WO2012037716A1 - 传输上行响应信号的方法、基站、移动台和通信系统 - Google Patents

传输上行响应信号的方法、基站、移动台和通信系统 Download PDF

Info

Publication number
WO2012037716A1
WO2012037716A1 PCT/CN2010/077150 CN2010077150W WO2012037716A1 WO 2012037716 A1 WO2012037716 A1 WO 2012037716A1 CN 2010077150 W CN2010077150 W CN 2010077150W WO 2012037716 A1 WO2012037716 A1 WO 2012037716A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
response signal
indicates
data
component carrier
Prior art date
Application number
PCT/CN2010/077150
Other languages
English (en)
French (fr)
Inventor
张元涛
张翼
兰元荣
周华
吴建明
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112013007460A priority Critical patent/BR112013007460A2/pt
Priority to EP19166102.4A priority patent/EP3522657B1/en
Priority to CN201080068507.0A priority patent/CN103069900B/zh
Priority to RU2013118027/07A priority patent/RU2533200C1/ru
Priority to MX2013003242A priority patent/MX2013003242A/es
Priority to PCT/CN2010/077150 priority patent/WO2012037716A1/zh
Priority to JP2013528491A priority patent/JP5772960B2/ja
Priority to KR1020137010052A priority patent/KR101470266B1/ko
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to CN201710088843.5A priority patent/CN107070612A/zh
Priority to CN201710088925.XA priority patent/CN106850158B/zh
Priority to ES10857430T priority patent/ES2742773T3/es
Priority to EP10857430.2A priority patent/EP2621233B1/en
Priority to CA2811844A priority patent/CA2811844A1/en
Publication of WO2012037716A1 publication Critical patent/WO2012037716A1/zh
Priority to US13/847,639 priority patent/US9232508B2/en
Priority to US14/942,123 priority patent/US9538522B2/en
Priority to US15/387,169 priority patent/US9893845B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method for transmitting an uplink response signal, a mobile station, a base station, and a communication system. Background technique
  • a user equipment receives downlink data sent by a base station, and the user equipment UE decodes the downlink data, and obtains a response signal of the downlink data according to the decoded result, and The uplink control information including the response signal is transmitted on the Physical Uplink Control Channel (PUCCH), so that the base station determines whether the data transmission is correct or incorrect according to the uplink control information, and determines whether the data needs to be retransmitted.
  • PUCCH Physical Uplink Control Channel
  • the uplink control information includes a response signal for downlink data, such as acknowledgement (ACK: Acknowledgment) / negative acknowledgement (NACK: Negative Acknowledgment) / discontinuous transmission (DTX: Discontinuous Transmission), and channel state information (CSI), etc.
  • ACK indicates that the data is correctly accepted
  • NACK indicates that the data is incorrectly received
  • DTX indicates that the UE has not received any downlink control data, that is, no control signaling for scheduling downlink data transmission is received.
  • the response signals sent in the PUCCH correspond to one physical channel resource, one time domain sequence and one frequency domain sequence, and the three resources are associated with two parameters.
  • the first parameter is the same parameter N1 used by the user equipment UE in all the cells configured by the system upper layer; the other parameter is the physical downlink control channel (PDCCH: Physical Downlink Control Channel) that schedules the downlink data corresponding to the response signal.
  • the index of the included first Control Channel Element (CCE: Control Channel Element) is associated.
  • N1 determines the starting position of the PUCCH of the transmission response signal in the uplink subframe in the frequency domain, and the parameter is shared by all UEs or mobile stations in the cell; the first CCE index of the PDCCH is determined by the starting position.
  • the physical resources and sequence resources actually used by the user equipment UE scheduled on the PDCCH when transmitting uplink control signaling For example, as shown in Figure 1.
  • LTE FDD Frequency Division Multiplexing
  • the uplink subframe and the downlink subframe are in one-to-one correspondence. That is, for any user equipment UE in the system, only one downlink subframe data corresponding to the uplink subframe is transmitted in one uplink subframe. Response signal value.
  • the data transmitted in one downlink subframe can contain up to two transport blocks (TB: transport block), that is, two-bit (bit) response signals.
  • TB transport block
  • the response signals of the two bits need to be modulated into QPSK (Quadrature Phase Shift Keying) symbols before transmission, and then mapped to corresponding physical resources and sequence resources.
  • QPSK Quadrature Phase Shift Keying
  • FIG. 3 is a schematic diagram of the timing of signal transmission of an LTE TDD (Time Division Multiplex) system.
  • LTE TDD Time Division Multiplexing
  • seven types of uplink and downlink subframe configurations are defined.
  • the uplink subframe and the downlink subframe are in many cases one-to-many, that is, in the system. Any one of the user equipments UE needs to transmit a response signal value of a plurality of downlink subframes corresponding to the uplink subframe.
  • the transmission timing of the ACK/NACK corresponding to an uplink and downlink subframe configuration of the LTE TDD system is as shown in FIG. 3.
  • the LTE TDD system uses a method called Channel Selection to transmit response signals corresponding to multiple downlink subframe data in one uplink subframe.
  • the method includes: if the downlink subframe includes two transmission blocks (TB: Transmission Block), the response signals of the two TBs are bundled, for example, when all response messages are ACK, the ACK is still after the combination. Otherwise, it is NACK; then, according to the combined response signal value table, the modulated symbol value, and the corresponding physical resources and sequence resources are determined.
  • TB Transmission Block
  • Table 1 shows a response signal feedback method in which two downlink subframes correspond to one uplink subframe.
  • the response signal detected by the user equipment UE in the two subframes is (ACK, ACK)
  • the lowest CCE index of the PDCCH for scheduling the downlink transmission of the user equipment UE of the first subframe is selected.
  • Nl maps the uplink physical resource and sequence resource
  • the modulation symbol value is -1.
  • the response signal corresponding to the two subframes is (ACK, NACK/DTX)
  • the lowest CCE index ⁇ of the PDCCH of the 0th subframe is selected to map the uplink physical resource and the sequence resource
  • the modulation symbol is another channel selection manner according to the table. 1 analogy.
  • the number of resources required for channel selection is equal to the number of bits of the response signal. If the response signal is 2/3/4 bits, 2/3/4 resources are required for selection.
  • Table 1 LTE system 2bit response signal channel selection method
  • DTX, DTX N/AN/A As can be seen from the above, in the LTE TDD system, since the response signal is bundled, a usable resource can be obtained from each downlink subframe containing data transmission, so The resource is sufficient when the feedback response signal value is mapped to the resource.
  • the carrier aggregation (CA: Carrier Aggregation) is used to transmit data.
  • the downlink and uplink include multiple component carriers (CC: Component Carrier), which can be used in each.
  • the component carriers in the component schedule uplink data transmission and downlink data transmission to the mobile station in the system.
  • the system configures one downlink primary component carrier (PCC: Primary Component Carrier) and multiple secondary component carriers (SCC: Secondary Component Carrier) for each user equipment UE.
  • the primary component carrier PCC and the secondary component carrier SCC can respectively schedule the transmission of data in their own carriers.
  • the LTE-A system for any user equipment UE, feedback information corresponding to all configured downlink component carriers is fed back in its uplink primary component carrier PCC, for example, a response signal of each downlink component carrier data, a downlink component carrier Channel status information, etc.
  • the LTE TDD is similar to the LTE TDD, that is, the mobile station needs to feedback the response signal value of the data of the plurality of downlink subframes in a primary component carrier PCC uplink subframe, and the downlink subframe belongs to a different downlink component carrier CC.
  • the inventors have found that the prior art has the following disadvantages:
  • the base station uses the secondary carrier component SCC to transmit the resource corresponding to the primary component carrier PCC.
  • the base station uses the secondary carrier component SCC to transmit the resource corresponding to the primary component carrier PCC.
  • the single carrier requirement is not in the bundling mode, there is a case where the resources are insufficient.
  • An object of the embodiments of the present invention is to provide a method for transmitting an uplink response signal, a mobile station, a base station, and a communication system, where the UE allocates additional resources, so that the user equipment UE performs response signals by using preset resources and additionally allocated resources. Feedback, feedback of response signals can be performed with less overhead, which solves the problem of insufficient resources in the prior art.
  • a method for transmitting an uplink response signal comprising:
  • the resources are allocated according to the number of transport blocks that transmit downlink data on the secondary component carrier, so that the mobile station can utilize resources corresponding to the pre-configured primary component carrier and resources allocated for the secondary component carrier. Select the uplink resource that transmits the response signal.
  • Another aspect of an embodiment of the present invention provides a method of transmitting an uplink response signal, the method comprising:
  • the component carrier that sends the downlink data includes the secondary component carrier, select an uplink resource that transmits the response signal from the available resources and select a corresponding modulation symbol; where the available resource
  • the resource corresponding to the preset primary component carrier and the resource allocated by the base station to the secondary carrier component are used to transmit the response signal by using the selected uplink resource and the corresponding modulation symbol.
  • a base station configured to determine whether to use a downlink secondary component carrier to send data to a mobile station;
  • a resource allocation unit configured to allocate resources according to the number of transport blocks that transmit downlink data on the secondary component carrier when the determination result of the determining unit is yes, so that the mobile station can utilize the pre-configured main
  • the resource corresponding to the component carrier and the resource allocated for the secondary component carrier select an uplink resource of the transmission response signal.
  • a mobile station includes: a data receiving unit, where the receiving unit is configured to receive downlink data that is sent by a base station by using a downlink component carrier;
  • a data processing unit configured to decode the received downlink data, and obtain a response signal of the downlink data according to the decoded result
  • the first resource selection unit is configured to: when the component carrier that transmits the downlink data includes the secondary component carrier, select an uplink resource that transmits the response signal from the available resources, and select a corresponding modulation symbol;
  • the resource includes a resource corresponding to the preset primary component carrier and a resource allocated by the base station for the secondary carrier component;
  • a signal transmission unit configured to transmit the response signal by using the selected uplink resource and a corresponding modulation symbol.
  • a communication system comprising:
  • the base station including the foregoing base station
  • a mobile station including the above mobile station.
  • a computer readable program wherein when the program is executed in a base station, the program causes a computer to perform the above method of transmitting an uplink response signal in the base station.
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform the above method of transmitting an uplink response signal in a base station.
  • a computer readable program is provided, wherein when the program is executed in a mobile station, the program causes the computer to perform the above method of transmitting an uplink response signal in the mobile station.
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform the above method of transmitting an uplink response signal in a mobile station.
  • the beneficial effects of the embodiments of the present invention are: allocating additional resources by the base station, so that the user equipment UE uses the preset resources and the additionally allocated resources to perform feedback of the response signal, and the response signal feedback can be performed with less overhead, thereby solving the present problem. There are problems with insufficient resources in technology.
  • 1 is a schematic diagram of uplink and downlink control channel mapping of an LTE system
  • FIG. 2 is a schematic diagram of a transmission timing of a response signal of an LTE FDD system
  • FIG. 3 is a schematic diagram of a LTE TDD system response signal transmission timing
  • FIG. 4 is a flowchart of a method for transmitting an uplink response signal according to Embodiment 1 of the present invention
  • FIG. 5 is a flowchart of a method for transmitting an uplink response signal according to Embodiment 2 of the present invention
  • FIG. 6 is a flowchart for transmitting an uplink corresponding signal according to Embodiment 3 of the present invention
  • FIG. 7 is a schematic structural diagram of a base station according to Embodiment 4 of the present invention
  • Figure 10 is a block diagram showing the structure of a communication system according to a sixth embodiment of the present invention.
