WO2012039045A1 - Contactless power transmission coil - Google Patents

Contactless power transmission coil Download PDF

Info

Publication number
WO2012039045A1
WO2012039045A1 PCT/JP2010/066455 JP2010066455W WO2012039045A1 WO 2012039045 A1 WO2012039045 A1 WO 2012039045A1 JP 2010066455 W JP2010066455 W JP 2010066455W WO 2012039045 A1 WO2012039045 A1 WO 2012039045A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
conductor
conductors
power transmission
strip
Prior art date
Application number
PCT/JP2010/066455
Other languages
French (fr)
Japanese (ja)
Inventor
栄一 漆畑
圭介 岩脇
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2012515257A priority Critical patent/JP5216938B2/en
Priority to PCT/JP2010/066455 priority patent/WO2012039045A1/en
Publication of WO2012039045A1 publication Critical patent/WO2012039045A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • H01F2027/2838Wires using transposed wires

Definitions

  • This invention relates to a non-contact power transmission coil for transmitting power in a non-contact manner by electromagnetic induction.
  • utilization of this invention is not restricted to the coil for non-contact electric power transmission mentioned above.
  • FIG. 8 is a plan view showing a coil used in a conventional non-contact power feeding device.
  • the non-contact power feeding device 2000 shown in FIG. 8 is a non-contact power feeding device that transmits electric power by mutual induction action of electromagnetic induction by arranging a primary coil and a secondary coil to face each other even if they are non-contact.
  • This non-contact power supply apparatus 2000 has a structure in which a coil 2001 made of a wire material including a plurality of parallel conductive wires as a set is wound on the back plate 2015 in a flat manner on the same surface, and the coil 2001 is covered with a mold resin 2017. It is fixed. A foam material is mixed in the mold resin 2017. Both ends of the coil 2001 are bent out toward the outside at substantially the same portion and supplied with electric power.
  • the opposing coil has the same configuration as that shown in FIG. 8, and this non-contact power feeding device is used for charging a battery of an electric vehicle, for example. From 2001, electric power is supplied to a secondary (power receiving side) coil (not shown) in a non-contact manner.
  • litz wire is used to reduce high-frequency AC resistance, but the manufacturing becomes complicated by winding or the like. There was also a problem that it was heavy in weight.
  • FIG. 9-1 is an explanatory diagram for explaining the proximity effect when there are two conductors. It is assumed that two flat conductors 2201 and 2202 are arranged close to each other in parallel and the same current flows in the same direction. In this case, as shown in the lower current density characteristic graph, the currents on the conductors 2201 and 2202 flow biased outwardly away from each other.
  • FIG. 9-2 is an explanatory diagram for explaining the proximity effect when there are two conductors. It is assumed that two conductors 2201 and 2202 are arranged close to each other in parallel and the same current flows in the opposite direction. In this case, as shown in the lower current density characteristic graph, the currents on the conductors 2201 and 2202 flow in a biased manner toward the inside.
  • FIG. 9-3 is an explanatory diagram for explaining the proximity effect when there are three conductors. It is assumed that three conductors 2201, 2202, 2203 are arranged close to each other in parallel and the same current flows in the same direction. In this case, as shown in the lower current density characteristic graph, the currents on the outer conductors 2201 and 2202 flow biased outwardly away from each other. The central conductor 2203 is less biased due to the influence of the conductors 2201 and 2202 on both sides, but it is difficult for current to flow through the entire conductor.
  • FIG. 9-4 is a plan view showing a current direction on the coil.
  • the direction of the current is reversed on the left side and the right side as viewed along the line cc in the figure.
  • the current density graph As a result, as shown in the current density graph, the current flows in the outer conductor 2201 while being biased outward as in FIG. 9C.
  • the inner conductor 2202 is further influenced by the conductor on the opposite side of the coil (the right side is the left side) in addition to the influence of the current in the same direction located on the outer side, so that the inner bias is further increased.
  • the inner conductor 2202 has a higher current bias toward the inner side as shown in FIG. 9-2 and the effect of FIG. 9-3 (location C). Note that the influence of the conductor on the opposite side of the coil (the right side is the left side) is slightly mitigated with respect to the central conductor 2203, but the current bias toward the inside is still higher than that in FIG. 9-3.
  • the wound coil has a magnetic flux that becomes stronger as it goes inside the coil due to the proximity effect, and a current bias within the conductor becomes larger as it goes inside the coil. Therefore, when the coil is formed with a metal pattern, the effect is thin even if the pattern width is widened for the purpose of reducing the resistance value.
  • FIG. 10 is a plan view showing another conventional coil.
  • FIG. 10 shows a coil 2301 used for explaining the temperature distribution, which differs from the coil 2001 shown in FIG. 8 in that the conductor is formed of a metal pattern.
  • the end 2301E of the coil 2301 wound to the inside is led out to the external electrode 2303 via the conductor 2302, and for this derivation, the coil 2301 is wound.
  • a crossing point D where the portion of the conductor 2302 is orthogonal to the direction is formed. Since this intersection D is a portion where the current is most biased due to the proximity effect, it is affected by a very strong magnetic flux, eddy current is generated, and heat loss is generated.
  • FIG. 11 is a diagram showing a temperature distribution when the coil shown in FIG. 10 is driven.
  • the figure shows that the temperature becomes higher as it becomes whiter, and there are places where the temperature is as high as 86 ° C. at the maximum while it is as low as 31 ° C. In particular, it is shown that the temperature increases toward the inside of the coil 2301.
  • a graph of temperature distribution along the line ee in the figure is shown in the lower part. As can be seen from this graph, the coil 2301 wound around three turns has the lowest temperature at the outermost periphery, the temperature increases as it goes inward, and the peak value p at which the temperature becomes highest is generated at the innermost periphery. ing. Further, the temperature at the intersection D on the coil 2301 is high. Therefore, the highest temperature is inside the coil 2301 and at the intersection d. As described above, in the conventional coil, high heat is generated at the intersection of the conductors, and there is a problem that efficiency is lowered due to the heat.
  • the conventional coil is complicated to manufacture by winding or deriving the conductor.
  • the wire is a copper wire and has a problem that it is heavy in weight.
  • heat is generated in this portion, and the efficiency is lowered.
  • the current deviation in the conductor increases as the coil is located inside, and the influence is particularly great when formed with a metal pattern.
  • the conventional coil has various problems.
  • a non-contact power transmission coil according to the invention of claim 1 includes a support member and a conductor formed of a metal pattern formed on one surface of the support member.
  • FIG. 1 is a plan view showing a main part of an embodiment of a contactless power transmission coil.
  • FIG. 2 is a block diagram showing a charging system to which a contactless power transmission coil is applied.
  • FIG. 3 is a plan view showing the configuration of the first embodiment of the non-contact power transmission coil.
  • FIG. 4 is a diagram illustrating temperature distribution characteristics of the non-contact power transmission coil according to the first embodiment.
  • FIG. 5-1 is a plan view (surface side) showing the configuration of the second embodiment of the non-contact power transmission coil.
  • FIG. 5-2 is a plan view (on the back side) showing the configuration of the second embodiment of the non-contact power transmission coil.
  • FIG. 6 is a plan view showing the configuration of a third embodiment of the non-contact power transmission coil.
  • FIG. 7 is a diagram for explaining a state of current bias according to the third embodiment.
  • FIG. 8 is a plan view showing a coil used in a conventional non-contact power feeding apparatus.
  • FIG. 9A is an explanatory diagram (part 1) for explaining the proximity effect when there are two conductors.
  • FIG. 9B is an explanatory diagram (part 2) for explaining the proximity effect in the case of two conductors.
  • FIG. 9C is an explanatory diagram for explaining the proximity effect when there are three conductors.
  • FIG. 9-4 is a plan view showing a current direction on the coil.
  • FIG. 10 is a plan view showing another conventional coil.
  • FIG. 11 is a diagram showing a temperature distribution when the coil shown in FIG. 10 is driven.
  • FIG. 1 is a plan view showing a main part of an embodiment of a contactless power transmission coil.
  • the non-contact power transmission coil (coil) 100 shown in FIG. 1 is a partial description of only the conductor 110 located at the innermost circumference among the conductors 110 of the wound coil.
  • the wound conductor 110 is formed by a metal pattern on a substrate (not shown).
  • One conductor 110 has a width L1
  • the innermost conductor 110 located inside the central region 120 has a plurality of strips from the predetermined starting point 110A (example shown in the figure).
  • the conductors (strip conductors) 110a to 110c are divided into three parts.
  • One electrode is formed at the end 110E, which is the end point of the conductor 110, and all of the divided strip conductors 110a to 110c are connected to the end 110E.
  • the entire width L2 of the strip conductors 110a to 110c is shown wider than the width L1 of the conductor 110 because there is a gap between the strip conductors 110a to 110c.
  • L2 may be matched. That is, when the conductor 110 has the width L1, each of the three strip conductors 110a to 110c may be slightly wider or narrower with a width of about 1/3 of the width L1 of the conductor 110 as a reference.
  • the strip conductors 110a to 110c divided into three are replaced with the strip conductors 110a to 110c located on the innermost side (close to each side) with respect to the sides 120a to 120d of the square central region 120. It is arranged as follows. The winding order of the coil 100 will be described.
  • the conductor 110 is arranged along the first side 120a, and the divided strip conductors 110c, 110b, and 110a are arranged in the order close to the side 120b. Yes.
  • the strip conductors 110a, 110c, and 110b are arranged in the order as viewed in the closest order.
  • the strip conductors 110b, 110a, and 110c are arranged in this order as viewed in the closest order.
  • 121 and 122 are connection conductors, specifically, jumper wires or through holes and wiring patterns formed in the substrate on which the conductor 110 is formed, and other strip conductors 110a in an insulated state. It crosses ⁇ 110c. Similarly, the end portion 110E of the conductor 110 is taken out to the outside through a similar connecting conductor. In this way, the wiring that straddles the conductor 110 is made, but it is not in the form of straddling the conductor 110, but is an electrically insulated jumper line, or a wiring pattern (metal pattern) formed inside or on the back of the substrate. Therefore, the heat generation that occurs in the conventional intersection is not generated.
  • the one located at the innermost periphery is replaced at each side 120b to 120d. That is, one of the strip conductors 110a to 110c divided into three is located on the innermost periphery along any one of the sides 120b to 120d.
  • the strip conductors 110a to 110c located on the innermost circumference of the wound coil conductor 110 are divided into a plurality of pieces, and any of the divided strip conductors 110a to 110c is located on the innermost circumference. Will do. Since the arrangement is changed so that the divided strip conductors 110a to 110c are alternately located at the innermost circumference, the influence of the proximity effect that the current deviation in the conductor becomes larger as it goes inside the coil is suppressed. Therefore, it is possible to suppress loss due to heat generation at the innermost part of the wound conductor 110. In particular, the occurrence of a high heat generation peak at the innermost position of the conductor 110 can be suppressed.
  • the coil 100 having the above configuration uses a metal pattern for a coil through which a high-frequency current flows, and can be configured to be lightweight and easily formed on a substrate by etching.
  • the number of divisions of the strip conductors is 3, but the number is not limited to this, and a plurality (2 to n) can be used.
  • the number of strip conductors can be set to 4, and the divided strip conductors can be replaced so as to be close to each innermost side. If the central region is a pentagon, the number of strip conductors can be set to five.
  • the number of strip conductors is divided into a plurality (2 to n), and the divided strip conductors are replaced at an angle obtained by dividing the entire circumference by a predetermined angle unit so as to be close to the central region. Can be placed.
  • the predetermined angle unit may be an angle divided by the number of divisions. For example, if the number of divisions of the strip conductor is 3, the predetermined angle is 120 degrees.
  • various shapes can be considered for the substrate and the conductor pattern, and the strip conductor having the above-described configuration can be applied to any of the shapes.
  • FIG. 2 is a block diagram showing a charging system 200 to which the non-contact power transmission coil 100 is applied.
  • the charging system 200 includes a charging device 201 and a power receiving device 210 provided on the automobile side.
