preferably, R 1 , R 2 and R 3 are hydrogen atoms.
 上記一般式(I)において、Rは、直鎖または分岐鎖のアルキル基である。Rにおけるアルキル基は、柔軟性付与の観点から、炭素数が2~16であることが好ましく、樹脂高次構造形成への阻害が小さい観点から、炭素数が3~14であることがより好ましく、入手しやすさ、合成しやすさの観点から、炭素数が4~12であることがさらに好ましい。
 また前記エラストマは、Rで示されるアルキル基の炭素数が異なる2種以上の一般式(I)で表される構造単位を有することが好ましい。例えば前記エラストマが2種の一般式(I)で表される構造単位を有する場合、一方の構造単位におけるアルキル基の炭素数は、低Tgの観点から、炭素数が2~8であることが好ましく、炭素数が3~6であることがより好ましい。また他方の構造単位におけるアルキル基の炭素数は、柔軟性付与の観点から、炭素数が8~16であることが好ましく、炭素数が10~14であることがより好ましい。
In the above general formula (I), R 4 is a linear or branched alkyl group. The alkyl group in R 4 preferably has 2 to 16 carbon atoms from the viewpoint of imparting flexibility, and more preferably 3 to 14 carbon atoms from the viewpoint of small inhibition of the formation of the resin higher-order structure. Preferably, the number of carbon atoms is 4 to 12 from the viewpoints of availability and ease of synthesis.
Also, the elastomer preferably has a structural unit number of carbon atoms in the alkyl group represented by R 4 is represented by two or more of the general formulas differ (I). For example, when the elastomer has two types of structural units represented by the general formula (I), the carbon number of the alkyl group in one structural unit may be 2 to 8 from the viewpoint of low Tg. Preferably, the number of carbon atoms is 3-6. The number of carbon atoms of the alkyl group in the other structural unit is preferably 8 to 16 carbon atoms, and more preferably 10 to 14 carbon atoms from the viewpoint of imparting flexibility.
 上記一般式(I)において、nは繰り返し単位数を示す任意の整数である。nで表される繰り返し単位数はエラストマ分子中に含まれる一般式(I)で表される構造単位の総数を意味する。n=100~1000であることが好ましく、柔軟性付与の観点からn=100~500であることがより好ましく、低Tgの観点からn=100~300であることが特に好ましい。 In the above general formula (I), n is an arbitrary integer indicating the number of repeating units. The number of repeating units represented by n means the total number of structural units represented by the general formula (I) contained in the elastomer molecule. n = 100 to 1000 is preferable, n = 100 to 500 is more preferable from the viewpoint of imparting flexibility, and n = 100 to 300 is particularly preferable from the viewpoint of low Tg.
 主として上記一般式(I)で示される構造単位を有するアクリル樹脂を使用することによって、エポキシ樹脂及び無機フィラを含有する熱伝導性樹脂組成物に軟構造(柔軟性)を付与することが可能となる。そのため、従来の熱伝導性シートに見られるような無機フィラの高充填化によるシートの可とう性の低下といった不具合を改善することが可能となる。 By using an acrylic resin mainly having a structural unit represented by the above general formula (I), it is possible to impart a soft structure (flexibility) to a thermally conductive resin composition containing an epoxy resin and an inorganic filler. Become. Therefore, it is possible to improve the problems such as a decrease in the flexibility of the sheet due to the high filling of the inorganic filler as seen in the conventional heat conductive sheet.
 本発明の一実施形態において、分子内に少なくとも上記一般式(I)で示される構造単位を有するアクリル樹脂は、分子内にさらにカルボキシ基及びヒドロキシ基の少なくとも一方を有することが好ましく、カルボキシ基及びヒドロキシ基の少なくとも一方を有する構造単位を含むことがより好ましく、少なくともカルボキシ基を有する構造単位を含むことがさらに好ましい。 In one embodiment of the present invention, the acrylic resin having at least the structural unit represented by the general formula (I) in the molecule preferably further has at least one of a carboxy group and a hydroxy group in the molecule. It is more preferable to include a structural unit having at least one of hydroxy groups, and it is more preferable to include a structural unit having at least a carboxy group.
 カルボキシ基を有する構造単位を形成しうるモノマーとしては、アクリル酸、メタクリル酸、マレイン酸、イタコン酸等を挙げることができる。これらの中でもアクリル酸及びメタクリル酸が好ましい。
 またヒドロキシ基を有する構造単位を形成しうるモノマーとしては、炭素数が2~20のヒドロキシアルキル基を含む(メタ)アクリル酸エステルを挙げることができ、炭素数2~6のヒドロキシアルキル基を含む(メタ)アクリル酸エステルであることが好ましい。具体的には(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル等を挙げることができる。
Examples of monomers that can form a structural unit having a carboxy group include acrylic acid, methacrylic acid, maleic acid, and itaconic acid. Among these, acrylic acid and methacrylic acid are preferable.
Examples of the monomer capable of forming a structural unit having a hydroxy group include (meth) acrylic acid esters containing a hydroxyalkyl group having 2 to 20 carbon atoms, including a hydroxyalkyl group having 2 to 6 carbon atoms. A (meth) acrylic acid ester is preferred. Specific examples include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, and the like.
 アクリル樹脂中にカルボキシ基やヒドロキシ基が存在する場合、これらは硬化反応時のエポキシ樹脂と架橋反応するため、架橋密度が向上し、その結果、熱伝導率を向上させることができる。
 また、カルボキシ基は、水素イオンを放出するため、硬化反応時にエポキシ基が開環しやすく、触媒として作用する効果をもたらす。さらに、カルボキシ基は無機フィラ表面の水酸基と作用するため、無機フィラに対する表面処理の効果をもたらす。このような表面処理の効果は、無機フィラとアクリル樹脂との濡れ性が改善されるため、ワニス配合時にワニスの粘度が下がり、塗布が容易となる傾向がある。さらにまた、濡れ性の改善によって、無機フィラがより高度に分散されることになり熱伝導率の向上にも寄与することになる。
When a carboxy group or a hydroxy group is present in the acrylic resin, these undergo a crosslinking reaction with the epoxy resin during the curing reaction, so that the crosslinking density is improved, and as a result, the thermal conductivity can be improved.
In addition, since the carboxy group releases hydrogen ions, the epoxy group is easily opened during the curing reaction, and has an effect of acting as a catalyst. Furthermore, since the carboxy group acts with a hydroxyl group on the surface of the inorganic filler, it brings about a surface treatment effect on the inorganic filler. The effect of such surface treatment is that the wettability between the inorganic filler and the acrylic resin is improved, so that the viscosity of the varnish is lowered when the varnish is blended, and the coating tends to be easy. Furthermore, the improvement of wettability causes the inorganic filler to be more highly dispersed and contributes to the improvement of thermal conductivity.
 前記アクリル樹脂がカルボキシ基及びヒドロキシ基の少なくとも一方を有する場合、アクリル樹脂に含まれるカルボキシ基及びヒドロキシ基の少なくとも一方を有する構造単位の含有量は特に制限されない。フィラ分散性の観点から、アクリル樹脂におけるカルボキシ基及びヒドロキシ基の少なくとも一方を有する構造単位の含有率が、10モル%以上30モル%以下であることが好ましく、14モル%以上28モル%以下であることがより好ましい。 When the acrylic resin has at least one of carboxy group and hydroxy group, the content of the structural unit having at least one of carboxy group and hydroxy group contained in the acrylic resin is not particularly limited. From the viewpoint of filler dispersibility, the content of the structural unit having at least one of a carboxy group and a hydroxy group in the acrylic resin is preferably 10 mol% or more and 30 mol% or less, and 14 mol% or more and 28 mol% or less. More preferably.
 また、本発明の一実施形態において、分子内に少なくとも上記一般式(I)で示される構造単位を有するアクリル樹脂は、分子内にさらにアミノ基の少なくとも1種を含むことが好ましく、アミノ基を有する構造単位の少なくとも1種を含むことが好ましい。中でも、吸湿防止の観点から、2級アミノ基又は3級アミノ基が好ましい。熱伝導率の向上の観点から、N-メチルピペリジノ基が特に好ましい。アクリル樹脂中にN-メチルピペリジノ基が存在する場合、フェノール硬化剤との相互作用によって相溶性が著しく向上するため好ましい。このように相溶性に優れたアクリル樹脂を組成物の系に添加した場合、熱伝導率の損失が小さくなる。また、N-メチルピペリジノ基とフェノール系硬化剤との相互作用は、異種分子間のすべりによる応力緩和効果を奏し、接着力の向上に寄与することになる。 In one embodiment of the present invention, the acrylic resin having at least the structural unit represented by the general formula (I) in the molecule preferably further includes at least one amino group in the molecule. It is preferable to include at least one kind of structural unit. Among these, from the viewpoint of preventing moisture absorption, a secondary amino group or a tertiary amino group is preferable. From the viewpoint of improving thermal conductivity, an N-methylpiperidino group is particularly preferable. When an N-methylpiperidino group is present in the acrylic resin, the compatibility is remarkably improved by the interaction with the phenol curing agent, which is preferable. Thus, when the acrylic resin excellent in compatibility is added to the system of a composition, the loss of heat conductivity becomes small. In addition, the interaction between the N-methylpiperidino group and the phenol-based curing agent exhibits a stress relaxation effect due to slippage between different types of molecules, and contributes to an improvement in adhesion.
 前記アクリル系エラストマがアミノ基を有する場合、アクリル系エラストマに含まれるアミノ基の含有量は特に制限されない。相溶性の観点から、アクリル系エラストマを構成する樹脂におけるアミノ基を有する構造単位の含有率が、0.5モル%以上5モル%以下であることが好ましく、0.7モル%以上3.5モル%以下であることがより好ましい。 When the acrylic elastomer has an amino group, the content of the amino group contained in the acrylic elastomer is not particularly limited. From the viewpoint of compatibility, the content of the structural unit having an amino group in the resin constituting the acrylic elastomer is preferably 0.5 mol% or more and 5 mol% or less, and 0.7 mol% or more and 3.5 mol% or less. More preferably, it is at most mol%.
 本発明の一実施形態では、アクリル樹脂として、下記一般式(II)で示される構造を有する化合物を使用することが好ましい。 In one embodiment of the present invention, it is preferable to use a compound having a structure represented by the following general formula (II) as the acrylic resin.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(II)中、各構造単位に記載した符号a、b、c及びdは、化合物を構成する全構造単位に対する各構造単位のモル%であり、a+b+c+d=90モル%以上であるが、95モル%以上であることが好ましく、99モル%以上であることがより好ましい。
 また、R21とR22は、それぞれ独立して、互いに炭素数の異なる直鎖又は分岐鎖アルキル基である。R23~R26はそれぞれ独立して、水素原子又はメチル基を表す。
In the formula (II), the symbols a, b, c and d described in each structural unit are mol% of each structural unit with respect to all structural units constituting the compound, and a + b + c + d = 90 mol% or more. It is preferably at least mol%, more preferably at least 99 mol%.
R 21 and R 22 are each independently a linear or branched alkyl group having a different carbon number. R 23 to R 26 each independently represents a hydrogen atom or a methyl group.
 上記一般式(II)で示されるアクリル樹脂において、aの割合で存在する構造単位(以下、「構造単位a」とも称す)は、シートに可とう性を付与することができ、また熱伝導性と可とう性との両立を可能にする。また、bの割合で存在する構造単位(以下、「構造単位b」とも称す)は、先に示した構造単位aとの組合せにおいてシートの可とう性をより好ましいものとする。このように、柔構造(柔軟性)を付与する上記構造単位a及びbにおけるR21及びR22で表されるアルキル基の鎖長は特に限定されるものではない。しかし、鎖長が炭素数16以下であるとアクリル樹脂のTgが高くなりすぎず、アクリル樹脂を樹脂組成物中に添加して得られる可とう性改善効果が充分に得られる傾向がある。一方、R21とR22の鎖長が炭素数2以上であるとアクリル樹脂自身の柔軟性がより向上し、アクリル樹脂の添加によって得られる効果を充分に得られる傾向がある。このような観点において、R21及びR22の鎖長は、炭素数2~16の範囲が好ましく、素数3~14の範囲がより好ましく、炭素数4~12の範囲がさらに好ましい。 In the acrylic resin represented by the general formula (II), the structural unit present in the proportion of a (hereinafter also referred to as “structural unit a”) can impart flexibility to the sheet, and also has thermal conductivity. And compatibility with flexibility. Further, the structural unit present in the proportion of b (hereinafter also referred to as “structural unit b”) makes the sheet more flexible in combination with the structural unit a shown above. Thus, the chain length of the alkyl group represented by R 21 and R 22 in the structural units a and b that imparts a flexible structure (flexibility) is not particularly limited. However, if the chain length is 16 or less, the Tg of the acrylic resin does not become too high, and the flexibility improving effect obtained by adding the acrylic resin to the resin composition tends to be sufficiently obtained. On the other hand, when the chain length of R 21 and R 22 is 2 or more, the flexibility of the acrylic resin itself is further improved, and the effect obtained by adding the acrylic resin tends to be sufficiently obtained. From such a viewpoint, the chain lengths of R 21 and R 22 are preferably in the range of 2 to 16 carbon atoms, more preferably in the range of 3 to 14 carbon atoms, and still more preferably in the range of 4 to 12 carbon atoms.
 またR21とR22で表されるアルキル基は互いに炭素数が異なる。R21とR22における炭素数の差は特に制限されないが、可とう性と柔軟性のバランスの観点から炭素数の差が4~10であることが好ましく、6~8であることがより好ましい。
 さらに可とう性と柔軟性のバランスの観点から、R21の炭素数が2~6であり、R22の炭素数が8~16であることが好ましく、R21の炭素数が3~5であり、R22の炭素数が10~14であることがより好ましい。
The alkyl groups represented by R 21 and R 22 have different carbon numbers. The difference in carbon number between R 21 and R 22 is not particularly limited, but the difference in carbon number is preferably 4 to 10 and more preferably 6 to 8 from the viewpoint of the balance between flexibility and flexibility. .
Further, from the viewpoint of the balance between flexibility and flexibility, R 21 preferably has 2 to 6 carbon atoms, R 22 preferably has 8 to 16 carbon atoms, and R 21 has 3 to 5 carbon atoms. More preferably, R 22 has 10 to 14 carbon atoms.
 上記一般式(II)において、構造単位a及び構造単位bのモル%の範囲は特に限定されるものではない。また構造単位a及び構造単位bの両者間の割合も任意であってよい。構造単位a及び構造単位bのいずれかが単独で含まれるよりも、構造単位aと構造単位bとの組合せを含んで構成されるアクリル樹脂を使用することが好ましい。構造単位a及び構造単位bの組合せによって、側鎖数が増加しアクリル樹脂の柔軟性が上昇するとともに、Tgも高くなる可能性がある。しかし、アクリル樹脂における構造単位a及び構造単位bのモル%の割合a及びbを適切に調整することによって、Tgを好適な範囲内に制御することができる。 In the general formula (II), the range of mol% of the structural unit a and the structural unit b is not particularly limited. Further, the ratio between the structural unit a and the structural unit b may be arbitrary. It is preferable to use an acrylic resin including a combination of the structural unit a and the structural unit b, rather than any one of the structural unit a and the structural unit b being included alone. The combination of the structural unit a and the structural unit b may increase the number of side chains and increase the flexibility of the acrylic resin, and may increase the Tg. However, Tg can be controlled within a suitable range by appropriately adjusting the molar ratios a and b of the structural unit a and the structural unit b in the acrylic resin.