  • FIG. 4 is a flow chart of a method for transmitting an uplink response signal according to Embodiment 1 of the present invention. As shown in Figure 4, the method includes:
  • Step 401 When the base station sends data to a mobile station, determine whether to use the downlink secondary component carrier to send data to the mobile station; if the determination result is yes, execute step 402, otherwise execute step 403;
  • Step 402 If the result of the determination in step 401 is YES, allocate resources according to the number of transport blocks that transmit downlink data on the secondary component carrier, so that the mobile station can utilize resources corresponding to the pre-configured primary component carrier.
  • the resource allocated for the secondary component carrier selects an uplink resource of the transmission response signal.
  • step 401 if the base station determines to use the downlink secondary component carrier SCC to transmit data, the resource may not be used enough. In this case, the base station may allocate resources for the secondary component carrier see, so that the mobile station Feedback of response signals is made using preset resources and additional allocated resources.
  • the method further includes a step 403. If the result of the determination in step 401 is no, the downlink data is sent by using the primary component carrier, and the resource corresponding to the primary component carrier PCC is configured in advance. In this case, no additional resources need to be allocated, and the mobile station can use the preset resources to feedback the response signal.
  • FIG. 5 is a flowchart of a method for transmitting an uplink corresponding signal according to Embodiment 2 of the present invention. As shown in Figure 5, the method includes:
  • Step 501 When the base station sends data to a mobile station, determine whether to use the downlink secondary component carrier SCC to send data to the mobile station; if the determination result is yes, execute step 502, otherwise execute step 505;
  • the base station can determine whether the downlink secondary component carrier SCC is used to send data to the mobile station according to the signal of the channel quality sent by the mobile station, and can be implemented by any existing method, and details are not described herein again.
  • Step 502 If the result of the determination in step 401 is YES, allocate resources according to the number of transport blocks TB that transmit downlink data on the secondary component carrier SCC, so that the mobile station can use the pre-configured primary component carrier PCC.
  • the resource and the resource allocated for the secondary component carrier SCC select an uplink resource of the transmission response signal;
  • resources can be allocated in the following ways:
  • the first type if the number of the transport blocks TB that send the downlink data is 1, the resource is selected from the preset first resource table, where each element in the first resource table includes 1 resource; wherein, the configured transmission is included
  • the number of block TBs is 1, and the number of configured transport blocks TB is 2, and the actual number of transport blocks used is 1 when the data is actually transmitted.
  • the first resource table setl is as shown in Table 1:
  • Table 1 Second: If the number of transport blocks for transmitting downlink data is 2, resources are selected from the preset second resource table, and each element in the second resource table includes 2 resources. For example, a source table set2 is shown in Table 2:
  • Table 2 Step 503 The base station sends an index of the allocated resource to the mobile station.
  • the index of the resource may be sent to the mobile station in the physical downlink control channel PDCCH that schedules the downlink data on the secondary component carrier SCC.
  • Step 504 The base station sends downlink data to the mobile station by using the primary component carrier PCC and the secondary component carrier SCC, so that after receiving the downlink data, the mobile station performs decoding processing on the downlink data to obtain a corresponding response signal, and uses a preset Resources and additional allocated resources provide feedback on response signals.
  • Step 505 If the result of the determination in step 501 is no, the resource corresponding to the primary component carrier PCC is configured in advance. Therefore, in this case, no additional resources need to be allocated, and the downlink data is sent by using the primary component carrier PCC.
  • the mobile station can use the preset resources to provide feedback of the response signal.
  • the base station allocates additional resources according to the number of transmission blocks TB of the transmission data, and the physical downlink control channel PDCCH of the downlink data is scheduled by the secondary component carrier SCC.
  • the index of the resource is sent to the mobile station, so that the mobile station obtains the allocated resource, and uses the preset resource and the additionally allocated resource to perform feedback of the response signal, and the response signal feedback can be performed with less overhead, and the single wave is not destroyed.
  • FIG. 6 is a flow chart of a method for transmitting an uplink response signal according to Embodiment 3 of the present invention. As shown in Figure 6, the method includes:
  • Step 601 Receive downlink data sent by the base station by using the downlink component carrier CC.
  • Step 602 Decode the received downlink data, and obtain a response signal of the downlink data according to the decoded result.
  • Step 603 If the component carrier that sends the downlink data includes the secondary component carrier SCC, select an uplink resource that transmits the response signal from the available resources and select a corresponding modulation symbol.
  • the available resource includes a preset primary component carrier PCC.
  • Step 604 The mobile station transmits the response signal by using the selected uplink resource and modulation symbol. It can be seen from the above embodiment that, when the resources are insufficient, the base station allocates additional resources according to the number of transmission blocks TB of the transmission data, and transmits the index of the resources to the mobile station through the physical downlink control channel PDCCH, the mobile station The feedback of the response signal is performed by using the preset resource and the additionally allocated resource, and the feedback signal can be feedback with less overhead, which solves the problem that the resource in the prior art is insufficient.
  • the response signal includes three types, respectively ACK, NACK and DTX; where ACK (hereinafter referred to as A) indicates correct reception of data, NACK (hereinafter referred to as N) indicates data error reception, and DTX (hereinafter referred to as D) indicates that no downlink control data is received, that is, not received Any control signaling that schedules the transmission of downlink data.
  • step 603 since the base station uses the secondary component carrier SCC to transmit downlink data, there is a case where the resource is insufficient, so that the base station allocates additional resources for the secondary component carrier SCC, so that the mobile station
  • the uplink resource that transmits the response signal is selected from the set resource and the allocated resource; wherein the additionally allocated resource is a PUCCH resource.
  • step 604 the mobile station transmits the response signal by using the selected uplink resource and the corresponding modulation symbol, wherein the response signal is transmitted on the selected resource by using QPSK modulation.
  • different response states are mapped by uplink resources and modulation symbols on the uplink resources.
  • the mobile station can select the uplink resource according to the state of the response signal and select a corresponding modulation symbol, so that the mobile station can transmit the modulation symbol, and after receiving the modulation symbol, the base station can determine whether the sent downlink data is correct. Receiving, this is similar to the prior art and will not be described here.
  • the base station if the base station allocates an additional resource to the secondary component carrier SCC, the base station sends the index of the allocated resource to the mobile station, and the method further includes: the mobile station receiving the base station sent by the base station as the downlink The index of the resource allocated by the secondary component carrier SCC.
  • the method further includes: Step 605: If the component carrier that sends the downlink data is the primary component carrier PCC, select an uplink resource that transmits the response signal from the available resources, and select a corresponding modulation symbol;
  • the available resources include resources corresponding to the preset primary component carrier.
  • step 603 and step 605 when the uplink resource of the transmission response signal is selected by using available resources, the following manner may be adopted:
  • the response signal is not selected as a resource corresponding to N/D; N and D are not distinguished, where N indicates data error reception, D indicates that no downlink control data is received; and when the response signal is When N/D, no resources are selected.
  • the pre-configured mapping relationship table may be searched according to the Wt number of the response signal, and the number of available resources (the number of available resources) in the mapping relationship table is equal to the number of bits of the response signal. The following is an example in which the response signals are 4 bits, 3 bits, and 2 bits.
  • the response signal is 4bit
  • the response signal is 4bit including the following:
  • the number of resources that can be selected that is, the available resources are four; the relationship between the state of the mobile station response signal and the selectable resource, as shown in Table 3A, wherein the selectable resource is an available resource.
  • the mapping relationship between the state of the response signal and the selected resource and the modulation symbol is as shown in Table 3B, wherein the selected resource is one of available resources (optional resources).
  • N/DAAN/D nl 0 N/DAAN/D nl, n2 1 N/DAN/DA nl, n3 2 N/DAN/DN/D nl 3 N/DN/DAA n2, n,3 4 N/DN/DAN/D n2 5 N/ DN/DN/DA n3 6 NN/DN/DN/D nO 7 DN/DN/DN/DN/A Table 3B 4bit response signal mapping table
  • the number wide 17 indicates 17 states corresponding to the response signal; A indicates that the data is correctly received, N indicates data error reception, and D indicates that no downlink control data is received; ( ⁇ 3 denotes available resources, available resources for making selection; ⁇ / ⁇ means not applicable.
  • Tables 3A and 3B do not distinguish between NACK and DTX.
  • State 4 ( ⁇ , ⁇ , ⁇ / ⁇ , ⁇ / ⁇
  • the response signal it contains may be:
  • the sequence number of the response signal corresponding to A is the same as the resource number corresponding to the A.
  • the corresponding one of the A The sequence number of the response signal is 1, 2, and correspondingly, the serial number of the corresponding available resource is also 1, 2.
  • state 16 can only select the first resource as the selected resource since only the first response signal is fixed N.
  • Lines 16 and 17 can also be merged into states (N/D, N/D, N/D, N/D) and no resources are selected to map them.
  • the response signal is 3bit
  • the response signal is 3bit including the following:
  • the number of available resources that is, the available resources are three; the relationship between the state of the mobile station response signal and the selectable resource, as shown in Table 4A, wherein the selectable resource is an available resource.
  • the mapping relationship between the state of the response signal and the selected resource and the modulation symbol is as shown in Table 4B, wherein the selected resource is available Selected resources) One of them.
  • Table 4B 3bit response signal mapping table 8 NN/DN/D nO 1
  • Configure 2 CCs for the mobile station each of which has one transmission mode configured on each CC.
  • the number of resources available for selection that is, 2 available resources; the relationship between the state of the mobile station response signal and the selectable resource, as shown in Table 5A, wherein the selectable resource is an available resource.
  • the mapping relationship between the state of the response signal and the selected resource and the modulation symbol is as shown in Table 5B, wherein the selected resource is one of available resources (optional resources).
  • step 603 and step 605 when the uplink resource of the transmission response signal is selected by using available resources, the following manner may also be adopted:
  • the response signal is not selected as a resource corresponding to N/D; ⁇ and D are not distinguished, where N indicates data error reception, D indicates that no downlink control data is received; When N/D, no resources are selected;
  • the mapping according to the LTE resource mapping mode that is, the lowest CCE index of the PDCCH on the primary component carrier PCC, is required. .
  • mapping relationship between 2CC, 3CC, and 4CC for the 4-bit response signal according to the above mapping principle.
  • the mapping relationship between 2CC and 3CC is configured for the 3-bit response signal.
  • the response signal is not selected as the resource corresponding to N/D; and when the second response signal belonging to the same component carrier is N, the node is not used.
  • the resource corresponding to the response signal N This is due to the following situation: If 2 TBs are configured for this CC, but only 1 TB is actually sent, the second response signal is fixed to NACK, that is, the NACK has no corresponding resources.
  • CC1 is the primary component carrier PCC in Table 6A
  • the 4th, 8, 12, and 16th rows in Table 6A must select the first CCE index of its PDCCH for resource mapping, that is, n0, other responses.
  • the state of the signal can no longer use nO as the selected resource.
  • Table 6B 2CC 4-bit response signal mapping table