  • the charging device 201 and the power receiving device 210 are each provided with a non-contact power transmission coil 100, and the power transmitted from the charging device 201 passes through the pair of non-contact power transmission coils 100 of the automobile side power receiving device 210.
  • the battery (secondary battery) 213 is charged.
  • the charging device 201 uses an AC power source such as a commercial power source or a household power source, or a DC power source supplied from the outside such as solar power generation as a power supply source.
  • the supplied power is supplied to the coil 100 described above via a power factor correction circuit (PFC: Power Factor Correction) 202, a DC converter 203, and an inverter 204.
  • the inverter 204 performs DC-AC conversion and frequency / PWM control.
  • Reference numeral 205 denotes a resonance capacitor of the coil 100. Thereby, a specific voltage and frequency are applied to the coil 100, and the coil 100 generates an electromagnetic field in the power receiving device 210 on the opposite automobile side.
  • the coil 100 of the power receiving apparatus 210 receives the electromagnetic field generated by the coil 100 of the charging apparatus 201 and converts it into direct current by the resonance capacitor 211 and the rectifier / control circuit 212, and then charges the secondary battery 213 of the automobile.
  • the loss in the coil 100 portion can be reduced, so that a highly efficient charging system can be obtained.
  • FIG. 3 is a plan view showing the configuration of the first embodiment of the non-contact power transmission coil.
  • a non-contact power transmission coil (coil) 300 is configured by winding a conductor 110 on a surface 301a which is one surface of a substrate 301 which is a support member.
  • the configuration shown in FIG. 1 described above is a part of the configuration shown in FIG. 3, and the same components are denoted by the reference numerals shown in FIG.
  • the substrate 301 shown in FIG. 3 is formed in a substantially rectangular shape with the corner portions inclined, and the coil 300 is wound in a spiral shape in one direction from the outer periphery to the inner periphery of the substrate 301. It consists of a metal pattern.
  • a base material such as paper phenol, paper epoxy, glass composite, or glass epoxy is used.
  • a rectangular central region 120 in which no coil is disposed is formed at the central portion of the substrate 301.
  • the conductor 110 has a substantially constant width and is wound in three turns in the example shown in FIG. 3, and the innermost strip conductors 110a to 110c are close to the sides 120b to 120d of the central region 120.
  • the strip conductors 110a to 110c are arranged so as to be interchanged.
  • Reference numerals 121 and 122 denote connection conductors, which are provided to change the arrangement of the strip conductors 110a to 110c.
  • 110S and 110E are electrodes, respectively, connected to a connection conductor (not shown) for supplying operating power, and are led out to the outside.
  • Table 1 shows AC resistance by frequency in Example 1.
  • the AC resistance can be reduced at any frequency according to the configuration in which the strip conductors 110a to 110c in Example 1 are provided (three divisions + with replacement).
  • the driving frequency of the coil 300 is 1 kHz
  • the reduction rate of Example 1 was 56% compared to the case where the strip conductor was simply formed in three parts and the arrangement was not changed.
  • Example 1 it is shown that by replacing the arrangement of the strip conductors 110a to 110c, the AC resistance can be reduced to 56% compared to the case where the replacement is not performed, and the current bias can be eliminated. Has been.
  • the drive frequency is 10 kHz, it can be reduced to 66% compared to the case where the replacement is not performed, and when the drive frequency is 100 kHz, it can be reduced to 76%. In either case, the AC resistance can be suppressed, and the efficiency can be improved.
  • FIG. 4 is a diagram showing the temperature distribution characteristics of the non-contact power transmission coil of Example 1.
  • the temperature is about 30 ° C. at the maximum, and the temperature can be kept lower than in the past.
  • the temperature distribution diagram taken along the line II in the upper diagram is shown in the lower diagram.
  • the horizontal axis represents position
  • the vertical axis represents temperature.
  • the portions (c1, c2, c3) of the strip conductors 110a to 110c located at the innermost periphery (c) are strips.
  • the temperature is generally higher than the other parts a and b on the outer periphery, but the peak of the high temperature that protrudes most at the temperature of the inner periphery c3 does not appear. It is averaged.
  • FIGS. 5A and 5B are plan views showing the configuration of the second embodiment of the non-contact power transmission coil.
  • the coil 300 described in the first embodiment is formed on both surfaces of the substrate 301.
  • 5A shows the first coil 500a formed on the front surface 301a of the substrate 301
  • FIG. 5-2 shows the second coil 500b formed on the back surface 301b of the substrate 301.
  • the basic configuration of the first coil 500a is the same as that of the coil 300 shown in the first embodiment (however, the winding direction is the a direction, which is opposite to FIG. 3).
  • FIG. 5-2 is a perspective view seen from the front surface 301 a of the substrate 301.
  • a first coil 500a is provided on the front surface 301a of the substrate 301 overlapping with FIG. 5-1, and a second coil 500b is provided on the back surface 301b.
  • the terminal end of the first coil 500a and the starting end of the second coil 500b are electrically connected.
  • the winding direction a at the end of the first coil 500a and the winding direction a at the start of the second coil 500b are made to coincide with each other.
  • the first coil 500 a and the second coil 500 b are provided with strip conductors 110 a to 110 c that are divided into three at the innermost peripheral portion of the conductor 110.
  • the strip conductors 110a to 110c on the front surface 301a of the substrate 301 are electrically connected to the strip conductors 110a to 110c on the back surface 301b of the substrate 301 through the through holes 520, 521, and 522.
  • Reference numerals 511 and 512 denote electrodes of the second embodiment, and a pair of a starting end of the first coil 500a and a terminal end of the second coil 500b located on the front and back of the substrate 301 through the through holes 531 and 532, respectively. It is formed as an electrode.
  • the strip conductors 110a to 110c provided on the second coil 500b side the arrangement of the strip conductors 110a to 110c of the first coil 500a formed on the surface 301a of the substrate 301 is changed. It has the function of a connecting conductor.
  • the replacement of the arrangement of the strip conductors 110a will be described.
  • the arrangement of the strip conductors located on the innermost circumference is A
  • the arrangement at the center is B
  • the arrangement on the outermost circumference is C for convenience.
  • the replacement of the arrangement of the strip conductors 110a located at the division starting point 110A (side 120b) of the first coil 500a on the surface 301a side of the substrate 301 will be traced.
  • the strip conductor 110a is first positioned at the outermost periphery C at the position of the side 120b. Next, the strip conductor 110a is connected to the connection conductor 541 formed on the back surface 301b of the substrate 301 through the through hole 520. Has been. As shown in FIG. 5B, the connection conductor 541 is formed in a pattern so as to be located at the outermost periphery C at the position of the side 120b but at the center B at the position of the side 120c. Thereby, the strip conductor 110a is changed to the position of the center B at the position of the side 120c of the surface 301a of the substrate 301.
  • the strip conductor 110 a is connected to the connection conductor 542 formed on the back surface 301 b of the substrate 301 through the through hole 521.
  • the connection conductor 542 is positioned at the center B at the position of the side 120c, but is patterned so as to be positioned at the innermost periphery A at the position of the side 120d.
  • the strip conductor 110a is changed to the position of the inner periphery A at the position of the side 120d of the surface 301a of the substrate 301.
  • the arrangement of the strip conductors 110a is changed in the order of the outer periphery C ⁇ the center B ⁇ the inner periphery A.
  • the arrangement of the strip conductor 110b is changed in the order of the center B ⁇ the through hole 520 ⁇ the connecting conductor 551 ⁇ the inner periphery A ⁇ the outer periphery C.
  • the strip conductor 110c is arranged in the order of inner circumference A ⁇ outer circumference C ⁇ through hole 521 ⁇ connecting conductor 561 ⁇ center B.
  • the replacement of the arrangement is not necessarily limited to using only the connection conductor provided on the back surface 301b of the substrate 301 using the through holes 520, 521, and 522.
  • the arrangement of the strip conductors 110a to 110c provided on the surface 301a side of the substrate 301 can be changed. In the example shown in FIG.
  • the strip conductor 110c located on the inner circumference A of the side 120b is led to the position of the outer circumference C at the side 120c.
  • the strip conductor 110b located on the inner periphery A of the side 120c is led to the position of the outer periphery C at the side 120d.
  • the arrangement of the strip conductors 110a to 110c is changed on the front surface 301a and the back surface 301b of the substrate 301, respectively.
  • the current bias can be eliminated, the AC resistance can be suppressed, and the efficiency can be improved. Further, since the current bias can be eliminated, the bundles are dispersed and the eddy currents at the intersections of the patterns are reduced, so that no protruding high temperature peak occurs. And since the coil is formed in the front and back of the board
  • FIG. 6 is a plan view showing the configuration of a third embodiment of the non-contact power transmission coil.
  • the conductor 110 is wound around the surface 301a that is one surface of the substrate 301 that is the support member. Yes.
  • the difference between the third embodiment is that the number of divisions of the conductor (strip conductor) 110 in the innermost circumference is four.
  • the strip conductors 110a to 110d divided into four are arranged so that the strip conductors 110a to 110d adjacent to the four sides 120a to 120d of the square central region 120 are interchanged.
  • Reference numerals 121 to 123 denote connection conductors, which are provided to change the arrangement of the strip conductors 110a to 110d.
  • the strip conductor 110a is located on the outermost side, and the strip conductors 110b, 110c, and 110d are arranged in this order along the inner periphery.
  • the outermost strip conductor 110a is rearranged to the innermost circumference by the connecting conductor 121
  • the strip conductor 110b is located on the outermost side
  • the strip conductors 110c, 110d, 110a are arranged in the order of the inner circumference. Is arranged in.
  • the strip conductor 110b is rearranged to the innermost circumference by the connecting conductor 122, the strip conductor 110c is located on the outermost side, and the strip conductors 110d, 110a, 110b are arranged in this order along the inner circumference. ing.
  • the strip conductor 110c is rearranged to the innermost circumference by the connecting conductor 123, the strip conductor 110d is located on the outermost side, and the strip conductors 110a, 110b, 110c are arranged in this order along the inner circumference. ing.
  • FIG. 7 is a diagram for explaining a state of current bias according to the third embodiment.
  • the current is not biased to a specific strip conductor. It has been found that the current flows with almost the same value (around 25%) in all of the four divided strip conductors 110a to 110d shown in FIGS.
  • a configuration (no rearrangement) in which the inner peripheral conductor 110 is divided into four parts is shown for comparison. If the inner circumference of the conductor 110 is simply divided into four parts and the strip conductors 110a to 110d are not rearranged, the current bias is 15% to 40% as shown in the figure. The bias becomes large, and a current value that protrudes most at the inner periphery is generated. As described above, it can be seen that it is effective not only to divide the strip conductors 110a to 110d but also to rearrange them.
  • the number of strip conductors is set to four, and the four strip-shaped strip conductors are rearranged so as to be located on the inner circumference.
  • the current bias in the strip conductor located on the inner periphery can be prevented as compared with the configuration of (5).
  • the substrate and conductor patterns have been described as an example of a rectangular configuration.
  • the shape may be various shapes such as a circle and a polygon, and can be similarly applied.
  • the configuration in which the pattern of the conductor 110 gradually decreases from the outside to the inside has been described.
  • the present invention is not limited to this.
  • a configuration may be adopted in which conductors having a plurality of different diameters are formed in a concentric pattern on the substrate, and adjacent patterns having different diameters are connected at a certain point.
  • the weight can be reduced and various inductances can be easily created simply by changing the pattern.
  • the base material of the substrate 301 may be a tape-like material such as polyimide, and a metal pattern can be formed on these base materials.
  • a tape-shaped base material such as FPC or TCP
  • the weight can be reduced, and the coil shape can be a three-dimensional structure as well as a flat surface.
  • the direction of the magnetic flux can be three-dimensionally corresponding to this.
  • Non-contact power transmission coil 110 Conductor 110a-110c Strip conductor 120 Central region 120a-120d Side 121, 122, 123 Connection conductor 200 Charging system 201 Charging device 210 Power receiving device 301 Substrate 301a Front surface 301b Back surface 110E, 110S, 511 , 512 End (electrode) 520, 521, 522, 531, 532 Through hole 541, 542, 551, 561 Connecting conductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

