WO2012038151A1 - Betriebsverfahren zur verwertung der thermischen abwärme für eine anlage der grundstoffindustrie - Google Patents

Betriebsverfahren zur verwertung der thermischen abwärme für eine anlage der grundstoffindustrie Download PDF

Info

Publication number
WO2012038151A1
WO2012038151A1 PCT/EP2011/063811 EP2011063811W WO2012038151A1 WO 2012038151 A1 WO2012038151 A1 WO 2012038151A1 EP 2011063811 W EP2011063811 W EP 2011063811W WO 2012038151 A1 WO2012038151 A1 WO 2012038151A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
molten salt
plant
cycle
exhaust gases
Prior art date
Application number
PCT/EP2011/063811
Other languages
English (en)
French (fr)
Inventor
Gerhard Enickl
Alfred Hampel
Markus Haider
Original Assignee
Siemens Vai Metals Technologies Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Vai Metals Technologies Gmbh filed Critical Siemens Vai Metals Technologies Gmbh
Priority to IN2556DEN2013 priority Critical patent/IN2013DN02556A/en
Priority to KR1020137010346A priority patent/KR20130141490A/ko
Priority to CN201180045853.1A priority patent/CN103108962B/zh
Priority to BR112013006719A priority patent/BR112013006719A2/pt
Priority to RU2013118685/06A priority patent/RU2013118685A/ru
Priority to EP11751842.3A priority patent/EP2619334B1/de
Publication of WO2012038151A1 publication Critical patent/WO2012038151A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/06Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being molten; Use of molten metal, e.g. zinc, as heat transfer medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/26Arrangements of heat-exchange apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/001Extraction of waste gases, collection of fumes and hoods used therefor
    • F27D17/003Extraction of waste gases, collection of fumes and hoods used therefor of waste gases emanating from an electric arc furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • F28D21/001Recuperative heat exchangers the heat being recuperated from exhaust gases for thermal power plants or industrial processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2100/00Exhaust gas
    • C21C2100/06Energy from waste gas used in other processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D2020/0047Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material using molten salts or liquid metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • F28D2020/0082Multiple tanks arrangements, e.g. adjacent tanks, tank in tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a method of operating a plant of the basic industry
  • the hot exhaust gases are discharged in the respective extent in which they arise, via a piping system from the base part of the system and discharged to the outside air,
  • molten salt is then used for directly or indirectly cooling a first portion of the Rohrlei ⁇ processing system is at least in the first phase, taken from a first tank vessel, the molten salt is heated thereby and fed to the molten salt when heated to a second container tank becomes,
  • the first section of the pipeline system being arranged between the base part of the installation and the second section of the pipeline system
  • steam is evaporated in an evaporator, superheated in a superheater, the steam is supplied to a load device, the steam is condensed to flow through the load device in a condenser to water, and the condensed water is preheated in a preheater,
  • the feeding of the superheated steam to the load device takes place continuously, wherein, to overheat the steam, at least in the second phase of the plant cycle, the molten salt is taken from the second tank, supplied to the superheater, and then supplied to the first tank or a third tank,
  • the evaporator is supplied, and is then supplied to the first tank container wherein the molten salt is taken from the second or the third Tankbenzol ⁇ ter tank container to evaporate water in the second phase of the plant cycle.
  • the present invention further relates to a plant of the primary industry, which is formed such that it is operable ge ⁇ Gurss such a method of operation.
  • Such an operating method is known from GB 972 720 A.
  • the main problem in the energy recovery from the waste heat of electric arc furnaces lies in the discontinuous and difficult to control energy emission of the arc furnaces, the strong temperature fluctuations of the exhaust gases and their high dust load.
  • the arc furnace process is a batch process in which off-gas side (depending on the furnace design and furnace operating mode) once or twice per hour, the emission of thermal power between a maximum value (emission phase) and zero (emission ⁇ pause) fluctuates. Since the units for converting thermi ⁇ shear energy into mechanical energy (typically turbines) are sensitive to strong power and temperature variations, and further requires the synchronization of a generator driven by the turbine electrical generator with an external power time, the turbines must, if Once they have reached the synchronous speed, kept at this speed to be able to feed stable electrical energy into the external network. It therefore needs energy the emission phases are stored in order to be available during the emission breaks.
  • the object of the present invention is to provide possibilities by means of which, in particular, the efficiency in the utilization of the thermal waste heat is increased.
  • the hot exhaust gases have a temperature of about 400 ° C, more preferably of about 450 ° C, and most preferably of about 500 ° C.
  • this measure ensures that the energy content of the hot exhaust gases is better utilized. Thereby, efficient continuous operation of the turbine can be easily achieved.
  • the load of the load device is lower during the second phase of the plant cycle than during the first phase of the plant cycle. This may affect the extent required storage capacity for the molten salt can be minimized.
  • the load of the load device during the second phase of the installation cycle at least 30% of the load currency ⁇ end of the first phase of the installation cycle.
  • This can reliably ensured a ⁇ hand, a stable operation of the load device, on the other hand, the storage capacity ⁇ for the heated molten salt (and also for the kept at boiling temperature feed water) be maintained at a relatively low level yet.
  • the tank containers are arranged lower than the first section of the piping system, the evaporator and the superheater. This ensures that a Citent ⁇ emptying of the conduit system for the molten salt can be effected if this - for example, during maintenance or repair work - is required.
  • an inert gas cushion for example a nitrogen pad
  • the tank containers are arranged lower than the first section of the piping system, the evaporator and the superheater.
  • an inert gas cushion for example a nitrogen pad
  • the tank containers are connected to each other at least in its lower region and in its upper region, so that an automatic leveling takes place within the tank container.
  • the third tank container is present, it is preferably provided that the molten salt extracted from the first Tankbenzol ⁇ ter and is supplied to a third portion of the tubing ⁇ system, which is arranged between the first and the two-th segment of the piping system that thereby the third section exhaust gas flowing through ge ⁇ cooled and the molten salt is heated and that the salt ⁇ ses conces- after heating the third tank container leads.
  • the utilization of the thermal energy contained in the hot exhaust gases can be further optimized.
  • the object is further achieved by a plant of the basic material ⁇ industry, wherein the system is designed such that it is operable according to an operating method according to the invention.
  • FIG. 1 shows schematically an installation of the basic industry
  • FIG. 2 shows schematically a plant cycle
  • FIG. 3 shows a portion of the exhaust system of the system of FIG.
  • FIG. 1 shows, in a very simplified representation, a plant of the basic industry.
  • the system has a Ba ⁇ sisteil. 1
  • the base part 1 is operated as shown in FIG 2 in an on position ⁇ cycle.
  • the plant cycle has at least a first phase PI and a second phase P2.
  • the first phase PI of the respective investment cycle hot gases are produced on the basis of the running in the base part 1 technical Prozes ⁇ ses the primary industry in the base part. 1 It is possible that in the second phase P2 of the respective system cycle in the base part 1, no hot exhaust gases occur. Al ⁇ tively, it is possible that while the gases are produced, but only come in significantly gering Stahlgigerem extent than in the first phase PI. In particular, the second phase P2 arises in the average currency ⁇ rend a maximum of one-sixth of the amount of hot exhaust gases as the average of the first phase PI.
  • the phases PI, P2 are determined as needed.
  • the duration of phase 2 over the total time of the plant cycle is a maximum of 30%, in particular a maximum of 25%.
  • the representation of FIG 2 is also simplified.
  • ⁇ sondere it is possible that the number of first stages is PI and the second phase P2 during a system cycle is greater than one. This will be explained in more detail below with reference to a typical base ⁇ part 1, namely a base part 1 in the form of an electric arc furnace.
  • operation typically occurs in the sequence of phases a) parting off and partial charging,
  • the hot exhaust gases are discharged through a pipe system 2 ⁇ from the base part 1 and discharged to the outside air.
  • the removal of the hot exhaust gases takes place at any time to the extent to which the hot exhaust gases each fall, so in the first phase PI on a large scale, in the second phase P2 in a small extent or not at all.
  • the hot exhaust gases Before the hot exhaust gases are released to the outside air, they must be filtered. Filtering takes place in a filter 3. At the time of filtering, the temperature of the hot exhaust gases may not exceed about 130 ° C. It is therefore necessary to cool the hot exhaust gases.
  • the pipeline system 2 has a first section 5.
  • the first section 5 of the pipeline system 2 is that section of the pipeline system 2 which the hot exhaust gases flow first after leaving the base part 1. He is trained in many cases as a manifold (so-called fixed elbow).
  • the first section 5 may be a so-called drop-out box 5 'immediately downstream. In the drop-out box 5 'larger solid residue particles are eliminated.
  • the first section 5 of the pipe system 2 is cooled with ge ⁇ schmolzenem salt. 6
  • the molten salt 6 taken from a first tank container 7, the first portion 5 of the piping system 2 is supplied and used there to cool it. Thereafter, the marmolze ne ⁇ salt 6 a second container tank 8 is supplied.
  • the first section 5 of the pipeline system 2 is cooled in the ⁇ se way.
  • the used for this purpose is thereby heated up, of course.
  • the molten salt 6 is therefore supplied to the second tank container 8 in the heated state.
  • the temperature of the marmol Zenen ⁇ salt 6 in the second tank container 8 is typically above 500 ° C, for example at 550 ° C or above. However, a temperature of 580 ° C. (for the second tank container 8) should only be exceeded if the first section 5 of the pipeline system 2 consists of a sufficiently temperature-resistant material (for example MONEL or INCONEL).
  • the molten salt 6 preferably consists of a eutetic salt mixture, since such salt mixtures have a relatively low melting point. Preferably, the melting point is about 150 ° C or below. Suitable salts are well known to those skilled in the art.
  • the pipeline system 2 also has a second section 9.
  • the second section 9 of the pipeline system 2 is that section of the pipeline system 2, which flows through the hot exhaust gases before feeding to the mixer 4 last.
  • the second section 9 is downstream of the first section 5 with respect to the path of the hot exhaust gases through the piping system 2.
  • the second section 9 is formed in the present case as a first evaporator device 10 with downstream first preheater 11. "Subordinate" the term be ⁇ takes place here on the path of the exhaust gases through the Rohrlei ⁇ processing system 2.
