DE102010046107A1 - Spektrometer - Google Patents

Spektrometer Download PDF

Info

Publication number
DE102010046107A1
DE102010046107A1 DE201010046107 DE102010046107A DE102010046107A1 DE 102010046107 A1 DE102010046107 A1 DE 102010046107A1 DE 201010046107 DE201010046107 DE 201010046107 DE 102010046107 A DE102010046107 A DE 102010046107A DE 102010046107 A1 DE102010046107 A1 DE 102010046107A1
Authority
DE
Germany
Prior art keywords
entrance slit
reflection surface
slit
detector
spectrometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE201010046107
Other languages
English (en)
Inventor
Hans-Jürgen Dobschal
Matthias Burkhardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss Microscopy GmbH
Original Assignee
Carl Zeiss AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss AG filed Critical Carl Zeiss AG
Priority to DE201010046107 priority Critical patent/DE102010046107A1/de
Priority to PCT/EP2011/065799 priority patent/WO2012038298A1/de
Publication of DE102010046107A1 publication Critical patent/DE102010046107A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0291Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

Das Spektrometer besteht aus einer Spaltblende mit einem Eintrittsspalt, einem hohlspiegelförmigen, abbildenden Gitter, welches eine Flächennormale aufweist und einem Detektor mit zeilenförmig angeordneten Detektorelementen, die in Lichtausbreitungsrichtung nacheinander angeordnet sind. In unmittelbarer Umgebung des Eintrittspaltes ist in einer Spaltebene eine Reflexionsfläche angeordnet, wobei der Krümmungsmittelpunkt des hohlspiegelförmigen, abbildenden Gitters in einer Spaltebene liegt und die Flächennormale des abbildenden Gitters weist zum Eintrittspalt einen solchen Versatz auf, dass die Flächennormale den Eintrittsspalt nicht durchstößt.