A contactless power transmission coil (300) comprises a substrate (301), and is composed by having a conductor (110), which is formed on a surface (301a) of the substrate (301) and comprises a metallic pattern, wound around, in order to prevent deviation of current at a portion of the conductor positioned at the innermost circumference of the coil, and prevent local heating to make the coil more efficient. At least the portion of the conductor (110) positioned at the innermost circumference is divided into a plurality of strip-formed conductors (110a-110c), and each of the plurality of strip-formed conductors (110a-110c) are arranged in exchanging manner so as to be positioned at the innermost circumference at different places in the circumference direction.

Description

非接触電力伝送用コイルNon-contact power transmission coil
 この発明は、電磁誘導により非接触で電力を伝送する非接触電力伝送用コイルに関する。ただし、この発明の利用は、上述した非接触電力伝送用コイルには限られない。 This invention relates to a non-contact power transmission coil for transmitting power in a non-contact manner by electromagnetic induction. However, utilization of this invention is not restricted to the coil for non-contact electric power transmission mentioned above.
 図8は、従来の非接触給電装置に用いられるコイルを示す平面図である。図8に示す非接触給電装置2000は、1次コイルと2次コイルを対向配置させることにより、これらが非接触であっても電磁誘導の相互誘導作用により電力を伝送させる非接触給電装置である(例えば、下記特許文献1参照。)。この非接触給電装置2000は、背板2015上に、複数本の平行導線を1セットとした線材からなるコイル2001を同一面で扁平に巻き回した構造であり、コイル2001をモールド樹脂2017で被覆固定してなる。このモールド樹脂2017中には発泡材が混入されている。コイル2001の両端は、ほぼ同一部分で外部に向けて曲げて取り出され、電力が供給される。 FIG. 8 is a plan view showing a coil used in a conventional non-contact power feeding device. The non-contact power feeding device 2000 shown in FIG. 8 is a non-contact power feeding device that transmits electric power by mutual induction action of electromagnetic induction by arranging a primary coil and a secondary coil to face each other even if they are non-contact. (For example, refer to Patent Document 1 below.) This non-contact power supply apparatus 2000 has a structure in which a coil 2001 made of a wire material including a plurality of parallel conductive wires as a set is wound on the back plate 2015 in a flat manner on the same surface, and the coil 2001 is covered with a mold resin 2017. It is fixed. A foam material is mixed in the mold resin 2017. Both ends of the coil 2001 are bent out toward the outside at substantially the same portion and supplied with electric power.
 対向するコイルについても図8と同様の構成であり、この非接触給電装置は、例えば電気自動車のバッテリー充電用に使用され、電磁誘導の相互誘電作用に基づき、1次側(給電側)のコイル2001から、2次側(受電側)のコイル(不図示)に、非接触で電力を供給する。 The opposing coil has the same configuration as that shown in FIG. 8, and this non-contact power feeding device is used for charging a battery of an electric vehicle, for example. From 2001, electric power is supplied to a secondary (power receiving side) coil (not shown) in a non-contact manner.
特開2008-87733号公報JP 2008-87733 A
 図8は高周波の交流抵抗を低減する為にリッツ線が用いられているが、巻き回し等により製造が複雑になる。また重量的にも重いという問題があった。製造工程の簡易化や製品の軽量化、更なる薄型化を実現し、且つ高効率のコイルを提案する。金属パターンによるコイルは、表皮効果に対して有効であるが、従来の非接触給電装置では、以下の問題が生じた。 In FIG. 8, litz wire is used to reduce high-frequency AC resistance, but the manufacturing becomes complicated by winding or the like. There was also a problem that it was heavy in weight. We propose a highly efficient coil that simplifies the manufacturing process, reduces the weight of the product, and makes it thinner. Although the coil by a metal pattern is effective with respect to the skin effect, the following problems have arisen in the conventional non-contact power feeding device.
1.近接効果の影響
 コイルの内側になるほど磁束が強くなる。そのため、近接効果の影響が大きく、コイルの内側になるほど導体内での電流偏りが大きくなる。
2.コイル上の交差箇所の影響
 内側まで巻き回された導体(1次コイル)2001の端部を外部に導出するために、コイル2001に対して直交する交差箇所Aが形成され、この交差箇所Aで熱が発生してしまう。
1. Influence of proximity effect The magnetic flux becomes stronger as it goes inside the coil. Therefore, the influence of the proximity effect is large, and the current deviation in the conductor increases as the inside of the coil is increased.
2. Influence of the crossing point on the coil In order to lead out the end of the conductor (primary coil) 2001 wound to the inside, a crossing point A orthogonal to the coil 2001 is formed. Heat is generated.
1.近接効果の影響について
 図9-1は、導体が2つの場合の近接効果を説明するための説明図である。2つの平らな導体2201,2202が平行に近接配置され、同じ方向に同じ電流が流れているとする。この場合、下部の電流密度特性グラフに示すように、導体2201,2202上の電流は、互いに離れる外側に偏って流れる。
1. Influence of Proximity Effect FIG. 9-1 is an explanatory diagram for explaining the proximity effect when there are two conductors. It is assumed that two flat conductors 2201 and 2202 are arranged close to each other in parallel and the same current flows in the same direction. In this case, as shown in the lower current density characteristic graph, the currents on the conductors 2201 and 2202 flow biased outwardly away from each other.
 図9-2は、導体が2つの場合の近接効果を説明するための説明図である。2つの導体2201,2202が平行に近接配置され、逆方向に同じ電流が流れているとする。この場合、下部の電流密度特性グラフに示すように、導体2201,2202上の電流は、互いに近寄る内側に偏って流れる。 FIG. 9-2 is an explanatory diagram for explaining the proximity effect when there are two conductors. It is assumed that two conductors 2201 and 2202 are arranged close to each other in parallel and the same current flows in the opposite direction. In this case, as shown in the lower current density characteristic graph, the currents on the conductors 2201 and 2202 flow in a biased manner toward the inside.
 図9-3は、導体が3つの場合の近接効果を説明するための説明図である。3つの導体2201,2202,2203が平行に近接配置され、同じ方向に同じ電流が流れているとする。この場合、下部の電流密度特性グラフに示すように、外側の導体2201,2202上の電流は、互いに離れる外側に偏って流れる。中央の導体2203については、両側の導体2201,2202からの影響を受け偏りは少ないが、全体に電流が流れにくくなる。 FIG. 9-3 is an explanatory diagram for explaining the proximity effect when there are three conductors. It is assumed that three conductors 2201, 2202, 2203 are arranged close to each other in parallel and the same current flows in the same direction. In this case, as shown in the lower current density characteristic graph, the currents on the outer conductors 2201 and 2202 flow biased outwardly away from each other. The central conductor 2203 is less biased due to the influence of the conductors 2201 and 2202 on both sides, but it is difficult for current to flow through the entire conductor.
 図9-4は、コイル上の電流方向を示す平面図である。巻き回された導体2201,2202,2203は、図中のc-c線でみて全体の左側と右側では電流の向きが逆方向となっている。これにより、電流密度グラフに示すように、外側の導体2201は、図9-3と同様に、電流は外側に偏って流れる。そして、内側の導体2202については、外側に位置する同じ向きの電流の影響に加えて、コイルの対向側(右側は左側)の導体の影響を受けるため、さらに内側の偏りが高くなる。 FIG. 9-4 is a plan view showing a current direction on the coil. In the wound conductors 2201, 2202, 2203, the direction of the current is reversed on the left side and the right side as viewed along the line cc in the figure. As a result, as shown in the current density graph, the current flows in the outer conductor 2201 while being biased outward as in FIG. 9C. The inner conductor 2202 is further influenced by the conductor on the opposite side of the coil (the right side is the left side) in addition to the influence of the current in the same direction located on the outer side, so that the inner bias is further increased.
 電流密度の特性は、内側の導体2202は、図9-2の影響と、図9-3の影響が加算された如く内側への電流の偏りが高くなっている(箇所C)。なお、中央の導体2203については、コイルの対向側(右側は左側)の導体の影響が若干緩和されているが、それでも、図9-3に比べて内側への電流の偏りが高い。 In the current density characteristics, the inner conductor 2202 has a higher current bias toward the inner side as shown in FIG. 9-2 and the effect of FIG. 9-3 (location C). Note that the influence of the conductor on the opposite side of the coil (the right side is the left side) is slightly mitigated with respect to the central conductor 2203, but the current bias toward the inside is still higher than that in FIG. 9-3.
 上述したように、巻き回されたコイルは、近接効果の影響により、コイルの内側になるほど磁束が強くなり、コイルの内側になるほど導体内での電流偏りが大きくなる。その為、金属パターンでコイルを形成した場合、抵抗値を下げる目的でパターン幅を広げても効果が薄い。 As described above, the wound coil has a magnetic flux that becomes stronger as it goes inside the coil due to the proximity effect, and a current bias within the conductor becomes larger as it goes inside the coil. Therefore, when the coil is formed with a metal pattern, the effect is thin even if the pattern width is widened for the purpose of reducing the resistance value.
2.コイル上の交差箇所の影響について
 図10は、従来の他のコイルを示す平面図である。この図10は、温度分布を説明するために用いたコイル2301であり、上記図8に示したコイル2001に対して導体が金属パターンで形成されている点が異なる。そして、図8のコイル2001と同様に、内側まで巻き回されたコイル2301の端部2301Eが導体2302を介して外部の電極2303まで導出されており、この導出のために、コイル2301の巻き回しの方向に対して導体2302の部分が直交する交差箇所Dが形成されている。この交差箇所Dは、近接効果で最も電流の偏った部分の為、非常に強い磁束の影響を受け、渦電流が発生し熱損失が発生する。
2. FIG. 10 is a plan view showing another conventional coil. FIG. 10 shows a coil 2301 used for explaining the temperature distribution, which differs from the coil 2001 shown in FIG. 8 in that the conductor is formed of a metal pattern. Similarly to the coil 2001 in FIG. 8, the end 2301E of the coil 2301 wound to the inside is led out to the external electrode 2303 via the conductor 2302, and for this derivation, the coil 2301 is wound. A crossing point D where the portion of the conductor 2302 is orthogonal to the direction is formed. Since this intersection D is a portion where the current is most biased due to the proximity effect, it is affected by a very strong magnetic flux, eddy current is generated, and heat loss is generated.
 図11は、図10に示したコイルを駆動したときの温度分布を示す図である。図中白くなるにつれ温度が高いことを示しており、最小31℃程度なのに対し、最大で86℃程度まで高い箇所が生じている。特に、コイル2301の内側につれて温度が高いことが示されている。また、図中のe-e線に沿った温度分布のグラフを下部に示す。このグラフから判るのは、3周で巻き回されたコイル2301は、最外周が最も温度が低く、内側にいくにしたがい温度が高くなり、最内周に最も温度が高くなるピーク値pが生じている。また、コイル2301上で交差箇所Dでの温度が高い。したがって、最も温度が高いのは、コイル2301の内側であってかつ交差箇所dである。このように、従来のコイルでは、導体の交差箇所で高熱が発生するとともに、この熱による効率の低下の問題を有していた。 FIG. 11 is a diagram showing a temperature distribution when the coil shown in FIG. 10 is driven. The figure shows that the temperature becomes higher as it becomes whiter, and there are places where the temperature is as high as 86 ° C. at the maximum while it is as low as 31 ° C. In particular, it is shown that the temperature increases toward the inside of the coil 2301. A graph of temperature distribution along the line ee in the figure is shown in the lower part. As can be seen from this graph, the coil 2301 wound around three turns has the lowest temperature at the outermost periphery, the temperature increases as it goes inward, and the peak value p at which the temperature becomes highest is generated at the innermost periphery. ing. Further, the temperature at the intersection D on the coil 2301 is high. Therefore, the highest temperature is inside the coil 2301 and at the intersection d. As described above, in the conventional coil, high heat is generated at the intersection of the conductors, and there is a problem that efficiency is lowered due to the heat.
 上述のように、従来のコイルは、導体を線材で形成したときには、これを巻き回し、また、導出する等により製造が複雑になる。また、線材は銅線であり重量的にも重いという問題点があった。また、コイル上で巻き回しの交差箇所があると、この部分で熱が発生し、効率が低下した。さらに、近接効果の影響により、コイルの内側になるほど導体内での電流偏りが大きくなり、特に、金属パターンで形成するとより影響が大きく生じた。このように、従来のコイルは多様な問題を有していた。 As described above, when a conductor is formed of a wire, the conventional coil is complicated to manufacture by winding or deriving the conductor. In addition, the wire is a copper wire and has a problem that it is heavy in weight. In addition, if there is a winding intersection on the coil, heat is generated in this portion, and the efficiency is lowered. Furthermore, due to the influence of the proximity effect, the current deviation in the conductor increases as the coil is located inside, and the influence is particularly great when formed with a metal pattern. As described above, the conventional coil has various problems.