  • the second section 9 is due to the pre ⁇ hand his the first evaporator 10 and the ERS preheating device 11 is water-cooled. So in particular ⁇ sondere He is different from molten salt 6 cooled.
  • the first evaporator device 10 preferably consists of bulkhead walls, in which the water flows from the bottom upwards (or emerges as steam above).
  • the flow direction for the hot exhaust gas is preferably in countercurrent, that is from top to bottom.
  • the first preheating 11 is preferably just ⁇ if also bulkheads.
  • the bulkheads of the first preheating device 11 are preferably traversed horizontally by the water.
  • the plant of the basic industry according to the invention also has a water-steam cycle.
  • the water-steam circuit is heated by the hot exhaust gases. Subsequently, the water-steam cycle is first as such erläu ⁇ tert. Then, the interaction of the water-steam circuit ⁇ run is explained with the piping system 2.
  • the water-steam cycle has a preheater 12.
  • condensed water is preheated, that is at boiling temperature or just below.
  • the temperature of the water should be at least 90 ° C Betra ⁇ gene, more preferably 95 ° C, optimally from 98 ° C to 105 ° C.
  • the preheated water is fed to an evaporator 13 in which the water is evaporated.
  • the resulting steam is so-called saturated steam. It has a temperature of about 240 ° C to 280 ° C.
  • the saturated steam is supplied to a superheater 14, in which the saturated steam is heated to a considerably higher temperature.
  • the temperature of the steam after overheating should be at least 50 Kelvin, preferably at least 100 Kelvin above Saturated steam temperature are. In particular, the temperature of the steam may be after the superheater 14 at about 450 ° C.
  • the superheated steam is fed to a load device 15, in which the energy of the superheated steam into mechanical
  • the load device 15 is configured as a turbine in the re ⁇ gel. If necessary, Zvi ⁇ rule may be the superheater 14 and the load device 15 is arranged an additional heating element by means of which the steam is additionally heatable by external heat supply. As a result, the load device 15 can always be operated with superheated steam.
  • the load device 15 can - theoretically - shut down at any time and started up again. In practice, however, this is only cumbersome and time-consuming. Also, any synchronization of an electric generator 18, which is driven by means of the load device 15, takes time. In practice, it is therefore he ⁇ conducive that the load device 15 is operated continuously. The feeding of the superheated steam to the load device 15 must therefore be continuous. It is JE still possible that the load at which the load device 15 is operated, so the output from the load device 15 mechanical power during the second phase P2 of the on ⁇ is able cycle lower than the load at which the shoulder to load ⁇ direction 15 is operated during the first phase PI of the system cycle.
  • the load of the load device 15 should, however, Minim ⁇ least be 30% of the load during the first phase PI of the plants ⁇ cycle.
  • the generator should be 18 and with it is the load device 15 (usually the turbine 15) during the entire system cycle at constant speed be ⁇ driven.
  • the condenser 16 is always cooled with relatively cold water - typical temperature: 15 ° C to 30 ° C. The same applies to the degasser 17 so far ⁇ it exists.
  • the superheater 14 is supplied with molten salt 6, which is taken from the second tank container 8. With this molten salt 6, the saturated steam in the superheater 14 is overheated.
  • the molten salt 6 has, after flowing through the superheater 14, a temperature which is about 100 to 200 Kelvin lower than before.
  • the molten salt contained in the third tank container 19 preferably has a temperature level between 400 ° C and 450 ° C. Be distinguished for the evaporator 13 must be between the first phase PI of the conditioning cycle, and the second phase P2 of the conditioning cycle un ⁇ .
  • the first phase PI of the system cycle ie if the hot exhaust gases are generated on a large scale, the second section 9 of the pipeline system 2 can be used to evaporate the water.
  • the hot exhaust gases, the second portion 9 of the pipe system 2 Maschinenströ ⁇ men are, although pre-cooled in the first section 5 of the Rohrlei ⁇ processing system 2 by means of the molten salt 6 Service.
  • the evaporator 13 therefore has, on the one hand, the first evaporator device 10, which is located in the second section 9 of the piping system 2.
  • the Ver ⁇ liner 13 has a second evaporator means 20th
  • the second evaporator means 20 is arranged in parallel with the first evaporator means 10 with respect to the water-steam cycle.
  • the evaporator 13 can be operated in the second phase P2 with a lower vapor pressure than in the first phase PI.
  • the second evaporator device 20 is heated with molten salt 6.
  • the molten salt 6 is taken from the second tank container 8 or, if present, the third tank container 19 and fed to the second evaporator device 20. After flowing through the second evaporator device 20, it is supplied to the first tank container 7.
  • the preheater 12 has, in addition to the first preheating device 11, a second preheating device 21.
  • the second preheating device 21 is arranged upstream of the degasser 17.
  • the residual energy of the hot exhaust gases downstream of the first evaporator means 10 is sufficient to preheat the water.
  • the first evaporator device 10 is arranged downstream of the first preheater 11 with respect to the exhaust gas flow.
  • the amount of hot exhaust gases may be such that it is sufficient ⁇ order in the second phase P2 of the plant cycle, the to preheat condensed water.
  • the second preheating device 21 is heated according to FIG 3 - at least in the first phase PI - with water, which is removed between the first preheater 11 and the evaporator 13.
  • the water level in the degasser 17 may be temporarily increased and the water level in the second evaporator device 20 lowered accordingly.
  • the corresponding levels are then returned to their original values.
  • the molten salt 6 contained in the third tank container 19 is preferably used to supply the second evaporator device 20 with the required amount of heat. It is possible to feed the third tank container 19 only by the return of molten salt 6, with which the superheater 14 is heated.
  • a third section 22 of the pipe ⁇ line system 2 is provided, which is arranged between the first and the second section 5, 9 of the piping system.
  • the third section 22 of the piping system 2 is - as the first section 5 of the piping system 2 - cooled with molten salt 6.
  • molten salt 6 is taken from the first tank container 7 and fed to the third section 22 of the pipeline system 2.
  • the hot exhaust gases are thereby cooled even when they flow through the third section 22 of the pipeline system 2. Accordingly, the molten salt 6 used for this purpose is heated.
  • This molten salt 6 is then supplied to the third tank container 19. Alternatively, it could be supplied to the second tank container 8.
  • the Tem ⁇ temperature of the molten salt 6 is lowered in the second tank container 8 and optionally also in the third tank container 19.
  • the temperature rises again.
  • the maximum fluctuation of the temperature of the molten salt 6 in the respective tank container 8, 19 should preferably be at most 100 Kelvin.
  • the cooling of the hot exhaust gases in the third section 22 and the associated heating of the molten salt 6 takes place in a heat exchanger, which is preferably designed as Herzü ⁇ giger heat exchanger.
  • a heat exchanger which is preferably designed as Lazü ⁇ giger heat exchanger.
  • the representation of FIG be ent ⁇ speaking used 3 concentric cylindrical cooling surfaces, both sides of the cooling surfaces swept by the hot exhaust gases.
  • the heat exchanger is thus designed as a so-called dreikeeper hot gas cooler, since the hot exhaust gases flow in this heat exchanger first up, then down and finally back up.
  • the fuel tank 7, 8 and, where appropriate, ⁇ 19 may be arranged in a common vessel.
  • the tank containers 7, 8 and optionally 19 separated by bulkhead 23 from each other.
  • the tank containers 7, 8 and optionally 19 may be arranged in separate vessels.
  • the Tankbefflel ⁇ ter 7, 8 and optionally 19 are arranged lower than the first portion 5 of the piping system 2, the third section 22 of the pipe system 2 and the superheater 14. it is thereby achieved that the conduits for guiding the ge ⁇ molten salt 6 are emptied in a simple manner, should this be required.
  • the tank containers 7, 8 and optionally 19 may be designed in particular as underfloor tanks. Furthermore, the tank containers 7, 8 and optionally 19 are preferably connected to one another, at least in their lower region and in their upper region, so that within the tank containers 7, 8 and optionally 19 an automatic level compensation takes place. Finally, the molten salt 6 in the tank containers 7, 8 and optionally 19 vorzugswei ⁇ se an inert gas cushion 24 (preferably a Stickstoffpols ⁇ ter) superimposed.
  • an embodiment of the operating method of the invention has been described in conjunction with FIG 3, in which as molten salt 6 up directly with the hot exhaust gases is heated ⁇ . Alternatively, it is possible to indirectly heat the molten salt 6 by steam. This is briefly outlined below in conjunction with FIG. 4, with only the essential differences from the scheme of FIG. 3 being explained.
  • the piping system 2 further comprises the first, the second and the third pipe section 5, 9, 22 (shown only schematically in FIG. 4).
  • the second Rohrab ⁇ section 9 includes, as well as in FIG 3, the evaporator 13 and the preheater 12.
  • the first pipe section 5 includes a first heat exchanger 25 which is operated with steam from a steam storage. The first heat exchanger 25 is heated in the first phase PI of the plant cycle by means of the hot exhaust gases, so that superheated steam is formed.
  • the first heat exchanger 25 cooperates with a second heat exchanger 26.
  • the molten salt 6 is heated via the second heat exchanger 26.
  • the molten salt 6 flows in this operation ⁇ state from the first tank into the second tank container 7 vessel 8.
  • the heating of the molten salt 6, the superheated steam is naturally cooled. Nevertheless, the steam is also after flowing through the second heat exchanger 26 still overheated so that it can be fed from there to the turbine 15.
  • the first heat exchanger 25 is bridged by means of a bypass line 27.
  • the steam is therefore no longer supplied to the second heat exchanger 26 via the first heat exchanger 25 but directly from the evaporator 13 (or a corresponding storage vessel fed by the evaporator 13).
  • the steam is superheated.
  • the flow direction of the molten salt 6 is reversed for this purpose.
  • the molten salt 6 thus flows in the second phase P2 from the second tank container 8 into the first tank container 7 (or alternatively into the third tank container 19).
  • the present invention has many advantages. Insbeson ⁇ particular, the plant of the primary industry is relatively simple.
  • the embodiment of the invention is easy to implement, reliable and effective.
  • the present invention can be used in particular not only with small turbines 15 and correspondingly small generators 18 (maximum power of 2.5 megawatts). Rather, the present invention ⁇ even with larger base parts 1 is used, where on average over time about 30 megawatts thermal power are (or even more) are available. In such cases, the turbine must be set 15 and with it the generator 18 for a mechanical power output of about 10 megawatts or more from ⁇ .
  • the embodiment of the invention has a high efficiency. The investments to be made pay for themselves within a relatively short period of four to six years. In the case of a failure of the load device 15, the generated steam can furthermore be fed directly to the condenser 16 via a bypass line.
  • the present invention has been described above with a