Description

  • Die Erfindung betrifft ein Spektrometer, welches aus einer Spaltblende mit einem Eintrittsspalt, einem hohlspiegelförmigen, abbildenden Gitter, welches eine Flächennormale aufweist und einem Detektor mit zeilenförmig angeordneten Detektorelementen besteht. Die Komponenten sind in Lichtausbreitungsrichtung nacheinander angeordnet.
  • Spektral breitbandige und hochauflösende Spektrometersysteme verwenden in vorteilhafter Weise ein lineares Detektorarray und ein Beugungsgitter, auf Grund deren hohen Dispersionswirkung. Der Vorteil dieser Gitter, z. B. gegenüber Prismen, überwiegt dabei so stark, dass die damit verbundenen Energieeffizienzeinbrüche außerhalb eines von den Gitterparametern abhängigen optimalen Spektralbereiches häufig in Kauf genommen werden. Diese Energieverluste gehen dabei auf die physikalisch bedingt begrenzte Beugungseffizienz des optischen Gitters zurück, wobei je nach Auslegung Licht in unterschiedlichem Umfang in nicht genutzte Beugungsordnungen gelangt, welches neben dem erwähnten Energieverlust auch Störlicht im optischen System verursacht. Eine Verbesserung der Energieeffizienz ist deshalb wünschenswert und auch eine Voraussetzung für die Realisierung von Gitter-Spektrometersystemen für höhere Ansprüche.
  • In US20070242268A1 wird eine Spektrometer-Anordnung beschreiben, welche ein planes Beugungsgitter verwendet. Es dient zur Trennung der spektral unterschiedlichen Komponenten in der einfallenden Strahlung. Umlenkspiegel sind in Bezug zum Beugungsgitter und zur Detektorzeile so angeordnet und geformt, dass anteilig ungebeugtes Licht, die sogenannte Nullte-Beugungsordnung, über die Spiegelumlenkungen erneut, jedoch leicht parallel versetzt neben den Eingangs-Strahlengang eingekoppelt wird, es wird so zu sagen recycelt, so dass es dadurch effektiv zu einer Signalpegelerhöhung am Detektor kommt.
  • Häufig wird neben den optischen und elektronischen Parametern bei einer Reihe von Anwendungen auch ein möglichst geringer erforderlicher Bauraum angestrebt. Eine Lösung zur Bauraumreduzierung geht dabei auf die Verwendung eines abbildenden holografischen Gitters zurück. Das Gitter übernimmt dabei mehrere optische Funktionen, wie das erforderliche Abbilden des Eintrittsspalts des Spektrometers in die Ebene eines Detektors, sowie gleichzeitig die Dispersion (Wellenlängenaufspaltung). Zusätzliche Optiken wie z. B. auch in US20070242268A1 , die das zu untersuchende Licht erst durch Kollimieren für die Verwendung eines Plangitters aufbereiten sind dabei überflüssig.
  • Die in US20070242268A1 beschriebene Lösung ist daher für sehr kompakt aufgebaute Spektrometersysteme ungeeignet.
  • Die Erfindung soll das Problem lösen, ein neues hochauflösendes Spektrometer zu liefern, welches eine kompaktere Bauform aufweist. Das Spektrometer soll in einem breiten Spektralbereich eine hohe Effizienz haben.
  • Die Lösung der Aufgabe gelingt erfindungsgemäß mit den kennzeichnenden Merkmalen des Anspruchs 1. Die Unteransprüche 2 bis 8 sind vorteilhafte Ausgestaltungen des Hauptanspruches.
