WO2012038298A1 - Spectromètre - Google Patents

Spectromètre Download PDF

Info

Publication number
WO2012038298A1
WO2012038298A1 PCT/EP2011/065799 EP2011065799W WO2012038298A1 WO 2012038298 A1 WO2012038298 A1 WO 2012038298A1 EP 2011065799 W EP2011065799 W EP 2011065799W WO 2012038298 A1 WO2012038298 A1 WO 2012038298A1
Authority
WO
WIPO (PCT)
Prior art keywords
entrance slit
slit
reflection surface
entrance
surface normal
Prior art date
Application number
PCT/EP2011/065799
Other languages
German (de)
English (en)
Inventor
Hans-Jürgen DOBSCHAL
Matthias Burkhardt
Original Assignee
Carl Zeiss Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss Ag filed Critical Carl Zeiss Ag
Publication of WO2012038298A1 publication Critical patent/WO2012038298A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0291Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating

Definitions

  • the invention relates to a spectrometer which comprises a slit diaphragm with an entrance slit, a hollow-mirrored imaging grating which has a surface normal and a detector with a cell shape
  • the components are in
  • Diffraction grating due to its high dispersion effect.
  • the advantage of these gratings e.g. In contrast to prisms, it predominates so strongly that the associated energy efficiency falls outside one of the
  • Deflection mirrors are arranged and shaped in relation to the diffraction grating and the detector line such that proportionately undiffracted light, the so-called zeroth diffraction order, is coupled in via the mirror deflections again but slightly offset parallel to the input beam path, it is said to be recycled This effectively leads to a signal level increase at the detector.
  • the smallest possible space requirement is also sought in a number of applications.
  • a solution for space reduction goes on the
  • the grating takes over several optical functions, such as the required mapping of the entrance slit of the spectrometer into the plane of a detector, and at the same time the dispersion (wavelength splitting). Additional optics such as Also in US20070242268A1, which prepare the light to be examined only by collimating for the use of a Plangitters are superfluous.
  • the invention is intended to solve the problem of providing a new high-resolution spectrometer, which has a more compact design.
  • the spectrometer should have a high efficiency in a broad spectral range.
  • the image width of the grating substrate is formed in its function as a concave mirror whose center of curvature lies in the cleavage plane. This effectively corresponds to the effect of the zeroth diffraction order. Object and image plane coincide with each other as a 1: 1 mapping takes place. However, a slight offset of the surface normal of the grating with respect to the entrance slit is required, so that the light of the zeroth diffraction order does not escape again through the slit opening, but is ensured by a back reflection towards the grating from a region as close as possible to the entrance slit.
  • the offset is lateral, in the longitudinal direction of the gap, close to the gap (X-direction).
  • the offset is horizontal, in the longitudinal direction of
  • Entrance column narrowly below the entrance slit (Y-direction, corresponds to the dispersion direction).
  • the two variants differ essentially only by the
  • the diffracted light beams of a wavelength meet vertically one above the other onto a detector cell, so that the intensities accumulate, resulting in a highest possible sensitivity at a maximum spectral resolution.
  • the detector cell must be more than twice as wide compared to a known grating spectrometer.
  • the detector cell must have a width, as is common with known grating spectrometers.
  • Signal amplification succeeds in other, not shown, embodiments in principle with a reflective design of a physical area in the immediate vicinity of the entrance slit.
  • the entrance slit and the reflection surface are arranged as symmetrically as possible to the surface normal of the imaging grating.
  • Figure 1 spectrometer with use of the zeroth diffraction order with offset transverse to the dispersion direction, wherein the
  • FIG. 2 section of FIG. 1
  • FIG. 3 Spectrometer with use of the zeroth diffraction order with offset in the dispersion direction, wherein the back reflection of the slit image, which runs back across the zeroth diffraction order, takes place on two oblique, opposing surfaces which bound the gap.
  • FIG. 4 Spectrometer with use of the zeroth diffraction order with offset in the dispersion direction, wherein the back reflection of the slit image, which runs back through the zeroth diffraction order, takes place on a flat surface.
  • FIG. 5 Lateral offset of entrance slit and reflection surface
  • FIG. 6 Horizontal offset of entrance slit and reflection surface
  • FIG. 1 shows a spectrometer in which a slit diaphragm 1 1, an imaging grating 13 and a detector 16 are arranged in the direction of light propagation.
  • the slit diaphragm 1 1 has an entrance slit 12 for the incident light beam 1, which is to be examined spectrally.
  • a planar reflection surface 18 is arranged next to the entrance slit in a cleavage plane (22).
  • the detector 16 has
  • Detector elements 20 which are arranged in the row direction (detector line 17).
  • the row direction is the dispersion direction or Y direction.
  • the individual detector elements 20 of the detector row 17 have a height greater than 2 h.
  • the grating substrate 15 is installed as an imaging grating 13 so that the slit image as a light beam in the zeroth diffraction order 3 transversely to the dispersion direction, ie in the X direction, in the
  • Cleavage plane passes.
  • the cleavage plane is mirrored, has a plane reflection surface 18. From here, this reflected light beam Zeroth order of diffraction 3 ' again directed to the grid and diffracted into the first diffraction order light component 4 is transmitted to the detector plane, the detector line 17.
  • the quasi-recycled light of a wavelength passes without offset in the dispersion direction (Y direction), however, transversely offset next to the directly diffracted light beam first diffraction order 2 on the detector line 17.
  • the spectral resolution is thus not reduced, the pixel height of the detector elements 20 must but therefore about twice the gap height h correspond. It is better, due to the possibly 1: 1 differing magnification between the entrance slit 12 and the detector (16) that the pixel height is slightly larger than twice the gap height.
  • the primary incident on the imaging grating 13 light beam 1 is the direct diffracted light first order diffraction order 2.
  • the resulting zeroth diffraction order 3 is shown in dashed lines, falls on the reflection surface 18 and is as a light beam zeroth diffraction order 3 ' to the imaging grating 13th reflected back.
  • the resulting useful light first-diffraction order 4 is shown dotted.
  • Light with spectral component shows the dispersion of the light bundles in the row direction Y of the detector (dispersion direction).
  • D1 denotes the spectral locations after first diffraction and D2 denotes the spectral locations after second diffraction.
  • the spectrometer measures a spectral range from 250nm to 900nm.
  • the spectral length is 5.6mm.
  • Reflection surface 18 to the surface normal of the imaging grating 21, the Z direction shown.
  • the reflection surface 18 reflects the zeroth diffraction order 3 from the first pass again as zeroth diffraction order 3 ' onto the imaging grating 13 for the second diffraction.
  • the minimum height of the detector elements in the detector line is 1, 8mm.
  • the exposure data refer to Cartesian coordinates, with a first laser source C with respect to the grating crest:
  • the shift of the slit image in the zeroth diffraction order in the row direction of the detector is illustrated on the diagram of a spectrometer with the imaging grating.
  • Figure 3 shows the variant in which the entrance slit 12 is designed so that the two opposite by about 90 ° opposite
  • This embodiment has advantages in terms of technological feasibility.
  • FIG. 4 illustrates the configuration of a narrow planar reflection surface 18 directly on a long side of the entrance slit 12.
  • the undiffracted light of the zeroth diffraction order 3 generates a slit image which strikes the reflection surface 18.
  • the plane mirrored surface has an angle between 0 ° and 1 ° relative to the plane of the plane perpendicular to the surface normal Z of the imaging grating 13, ie it is parallel to the cleavage plane or slightly inclined.
  • the light bundle first diffraction order 3 ' returns to the imaging grating 13 and is diffracted, zero-order diffraction order 4 into light bundles and into further orders which are not further utilized.
  • the spectrometer measures a spectral range from 250nm to 900nm.
  • the spectral length is 5.6mm.
  • Entrance Split Center 0,000 0, 100 -22,005
  • the reflection surface 18 reflects the zeroth diffraction order from the first pass again to the imaging grating 13 for the second diffraction.
  • FIG 6 the position of the entrance slit 12 and the reflection surface 18 to the surface normal of the imaging grating 21, the Z-direction are shown.
  • the reflection surface 18 reflects the incident light bundles of the zeroth diffraction order 3 from the first pass again as a zeroth diffraction order 3 ' onto the imaging grating 13 for the second diffraction.
  • the diffracted light beam of the zeroth diffraction order 4 is slightly offset in the Y direction to the light beam of the zeroth diffraction order 2.
  • the minimum height of the detector elements in the detector line is 1, 0mm.
  • Exposure wavelength 457.90 nm