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

In einem Basisteil (1) einer Anlage der Grundstoffindustrie entstehen während einer ersten Phase (P1) eines Anlagenzyklus heiße Abgase. In einer zweiten Phase (P2) des Anlagenzyklus entstehen die heißen Abgase nicht oder nur in erheblich verringertem Umfang. Die heißen Abgase werden über ein Rohrleitungssystem (2) aus dem Basisteil (1) der Anlage abgeführt und an die Außenluft abgegeben. Einem ersten Tankbehälter (7) wird zumindest in der ersten Phase (P1) geschmolzenes Salz (6) entnommen und zum direkten oder indirekten Kühlen eines ersten Abschnitts (5) des Rohrleitungssystems (2) verwendet. Das aufgeheizte geschmolzene Salz (6) wird einem zweiten Tankbehälter (8) zugeführt. In einem zweiten Abschnitt (9) des Rohrleitungssystems (2), der dem ersten Abschnitt (5) nachgeordnet ist, wird das Rohrleitungssystem (2) mit Wasser gekühlt. In einem Verdampfer (13) wird Wasser verdampft, in einem Überhitzer (14) der Dampf überhitzt und sodann der Dampf einer Lasteinrichtung (15) zugeführt. Danach wird der Dampf zu Wasser kondensiert und wieder vorgewärmt. Zumindest das Zuführen des Dampfes zur Lasteinrichtung (15) erfolgt kontinuierlich. Zum Überhitzen des Dampfes wird zumindest in der zweiten Phase (P2) das geschmolzene Salz (6) dem zweiten Tankbehälter (8) entnommen, dem Überhitzer (14) zugeführt und sodann dem ersten oder einem dritten Tankbehälter (7, 19) zugeführt. Zum Verdampfen des Wassers wird in der zweiten Phase (P2) das geschmolzene Salz (6) dem zweiten oder dem dritten Tankbehälter (8, 19) entnommen, dem Verdampfer (13) zugeführt und sodann dem ersten Tankbehälter (7) zugeführt. In der ersten Phase (P1) erfolgt das Verdampfen des Wassers mittels der den zweiten Abschnitt (9) durchströmenden, bereits direkt oder indirekt vorgekühlten Abgase.