 具体的には例えば、樹脂シートの可とう性及びフィラ分散性の観点から、構造単位aの含有率は50モル%~85モル%が好ましく、60モル%~80モル%がより好ましい。また構造単位bの含有率は、2モル%~20モル%が好ましく、5モル%~15モル%がより好ましい。さらに構造単位bに対する構造単位aの含有比は4~10が好ましく、6~8がより好ましい。 Specifically, for example, from the viewpoint of the flexibility and filler dispersibility of the resin sheet, the content of the structural unit a is preferably 50 mol% to 85 mol%, more preferably 60 mol% to 80 mol%. The content of the structural unit b is preferably 2 mol% to 20 mol%, more preferably 5 mol% to 15 mol%. Further, the content ratio of the structural unit a to the structural unit b is preferably 4 to 10, and more preferably 6 to 8.
 上記一般式(II)において、cの割合で存在する構造単位(以下、「構造単位c」とも称す)に由来して、アクリル樹脂中にカルボキシ基が存在することによって、熱伝導率の向上及びフィラと樹脂との濡れ性の改善といった効果が得られる。また、dの割合で存在する構造単位(以下、「構造単位d」とも称す)に由来して、アクリル樹脂中にN-メチルピペリジノ基が存在することによって、相溶性の向上及び接着性の向上といった効果が得られる。これらの効果は、アクリル樹脂中にカルボキシ基及びN-メチルピペリジノ基が共存する場合に、より顕著となる。より具体的には、N-メチルピペリジノ基はカルボキシ基からの水素イオンを受容でき、次いで例えば硬化剤として含まれるフェノールとの相互作用が可能となる。このようにフェノールとの相互作用によって、アクリル樹脂と組成物の系との相溶性が向上することになる。また、カルボキシ基とN-メチルピペリジノ基との間で分子内相互作用が生じることによって、低弾性化による応力緩和への寄与が大きくなる。これは例えばアクリル樹脂の分子全体が直線構造ではなく、湾曲構造をとることになるからと考えることができる。このような観点から、上記一般式(II)で示されるアクリル樹脂の一実施形態において、構造単位c及び構造単位dの割合はそれぞれ、cは10モル%~28モル%の範囲が好ましく、より好ましくは14モル%~28モル%の範囲、さらに好ましくは20モル%~28モル%の範囲であり、dは0.5モル%~5モル%の範囲が好ましく、より好ましくは0.7モル%~3.5モル%の範囲、さらに好ましくは0.7モル%~1.4モル%の範囲である。
 また構造単位dに対する構造単位cの含有比は、0.01~0.5が好ましく、0.03~0.3がより好ましく、0.035~0.25がさらに好ましい。
In the above general formula (II), the thermal conductivity is improved by the presence of a carboxy group in the acrylic resin derived from a structural unit present in the proportion of c (hereinafter also referred to as “structural unit c”). The effect of improving the wettability between the filler and the resin can be obtained. Further, the presence of an N-methylpiperidino group in the acrylic resin derived from a structural unit present in the proportion of d (hereinafter also referred to as “structural unit d”) improves compatibility and adhesion. An effect is obtained. These effects become more remarkable when a carboxy group and an N-methylpiperidino group coexist in the acrylic resin. More specifically, the N-methylpiperidino group can accept hydrogen ions from a carboxy group and then allows interaction with, for example, phenol contained as a curing agent. Thus, the compatibility with the acrylic resin and the composition system is improved by the interaction with phenol. Further, the intramolecular interaction between the carboxy group and the N-methylpiperidino group contributes to the stress relaxation due to the low elasticity. This can be considered, for example, because the entire molecule of the acrylic resin has a curved structure instead of a linear structure. From such a viewpoint, in one embodiment of the acrylic resin represented by the general formula (II), the proportion of the structural unit c and the structural unit d is preferably in the range of 10 mol% to 28 mol%. Preferably it is in the range of 14 mol% to 28 mol%, more preferably in the range of 20 mol% to 28 mol%, d is preferably in the range of 0.5 mol% to 5 mol%, more preferably 0.7 mol. % To 3.5 mol%, more preferably 0.7 mol to 1.4 mol%.
The content ratio of the structural unit c to the structural unit d is preferably 0.01 to 0.5, more preferably 0.03 to 0.3, and further preferably 0.035 to 0.25.
 R23~R26はそれぞれ独立して水素原子又はメチル基であるが、R23とR24の少なくとも一方が水素原子で他方がメチル基であることが好ましく、R23が水素原子でR24がメチル基であることがより好ましい。またR25とR26の少なくとも一方が水素原子で他方がメチル基であることが好ましく、R25が水素原子でR26がメチル基であることがより好ましい。 R 23 to R 26 are each independently a hydrogen atom or a methyl group, but it is preferable that at least one of R 23 and R 24 is a hydrogen atom and the other is a methyl group, and R 23 is a hydrogen atom and R 24 is More preferred is a methyl group. Moreover, it is preferable that at least one of R 25 and R 26 is a hydrogen atom and the other is a methyl group, and it is more preferable that R 25 is a hydrogen atom and R 26 is a methyl group.
 一般式(II)で示される構造を有するアクリル樹脂は、構造単位a~d以外の構造単位をさらに含んでいてもよい。構造単位a~d以外の構造単位としては特に制限はない。例えば、ヒドロキシアルキル基を含む(メタ)アクリル酸エステルに由来する構造単位や、3級アミノ基を含む(メタ)アクリル酸エステルに由来する構造単位を挙げることができる。
 前記アクリル樹脂における構造単位a~d以外の構造単位の含有率は、10モル%以下であるが、5モル%以下が好ましく、1モル%以下がより好ましい。
The acrylic resin having the structure represented by the general formula (II) may further contain structural units other than the structural units a to d. The structural unit other than the structural units a to d is not particularly limited. For example, the structural unit derived from the (meth) acrylic acid ester containing a hydroxyalkyl group and the structural unit derived from the (meth) acrylic acid ester containing a tertiary amino group can be mentioned.
The content of structural units other than the structural units a to d in the acrylic resin is 10 mol% or less, preferably 5 mol% or less, and more preferably 1 mol% or less.
 前記エラストマの重量平均分子量は特に制限されない。中でも熱伝導率と可とう性の観点から、10,000~100,000であることが好ましく、10,000~50,000であることがより好ましく、10,000~30,000であることがさらに好ましい。さらにエラストマの重量平均分子量が前記範囲であると、無機フィラの分散性がより向上し、樹脂組成物の粘度がより低下する傾向にある。
 なお、エラストマの重量平均分子量は、GPCを用いた通常の方法により測定される。
The weight average molecular weight of the elastomer is not particularly limited. Among these, from the viewpoint of thermal conductivity and flexibility, it is preferably 10,000 to 100,000, more preferably 10,000 to 50,000, and preferably 10,000 to 30,000. Further preferred. Furthermore, when the weight average molecular weight of the elastomer is within the above range, the dispersibility of the inorganic filler is further improved and the viscosity of the resin composition tends to be further decreased.
The weight average molecular weight of the elastomer is measured by a usual method using GPC.
 本発明による熱伝導性樹脂組成物において、前記エラストマの含有量は、上記エポキシ樹脂含有成分(エポキシ樹脂及び必要に応じて含まれる硬化剤)の総質量を100質量部としたときに、0.1質量部~99質量部の範囲とすることができ、好ましくは1質量部~20質量部の範囲、さらに好ましくは1質量部~10質量部の範囲である。
 上記アクリル樹脂の添加量が0.1質量部以上であると、熱伝導率の低下を抑制し、被着体との接着力が向上する傾向がある。一方、アクリル樹脂の99質量部以下であると、被着体との接着力の低下を抑制し、熱伝導率が向上する傾向がある。したがって、アクリル樹脂の添加量を上記範囲に調整することによって、各種特性をバランス良く発現させることが容易となる。
In the thermally conductive resin composition according to the present invention, the content of the elastomer is 0. 0 when the total mass of the epoxy resin-containing components (epoxy resin and a curing agent included as necessary) is 100 parts by mass. It can be in the range of 1 to 99 parts by mass, preferably in the range of 1 to 20 parts by mass, and more preferably in the range of 1 to 10 parts by mass.
When the added amount of the acrylic resin is 0.1 parts by mass or more, a decrease in thermal conductivity tends to be suppressed and the adhesive force with the adherend tends to be improved. On the other hand, when the amount is 99 parts by mass or less of the acrylic resin, a decrease in adhesive strength with the adherend is suppressed, and the thermal conductivity tends to be improved. Therefore, it becomes easy to express various characteristics in a well-balanced manner by adjusting the amount of the acrylic resin added to the above range.
(硬化剤)
 前記樹脂組成物は、硬化剤の少なくとも1種を含むことが好ましい。硬化剤としては特に制限はなく、硬化性樹脂に応じて適宜選択できる。特に前記硬化性樹脂がエポキシ樹脂である場合、硬化剤としてはエポキシ樹脂用硬化剤として通常用いられる硬化剤から適宜選択して用いることができる。具体的には、ジシアンジアミド及び芳香族ジアミンなどのアミン系硬化剤、フェノールノボラック樹脂、クレゾールノボラック樹脂及びカテコールレゾルシノールノボラック樹脂などのフェノール系硬化剤を挙げることができる。中でも熱伝導率向上の観点から、フェノール系硬化剤であることが好ましく、カテコール、レゾルシノール及びp-ハイドロキノンといった2官能フェノールを含むフェノール系硬化剤であることが好ましい。
(Curing agent)
The resin composition preferably contains at least one curing agent. There is no restriction | limiting in particular as a hardening | curing agent, According to curable resin, it can select suitably. In particular, when the curable resin is an epoxy resin, the curing agent can be appropriately selected from curing agents usually used as a curing agent for epoxy resins. Specific examples include amine curing agents such as dicyandiamide and aromatic diamine, and phenolic curing agents such as phenol novolac resin, cresol novolac resin, and catechol resorcinol novolak resin. Among these, from the viewpoint of improving thermal conductivity, a phenolic curing agent is preferable, and a phenolic curing agent containing a bifunctional phenol such as catechol, resorcinol and p-hydroquinone is preferable.
 前記樹脂組成物における硬化剤の含有率は特に制限されない。例えばエポキシ樹脂に対して、当量基準で0.1~2.0とすることができ、柔軟性向上の観点から0.5~1.5であることが好ましく、高熱伝導の観点から0.8~1.1であることが好ましい。
 硬化剤の含有率が前記範囲であることで、接着性及び熱伝導率をより向上することができる。
The content of the curing agent in the resin composition is not particularly limited. For example, with respect to the epoxy resin, it can be 0.1 to 2.0 on an equivalent basis, preferably 0.5 to 1.5 from the viewpoint of improving flexibility, and 0.8 from the viewpoint of high thermal conductivity. It is preferable that it is -1.1.
Adhesiveness and heat conductivity can be improved more because the content rate of a hardening | curing agent is the said range.
(硬化触媒)
 前記樹脂組成物は、硬化触媒の少なくとも1種を含むことが好ましい。硬化触媒としては特に制限はなく、硬化性樹脂の種類に応じて、通常用いられる硬化触媒から適宜選択して用いることができる。前記硬化性樹脂がエポキシ樹脂である場合、硬化触媒として具体的には例えば、トリフェニルホスフィン、2-エチル-4-メチルイミダゾール、三フッ化ホウ素アミン錯体、1-ベンジル-2-メチルイミダゾールなどを挙げることができる。中でも高熱伝導化の観点から、トリフェニルホスフィンを使用することが好ましい。
(Curing catalyst)
The resin composition preferably contains at least one curing catalyst. There is no restriction | limiting in particular as a curing catalyst, According to the kind of curable resin, it can select from the curing catalyst used normally, and can use it. When the curable resin is an epoxy resin, specific examples of the curing catalyst include triphenylphosphine, 2-ethyl-4-methylimidazole, boron trifluoride amine complex, 1-benzyl-2-methylimidazole, and the like. Can be mentioned. Among them, it is preferable to use triphenylphosphine from the viewpoint of achieving high thermal conductivity.
 前記樹脂組成物における硬化触媒の含有率は特に制限されない。例えばエポキシ樹脂に対して、0.1質量%~2.0質量%とすることができ、0.5質量%~1.5質量%であることが好ましい。
 硬化触媒の含有率が前記範囲であることで、接着性及び熱伝導率をより向上することができる。
The content rate of the curing catalyst in the resin composition is not particularly limited. For example, it can be 0.1% by mass to 2.0% by mass and preferably 0.5% by mass to 1.5% by mass with respect to the epoxy resin.
Adhesiveness and heat conductivity can be improved more because the content rate of a curing catalyst is the said range.
(カップリング剤)
 前記樹脂組成物は、必須成分であるエポキシ樹脂、エラストマ及び無機フィラに加えて、カップリング剤の少なくとも1種を含むことが好ましい。カップリング剤は、例えば無機フィラの表面処理を目的に含有することができる。
 カップリング剤としては特に制限されず、通常用いられるカップリング剤から適宜選択することができる。具体的には例えば、メチルトリメトキシシラン(信越化学工業株式会社製、商品名「KBM-13」として入手可能)、3-メルカプトプロピルトリメトキシシラン(信越化学工業株式会社製、商品名「KBM-803」として入手可能)、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン(信越化学工業株式会社製、商品名「KBE-9103」として入手可能)、N-フェニル-3-アミノプロピルトリメトキシシラン(信越化学工業株式会社製、商品名「KBM-573」として入手可能)、3-アミノプロピルトリメトキシシラン(信越化学工業株式会社製、商品名「KBM-903」として入手可能)、3-グリシジルオキシプロピルトリメトキシシラン(信越化学工業株式会社製、商品名「KBM-403」として入手可能)などのシランカップリング剤が挙げられる。中でも、高熱伝導化の観点から、N-フェニル-3-アミノプロピルトリメトキシシランが好ましい。
(Coupling agent)
The resin composition preferably contains at least one coupling agent in addition to the essential components, epoxy resin, elastomer and inorganic filler. The coupling agent can be contained for the purpose of, for example, surface treatment of inorganic filler.
The coupling agent is not particularly limited, and can be appropriately selected from commonly used coupling agents. Specifically, for example, methyltrimethoxysilane (available from Shin-Etsu Chemical Co., Ltd., available as trade name “KBM-13”), 3-mercaptopropyltrimethoxysilane (available from Shin-Etsu Chemical Co., Ltd., trade name “KBM-”). 803 "), 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine (available from Shin-Etsu Chemical Co., Ltd., trade name" KBE-9103 "), N-phenyl- 3-aminopropyltrimethoxysilane (available from Shin-Etsu Chemical Co., Ltd., trade name “KBM-573”), 3-aminopropyltrimethoxysilane (made by Shin-Etsu Chemical Co., Ltd., trade name “KBM-903”) 3-glycidyloxypropyltrimethoxysilane (available from Shin-Etsu Chemical Co., Ltd., trade name “KB”) -403 "available) include silane coupling agents such as. Among these, N-phenyl-3-aminopropyltrimethoxysilane is preferable from the viewpoint of achieving high thermal conductivity.
 前記樹脂組成物におけるカップリング剤の含有率は特に制限されない。例えば無機フィラに対して、0.05質量%~1.0質量%とすることができ、0.1質量%~0.5質量%であることが好ましい。
 カップリング剤の含有率が前記範囲であることで、熱伝導率をより向上することができる。
The content of the coupling agent in the resin composition is not particularly limited. For example, with respect to the inorganic filler, it can be 0.05% by mass to 1.0% by mass, and preferably 0.1% by mass to 0.5% by mass.
Thermal conductivity can be improved more because the content rate of a coupling agent is the said range.
(溶剤)
 前記熱伝導性樹脂組成物は、溶剤の少なくとも1種を含んでいてもよい。溶剤としては樹脂組成物の硬化反応を阻害しないものであれば特に制限はなく、通常用いられる有機溶剤から適宜選択して用いることができる。具体的には、メチルエチルケトン、シクロヘキサノン等のケトン系溶剤、シクロヘキサノール等のアルコール系溶剤などを挙げることができる。
 前記熱伝導性樹脂組成物における溶剤の含有量は特に制限されず、熱伝導性樹脂組成物の塗布性等に応じて適宜選択することができる。
(solvent)