 上述した課題を解決し、目的を達成するため、請求項1の発明にかかる非接触電力伝送用コイルは、支持部材と、前記支持部材上の一方の面に形成され、金属パターンからなる導体が巻き回された第1のコイルとを有し、前記第1のコイルは、少なくとも最内周に位置する前記導体が複数の導体に分割され、かつ前記複数の導体のそれぞれが円周方向に異なる位置で前記最内周に位置するよう入れ替え配置されていることを特徴とする。 In order to solve the above-described problems and achieve the object, a non-contact power transmission coil according to the invention of claim 1 includes a support member and a conductor formed of a metal pattern formed on one surface of the support member. A first coil that is wound, wherein the first coil has at least the innermost conductor divided into a plurality of conductors, and each of the plurality of conductors is different in the circumferential direction. It is replaced and arranged so as to be located at the innermost circumference at a position.
図1は、非接触電力伝送用コイルの実施の形態における要部を示す平面図である。FIG. 1 is a plan view showing a main part of an embodiment of a contactless power transmission coil. 図2は、非接触電力伝送用コイルが適用される充電システムを示すブロック図である。FIG. 2 is a block diagram showing a charging system to which a contactless power transmission coil is applied. 図3は、非接触電力伝送用コイルの実施例1の構成を示す平面図である。FIG. 3 is a plan view showing the configuration of the first embodiment of the non-contact power transmission coil. 図4は、実施例1の非接触電力伝送用コイルの温度分布特性を示す図である。FIG. 4 is a diagram illustrating temperature distribution characteristics of the non-contact power transmission coil according to the first embodiment. 図5-1は、非接触電力伝送用コイルの実施例2の構成を示す平面図(表面側)である。FIG. 5-1 is a plan view (surface side) showing the configuration of the second embodiment of the non-contact power transmission coil. 図5-2は、非接触電力伝送用コイルの実施例2の構成を示す平面図(裏面側)である。FIG. 5-2 is a plan view (on the back side) showing the configuration of the second embodiment of the non-contact power transmission coil. 図6は、非接触電力伝送用コイルの実施例3の構成を示す平面図である。FIG. 6 is a plan view showing the configuration of a third embodiment of the non-contact power transmission coil. 図7は、実施例3による電流の偏りの状態を説明する図である。FIG. 7 is a diagram for explaining a state of current bias according to the third embodiment. 図8は、従来の非接触給電装置に用いられるコイルを示す平面図である。FIG. 8 is a plan view showing a coil used in a conventional non-contact power feeding apparatus. 図9-1は、導体が2つの場合の近接効果を説明するための説明図(その1)である。FIG. 9A is an explanatory diagram (part 1) for explaining the proximity effect when there are two conductors. 図9-2は、導体が2つの場合の近接効果を説明するための説明図(その2)である。FIG. 9B is an explanatory diagram (part 2) for explaining the proximity effect in the case of two conductors. 図9-3は、導体が3つの場合の近接効果を説明するための説明図である。FIG. 9C is an explanatory diagram for explaining the proximity effect when there are three conductors. 図9-4は、コイル上の電流方向を示す平面図である。FIG. 9-4 is a plan view showing a current direction on the coil. 図10は、従来の他のコイルを示す平面図である。FIG. 10 is a plan view showing another conventional coil. 図11は、図10に示したコイルを駆動したときの温度分布を示す図である。FIG. 11 is a diagram showing a temperature distribution when the coil shown in FIG. 10 is driven.
 以下に添付図面を参照して、この発明にかかる非接触電力伝送用コイルの好適な実施の形態を詳細に説明する。 DETAILED DESCRIPTION Exemplary embodiments of a contactless power transmission coil according to the present invention will be described below in detail with reference to the accompanying drawings.
(実施の形態)
(非接触電力伝送用コイルの基本構成-内周3分割の例)
 はじめに、本実施の形態にかかる非接触電力伝送用コイルの構成について説明する。図1は、非接触電力伝送用コイルの実施の形態における要部を示す平面図である。図1に示す非接触電力伝送用コイル(コイル)100は、巻き回されたコイルの導体110のうち最も内周に位置する導体110だけを部分的に記載したものである。
(Embodiment)
(Basic configuration of non-contact power transmission coil-Example of inner circumference divided into three)
First, the configuration of the contactless power transmission coil according to the present embodiment will be described. FIG. 1 is a plan view showing a main part of an embodiment of a contactless power transmission coil. The non-contact power transmission coil (coil) 100 shown in FIG. 1 is a partial description of only the conductor 110 located at the innermost circumference among the conductors 110 of the wound coil.
 図示のように、巻き回されている導体110は、図示しない基板上に金属パターンにより形成されている。この導体110は、1本で幅L1を有しているのに対し、中央領域120内部に位置する最も内周に位置する導体110については、所定の起点110Aから短冊状に複数(図示の例では3つ)に分割した導体(短冊導体)110a~110cで構成している。導体110の終点である端部110Eには一つの電極が形成され、この端部110Eでは分割された短冊導体110a~110cがいずれも接続されている。なお、図面上では、短冊導体110a~110cの部分の全体の幅L2は、短冊導体110a~110c間に隙間等があるため、導体110の幅L1より広く記載してあるが、これらの幅L1とL2は一致させても良い。すなわち、導体110が幅L1を有するとき、3分割した短冊導体110a~110cのそれぞれは導体110の幅L1の1/3程度の幅を基準とし、やや幅広としたり狭くしてもよい。 As shown in the drawing, the wound conductor 110 is formed by a metal pattern on a substrate (not shown). One conductor 110 has a width L1, whereas the innermost conductor 110 located inside the central region 120 has a plurality of strips from the predetermined starting point 110A (example shown in the figure). In this case, the conductors (strip conductors) 110a to 110c are divided into three parts. One electrode is formed at the end 110E, which is the end point of the conductor 110, and all of the divided strip conductors 110a to 110c are connected to the end 110E. In the drawing, the entire width L2 of the strip conductors 110a to 110c is shown wider than the width L1 of the conductor 110 because there is a gap between the strip conductors 110a to 110c. And L2 may be matched. That is, when the conductor 110 has the width L1, each of the three strip conductors 110a to 110c may be slightly wider or narrower with a width of about 1/3 of the width L1 of the conductor 110 as a reference.
 そして、3つに分割された短冊導体110a~110cは、四角状の中央領域120の各辺120a~120dに対し、最も内周に位置する(各辺に近接する)短冊導体110a~110cが入れ替わるよう配置されている。コイル100の巻き回しの順位を説明すると、はじめの辺120aには、導体110が沿って配置され、辺120bでは近い順でみて、分割された短冊導体110c、110b、110aの順で配置されている。辺120cでは、近い順でみて、分割された短冊導体110a、110c、110bの順で配置されている。辺120dでは、近い順でみて、分割された短冊導体110b、110a、110cの順で配置されている。 The strip conductors 110a to 110c divided into three are replaced with the strip conductors 110a to 110c located on the innermost side (close to each side) with respect to the sides 120a to 120d of the square central region 120. It is arranged as follows. The winding order of the coil 100 will be described. The conductor 110 is arranged along the first side 120a, and the divided strip conductors 110c, 110b, and 110a are arranged in the order close to the side 120b. Yes. In the side 120c, the strip conductors 110a, 110c, and 110b are arranged in the order as viewed in the closest order. In the side 120d, the strip conductors 110b, 110a, and 110c are arranged in this order as viewed in the closest order.
 ここで、121,122は接続導体であり、具体的には、ジャンパ線、あるいは導体110が形成された基板に形成されたスルーホールおよび配線パターンによりなり、絶縁された状態で他の短冊導体110a~110cを跨ぐ。同様に、導体110の端部110Eについても、同様の接続導体を介して外部に取り出されている。このように、導体110を跨ぐ配線がなされるが、導体110に近接して跨ぐ形ではなく、電気的に絶縁されたジャンパ線、あるいは基板の内部や裏面に形成された配線パターン(金属パターン)を介して跨ぐ構成であるため、従来の交差箇所で生じたような発熱は生じない。 Here, 121 and 122 are connection conductors, specifically, jumper wires or through holes and wiring patterns formed in the substrate on which the conductor 110 is formed, and other strip conductors 110a in an insulated state. It crosses ~ 110c. Similarly, the end portion 110E of the conductor 110 is taken out to the outside through a similar connecting conductor. In this way, the wiring that straddles the conductor 110 is made, but it is not in the form of straddling the conductor 110, but is an electrically insulated jumper line, or a wiring pattern (metal pattern) formed inside or on the back of the substrate. Therefore, the heat generation that occurs in the conventional intersection is not generated.
 上記のように、3分割された短冊導体110a~110cは、最も内周に位置するものが、各辺120b~120dでそれぞれ入れ替わる。すなわち、3分割された短冊導体110a~110cのうち一つが、いずれかの辺120b~120dで最も内周に位置している。 As described above, among the strip conductors 110a to 110c divided into three, the one located at the innermost periphery is replaced at each side 120b to 120d. That is, one of the strip conductors 110a to 110c divided into three is located on the innermost periphery along any one of the sides 120b to 120d.
 上記構成によれば、巻き回されたコイルの導体110のうち最も内周に位置する短冊導体110a~110cは複数に分割され、分割されたどの短冊導体110a~110cのいずれも最も内周に位置することになる。分割された短冊導体110a~110cがそれぞれ交互に最も内周に位置するように配置が入れ替わっているため、コイルの内側になるほど導体内での電流偏りが大きくなる、という近接効果の影響を抑制することができ、巻き回された導体110の最も内周の部分での発熱による損失を抑えることができるようになる。特に、導体110の最も内周の位置に高い発熱のピークが生じることを抑えることができる。 According to the above configuration, the strip conductors 110a to 110c located on the innermost circumference of the wound coil conductor 110 are divided into a plurality of pieces, and any of the divided strip conductors 110a to 110c is located on the innermost circumference. Will do. Since the arrangement is changed so that the divided strip conductors 110a to 110c are alternately located at the innermost circumference, the influence of the proximity effect that the current deviation in the conductor becomes larger as it goes inside the coil is suppressed. Therefore, it is possible to suppress loss due to heat generation at the innermost part of the wound conductor 110. In particular, the occurrence of a high heat generation peak at the innermost position of the conductor 110 can be suppressed.
 そして、上記構成のコイル100は、高周波電流が流れるコイルに金属パターンを用いており、軽量に構成できるとともに、エッチングにより基板上に簡単に形成できる。 The coil 100 having the above configuration uses a metal pattern for a coil through which a high-frequency current flows, and can be configured to be lightweight and easily formed on a substrate by etching.
 上記の実施の形態では、短冊導体の分割数を3としたが、これに限らず複数(2~n)とすることができる。例えば、中央領域が四角形で辺の数を4としたときには、短冊導体の数を4として、分割された短冊導体が入れ替わって最内周の各辺に近接するように配置できる。中央領域が五角形であれば短冊導体の分割数を5とすることができる。 In the above embodiment, the number of divisions of the strip conductors is 3, but the number is not limited to this, and a plurality (2 to n) can be used. For example, when the central region is a quadrangle and the number of sides is 4, the number of strip conductors can be set to 4, and the divided strip conductors can be replaced so as to be close to each innermost side. If the central region is a pentagon, the number of strip conductors can be set to five.
 また、中央領域が円形状であれば、短冊導体の分割数を複数(2~n)とし、分割された短冊導体が全周を所定角度単位で分割した角度で入れ替わって中央領域に近接するように配置できる。この所定角度単位は、分割数で割った角度とすればよい。例えば短冊導体の分割数が3分割であれば、所定角度は120度ずつとなる。このように、基板および導体のパターンの形状は各種形状が考えられ、いずれに対しても上記構成の短冊導体を適用することができる。 Further, if the central region is circular, the number of strip conductors is divided into a plurality (2 to n), and the divided strip conductors are replaced at an angle obtained by dividing the entire circumference by a predetermined angle unit so as to be close to the central region. Can be placed. The predetermined angle unit may be an angle divided by the number of divisions. For example, if the number of divisions of the strip conductor is 3, the predetermined angle is 120 degrees. As described above, various shapes can be considered for the substrate and the conductor pattern, and the strip conductor having the above-described configuration can be applied to any of the shapes.
(充電システムの構成)
 次に、上述した非接触電力伝送用コイル100は、電気自動車(EV)やハイブリッド自動車(HV)への充電を行う充電システム200に適用される。図2は、非接触電力伝送用コイル100が適用される充電システム200を示すブロック図である。充電システム200は、充電装置201と、自動車側に設けられた受電装置210とにより構成されている。
(Charge system configuration)
Next, the non-contact power transmission coil 100 described above is applied to a charging system 200 that charges an electric vehicle (EV) or a hybrid vehicle (HV). FIG. 2 is a block diagram showing a charging system 200 to which the non-contact power transmission coil 100 is applied. The charging system 200 includes a charging device 201 and a power receiving device 210 provided on the automobile side.