  • Grundlage der Erfindung ist, dass die Abbildungsweite des Gittersubstrats in seiner Funktion als Hohlspiegel ausgebildet ist, dessen Krümmungsmittelpunkt in der Spaltebene liegt. Das entspricht effektiv der Wirkung der Nullten-Beugungsordnung. Objekt- und Bildebene fallen damit zusammen da eine 1:1 Abbildung erfolgt. Es wird jedoch ein leichter Versatz der Flächennormale des Gitters gegenüber dem Eintrittsspalt benötigt, damit das Licht der Nullten-Beugungsordnung nicht wieder durch die Spaltöffnung entweicht, sondern durch eine Rückreflexion hin zum Gitter aus einer Region möglichst nahe am Eintrittsspalt sichergestellt ist.
  • Damit wird erreicht, dass das reflektierte Lichtbündel der Nullten-Beugungsordnung (Erster Umlauf) wieder auf das Gittersubstrat einfällt, dort eine Aufspaltung so erfährt, dass die entstehende Erste-Beugungsordnung auf den Detektor trifft und mit ausgewertet wird.
  • In einem ersten Fall ist der Versatz lateral, in Längsrichtung des Spaltes, eng neben dem Spalt (X-Richtung).
  • In einem zweiten Fall ist der Versatz horizontal, in Längsrichtung der Eintrittsspalte eng unterhalb des Eintrittsspaltes (Y-Richtung, entspricht der Dispersionsrichtung).
  • Die zwei Varianten unterscheiden sich im Wesentlichen nur durch die Ausbildung der unmittelbaren Umgebung des Spaltes:
    • – Verschiebung des Spaltbildes in der Nullten-Beugungsordnung quer zur Dispersionsrichtung (X-Richtung). Bei dieser Variante treffen die gebeugten Lichtbündel einer Wellenlänge vertikal übereinander auf eine Detektorzelle, so dass sich die Intensitäten aufsummieren, Es ergibt sich eine höchst mögliche Empfindlichkeit bei einer maximalen spektralen Auflösung. Die Detektorzelle muss mehr als doppelt so breit sein, gegenüber einen bekannten Gitter-Spektrometer.
    • – Verschiebung des Spaltbildes in der Nullten-Beugungsordnung in Dispersionsrichtung (Y-Richtung). Bei dieser Variante treffen die gebeugten Lichtbündel einer Wellenlänge in Dispersionsrichtung unmittelbar nebeneinander, so dass möglicherweise mehr als eine Detektorzelle gebeugtes Licht empfängt, so dass bei einer hohen Empfindlichkeit die spektrale Auflösung etwas geringer ist. Die Detektorzelle muss eine Breite aufweisen, wie diese gegenüber bekannten Gitter-Spektrometern üblich ist.
  • Das Prinzip der Rückgewinnung der Nullten-Beugungsordnung zur Signalverstärkung gelingt in anderen, hier nicht gezeigten, Ausführungsformen grundsätzlich mit einer reflektiven Ausgestaltung eines körperlichen Bereiches in der unmittelbaren Umgebung des Eintrittsspaltes. Dabei sind Eintrittspalt und Reflexionsfläche möglichst symmetrisch zur Flächennormale des Abbildenden Gitters angeordnet.
  • Die Erfindung wird nachfolgend an Hand von Ausführungsbeispielen beschrieben. Es zeigen:
  • 1: Spektrometer mit Nutzung der Nullten-Beugungsordnung mit Versatz quer zur Dispersionsrichtung, wobei die Rückreflexion des Spaltbildes, das über die Nullte-Beugungsordnung zurückläuft an einer ebenen Fläche erfolgt.
  • 2: Ausschnitt aus 1.
  • 3: Spektrometer mit Nutzung der Nullten-Beugungsordnung mit Versatz in Dispersionsrichtung, wobei die Rückreflexion des Spaltbildes, das über die Nullte-Beugungsordnung zurückläuft an zwei schrägen, sich gegenüberliegenden Flächen erfolgt, welche den Spalt begrenzen.
  • 4: Spektrometer mit Nutzung der Nullten-Beugungsordnung mit Versatz in Dispersionsrichtung, wobei die Rückreflexion des Spaltbildes, das über die Nullte-Beugungsordnung zurückläuft an einer ebenen Fläche erfolgt.
  • 5: Lateraler Versatz von Eintrittsspalt und Reflexionsfläche