Description

Beschreibung
BETRIEBSVERFAHREN ZUR VERWERTUNG DER THERMISCHEN ABWÄRME FÜR EINE ANLAGE DER GRUNDSTOFFINDUSTRIE Die vorliegende Erfindung betrifft ein Betriebsverfahren für eine Anlage der Grundstoffindustrie,
- wobei ein Basisteil der Anlage gemäß einem Anlagenzyklus betrieben wird,
- wobei während der Anlagenzyklen in einer ersten Phase des jeweiligen Anlagenzyklus heiße Abgase entstehen und in ei¬ ner zweiten Phase des jeweiligen Anlagenzyklus entweder keine heißen Abgase entstehen oder die heißen Abgase gegenüber der ersten Phase nur in erheblich verringertem Umfang entstehen,
- wobei die heißen Abgase in dem jeweiligen Umfang, in dem sie entstehen, über ein Rohrleitungssystem aus dem Basisteil der Anlage abgeführt und an die Außenluft abgegeben werden,
- wobei zumindest in der ersten Phase geschmolzenes Salz ei- nem ersten Tankbehälter entnommen wird, sodann zum direkten oder indirekten Kühlen eines ersten Abschnitts des Rohrlei¬ tungssystems verwendet wird, das geschmolzene Salz dadurch aufgeheizt wird und das geschmolzene Salz im aufgeheizten Zustand einem zweiten Tankbehälter zugeführt wird,
- wobei das Rohrleitungssystem in einem zweiten Abschnitt anders als mit geschmolzenem Salz gekühlt wird,
- wobei der erste Abschnitt des Rohrleitungssystems zwischen dem Basisteil der Anlage und dem zweiten Abschnitt des Rohrleitungssystems angeordnet ist,
- wobei in einem Verdampfer vorgewärmtes Wasser verdampft, in einem Überhitzer der Dampf überhitzt und der überhitzte Dampf einer Lasteinrichtung zugeführt wird, der Dampf nach dem Durchströmen der Lasteinrichtung in einem Kondensator zu Wasser kondensiert wird und in einem Vorwärmer das kon- densierte Wasser vorgewärmt wird,
- wobei zumindest das Zuführen des überhitzten Dampfes zur Lasteinrichtung kontinuierlich erfolgt, - wobei zum Überhitzen des Dampfes zumindest in der zweiten Phase des Anlagenzyklus das geschmolzene Salz dem zweiten Tankbehälter entnommen wird, dem Überhitzer zugeführt wird und sodann dem ersten Tankbehälter oder einem dritten Tankbehälter zugeführt wird,
- wobei zum Verdampfen des Wassers in der zweiten Phase des Anlagenzyklus das geschmolzene Salz dem zweiten Tankbehäl¬ ter oder dem dritten Tankbehälter entnommen wird, dem Verdampfer zugeführt wird und sodann dem ersten Tankbehälter zugeführt wird.
Die vorliegende Erfindung betrifft weiterhin eine Anlage der Grundstoffindustrie, die derart ausgebildet ist, dass sie ge¬ mäß einem derartigen Betriebsverfahren betreibbar ist.
Ein derartiges Betriebsverfahren ist aus der GB 972 720 A bekannt .
Die Hauptproblematik bei der Energieverwertung aus der Abwärme von Lichtbogenöfen liegt in der diskontinuierlichen und nur schwer steuerbaren Energieemission der Lichtbogenöfen, den starken Temperaturschwankungen der Abgase und deren hohen Staubbeladung .
Der Lichtbogenofenprozess ist ein Batchprozess , bei dem ab- gasseitig (je nach Ofendesign und Ofenbetriebsart) ein- bis zweimal pro Stunde die Emission an thermischer Leistung zwischen einem Maximalwert (Emissionsphase) und Null (Emissions¬ pause) schwankt. Da die Aggregate zur Umwandlung von thermi¬ scher Energie in mechanische Energie (in der Regel Turbinen) empfindlich gegenüber starken Leistungs- und Temperaturschwankungen sind und weiterhin die Synchronisation eines von der Turbine angetriebenen elektrischen Generators mit einem externen Netz Zeit benötigt, müssen die Turbinen, wenn sie einmal die Synchrondrehzahl erreicht haben, auf dieser Drehzahl gehalten werden, um stabil elektrische Energie in das externe Netz einspeisen zu können. Es muss daher Energie aus den Emissionsphasen gespeichert werden, um in den Emissionspausen zur Verfügung zu stehen.
Die aus der oben genannten GB-Schrift genannte Lösung ist schon recht gut, aber noch nicht optimal. Insbesondere kann die Wärme des Abgases bei niedrigen Temperaturen nicht mehr genutzt werden.
Die Aufgabe der vorliegenden Erfindung besteht darin, Möglichkeiten zu schaffen, mittels derer insbesondere der Wirkungsgrad bei der Verwertung der thermischen Abwärme vergrößert wird.
Die Aufgabe wird durch ein Betriebsverfahren mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen des erfindungsgemäßen Betriebsverfahrens sind Gegenstand der ab¬ hängigen Ansprüche 2 bis 10.
Bevorzugt haben die heißen Abgasen eine Temperatur von über 400°C, besonders bevorzugt von über 450°C, und ganz besonder bevorzugt von über 500°C.
Erfindungsgemäß ist vorgesehen, ein Betriebsverfahren der eingangs genannten Art dadurch auszugestalten, dass in der ersten Phase des Anlagenzyklus das Verdampfen des vorgewärm ten Wassers mittels der den zweiten Abschnitt des Rohrlei¬ tungssystems durchströmenden, bereits mittels des geschmolz nen Salzes direkt oder indirekt vorgekühlten Abgase erfolgt
Insbesondere wird durch diese Maßnahme erreicht, dass der Energieinhalt der heißen Abgase besser genutzt wird. Dadurch kann ein effizienter kontinuierlicher Betrieb der Turbine au einfache Weise erreicht werden.
Vorzugweise ist die Last der Lasteinrichtung während der zweiten Phase des Anlagenzyklus niedriger als während der ersten Phase des Anlagenzyklus. Dadurch kann das Ausmaß an erforderlicher Speicherkapazität für das geschmolzene Salz minimiert werden.
Vorzugsweise ist die Last der Lasteinrichtung während der zweiten Phase des Anlagenzyklus mindestens 30 % der Last wäh¬ rend der ersten Phase des Anlagenzyklus. Dadurch kann einer¬ seits ein stabiler Betrieb der Lasteinrichtung zuverlässig gewährleistet werden, andererseits kann dennoch die Speicher¬ kapazität für das erhitzte geschmolzene Salz (und auch für das auf Siedetemperatur gehaltene Speisewasser) auf relativ niedrigem Niveau gehalten werden.
Vorzugsweise sind die Tankbehälter tiefer angeordnet als der erste Abschnitt des Rohrleitungssystems, der Verdampfer und der Überhitzer. Dadurch wird erreicht, dass eine Selbstent¬ leerung des Leitungssystems für das geschmolzene Salz bewirkt werden kann, wenn dies - beispielsweise bei Wartungs- oder Reparaturarbeiten - erforderlich ist. Vorzugsweise ist dem geschmolzenen Salz in den Tankbehältern ein Inertgaspolster (beispielsweise ein Stickstoffpolster) überlagert. Dadurch ist ein einerseits druckoptimierter und andererseits dennoch abgedichteter Betrieb der Salzkreisläufe möglich .
Vorzugsweise sind die Tankbehälter zumindest in ihrem unteren Bereich und in ihrem oberen Bereich miteinander verbunden, so dass innerhalb der Tankbehälter ein selbsttätiger Niveauausgleich erfolgt.
Sofern der dritte Tankbehälter vorhanden ist, ist vorzugsweise vorgesehen, dass geschmolzenes Salz dem ersten Tankbehäl¬ ter entnommen und einem dritten Abschnitt des Rohrleitungs¬ systems zugeführt wird, der zwischen dem ersten und dem zwei- ten Abschnitt des Rohrleitungssystems angeordnet ist, dass dadurch das den dritten Abschnitt durchströmende Abgas ge¬ kühlt und das geschmolzene Salz aufgeheizt wird und dass die¬ ses Salz nach dem Aufheizen dem dritten Tankbehälter zuge- führt wird. Dadurch kann die Ausnutzung der in den heißen Abgasen enthaltenen thermischen Energie noch weiter optimiert werden . Die Aufgabe wird weiterhin durch eine Anlage der Grundstoff¬ industrie gelöst, wobei die Anlage derart ausgebildet ist, dass sie gemäß einem erfindungsgemäßen Betriebsverfahren betreibbar ist. Weitere Vorteile und Einzelheiten ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen in Verbindung mit den Zeichnungen. Es zeigen in Prinzipdarstellung:
FIG 1 schematisch eine Anlage der Grundstoffindustrie, FIG 2 schematisch einen Anlagenzyklus,
FIG 3 einen Abschnitt des Abgassystems der Anlage von FIG
1 sowie die an das Abgassystem angekoppelten Aggregate und
FIG 4 eine alternative Ausgestaltung des Abgassystems.
FIG 1 zeigt in stark vereinfachter Darstellung eine Anlage der Grundstoffindustrie. Gemäß FIG 1 weist die Anlage ein Ba¬ sisteil 1 auf. Das Basisteil 1 wird gemäß FIG 2 in einem An¬ lagenzyklus betrieben. Gemäß FIG 2 weist der Anlagenzyklus zumindest eine erste Phase P I und eine zweite Phase P2 auf.
In der ersten Phase P I des jeweiligen Anlagenzyklus entstehen auf Grund des im Basisteil 1 ablaufenden technischen Prozes¬ ses der Grundstoffindustrie im Basisteil 1 heiße Abgase. Es ist möglich, dass in der zweiten Phase P2 des jeweiligen An- lagenzyklus im Basisteil 1 keine heißen Abgase entstehen. Al¬ ternativ ist es möglich, dass die Abgase zwar entstehen, aber nur in erheblich geringfügigerem Umfang entstehen als in der ersten Phase P I . Insbesondere entsteht im Durchschnitt wäh¬ rend der zweiten Phase P2 maximal ein Sechstel der Menge an heißen Abgasen wie im Durchschnitt der ersten Phase P I . Die Phasen PI, P2 sind nach Bedarf bestimmt. In der Regel beträgt die Dauer der Phase 2 an der Gesamtzeit des Anlagenzyk¬ lus maximal 30 %, insbesondere maximal 25 %. Die Darstellung von FIG 2 ist ebenfalls vereinfacht. Insbe¬ sondere ist es möglich, dass die Anzahl an ersten Phasen PI und zweiten Phasen P2 während eines Anlagenzyklus größer als Eins ist. Dies wird nachstehend anhand eines typischen Basis¬ teils 1 näher erläutert, nämlich eines Basisteils 1 in Form eines elektrischen Lichtbogenofens.
Bei einem elektrischen Lichtbogenofen erfolgt der Betrieb typischerweise in der Abfolge der Phasen a) Abstechen und Teilchargieren,
b) Schmelzen der Teilcharge,
c) Vollchargieren und
d) Schmelzen der Gesamtcharge nebst Refining. Während der Phasen Abstechen und Teilchargieren sowie Vollchargieren entstehen nur in geringem Umfang heiße Abgase. Während der beiden Schmelzphasen entstehen in erheblichem Umfang heiße Abgase. Typische Zeitdauern sind beispielsweise
- für den gesamten Anlagenzyklus eine Stunde oder knapp dar¬ unter,
- für das Abstechen und Teilchargieren rund 10 Minuten, - für das Schmelzen der Teilcharge rund 15 Minuten,
- für das Vollchargieren wenige Minuten (maximal 5 Minuten) und