  • the number 17 indicates the state corresponding to the response signal; A indicates that the data is correctly received, N indicates that the data is incorrectly received, and D indicates that the data is not received.
  • ⁇ ( ⁇ 3 represents available resources, available resources for selection; ⁇ / ⁇ means not applicable.
  • the mobile station selects resources.
  • the mapping relationship table is as shown in Table 7B. Table 7A 4bit response signal selectable resources
  • the response signal is not selected as the resource corresponding to N/D; and when the second response signal belonging to the same component carrier is N, the response signal is not used.
  • the resource corresponding to N This is due to the following situation: If 2 TBs are configured for this CC, but only 1 TB is actually sent, the second response signal is fixed to NACK, that is, the NACK has no corresponding resources.
  • CC1 in Table 7A is the main carrier component PCC.
  • the 4th, 8, 12, and 16th rows in Table 6A need to select the first CCE index of the PDCCH.
  • the resource mapping, ie n0, the state of the other response signals can no longer use nO as the selected resource.
  • Table 7A If the primary component carrier PCC contains 1 TB, CC3 in Table 7A is PCC.
  • state 17 is newly added in Table 7A, that is, (D, D, N/D, N:>, this state and state 15.
  • the first CCE of the PDCCH for transmitting the TB of the primary component carrier PCC The resource mapping is introduced, that is, n3.
  • the number 18 indicates the number of states corresponding to the response signal; A indicates that the data is correctly received, N indicates that the data is incorrectly received, and D indicates that the data is not received. Any downlink control data; ⁇ ( ⁇ 3 indicates available resources, available resources for selection; ⁇ / ⁇ means not applicable.
  • the mobile station selects resources such as As shown in Table 8A, the mapping relationship table is as shown in Table 8B. Table 8A 2CC, 3bit response signal selectable resources
  • the response signal is not selected as the resource corresponding to N/D; and when the second response signal belonging to the same component carrier is N, the resource corresponding to the response signal N is not used. This is due to the following situation: If 2 TBs are configured for this CC, but only 1 TB is actually sent, the second response signal is fixed to NACK, that is, this NACK does not have a corresponding resource.
  • CC1 in Table 8A is a PCC.
  • the 2nd, 4th, 6th, and 8th rows in Table 6A must select the first CCE index of its PDCCH for resource mapping, that is, n0. The state of the other response signals can no longer use ⁇ as the selected resource.
  • Table 8A 2CC 3-bit response signal mapping table
  • the number 10 indicates the number of states corresponding to the response signal; A indicates that the data is correctly received, N indicates that the data is incorrectly received, and D indicates that the data is not received. Any downlink control data; ⁇ ( ⁇ 2 indicates available resources, available resources for selection; ⁇ / ⁇ indicates not applicable.
  • the base station allocates additional resources according to the number of transmission blocks of the transmission data, and sends the index of the resources to the mobile station through the physical downlink control channel PDCCH, so that the mobile The station uses the preset resources and the additionally allocated resources to feedback the response signal, and can feedback the response signal with less overhead, without destroying the single carrier characteristic, and solves the problem that the resources in the prior art are insufficient.
  • the embodiment of the invention also provides a base station and a mobile station, as described in the following embodiments. Since the principle of solving the problem by the base station and the mobile station is similar to the above-mentioned base station and mobile station based uplink transmission method, the implementation of the base station and the mobile station can be referred to the implementation of the method, and the details are not described again.
  • FIG. 7 is a block diagram showing the structure of a base station according to Embodiment 4 of the present invention.
  • the base station includes: a determining unit 701 and a resource allocating unit 702; wherein, the determining unit 701 is configured to determine whether to transmit data to the mobile station by using a downlink secondary component carrier; and the resource allocating unit 702 is configured to be used in the determining unit 701.
  • the determination result is YES
  • resources are allocated according to the number of transport blocks that transmit downlink data on the secondary component carrier, so that the mobile station can utilize resources corresponding to the pre-configured primary component carrier and resources allocated for the secondary component carrier. Select the uplink resource that transmits the response signal.
  • the base station further includes an information transmitting unit 703 for transmitting an index of a resource allocated by the resource allocating unit 702 to the mobile station.
  • the index of the resource may be sent to the mobile station in the physical downlink control channel PDCCH in which the scheduling data is sent, but is not limited thereto, and may be transmitted in other manners.
  • the resource when data is transmitted through the secondary component carrier, the resource may be insufficient.
  • the base station allocates additional resources according to the number of transmission blocks TB of the transmission data, and uses the physical downlink control channel PDCCH.
  • the index of the resource is sent to the mobile station The sending, so that the mobile station uses the preset resources and the additionally allocated resources to perform feedback of the response signal, can feedback the response signal with less overhead, and solves the problem that the resources in the prior art are insufficient.
  • FIG. 8 is a schematic structural diagram of a resource allocation unit in FIG. 7.
  • the resource allocation unit 702 includes: a first resource allocation unit 801 and a second resource allocation unit 802.
  • the first resource allocation unit 801 is configured to: when the number of transmission blocks for transmitting downlink data is 1, Selecting a resource from a preset first resource table, where each element in the first resource table includes 1 resource; and a second resource allocation unit 802, configured to: when the number of transport blocks for transmitting downlink data is 2, The resource is selected in the second resource table, and each element in the second resource table includes 2 resources.
  • the first resource table and the second resource table are shown in Table 1 and Table 2, and are not described here.
  • the base station may further include a storage unit (not shown) for storing the pre-configured Table 1 and Table 2.
  • the resources in Tables 1 and 2 are shared by all mobile stations.
  • the base station may further comprise a data transmitting unit (not shown) for transmitting downlink data to the mobile station via the component carrier.
  • FIG. 9 is a block diagram showing the structure of a mobile station according to Embodiment 5 of the present invention.
  • the mobile station includes: a data receiving unit 901, a data processing unit 902, a first resource selecting unit 909, and a signal transmitting unit 904.
  • the data receiving unit 901 is configured to receive a downlink sent by the base station by using a downlink component carrier.
  • the data processing unit 902 is configured to: decode the received downlink data, and obtain a response signal of the downlink data according to the decoded result; the first resource selection unit 903, where the component carrier for transmitting the downlink data includes a secondary component carrier And selecting, from the available resources, an uplink resource that transmits the response signal, and selecting a corresponding modulation symbol, where the available resource includes a resource corresponding to the preset primary component carrier and a resource allocated by the base station for the secondary carrier component;
  • the unit 904 is configured to transmit the response signal by using the selected uplink resource and the corresponding modulation symbol.
  • the state of the signal response is mapped by the uplink resource and the modulation symbol on the uplink resource.
  • the mobile station can select the uplink resource according to the state of the response signal and select a corresponding modulation symbol, so that the mobile station can transmit the modulation symbol, and after receiving the modulation symbol, the base station can determine whether the sent downlink data is correct. Receiving, this is similar to the prior art and will not be described here.
  • the mobile station may further include an information receiving unit 905, configured to receive the base station The base station that the base station sends is an index of resources allocated to the downlink secondary component carrier.
  • the mobile station further includes a second resource selection unit 906, configured to: when transmitting a component carrier of the downlink data as a primary component carrier, select an uplink resource that transmits the response signal from the available resources, and select a modulation symbol;
  • the available resource includes a resource corresponding to the preset primary component carrier.
  • the first resource selection unit 905 and the second resource selection unit 906 are specifically configured to: select, according to the state of the response signal, use a mapping relationship between the state of the preset response signal and the selected resource and the modulation symbol to transmit the An uplink resource of the response signal and a corresponding modulation symbol; wherein the selected resource is one of available resources;
  • the resource corresponding to the response signal is not selected as N/D; N and D are not distinguished, wherein N indicates data error reception, D indicates that no downlink control data is received; When N/D, no resources are selected.
  • the available resources shown in Tables 3A, 4A, and 5A can be selected according to the response signal state.
  • mapping relationship table shown in Tables 3B, 4B, and 5B is used to select an uplink resource and a corresponding modulation symbol, as described above, and details are not described herein again.
  • the first resource selection unit 905 is specifically configured to: select, according to a state of the response signal, an uplink resource and a corresponding modulation for transmitting the response signal by using a mapping relationship between a state of the preset response signal and a selected resource and a modulation symbol.
  • the response signal is not selected as a resource corresponding to the N/D; and when the second response signal belonging to the same component carrier is N, the resource corresponding to the response signal N is not used;
  • the 4bit response signal can use the available resources of FIG. 6A, and preferably use the mapping relationship of FIG. 6B to select the uplink resource; for configuring the 3CC, the 4bit response signal can use the available resources of FIG. 7A, and preferably use the mapping relationship of FIG. 7B.
  • the uplink resource is selected.
  • the 3bit response signal can use the available resources of FIG. 8A, and the uplink resource is preferably selected by using the mapping relationship of FIG. 8B.
  • the mobile station may further include a storage unit 907 for storing preset resources and allocations. Resources, as well as the above mapping table.
  • the base station allocates additional resources according to the number of transmission blocks TB of the transmission data, and uses the physical downlink control channel PDCCH.
  • the index of the resource is sent to the mobile station, so that the mobile station uses the preset resource and the additionally allocated resource to perform feedback of the response signal, and the feedback signal can be fed back with less overhead, thereby solving the problem that the resource in the prior art is insufficient. .
  • FIG. 10 is a schematic structural diagram of a communication system according to Embodiment 6 of the present invention; as shown in FIG. 10, the communication system includes a base station 1001 and a mobile station 1002;
  • the base station 1001 can adopt the base station described in Embodiment 4; the mobile station 1002 can use the mobile station described in Embodiment 5, and details are not described herein again.
  • the base station when the base station transmits data through the secondary component carrier, the resource may be insufficient.
  • the base station allocates additional resources according to the number of transmission blocks TB of the transmission data, and uses the physical downlink control channel PDCCH.
  • the index of the resource is sent to the mobile station, so that the mobile station uses the preset resource and the additionally allocated resource to perform feedback of the response signal, and the response signal can be fed back with less overhead, which solves the problem that the resources in the prior art are insufficient. problem.
  • the embodiment of the present invention further provides a computer readable program, wherein the program causes a computer to perform a method of transmitting an uplink response signal as described in Embodiment 1 or Embodiment 2 in the base station when the program is executed in a base station.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a method of transmitting an uplink response signal as in Embodiment 1 or Embodiment 2 in a base station.
  • An embodiment of the present invention provides a computer readable program, wherein when the program is executed in a mobile station, the program causes a computer to perform a method of transmitting an uplink response signal as described in Embodiment 3 in the mobile station.
  • An embodiment of the present invention provides a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a method of transmitting an uplink response signal as described in Embodiment 3 in a mobile station.
  • the above apparatus and method of the present invention may be implemented by hardware or may be combined by hardware. Realized.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or a step.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