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

L'invention concerne un spectromètre qui est constitué d'un diaphragme à fente comprenant une fente d'entrée, d'une grille de formation d'images en forme de miroir creux qui présente une normale de surface et d'un détecteur comprenant des éléments de détection agencés en forme de cellules qui sont disposés les uns derrière les autre dans le sens de propagation de la lumière. Une surface réfléchissante est disposée dans un plan de fente dans les alentours immédiats de la fente d'entrée, le centre de courbure de la grille de formation d'images en forme de miroir creux se trouve dans un plan de fente et la normale de surface de la grille de formation d'images présente par rapport à la fente d'entrée un décalage tel que la normale de surface ne passe pas à travers la fente d'entrée, et la grille de formation d'images génère une image 1:1 de la fente d'entrée sur la surface réfléchissante pour l'ordre zéro.
PCT/EP2011/065799 2010-09-21 2011-09-13 Spectromètre WO2012038298A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010046107.5 2010-09-21
DE201010046107 DE102010046107A1 (de) 2010-09-21 2010-09-21 Spektrometer

Publications (1)

Publication Number Publication Date
WO2012038298A1 true WO2012038298A1 (fr) 2012-03-29

Family

ID=44645116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/065799 WO2012038298A1 (fr) 2010-09-21 2011-09-13 Spectromètre

Country Status (2)