The thermally conductive resin composition may contain at least one solvent. The solvent is not particularly limited as long as it does not inhibit the curing reaction of the resin composition, and can be appropriately selected from commonly used organic solvents. Specific examples include ketone solvents such as methyl ethyl ketone and cyclohexanone, and alcohol solvents such as cyclohexanol.
The content of the solvent in the heat conductive resin composition is not particularly limited, and can be appropriately selected according to the applicability of the heat conductive resin composition.
<樹脂シート>
 本発明の樹脂シートは、前記樹脂組成物をシート状に成形してなる。前記樹脂シートは例えば、前記樹脂組成物を離型フィルム上に塗布し、必要に応じて含まれる溶剤を除去することで製造することができる。
 前記樹脂シートは、前記樹脂組成物から構成されることで熱伝導性、可とう性及び接着性に優れる。
<Resin sheet>
The resin sheet of the present invention is formed by molding the resin composition into a sheet shape. The said resin sheet can be manufactured by apply | coating the said resin composition on a release film, for example, and removing the solvent contained as needed.
The said resin sheet is excellent in thermal conductivity, flexibility, and adhesiveness by being comprised from the said resin composition.
 前記樹脂シートは、前記樹脂組成物からシート状に形成されてなるが、半硬化状態(Bステージ状態)になるまで、さらに加熱処理されたBステージシートであることが好ましい。
 前記Bステージシートとは樹脂シートの粘度として、常温(25度)においては10Pa・s~10Pa・sであるのに対して、100℃で10Pa・s~10Pa・sに粘度が低下するものである。また、後述する硬化後の樹脂シート硬化物は加温によっても溶融することはない。尚、上記粘度は、動的粘弾性測定(周波数1ヘルツ、荷重40g、昇温速度3℃/分)によって測定される。
The resin sheet is formed from the resin composition into a sheet shape, and is preferably a B stage sheet that is further heat-treated until it is in a semi-cured state (B stage state).
The B-stage sheet is a resin sheet having a viscosity of 10 4 Pa · s to 10 5 Pa · s at room temperature (25 degrees), whereas it is 10 2 Pa · s to 10 3 Pa · s at 100 ° C. The viscosity is reduced to s. Moreover, the cured resin sheet to be described later is not melted by heating. The viscosity is measured by dynamic viscoelasticity measurement (frequency 1 Hz, load 40 g, temperature increase rate 3 ° C./min).
 樹脂シートは例えば、以下のようにして製造することができる。
 PETフィルム等の離型フィルム上に、メチルエチルケトンやシクロヘキサンノン等の溶剤を添加したワニス状の樹脂組成物を、塗布後、乾燥することで樹脂層を得ることができる。
 塗布は、公知の方法により実施することができる。塗布方法として、具体的には、コンマコート、ダイコート、リップコート、グラビアコート等の方法が挙げられる。所定の厚みに樹脂層を形成するための塗布方法としては、ギャップ間に被塗工物を通過させるコンマコート法、ノズルから流量を調整した樹脂ワニスを塗布するダイコート法等を適用することができる。例えば、乾燥前の樹脂層の厚みが50μm~500μmである場合、コンマコート法を用いることが好ましい。
For example, the resin sheet can be manufactured as follows.
A resin layer can be obtained by applying and drying a varnish-like resin composition to which a solvent such as methyl ethyl ketone or cyclohexanenon is added on a release film such as a PET film.
Application | coating can be implemented by a well-known method. Specific examples of the coating method include comma coating, die coating, lip coating, and gravure coating. As a coating method for forming a resin layer with a predetermined thickness, a comma coating method in which an object to be coated is passed between gaps, a die coating method in which a resin varnish whose flow rate is adjusted from a nozzle, or the like can be applied. . For example, when the thickness of the resin layer before drying is 50 μm to 500 μm, it is preferable to use a comma coating method.
 塗工後の樹脂層は硬化反応がほとんど進行していないため、可とう性を有するものの、シートとしての柔軟性に乏しく、支持体である前記PETフィルムを除去した状態ではシート自立性に乏しく、取り扱いが困難である。そこで後述する加熱処理により樹脂組成物をBステージ化することが好ましい。
 得られた樹脂層を加熱処理する条件は、樹脂組成物をBステージ状態にまで半硬化することができれば特に制限されず、樹脂組成物の構成に応じて適宜選択することができる。前記加熱処理には、熱真空プレス及び熱ロールラミネート等から選択される加熱処理方法が好ましい。これにより、塗工の際に生じた樹脂層中の空隙(ボイド)を減少させることができ、平坦なBステージシートを効率よく製造することができる。
 具体的には例えば、加熱温度80℃~130℃で、1秒間~30秒間、減圧下(例えば、1MPa)で加熱プレス処理することで樹脂組成物をBステージ状態に半硬化することができる。
Since the resin layer after coating has hardly progressed the curing reaction, it has flexibility, but it has poor flexibility as a sheet, and in the state where the PET film as a support is removed, the sheet is not self-supporting, It is difficult to handle. Therefore, it is preferable to B-stage the resin composition by heat treatment described below.
The conditions for heat-treating the obtained resin layer are not particularly limited as long as the resin composition can be semi-cured to the B stage state, and can be appropriately selected according to the configuration of the resin composition. The heat treatment is preferably a heat treatment method selected from a hot vacuum press and a hot roll laminate. Thereby, the void | void (void) in the resin layer produced in the case of coating can be reduced, and a flat B stage sheet | seat can be manufactured efficiently.
Specifically, for example, the resin composition can be semi-cured in a B-stage state by heat-pressing at a heating temperature of 80 ° C. to 130 ° C. for 1 to 30 seconds under reduced pressure (for example, 1 MPa).
 前記樹脂シートの厚みは、目的に応じて適宜選択することができ、例えば、50μm以上200μm以下とすることができ、熱伝導率及びシート可とう性の観点から、60μm以上150μm以下であることが好ましい。また前記樹脂シートは2層以上の樹脂層を積層しながら熱プレスすることにより作製することもできる。 The thickness of the resin sheet can be appropriately selected according to the purpose. For example, it can be 50 μm or more and 200 μm or less, and from the viewpoint of thermal conductivity and sheet flexibility, it is 60 μm or more and 150 μm or less. preferable. The resin sheet can also be produced by hot pressing while laminating two or more resin layers.
<樹脂付金属箔>
 本発明の樹脂付金属箔は、金属箔と、前記金属箔上に配置された前記熱伝導性樹脂組成物の半硬化物である半硬化樹脂層とを有する。前記熱伝導性樹脂組成物に由来する半硬化樹脂層を有することで、熱伝導率、電気絶縁性、可とう性に優れる。
 前記半硬化樹脂層は前記樹脂組成物をBステージ状態になるように加熱処理して得られるものである。
<Metal foil with resin>
The metal foil with resin of this invention has metal foil and the semi-hardened resin layer which is a semi-hardened material of the said heat conductive resin composition arrange | positioned on the said metal foil. By having a semi-cured resin layer derived from the thermal conductive resin composition, the thermal conductivity, electrical insulation, and flexibility are excellent.
The semi-cured resin layer is obtained by heat-treating the resin composition so as to be in a B-stage state.
 前記金属箔としては、金箔、銅箔、アルミニウム箔など特に制限されないが、一般的には銅箔が用いられる。
 前記金属箔の厚みとしては、1μm~35μmであれば特に制限されないが、20μm以下の金属箔を用いることで可とう性がより向上する。
 また、金属箔として、ニッケル、ニッケル-リン、ニッケル-スズ合金、ニッケル-鉄合金、鉛、鉛-スズ合金等を中間層とし、この両面に0.5μm~15μmの銅層と10μm~300μmの銅層を設けた3層構造の複合箔、又はアルミニウムと銅箔とを複合した2層構造複合箔を用いることもできる。
The metal foil is not particularly limited, such as a gold foil, a copper foil, and an aluminum foil, but generally a copper foil is used.
The thickness of the metal foil is not particularly limited as long as it is 1 μm to 35 μm, but flexibility is further improved by using a metal foil of 20 μm or less.
In addition, nickel, nickel-phosphorus, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as the intermediate layers for the metal foil, and 0.5 μm to 15 μm copper layer and 10 μm to 300 μm on both sides. A composite foil having a three-layer structure provided with a copper layer or a two-layer structure composite foil in which aluminum and copper foil are combined can also be used.
 樹脂付金属箔は、前記熱伝導性樹脂組成物を金属箔上に塗布・乾燥することにより樹脂層を形成することで製造することができ、樹脂層の形成方法は既述の通りである。 The metal foil with resin can be produced by forming a resin layer by applying and drying the thermally conductive resin composition on the metal foil, and the method for forming the resin layer is as described above.
 樹脂付金属箔の製造条件は特に制限されないが、乾燥後の樹脂層において、樹脂ワニスに使用した有機溶媒が80質量%以上揮発していることが好ましい。乾燥温度は80℃~180℃程度であり、乾燥時間はワニスのゲル化時間との兼ね合いで決めることができ、特に制限はない。樹脂ワニスの塗布量は、乾燥後の樹脂層の厚みが50μm~200μmとなるように塗布することが好ましく、60μm~150μmとなることがより好ましい。
 前記乾燥後の樹脂層は、加熱処理されることでBステージ状態になる。前記熱伝導性樹脂組成物を加熱処理する条件はBステージシートにおける加熱処理条件と同様である。
The production conditions of the resin-coated metal foil are not particularly limited, but it is preferable that 80% by mass or more of the organic solvent used for the resin varnish is volatilized in the resin layer after drying. The drying temperature is about 80 ° C. to 180 ° C., and the drying time can be determined in consideration of the gelling time of the varnish, and is not particularly limited. The coating amount of the resin varnish is preferably applied so that the thickness of the resin layer after drying is 50 μm to 200 μm, and more preferably 60 μm to 150 μm.
The resin layer after drying becomes a B stage state by heat treatment. The conditions for heat treatment of the thermally conductive resin composition are the same as the heat treatment conditions for the B-stage sheet.
<樹脂シート硬化物>
 本発明の樹脂シート硬化物は、前記熱伝導性樹脂組成物を加熱処理して硬化してなる。熱伝導性樹脂組成物を硬化する硬化方法は、熱伝導性樹脂組成物の構成や樹脂シート硬化物の目的等に応じて適宜選択することができるが、加熱加圧処理であることが好ましい。加熱加圧処理の条件は例えば、加熱温度が80℃~250℃で、圧力が0.5MPa~8.0MPaであることが好ましく、加熱温度が130℃~230℃で、圧力が1.5MPa~5.0MPaであることがより好ましい。
 加熱加圧処理する処理時間は、加熱温度等に応じて適宜選択できる。例えば2~8時間とすることができ、4~6時間であることが好ましい。
 また加熱加圧処理は1回で行ってもよく、加熱温度等を変化させて2回以上行ってもよい。
<Hardened resin sheet>
The cured resin sheet of the present invention is obtained by heat-treating the thermally conductive resin composition. The curing method for curing the thermally conductive resin composition can be appropriately selected according to the configuration of the thermally conductive resin composition, the purpose of the cured resin sheet, and the like, but is preferably a heat and pressure treatment. The conditions for the heat and pressure treatment are, for example, that the heating temperature is 80 ° C. to 250 ° C., the pressure is preferably 0.5 MPa to 8.0 MPa, the heating temperature is 130 ° C. to 230 ° C., and the pressure is 1.5 MPa to More preferably, it is 5.0 MPa.
The treatment time for the heat and pressure treatment can be appropriately selected according to the heating temperature and the like. For example, it can be 2 to 8 hours, and preferably 4 to 6 hours.
Further, the heat and pressure treatment may be performed once, or may be performed twice or more by changing the heating temperature or the like.
<放熱用部材>
 本発明の放熱用部材は、金属ワークと、前記金属ワークと接するように前記金属ワーク上に配置された前記Bステージシート又は樹脂シート硬化物とを少なくとも備えて構成される。
 ここで「金属ワーク」とは、基板、フィン等を含む、放熱部材として機能することができる金属材料からなる成形品を意味する。本発明の一実施形態において、金属ワークはAlとCu等の各種金属から構成される基板であることが好ましい。
<Heat dissipation member>
The heat radiating member of the present invention includes at least a metal workpiece and the B stage sheet or the cured resin sheet disposed on the metal workpiece so as to be in contact with the metal workpiece.
Here, the “metal workpiece” means a molded product made of a metal material that can function as a heat dissipation member, including a substrate, fins, and the like. In one embodiment of the present invention, the metal workpiece is preferably a substrate composed of various metals such as Al and Cu.
 本発明の放熱用部材の一実施形態として、前記熱伝導性樹脂組成物をシート状に成形して得られる樹脂シートを用いた放熱用部材を図1に例示する。樹脂シートはBステージシートであっても、樹脂シート硬化物であってもよい。
 図1において、樹脂シート10は、例えばAlから構成される第一の金属ワーク20と、例えばCuから構成される第二の金属ワーク30との間に位置し、その片面は金属ワーク20表面に接着し、他面は金属ワーク30表面に接着している。前記樹脂シート10は可とう性に優れるとともに、第一及び第二の金属ワーク20及び30の各接触面との優れた接着性を実現することができる。
 金属ワークの接着に適用される樹脂シートは、接着性の観点から、一般的に5MPa以上のせん断強度を有することが望ましい。後述する実施例から明らかなように、本発明によれば、上記せん断強度を満足する樹脂シートを提供することができる。また、樹脂シート10は優れた熱伝導性を有するため、例えば、Cuから構成される第二の金属ワーク30から発生した熱を、樹脂シート10を介してAlから構成される第一の金属ワーク20側へ効率良く伝導し、外部へ放熱することが可能となる。
As an embodiment of the heat radiating member of the present invention, a heat radiating member using a resin sheet obtained by molding the heat conductive resin composition into a sheet is illustrated in FIG. The resin sheet may be a B stage sheet or a cured resin sheet.
In FIG. 1, the resin sheet 10 is located between a first metal workpiece 20 made of, for example, Al and a second metal workpiece 30 made of, for example, Cu, and one surface thereof is on the surface of the metal workpiece 20. The other surface is bonded to the surface of the metal work 30. The resin sheet 10 is excellent in flexibility and can realize excellent adhesiveness with the contact surfaces of the first and second metal workpieces 20 and 30.
In general, the resin sheet applied to the adhesion of the metal workpiece desirably has a shear strength of 5 MPa or more from the viewpoint of adhesion. As will be apparent from Examples described later, according to the present invention, a resin sheet satisfying the above-described shear strength can be provided. In addition, since the resin sheet 10 has excellent thermal conductivity, for example, the heat generated from the second metal work 30 made of Cu is used as the first metal work made of Al through the resin sheet 10. It becomes possible to conduct efficiently to the 20 side and to dissipate heat to the outside.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。尚、特に断りのない限り、「部」及び「%」は質量基準である。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples. Unless otherwise specified, “part” and “%” are based on mass.
(カテコールレゾルシノールノボラック(CRN)の合成)
 攪拌機、冷却器、温度計を備えた3Lのセパラブルフラスコにレゾルシノール594g、カテコール66g、37%ホルマリン316.2g、シュウ酸15g、水100gを入れ、オイルバスで加温しながら100℃に昇温させ、この還流温度で4時間反応を続けた。その後、水を留去しながらフラスコ内の温度を170℃に昇温させ、170℃を保持しながら8時間反応を続けた。
(Synthesis of catechol resorcinol novolak (CRN))
Into a 3 L separable flask equipped with a stirrer, a cooler and a thermometer, 594 g of resorcinol, 66 g of catechol, 316.2 g of 37% formalin, 15 g of oxalic acid and 100 g of water were added, and the temperature was raised to 100 ° C. while heating in an oil bath. The reaction was continued for 4 hours at this reflux temperature. Thereafter, the temperature in the flask was raised to 170 ° C. while distilling off water, and the reaction was continued for 8 hours while maintaining 170 ° C.