- für das Schmelzen der Gesamtcharge nebst Refining rund 30 Minuten .
Die genannten Zeiten können selbstverständlich in gewissem Umfang von Basisteil 1 zu Basisteil 1 und auch von Anlagen¬ zyklus zu Anlagenzyklus schwanken. Bei Betrieb mit direkt reduziertem Eisen oder mit Roheisen hingegen fallen während eines jeweiligen Anlagenzyklus nur je eine der Phasen PI, P2 an.
Gemäß FIG 1 werden die heißen Abgase über ein Rohrleitungs¬ system 2 aus dem Basisteil 1 abgeführt und an die Außenluft abgegeben. Das Abführen der heißen Abgase erfolgt zu jedem Zeitpunkt in dem Umfang, zu dem die heißen Abgase jeweils an- fallen, also in der ersten Phase PI in großem Umfang, in der zweiten Phase P2 in geringem Umfang oder gar nicht.
Bevor die heißen Abgase an die Außenluft abgegeben werden, müssen sie gefiltert werden. Das Filtern erfolgt in einem Filter 3. Zum Zeitpunkt des Filterns darf die Temperatur der heißen Abgase maximal ca. 130 °C betragen. Es ist daher erforderlich, die heißen Abgase zu kühlen.
Das Kühlen erfolgt teilweise in einem Mischer 4, in dem die heißen Abgase mit Zuluft und/oder kalten Abgasen (Temperatur maximal 50 °C, in der Regel deutlich darunter) vermischt werden. Zuvor werden die heißen Abgase im Rohrleitungssystem 2 gekühlt. Dieser Teil der Anlage der Grundstoffindustrie ist auf erfindungsgemäße Weise ausgestaltet. Er wird nachfolgend in Verbindung mit FIG 3 näher erläutert.
Gemäß FIG 3 weist das Rohrleitungssystem 2 einen ersten Abschnitt 5 auf. Der erste Abschnitt 5 des Rohrleitungssystems 2 ist derjenige Abschnitt des Rohrleitungssystems 2, den die heißen Abgase nach dem Verlassen des Basisteils 1 zuerst durchströmen. Er ist in vielen Fällen als Krümmer ausgebildet (so genannter fixed elbow) . Dem ersten Abschnitt 5 kann eine so genannte Drop-out-box 5' unmittelbar nachgeordnet sein. In der Drop-out-box 5' werden größere feste Rückstandspartikel ausgeschieden.
Der erste Abschnitt 5 des Rohrleitungssystems 2 wird mit ge¬ schmolzenem Salz 6 gekühlt. Zu diesem Zweck wird das ge- schmolzene Salz 6 einem ersten Tankbehälter 7 entnommen, dem ersten Abschnitt 5 des Rohrleitungssystems 2 zugeführt und dort zu dessen Kühlung verwendet. Danach wird das geschmolze¬ ne Salz 6 einem zweiten Tankbehälter 8 zugeführt.
Der erste Abschnitt 5 des Rohrleitungssystems 2 wird auf die¬ se Weise gekühlt. Das zu diesem Zweck verwendete, geschmolze¬ ne Salz 6 wird dadurch selbstverständlich aufgeheizt. Das geschmolzene Salz 6 wird dem zweiten Tankbehälter 8 daher im aufgeheizten Zustand zugeführt. Die Temperatur des geschmol¬ zenen Salzes 6 im zweiten Tankbehälter 8 liegt typischerweise oberhalb von 500 °C, beispielsweise bei 550 °C oder darüber. Eine Temperatur von 580 °C (für den zweiten Tankbehälter 8) sollte jedoch nur dann überschritten werden, wenn der erste Abschnitt 5 des Rohrleitungssystems 2 aus einem hinreichend temperaturfesten Material (beispielsweise MONEL oder INCONEL) besteht .
Das geschmolzene Salz 6 besteht vorzugsweise aus einem eutek- tischen Salzgemisch, da derartige Salzgemische einen relativ niedrigen Schmelzpunkt aufweisen. Vorzugsweise liegt der Schmelzpunkt bei ca. 150 °C oder darunter. Geeignete Salze sind Fachleuten allgemein bekannt. Das Rohrleitungssystem 2 weist weiterhin einen zweiten Abschnitt 9 auf. Der zweite Abschnitt 9 des Rohrleitungssystems 2 ist derjenige Abschnitt des Rohrleitungssystems 2, den die heißen Abgase vor dem Zuführen zum Mischer 4 zuletzt durchströmen. Der zweite Abschnitt 9 ist in Bezug auf den Weg der heißen Abgase durch das Rohrleitungssystem 2 dem ersten Abschnitt 5 nachgeordnet.
Der zweite Abschnitt 9 ist im vorliegenden Fall als erste Verdampfereinrichtung 10 mit nachgeordneter erster Vorwärm- einrichtung 11 ausgebildet. Der Begriff „nachgeordnet" be¬ zieht sich hierbei auf den Weg der Abgase durch das Rohrlei¬ tungssystem 2. Der zweite Abschnitt 9 ist auf Grund des Vor¬ handenseins der ersten Verdampfereinrichtung 10 und der ers- ten Vorwärmeinrichtung 11 wassergekühlt. Er ist also insbe¬ sondere anders als mit geschmolzenem Salz 6 gekühlt.
Die erste Verdampfereinrichtung 10 besteht vorzugsweise aus Schottwänden, in denen das Wasser von unten nach oben strömt (bzw. oben als Dampf austritt) . Die Durchströmungsrichtung für das heiße Abgas ist vorzugsweise im Gegenstrom, das heißt von oben nach unten.
Die erste Vorwärmeinrichtung 11 besteht vorzugsweise eben¬ falls auch Schottwänden. Die Schottwände der ersten Vorwärm einrichtung 11 werden vom Wasser vorzugsweise horizontal durchflössen. Die Strömungsrichtung für die heißen Abgase i im Gegenstrom.
Die erfindungsgemäße Anlage der Grundstoffindustrie weist weiterhin einen Wasser-Dampf-Kreislauf auf. Der Wasser-Dampf- Kreislauf wird über die heißen Abgase erwärmt. Nachfolgend wird zunächst der Wasser-Dampf-Kreislauf als solcher erläu¬ tert. Sodann wird das Zusammenwirken des Wasser-Dampf-Kreis¬ laufs mit dem Rohrleitungssystem 2 erläutert.
Der Wasser-Dampf-Kreislauf weist einen Vorwärmer 12 auf. Im Vorwärmer 12 wird kondensiertes Wasser vorgewärmt, das heißt auf Siedetemperatur oder knapp darunter. Hinter dem Vorwärmer 12 sollte die Temperatur des Wassers mindestens 90 °C betra¬ gen, besser 95 °C, optimal 98 °C bis 105 °C.
Das vorgewärmte Wasser wird einem Verdampfer 13 zugeführt, in dem das Wasser verdampft wird. Der entstehende Dampf ist so genannter Sattdampf. Er weist eine Temperatur von ca. 240 °C bis 280 °C auf.
Der Sattdampf wird einem Überhitzer 14 zugeführt, in dem der Sattdampf auf eine erheblich höhere Temperatur erhitzt wird. Die Temperatur des Dampfes nach dem Überhitzen sollte mindestens 50 Kelvin, vorzugsweise mindestens 100 Kelvin über der Sattdampftemperatur liegen. Insbesondere kann die Temperatur des Dampfes nach dem Überhitzer 14 bei ca. 450 °C liegen.
Der überhitzte Dampf wird einer Lasteinrichtung 15 zugeführt, in der die Energie des überhitzten Dampfes in mechanische
Energie umgesetzt wird. Die Lasteinrichtung 15 ist in der Re¬ gel als Turbine ausgebildet. Falls erforderlich, kann zwi¬ schen dem Überhitzer 14 und der Lasteinrichtung 15 ein zusätzliches Heizelement angeordnet sein, mittels dessen der Dampf durch externe Wärmezufuhr zusätzlich erhitzbar ist. Dadurch kann die Lasteinrichtung 15 stets mit überhitztem Dampf betrieben werden.
Nach dem Durchströmen der Lasteinrichtung 15 wird der - nun- mehr entspannte - Dampf in einem Kondensator 16 zu Wasser kondensiert und sodann wieder dem Vorwärmer 12 zugeführt. Zu¬ sätzlich kann ein Entgaser 17 vorhanden sein, in dem im Wasser enthaltene, nicht kondensierende Gase, insbesondere Luft und der in Luft enthaltene Sauerstoff, abgeschieden werden.
Die Lasteinrichtung 15 kann zwar - theoretisch - jederzeit stillgesetzt und wieder hochgefahren werden. In der Praxis ist dies jedoch nur umständlich und mit hohem Zeitaufwand möglich. Auch ein etwaiges Synchronisieren eines elektrischen Generators 18, welcher mittels der Lasteinrichtung 15 angetrieben wird, benötigt Zeit. In der Praxis ist es daher er¬ forderlich, dass die Lasteinrichtung 15 kontinuierlich betrieben wird. Das Zuführen des überhitzten Dampfes zur Lasteinrichtung 15 muss also kontinuierlich erfolgen. Es ist je- doch möglich, dass die Last, mit der die Lasteinrichtung 15 betrieben wird, also die von der Lasteinrichtung 15 abgegebene mechanische Leistung, während der zweiten Phase P2 des An¬ lagenzyklus niedriger ist als die Last, mit der die Lastein¬ richtung 15 während der ersten Phase PI des Anlagenzyklus be- trieben wird. Auch während der zweiten Phase P2 des Anlagenzyklus sollte die Last der Lasteinrichtung 15 jedoch mindes¬ tens 30 % der Last während der ersten Phase PI des Anlagen¬ zyklus betragen. Vor allem sollte der Generator 18 und mit ihm die Lasteinrichtung 15 (in der Regel die Turbine 15) während des gesamten Anlagenzyklus mit konstanter Drehzahl be¬ trieben werden. Für den Betrieb des Kondensators 16 und des Entgasers 17
(falls vorhanden) muss nicht zwischen dem Betrieb in der ers¬ ten Phase PI des Anlagenzyklus und der zweiten Phase P2 des Anlagenzyklus unterschieden werden. Der Kondensator 16 wird immer mit relativ kaltem Wasser - typische Temperatur: 15 °C bis 30 °C - gekühlt. Gleiches gilt für den Entgaser 17, so¬ fern er vorhanden ist.
Auch für den Überhitzer 14 muss nicht zwischen den beiden Phasen PI, P2 des Anlagenzyklus unterschieden werden. In bei- den Phasen PI, P2 wird dem Überhitzer 14 geschmolzenes Salz 6 zugeführt, das dem zweiten Tankbehälter 8 entnommen wird. Mit diesem geschmolzenen Salz 6 wird der Sattdampf im Überhitzer 14 überhitzt. Das geschmolzene Salz 6 weist nach dem Durchströmen des Überhitzers 14 eine Temperatur auf, die ca. 100 bis 200 Kelvin niedriger ist als zuvor. Das geschmolzene Salz 6 wird, nach¬ dem es den Überhitzer 14 durchströmt hat, dem ersten Tankbehälter 7 oder (alternativ) einem dritten Tankbehälter 19 zu- geführt. Wenn der dritte Tankbehälter 19 vorhanden ist, weist das im dritten Tankbehälter 19 befindliche geschmolzene Salz vorzugsweise ein Temperaturniveau zwischen 400 °C und 450 °C auf . Für den Verdampfer 13 muss zwischen der ersten Phase PI des Anlagenzyklus und der zweiten Phase P2 des Anlagenzyklus un¬ terschieden werden. In der ersten Phase PI des Anlagenzyklus, wenn also die heißen Abgase in großem Umfang entstehen, kann der zweite Abschnitt 9 des Rohrleitungssystems 2 zum Verdamp- fen des Wassers herangezogen werden. Die heißen Abgase, die den zweiten Abschnitt 9 des Rohrleitungssystems 2 durchströ¬ men, sind zwar bereits im ersten Abschnitt 5 des Rohrlei¬ tungssystems 2 mittels des geschmolzenen Salzes 6 vorgekühlt worden. Sie sind aber noch immer heiß genug, um die erste Verdampfereinrichtung 10 zu betreiben, das vorgewärmte Wasser also zu verdampfen. In der zweiten Phase P2 des Anlagenzyklus hingegen muss die für das Verdampfen des Wassers erforderliche Energie durch das geschmolzene Salz 6 bereitgestellt wer¬ den. Der Verdampfer 13 weist daher zum einen die erste Verdampfereinrichtung 10 auf, die sich im zweiten Abschnitt 9 des Rohrleitungssystems 2 befindet. Zusätzlich weist der Ver¬ dampfer 13 eine zweite Verdampfereinrichtung 20 auf. Die zweite Verdampfereinrichtung 20 ist der ersten Verdampfereinrichtung 10 in Bezug auf den Wasser-Dampf-Kreislauf parallel geordnet. Weiterhin kann der Verdampfer 13 in der zweiten Phase P2 mit einem niedrigeren Dampfdruck betrieben werden als in der ersten Phase PI.