传输上行响应信号的方法、 基站、 移动台和通信系统 技术领域
本发明涉及一种无线通信领域, 特别涉及一种传输上行响应信号的 方法、 移动台、 基站和通信系统。 背景技术
在长期演进 (LTE: long term evaluation) 系统中, 用户设备 (UE: User Equipment) 接收基站发送的下行数据, 用户设备 UE对该下行数据 进行解码, 根据解码的结果获得下行数据的响应信号, 并在物理上行控 制信道(PUCCH: Physical Uplink Control Channel)上传送包括该响应信 号的上行控制信息, 使得基站根据该上行控制信息来判断数据传输正确 或错误, 并以此来判断是否需要重传数据。 其中, 该上行控制信息包括 用于下行数据的响应信号, 如确认 (ACK: Acknowledgment) /否定确认 (NACK: Negative Acknowledgment) /不连续传输(DTX: Discontinuous Transmission) , 以及信道状态信息 (CSI) 等, 其中 ACK表示数据正确 接受, NACK表示数据错误接收, DTX表示 UE未收到任何下行控制数 据, 即未收到任何调度下行数据发送的控制信令。
在 PUCCH 中发送的响应信号, 分别对应一个物理信道资源, 一个 时域序列和一个频域序列, 这三个资源和两个参数相关联。 第一个参数 是系统高层配置的所有小区中的用户设备 UE都使用的相同的参数 N1; 另外一个参数与响应信号对应的调度此下行数据的物理下行控制信道 (PDCCH: Physical Downlink Control Channel)的所包含的第一个控制信 道单元(CCE: Control Channel Element)的索引相关联。具体来说, N1 决 定了上行子帧中传输响应信号的 PUCCH在频域的起点位置,该参数对小 区内所有的 UE或移动台所共享; 该 PDCCH的第一个 CCE索引结合该 起点位置决定了在该 PDCCH上调度的用户设备 UE在传输上行控制信令 时实际采用的物理资源和序列资源。 例如图 1所示。
图 2是 LTE FDD (频分复用) 系统响应信号发送时序的示意图。 对 于 LTE FDD系统, 上行子帧和下行子帧一一对应。 即对于系统中任何一 个用户设备 UE, 一个上行子帧中只传送一个与之对应的下行子帧数据的 响应信号值。 一个下行子帧中传输的数据最多可包含两个传输块 (TB : transport block) , 即有两 bit (比特) 的响应信号。 该两个 bit的响应信号 在传输前需要先调制为 QPSK (四相相移键控)符号, 然后映射到对应的 物理资源和序列资源上。 LTE FDD系统的 ACK/NACK发送时序如图 2 所示。
图 3是 LTE TDD (时分复用) 系统响应信号发送时序的示意图。 在 LTE TDD (时分复用) 系统中, 定义了 7种上行下行子帧配置, 在大多 数子帧配置中, 上行子帧和下行子帧在很多情况下是一对多的, 即对于 系统中任何一个用户设备 UE, 一个上行子帧中需要传送与之对应的多个 下行子帧的响应信号值。 LTE TDD 系统的某个上下行子帧配置对应的 ACK/NACK的发送时序如图 3所示。
目前, LTE TDD系统采用一种叫做信道选择(Channel Selection) 的 方法在一个上行子帧中传送多个下行子帧数据对应的响应信号。 其中包 括: 若下行子帧包含两个传输块(TB : Transmission Block) , 则将该两个 TB的响应信号进行合并(bundling) , 例如, 当全部响应消息为 ACK时, 合并后仍为 ACK, 否则为 NACK; 然后按照合并后的响应信号值查表确 定调制后的符号值, 以及对应的物理资源和序列资源。
表 1 示出了两个下行子帧对应一个上行子帧的响应信号反馈方法。 如表 1所示,如果用户设备 UE在两个子帧中检测到的响应信号为(ACK, ACK) , 则选择第 1 个子帧的调度该用户设备 UE进行下行信号传输的 PDCCH的最低的 CCE 索引 nl 映射上行的物理资源和序列资源, 并且 调制符号值为 -1。 若两个子帧对应的响应信号为 (ACK, NACK/DTX) , 则选择第 0个子帧的 PDCCH的最低的 CCE 索引 ηθ 映射上行的物理资 源和序列资源, 并且调制符号为 其他信道选择方式根据表 1类推。 一 般情况下, 进行信道选择所需的资源数与响应信号的 bit数相等, 如响应 信号为 2/3/4比特, 则分别需要 2/3/4个资源可供选择。
表 1 : LTE系统 2bit响应信号信道选择方法
Figure imgf000004_0001
NACK/DTX, ACK nl 1
NACK/DTX, NACK nl j
NACK, DTX nO j
DTX, DTX N/A N/A 由上述可知, 在 LTE TDD 系统中, 由于采用了响应信号的合并 (bundling) , 这样, 从每个包含数据发送的下行子帧都可以得到一个可 用的资源, 因此, 在反馈的响应信号值向资源映射时资源够用。
在 LTE先进(LTE-Advanced, 也简称为 LTE-A) 系统中, 采用载波 聚合 (CA: Carrier Aggregation) 的方式传输数据, 下行和上行包含多个 分量载波 (CC: Component Carrier) , 可以在每个分量载波中给系统中的 移动台调度上行数据发送和下行数据发送。系统为每个用户设备 UE配置 一个下行主分量载波 (PCC: Primary Component Carrier) 和多个次分量 载波 (SCC: Secondary Component Carrier)。 主分量载波 PCC和次分量 载波 SCC可以分别调度自己载波中数据的发送。
在 LTE-A系统中, 对于任何一个用户设备 UE, 在其上行主分量载 波 PCC中反馈与其所有配置的下行分量载波对应的控制信息, 例如, 每 个下行分量载波数据的响应信号, 下行分量载波信道状态信息等。 这样 就与 LTE TDD类似,即移动台需要在一个主分量载波 PCC上行子帧中反 馈多个下行子帧的数据的响应信号值, 此下行子帧属于不同的下行分量 载波 CC。
但是在实现本发明的过程中, 发明人发现现有技术的缺陷在于: 在 LTE-A中, 采用载波聚合方式时, 由于预先配置主分量载波 PCC对应的 资源, 当基站利用次载波分量 SCC发送数据时, 由于单载波的要求未采 用合并 (bundling) 方式, 所以存在资源不够用的情况。
例如, 为某个移动台配置了 2个分量载波, 一个主载波分量 PCC和 一个次载波分量 SCC, 且每个分量载波上的传输方式为 2个 TB, 则需要 反馈 4个响应信号值, 需要 4个资源可供选择, 而一般情况下, 预先配 置主分量载波 PCC对应的资源, 这样, 如果只是用每个分量载波 CC上 PDCCH的最低的 CCE索引进行映射, 可用的资源数仅为 2。 目前, 对于资源不够用的情况, 还没有有效的解决方法。
下面列出了对于理解本发明和常规技术有益的文献, 通过引用将它 们并入本文中, 如同在本文中完全阐明了一样。
1 ) CN101594211A, 公开日 2009.12.02, 发明名称为 "大带宽的多 载波系统中发送正确 /错误应答消息的方法";
2) CN101588226A, 公开日 2009.11.25, 发明名称为 "一种大带宽 下多载波系统中的终端及应答消息的发送方法";
3) WO2010/050688A2,
METHOD OF HARQ ACKNOWLEDGEMENT TRANSMISSION AND TRANSPORT BLOCK RETRANSMISSION IN A WIRELESS COMMUNICATION SYSTEM.
发明内容
本发明实施例的目的在于提供一种传输上行响应信号的方法、 移动 台、 基站和通信系统, 通过基站分配额外的资源, 使得用户设备 UE利用 预置的资源和额外分配的资源进行响应信号的反馈, 可较小的开销进行 响应信号的反馈, 解决了现有技术中资源不够用的问题。
根据本发明实施例的一个方面提供了一种传输上行响应信号的方 法, 该方法包括:
判断是否利用下行次分量载波向移动台发送数据;
若判断结果为是, 则根据在该次分量载波上发送下行数据的传输块 的数量来分配资源, 使得该移动台能够利用预先配置的主分量载波对应 的资源和为该次分量载波分配的资源选择传输响应信号的上行资源。
根据本发明实施例的另一个方面提供了一种输上行响应信号的方 法, 该方法包括:
接收基站通过下行分量载波发送的下行数据;
对接收到的下行数据进行解码, 根据解码的结果获得该下行数据的 响应信号;
若发送下行数据的分量载波包括次分量载波, 则从可用资源中选择 传输该响应信号的上行资源并选择相应的调制符号; 其中, 该可用资源 包括预置的主分量载波对应的资源和该基站为该次载波分量分配的资源; 利用选择的该上行资源和相应的调制符号传输该响应信号。
根据本发明实施例的另一个方面提供了一种基站, 该基站包括: 判断单元, 该判断单元用于判断是否利用下行次分量载波向移动台 发送数据;
资源分配单元, 该资源分配单元用于在该判断单元的判断结果为是 时, 根据在该次分量载波上发送下行数据的传输块的数量来分配资源, 使得该移动台能够利用预先配置的主分量载波对应的资源和为该次分量 载波分配的资源选择传输响应信号的上行资源。
根据本发明实施例的另一个方面提供了一种移动台, 该移动台包括: 数据接收单元, 该接收单元用于接收基站通过下行分量载波发送的 下行数据;
数据处理单元, 该数据处理单元用于对接收到的下行数据进行解码, 根据解码的结果获得该下行数据的响应信号;
第一资源选择单元, 该第一资源选择单元用于在发送下行数据的分 量载波包括次分量载波时, 从可用资源中选择传输该响应信号的上行资 源并选择相应的调制符号; 其中, 该可用资源包括预置的主分量载波对 应的资源和该基站为该次载波分量分配的资源;
信号传输单元, 该信号传输单元用于利用选择的该上行资源和相应 的调制符号传输该响应信号。
根据本发明实施例的另一个方面提供了一种通信系统, 该通信系统 包括:
基站, 该基站包括上述基站;
移动台, 该移动台包括上述移动台。
根据本发明实施例的另一个方面提供了一种计算机可读程序, 其中 当在基站中执行该程序时, 该程序使得计算机在该基站中执行上述传输 上行响应信号的方法。
根据本发明实施例的另一个方面提供了一种存储有计算机可读程序 的存储介质, 其中该计算机可读程序使得计算机在基站中执行上述传输 上行响应信号的方法。 根据本发明实施例的另一个方面提供了一种计算机可读程序, 其中 当在移动台中执行该程序时, 该程序使得计算机在该移动台中执行上述 传输上行响应信号的方法。
根据本发明实施例的另一个方面提供了一种存储有计算机可读程序 的存储介质, 其中该计算机可读程序使得计算机在移动台中执行上述传 输上行响应信号的方法。
本发明实施例的有益效果在于: 通过基站分配额外的资源, 使得用 户设备 UE利用预置的资源和额外分配的资源进行响应信号的反馈,可较 小的开销进行响应信号的反馈, 解决了现有技术中资源不够用的问题。
参照后文的说明和附图, 详细公开了本发明的特定实施方式, 指明 了本发明的原理可以被采用的方式。 应该理解, 本发明的实施方式在范 围上并不因而受到限制。 在所附权利要求的精神和条款的范围内, 本发 明的实施方式包括许多改变、 修改和等同。
针对一种实施方式描述和 /或示出的特征可以以相同或类似的方式在 一个或更多个其它实施方式中使用, 与其它实施方式中的特征相组合, 或替代其它实施方式中的特征。
应该强调, 术语 "包括 /包含"在本文使用时指特征、 整件、 歩骤或 组件的存在, 但并不排除一个或更多个其它特征、 整件、 歩骤或组件的 存在或附加。
附图说明
图 1是 LTE系统的上下行控制信道映射的示意图;
图 2是 LTE FDD系统响应信号发送时序的示意图;
图 3是 LTE TDD系统响应信号发送时序的示意图;
图 4是本发明实施例 1的传输上行响应信号的方法流程图; 图 5是本发明实施例 2的传输上行响应信号的方法流程图; 图 6是本发明实施例 3的传输上行相应信号的方法流程图; 图 7是本发明实施例 4的基站的结构示意图; 图 10是本发明实施例 6的通信系统的结构示意图。
具体实施方式
下面结合附图对本发明的各种实施方式进行说明。 这些实施方式只 是示例性的, 不是对本发明的限制。 为了使本领域的技术人员能够容易 地理解本发明的原理和实施方式, 本发明的实施方式以 3GPP 的 LTE Advanced系统采用载波聚合方式传输数据为例进行介绍,但是应该理解, 本发明不限于 LTE Advanced系统, 也可以适用于类似的具有载波聚合功 能的多载波通信系统中。
图 4是本发明实施例 1 的传输上行响应信号的方法流程图。 如图 4 所示, 该方法包括:
歩骤 401, 当基站向某移动台发送数据时, 判断是否利用下行次分量 载波向移动台发送数据; 若判断结果为是, 则执行歩骤 402, 否则执行歩 骤 403 ;
歩骤 402, 若歩骤 401中判断结果为是, 则根据在该次分量载波上发 送下行数据的传输块的数量来分配资源, 使得该移动台能够利用预先配 置的主分量载波对应的资源和为该次分量载波分配的资源选择传输响应 信号的上行资源。
在本实施例中,在歩骤 401中,若基站确定利用下行次分量载波 SCC 发送数据时, 则存在资源不够用的情况, 这时, 基站可为该次分量载波 see 分配资源, 使得移动台利用预置的资源和额外分配的资源进行响应 信号的反馈。