 その後減圧下、20分間濃縮を行い系内の水等を除去して、カテコールレゾルシノールノボラックを取り出した。得られたカテコールレゾルシノールノボラック(CRN)樹脂の数平均分子量は530、重量平均分子量は930であった。またCRN樹脂の水酸基当量は65であった。上記により得たカテコールレゾルシノールノボラック(CRN)樹脂を以下の実施例で用いた。 Thereafter, concentration was performed under reduced pressure for 20 minutes to remove water and the like in the system, and catechol resorcinol novolak was taken out. The obtained catechol resorcinol novolak (CRN) resin had a number average molecular weight of 530 and a weight average molecular weight of 930. The hydroxyl equivalent of the CRN resin was 65. The catechol resorcinol novolak (CRN) resin obtained above was used in the following examples.
(エラストマの合成)
 以下実施例で使用されているエラストマは、特開2010-106220号公報を参照して合成した。エラストマの構成に応じて、適当な溶媒を用い、モノマー成分を所望の比率となるように重合開始剤等とともに混合、攪拌し、加熱して共重合して得た。
(実施例1)
1.エラストマ含有樹脂シートの作製
 100cmのポリ瓶中に、カップリング剤として3-グリシジルオキシプロピルトリメトキシシラン0.0960質量部(信越化学株式会社製、商品名「KBM403」)と、エラストマとして下記構造式を有するアクリル樹脂REB122-4合成品、重量平均分子量24000)0.5027質量部と、硬化剤として上記で合成したカテコールレゾルシノールノボラック(CRN)樹脂(重量平均分子量930、カテコール:レゾルシノール=5:95)のシクロヘキサノン溶解品4.7758質量部(固形分50質量%)をこの順序で加えた。
(Elastomer synthesis)
The elastomer used in the following examples was synthesized with reference to Japanese Patent Application Laid-Open No. 2010-106220. According to the structure of the elastomer, an appropriate solvent was used, and the monomer components were mixed with a polymerization initiator and the like so as to have a desired ratio, stirred, heated and copolymerized.
Example 1
1. Production of Elastomer-Containing Resin Sheet In a 100 cm 3 plastic bottle, 0.0960 parts by mass of 3-glycidyloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KBM403”) as a coupling agent and the following structure as an elastomer 0.5027 parts by mass of an acrylic resin REB122-4 having a formula, weight average molecular weight 24000) and a catechol resorcinol novolak (CRN) resin synthesized above as a curing agent (weight average molecular weight 930, catechol: resorcinol = 5: 95) ) 4.7758 parts by mass of a cyclohexanone-dissolved product (solid content 50% by mass) was added in this order.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 次いで、上記ポリ瓶中にアルミナボール120.00質量部(粒子径3mm)を投入した後、無機フィラとして重量平均粒子径(D50)18μmの酸化アルミニウム(AA-18)66.72質量部(住友化学株式会社製、無機フィラ中の含有率74.0体積%)、重量平均粒子径(D50)3μmの酸化アルミニウム(AA-3)12.62質量部(住友化学株式会社製、無機フィラ中の含有率14.0体積%)、重量平均粒子径(D50)0.4μmの酸化アルミニウム(AA-04)10.82質量部(住友化学株式会社製、無機フィラ中の含有率12.0体積%)を加えた。
 さらに、メチルエチルケトン15.84質量部とシクロヘキサノン2.89質量部を加えて混合した。攪拌して均一になったことを確認した後に、1-(3-メチル-4-ヒドロキシフェニル)-4-(4-ヒドロキシフェニル)-1-シクロヘキセンとエピクロルヒドリンとから合成された1-{(3-メチル-4-オキシラニルメトキシ)フェニル}-4-(4-オキシラニルメトキシフェニル)-1-シクロヘキセン7.1638質量部(エポキシ樹脂)、及びトリフェニルホスフィン0.0503質量部(和光純薬製、硬化触媒)を加えてさらに混合し、40時間~60時間にわたってボールミル粉砕を行い、熱伝導性樹脂組成物として樹脂シート塗工液を得た。
Next, after putting 120.00 parts by mass of alumina balls (particle diameter 3 mm) into the plastic bottle, 66.72 parts by mass of aluminum oxide (AA-18) having a weight average particle diameter (D50) of 18 μm as an inorganic filler (Sumitomo) Chemical Co., Ltd., 74.0% by volume in inorganic filler), weight average particle size (D50) 3 μm of aluminum oxide (AA-3) 12.62 parts by mass (manufactured by Sumitomo Chemical Co., Ltd., inorganic filler) 10.2 parts by volume of aluminum oxide (AA-04) having a content rate of 14.0% by volume and a weight average particle size (D50) of 0.4 μm (Sumitomo Chemical Co., Ltd., content rate of 12.0% by volume in inorganic filler) ) Was added.
Further, 15.84 parts by mass of methyl ethyl ketone and 2.89 parts by mass of cyclohexanone were added and mixed. After confirmation of homogeneity by stirring, 1-{(3 synthesized from 1- (3-methyl-4-hydroxyphenyl) -4- (4-hydroxyphenyl) -1-cyclohexene and epichlorohydrin was obtained. -Methyl-4-oxiranylmethoxy) phenyl} -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene 7.1638 parts by mass (epoxy resin) and 0.053 parts by mass triphenylphosphine (Wako Pure) Further, the mixture was further mixed and ball milled for 40 to 60 hours to obtain a resin sheet coating solution as a heat conductive resin composition.
 得られた樹脂シート塗工液を、アプリケーターを用いてポリエチレンテレフタレートフィルム(藤森工業株式会社製、75E-0010CTR-4、以下PETフィルムと略)の離型面上に厚みが約300μmになるように塗布し、常態で15分放置した後に100℃のボックス型オーブンで30分乾燥させて、PETフィルム上に樹脂組成物層を形成した。次いで、空気に触れていた樹脂組成物層の上面をPETフィルムで覆い、熱プレス(上熱板150℃、下熱板80℃、圧力1.5MPa、処理時間3分)により平坦化処理を行い、200μmの厚みを有するエラストマ含有樹脂シートとしてBステージシートを得た。
 得られたBステージシートの可とう性を、以下のようにして評価したところ、良好であり、A判定であった。
Using the applicator, the obtained resin sheet coating solution is applied to a release surface of a polyethylene terephthalate film (Fujimori Kogyo Co., Ltd., 75E-0010CTR-4, hereinafter abbreviated as PET film) to a thickness of about 300 μm. It was coated and allowed to stand for 15 minutes in a normal state, and then dried in a box oven at 100 ° C. for 30 minutes to form a resin composition layer on the PET film. Next, the upper surface of the resin composition layer that has been in contact with air is covered with a PET film, and flattened by hot pressing (upper hot plate 150 ° C., lower hot plate 80 ° C., pressure 1.5 MPa, treatment time 3 minutes). A B-stage sheet was obtained as an elastomer-containing resin sheet having a thickness of 200 μm.
When the flexibility of the obtained B-stage sheet was evaluated as follows, it was good and was A.
(可とう性の評価)
 可とう性は、硬化前のBステージシートを主に指触にて判定した。判定基準は以下のとおりである。
-判定基準-
 A:取り扱いが良好で、成形時に支障が生じないと見なされる。
 B:硬くて脆く、成形時に慎重な取り扱いを要すると見なされる。
 なお、図2は、シートの可とう性判断におけるシートの状態を説明する模式的断面図である。図中、参照符号10は樹脂シート、40は支えを示す。図2(a)は、エラストマ未添加でシートの可とう性が乏しい状態を示し、図2(b)は特定構造を有するエラストマの添加によってシートの可とう性が改善された状態を示している。
(Evaluation of flexibility)
The flexibility was determined mainly by touching the B stage sheet before curing. The judgment criteria are as follows.
-Criteria-
A: The handling is good and it is considered that no trouble occurs during molding.
B: Hard and brittle and considered to require careful handling during molding.
FIG. 2 is a schematic cross-sectional view for explaining the state of the sheet in determining the flexibility of the sheet. In the figure, reference numeral 10 denotes a resin sheet, and 40 denotes a support. FIG. 2 (a) shows a state in which the elastomer is not added and the flexibility of the sheet is poor, and FIG. 2 (b) shows a state in which the flexibility of the sheet is improved by adding an elastomer having a specific structure. .
2.樹脂シートの硬化物の作製
 上述の方法によって得たエラストマ含有樹脂シート(Bステージシート)の両面からPETフィルムを剥がし、両面を105μm厚の銅箔(古河電工株式会社製、GTS箔)で挟み、真空熱プレス(上熱板150℃、下熱板80℃、真空度≦1kPa、圧力4MPa、処理時間7分)を行い、その後、ボックス型オーブンに入れて140℃で2時間、165℃で2時間、190℃で2時間のステップキュアにより硬化を行った。得られた銅箔挟み硬化物から、銅のみを過硫酸ナトリウム溶液を用いてエッチング除去し、アクリル樹脂(REB122-4)入りの熱伝導性樹脂シートの硬化物を得た。
 得られた硬化物の熱伝導率を、以下のようにしてキセノンフラッシュ法により測定した結果、熱伝導率は8.0W/mKであった。
2. Preparation of cured product of resin sheet The PET film is peeled off from both sides of the elastomer-containing resin sheet (B stage sheet) obtained by the method described above, and both sides are sandwiched between 105 μm-thick copper foils (Furukawa Electric Co., Ltd., GTS foil), Vacuum heat press (upper hot plate 150 ° C, lower hot plate 80 ° C, degree of vacuum ≤ 1 kPa, pressure 4 MPa, treatment time 7 minutes), then put in a box-type oven at 140 ° C for 2 hours, 165 ° C for 2 hours Curing was performed by step curing at 190 ° C. for 2 hours. From the obtained cured copper foil, only copper was removed by etching using a sodium persulfate solution to obtain a cured product of a heat conductive resin sheet containing an acrylic resin (REB122-4).
As a result of measuring the thermal conductivity of the obtained cured product by the xenon flash method as follows, the thermal conductivity was 8.0 W / mK.
(熱伝導率の測定方法)
 NETZSCH社製のNanoflash LFA447型Xeフラッシュ法熱拡散率測定装置を用いてシートの熱拡散率を測定した。得られた熱拡散率の数値に比熱Cp(J/g・K)と密度d(g/cm)を乗算することによって、熱伝導率(W/mK)を算出した。全ての測定は25±1℃で行った。
(Measurement method of thermal conductivity)
The thermal diffusivity of the sheet was measured using a Nanoflash LFA447 Xe flash method thermal diffusivity measuring apparatus manufactured by NETZSCH. The thermal conductivity (W / mK) was calculated by multiplying the numerical value of the obtained thermal diffusivity by the specific heat Cp (J / g · K) and the density d (g / cm 3 ). All measurements were performed at 25 ± 1 ° C.
3.エラストマ含有樹脂シートの金属ワークへの接着
 上述の方法によって得たエラストマ含有樹脂シート(Bステージシート)の両面からPETフィルムを剥がし、両面をそれぞれ銅板とアルミ板で挟み、真空熱プレス(熱板温度140℃、真空度≦1kPa、圧力0.2MPa、処理時間10分)を行い、その後ボックス型オーブンに入れて140℃で2時間、165℃で2時間、190℃で2時間のステップキュアにより硬化を行った。このようにして得たREB122-4入りBステージシートを貼り付けた金属ワークのせん断接着強度を、以下のようにして測定したところ、7.5[MPa]であった。
3. Adhesion of the elastomer-containing resin sheet to the metal workpiece The PET film is peeled off from both sides of the elastomer-containing resin sheet (B stage sheet) obtained by the above method, and both sides are sandwiched between a copper plate and an aluminum plate, and vacuum hot press (hot plate temperature) 140 ° C, degree of vacuum ≤ 1 kPa, pressure 0.2 MPa, treatment time 10 minutes), then put in a box-type oven for 2 hours at 140 ° C, 2 hours at 165 ° C and 2 hours at 190 ° C to cure Went. The shear bond strength of the metal workpiece on which the B stage sheet containing REB122-4 thus obtained was affixed was 7.5 [MPa].
(接着強度の測定方法)
 株式会社オリエンテック製のテンシロン万能試験機「RTC-1350A」を使用し、試験速度1mm/分の条件で、銅板とアルミ板とを剥離することで、シートワークのせん断接着強度を測定した。
(Measurement method of adhesive strength)
Using a Tensilon universal testing machine “RTC-1350A” manufactured by Orientec Co., Ltd., the copper plate and the aluminum plate were peeled off at a test speed of 1 mm / min to measure the shear adhesive strength of the sheet work.
(実施例2)
 アクリル樹脂として、「REB122-4」の代わりに、下記構造式を有する「REB124-6」(重量平均分子量44000)を使用したことを除き、全て実施例1と同様にしてアクリル樹脂(REB124-6)入りBステージシートを作製した。得られたBステージシートの可とう性を実施例1と同様にして評価したところ、良好であり、A判定であった。
(Example 2)
An acrylic resin (REB124-6) was used in the same manner as in Example 1 except that “REB124-6” (weight average molecular weight 44000) having the following structural formula was used instead of “REB122-4” as the acrylic resin. A) B-stage sheet was prepared. When the flexibility of the obtained B-stage sheet was evaluated in the same manner as in Example 1, it was good and the evaluation was A.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 次に、実施例1と同様にして、REB124-6入りBステージシートの硬化物を作製した。得られた硬化物の熱伝導率をキセノンフラッシュ法により、実施例1と同様にして測定した結果、熱伝導率は7.0W/mKであった。
 さらに、実施例1と同様にして、REB124-6入りBステージシートを貼り付けた金属ワークを作製した。得られた金属ワークのせん断接着強度を実施例1と同様にして測定したところ、7.4[MPa]であった。
Next, a cured B-stage sheet containing REB124-6 was produced in the same manner as in Example 1. As a result of measuring the thermal conductivity of the obtained cured product by the xenon flash method in the same manner as in Example 1, the thermal conductivity was 7.0 W / mK.
Further, in the same manner as in Example 1, a metal workpiece on which a B stage sheet containing REB124-6 was attached was produced. When the shear adhesive strength of the obtained metal workpiece was measured in the same manner as in Example 1, it was 7.4 [MPa].
(実施例3)
 アクリル樹脂として、「REB122-4」の代わりに、下記構造式を有する「REB58-5」(重量平均分子量34000)を使用したことを除き、全て実施例1と同様にしてアクリル樹脂(REB58-5)入りBステージシートを作製した。得られたBステージシートの可とう性は良好であった。
(Example 3)
An acrylic resin (REB58-5) was used in the same manner as in Example 1 except that “REB58-5” (weight average molecular weight 34000) having the following structural formula was used instead of “REB122-4” as the acrylic resin. A) B-stage sheet was prepared. The flexibility of the obtained B stage sheet was good.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 次に、実施例1と同様にして、REB58-5入りBステージシートの硬化物を作製した。得られた硬化物の熱伝導率をキセノンフラッシュ法により、実施例1と同様にして測定した結果、熱伝導率は6.8W/mKであった。
 さらに、実施例1と同様にして、REB58-5入りBステージシートを貼り付けた金属ワークを作製した。得られた金属ワークのせん断接着強度を、実施例1と同様にして測定したところ、7.6[MPa]であった。
Next, a cured B-stage sheet containing REB58-5 was produced in the same manner as in Example 1. As a result of measuring the thermal conductivity of the obtained cured product by the xenon flash method in the same manner as in Example 1, the thermal conductivity was 6.8 W / mK.
Further, in the same manner as in Example 1, a metal workpiece on which a B stage sheet containing REB58-5 was attached was produced. When the shear adhesive strength of the obtained metal workpiece was measured in the same manner as in Example 1, it was 7.6 [MPa].
(実施例4)
 アクリル樹脂として、「REB122-4」の代わりに、下記構造式を有する「REB124-2」(重量平均分子量39000)を使用したことを除き、全て実施例1と同様にしてアクリル樹脂(REB124-2)入りBステージシートを作製した。得られたBステージシートの可とう性を実施例1と同様にして評価したところ、良好であり、A判定であった。
Example 4
An acrylic resin (REB124-2) was used in the same manner as in Example 1 except that “REB124-2” (weight average molecular weight 39000) having the following structural formula was used instead of “REB122-4”. A) B-stage sheet was prepared. When the flexibility of the obtained B-stage sheet was evaluated in the same manner as in Example 1, it was good and the evaluation was A.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 次に、実施例1と同様にして、REB124-2入りBステージシートの硬化物を作製した。得られた硬化物の熱伝導率をキセノンフラッシュ法により、実施例1と同様にして測定した結果、熱伝導率は5.5W/mKであった。