  • 6: Horizontaler Versatz von Eintrittsspalt und Reflexionsfläche
  • 1 zeigt ein Spektrometer, bei dem in Lichtausbreitungsrichtung eine Spaltblende 11 ein abbildendes Gitter 13 und ein Detektor 16 angeordnet sind. Die Spaltblende 11 besitzt einen Eintrittsspalt 12 für das einfallende Lichtbündel 1, welches spektral untersucht werden soll. In Längsrichtung des Eintrittspaltes 12 gesehen ist neben dem Eintrittspalt, in einer Spaltebene (22) eine plane Reflexionsfläche 18 angeordnet. Der Detektor 16 hat Detektorelemente 20, welche in Zeilenrichtung angeordnet sind (Detektorzeile 17). Die Zeilenrichtung ist die Dispersionsrichtung oder Y-Richtung. Die einzelnen Detektorelemente 20 der Detektorzeile 17 weisen eine Höhe größer 2 h auf.
  • Entsprechend 1 wird das Gittersubstrat 15 als abbildendes Gitter 13 so eingebaut, dass das Spaltbild als Lichtbündel in der Nullten-Beugungsordnung 3 quer zur Dispersionsrichtung, also in Richtung X verschoben, in die Spaltebene gelangt. An dieser Stelle ist die Spaltebene verspiegelt, weist eine plane Reflexionsfläche 18 auf. Von hier aus wird dieses reflektierte Lichtbündel Nullter-Beugungsordnung 3' erneut zum Gitter geleitet und der in die Ersten-Beugungsordnung gebeugte Lichtanteil 4 wird in die Detektorebene, auf die Detektorzeile 17 übertragen. Das quasi recycelte Licht eine Wellenlänge gelangt dabei ohne Versatz in der Dispersionsrichtung (Y-Richtung) allerdings quer dazu versetzt neben das direkt gebeugte Lichtbündel Erster-Beugungsordnung 2 auf die Detektorzeile 17. Die Spektrale Auflösung wird damit nicht verringert, die Pixelhöhe der Detektorelemente 20 muss dabei aber deshalb etwa der zweifachen Spalthöhe h entsprechen. Besser ist es, bedingt durch die möglicherweise von 1:1 abweichende Vergrößerung zwischen dem Eintrittspalt 12 und dem Detektor (16), dass die Pixelhöhe etwas größer ist, als die zweifache Spalthöhe.
  • In 2 zeigt die Spaltblende 11 und den Detektor in einer vergrößernden Darstellung. Das primäre, auf das abbildende Gitter 13 einfallende Lichtbündel 1 wird zum direkt gebeugtes Nutzlicht Erster-Beugungsordnung 2. Die dabei entstehende Nullte-Beugungsordnung 3 ist gestrichelt gezeichnet, fällt auf die Reflexionsfläche 18 und wird als Lichtbündel Nullter-Beugungsordnung 3' zum abbildenden Gitter 13 hin reflektiert. Das dabei daraus entstehende Nutzlicht Erster-Beugungsordnung 4 ist gepunktet gezeichnet.
  • Die Darstellung in den 1 und 2 zeigen der Übersicht halber die Verhältnissen bei praktisch monochromatischem Licht, für eine Wellenlänge. Licht mit spektralem Anteil zeigt die Dispersion der Lichtbündel in Zeilenrichtung Y des Detektors (Dispersionsrichtung). Mit D1 werden die spektralen Orte nach erster Beugung und mit D2 werden die spektralen Orte nach zweiter Beugung bezeichnet.
  • Nachfolgend wird eine Dimensionierung des Spektrometers für den Fall eines lateral versetzten Eintrittsspaltes (X-Richtung) beschrieben.
  • Das Spektrometer misst einen Spektralbereich von 250 nm bis 900 nm. Die Spektrenlänge beträgt 5,6 mm.
  • Es wird die Lage der lokalen Flächenkoordinatensysteme bezüglich des globalen Koordinatensystems angegeben, wobei dieses im Scheitel des holografischen Gitters seinen Ursprung hat:
    Element X-Koord. Y-Koord. Z-Koord.
    Eintrittsspalt-Mitte 0,500 0,000 –22,005