在本实施例中, 该方法还包括歩骤 403, 若在歩骤 401中判断结果为 否,则说明采用主分量载波发送下行数据,由于预先配置主分量载波 PCC 对应的资源, 因此, 在这种情况下不需分配额外的资源, 移动台可利用 预置的资源进行响应信号的反馈。
由上述实施例可知, 在资源不够用的情况下, 通过基站分配额外的 资源, 使得移动台利用预置的资源和额外分配的资源进行响应信号的反 馈, 可较小的开销进行响应信号的反馈, 不会破坏上行单载波特性, 解 决了现有技术中资源不够用的问题。 图 5是本发明实施例 2的传输上行相应信号的方法流程图。 如图 5 所示, 该方法包括:
歩骤 501, 当基站向某移动台发送数据时, 判断是否利用下行次分量 载波 SCC向移动台发送数据; 若判断结果为是, 则执行歩骤 502, 否则 执行歩骤 505 ;
其中, 基站可根据移动台发送的信道质量的信号来确定是否适用下 行次分量载波 SCC向移动台发送数据, 可采用现有的任何方式实现, 此 处不再赘述。
歩骤 502,若歩骤 401中判断结果为是, 则根据在该次分量载波 SCC 上发送下行数据的传输块 TB的数量来分配资源,使得该移动台能够利用 预先配置的主分量载波 PCC对应的资源和为该次分量载波 SCC分配的资 源选择传输响应信号的上行资源;
其中, 可采用如下方式分配资源:
第一种: 若发送下行数据的传输块 TB的数量为 1, 则从预置的第一 资源表中选择资源, 该第一资源表中每个元素包括 1 个资源; 其中, 包 括配置的传输块 TB的数量为 1、 以及配置的传输块 TB的数量为 2, 而 实际传输数据时使用传输块的数量为 1 的情况, 例如, 第一资源表 setl 如表 1所示:
表 1 第二种: 若发送下行数据的传输块的数量为 2, 则从预置的第二资源 表中选择资源, 该第二资源表中每个元素包括 2个资源。 例如, 一 源表 set2如表 2所示:
表 2
Figure imgf000010_0002
歩骤 503, 该基站将分配的资源的索引向该移动台发送;
其中, 可在该次分量载波 SCC上调度该下行数据的物理下行控制信 道 PDCCH中将该资源的索引向该移动台发送。 歩骤 504, 该基站利用主分量载波 PCC和该次分量载波 SCC向移动 台发下行数据, 使得移动台接收该下行数据后, 对该下行数据进行解码 处理获得相应的响应信号, 利用预置的资源和额外分配的资源进行响应 信号的反馈。
歩骤 505, 若在歩骤 501中判断结果为否, 则由于预先配置主分量载 波 PCC对应的资源, 因此, 在这种情况下不需分配额外的资源, 采用主 分量载波 PCC发送下行数据, 移动台可利用预置的资源进行响应信号的 反馈。
由上述实施例可知, 在资源不够用的情况下, 基站根据传输数据的 传输块 TB的数量来分配额外的资源, 并通过该次分量载波 SCC的调度 该下行数据的物理下行控制信道 PDCCH将该资源的索引向该移动台发 送, 使得移动台获得分配的资源, 并利用预置的资源和额外分配的资源 进行响应信号的反馈, 可较小的开销进行响应信号的反馈, 不会破坏单 波特性, 解决了现有技术中资源不够用的问题。
图 6是本发明实施例 3的传输上行响应信号的方法流程图。 如图 6 所示, 该方法包括:
歩骤 601, 接收基站通过下行分量载波 CC发送的下行数据; 歩骤 602, 对接收到的下行数据进行解码, 根据解码的结果获得该下 行数据的响应信号;
歩骤 603,若发送下行数据的分量载波包括次分量载波 SCC, 则从可 用资源中选择传输该响应信号的上行资源并选择相应的调制符号; 其中, 该可用资源包括预置的主分量载波 PCC对应的资源和该基站为该次分量 载波 SCC分配的资源;
歩骤 604,该移动台利用选择的该上行资源和调制符号传输该响应信 号。 由上述实施例可知, 在资源不够用的情况下, 基站根据传输数据的 传输块 TB的数量来分配额外的资源, 并通过物理下行控制信道 PDCCH 将该资源的索引向该移动台发送, 移动台利用预置的资源和额外分配的 资源进行响应信号的反馈, 可较小的开销进行响应信号的反馈, 解决了 现有技术中资源不够用的问题。
在本实施例中, 在歩骤 602中, 该响应信号包括三种, 分别为 ACK、 NACK和 DTX; 其中, ACK (以下表示为 A)表示正确接收数据, NACK (以下表示为 N) 表示数据错误接收, DTX (以下表示为 D) 表示未收 到任何下行控制数据, 即未收到任何调度下行数据发送的控制信令。
在本实施例中, 在歩骤 603中, 由于基站采用次分量载波 SCC发送 下行数据, 则存在资源不够用的情况, 这样, 基站为该次分量载波 SCC 分配额外的资源, 使得移动台从预置的资源和分配的资源中选择传输响 应信号的上行资源; 其中, 该额外分配的资源为 PUCCH资源。
在本实施例中, 在歩骤 604 中, 该移动台利用选择的该上行资源和 相应的调制符号传输该响应信号, 其中, 可采用 QPSK调制方式在所选 择的资源上进行响应信号的传输。
在本实施例中, 通过上行资源和该上行资源上的调制符号来映射不 同的响应状态。 这样, 该移动台可根据响应信号的状态来选择该上行资 源并选择相应的调制符号, 这样, 移动台可发送该调制符号, 基站在接 收到调制符号后, 可判断发送的下行数据是否被正确接收, 此与现有技 术类似, 此处不再赘述。
在本实施例中, 若基站给次分量载波 SCC分配了额外的资源, 基站 将分配的资源的索引向移动台发送, 这样, 该方法还包括: 该移动台接 收该基站发送的基站为该下行次分量载波 SCC分配的资源的索引。
在本实施例中, 该方法还包括歩骤 605, 若发送下行数据的分量载波 为主分量载波 PCC, 则从可用资源中选择传输该响应信号的上行资源并 选择相应的调制符号; 其中, 该可用资源包括预置的主分量载波对应的 资源。
在本实施例中, 在歩骤 603和歩骤 605中, 利用可用资源选择传输 响应信号的上行资源时, 可采用以下方式:
根据该响应信号的状态、 利用预置的响应信号的状态与所选资源和 调制符号的映射关系选择传输该响应信号的上行资源和调制符号; 其中, 该所选资源为该可用资源其中之一;
其中, 在该映射关系中, 不选择该响应信号为 N/D对应的资源; 不 区分 N和 D, 其中 N表示数据错误接收、 D表示未收到任何下行控制数 据; 当该响应信号均为 N/D时, 不选择任何资源。 其中, 可根据响应信号的 Wt数查找预先配置的映射关系表, 该映射 关系表中可供选择的资源数(可用资源的数量)与响应信号的 bit数相等。 以下分别以响应信号为 4bit、 3bit、 2bit为例进行说明。
第一种: 响应信号为 4bit
响应信号为 4bit包括以下几种情况:
1 )为移动台配置 2个 CC,每个 CC上配置的传输模式包含 2个 TB;
2) 为移动台配置 3个 CC, 其中一个 CC配置的传输模式包含 2个 TB, 其他两个 CC配置的传输模式各包含 1个 TB;
3 ) 为移动台配置 4个 CC, 其中每个 CC配置的传输模式均包含 1 个 TB。
在这种情况中, 可供选择的资源数, 即可用资源为 4 个; 该移动台 响应信号的状态与可选择的资源的关系, 如表 3A所示, 其中可选择的资 源为可用资源其中之一或之几; 对于 4bit响应信号该响应信号的状态与 所选资源和调制符号的映射关系表如表 3B所示,其中所选资源为可用资 源 (可选择的资源) 其中之一。
表 3A 4bit响应信号可选择的资源
Figure imgf000013_0001
0 N/D A A N/D nl, n2 1 N/D A N/D A nl, n3 2 N/D A N/D N/D nl 3 N/D N/D A A n2, n,3 4 N/D N/D A N/D n2 5 N/D N/D N/D A n3 6 N N/D N/D N/D nO 7 D N/D N/D N/D N/A 表 3B 4bit响应信号的映射关系表
Figure imgf000014_0001
14 N/D N/D A N/D n2 1
15 N/D N/D N/D A n3 1
16 N N/D N/D N/D nO 1
17 D N/D N/D N/D N/A N/A
其中, 在表 3A和表 3B所示的映射关系中, 编号广 17表示响应信号 对应的 17种状态; A表示数据正确接收、 N表示数据错误接收、 D表示未 收到任何下行控制数据; η(Γη3表示可用资源, 即可利用的用于进行选择 的资源; Ν/Α表示不适用。 其中, A=ACK, N=NACK, D=DTX。 表 3A 和 3B中不区分 NACK和 DTX。 以状态 4 (Α,Α,Ν/ϋ,Ν/Ε 为例, 其包含的 响应信号可能为:
(Α,Α,耶)、 (A,A,N,D)、 (A,A,D,N)、 (A,A,D,D)。
由上述可知, 可以看出除状态 16, 17之外,在每种可选择的状态中, A对应的响应信号的序号和该 A对应的资源序号一致,例如,状态 10中, 该 A对应的响应信号的序号为 1、 2, 相应地, 对应的可用资源的序号也 为 1、 2。
此外, 状态 16由于只有第一个响应信号为固定的 N, 这样, 只能选 择第一个资源作为选择后的资源。 第 16 和 17 行也可以合并为状态 (N/D,N/D,N/D,N/D),并不选择任何资源对其进行映射。
第二种: 响应信号为 3bit
响应信号为 3bit包括以下几种情况:
1 ) 为移动台配置 2个 CC, 其中一个 CC上配置的传输模式包含 2 个 TB, 另一个 CC上配置的传输模式包含 1个 TB;
2) 为移动台配置 3个 CC, 其中每个 CC配置的传输模式均包含 1 个 TB。
在这种情况中, 可供选择的资源数, 即可用资源为 3 个; 该移动台 响应信号的状态与可选择的资源的关系, 如表 4A所示, 其中可选择的资 源为可用资源其中之一或之几; 对于 3bit响应信号该响应信号的状态与 所选资源和调制符号的映射关系表如表 4B所示,其中所选资源为可用资 择的资源) 其中之一。
表 4A 3bit响应信号可选择的资源
Figure imgf000016_0001
表 4B 3bit响应信号映射关系表
Figure imgf000016_0002
8 N N/D N/D nO 1
9 D N/D N/D N/A N/A 其中, 在图 4A和 4B所示的映射关系中, 编号广 9表示响应信号对 应的状态; A表示数据正确接收、 N表示数据错误接收、 D表示未收到任 何下行控制数据; η(Γη2表示可用资源,即可利用的用于进行选择的资源; Ν/Α表示不适用。
第三种: 响应信号为 2bit
为移动台配置 2个 CC, 其中每个 CC上配置的传输模式各包含 1个
TB。
在这种情况中, 可供选择的资源数, 即可用资源为 2 个; 该移动台 响应信号的状态与可选择的资源的关系, 如表 5A所示, 其中可选择的资 源为可用资源其中之一或之几; 对于 2bit响应信号该响应信号的状态与 所选资源和调制符号的映射关系表如表 5B所示,其中所选资源为可用资 源 (可选择的资源) 其中之一。
表 5A 2bit响应信号可选择的资源
Figure imgf000017_0001
表 5B 2bit响应信号的映射关系表 编号 响应 0 响应 1 可用资源 调制符号
1 A A nl ~j
2 A N/D ηθ -1
3 N/D A nl j
4 N N/D nO 1
7 D N/D N/A N/A 其中, 在图 5A和 5B所示的映射关系中, 编号广 5表示响应信号对 应的状态; A表示数据正确接收、 N表示数据错误接收、 D表示未收到任 何下行控制数据; η(Γη2表示可用资源,即可利用的用于进行选择的资源; Ν/Α表示不适用。
此外, 在本实施例中, 在歩骤 603和歩骤 605中, 利用可用资源选 择传输响应信号的上行资源时, 还可采用以下方式:
根据该响应信号的状态、 利用预置的响应信号的状态与所选资源和 调制符号的映射关系选择传输该响应信号的上行资源和调制符号; 其中, 该所选资源为该可用资源其中之一;
其中, 在该映射关系中, 不选择该响应信号为 N/D对应的资源; 不 区分 Ν和 D, 其中 N表示数据错误接收、 D表示未收到任何下行控制数 据; 当该响应信号均为 N/D时, 不选择任何资源;
另外, 无论为移动台配置了几个分量载波 CC , 若只在主分量载波 PCC上发送下行数据, 则需要按照 LTE的资源映射方式, 即用主分量载 波 PCC上 PDCCH的最低的 CCE索引进行映射。
以下按照上述映射原则,对 4bit的响应信号,配置 2CC, 3CC和 4CC 的映射关系进行说明; 对 3bit的响应信号, 配置 2CC和 3CC的映射关系 进行说明。
一禾中: 4bit口向! 言号 当响应信号为 4bit, 且为移动台配置 2个 CC, 每个 CC上配置的传
Figure imgf000019_0001
16 N N N/D N/D nO
17 D D N/D N/D N/A 在表 6A所示的映射关系中, 不选择该响应信号为 N/D对应的资源; 并且属于同一个分量载波的第二个响应信号为 N时, 不使用该响应信号 N对应的资源。 这是由于考虑到以下情况: 若为此 CC配置了 2个 TB, 但实际只有 1个 TB发送, 则固定将第二个响应信号置为 NACK, 即此 NACK没有对应的资源。
另外, 假设表 6A中 CC1为主分量载波 PCC, 则为了遵循上述原则, 表 6A中第 4, 8, 12, 16行必须选择其 PDCCH的第一个 CCE索引进行 资源映射, 即 n0, 其他响应信号的状态不能再用 nO作为所选择的资源。 表 6B 2CC 4比特响应信号映射关系表
Figure imgf000020_0001
10 N A A N nl j
11 N A N A nl ~j