Die zweite Verdampfereinrichtung 20 wird mit geschmolzenem Salz 6 beheizt. Das geschmolzene Salz 6 wird dem zweiten Tankbehälter 8 oder - falls vorhanden - dem dritten Tankbehälter 19 entnommen und der zweiten Verdampfereinrichtung 20 zugeführt. Nach dem Durchströmen der zweiten Verdampfereinrichtung 20 wird es dem ersten Tankbehälter 7 zugeführt.
Der Vorwärmer 12 weist zusätzlich zur ersten Vorwärmeinrichtung 11 eine zweite Vorwärmeinrichtung 21 auf. Im Wasser- Dampf-Kreislauf ist die erste Vorwärmeinrichtung 11 dem Ent¬ gaser 17 nachgeordnet. Die zweite Vorwärmeinrichtung 21 ist dem Entgaser 17 vorgeordnet.
Während der ersten Phase PI des Anlagenzyklus reicht die Restenergie der heißen Abgase hinter der ersten Verdampfereinrichtung 10 dazu aus, das Wasser vorzuwärmen. Aus diesem Grund ist der ersten Verdampfereinrichtung 10 die erste Vorwärmeinrichtung 11 in Bezug auf den Abgasstrom nachgeordnet.
Falls auch in der zweiten Phase P2 des Anlagenzyklus heiße Abgase entstehen - wenn auch nur in verringertem Umfang -, kann das Ausmaß an heißen Abgasen derart sein, dass es aus¬ reicht, um auch in der zweiten Phase P2 des Anlagenzyklus das kondensierte Wasser vorzuwärmen. Alternativ ist es möglich, die erste Vorwärmeinrichtung 11 während der zweiten Phase P2 mit geschmolzenem Salz 6 zu beheizen. Die zweite Vorwärmeinrichtung 21 wird gemäß FIG 3 - zumindest in der ersten Phase PI - mit Wasser beheizt, das zwischen der ersten Vorwärmeinrichtung 11 und dem Verdampfer 13 entnommen wird.
Alternativ ist es möglich, die erste und/oder die zweite Vorwärmeinrichtung 11, 21 in der zweiten Phase P2 des Anlagenzyklus nicht zu betreiben. In diesem Fall kann beispielsweise der Wasserpegel im Entgaser 17 zeitweise angehoben und der Wasserpegel in der zweiten Verdampfereinrichtung 20 entsprechend abgesenkt werden. In der nachfolgenden ersten Phase PI erfolgt sodann wieder ein Rückführen der entsprechenden Pegel auf ihre ursprünglichen Werte.
Wenn der dritte Tankbehälter 19 vorhanden ist, wird das im dritten Tankbehälter 19 befindliche geschmolzene Salz 6 vorzugsweise zum Versorgen der zweiten Verdampfereinrichtung 20 mit der erforderlichen Wärmemenge verwendet. Es ist möglich, den dritten Tankbehälter 19 nur durch den Rücklauf an geschmolzenem Salz 6 zu speisen, mit dem der Überhitzer 14 beheizt wird. Es ist jedoch ein dritter Abschnitt 22 des Rohr¬ leitungssystems 2 vorhanden, der zwischen dem ersten und dem zweiten Abschnitt 5, 9 des Rohrleitungssystems angeordnet ist. Der dritte Abschnitt 22 des Rohrleitungssystems 2 ist - ebenso wie der erste Abschnitt 5 des Rohrleitungssystems 2 - mit geschmolzenem Salz 6 gekühlt. Zu diesem Zweck wird dem ersten Tankbehälter 7 geschmolzenes Salz 6 entnommen und dem dritten Abschnitt 22 des Rohrleitungssystems 2 zugeführt. Die heißen Abgase werden dadurch auch dann gekühlt, wenn sie den dritten Abschnitt 22 des Rohrleitungssystems 2 durchströmen. Dementsprechend wird das hierzu verwendete geschmolzene Salz 6 aufgeheizt. Dieses geschmolzene Salz 6 wird sodann dem dritten Tankbehälter 19 zugeführt. Alternativ könnte es dem zweiten Tankbehälter 8 zugeführt werden. Während der zweiten Phase P2 des Anlagenzyklus sinkt die Tem¬ peratur des geschmolzenen Salzes 6 im zweiten Tankbehälter 8 und gegebenenfalls auch im dritten Tankbehälter 19. Während der ersten Phase PI des Anlagenzyklus steigt die Temperatur wieder an. Die maximale Schwankung der Temperatur des geschmolzenen Salzes 6 im jeweiligen Tankbehälter 8, 19 sollte vorzugsweise maximal 100 Kelvin betragen.
Das Abkühlen der heißen Abgase im dritten Abschnitt 22 und das hiermit verbundene Aufheizen des geschmolzenen Salzes 6 erfolgt in einem Wärmetauscher, der vorzugsweise als mehrzü¬ giger Wärmetauscher ausgebildet ist. Vorzugsweise werden ent¬ sprechend der Darstellung von FIG 3 konzentrische, zylindrische Kühlflächen verwendet, wobei beide Seiten der Kühlflä- chen von den heißen Abgasen überstrichen werden. Der Wärmetauscher ist damit als so genannter dreizügiger Heißgaskühler ausgebildet, da die heißen Abgase in diesem Wärmetauscher zunächst nach oben, dann nach unten und schließlich wieder nach oben strömen.
Wie in FIG 3 gezeigt, können die Tankbehälter 7, 8 und gege¬ benenfalls 19 in einem gemeinsamen Gefäß angeordnet sein. In diesem Fall sind die Tankbehälter 7, 8 und gegebenenfalls 19 durch Schotte 23 voneinander getrennt. Alternativ können die Tankbehälter 7, 8 und gegebenenfalls 19 in separaten Gefäßen angeordnet sein. Unabhängig davon, ob eine Anordnung der Tankbehälter 7, 8 und gegebenenfalls 19 in einem gemeinsamen Gefäß oder in separaten Gefäßen erfolgt, sind die Tankbehäl¬ ter 7, 8 und gegebenenfalls 19 jedoch tiefer angeordnet als der erste Abschnitt 5 des Rohrleitungssystems 2, der dritte Abschnitt 22 des Rohrleitungssystems 2 und der Überhitzer 14. Dadurch wird erreicht, dass die Leitungen zum Führen des ge¬ schmolzenen Salzes 6 auf einfache Weise entleerbar sind, falls dies erforderlich sein sollte. Die Tankbehälter 7, 8 und gegebenenfalls 19 können insbesondere als Unterflurtanks ausgebildet sein. Weiterhin sind die Tankbehälter 7, 8 und gegebenenfalls 19 vorzugsweise zumindest in ihrem unteren Bereich und in ihrem oberen Bereich miteinander verbunden, so dass innerhalb der Tankbehälter 7, 8 und gegebenenfalls 19 ein selbsttätiger Ni- veauausgleich erfolgt. Schließlich ist dem geschmolzenen Salz 6 in den Tankbehältern 7, 8 und gegebenenfalls 19 vorzugswei¬ se ein Inertgaspolster 24 (vorzugsweise ein Stickstoffpols¬ ter) überlagert. Oben stehend wurde in Verbindung mit FIG 3 eine Ausgestaltung des erfindungsgemäßen Betriebsverfahrens erläutert, bei der da geschmolzene Salz 6 direkt mit den heißen Abgasen aufge¬ heizt wird. Alternativ ist es möglich, das geschmolzene Salz 6 indirekt über Dampf zu erhitzen. Dies wird nachstehend kurz in Verbindung mit FIG 4 skizziert, wobei nur die wesentlichen Unterschiede zu dem Schema von FIG 3 erläutert werden.
Gemäß FIG 4 umfasst das Rohrleitungssystem 2 weiterhin den ersten, den zweiten und den dritten Rohrabschnitt 5, 9, 22 (in FIG 4 nur schematisch dargestellt) . Der zweite Rohrab¬ schnitt 9 umfasst, wie auch bei FIG 3, den Verdampfer 13 und den Vorwärmer 12. Der erste Rohrabschnitt 5 umfasst einen ersten Wärmetauscher 25, der mit Dampf aus einem Dampfspeicher betrieben wird. Der erste Wärmetauscher 25 wird in der ersten Phase PI des Anlagenzyklus mittels der heißen Abgase erhitzt, so dass überhitzter Dampf entsteht.
Der erste Wärmetauscher 25 wirkt mit einem zweiten Wärmetauscher 26 zusammen. In der ersten Phase PI des Anlagenzyklus wird über den zweiten Wärmetauscher 26 das geschmolzene Salz 6 erhitzt. Das geschmolzene Salz 6 fließt in diesem Betriebs¬ zustand vom ersten Tankbehälter 7 in den zweiten Tankbehälter 8. Durch das Erhitzen des geschmolzenen Salzes 6 wird selbstverständlich der überhitzte Dampf abgekühlt. Dennoch ist der Dampf auch nach dem Durchströmen des zweiten Wärmetauschers 26 immer noch überhitzt, so dass er von dort aus der Turbine 15 zugeführt werden kann.
In der zweiten Phase P2 des Anlagenzyklus wird der erste Wär- metauscher 25 mittels einer Bypassleitung 27 überbrückt. Der Dampf wird dem zweiten Wärmetauscher 26 daher nicht mehr über den ersten Wärmetauscher 25, sondern direkt vom Verdampfer 13 (oder einem entsprechenden Speichergefäß, das vom Verdampfer 13 gespeist wird) zugeführt. Im zweiten Wärmetauscher 26 wird der Dampf überhitzt. Die Fließrichtung des geschmolzenen Salzes 6 wird zu diesem Zweck umgekehrt. Das geschmolzene Salz 6 fließt also in der zweiten Phase P2 vom zweiten Tankbehälter 8 in den ersten Tankbehälter 7 (oder alternativ in den dritten Tankbehälter 19) .
Die vorliegende Erfindung weist viele Vorteile auf. Insbeson¬ dere ist die Anlage der Grundstoffindustrie relativ einfach aufgebaut. Die erfindungsgemäße Ausgestaltung ist leicht zu implementieren, zuverlässig und wirksam. Die vorliegende Er- findung ist insbesondere nicht nur mit kleinen Turbinen 15 und dementsprechend kleinen Generatoren 18 einsetzbar (Leistung maximal 2,5 Megawatt) . Vielmehr ist die vorliegende Er¬ findung auch bei größeren Basisteilen 1 einsetzbar, bei denen im zeitlichen Mittel ca. 30 Megawatt thermische Leistung (oder sogar noch mehr) zur Verfügung stehen. In derartigen Fällen muss die Turbine 15 und mit ihr der Generator 18 für eine mechanische Leistung von ca. 10 Megawatt oder mehr aus¬ gelegt sein. Auch weist die erfindungsgemäße Ausgestaltung einen hohen Wirkungsgrad auf. Die zu tätigenden Investitionen amortisieren sich in einem relativ kurzen Zeitraum von vier bis sechs Jahren. Im Falle eines Ausfalls der Lasteinrichtung 15 kann weiterhin der erzeugte Dampf über eine Bypassleitung direkt dem Kondensator 16 zugeführt werden. Die vorliegende Erfindung wurde vorstehend mit einem als
Lichtbogenofen ausgebildeten Basisteil 1 erläutert. Das Basisteil kann jedoch alternativ anders ausgebildet sein, ins¬ besondere als Konverter. Die obige Beschreibung dient ausschließlich der Erläuterung der vorliegenden Erfindung. Der Schutzumfang der vorliegenden Erfindung soll hingegen ausschließlich durch die beigefügten Ansprüche bestimmt sein.
Bezugs zeichenliste
Figure imgf000020_0001