 充電装置201および受電装置210には、それぞれ非接触電力伝送用コイル100が設けられ、充電装置201から伝送された電力が一対の非接触電力伝送用コイル100を介して自動車側の受電装置210のバッテリー(2次電池)213に充電される。 The charging device 201 and the power receiving device 210 are each provided with a non-contact power transmission coil 100, and the power transmitted from the charging device 201 passes through the pair of non-contact power transmission coils 100 of the automobile side power receiving device 210. The battery (secondary battery) 213 is charged.
 充電装置201は、商用電源や家庭用電源などのAC電源、もしくは太陽光発電などの外部から供給されるDC電源を電力供給源とする。供給された電源は、力率改善回路(PFC:Power Factor Correction)202、DCコンバータ203、インバータ204を介して上述したコイル100に供給される。インバータ204は、DC-AC変換、および周波数・PWM制御を行う。205は、コイル100の共振コンデンサである。これにより、コイル100には、特定の電圧・周波数が印加され、コイル100は、対向する自動車側の受電装置210に電磁界を発生させる。 The charging device 201 uses an AC power source such as a commercial power source or a household power source, or a DC power source supplied from the outside such as solar power generation as a power supply source. The supplied power is supplied to the coil 100 described above via a power factor correction circuit (PFC: Power Factor Correction) 202, a DC converter 203, and an inverter 204. The inverter 204 performs DC-AC conversion and frequency / PWM control. Reference numeral 205 denotes a resonance capacitor of the coil 100. Thereby, a specific voltage and frequency are applied to the coil 100, and the coil 100 generates an electromagnetic field in the power receiving device 210 on the opposite automobile side.
 受電装置210のコイル100は、充電装置201のコイル100で発生された電磁界を受け、共振コンデンサ211と、整流器・制御回路212により直流に変換した後、自動車の2次電池213を充電する。 The coil 100 of the power receiving apparatus 210 receives the electromagnetic field generated by the coil 100 of the charging apparatus 201 and converts it into direct current by the resonance capacitor 211 and the rectifier / control circuit 212, and then charges the secondary battery 213 of the automobile.
 そして、上記構成のコイル100を用いた充電システム200によれば、コイル100部分での損失を少なくできるため、高効率の充電システムとすることができる。 Further, according to the charging system 200 using the coil 100 having the above-described configuration, the loss in the coil 100 portion can be reduced, so that a highly efficient charging system can be obtained.
(実施例1)
 図3は、非接触電力伝送用コイルの実施例1の構成を示す平面図である。図3において、非接触電力伝送用コイル(コイル)300は、支持部材である基板301の一方の面である表面301a上に導体110を巻き回して構成している。なお、上述した図1に記載の構成は、図3に記載の構成の一部であり、同一の構成部には図1に記載の符号を付してある。
Example 1
FIG. 3 is a plan view showing the configuration of the first embodiment of the non-contact power transmission coil. In FIG. 3, a non-contact power transmission coil (coil) 300 is configured by winding a conductor 110 on a surface 301a which is one surface of a substrate 301 which is a support member. The configuration shown in FIG. 1 described above is a part of the configuration shown in FIG. 3, and the same components are denoted by the reference numerals shown in FIG.
 図3に示した基板301は、角部分が傾斜しているが、略矩形状に形成されており、コイル300は、基板301の外周から内周に向けて一方向にスパイラル状に巻き回された金属パターンからなる。基板301としては、紙フェノールや紙エポキシ、ガラスコンポジット、ガラスエポキシなどの基材が用いられる。基板301の中心部分には、コイルが配置されない矩形状の中央領域120が形成されている。 The substrate 301 shown in FIG. 3 is formed in a substantially rectangular shape with the corner portions inclined, and the coil 300 is wound in a spiral shape in one direction from the outer periphery to the inner periphery of the substrate 301. It consists of a metal pattern. As the substrate 301, a base material such as paper phenol, paper epoxy, glass composite, or glass epoxy is used. A rectangular central region 120 in which no coil is disposed is formed at the central portion of the substrate 301.
 導体110は、ほぼ一定な幅を有し、図3に示す例では3周で巻き回されており、最内周の短冊導体110a~110cは、中央領域120の各辺120b~120dに近接する短冊導体110a~110cが入れ替わるよう配置されている。また、121,122は接続導体であり、短冊導体110a~110cの配置を入れ替えるために設けられる。110Sおよび110Eは、それぞれ電極であり、動作電源の供給用に図示しない接続導体が接続され、外部に導出される。 The conductor 110 has a substantially constant width and is wound in three turns in the example shown in FIG. 3, and the innermost strip conductors 110a to 110c are close to the sides 120b to 120d of the central region 120. The strip conductors 110a to 110c are arranged so as to be interchanged. Reference numerals 121 and 122 denote connection conductors, which are provided to change the arrangement of the strip conductors 110a to 110c. 110S and 110E are electrodes, respectively, connected to a connection conductor (not shown) for supplying operating power, and are led out to the outside.
 表1には、実施例1における周波数別の交流抵抗を示す。この表に示すように、いずれの周波数においても、実施例1における短冊導体110a~110cを設けた構成(3分割+入れ替わり有)の構成によれば、交流抵抗を低減化させることができる。例えば、コイル300の駆動の周波数が1kHzのとき、単に短冊導体を3分割で形成し、配置の入れ替えを行わなかった場合に対し実施例1の低減率は56%であった。 Table 1 shows AC resistance by frequency in Example 1. As shown in this table, the AC resistance can be reduced at any frequency according to the configuration in which the strip conductors 110a to 110c in Example 1 are provided (three divisions + with replacement). For example, when the driving frequency of the coil 300 is 1 kHz, the reduction rate of Example 1 was 56% compared to the case where the strip conductor was simply formed in three parts and the arrangement was not changed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 これにより、実施例1によれば、短冊導体110a~110cの配置の入れ替えを行うことにより、入れ替えを行わなかった場合と比べて交流抵抗を56%に低減でき、電流の偏りを解消できることが示されている。また、駆動の周波数が10kHz時には入れ替えを行わなかった場合と比べて66%に低減でき、100kHz時には76%に低減でき、いずれも交流抵抗を抑えることができ、効率を向上できるようになる。 Thus, according to Example 1, it is shown that by replacing the arrangement of the strip conductors 110a to 110c, the AC resistance can be reduced to 56% compared to the case where the replacement is not performed, and the current bias can be eliminated. Has been. In addition, when the drive frequency is 10 kHz, it can be reduced to 66% compared to the case where the replacement is not performed, and when the drive frequency is 100 kHz, it can be reduced to 76%. In either case, the AC resistance can be suppressed, and the efficiency can be improved.
 図4は、実施例1の非接触電力伝送用コイルの温度分布特性を示す図である。図示のように、最大でも30℃程度であり、従来に比して温度を低く抑えることができる。上図のI-I線で見た温度分布図を下図に示す。下図は横軸が位置、縦軸が温度である。図示のように、導体110が全体で3周(a,b,c)されているうち、最も内周(c)に位置する短冊導体110a~110cの部分(c1,c2,c3)は、短冊導体110a~110cが入れ替え配置されているため、外周の他の部分a,bに比して全体的に温度は高いが、最も内周c3の温度に突出した高温のピークは表れておらず、平均化されている。 FIG. 4 is a diagram showing the temperature distribution characteristics of the non-contact power transmission coil of Example 1. FIG. As shown in the drawing, the temperature is about 30 ° C. at the maximum, and the temperature can be kept lower than in the past. The temperature distribution diagram taken along the line II in the upper diagram is shown in the lower diagram. In the figure below, the horizontal axis represents position, and the vertical axis represents temperature. As shown in the drawing, among the conductors 110 having three turns (a, b, c) as a whole, the portions (c1, c2, c3) of the strip conductors 110a to 110c located at the innermost periphery (c) are strips. Since the conductors 110a to 110c are replaced and arranged, the temperature is generally higher than the other parts a and b on the outer periphery, but the peak of the high temperature that protrudes most at the temperature of the inner periphery c3 does not appear. It is averaged.
(実施例2)
 図5-1、図5-2は、非接触電力伝送用コイルの実施例2の構成を示す平面図である。実施例2は、実施例1で説明したコイル300を基板301の両面に形成したものである。図5-1が基板301の表面301aに形成した第1のコイル500aであり、図5-2が基板301の裏面301bに形成した第2のコイル500bである。第1のコイル500aの基本構成は、実施例1に示したコイル300と同じである(但し、巻き回しの方向はa方向であり、図3と逆)。
(Example 2)
FIGS. 5A and 5B are plan views showing the configuration of the second embodiment of the non-contact power transmission coil. In the second embodiment, the coil 300 described in the first embodiment is formed on both surfaces of the substrate 301. 5A shows the first coil 500a formed on the front surface 301a of the substrate 301, and FIG. 5-2 shows the second coil 500b formed on the back surface 301b of the substrate 301. The basic configuration of the first coil 500a is the same as that of the coil 300 shown in the first embodiment (however, the winding direction is the a direction, which is opposite to FIG. 3).
 図5-2は、基板301の表面301aから見た透視図である。図5-1に重なる基板301の表面301aに第1のコイル500aを設け、裏面301bに第2のコイル500bを設ける。そして、第1のコイル500aの終端と、第2のコイル500bの始端とを電気的に接続している。この際、第1のコイル500aの終端の巻き回しの方向aと、第2のコイル500bの始端の巻き回しの方向aとを一致させておく。 FIG. 5-2 is a perspective view seen from the front surface 301 a of the substrate 301. A first coil 500a is provided on the front surface 301a of the substrate 301 overlapping with FIG. 5-1, and a second coil 500b is provided on the back surface 301b. The terminal end of the first coil 500a and the starting end of the second coil 500b are electrically connected. At this time, the winding direction a at the end of the first coil 500a and the winding direction a at the start of the second coil 500b are made to coincide with each other.
 第1のコイル500aと第2のコイル500bは、導体110の最内周部分に3分割された短冊導体110a~110cが設けられている。そして、基板301の表面301aの短冊導体110a~110cは、基板301の裏面301bの短冊導体110a~110cとスルーホール520,521,522を介して互いに電気的に接続されている。また、511,512は、この実施例2の電極であり、それぞれスルーホール531,532を介して基板301の表裏に位置する第1のコイル500aの始端と、第2のコイル500bの終端が一対の電極として形成されている。 The first coil 500 a and the second coil 500 b are provided with strip conductors 110 a to 110 c that are divided into three at the innermost peripheral portion of the conductor 110. The strip conductors 110a to 110c on the front surface 301a of the substrate 301 are electrically connected to the strip conductors 110a to 110c on the back surface 301b of the substrate 301 through the through holes 520, 521, and 522. Reference numerals 511 and 512 denote electrodes of the second embodiment, and a pair of a starting end of the first coil 500a and a terminal end of the second coil 500b located on the front and back of the substrate 301 through the through holes 531 and 532, respectively. It is formed as an electrode.
 ここで、第2のコイル500b側に設けられた短冊導体110a~110cについては、基板301の表面301aに形成されている第1のコイル500aの短冊導体110a~110cの配置の入れ替えを行うための接続導体の機能を有している。 Here, for the strip conductors 110a to 110c provided on the second coil 500b side, the arrangement of the strip conductors 110a to 110c of the first coil 500a formed on the surface 301a of the substrate 301 is changed. It has the function of a connecting conductor.
 短冊導体110aの配置の入れ替えを説明する。第1のコイル500a側の短冊導体110a~110cについては、便宜上、最も内周に位置する短冊導体の配置をAとし、中央の配置をB、最も外周の配置をCとする。まず、基板301の表面301a側の第1のコイル500aの分割の起点110A(辺120b)に位置している短冊導体110aの配置の入れ替えを辿ってみる。 The replacement of the arrangement of the strip conductors 110a will be described. For the strip conductors 110a to 110c on the first coil 500a side, the arrangement of the strip conductors located on the innermost circumference is A, the arrangement at the center is B, and the arrangement on the outermost circumference is C for convenience. First, the replacement of the arrangement of the strip conductors 110a located at the division starting point 110A (side 120b) of the first coil 500a on the surface 301a side of the substrate 301 will be traced.