 さらに、実施例1と同様にして、REB124-2入りBステージシートを貼り付けた金属ワークを作製した。得られた金属ワークのせん断接着強度を、実施例1と同様にして測定したところ、5.0[MPa]であった。
Next, a cured B-stage sheet containing REB 124-2 was produced in the same manner as in Example 1. As a result of measuring the thermal conductivity of the obtained cured product by the xenon flash method in the same manner as in Example 1, the thermal conductivity was 5.5 W / mK.
Further, in the same manner as in Example 1, a metal workpiece on which a B stage sheet containing REB 124-2 was attached was produced. When the shear adhesive strength of the obtained metal workpiece was measured in the same manner as in Example 1, it was 5.0 [MPa].
(実施例5)
 アクリル樹脂として、「REB122-4」の代わりに、下記構造式を有する「REB146-2」(重量平均分子量43081)を使用したことを除き、全て実施例1と同様にしてアクリル樹脂(REB146-2)入りBステージシートを作製した。得られたBステージシートの可とう性を実施例1と同様にして評価したところ、良好であり、A判定であった。
Figure JPOXMLDOC01-appb-C000012
(Example 5)
An acrylic resin (REB 146-2) was used in the same manner as in Example 1 except that “REB 146-2” (weight average molecular weight 43081) having the following structural formula was used instead of “REB 122-4” as the acrylic resin. A) B-stage sheet was prepared. When the flexibility of the obtained B-stage sheet was evaluated in the same manner as in Example 1, it was good and the evaluation was A.
Figure JPOXMLDOC01-appb-C000012
 次に、実施例1と同様にして、REB146-2入りBステージシートの硬化物を作製した。得られた硬化物の熱伝導率をキセノンフラッシュ法により、実施例1と同様にして測定した結果、熱伝導率は6.0W/mKであった。
 さらに、実施例1と同様にして、REB146-2入りBステージシートを貼り付けた金属ワークを作製した。得られた金属ワークのせん断接着強度を、実施例1と同様にして測定したところ、5.1[MPa]であった。
Next, a cured product of a B stage sheet containing REB 146-2 was produced in the same manner as in Example 1. As a result of measuring the thermal conductivity of the obtained cured product by the xenon flash method in the same manner as in Example 1, the thermal conductivity was 6.0 W / mK.
Further, in the same manner as in Example 1, a metal workpiece on which a B stage sheet containing REB 146-2 was attached was produced. When the shear adhesive strength of the obtained metal workpiece was measured in the same manner as in Example 1, it was 5.1 [MPa].
(実施例6)
 アクリル樹脂として、「REB122-4」の代わりに、下記構造式を有する「REB100-5」(重量平均分子量25000)を使用したことを除き、全て実施例1と同様にしてアクリル樹脂(REB100-5)入りBステージシートを作製した。得られたBステージシートの可とう性を実施例1と同様にして評価したところ、良好であり、A判定であった。
(Example 6)
An acrylic resin (REB100-5) was used in the same manner as in Example 1 except that “REB100-5” (weight average molecular weight 25000) having the following structural formula was used instead of “REB122-4” as the acrylic resin. A) B-stage sheet was prepared. When the flexibility of the obtained B-stage sheet was evaluated in the same manner as in Example 1, it was good and the evaluation was A.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 次に、実施例1と同様にして、REB100-5入りBステージシートの硬化物を作製した。得られた硬化物の熱伝導率をキセノンフラッシュ法により、実施例1と同様にして測定した結果、熱伝導率は7.0W/mKであった。
 さらに、実施例1と同様にして、REB100-5入りBステージシートを貼り付けた金属ワークを作製した。得られた金属ワークのせん断接着強度を、実施例1と同様にして測定したところ、5.0[MPa]であった。
Next, in the same manner as in Example 1, a cured B stage sheet containing REB 100-5 was produced. As a result of measuring the thermal conductivity of the obtained cured product by the xenon flash method in the same manner as in Example 1, the thermal conductivity was 7.0 W / mK.
Further, in the same manner as in Example 1, a metal workpiece on which a B stage sheet containing REB 100-5 was attached was produced. When the shear adhesive strength of the obtained metal workpiece was measured in the same manner as in Example 1, it was 5.0 [MPa].
(比較例1)
1.エラストマ非含有樹脂シートの作製
 100cmのポリ瓶中に、3-グリシジルオキシプロピルトリメトキシシラン0.0960質量部(信越化学株式会社製、商品名「KBM403」)と、実施例1と同様にして予め調製したカテコールレゾルシノールノボラック(CRN)樹脂のシクロヘキサノン溶解品5.0272質量部(固形分50質量%)をこの順序で加えた。
 次いで、上記ポリ瓶中にアルミナボール120.00質量部(粒子径3mm)を投入した後、重量平均粒子径18μmの酸化アルミニウム(AA-18)66.72質量部(住友化学株式会社製、無機フィラ中の含有率74.0体積%)、重量平均粒子径3μmの酸化アルミニウム(AA-3)12.62質量部(住友化学株式会社製、無機フィラ中の含有率14.0体積%)、重量平均粒子径0.4μmの酸化アルミニウム(AA-04)10.82質量部(住友化学株式会社製、無機フィラ中の含有率12.0体積%)を加えた。さらに、メチルエチルケトン15.84質量部とシクロヘキサノン2.77質量部を加えて混合した。攪拌して均一になったことを確認した後に、1-(3-メチル-4-ヒドロキシフェニル)-4-(4-ヒドロキシフェニル)-1-シクロヘキセンとエピクロルヒドリンから合成された1-{(3-メチル-4-オキシラニルメトキシ)フェニル}-4-(4-オキシラニルメトキシフェニル)-1-シクロヘキセン7.5407質量部(エポキシ樹脂)とトリフェニルホスフィン0.0503質量部(和光純薬製)を加えてさらに混合し、40~60時間にわたってボールミル粉砕を行い、樹脂シート塗工液を得た。
(Comparative Example 1)
1. Preparation of Elastomer-Free Resin Sheet In a 100 cm 3 plastic bottle, 0.0960 parts by mass of 3-glycidyloxypropyltrimethoxysilane (trade name “KBM403” manufactured by Shin-Etsu Chemical Co., Ltd.) was used in the same manner as in Example 1. A pre-prepared catechol resorcinol novolak (CRN) resin cyclohexanone-dissolved product 5.0272 parts by mass (solid content 50% by mass) was added in this order.
Next, 120.00 parts by mass of alumina balls (particle size 3 mm) were charged into the plastic bottle, followed by 66.72 parts by mass of aluminum oxide (AA-18) having a weight average particle size of 18 μm (manufactured by Sumitomo Chemical Co., Ltd., inorganic Content in the filler 74.0% by volume), 12.62 parts by mass of aluminum oxide (AA-3) having a weight average particle diameter of 3 μm (manufactured by Sumitomo Chemical Co., Ltd., content 14.0% by volume in the inorganic filler), 10.82 parts by mass of aluminum oxide (AA-04) having a weight average particle size of 0.4 μm (Sumitomo Chemical Co., Ltd., content: 12.0% by volume in inorganic filler) was added. Further, 15.84 parts by mass of methyl ethyl ketone and 2.77 parts by mass of cyclohexanone were added and mixed. After confirmation of homogeneity by stirring, the 1-{(3-methyl-4-hydroxyphenyl) -4- (4-hydroxyphenyl) -1-cyclohexene synthesized from epichlorohydrin and 1-{(3- Methyl-4-oxiranylmethoxy) phenyl} -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene 7.5407 parts by mass (epoxy resin) and 0.053 parts by mass of triphenylphosphine (manufactured by Wako Pure Chemical Industries, Ltd.) The mixture was further mixed and ball milled for 40 to 60 hours to obtain a resin sheet coating solution.
 上記で得られた塗工液を、アプリケーターを用いてポリエチレンテレフタレートフィルム(藤森工業株式会社製、75E-0010CTR-4、以下PETフィルムと略)の離型面上に厚みが約300μmになるように塗布し、常態で15分放置した後に100℃のボックス型オーブンで30分乾燥させ、次いで、空気に触れていた上面をPETフィルムで覆い、熱プレス(上熱板150℃、下熱板80℃、圧力1.5MPa、処理時間3分)により平坦化処理を行い、200μmの厚みを有するエラストマ非含有樹脂シートとしてBステージシートを得た。得られたBステージシートの可とう性を実施例1と同様にして評価したところ、シートは脆く、B判定であった。 Using the applicator, the coating solution obtained above is adjusted to a thickness of about 300 μm on the release surface of a polyethylene terephthalate film (Fujimori Kogyo Co., Ltd., 75E-0010CTR-4, hereinafter abbreviated as PET film). After coating and leaving in a normal state for 15 minutes, drying was performed in a box oven at 100 ° C. for 30 minutes, and then the upper surface that had been in contact with air was covered with a PET film and hot pressing (upper hot plate 150 ° C., lower hot plate 80 ° C. , Pressure 1.5 MPa, treatment time 3 minutes), and a B stage sheet was obtained as an elastomer-free resin sheet having a thickness of 200 μm. When the flexibility of the obtained B-stage sheet was evaluated in the same manner as in Example 1, the sheet was fragile and judged as B.
2.エラストマ非含有樹脂シートの硬化物の作製
 上述の方法によって得たエラストマ非含有樹脂シート(Bステージシート)の両面からPETフィルムを剥がし、両面を105μm厚の銅箔(古河電工株式会社製、GTS箔)で挟み、真空熱プレス(上熱板150℃、下熱板80℃、真空度≦1kPa、圧力4MPa、処理時間7分)を行い、その後ボックス型オーブンに入れて140℃で2時間、165℃で2時間、190℃で2時間のステップキュアにより硬化を行った。得られた銅箔挟み硬化物から、銅のみを過硫酸ナトリウム溶液を用いてエッチング除去し、エラストマ非含有Bステージシートの硬化物を得た。得られた硬化物の熱伝導率をキセノンフラッシュ法により、実施例1と同様にして測定した結果、熱伝導率は8.8W/mKであった。
2. Preparation of cured product of non-elastomer-containing resin sheet The PET film was peeled off from both sides of the non-elastomer-containing resin sheet (B stage sheet) obtained by the above-mentioned method, and both sides were 105 μm thick copper foil (Furukawa Electric Co., Ltd., GTS foil) ) And vacuum hot press (upper hot plate 150 ° C., lower hot plate 80 ° C., degree of vacuum ≦ 1 kPa, pressure 4 MPa, treatment time 7 minutes), then placed in a box-type oven at 140 ° C. for 2 hours, 165 Curing was performed by step curing at 2 ° C. for 2 hours and at 190 ° C. for 2 hours. From the obtained cured copper foil, only copper was removed by etching using a sodium persulfate solution to obtain a cured product of an elastomer-free B stage sheet. As a result of measuring the thermal conductivity of the obtained cured product by the xenon flash method in the same manner as in Example 1, the thermal conductivity was 8.8 W / mK.
3.エラストマ非含有樹脂シートの放熱部材への接着
 上述の方法によって得たエラストマ非含有樹脂シート(Bステージシート)の両面からPETフィルムを剥がし、両面をそれぞれ銅板とアルミ板で挟み、真空熱プレス(熱板温度140℃、真空度≦1kPa、圧力0.2MPa、処理時間10分)を行い、その後ボックス型オーブンに入れて140℃で2時間、165℃で2時間、190℃で2時間のステップキュアにより硬化を行った。このようにして得たエラストマ非含有樹脂シートを貼り付けた金属ワークのせん断接着強度を、実施例1と同様にして測定したところ、3.5[MPa]であった。
3. Adhesion of non-elastomer-containing resin sheet to heat radiating member The PET film is peeled off from both sides of the non-elastomer-containing resin sheet (B stage sheet) obtained by the above-described method, and both sides are sandwiched between a copper plate and an aluminum plate, and vacuum hot press (heat Plate temperature 140 ° C, degree of vacuum ≤ 1 kPa, pressure 0.2 MPa, treatment time 10 minutes), then put into a box-type oven at 140 ° C for 2 hours, 165 ° C for 2 hours, 190 ° C for 2 hours Was cured. The shear bond strength of the metal workpiece on which the elastomer-free resin sheet thus obtained was affixed was measured in the same manner as in Example 1 and found to be 3.5 [MPa].
(比較例2)
 「REB122-4」(アクリル樹脂)の代わりに、シリコーン系樹脂(信越化学株式会社製、商品名「X-22-162C」)を使用したことを除き、全て実施例1と同様にしてX-22-162C入りのBステージシートを作製した。得られたBステージシートの可とう性を実施例1と同様にして評価したところ、シートは脆く、B判定であった。
(Comparative Example 2)
Except that a silicone resin (trade name “X-22-162C” manufactured by Shin-Etsu Chemical Co., Ltd.) was used in place of “REB122-4” (acrylic resin), X- A B-stage sheet containing 22-162C was produced. When the flexibility of the obtained B-stage sheet was evaluated in the same manner as in Example 1, the sheet was fragile and judged as B.
 得られたBステージシートについて、実施例1と同様にして硬化物を作製したが、脆いために熱伝導率の測定はできなかった。 For the obtained B stage sheet, a cured product was produced in the same manner as in Example 1. However, because of the brittleness, the thermal conductivity could not be measured.
 次に、実施例1と同様にして、X-22-162C入りBステージシートを貼り付けた金属ワークを作製したが、硬化物が脆いため金属に接着不可能となり、せん断強度の測定はできなかった。 Next, in the same manner as in Example 1, a metal workpiece on which a B-stage sheet containing X-22-162C was attached was produced. However, since the cured product was brittle, it could not be bonded to the metal, and the shear strength could not be measured. It was.
(比較例3)
 「REB122-4」(アクリル樹脂)の代わりに、ニトリル系樹脂(日本ゼオン株式会社製、商品名「Nipol DN601」)を使用したことを除き、全て実施例1と同様にしてNipol DN601入りのBステージシートを作製した。得られたBステージシートの可とう性を実施例1と同様にして評価したところ、シートは脆く、B判定であった。
(Comparative Example 3)
Except that a nitrile resin (manufactured by ZEON Corporation, trade name “Nipol DN601”) was used instead of “REB122-4” (acrylic resin), B containing Nipol DN601 was the same as in Example 1. A stage sheet was prepared. When the flexibility of the obtained B-stage sheet was evaluated in the same manner as in Example 1, the sheet was fragile and judged as B.
 得られたBステージシートについて、実施例1と同様にして硬化物を作製したが、脆いために熱伝導率の測定はできなかった。 For the obtained B stage sheet, a cured product was produced in the same manner as in Example 1. However, because of the brittleness, the thermal conductivity could not be measured.
 次に、実施例1と同様にして、Nipol DN601入りBステージシートを貼り付けた金属ワークを作製したが、シートが脆いため金属に接着不可能となり、せん断強度の測定はできなかった。 Next, in the same manner as in Example 1, a metal workpiece on which a B stage sheet containing Nipol DN601 was affixed was produced. However, since the sheet was brittle, it could not be bonded to the metal, and the shear strength could not be measured.
 実施例1~5、及び比較例1~3で作製した熱伝導性シートの熱伝導率と可とう性、またシートを用いた金属ワークのせん断接着強度の検討結果を表1に纏めて示す。 Table 1 summarizes the examination results of the thermal conductivity and flexibility of the heat conductive sheets prepared in Examples 1 to 5 and Comparative Examples 1 to 3, and the shear bond strength of the metal workpiece using the sheets.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表1から分かるように、本発明の熱伝導性樹脂組成物で構成した樹脂シートは可とう性及び接着性に優れることが分かる。また樹脂シート硬化物は、熱伝導性及び接着性に優れることが分かる。 As can be seen from Table 1, it can be seen that the resin sheet composed of the heat conductive resin composition of the present invention is excellent in flexibility and adhesiveness. Moreover, it turns out that the resin sheet hardened | cured material is excellent in heat conductivity and adhesiveness.
 日本国特許出願2010-212022号の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。
The entire disclosure of Japanese Patent Application No. 2010-212022 is incorporated herein by reference.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.
 10 樹脂シート
 20 第1の金属ワーク
 30 第2の金属ワーク
 40 支え
DESCRIPTION OF SYMBOLS 10 Resin sheet 20 1st metal workpiece 30 2nd metal workpiece 40 Support