Claims

Patentansprüche
1. Betriebsverfahren für eine Anlage der Grundstoffindustrie, - wobei ein Basisteil (1) der Anlage gemäß einem Anlagenzyk¬ lus betrieben wird,
- wobei während der Anlagenzyklen in einer ersten Phase (PI) des jeweiligen Anlagenzyklus heiße Abgase entstehen und in einer zweiten Phase (P2) des jeweiligen Anlagenzyklus ent- weder keine heißen Abgase entstehen oder die heißen Abgase gegenüber der ersten Phase (PI) nur in erheblich verringertem Umfang entstehen,
- wobei die heißen Abgase in dem jeweiligen Umfang, in dem sie entstehen, über ein Rohrleitungssystem (2) aus dem Ba- sisteil (1) der Anlage abgeführt und an die Außenluft abge¬ geben werden,
- wobei zumindest in der ersten Phase (PI) geschmolzenes Salz (6) einem ersten Tankbehälter (7) entnommen wird, sodann zum direkten oder indirekten Kühlen eines ersten Abschnitts (5) des Rohrleitungssystems (2) verwendet wird, das ge¬ schmolzene Salz (6) dadurch aufgeheizt wird und das ge¬ schmolzene Salz (6) im aufgeheizten Zustand einem zweiten Tankbehälter (8) zugeführt wird,
- wobei das Rohrleitungssystem (2) in einem zweiten Abschnitt (9) anders als mit geschmolzenem Salz (6) gekühlt wird,
- wobei der erste Abschnitt (5) des Rohrleitungssystems (2) zwischen dem Basisteil (1) der Anlage und dem zweiten Ab¬ schnitt (9) des Rohrleitungssystems (2) angeordnet ist,
- wobei in einem Verdampfer (13) vorgewärmtes Wasser ver- dampft, in einem Überhitzer (14) der Dampf überhitzt und der überhitzte Dampf einer Lasteinrichtung (15) zugeführt wird, der Dampf nach dem Durchströmen der Lasteinrichtung (15) in einem Kondensator (16) zu Wasser kondensiert wird und in einem Vorwärmer (12) das kondensierte Wasser vorge- wärmt wird,
- wobei zumindest das Zuführen des überhitzten Dampfes zur Lasteinrichtung (15) kontinuierlich erfolgt, - wobei zum Überhitzen des Dampfes zumindest in der zweiten Phase (P2) des Anlagenzyklus das geschmolzene Salz (6) dem zweiten Tankbehälter (8) entnommen wird, dem Überhitzer (14) zugeführt wird und sodann dem ersten Tankbehälter (7) oder einem dritten Tankbehälter (19) zugeführt wird,
- wobei zum Verdampfen des Wassers in der zweiten Phase (P2) des Anlagenzyklus das geschmolzene Salz (6) dem zweiten Tankbehälter (8) oder dem dritten Tankbehälter (19) entnommen wird, dem Verdampfer (13) zugeführt wird und sodann dem ersten Tankbehälter (7) zugeführt wird,
dadurch gekennzeichnet,
dass in der ersten Phase (PI) des Anlagenzyklus das Verdamp¬ fen des vorgewärmten Wassers mittels der den zweiten Abschnitt (9) des Rohrleitungssystems (2) durchströmenden, be- reits mittels des geschmolzenen Salzes (6) direkt oder indi¬ rekt vorgekühlten Abgase erfolgt.
2. Betriebsverfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass die Last der Lasteinrichtung (15) während der zweiten Phase (P2) des Anlagenzyklus niedriger ist als während der ersten Phase (PI) des Anlagenzyklus.
3. Betriebsverfahren nach Anspruch 2,
dadurch gekennzeichnet,
dass die Last der Lasteinrichtung (15) während der zweiten Phase (P2) des Anlagenzyklus mindestens 30 % der Last während der ersten Phase (PI) des Anlagenzyklus beträgt.
4. Betriebsverfahren nach Anspruch 1, 2 oder 3,
dadurch gekennzeichnet,
dass die Lasteinrichtung (15) als Turbine ausgebildet ist und dass die Turbine während des gesamten Anlagenzyklus mit kon¬ stanter Drehzahl betrieben wird.
5. Betriebsverfahren nach einem der obigen Ansprüche, dadurch gekennzeichnet,
dass die Tankbehälter (7, 8, 19) tiefer angeordnet sind als der erste Abschnitt (5) des Rohrleitungssystems (2), der Ver¬ dampfer (13) und der Überhitzer (14) .
6. Betriebsverfahren nach einem der obigen Ansprüche, dadurch gekennzeichnet,
dass dem geschmolzenen Salz (6) in den Tankbehältern (7, 8, 19) ein Inertgaspolster (24) überlagert ist.
7. Betriebsverfahren nach einem der obigen Ansprüche, dadurch gekennzeichnet,
dass die Tankbehälter (7, 8, 19) zumindest in ihrem unteren Bereich und in ihrem oberen Bereich miteinander verbunden sind, so dass innerhalb der Tankbehälter (7, 8, 19) ein selbsttätiger Niveauausgleich erfolgt.
8. Betriebsverfahren nach einem der obigen Ansprüche, dadurch gekennzeichnet,
dass der Basisteil (1) der Anlage als elektrischer Lichtbo¬ genofen oder als Konverter ausgebildet ist.
9. Betriebsverfahren nach einem der obigen Ansprüche, dadurch gekennzeichnet,
dass der dritte Tankbehälter (19) vorhanden ist, dass geschmolzenes Salz (6) dem ersten Tankbehälter (7) entnommen und einem dritten Abschnitt (22) des Rohrleitungssystems (2) zugeführt wird, der zwischen dem ersten und dem zweiten Abschnitt (5, 9) des Rohrleitungssystems (2) angeordnet ist, dass dadurch das den dritten Abschnitt (22) durchströmende Abgas gekühlt und das geschmolzene Salz (6) aufgeheizt wird und dass dieses Salz (6) nach dem Aufheizen dem dritten Tankbehälter (19) zugeführt wird.
10. Anlage der Grundstoffindustrie,
dadurch gekennzeichnet,
dass sie derart ausgebildet ist, dass sie gemäß einem Be¬ triebsverfahren nach einem der obigen Ansprüche betreibbar ist .
PCT/EP2011/063811 2010-09-24 2011-08-11 Betriebsverfahren zur verwertung der thermischen abwärme für eine anlage der grundstoffindustrie WO2012038151A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
IN2556DEN2013 IN2013DN02556A (de) 2010-09-24 2011-08-11
KR1020137010346A KR20130141490A (ko) 2010-09-24 2011-08-11 기초 자재 산업에서의 플랜트를 위해서 폐열을 활용하는 작동 방법
CN201180045853.1A CN103108962B (zh) 2010-09-24 2011-08-11 将热力的废热用于基础材料工业设备的运行方法
BR112013006719A BR112013006719A2 (pt) 2010-09-24 2011-08-11 método de operação para utilizar o calor de dissipação térmica para uma instalação na indústria de materiais básicos
RU2013118685/06A RU2013118685A (ru) 2010-09-24 2011-08-11 Способ эксплуатации установки промышленности основных материалов для использования термического отходящего тепла
EP11751842.3A EP2619334B1 (de) 2010-09-24 2011-08-11 Betriebsverfahren zur verwertung der thermischen abwärme für eine anlage der grundstoffindustrie