    Gitterscheitel 0,000 0,000 0,000
    Reflexionsfläche –1,000 0,000 –22,005
    250 nm-Ort (D1) –0,516 1,986 –22,635
    900 nm-Ort (D1) –0,553 7,669 –23,141
    250 nm-Ort (D2) 0,506 2,025 –22,357
    900 nm-Ort (D2) 0,471 7,593 –22,357
    D1: spektraler Ort nach erster Beugung
    D2: spektraler Ort nach zweiter Beugung
    Gitter-Radius: 22,005 mm konkav
    Gitterdurchmesser: 10 mm
    Größe der Reflexionsfläche: h × b = 0,8 × 0,5 mm
    Größe des Eintrittsspaltes: h × b = 0,8 × 0,05 mm
    Laterale Versatz des Eintrittsspaltes sowie der Reflexionsfläche gegenüber der Flächennormale des abbildenden Gitters, in X-Richtung: +0,5 mm sowie –0,5 mm.
  • In 5 werden die Lage des Eintrittspaltes 12 und der Reflexionsfläche 18 zur Flächennormale des abbildenden Gitters 21, die Z-Richtung dargestellt.
  • Die Reflexionsfläche 18 reflektiert die Nullte-Beugungsordnung 3 aus dem ersten Durchlauf wieder als Nullte-Beugungsordnung 3' auf das abbildende Gitter 13 zur zweiten Beugung. Die minimale Höhe der Detektorelemente in der Detektorzeile beträgt 1,8 mm.
  • Die Belichtung des abbildenden Gitters wird gegenläufig im Stehwellenverfahren ausgeführt, um die Blazewirkung im UV zu nutzen.
    Belichtungswellenlänge 457,90 nm
    Scheitelstrichzahl: 349,45 Linien pro Millimeter
  • Die Belichtungsdaten beziehen sich auf Kartesische Koordinaten, wobei eine erste Laserquelle C bezüglich des Gitterscheitels liegt:
    XC = 0,000000E+00 YC = 0,54821E+01 ZC = –0,232449E+02,
    divergierend und die Koordinaten eine zweiten Laserquelle D liegen bezüglich dem Gitterscheitel bei:
    XD = 0,000000E+00 YD = –0,691166E+00 ZD = –0,215823E+02,
    konvergierend.
  • Gemäß der 3 und 4 wird am Schema eines Spektrometers mit dem abbildendem Gitter die Verschiebung des Spaltbildes in der Nullten-Beugungsordnung in Zeilenrichtung des Detektors (Dispersionsrichtung, Y-Richtung) veranschaulicht.
  • 3 zeigt die Variante, bei der der Eintrittsspalt 12 so gestaltet ist, das die beiden gegenüberliegenden um ca. 90° gegenüberstehenden zueinander geneigten und den Spalt begrenzenden Flächen, die erste plane Reflexionsfläche 18 und die zweite plane Reflexionsfläche 19, als Retroreflektor wirken. Diese Ausgestaltung hat bezüglich der technologischen Umsetzbarkeit Vorteile.
  • 4 veranschaulicht die Ausgestaltung einer schmalen ebenen Reflexionsfläche 18 direkt an einer langen Seite des Eintrittspaltes 12. Das ungebeugte Licht der Nullten-Beugungsordnung 3 erzeugt ein Spaltbild, welches auf die Reflexionsfläche 18 trifft. Die ebene verspiegelte Fläche weist gegenüber der Spaltebene, senkrecht zur Flächennormalen Z des abbildenden Gitters 13, einen Winkel zwischen 0° und 1°, ist also parallel zur Spaltebene oder leicht geneigt.
  • Von der Reflexionsfläche 18 aus gelangt das Lichtbündel Erster-Beugungsordnung 3' wieder zum abbildenden Gitter 13 und wird gebeugt, in Lichtbündel Nullter-Beugungsordnung 4 und in weitere Ordnungen, die nicht weiter verwertet werden.
  • Nachfolgend wird eine Dimensionierung für ein Spektrometer mit einem horizontal, in Y-Richtung versetzten Eintrittsspalt beschrieben.
  • Das Spektrometer misst einen Spektralbereich von 250 nm bis 900 nm. Die Spektrenlänge beträgt 5,6 mm.
  • Es wird die Lage der lokalen Flächenkoordinatensysteme bezüglich des globalen Koordinatensystems angegeben, wobei diese im Scheitel des holografischen Gitters seinen Ursprung hat:
    Element X-Koord. Y-Koord. Z-Koord.
    Eintrittsspalt-Mitte 0,000 0,100 –22,005
    Gitterscheitel 0,000 0,000 0,000
    Reflexionsfläche 0,000 –0,100 –22,005
    250 nm-Ort (D1) 0,000 1,880 –22,626
    900 nm-Ort (D1) 0,000 7,541 –23,129
    250 nm-Ort (D2) 0,000 2,099 –22,644
    900 nm-Ort (D2) 0,000 7,766 –23,148
    D1: spektraler Ort nach erster Beugung
    D2: spektraler Ort nach zweiter Beugung
    Gitter-Radius: 22,005 mm konkav
    Gitterdurchmesser: 10 mm
    Größe der Reflexionsfläche: h × b = 1,0 × 0,15 mm
    Größe des Eintrittsspaltes: h × b 1,0 × 0,1 mm
    Horizontaler Versatz des Eintrittsspaltes sowie der Reflexionsfläche gegenüber der Flächennormale des abbildenden Gitters, in Y-Richtung +0,1mm sowie –0,1 mm
  • Die Reflexionsfläche 18 reflektiert die Nullte-Beugungsordnung aus dem ersten Durchlauf wieder auf das abbildende Gitter 13 zur zweiten Beugung.
  • In 6 werden die Lage des Eintrittspaltes 12 und der Reflexionsfläche 18 zur Flächennormale des abbildenden Gitters 21, die Z-Richtung dargestellt. Die Reflexionsfläche 18 reflektiert die einfallenden Lichtbündel der Nullten-Beugungsordnung 3 aus dem ersten Durchlauf wieder als Nullte-Beugungsordnung 3' auf das abbildende Gitter 13 zur zweiten Beugung. Das daraus gebeugte Lichtbündel der Nullten-Beugungsordnung 4 ist in Y-Richtung leicht zum Lichtbündel der Nullten-Beugungsordnung 2 versetzt. Die minimale Höhe der Detektorelemente in der Detektorzeile beträgt 1,0 mm.
  • Die Belichtung des abbildenden Gitters wird gegenläufig im Stehwellenverfahren ausgeführt, um die Blazewirkung im UV zu nutzen.
    Belichtungswellenlänge: 457,90 nm
    Scheitelstrichzahl: 349,45 Linien pro mm
  • Die Belichtungsdaten beziehen sich auf Kartesische Koordinaten, wobei die erste Laserquelle C bezüglich des Gitterscheitels liegt:
    XC = 0,000000E+00 YC = 0,454821E+01 ZC = –0,232449E+02,
    divergierend und die Koordinaten der zweiten Laserquelle D liegen bezüglich dem Gitterscheitel bei: XD = 0,000000E+00 YD = –0,691166E+00 ZD = –0,215823E+02, konvergierend.
  • Bezugszeichenliste
  • 1
    einfallendes Lichtbündel
    2
    gebeugtes Lichtbündel Erster-Beugungsordnung
    3
    Lichtbündel Nullter-Beugungsordnung
    4
    aus dem reflektierten Licht der Nullten-Beugungsordnung gebeugtes Lichtbündel Erster-Beugungsordnung
    10
    Lichteinkopplung
    11
    Spaltblende
    12
    Eintrittsspalt
    13
    abbildendes Gitter
    14
    Hohlspiegel
    15
    Gittersubstrat
    16
    Detektor
    17
    Detektorzeile
    18
    (erste) Reflexionsfläche
    19
    zweite Reflexionsfläche
    20
    Detektorelement
    21
    Flächennormale des abbildenden Gitters (Z-Richtung)
    22
    Spaltebene (Oberfläche der Spaltblende)
    β
    Neigung zwischen der Spaltebene und der Reflexionsfläche
    h
    Höhe des Eintrittspaltes sowie der Reflexionsfläche
    b
    Breite des Eintrittsspaltes sowie der Reflexionsfläche
    X-Y-Z
    Koordinatensystem
    Y-Richtung
    Dispersionsrichtung
    D1
    spektraler Ort nach erster Beugung
    D2
    spektraler Ort nach zweiter Beugung (nach Reflexion der Nullten-Beugungsordnung)
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 20070242268 A1 [0003, 0004, 0005]