Claims (11)

  1.  エポキシ樹脂と、無機フィラと、分子内に少なくとも下記一般式(I)で示される構造単位を有するエラストマとを含有する熱伝導性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    (一般式(I)中、R、R及びRはそれぞれ独立して、直鎖若しくは分岐鎖のアルキル基、又は水素原子であり、Rは直鎖または分岐鎖のアルキル基であり、nは任意の整数を表す)
    A thermally conductive resin composition comprising an epoxy resin, an inorganic filler, and an elastomer having at least a structural unit represented by the following general formula (I) in the molecule.
    Figure JPOXMLDOC01-appb-C000001

    (In the general formula (I), R 1 , R 2 and R 3 are each independently a linear or branched alkyl group or a hydrogen atom, and R 4 is a linear or branched alkyl group. , N represents an arbitrary integer)
  2.  前記エラストマは、アクリル樹脂である請求項1に記載の熱伝導性樹脂組成物。 The thermally conductive resin composition according to claim 1, wherein the elastomer is an acrylic resin.
  3.  前記アクリル樹脂は、分子内にさらにカルボキシ基及びヒドロキシ基の少なくとも一方を有する請求項2に記載の熱伝導性樹脂組成物。 The heat conductive resin composition according to claim 2, wherein the acrylic resin further has at least one of a carboxy group and a hydroxy group in the molecule.
  4.  前記アクリル樹脂は、分子内にさらにアミノ基を有する請求項2又は請求項3に記載の熱伝導性樹脂組成物。 The heat conductive resin composition according to claim 2 or 3, wherein the acrylic resin further has an amino group in the molecule.
  5.  前記アクリル樹脂は、下記一般式(II)で示される構造を有する請求項2~請求項4のいずれか1項に記載の熱伝導性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002