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1602/2010A AT510457B1 (de) 2010-09-24 2010-09-24 Betriebsverfahren für eine anlage der grundstoffindustrie
ATA1602/2010 2010-09-24

Publications (1)

Publication Number Publication Date
WO2012038151A1 true WO2012038151A1 (de) 2012-03-29

Family

ID=44545691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/063811 WO2012038151A1 (de) 2010-09-24 2011-08-11 Betriebsverfahren zur verwertung der thermischen abwärme für eine anlage der grundstoffindustrie

Country Status (8)

Country Link
EP (1) EP2619334B1 (de)
KR (1) KR20130141490A (de)
CN (1) CN103108962B (de)
AT (1) AT510457B1 (de)
BR (1) BR112013006719A2 (de)
IN (1) IN2013DN02556A (de)
RU (1) RU2013118685A (de)
WO (1) WO2012038151A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10527360B2 (en) * 2015-06-03 2020-01-07 Danieli & C. Officine Meccaniche S.P.A. Process for uniformizing the temperature of a liquid
CN112430703B (zh) * 2019-08-26 2024-04-26 中冶京诚工程技术有限公司 废钢炼钢炉系统
IT202200010925A1 (it) * 2022-05-25 2023-11-25 Qualical Int S R L Sistema di recupero calore per impianti di produzione calce

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB972720A (en) 1962-03-23 1964-10-14 Birwelco Ltd Improvements in and relating to heat energy storage systems
US4257579A (en) * 1977-07-05 1981-03-24 American Hydrotherm Corp. Waste heat recovery process and apparatus
JPS59160012A (ja) * 1983-03-04 1984-09-10 Nippon Kokan Kk <Nkk> 蓄熱貯槽
EP0564731A1 (de) * 1991-01-29 1993-10-13 American Hydrotherm Corporation Hochtemperatur Kogenerations- und Wärmerückgewinnungsprozess
DE102010002523A1 (de) * 2009-03-18 2010-09-23 Daou, Rafic Boulos, Bdadoun Stahlerzeugungseinrichtung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB972720A (en) 1962-03-23 1964-10-14 Birwelco Ltd Improvements in and relating to heat energy storage systems
US4257579A (en) * 1977-07-05 1981-03-24 American Hydrotherm Corp. Waste heat recovery process and apparatus
JPS59160012A (ja) * 1983-03-04 1984-09-10 Nippon Kokan Kk <Nkk> 蓄熱貯槽
EP0564731A1 (de) * 1991-01-29 1993-10-13 American Hydrotherm Corporation Hochtemperatur Kogenerations- und Wärmerückgewinnungsprozess
DE102010002523A1 (de) * 2009-03-18 2010-09-23 Daou, Rafic Boulos, Bdadoun Stahlerzeugungseinrichtung

Also Published As

Publication number Publication date
BR112013006719A2 (pt) 2016-06-14
CN103108962A (zh) 2013-05-15
IN2013DN02556A (de) 2015-08-07
AT510457A3 (de) 2012-12-15
RU2013118685A (ru) 2014-10-27
EP2619334A1 (de) 2013-07-31
EP2619334B1 (de) 2014-12-17
AT510457B1 (de) 2013-02-15
CN103108962B (zh) 2015-09-23
AT510457A2 (de) 2012-04-15
KR20130141490A (ko) 2013-12-26

Similar Documents

Publication Publication Date Title
DE102011052561B4 (de) Verfahren und Vorrichtung zum Brennen von Klinker
EP2455658A1 (de) Verfahren und Vorrichtung zur Verdampfung organischer Arbeitsmedien
EP2224104B1 (de) Verfahren zum Betreiben eines Kraftwerks
EP2619334A1 (de) Betriebsverfahren zur verwertung der thermischen abwärme für eine anlage der grundstoffindustrie
WO2016128102A1 (de) Verfahren zum betreiben eines mit fossilen brennstoffen betriebenen kraftwerkes und kraftwerk zur verbrennung fossiler brennstoffe
EP2844849A2 (de) Verfahren zur nutzung der abgase aus anlagen zur roheisenherstellung für die dampferzeugung
EP2150763B1 (de) Verfahren und vorrichtung zur nutzung von durch einen diskontinuierlichen abgasstrom transportierter wärme
WO2012123320A1 (de) Hüttentechnische anlage mit effizienter abwärmenutzung
DE4222811C1 (de) Anordnung zur Nutzung der im Abgas eines kohlegefeuerten Kessels enthaltenen Wärme
EP2572151B1 (de) Kühlung für ein metallurgisches gefäss
AT518186B1 (de) Wärmekraftwerk und Verfahren zum Speichern von Wärme
AT510688B1 (de) Betriebsverfahren für eine anlage der grundstoffindustrie
EP0452653B1 (de) Verfahren zur Vergassung von feinkörnigen bis staubförmigen Brennstoffen mit nachgeschaltetem kombinierten Gas-/und Dampfturbinenkraftwerk
AT510691B1 (de) Betriebsverfahren für eine anlage der grundstoffindustrie
EP3134694B1 (de) Verfahren und anlage zur nutzung der abwärme aus abgasen zur dampfgewinnung
BE1030687B1 (de) CO2-freie Erzeugung von künstlichen Puzzolanen insbesondere aus Tonen
DE112010005234T5 (de) Energierückgewinnung aus Gasen in einer Hochofenanlage
EP3002250B1 (de) Kraftwerksanlage und Verfahren zum Betreiben einer Kraftwerksanlage
AT406165B (de) Vorrichtung zur kontinuierlichen destillativen auftrennung von rohöl
WO2024002927A1 (de) Co2-freie erzeugung von künstlichen puzzolanen insbesondere aus tonen
DE102010028426A1 (de) Dampferzeuger
EP3467378A1 (de) Abhitzeanlage für heisswassererzeugung und verfahren zum betreiben einer abhitzeanlage für heisswassererzeugung
DE102009057893A1 (de) Verfahren und Vorrichtung zur Verbrennung kohlenstoffhaltiger Stoffe
DE102019217996A1 (de) Vorrichtung und Verfahren zur Ausspeicherung eines thermischen Energiespeichers, insbesondere eines Schüttgutspeichers
DE102007021053A1 (de) Anordnung zum Verdampfen einer Flüssigkeit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180045853.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11751842

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011751842

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137010346

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013118685

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013006719

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013006719

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130322