12 N A N/D N/D nO ~j
13 N/D N/D A A n2 -1
14 N/D N/D A N n2 j
15 N/D N/D N A n2 ~j
16 N N N/D N/D nO 1
17 D D N/D N/D N/A N/A 其中, 在表 6A、 6B所示的映射关系中, 编号广 17表示响应信号对 应的状态; A表示数据正确接收、 N表示数据错误接收、 D表示未收到任 何下行控制数据; η(Γη3表示可用资源,即可利用的用于进行选择的资源; Ν/Α表示不适用。
第二种: 4bit 响应信号
当响应信号为 4bit, 且为移动台配置 3个 CC, 其中一个 CC上配置 的传输模式包含 2个 TB , 另外两个 CC上配置的传输模式为 1个 TB时, 该移动台可选择的资源如表 7A所示, 映射关系表如表 7B所示。 表 7A 4bit响应信号可选择的资源
Figure imgf000021_0001
5 A N A A n2, n,3
6 A N A N/D n2
7 A N N/D A n3
8 A N N/D N/D nO
9 N A A A nl, n2, n3
10 N A A N/D nl
11 N A N/D A nl, n3
12 N A N/D N/D nO
13 N/D N/D A A n2, n,3
14 N/D N/D A N/D n2
15 N/D N/D N/D A n3
16 N N N/D N/D nO
17 D D N/D N n3
18 D D N/D D N/A 在表 7A所示的映射关系中, 不选择该响应信号为 N/D对应的资源; 并且属于同一个分量载波的第二个响应信号为 N时, 不使用该响应信号 N对应的资源。 这是由于考虑到以下情况: 若为此 CC配置了 2个 TB , 但实际只有 1个 TB发送, 则固定将第二个响应信号置为 NACK, 即此 NACK没有对应的资源。
另夕卜, 如果 PCC包含 2个 TB , 则表 7A中 CC1为主载波分量 PCC, 为了遵循上述原则, 表 6A中第 4, 8, 12, 16行需选择其 PDCCH的第一 个 CCE索引进行资源映射, 即 n0, 其他响应信号的状态不能再用 nO作 为所选择的资源。
如果主分量载波 PCC包含 1个 TB, 则表 7A中 CC3为 PCC, 为了 遵循上述原则, 表 7A中新加入了状态 17, 即 (D,D,N/D,N:>, 此状态与状 态 15,用主分量载波 PCC的用于传输此 TB的 PDCCH的第一个 CCE索 引进行资源映射, 即 n3。 表 7B 3CC 4比特响应信号映射关系表
Figure imgf000023_0001
其中, 在表 7A、 7B所示的映射关系中, 编号广 18表示响应信号对 应的状态数; A表示数据正确接收、 N表示数据错误接收、 D表示未收到 任何下行控制数据; η(Γη3表示可用资源, 即可利用的用于进行选择的资 源; Ν/Α表示不适用。
第三种: 3bit 响应信号
当响应信号为 3bit, 且为移动台配置 2个 CC, 其中一个 CC上配置 的传输模式包含 2个 TB, 另外一个 CC上配置的传输模式为 1个 TB时, 该移动台可选择的资源如表 8A所示, 映射关系表如表 8B所示。 表 8A 2CC, 3bit响应信号可选择的资源
Figure imgf000024_0001
在表 8A所示的映射关系中, 不选择该响应信号为 N/D对应的资源; 并且属于同一个分量载波的第二个响应信号为 N时, 不使用该响应信号 N对应的资源。 这是由于考虑到以下情况: 若为此 CC配置了 2个 TB, 但实际只有 1个 TB发送, 则固定将第二个响应信号置为 NACK, 即此 NACK没有对应的资源。
另外, 如果 PCC包含 2个 TB, 则表 8A中 CC1为 PCC, 为了遵循 上述原则, 表 6A中第 2, 4, 6, 8行必须选择其 PDCCH的第一个 CCE 索引进行资源映射, 即 n0, 其他响应信号的状态不能再用 ηθ作为所选择 的资源。
如果 PCC包含 1个 TB, 则表 8A中 CC2为 PCC, 为了遵循上述原 则, 表 8A状态 7与状态 9, 用 PCC的用于传输此 TB的 PDCCH的第一 个 CCE索引进行资源映射, 即 n3。 表 8B 2CC 3比特响应信号映射关系表
Figure imgf000025_0001
其中, 在表 8A、 8B所示的映射关系中, 编号广 10表示响应信号对 应的状态数; A表示数据正确接收、 N表示数据错误接收、 D表示未收到 任何下行控制数据; η(Γη2表示可用资源, 即可利用的用于进行选择的资 源; Ν/Α表示不适用。
由上述实施例可知, 在资源不够用的情况下, 基站根据传输数据的 传输块 ΤΒ的数量来分配额外的资源, 并通过物理下行控制信道 PDCCH 将该资源的索引向该移动台发送, 使得移动台利用预置的资源和额外分 配的资源进行响应信号的反馈, 可较小的开销进行响应信号的反馈, 不 破坏单载波特性, 解决了现有技术中资源不够用的问题。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分 歩骤是可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一 计算机可读取存储介质中, 该程序在执行时, 可以包括上述实施例方法 中的全部或部分歩骤, 所述的存储介质可以包括: ROM、 RAM, 磁盘、 光盘等。
本发明实施例还提供了一种基站和移动台, 如下面的实施例所述。 由于该基站和移动台解决问题的原理与上述基于基站和移动台的上行传 输方法相似, 因此该基站和移动台的实施可以参见方法的实施, 重复之 处不再赘述。
图 7是本发明实施例 4的基站的结构示意图。 如图 7所示, 该基站 包括: 判断单元 701和资源分配单元 702; 其中, 判断单元 701用于判断 是否利用下行次分量载波向移动台发送数据; 资源分配单元 702, 用于在 判断单元 701 的判断结果为是时, 根据在该次分量载波上发送下行数据 的传输块的数量来分配资源, 使得该移动台能够利用预先配置的主分量 载波对应的资源和为该次分量载波分配的资源选择传输响应信号的上行 资源。
如图 7所示, 该基站还包括信息发送单元 703, 信息发送单元 703用 于将资源分配单元 702 分配的资源的索引向该移动台发送。 其中, 可在 调度数据发送的物理下行控制信道 PDCCH 中将资源的索引向移动台发 送, 但不限于此, 还可采用其他方式传送。
由上述实施例可知, 当通过次分量载波发送数据时, 会出现资源不 够用的情况, 这样, 基站根据传输数据的传输块 TB的数量来分配额外的 资源, 并通过物理下行控制信道 PDCCH将该资源的索引向该移动台发 送, 使得移动台利用预置的资源和额外分配的资源进行响应信号的反馈, 可较小的开销进行响应信号的反馈, 解决了现有技术中资源不够用的问 题。
图 8是图 7中资源分配单元结构示意图。 如图 8所示, 资源分配单 元 702包括: 第一资源分配单元 801和第二资源分配单元 802; 其中, 第 一资源分配单元 801, 用于在发送下行数据的传输块的数量为 1时, 从预 置的第一资源表中选择资源, 该第一资源表中每个元素包括 1 个资源; 第二资源分配单元 802, 用于在发送下行数据的传输块的数量为 2时, 从 预置的第二资源表中选择资源, 该第二资源表中每个元素包括 2个资源。
其中, 第一资源表和第二资源表见表 1和表 2, 此处不再赘述。
此外, 该基站还可包括存储单元 (图中未示出), 用于储存预先配置 的表 1和表 2。 此外, 该表 1和表 2中的资源为所有移动台共享。 此外, 该基站还可包括数据发送单元 (图中未示出), 该数据发送单元用于通过 分量载波向移动台发送下行数据。
图 9是本发明实施例 5的移动台结构示意图。 如图 5所示, 该移动 台包括: 数据接收单元 901、 数据处理单元 902、 第一资源选择单元 909、 信号传输单元 904; 其中, 数据接收单元 901用于接收基站通过下行分量 载波发送的下行数据; 数据处理单元 902, 用于对接收到的下行数据进行 解码, 根据解码的结果获得该下行数据的响应信号; 第一资源选择单元 903, 用于在发送下行数据的分量载波包括次分量载波时, 从可用资源中 选择传输该响应信号的上行资源并选择相应的调制符号; 其中, 该可用 资源包括预置的主分量载波对应的资源和该基站为该次载波分量分配的 资源; 信号传输单元 904, 用于利用选择的该上行资源和相应的调制符号 传输该响应信号。
在本实施例中, 信号响应的状态通过上行资源和该上行资源上的调 制符号来映射。 这样, 该移动台可根据响应信号的状态来选择该上行资 源并选择相应的调制符号, 这样, 移动台可发送该调制符号, 基站在接 收到调制符号后, 可判断发送的下行数据是否被正确接收, 此与现有技 术类似, 此处不再赘述。
如图 9所示, 该移动台还可包括信息接收单元 905, 用于接收基站发 送的基站为该下行次分量载波分配的资源的索引。
如图 9所示, 该移动台还包括第二资源选择单元 906, 用于在发送下 行数据的分量载波为主分量载波时, 从可用资源中选择传输该响应信号 的上行资源并选择调制符号; 其中, 该可用资源包括预置的主分量载波 对应的资源。
在上述实施例中, 第一资源选择单元 905 和第二资源选择单元 906 具体用于, 根据响应信号的状态、 利用预置的响应信号的状态与所选资 源和调制符号的映射关系选择传输该响应信号的上行资源和相应的调制 符号; 其中, 所选资源为可用资源其中之一;
其中, 在该映射关系中, 不选择响应信号为 N/D对应的资源; 不区 分 N和 D,其中 N表示数据错误接收、 D表示未收到任何下行控制数据; 当所述响应信号均为 N/D时, 不选择任何资源。 其中, 可根据响应信号 状态选择表 3A、 4A、 5A所示的可用资源。
优选采用表 3B、 4B、 5B所示的映射关系表来选择上行资源和相应 的调制符号, 如上所述, 此处不再赘述。
此外, 第一资源选择单元 905 具体用于, 根据该响应信号的状态、 利用预置的响应信号的状态与所选资源和调制符号的映射关系选择传输 所述响应信号的上行资源和相应的调制符号;
其中, 在该映射关系中, 不选择所述响应信号为 N/D对应的资源; 并且属于同一个分量载波的第二个响应信号为 N时, 不使用该响应信号 N对应的资源;
不管为移动台配置了几个 CC, 如果只在 PCC上发送了数据, 则必 须按照 LTE的资源映射方式,即用 PCC上 PDCCH的最低的 CCE索引进 行映射。
其中, 对于配置 2CC, 4bit响应信号可使用图 6A的可用资源, 优选 使用图 6B的映射关系选择上行资源; 对于配置 3CC, 4bit响应信号可使 用图 7A的可用资源, 优选使用图 7B的映射关系选择上行资源; 对于配 置 2CC, 3bit响应信号可使用图 8A的可用资源, 优选使用图 8B的映射 关系选择上行资源。
此外, 该移动台还可包括存储单元 907, 用于存储预置的资源和分配 的资源, 以及上述映射关系表。
由上述实施例可知, 当通过次分量载波发送数据时, 会出现资源不 够用的情况, 这样, 基站根据传输数据的传输块 TB的数量来分配额外的 资源, 并通过物理下行控制信道 PDCCH将该资源的索引向该移动台发 送, 使得移动台利用预置的资源和额外分配的资源进行响应信号的反馈, 可较小的开销进行响应信号的反馈, 解决了现有技术中资源不够用的问 题。
图 10是本发明实施例 6的通信系统结构示意图; 如图 10所示, 该 通信系统包括基站 1001和移动台 1002; 其中,
基站 1001可采用实施例 4所述的基站;移动台 1002可采用实施例 5 所述的移动台, 此处不再赘述。
由上述实施例可知, 当基站通过次分量载波发送数据时, 会出现资 源不够用的情况, 这样, 基站根据传输数据的传输块 TB的数量来分配额 外的资源,并通过物理下行控制信道 PDCCH将该资源的索引向该移动台 发送, 使得移动台利用预置的资源和额外分配的资源进行响应信号的反 馈, 可较小的开销进行响应信号的反馈, 解决了现有技术中资源不够用 的问题。
本发明实施例还提供一种计算机可读程序, 其中当在基站中执行该 程序时, 该程序使得计算机在该基站中执行如实施例 1或实施例 2所述 的传输上行响应信号的方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质, 其中 该计算机可读程序使得计算机在基站中执行如如实施例 1或实施例 2所 述的传输上行响应信号的方法。
本发明实施例提供一种计算机可读程序, 其中当在移动台中执行该 程序时, 该程序使得计算机在所述移动台中执行如实施例 3 所述的传输 上行响应信号的方法。
本发明实施例提供一种存储有计算机可读程序的存储介质, 其中该 计算机可读程序使得计算机在移动台中执行如实施例 3 所述的传输上行 响应信号的方法。
本发明以上的装置和方法可以由硬件实现, 也可以由硬件结合软件 实现。 本发明涉及这样的计算机可读程序, 当该程序被逻辑部件所执行 时, 能够使该逻辑部件实现上文所述的装置或构成部件, 或使该逻辑部 件实现上文所述的各种方法或歩骤。 本发明还涉及用于存储以上程序的 存储介质, 如硬盘、 磁盘、 光盘、 DVD、 flash存储器等。
以上结合具体的实施方式对本发明进行了描述, 但本领域技术人员 应该清楚, 这些描述都是示例性的, 并不是对本发明保护范围的限制。 本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和 修改, 这些变型和修改也在本发明的范围内。