 この短冊導体110aは、はじめに、辺120bの位置では最も外周Cに位置しており、次に、短冊導体110aは、スルーホール520を介して基板301の裏面301bに形成された接続導体541に接続されている。接続導体541は、図5-2に示すように、辺120bの位置では最も外周Cに位置しているが、辺120cの位置では、中央Bに位置するようパターン形成されている。これにより、短冊導体110aは、基板301の表面301aの辺120cの位置では、中央Bの位置に変更される。この後、短冊導体110aは、スルーホール521を介して基板301の裏面301bに形成された接続導体542に接続されている。接続導体542は、図5-2に示すように、辺120cの位置では中央Bに位置しているが、辺120dの位置では、最も内周Aに位置するようパターン形成されている。これにより、短冊導体110aは、基板301の表面301aの辺120dの位置では、内周Aの位置に変更される。上記のように、短冊導体110aは、外周C→中央B→内周Aの順で配置が変更される。 The strip conductor 110a is first positioned at the outermost periphery C at the position of the side 120b. Next, the strip conductor 110a is connected to the connection conductor 541 formed on the back surface 301b of the substrate 301 through the through hole 520. Has been. As shown in FIG. 5B, the connection conductor 541 is formed in a pattern so as to be located at the outermost periphery C at the position of the side 120b but at the center B at the position of the side 120c. Thereby, the strip conductor 110a is changed to the position of the center B at the position of the side 120c of the surface 301a of the substrate 301. Thereafter, the strip conductor 110 a is connected to the connection conductor 542 formed on the back surface 301 b of the substrate 301 through the through hole 521. As shown in FIG. 5B, the connection conductor 542 is positioned at the center B at the position of the side 120c, but is patterned so as to be positioned at the innermost periphery A at the position of the side 120d. Thereby, the strip conductor 110a is changed to the position of the inner periphery A at the position of the side 120d of the surface 301a of the substrate 301. As described above, the arrangement of the strip conductors 110a is changed in the order of the outer periphery C → the center B → the inner periphery A.
 同様に、短冊導体110bについては、中央B→スルーホール520→接続導体551→内周A→外周Cの順で配置が変更されている。また、短冊導体110cについては、内周A→外周C→スルーホール521→接続導体561→中央Bの順で配置が変更されている。上記構成において、配置の入れ替えには、必ずしもスルーホール520,521,522を用いて基板301の裏面301bに設けられた接続導体だけを用いるに限らない。基板301の表面301a側に設けられた短冊導体110a~110cの一部で配置入れ替えを行うこともできる。図5-1に示す例では、辺120b部分の内周Aに位置する短冊導体110cは、辺120c部分で外周Cの位置まで導出されている。同様に、辺120c部分の内周Aに位置する短冊導体110bは、辺120d部分で外周Cの位置まで導出されている。このように、基板301の表面301aおよび裏面301bそれぞれで短冊導体110a~110cの配置の入れ替えを行っている。 Similarly, the arrangement of the strip conductor 110b is changed in the order of the center B → the through hole 520 → the connecting conductor 551 → the inner periphery A → the outer periphery C. Further, the strip conductor 110c is arranged in the order of inner circumference A → outer circumference C → through hole 521 → connecting conductor 561 → center B. In the above configuration, the replacement of the arrangement is not necessarily limited to using only the connection conductor provided on the back surface 301b of the substrate 301 using the through holes 520, 521, and 522. The arrangement of the strip conductors 110a to 110c provided on the surface 301a side of the substrate 301 can be changed. In the example shown in FIG. 5A, the strip conductor 110c located on the inner circumference A of the side 120b is led to the position of the outer circumference C at the side 120c. Similarly, the strip conductor 110b located on the inner periphery A of the side 120c is led to the position of the outer periphery C at the side 120d. In this way, the arrangement of the strip conductors 110a to 110c is changed on the front surface 301a and the back surface 301b of the substrate 301, respectively.
 上述した実施例2によれば、実施例1同様に、短冊導体110a~110cの配置の入れ替えにより、電流の偏りを解消でき、交流抵抗を抑えることができ、効率を向上できる。また、電流の偏りが解消できたことで束も分散し、且つパターンの交差箇所の渦電流も低減したため、突出した高温のピークが生じない。そして、実施例1に比して基板301の表裏にコイルが形成されているため、巻数を倍にすることができ、対応してインダクタンスを2乗倍の値に増加させることができる。 According to the second embodiment described above, as in the first embodiment, by exchanging the arrangement of the strip conductors 110a to 110c, the current bias can be eliminated, the AC resistance can be suppressed, and the efficiency can be improved. Further, since the current bias can be eliminated, the bundles are dispersed and the eddy currents at the intersections of the patterns are reduced, so that no protruding high temperature peak occurs. And since the coil is formed in the front and back of the board | substrate 301 compared with Example 1, a winding number can be doubled and an inductance can be correspondingly increased to the value of a square power.
(実施例3)
 図6は、非接触電力伝送用コイルの実施例3の構成を示す平面図である。実施例3の非接触電力伝送用コイル(コイル)600では、上述した実施例1と同様に、支持部材である基板301の一方の面である表面301a上に導体110を巻き回して構成している。この実施例3で異なる点は、最内周における導体(短冊導体)110の分割数を4としている。
(Example 3)
FIG. 6 is a plan view showing the configuration of a third embodiment of the non-contact power transmission coil. In the non-contact power transmission coil (coil) 600 according to the third embodiment, similarly to the first embodiment described above, the conductor 110 is wound around the surface 301a that is one surface of the substrate 301 that is the support member. Yes. The difference between the third embodiment is that the number of divisions of the conductor (strip conductor) 110 in the innermost circumference is four.
 4分割された短冊導体110a~110dは、四角状の中央領域120の4つの各辺120a~120dそれぞれに近接する短冊導体110a~110dが入れ替わるよう配置されている。また、121~123は接続導体であり、短冊導体110a~110dの配置を入れ替えるために設けられる。 The strip conductors 110a to 110d divided into four are arranged so that the strip conductors 110a to 110d adjacent to the four sides 120a to 120d of the square central region 120 are interchanged. Reference numerals 121 to 123 denote connection conductors, which are provided to change the arrangement of the strip conductors 110a to 110d.
 配置の入れ替えを具体的に説明する。辺120aの位置では、短冊導体110aが最も外部に位置し、内周につれて短冊導体110b、110c、110dの順で配置している。辺120bの位置では、接続導体121により、最も外周の短冊導体110aが最も内周に配置替えされており、短冊導体110bが最も外部に位置し、内周につれて短冊導体110c、110d、110aの順で配置されている。辺120cの位置では、接続導体122により、短冊導体110bが最も内周に配置替えされており、短冊導体110cが最も外部に位置し、内周につれて短冊導体110d、110a、110bの順で配置されている。辺120dの位置では、接続導体123により、短冊導体110cが最も内周に配置替えされており、短冊導体110dが最も外部に位置し、内周につれて短冊導体110a、110b、110cの順で配置されている。 配置 Explain the replacement of the arrangement in detail. In the position of the side 120a, the strip conductor 110a is located on the outermost side, and the strip conductors 110b, 110c, and 110d are arranged in this order along the inner periphery. At the position of the side 120b, the outermost strip conductor 110a is rearranged to the innermost circumference by the connecting conductor 121, the strip conductor 110b is located on the outermost side, and the strip conductors 110c, 110d, 110a are arranged in the order of the inner circumference. Is arranged in. At the position of the side 120c, the strip conductor 110b is rearranged to the innermost circumference by the connecting conductor 122, the strip conductor 110c is located on the outermost side, and the strip conductors 110d, 110a, 110b are arranged in this order along the inner circumference. ing. At the position of the side 120d, the strip conductor 110c is rearranged to the innermost circumference by the connecting conductor 123, the strip conductor 110d is located on the outermost side, and the strip conductors 110a, 110b, 110c are arranged in this order along the inner circumference. ing.
 図7は、実施例3による電流の偏りの状態を説明する図である。図示のように、4分割し、かつ、上述したように、分割された4つの短冊導体110a~110dを交互に配置替えすることにより、特定の短冊導体に電流が偏ることがなく、図中1~4に示す4分割された短冊導体110a~110dのいずれについてもほぼ同じ値(25%前後)で電流が流れていることが判った。この図には対比用として内周の導体110を4分割しただけの構成(配置替え無)を記載してある。単に導体110の内周を4分割しただけであり、短冊導体110a~110dの配置替えを行わない場合には、図示のように、電流の偏りが15%~40%と、内周につれて電流の偏りが大きくなり、最も内周で突出した電流値が生じている。このように、短冊導体110a~110dは、単に分割させるだけではなく、配置替えを行うことが効果的であることが判る。 FIG. 7 is a diagram for explaining a state of current bias according to the third embodiment. As shown in the figure, by dividing the four strip conductors 110a to 110d into four parts and alternately arranging the divided strip conductors 110a to 110d as described above, the current is not biased to a specific strip conductor. It has been found that the current flows with almost the same value (around 25%) in all of the four divided strip conductors 110a to 110d shown in FIGS. In this figure, a configuration (no rearrangement) in which the inner peripheral conductor 110 is divided into four parts is shown for comparison. If the inner circumference of the conductor 110 is simply divided into four parts and the strip conductors 110a to 110d are not rearranged, the current bias is 15% to 40% as shown in the figure. The bias becomes large, and a current value that protrudes most at the inner periphery is generated. As described above, it can be seen that it is effective not only to divide the strip conductors 110a to 110d but also to rearrange them.
 上記の実施例3によれば、短冊導体の分割数を4とし、これら4分割された短冊導体がいずれも内周に位置するよう配置替えした構成であるため、実施例1で説明した3分割の構成に比してさらに、内周に位置する短冊導体における電流の偏りを防止できるようになる。 According to the above-described third embodiment, the number of strip conductors is set to four, and the four strip-shaped strip conductors are rearranged so as to be located on the inner circumference. In addition, the current bias in the strip conductor located on the inner periphery can be prevented as compared with the configuration of (5).
 上記の実施例3の変形例としては、実施例2と同様に、基板301の表裏にそれぞれコイルを形成することが考えられる。これにより、4分割された短冊導体110a~110dによる電流偏りを防止できるとともに、巻数を倍にしてインダクタンスを増大できる効果を得ることができる。 As a modification of the above-described third embodiment, it is conceivable that coils are formed on the front and back of the substrate 301 as in the second embodiment. As a result, it is possible to prevent the current from being biased by the strip conductors 110a to 110d divided into four, and to obtain an effect of increasing the inductance by doubling the number of turns.
 また、以上説明した各実施例では、基板および導体のパターンが四角形の構成を例に説明したが、上述したようにその形状は円形や多角形等の各種形状が考えられ、同様に適用できる。また、上記の実施例では、導体110のパターンは、外側から内側に連れて次第に小さくなっていく構成について説明したが、これに限らない。基板上には同心円状に異なる複数の径の導体をパターン形成し、ある箇所で段差を有して隣接する径が異なるパターンを接続する構成としてもよい。 Further, in each of the embodiments described above, the substrate and conductor patterns have been described as an example of a rectangular configuration. However, as described above, the shape may be various shapes such as a circle and a polygon, and can be similarly applied. In the above-described embodiment, the configuration in which the pattern of the conductor 110 gradually decreases from the outside to the inside has been described. However, the present invention is not limited to this. A configuration may be adopted in which conductors having a plurality of different diameters are formed in a concentric pattern on the substrate, and adjacent patterns having different diameters are connected at a certain point.
 さらに、上記実施例のように、基板上の導体110として金属パターンを用いることによって、軽量化できるとともに、パターンを変更するだけで、様々なインダクタンスを簡単に作成することが可能となる。 Further, by using a metal pattern as the conductor 110 on the substrate as in the above embodiment, the weight can be reduced and various inductances can be easily created simply by changing the pattern.
 また、基板301の基材としては、ポリイミドのようなテープ状のものとしてもよく、これらの基材の上に金属パターンを形成することもできる。例えば、FPCやTCPなどのテープ状の基材で基板301を構成することによって、重量を低減化できるようになると共に、コイル形状を平面だけでなく立体的な構造にすることも可能となる。基板301を立体的に形成することにより、これに対応して磁束の方向を立体的にすることも可能である。 Further, the base material of the substrate 301 may be a tape-like material such as polyimide, and a metal pattern can be formed on these base materials. For example, by configuring the substrate 301 with a tape-shaped base material such as FPC or TCP, the weight can be reduced, and the coil shape can be a three-dimensional structure as well as a flat surface. By forming the substrate 301 three-dimensionally, the direction of the magnetic flux can be three-dimensionally corresponding to this.
 100,300 非接触電力伝送用コイル
 110 導体
 110a~110c 短冊導体
 120 中央領域
 120a~120d 辺
 121,122,123 接続導体
 200 充電システム
 201 充電装置
 210 受電装置
 301 基板
 301a 表面
 301b 裏面
 110E,110S,511,512 端部(電極)
 520,521,522,531,532 スルーホール
 541,542,551,561 接続導体
100, 300 Non-contact power transmission coil 110 Conductor 110a-110c Strip conductor 120 Central region 120a- 120d Side 121, 122, 123 Connection conductor 200 Charging system 201 Charging device 210 Power receiving device 301 Substrate 301a Front surface 301b Back surface 110E, 110S, 511 , 512 End (electrode)
520, 521, 522, 531, 532 Through hole 541, 542, 551, 561 Connecting conductor