    (式(II)中、各構造単位に記載した符号a、b、c及びdは、全構造単位における各構造単位のモル%であり、a+b+c+d=90モル%以上である。
     R21及びR22はそれぞれ独立して、互いに炭素数の異なる直鎖又は分岐鎖のアルキル基であり、R23~R26はそれぞれ独立して、水素原子又はメチル基である。)
    The thermally conductive resin composition according to any one of claims 2 to 4, wherein the acrylic resin has a structure represented by the following general formula (II).
    Figure JPOXMLDOC01-appb-C000002

    (In the formula (II), symbols a, b, c and d described in each structural unit are the mol% of each structural unit in all structural units, and a + b + c + d = 90 mol% or more.
    R 21 and R 22 are each independently a linear or branched alkyl group having a different carbon number, and R 23 to R 26 are each independently a hydrogen atom or a methyl group. )
  6.  式(II)におけるR21及びR22はそれぞれ独立して、互いに炭素数の異なる炭素数4~12の直鎖又は分岐鎖のアルキル基である請求項5に記載の熱伝導性樹脂組成物。 6. The thermally conductive resin composition according to claim 5, wherein R 21 and R 22 in formula (II) are each independently a linear or branched alkyl group having 4 to 12 carbon atoms having different carbon numbers.
  7.  さらにフェノール系硬化剤を含む請求項1~請求項6のいずれか1項に記載の熱伝導性樹脂組成物。 The heat conductive resin composition according to any one of claims 1 to 6, further comprising a phenolic curing agent.
  8.  請求項1~請求項7のいずれか1項に記載の熱伝導性樹脂組成物をシート状に成形してなる樹脂シート。 A resin sheet obtained by molding the thermally conductive resin composition according to any one of claims 1 to 7 into a sheet shape.
  9.  金属箔と、前記金属箔上に配置された請求項1~請求項7のいずれか1項に記載の熱伝導性樹脂組成物の半硬化物である半硬化樹脂層とを有する樹脂付金属箔。 A resin-coated metal foil comprising: a metal foil; and a semi-cured resin layer that is a semi-cured product of the thermally conductive resin composition according to any one of claims 1 to 7 disposed on the metal foil. .
  10.  請求項1~請求項7のいずれか1項に記載の熱伝導性樹脂組成物を熱処理物である樹脂シート硬化物。 A cured resin sheet, which is a heat-treated product of the thermally conductive resin composition according to any one of claims 1 to 7.
  11.  金属ワークと、前記金属ワーク上に配置された請求項8に記載の樹脂シート又は請求項10に記載の樹脂シート硬化物とを有する放熱部材。 A heat dissipating member having a metal workpiece and the resin sheet according to claim 8 or the cured resin sheet according to claim 10 disposed on the metal workpiece.
PCT/JP2011/070863 2010-09-22 2011-09-13 Heat-conductive resin composition, resin sheet, resin-clad metal foil, cured resin sheet, and heat-dissipating member WO2012039324A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012535005A JPWO2012039324A1 (en) 2010-09-22 2011-09-13 Thermally conductive resin composition, resin sheet, metal foil with resin, cured resin sheet, and heat dissipation member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010212022 2010-09-22
JP2010-212022 2010-09-22