Claims

权利 要 求 书
1、 一种传输上行响应信号的方法, 所述方法包括:
判断是否利用下行次分量载波向移动台发送数据;
若判断结果为是, 则根据在所述次分量载波上发送下行数据的传输 块的数量来分配资源,使得所述移动台能够利用预先配置的主分量载波对 应的资源和为所述次分量载波分配的资源选择传输响应信号的上行资源。
2、 根据权利要求 1所述的方法, 其中, 在所述根据在次分量载波上 发送下行数据的传输块的数量来分配资源之后, 所述方法还包括:
将分配的资源的索引向所述移动台发送。
3、 根据权利要求 1或 2所述的方法, 其中, 所述根据在下行次分量 载波上发送下行数据的传输块的数量来分配资源, 包括:
若发送下行数据的传输块的数量为 1,则从预置的第一资源表中选择 资源, 所述第一资源表中每个元素包括 1个资源;
若发送下行数据的传输块的数量为 2,则从预置的第二资源表中选择 资源, 所述第二资源表中每个元素包括 2个资源。
4、 根据权利要求 2所述的方法, 其中, 所述将分配的资源的索引向 所述移动台发送, 包括: 在所述次分量载波的调度所述下行数据的物理 下行控制信道 PDCCH中将所述分配的资源的索引向所述移动台发送。
5、 一种传输上行响应信号的方法, 所述方法包括:
接收基站通过下行分量载波发送的下行数据;
对接收到的下行数据进行解码, 根据解码的结果获得所述下行数据 的响应信号;
若发送下行数据的分量载波包括次分量载波, 则从可用资源中选择 传输所述响应信号的上行资源并选择相应的调制符号; 其中, 所述可用 资源包括预置的主分量载波对应的资源和所述基站为所述次载波分量分 配的资源;
利用选择的所述上行资源和相应的调制符号传输所述响应信号。
6、 根据权利要求 5所述的方法, 其中, 在所述接收基站通过下行分 量载波传送的下行数据之前, 所述方法还包括:
接收所述基站发送的基站为所述下行次分量载波分配的资源的索引。
7、 根据权利要求 5所述的方法, 其中, 若发送下行数据的分量载波 为主分量载波, 则所述方法还包括:
从可用资源中选择传输所述响应信号的上行资源并选择相应的调制 符号; 其中, 所述可用资源包括预置的主分量载波对应的资源。
8、 根据权利要求 5或 6或 7所述的方法, 其中, 所述从可用资源中 选择传输所述响应信号的上行资源并选择相应的调制符号, 包括:
根据所述响应信号的状态、 利用预置的响应信号的状态与所选资源 以及调制符号的映射关系选择传输所述响应信号的上行资源和调制符 号; 所述所选资源为可用资源其中之一;
其中, 在所述映射关系中, 不选择所述响应信号为 N/D对应的资源; 不区分 N和 D, 其中 N表示数据错误接收、 D表示未收到任何下行控制数 据; 当所述响应信号均为 N/D时, 不选择任何资源。
9、 根据权利要求 8所述的方法, 其中, 当所述响应信号为 4bit时, 所述响应信号的状态与所选资源和调制符号的第一映射关系为:
Figure imgf000032_0001
12 N/D A N/D N/D nO ~j
13 N/D N/D A A n2 ~j
14 N/D N/D A N/D n2 1
15 N/D N/D N/D A n3 1
16 N N/D N/D N/D nO 1
17 D N/D N/D N/D N/A N/A 其中, 在所述第一映射关系中, A表示数据正确接收、 N表示数据 错误接收、 D表示未收到任何下行控制数据; η(Γη3 表示可用资源; Ν/Α 表示不适用。
10、 根据权利要求 8所述的方法, 其中, 当响应信号为 3bit时, 所 述响应信号的状态与所选资源和调制符号的第二映射关系为:
Figure imgf000033_0001
其中, 在所述第二映射关系中, A表示数据正确接收、 N表示数据 错误接收、 D表示未收到任何下行控制数据; η(Γη2 表示可用资源; Ν/Α 表示不适用。
11、 根据权利要求 8所述的方法, 其中, 当响应信号为 2bit时, 所 述响应信号的状态与所选资源和调制符号的第三映射关系为:
Figure imgf000034_0001
其中, 在所述第三映射关系中, A表示数据正确接收、 N表示数据错 误接收、 D表示未收到任何下行控制数据; n(Tnl表示可用资源; Ν/Α表 示不适用。
12、 根据权利要求 5 所述的方法, 其中, 所述从可用资源中选择传 输所述响应信号的上行资源并选择相应的调制符号, 包括:
根据所述响应信号的状态、 利用预置的响应信号的状态与所选资源 和调制符号的映射关系选择传输所述响应信号的上行资源和调制符号; 所述所选资源为可用资源其中之一;
其中, 在所述映射关系中, 不选择所述响应信号为 N/D对应的资源; 并且属于同一个分量载波的第二个响应信号为 Ν 时, 不使用所述响应信 号 Ν对应的资源;
若只在主分量载波上发送了数据, 则按照 LTE的资源映射方式, 用 主分量载波上的物理下行控制信道 PDCCH的最低的控制信道单元 CCE 索引进行映射。
13、 根据权利要求 12所述的方法, 其中, 当传输下行数据的分量载 波包括 2个分量载波, 所述响应信号为 4bit, 所述响应信号的状态与所 选资源和调制符号的第四映射关系为:
Figure imgf000035_0001
16 N N N/D N/D nO 1
17 D D N/D N/D N/A N/A 其中, 在所述第四映射关系中, A表示数据正确接收、 N表示数据 错误接收、 D表示未收到任何下行控制数据; η(Γη3表示可用资源 Ν/Α表 示不适用。
14、 根据权利要求 12所述的方法, 其中, 当传输下行数据的分量载 波包括 3个分量载波, 所述响应信号为 4bit时, 所述响应信号的状态与 所选资源和调制符号的第五映射关系为:
Figure imgf000036_0001
14 N/D N/D A N/D n2 1
15 N/D N/D N/D A n3 1
16 N N/D N/D N/D nO 1
17 D D N/D N nl j
18 D D N/D D N/A N/A 其中, 在所述第五映射关系中, A表示数据正确接收、 N表示数据错 误接收、 D表示未收到任何下行控制数据; η(Γη3 表示可用资源; Ν/Α 表示不适用。
15、 根据权利要求 12所述的方法, 其中, 当传输下行数据的分量载 波包括 2个分量载波, 所述响应信号为 3bit时, 所述响应信号的状态与 所选资源和调制符号的第六映射关系为:
Figure imgf000037_0001
其中, 在所述第六映射关系中, A表示数据正确接收、 N表示数据错 误接收、 D表示未收到任何下行控制数据; η(Γη2 表示可用资源; Ν/Α 表示不适用。
16、 一种基站, 所述基站包括:
判断单元, 所述判断单元用于判断是否利用下行次分量载波向移动 台发送数据;
资源分配单元, 所述资源分配单元用于在所述判断单元的判断结果 为是时, 根据在所述次分量载波上发送下行数据的传输块的数量来分配 资源, 使得所述移动台能够利用预先配置的主分量载波对应的资源和为 所述次分量载波分配的资源选择传输响应信号的上行资源。
17、 根据权利要求 16所述的基站, 其中, 所述基站还包括: 信息发送单元, 所述信息发送单元用于将所述资源分配单元分配的 资源的索引向所述移动台发送。
18、 根据权利要求 16或 17所述的基站, 其中, 所述资源分配单元 包括:
第一资源分配单元, 用于在发送下行数据的传输块的数量为 1 时, 从预置的第一资源表中选择资源, 所述第一资源表中每个元素包括 1 个 资源;
第二资源分配单元, 用于在发送下行数据的传输块的数量为 2 时, 从预置的第二资源表中选择资源, 所述第二资源表中每个元素包括 2 个 资源。
19、 根据权利要求 17所述的基站, 其中, 所述信息发送单元具体用 于, 在所述次载波分量的调度所述下行数据的物理下行控制信道 PDCCH 中将所述分配的资源的索引向所述移动台发送。
20、 一种移动台, 所述移动台包括:
数据接收单元, 所述接收单元用于接收基站通过下行分量载波发送 的下行数据;
数据处理单元, 所述数据处理单元用于对接收到的下行数据进行解 码, 根据解码的结果获得所述下行数据的响应信号;
第一资源选择单元, 所述第一资源选择单元用于在发送下行数据的 分量载波包括次分量载波时, 从可用资源中选择传输所述响应信号的上 行资源并选择相应的调制符号; 其中, 所述可用资源包括预置的主分量 载波对应的资源和所述基站为所述次载波分量分配的资源;
信号传输单元, 所述信号传输单元用于利用选择的所述上行资源和 相应的调制符号传输所述响应信号。
21、 根据权利要求 20所述的移动台, 其中, 所述移动台还包括: 信息接收单元, 所述信息接收单元用于接收所述基站发送的基站为 所述下行次分量载波分配的资源的索引。
22、 根据权利要求 20所述的移动台, 其中, 所述移动台还包括第二 资源选择单元, 所述第二资源选择单元用于在发送下行数据的分量载波 为主分量载波时, 从可用资源中选择传输所述响应信号的上行资源并选 择相应的调制符号; 其中, 所述可用资源包括预置的主分量载波对应的 资源。
23、 根据权利要求 20或 21或 22所述的移动台, 其中, 所述第一资 源选择单元和第二资源选择单元具体用于, 根据所述响应信号的状态、 利用预置的响应信号的状态与所选资源和调制符号的映射关系选择传输 所述响应信号的上行资源和调制符号; 其中, 所选资源为所述可用资源 其中之一;
其中, 在所述映射关系中, 不选择所述响应信号为 N/D对应的资源; 不区分 N和 D, 其中 N表示数据错误接收、 D表示未收到任何下行控制数 据; 当所述响应信号均为 N/D时, 不选择任何资源。
24、 根据权利要求 23所述的移动台, 其中, 当所述响应信号为 4bit 时, 所述响应信号的状态与所选资源和调制符号的第一映射关系为:
Figure imgf000039_0001
4 A A N/D N/D nO j
5 A N/D A A n2 -1
6 A N/D A N/D n2 j
7 A N/D N/D A n3 ~j
8 A N/D N/D N/D nO -1
9 N/D A A A nl -j
10 N/D A A N/D nl 1
11 N/D A N/D A nl -j
12 N/D A N/D N/D nO -j
13 N/D N/D A A n2 -j
14 N/D N/D A N/D n2 1
15 N/D N/D N/D A n3 1
16 N N/D N/D N/D nO 1
17 D N/D N/D N/D N/A N/A 其中, 在所述第一映射关系中, A表示数据正确接收、 N表示数据 错误接收、 D表示未收到任何下行控制数据; η(Γη3 表示可用资源; Ν/Α 表示不适用。
25、 根据权利要求 23所述的移动台, 其中, 当所述响应信号为 3bit 时, 所述响应信号的状态与所选资源和调制符号的第二映射关系为:
Figure imgf000040_0001
3 A N/D A nO j
4 A N/D N/D nO -1
5 N/D A A nl 1
6 N/D A N/D nl j
7 N/D N/D A n2 1
8 N N/D N/D nO 1
9 D N/D N/D N/A N/A 其中, 在所述第二映射关系中, A表示数据正确接收、 N表示数据 错误接收、 D表示未收到任何下行控制数据; η(Γη2 表示可用资源; Ν/Α 表示不适用。
26、 根据权利要求 23所述的移动台, 其中, 当响应信号为 2bit时, 所述响应信号的状态与所选资源和调制符号的第三映射关系为:
Figure imgf000041_0001
其中, 在所述第三映射关系中, A表示数据正确接收、 N表示数据错 误接收、 D表示未收到任何下行控制数据; n(Tnl表示可用资源; Ν/Α表 示不适用。
27、 根据权利要求 20所述的移动台, 其中, 所述第一资源选择单元 具体用于, 根据所述响应信号的状态、 利用预置的响应信号的状态与所 选资源和调制符号的映射关系选择传输所述响应信号的上行资源和调制 符号; 其中, 所述所选资源为所述可用资源其中之一;
其中, 在所述映射关系中, 不选择所述响应信号为 N/D对应的资源; 并且属于同一个分量载波的第二个响应信号为 N 时, 不使用所述响应信 号 N对应的资源;
若只在主分量载波上发送下行数据, 则按照 LTE的资源映射方式, 用主分量载波上的物理下行控制信道 PDCCH 的最低的控制信道单元 CCE索引进行映射。
28、 根据权利要求 27所述的移动台, 其中, 当传输下行数据的分量 载波包括 2个分量载波, 所述响应信号为 4bit, 所述响应信号的状态与
Figure imgf000042_0001
10 N A A N nl j
11 N A N A nl ~j
12 N A N/D N/D nO ~j
13 N/D N/D A A n2 -1
14 N/D N/D A N n2 j
15 N/D N/D N A n2 ~j
16 N N N/D N/D nO 1
17 D D N/D N/D N/A N/A 其中, 在所述第四映射关系中, A表示数据正确接收、 N表示数据 错误接收、 D表示未收到任何下行控制数据; η(Γη3表示可用资源 Ν/Α表 示不适用。
29、 根据权利要求 27所述的移动台, 其中, 当传输下行数据的分量 载波包括 3个分量载波, 所述响应信号为 4bit时, 所述响应信号的状态 与所选资源和调制符号的第五映射关系为:
Figure imgf000043_0001
7 A N/D N/D A n3
8 A N/D N/D N/D nO j
9 N/D A A A nl ~j
10 N/D A A N/D nl 1
11 N/D A N/D A nl ~j
12 N A N/D N/D nO ~j
13 N/D N/D A A n2 ~j
14 N/D N/D A N/D n2 1
15 N/D N/D N/D A n3 1
16 N N/D N/D N/D nO 1
17 D D N/D N nl j
18 D D N/D D N/A N/A
, l=P , 在所述第五映射关系中, A表示数据正确接收、 N表示数据错 误接收、 D表示未收到任何下行控制数据; η(Γη3 表示可用资源; Ν/Α 表示不适用。
30、 根据权利要求 27所述的移动台, 其中, 当传输下行数据的分量 载波包括 2个分量载波, 所述响应信号为 3bit时, 所述响应信号的状态 与所选资源和调制符号的第六映射关系为:
Figure imgf000044_0001
5 N A A nl 1
6 N A N/D nO ~j
7 N/D N/D A n2 -1
8 N N D nO 1
9 N/D N/D N n2 1
10 D D D N/A N/A 其中, 在所述第六映射关系中, A表示数据正确接收、 N表示数据错 误接收、 D表示未收到任何下行控制数据; η(Γη2 表示可用资源; Ν/Α 表示不适用。
31、 一种通信系统, 所述通信系统包括:
基站, 所述基站包括权利要求 16至 19的任意一项权利要求所述的 基站;
移动台, 所述移动台包括权利要求 20至 30的任意一项权利要求所 述的移动台。
32、 一种计算机可读程序, 其中当在基站中执行所述程序时, 所述 程序使得计算机在所述基站中执行如权利要求 1-4 中任意一项所述的传 输上行响应信号的方法。
33、 一种存储有计算机可读程序的存储介质, 其中所述计算机可读 程序使得计算机在基站中执行如权利要求 1-4 中任意一项所述的传输上 行响应信号的方法。
34、 一种计算机可读程序, 其中当在移动台中执行所述程序时, 所 述程序使得计算机在所述移动台中执行如权利要求 5-11中任意一项所述 的传输上行响应信号的方法。
35、 一种存储有计算机可读程序的存储介质, 其中所述计算机可读 程序使得计算机在移动台中执行如权利要求 5-15中任意一项所述的传输 上行响应信号的方法。
PCT/CN2010/077150 2010-09-20 2010-09-20 传输上行响应信号的方法、基站、移动台和通信系统 WO2012037716A1 (zh)

Priority Applications (16)