Claims (7)

  1.  支持部材と、
     前記支持部材上の一方の面に形成され、金属パターンからなる導体が巻き回された第1のコイルとを有し、
     前記第1のコイルは、少なくとも最内周に位置する前記導体が複数の導体に分割され、かつ前記複数の導体のそれぞれが円周の中心から異なる位置で前記最内周に位置するよう入れ替え配置されていることを特徴とする非接触電力伝送用コイル。
    A support member;
    A first coil formed on one surface of the support member and wound with a conductor made of a metal pattern;
    The first coil is arranged so that at least the conductor located at the innermost circumference is divided into a plurality of conductors, and each of the plurality of conductors is located at the innermost circumference at a position different from the center of the circumference. A coil for contactless power transmission, characterized in that
  2.  前記支持部材上の前記一方の面とは異なる他方の面に金属パターンからなる導体が巻き回され、前記第1のコイルの終端に接続された始端を有する第2のコイルと、をさらに有し、
     前記第2のコイルは、少なくとも最内周に位置する前記導体が複数の導体に分割され、かつ前記複数の導体のそれぞれが円周方向に異なる位置で前記最内周に位置するよう入れ替え配置されたことを特徴とする請求項1に記載の非接触電力伝送用コイル。
    A second coil having a starting end connected to a terminal end of the first coil, wherein a conductor made of a metal pattern is wound on the other surface different from the one surface on the support member; ,
    The second coil is arranged so that at least the conductor located at the innermost circumference is divided into a plurality of conductors, and each of the plurality of conductors is located at the innermost circumference at different positions in the circumferential direction. The non-contact power transmission coil according to claim 1.
  3.  前記入れ替え配置される導体間には、導体間を跨ぐ接続部材が設けられていることを特徴とする請求項1に記載の非接触電力伝送用コイル。 The contactless power transmission coil according to claim 1, wherein a connection member straddling the conductors is provided between the conductors arranged to be exchanged.
  4.  前記接続部材は、絶縁されたジャンパ線、あるいは前記支持部材の内部または前記他方の面に形成された金属パターンであることを特徴とする請求項3に記載の非接触電力伝送用コイル。 4. The contactless power transmission coil according to claim 3, wherein the connection member is an insulated jumper wire or a metal pattern formed inside or on the other surface of the support member.
  5.  前記導体を複数に分割した導体の幅は、前記導体の幅を分割数で割った幅程度であることを特徴とする請求項1に記載の非接触電力伝送用コイル。 The coil for contactless power transmission according to claim 1, wherein the width of the conductor obtained by dividing the conductor into a plurality of parts is about the width obtained by dividing the width of the conductor by the number of divisions.
  6.  前記複数の導体は、最内周での入れ替えにより、それぞれ最内周に位置する長さが等しく形成されていることを特徴とする請求項1に記載の非接触電力伝送用コイル。 The contactless power transmission coil according to claim 1, wherein the plurality of conductors are formed to have equal lengths located in the innermost circumference by replacement in the innermost circumference.
  7.  前記第1のコイルの複数に分割された導体は、他方の前記第2のコイルの複数に分割された導体と前記支持部材上の位置が一致する箇所がスルーホールで電気的に接続されていることを特徴とする請求項2~6のいずれか一つに記載の非接触電力伝送用コイル。 The conductor divided into a plurality of the first coil is electrically connected by a through hole at a position where the position of the other conductor of the second coil coincides with the position on the support member. The contactless power transmission coil according to any one of claims 2 to 6, wherein:
PCT/JP2010/066455 2010-09-22 2010-09-22 Contactless power transmission coil WO2012039045A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012515257A JP5216938B2 (en) 2010-09-22 2010-09-22 Non-contact power transmission coil
PCT/JP2010/066455 WO2012039045A1 (en) 2010-09-22 2010-09-22 Contactless power transmission coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/066455 WO2012039045A1 (en) 2010-09-22 2010-09-22 Contactless power transmission coil