Claims (8)

  1. Spektrometer, bestehend aus einer Spaltblende (11) mit einem Eintrittsspalt (12), einem hohlspiegelförmigen, abbildenden Gitter (13), welches eine Flächennormale (21) aufweist und einem Detektor (16) mit zeilenförmig angeordneten Detektorelementen (20), wobei die Komponenten in Lichtausbreitungsrichtung nacheinander angeordnet sind, dadurch gekennzeichnet, dass in unmittelbarer Umgebung des Eintrittspaltes (12) in einer Spaltebene (22) eine Reflexionsfläche (18) angeordnet ist, wobei der Krümmungsmittelpunkt des hohlspiegelförmigen, abbildenden Gitters (13) in der Spaltebene (22) liegt und die Flächennormale (21) des abbildenden Gitters (13) zum Eintrittspalt (12) einen solchen Versatz aufweist, dass die Flächennormale (21) den Eintrittsspalt (12) nicht durchstößt.
  2. Spektrometer nach Anspruch 1, dadurch gekennzeichnet, dass das die Nullte-Beugungsordnung (3) des abbildende Gitter (13) eine 1:1 Abbildung des Eintrittspaltes (12) auf die Reflexionsfläche (18) in der Spaltebene (22) erzeugt.
  3. Spektrometer nach Anspruch 1, dadurch gekennzeichnet, dass der Versatz der Flächennormale (21) lateral (X-Richtung), in Richtung der langen Ausdehnung des Eintrittsspaltes (12), erfolgt sowie die Reflexionsfläche (18) bezogen auf die Flächennormale (21) symmetrisch zum Eintrittsspalt (12) liegt.
  4. Spektrometer nach Anspruch 1, dadurch gekennzeichnet, dass der Versatz der Flächennormale (21) horizontal (Y-Richtung), in Richtung der kurzen Ausdehnung des Eintrittsspaltes (12), erfolgt sowie die Reflexionsfläche (18) bezogen auf die Flächennormale (21) symmetrisch zum Eintrittsspalt (12) liegt.
  5. Spektrometer nach Anspruch 3, dadurch gekennzeichnet, dass die zwei Seitenflächen des Eintrittsspaltes (12), welche die lange Ausdehnung aufweisen, als eine erste Reflexionsfläche (18) und als eine zweite Reflexionsfläche (19) ausgebildet sind und diese beiden Reflexionsflächen einen Retroreflektor bilden.
  6. Spektrometer nach Anspruch 3, dadurch gekennzeichnet, dass neben einer Seitenfläche des Eintrittsspaltes (12), welche die lange Ausdehnung aufweist, die Reflexionsfläche (18) angeordnet ist.
  7. Spektrometer nach Anspruch 2, dadurch gekennzeichnet, dass die Abmessungen der Reflexionsfläche (18) den Abmessungen des Eintrittsspaltes (12) entsprechen.
  8. Spektrometer nach Anspruch 1, dadurch gekennzeichnet, dass die die Reflexionsfläche (18) bezogen auf die Spaltebene (22) eine Neigung (β) aufweist, welche zwischen 0° und 1° liegt.
DE201010046107 2010-09-21 2010-09-21 Spektrometer Withdrawn DE102010046107A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE201010046107 DE102010046107A1 (de) 2010-09-21 2010-09-21 Spektrometer
PCT/EP2011/065799 WO2012038298A1 (de) 2010-09-21 2011-09-13 Spektrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201010046107 DE102010046107A1 (de) 2010-09-21 2010-09-21 Spektrometer