Publications (1)

Publication Number Publication Date
WO2012039324A1 true WO2012039324A1 (en) 2012-03-29

Family

ID=45873812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070863 WO2012039324A1 (en) 2010-09-22 2011-09-13 Heat-conductive resin composition, resin sheet, resin-clad metal foil, cured resin sheet, and heat-dissipating member

Country Status (3)

Country Link
JP (1) JPWO2012039324A1 (en)
TW (1) TW201221574A (en)
WO (1) WO2012039324A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018021163A (en) * 2016-08-05 2018-02-08 スリーエム イノベイティブ プロパティズ カンパニー Resin composition for heat radiation, and cured product thereof, and method for using the same
WO2022075227A1 (en) * 2020-10-06 2022-04-14 デンカ株式会社 Composition, cured body, and metal base substrate
CN114716953A (en) * 2022-04-18 2022-07-08 上海燊量科技有限公司 Resin adhesive for steel wire rope rigging pouring and preparation method and application thereof
CN116234842A (en) * 2020-10-06 2023-06-06 电化株式会社 Composition, method for producing same, cured body, and metal base substrate
WO2023189610A1 (en) * 2022-03-31 2023-10-05 デンカ株式会社 Resin composition, insulating resin cured body, laminate, and circuit substrate
WO2023189609A1 (en) * 2022-03-31 2023-10-05 デンカ株式会社 Resin composition, insulating resin cured body, laminate, and circuit substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183086A (en) * 1996-12-24 1998-07-07 Hitachi Chem Co Ltd Heat-conductive adhesive composition and heat-conductive adhesive film using the composition
JP2001226562A (en) * 2000-02-10 2001-08-21 Mitsubishi Rayon Co Ltd Composition, liquid sealing material composition for flip- chip, and semiconductor device
JP2008088411A (en) * 2006-09-05 2008-04-17 Hitachi Chem Co Ltd Adhesive sheet
JP2009185170A (en) * 2008-02-06 2009-08-20 Kyocera Chemical Corp Prepreg, metal-clad laminate and printed wiring board
JP2009227793A (en) * 2008-03-21 2009-10-08 Hitachi Chem Co Ltd Method for producing copolymer having star structure, copolymer obtained by the producing method, and resin composition
JP2010132838A (en) * 2008-12-08 2010-06-17 Mitsubishi Electric Corp High thermoconductive thermosetting resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183086A (en) * 1996-12-24 1998-07-07 Hitachi Chem Co Ltd Heat-conductive adhesive composition and heat-conductive adhesive film using the composition
JP2001226562A (en) * 2000-02-10 2001-08-21 Mitsubishi Rayon Co Ltd Composition, liquid sealing material composition for flip- chip, and semiconductor device
JP2008088411A (en) * 2006-09-05 2008-04-17 Hitachi Chem Co Ltd Adhesive sheet
JP2009185170A (en) * 2008-02-06 2009-08-20 Kyocera Chemical Corp Prepreg, metal-clad laminate and printed wiring board
JP2009227793A (en) * 2008-03-21 2009-10-08 Hitachi Chem Co Ltd Method for producing copolymer having star structure, copolymer obtained by the producing method, and resin composition
JP2010132838A (en) * 2008-12-08 2010-06-17 Mitsubishi Electric Corp High thermoconductive thermosetting resin composition

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018021163A (en) * 2016-08-05 2018-02-08 スリーエム イノベイティブ プロパティズ カンパニー Resin composition for heat radiation, and cured product thereof, and method for using the same
WO2018026556A3 (en) * 2016-08-05 2018-03-29 3M Innovative Properties Company Heat-dissipating resin composition, cured product thereof, and method of using same
CN109563330A (en) * 2016-08-05 2019-04-02 3M创新有限公司 Heat dissipation resin combination, its cured product and its application method
US11124646B2 (en) 2016-08-05 2021-09-21 3M Innovative Properties Company Heat-dissipating resin composition, cured product thereof, and method of using same
WO2022075227A1 (en) * 2020-10-06 2022-04-14 デンカ株式会社 Composition, cured body, and metal base substrate
CN116234841A (en) * 2020-10-06 2023-06-06 电化株式会社 Composition, cured body and metal base substrate
CN116234842A (en) * 2020-10-06 2023-06-06 电化株式会社 Composition, method for producing same, cured body, and metal base substrate
EP4219621A4 (en) * 2020-10-06 2024-03-06 Denka Company Ltd Composition, cured body, and metal base substrate
WO2023189610A1 (en) * 2022-03-31 2023-10-05 デンカ株式会社 Resin composition, insulating resin cured body, laminate, and circuit substrate
WO2023189609A1 (en) * 2022-03-31 2023-10-05 デンカ株式会社 Resin composition, insulating resin cured body, laminate, and circuit substrate
CN114716953A (en) * 2022-04-18 2022-07-08 上海燊量科技有限公司 Resin adhesive for steel wire rope rigging pouring and preparation method and application thereof
CN114716953B (en) * 2022-04-18 2024-01-05 上海燊量科技有限公司 Resin adhesive for casting steel wire rope and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2012039324A1 (en) 2014-02-03
TW201221574A (en) 2012-06-01

Similar Documents

Publication Publication Date Title
JP5907171B2 (en) Resin composition, resin sheet, cured resin sheet, metal foil with resin, and heat dissipation member
JP6402763B2 (en) Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for producing the same, multilayer resin sheet with metal foil, and semiconductor device
JP6311820B2 (en) Epoxy resin composition, semi-cured epoxy resin composition, cured epoxy resin composition, resin sheet, prepreg, laminate, metal substrate, wiring board, method for producing semi-cured epoxy resin composition, and method for producing cured epoxy resin composition
JP5573842B2 (en) MULTILAYER RESIN SHEET AND ITS MANUFACTURING METHOD, MULTILAYER RESIN SHEET CURED MANUFACTURING METHOD, AND HIGHLY HEAT CONDUCTIVE RESIN SHEET LAMINATE
WO2011040416A1 (en) Resin composition, resin sheet, and resin cured product and method for producing same
WO2012046814A1 (en) Multilayer resin sheet and process for production thereof, resin sheet laminate and process for production thereof, cured multilayer resin sheet, metal-foil-cladded multilayer resin sheet, and semiconductor device
WO2013030998A1 (en) Resin composition, resin sheet, resin sheet with metal foil, hardened resin sheet, structure, and semiconductor device for power or light source
WO2012039324A1 (en) Heat-conductive resin composition, resin sheet, resin-clad metal foil, cured resin sheet, and heat-dissipating member
JP2016155985A (en) Epoxy resin composition, semi-cured epoxy resin composition and cured epoxy resin composition, and resin sheet, prepreg, laminate sheet, metal substrate, wiring board and power semiconductor device, using these
JP6222209B2 (en) Resin composition, resin sheet, resin sheet with metal foil, cured resin sheet, structure, and semiconductor device for power or light source
WO2018008450A1 (en) Resin composition for films, film, film with base, metal/resin laminate, resin cured product, semiconductor device, and method for producing film
JP2013216038A (en) Multi-layer resin sheet, multi-layer resin sheet cured material using the same, resin sheet laminate, semiconductor device
JP5821856B2 (en) Multilayer resin sheet and resin sheet laminate
JP7188070B2 (en) LAMINATED STRUCTURE WITH RADIATION INSULATING SHEET AND CURED SHEET AS INSULATING LAYER
JP5888584B2 (en) Resin composition, resin sheet, prepreg sheet, cured resin sheet, structure, and semiconductor device for power or light source
JP5614301B2 (en) Thermosetting resin composition, and semi-cured product and cured product thereof
JP2011111498A (en) Resin sheet and laminate
JP2021050305A (en) Resin sheet and power semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826770

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012535005

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826770

Country of ref document: EP

Kind code of ref document: A1