Publications (1)

Publication Number Publication Date
WO2012039045A1 true WO2012039045A1 (en) 2012-03-29

Family

ID=45873559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066455 WO2012039045A1 (en) 2010-09-22 2010-09-22 Contactless power transmission coil

Country Status (2)

Country Link
JP (1) JP5216938B2 (en)
WO (1) WO2012039045A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065678A (en) * 2011-09-16 2013-04-11 Hitachi Cable Ltd Laminated coil
KR20140061131A (en) * 2012-11-13 2014-05-21 엘지전자 주식회사 A receiving coil of wireless power receiver including a coil unit for nfc and a coil unit for wireless power charging
WO2014080651A1 (en) * 2012-11-21 2014-05-30 独立行政法人海洋研究開発機構 Underwater observation instrument
WO2014096039A1 (en) * 2012-12-21 2014-06-26 Robert Bosch Gmbh Inductive charging coil device
WO2015033407A1 (en) * 2013-09-04 2015-03-12 株式会社日立製作所 Power transmission device
JP2018510599A (en) * 2015-02-17 2018-04-12 クアルコム,インコーポレイテッド Cloverleaf and butterfly coil structures for flat wireless coupling profiles in wireless power transfer applications
WO2019189760A1 (en) * 2018-03-30 2019-10-03 大日本印刷株式会社 Coil and coil pair, power transmission device and power receiving device, and power transmission system
EP3609051A1 (en) * 2018-08-09 2020-02-12 Yazaki Corporation Power transmission unit
JP2021097188A (en) * 2019-12-19 2021-06-24 三安ジャパンテクノロジー株式会社 Spiral inductor and passive integrated circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7056016B2 (en) * 2017-06-13 2022-04-19 Tdk株式会社 Coil parts

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184005A (en) * 1988-11-28 1990-07-18 Siemens Ag Line transformer
JPH0963847A (en) * 1995-08-25 1997-03-07 Nec Corp Inductor element and fabrication thereof
JPH10270272A (en) * 1997-03-25 1998-10-09 Nippon Steel Corp Antenna equipment
JP2005057211A (en) * 2003-08-07 2005-03-03 Tdk Corp Coil component
JP2010016235A (en) * 2008-07-04 2010-01-21 Panasonic Electric Works Co Ltd Plane coil

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5873105A (en) * 1981-10-27 1983-05-02 Nec Corp Spiral coil
JPH08181018A (en) * 1994-12-26 1996-07-12 Murata Mfg Co Ltd Coil device
JPH08203736A (en) * 1995-01-30 1996-08-09 Murata Mfg Co Ltd Coil device with core
JPH08264319A (en) * 1995-03-17 1996-10-11 Murata Mfg Co Ltd Method of designing spiral inductor
JP2003045722A (en) * 2001-08-01 2003-02-14 Sony Corp Inductor and integrated circuit using the same
JP2010056175A (en) * 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd Sheet type coil, sheet type transformer, power convertor, and on-vehicle head lamp lighting device
DE112009001937T5 (en) * 2008-09-05 2011-06-16 Mitsubishi Electric Corp. Layer transformer for DC / DC converter
JP4893975B2 (en) * 2009-08-25 2012-03-07 サンケン電気株式会社 Coil device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184005A (en) * 1988-11-28 1990-07-18 Siemens Ag Line transformer
JPH0963847A (en) * 1995-08-25 1997-03-07 Nec Corp Inductor element and fabrication thereof
JPH10270272A (en) * 1997-03-25 1998-10-09 Nippon Steel Corp Antenna equipment
JP2005057211A (en) * 2003-08-07 2005-03-03 Tdk Corp Coil component
JP2010016235A (en) * 2008-07-04 2010-01-21 Panasonic Electric Works Co Ltd Plane coil

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065678A (en) * 2011-09-16 2013-04-11 Hitachi Cable Ltd Laminated coil
KR20140061131A (en) * 2012-11-13 2014-05-21 엘지전자 주식회사 A receiving coil of wireless power receiver including a coil unit for nfc and a coil unit for wireless power charging
KR102036637B1 (en) 2012-11-13 2019-10-25 엘지전자 주식회사 A receiving coil of wireless power receiver including a coil unit for NFC and a coil unit for wireless power charging
JPWO2014080651A1 (en) * 2012-11-21 2017-01-05 国立研究開発法人海洋研究開発機構 Underwater observation equipment
WO2014080651A1 (en) * 2012-11-21 2014-05-30 独立行政法人海洋研究開発機構 Underwater observation instrument
US9817139B2 (en) 2012-11-21 2017-11-14 Japan Agency For Marine-Earth Science And Technology Underwater observation apparatus
CN104871266A (en) * 2012-12-21 2015-08-26 罗伯特·博世有限公司 Inductive charging coil device
US20150340153A1 (en) * 2012-12-21 2015-11-26 Robert Bosch Gmbh Inductive charging coil device
WO2014096039A1 (en) * 2012-12-21 2014-06-26 Robert Bosch Gmbh Inductive charging coil device
WO2015033407A1 (en) * 2013-09-04 2015-03-12 株式会社日立製作所 Power transmission device
JPWO2015033407A1 (en) * 2013-09-04 2017-03-02 株式会社日立製作所 Power transmission equipment
JP6084696B2 (en) * 2013-09-04 2017-02-22 株式会社日立製作所 Power transmission equipment
JP2018510599A (en) * 2015-02-17 2018-04-12 クアルコム,インコーポレイテッド Cloverleaf and butterfly coil structures for flat wireless coupling profiles in wireless power transfer applications
WO2019189760A1 (en) * 2018-03-30 2019-10-03 大日本印刷株式会社 Coil and coil pair, power transmission device and power receiving device, and power transmission system
CN111869047A (en) * 2018-03-30 2020-10-30 大日本印刷株式会社 Coil, coil pair, power transmission device, power reception device, and power transmission system
JPWO2019189760A1 (en) * 2018-03-30 2021-04-08 大日本印刷株式会社 Coil and coil pair, power transmission device and power receiving device, and power transmission system
EP3609051A1 (en) * 2018-08-09 2020-02-12 Yazaki Corporation Power transmission unit
US10951067B2 (en) 2018-08-09 2021-03-16 Yazaki Corporation Power transmission unit
JP2021097188A (en) * 2019-12-19 2021-06-24 三安ジャパンテクノロジー株式会社 Spiral inductor and passive integrated circuit
JP7430376B2 (en) 2019-12-19 2024-02-13 三安ジャパンテクノロジー株式会社 Spiral inductors and passive integrated circuits

Also Published As

Publication number Publication date
JPWO2012039045A1 (en) 2014-02-03
JP5216938B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5216938B2 (en) Non-contact power transmission coil
JP4800451B1 (en) High frequency transformer
US20220123593A1 (en) Wireless Power Transfer Based on Magnetic Induction
CN109155535B (en) Biplane wireless power transmission pad
US20090302986A1 (en) Minimal-length windings for reduction of copper power losses in magnetic elements
WO2013046533A1 (en) Planar coil and coil module, power reception apparatus, and contactless power transmission apparatus provided with same
JP2015534422A (en) Non-contact power transmission system
EP2953143A1 (en) Coil unit and wireless power transmission device
CN108028124A (en) Non-contact power coil and contactless power supply system
US20150207332A1 (en) Contactless power supply system
JP5646688B2 (en) Contactless power supply system
JP2013208012A (en) Antenna coil unit and magnetic field resonance power supply system
JP2013051285A5 (en)
JP2013051285A (en) Coil device and coil device with core
JP2019036649A (en) Inductor
CN109767892A (en) Choke coil
JP5384195B2 (en) Non-contact power supply device
US11715976B2 (en) Coil component
JP2014170876A (en) Coil unit and power supply system
JP4491983B2 (en) Induction heating coil
JP7069913B2 (en) Coil unit, wireless power transmission device, wireless power receiving device, and wireless power transmission system
JP6365109B2 (en) Coil unit
CN111742464A (en) Wireless power transfer pad with multiple windings
JP2019179904A (en) Coil unit, wireless power transmission device, wireless power reception device, and wireless power transmission system
JPWO2019131883A1 (en) Welding transformer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012515257

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857539

Country of ref document: EP

Kind code of ref document: A1