Publications (1)

Publication Number Publication Date
DE102010046107A1 true DE102010046107A1 (de) 2012-03-22

Family

ID=44645116

Family Applications (1)

Application Number Title Priority Date Filing Date
DE201010046107 Withdrawn DE102010046107A1 (de) 2010-09-21 2010-09-21 Spektrometer

Country Status (2)

Country Link
DE (1) DE102010046107A1 (de)
WO (1) WO2012038298A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2240190A (en) * 1990-01-23 1991-07-24 British Telecomm Reflection filter
US20050179895A1 (en) * 2002-07-12 2005-08-18 Puppels Gerwin J. Optical spectrometer
US20070242268A1 (en) 2006-04-15 2007-10-18 Hans-Juergen Dobschal Spectral analytical unit with a diffraction grating
DE102008054056A1 (de) * 2008-10-31 2010-05-06 Carl Zeiss Microimaging Gmbh Spektrometrische Anordnung und Verfahren zum Ermitteln eines Temperaturwerts für einen Detektor eines Spektrometers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190731A (ja) * 1982-04-30 1983-11-07 Shimadzu Corp パツシエンルンゲ形分光器
DE19853754B4 (de) * 1998-11-21 2009-06-10 Spectro Analytical Instruments Gmbh Simultanes Doppelgitter-Spektrometer mit Halbleiterzeilensensoren oder Photoelektronenvervielfachern
FR2847978B1 (fr) * 2002-12-02 2005-12-02 Technologie Optique Et Etudes Spectrometre compact a composant optique monolithique
JP5111163B2 (ja) * 2008-03-04 2012-12-26 浜松ホトニクス株式会社 分光器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2240190A (en) * 1990-01-23 1991-07-24 British Telecomm Reflection filter
US20050179895A1 (en) * 2002-07-12 2005-08-18 Puppels Gerwin J. Optical spectrometer
US20070242268A1 (en) 2006-04-15 2007-10-18 Hans-Juergen Dobschal Spectral analytical unit with a diffraction grating
DE102008054056A1 (de) * 2008-10-31 2010-05-06 Carl Zeiss Microimaging Gmbh Spektrometrische Anordnung und Verfahren zum Ermitteln eines Temperaturwerts für einen Detektor eines Spektrometers

Also Published As

Publication number Publication date
WO2012038298A1 (de) 2012-03-29

Similar Documents

Publication Publication Date Title
DE69222729T2 (de) Optisches System zur wiederholten Abbildung mit refraktiven und diffraktiven optischen Elementen
DE69803917T2 (de) Kinoformes optisches element zur darstellung eines variablen oberflächen-reliefs
DE102006017705B4 (de) Spektralanalytische Einheit mit einem Beugungsgitter und Laserscanning-Mikroskop
DE102014014983A1 (de) Optisches Filterelement für spektroskopische Einrichtungen zur Umwandlung von spektralen Informationen in Ortsinformationen
DE102016102591A1 (de) Vorrichtung zur Formung von Laserstrahlung
EP2309309B1 (de) Vorrichtung zur Formung von Laserstrahlung
DE102012209132A1 (de) Beleuchtungsoptik für die Projektionslithographie
EP1793269B1 (de) Vorrichtung zur Beeinflussung von Licht
DE102016220232A1 (de) Optisches Element für ein Lidar-System
EP2088409B1 (de) Abbildendes Spektrometer, insbesondere für die Fernerkundung
DE112011102900T5 (de) Sammeloptiksystem
EP1601072B1 (de) Strahlformungsoptik und -modul für eine Diodenlaseranordnung
DE102016112504A1 (de) Optische Anordnung zur spektralen Zerlegung von Licht
EP1381907B1 (de) Anordnung zur kollimierung des von einer laserlichtquelle ausgehenden lichts sowie strahltransformationsvorrichtung für eine derartige anordnung
DE102015108818B4 (de) Anordnung zur Spektroskopie und Verfahren zur Herstellung der Anordnung
DE102010046107A1 (de) Spektrometer
EP3578938A1 (de) Spektrometeranordnung
EP2101201B1 (de) Vorrichtung zur Aufteilung eines Lichtstrahls
DE4223212C2 (de) Gitter-Polychromator
EP0656531B1 (de) Prismenspektrometer
EP2026050B1 (de) Abbildendes Spektrometer mit einer Vorrichtung zur Trennung wenigstens zweier jeweils einen örtlichen Bereich abbildender Lichtbündel
DE102022110651B4 (de) Kompaktes optisches Spektrometer
DE102018100622B4 (de) Simultanspektrometer mit einem planen reflektiven Beugungsgitter
DE102017208580A1 (de) Baugruppe zur Wellenlängenfilterung elektromagnetischer Strahlung in einem optischen System
DE112014007078B4 (de) Gitterspektrometer mit verbesserter auflösung

Legal Events

Date Code Title Description
R016 Response to examination communication
R081 Change of applicant/patentee

Owner name: CARL ZEISS MICROSCOPY GMBH, DE

Free format text: FORMER OWNER: CARL ZEISS AG, 73447 OBERKOCHEN, DE

Effective date: 20130204

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20140401