Country Link
DE (1) DE102010046107A1 (fr)
WO (1) WO2012038298A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190731A (ja) * 1982-04-30 1983-11-07 Shimadzu Corp パツシエンルンゲ形分光器
DE19853754A1 (de) * 1998-11-21 2000-05-25 Spectro Analytical Instr Gmbh Simultanes Doppelgitter-Spektrometer mit Halbleiterzeilensensoren oder Photoelektronenvervielfachern
FR2847978A1 (fr) * 2002-12-02 2004-06-04 Technologie Optique Et Etudes Spectrometre compact a composant optique monolithique
EP1845349A1 (fr) * 2006-04-15 2007-10-17 Carl Zeiss MicroImaging GmbH Unité d'analyse spectrale dotée d'un réseau de diffraction
EP2116827A1 (fr) * 2008-03-04 2009-11-11 Hamamatsu Photonics K.K. Spectroscope

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2240190A (en) * 1990-01-23 1991-07-24 British Telecomm Reflection filter
JP4357421B2 (ja) * 2002-07-12 2009-11-04 リヴァー ダイアグノスティックス ベースローテン フェンノートシャップ 光学分光計
DE102008054056A1 (de) * 2008-10-31 2010-05-06 Carl Zeiss Microimaging Gmbh Spektrometrische Anordnung und Verfahren zum Ermitteln eines Temperaturwerts für einen Detektor eines Spektrometers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190731A (ja) * 1982-04-30 1983-11-07 Shimadzu Corp パツシエンルンゲ形分光器
DE19853754A1 (de) * 1998-11-21 2000-05-25 Spectro Analytical Instr Gmbh Simultanes Doppelgitter-Spektrometer mit Halbleiterzeilensensoren oder Photoelektronenvervielfachern
FR2847978A1 (fr) * 2002-12-02 2004-06-04 Technologie Optique Et Etudes Spectrometre compact a composant optique monolithique
EP1845349A1 (fr) * 2006-04-15 2007-10-17 Carl Zeiss MicroImaging GmbH Unité d'analyse spectrale dotée d'un réseau de diffraction
US20070242268A1 (en) 2006-04-15 2007-10-18 Hans-Juergen Dobschal Spectral analytical unit with a diffraction grating
EP2116827A1 (fr) * 2008-03-04 2009-11-11 Hamamatsu Photonics K.K. Spectroscope

Also Published As

Publication number Publication date
DE102010046107A1 (de) 2012-03-22

Similar Documents

Publication Publication Date Title
EP2550128B1 (fr) Dispositif pour l'application d'un rayonnement laser
EP1839083B1 (fr) Dispositif d'homogeneisation de la lumiere
DE102006017705B4 (de) Spektralanalytische Einheit mit einem Beugungsgitter und Laserscanning-Mikroskop
WO2015149759A1 (fr) Spectromètre
WO2008043457A1 (fr) Unité spectroscopique ultrasensible
EP1793269B1 (fr) Dispositif destiné à influencer la lumière
DE102009009366A1 (de) Vorrichtung zur Homogenisierung von Laserstrahlung
DE102016220232A1 (de) Optisches Element für ein Lidar-System
EP2980525B1 (fr) Interferometre à triple passage
EP2088409B1 (fr) Spectromètre représentatif, notamment pour la reconnaissance à distance
EP1381907B1 (fr) Dispositif de collimation d'une lumiere emise par une source de lumiere laser et transformateur de faisceau con u pour ce dispositif
DE102015108818B4 (de) Anordnung zur Spektroskopie und Verfahren zur Herstellung der Anordnung
WO2012038298A1 (fr) Spectromètre
DE102008050867B4 (de) Verfahren zum Messen eines Spektrums einer schmalbandigen Lichtquelle sowie Spektrometeranordnung
EP2101201B1 (fr) Dispositif pour diviser un faisceau
DE102022110651B4 (de) Kompaktes optisches Spektrometer
EP2813802B1 (fr) Dispositif de mesure
DE102018100622B4 (de) Simultanspektrometer mit einem planen reflektiven Beugungsgitter
EP1318524A2 (fr) Système optique à rayons X et méthode pour former un image d'une source
DE102008054733B4 (de) Spektrometer mit mehreren Gittern
DE102010012459A1 (de) Vorrichtung zur Beaufschlagung eines zumindest teilweise reflektierenden oder transparenten Bereichs eines in einem Arbeitsbereich angeordneten Werkstücks mit Laserstrahlung
DE102019210674A1 (de) Optische Strahlformeinrichtung zum Erweitern eines Sichtfelds einer optischen Detektoreinrichtung, optische Analysevorrichtung zum Analysieren von Licht von einer Probe und Verfahren zum Herstellen einer optischen Strahlformeinrichtung
DE102010012467A1 (de) Vorrichtung zur Abbildung einer linienförmigen Lichtverteilung, Laservorrichtung mit einer derartigen Vorrichtung sowie Verfahren zur Herstellung einer derartigen Vorrichtung
DE102006035068A1 (de) Kohärenzminderer für ein zugeführtes kohärentes Strahlenbündel und Verfahren zur Verringerung der Kohärenz eines kohärenten Strahlenbündels
DE102018205857A1 (de) Vorrichtung zur interferentiellen Abstandsmessung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11755073

Country of ref document: EP

Kind code of ref document: A1