Application Number Priority Date Filing Date Title
CN201710088843.5A CN107070612A (zh) 2010-09-20 2010-09-20 通信系统
EP19166102.4A EP3522657B1 (en) 2010-09-20 2010-09-20 User equipment for transmitting uplink response signals and a base station for use therewith
CN201710088925.XA CN106850158B (zh) 2010-09-20 2010-09-20 移动台
MX2013003242A MX2013003242A (es) 2010-09-20 2010-09-20 Metodo para transmitir señales de respuesta de enlace ascendente, estacion de base, estacion movil y sistema de comunicacion.
PCT/CN2010/077150 WO2012037716A1 (zh) 2010-09-20 2010-09-20 传输上行响应信号的方法、基站、移动台和通信系统
JP2013528491A JP5772960B2 (ja) 2010-09-20 2010-09-20 アップリンク応答信号伝送方法、基地局、移動局及び通信システム
KR1020137010052A KR101470266B1 (ko) 2010-09-20 2010-09-20 상향링크 응답 신호를 전송하는 방법, 기지국, 이동국 및 통신 시스템
BR112013007460A BR112013007460A2 (pt) 2010-09-20 2010-09-20 método para transmissão de sinais de resposta de uplink, estação base, estação móvel e sistema de comunicação
CN201080068507.0A CN103069900B (zh) 2010-09-20 2010-09-20 传输上行响应信号的方法、基站、移动台和通信系统
RU2013118027/07A RU2533200C1 (ru) 2010-09-20 2010-09-20 Способ, базовая станция, мобильная станция и система связи для передачи сигналов ответа восходящей линии связи
ES10857430T ES2742773T3 (es) 2010-09-20 2010-09-20 Método y sistema de comunicación para transmitir señales de respuesta del enlace de subida
EP10857430.2A EP2621233B1 (en) 2010-09-20 2010-09-20 Method and communication system for transmitting uplink response signal
CA2811844A CA2811844A1 (en) 2010-09-20 2010-09-20 Method for transmitting uplink response signals, base station, mobile station and communication system
US13/847,639 US9232508B2 (en) 2010-09-20 2013-03-20 Method for transmitting uplink response signals, base station, mobile station and communication system
US14/942,123 US9538522B2 (en) 2010-09-20 2015-11-16 Method for transmitting uplink response signals, base station, mobile station and communication system
US15/387,169 US9893845B2 (en) 2010-09-20 2016-12-21 Method for transmitting uplink response signals, base station, mobile station and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/077150 WO2012037716A1 (zh) 2010-09-20 2010-09-20 传输上行响应信号的方法、基站、移动台和通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/847,639 Continuation US9232508B2 (en) 2010-09-20 2013-03-20 Method for transmitting uplink response signals, base station, mobile station and communication system

Publications (1)

Publication Number Publication Date
WO2012037716A1 true WO2012037716A1 (zh) 2012-03-29

Family

ID=45873377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077150 WO2012037716A1 (zh) 2010-09-20 2010-09-20 传输上行响应信号的方法、基站、移动台和通信系统

Country Status (11)

Country Link
US (3) US9232508B2 (zh)
EP (2) EP3522657B1 (zh)
JP (1) JP5772960B2 (zh)
KR (1) KR101470266B1 (zh)
CN (3) CN103069900B (zh)
BR (1) BR112013007460A2 (zh)
CA (1) CA2811844A1 (zh)
ES (1) ES2742773T3 (zh)
MX (1) MX2013003242A (zh)
RU (1) RU2533200C1 (zh)
WO (1) WO2012037716A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046502A1 (ko) * 2012-09-21 2014-03-27 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호를 송수신하는 방법 및 이를 위한 장치

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102066278B1 (ko) 2011-11-07 2020-01-15 애플 인크. 참조신호 전송 방법과 장치, 및 그를 이용한 채널 추정 방법 및 장치
KR101792167B1 (ko) 2014-01-29 2017-10-31 후아웨이 테크놀러지 컴퍼니 리미티드 데이터 전송 방법, 장치 및 시스템
CN104170306B (zh) 2014-01-29 2017-06-20 华为技术有限公司 一种数据传输方法、设备和系统
CN105099634B (zh) * 2014-05-09 2019-05-07 中兴通讯股份有限公司 动态资源的分配方法及装置、基站、终端
WO2018070095A1 (ja) * 2016-10-13 2018-04-19 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN110546971B (zh) * 2019-07-17 2023-10-10 北京小米移动软件有限公司 信息指示、确定方法及装置、通信设备及存储介质
US11889502B2 (en) * 2020-02-24 2024-01-30 Qualcomm Incorporated Two-stage feedback procedures

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588226A (zh) 2009-05-22 2009-11-25 中兴通讯股份有限公司 一种大带宽下多载波系统中的终端及应答消息的发送方法
CN101594211A (zh) 2009-06-19 2009-12-02 中兴通讯股份有限公司 大带宽的多载波系统中发送正确/错误应答消息的方法
WO2010050688A2 (en) 2008-10-30 2010-05-06 Lg Electronics Inc. Method of harq acknowledgement transmission and transport block retransmission in a wireless communication system
CN101742672A (zh) * 2008-11-12 2010-06-16 阿尔卡特朗讯 无线电通信的方法及关联的基站、用户终端和通信网络
CN101800991A (zh) * 2009-02-06 2010-08-11 大唐移动通信设备有限公司 一种数据传输方法、系统及装置
CN101808364A (zh) * 2009-02-12 2010-08-18 大唐移动通信设备有限公司 载波聚合系统业务传输方法及设备
WO2010099271A2 (en) * 2009-02-26 2010-09-02 Interdigital Patent Holdings, Inc. Method and apparatus for switching a resource assignment mode for a plurality of component carriers

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2797736B1 (fr) 1999-08-19 2001-10-12 Mitsubishi Electric France Procede de configuration d'un systeme de telecommunications
KR100922950B1 (ko) * 2004-03-05 2009-10-22 삼성전자주식회사 직교주파수분할다중접속 방식을 기반으로 하는 이동통신시스템에서 데이터 프레임 처리 결과 송/수신장치 및 방법
KR100909531B1 (ko) * 2004-12-31 2009-07-27 삼성전자주식회사 멀티캐리어를 사용하는 통신 시스템에서 스케쥴링 장치 및방법
BRPI0812800B1 (pt) * 2007-10-29 2020-11-17 Panasonic Corporation aparelho de comunicação de rádio, método de controle de constelação, aparelho de estação base e método de comunicação de rádio
WO2010050371A1 (ja) * 2008-10-31 2010-05-06 シャープ株式会社 移動通信システム、基地局装置、移動局装置および通信方法
AU2009335014B2 (en) 2008-12-30 2014-02-27 Interdigital Patent Holdings, Inc Control channel feedback for multiple downlink carrier operations
CN101442818B (zh) * 2008-12-31 2012-07-18 中兴通讯股份有限公司 大带宽系统物理上行控制信道的指示方法
CN101465720B (zh) * 2009-01-23 2013-08-21 中兴通讯股份有限公司 一种发送上行harq反馈信息的方法和装置
WO2010104352A2 (en) * 2009-03-11 2010-09-16 Samsung Electronics Co., Ltd. Transmission of acknowledgement signals in a communication system
WO2010114252A2 (en) * 2009-03-29 2010-10-07 Lg Electronics Inc. Method for transmitting control information in wireless communication system and apparatus therefor
WO2010114237A2 (en) * 2009-04-02 2010-10-07 Lg Electronics Inc. Method for transmitting ack/nack signal in wireless communication system applied carrier aggregation and apparatus therefor
CN101588224B (zh) * 2009-05-19 2014-07-02 中兴通讯股份有限公司 一种发送正确/错误应答消息的方法及系统
CN101702644B (zh) * 2009-11-02 2014-08-13 中兴通讯股份有限公司 一种物理混合重传指示信道的传输方法和装置
PT2378828E (pt) * 2010-03-22 2013-08-22 Samsung Electronics Co Ltd Multiplexagem de informação de controlo e de dados proveniente de um equipamento de utilizador num canal de dados físico
US20110235599A1 (en) * 2010-03-29 2011-09-29 Samsung Electronics Co., Ltd. Method and system for uplink acknowledgement signaling in carrier-aggregated wireless communication systems
US20110268001A1 (en) * 2010-05-03 2011-11-03 Lee Jung A Method of providing acknowledgement feedback for aggregated carriers
KR101646513B1 (ko) * 2010-06-16 2016-08-08 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
US8923223B2 (en) * 2010-08-16 2014-12-30 Qualcomm Incorporated Physical uplink control channel resource allocation for multiple component carriers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050688A2 (en) 2008-10-30 2010-05-06 Lg Electronics Inc. Method of harq acknowledgement transmission and transport block retransmission in a wireless communication system
CN101742672A (zh) * 2008-11-12 2010-06-16 阿尔卡特朗讯 无线电通信的方法及关联的基站、用户终端和通信网络
CN101800991A (zh) * 2009-02-06 2010-08-11 大唐移动通信设备有限公司 一种数据传输方法、系统及装置
CN101808364A (zh) * 2009-02-12 2010-08-18 大唐移动通信设备有限公司 载波聚合系统业务传输方法及设备
WO2010099271A2 (en) * 2009-02-26 2010-09-02 Interdigital Patent Holdings, Inc. Method and apparatus for switching a resource assignment mode for a plurality of component carriers
CN101588226A (zh) 2009-05-22 2009-11-25 中兴通讯股份有限公司 一种大带宽下多载波系统中的终端及应答消息的发送方法
CN101594211A (zh) 2009-06-19 2009-12-02 中兴通讯股份有限公司 大带宽的多载波系统中发送正确/错误应答消息的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2621233A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046502A1 (ko) * 2012-09-21 2014-03-27 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호를 송수신하는 방법 및 이를 위한 장치
US9603139B2 (en) 2012-09-21 2017-03-21 Lg Electronics Inc. Method and device for transmitting and receiving downlink signal in wireless communication system

Also Published As

Publication number Publication date
BR112013007460A2 (pt) 2016-07-19
CN107070612A (zh) 2017-08-18
US20130208685A1 (en) 2013-08-15
EP2621233B1 (en) 2019-05-22
US9232508B2 (en) 2016-01-05
US20160081066A1 (en) 2016-03-17
US20170104558A1 (en) 2017-04-13
JP5772960B2 (ja) 2015-09-02
US9538522B2 (en) 2017-01-03
EP3522657B1 (en) 2020-11-18
CN103069900A (zh) 2013-04-24
CN106850158B (zh) 2020-04-10
ES2742773T3 (es) 2020-02-17
KR101470266B1 (ko) 2014-12-05
KR20130056351A (ko) 2013-05-29
EP3522657A1 (en) 2019-08-07
MX2013003242A (es) 2013-09-26
CA2811844A1 (en) 2012-03-29
CN106850158A (zh) 2017-06-13
RU2533200C1 (ru) 2014-11-20
CN103069900B (zh) 2017-03-22
EP2621233A1 (en) 2013-07-31
RU2013118027A (ru) 2014-10-27
EP2621233A4 (en) 2015-12-23
JP2013541892A (ja) 2013-11-14
US9893845B2 (en) 2018-02-13

Similar Documents

Publication Publication Date Title
JP6039769B2 (ja) Tddベースの無線通信システムにおけるharq実行方法及び装置
KR101605843B1 (ko) 스케줄링 요청 자원들을 이용한 다중 요소 반송파 통신 시스템에서의 하이브리드 자동 재전송 요청 피드백 송신
KR101924425B1 (ko) 응답 채널 자원들을 할당하는 방법 및 장치
US9537614B2 (en) Method for sending hybrid automatic repeat request acknowledgement message and user equipment
US9042327B2 (en) Method for transmitting control information and a device therefor
JP5948423B2 (ja) Pucchフォーマット3リソースを用いるack/nackとチャネル状態情報の同時報告
KR101712895B1 (ko) 다운링크 제어 정보 전송 방법 및 장치
WO2017049463A1 (zh) 载波聚合下的上行控制信息传输方法及装置
WO2012144865A2 (ko) 통신 시스템에서 제어신호 송수신 장치 및 방법
WO2012037716A1 (zh) 传输上行响应信号的方法、基站、移动台和通信系统
WO2011085582A1 (zh) 一种多载波系统及其正确/错误应答消息的发送方法
WO2012129952A1 (zh) 一种时分双工系统中应答消息的发送方法及系统
WO2015106554A1 (zh) 资源管理方法、装置及计算机存储介质
WO2012155701A1 (zh) 一种反馈信息的发送方法及终端
JP2013527666A (ja) Mimo通信システムにおける確認応答バンドリング
KR20210158322A (ko) 무선 통신 시스템에서 시간 지연을 표시하는 방법 및 장치
WO2011137822A1 (zh) 下行分配指示的发送方法及装置、应答信息的反馈方法及装置
KR20120123848A (ko) 무선통신 시스템에서 ack/nack 정보 송수신 장치 및 방법
JP6086142B2 (ja) 通信システム
JP6086141B2 (ja) 移動局
JP5825451B1 (ja) アップリンク応答信号伝送方法、基地局、移動局及び通信システム
KR20120097907A (ko) Harq 자원 할당 방법 및 장치와 이를 이용한 신호 전송 방법 및 장치
WO2012097669A1 (zh) 一种上行控制信令的传输方法及终端

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068507.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857430

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013528491

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2811844

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/003242

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2010857430

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137010052

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013118027

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013007460

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013007460

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130320