WO2012036153A1 - Secondary cell - Google Patents
Secondary cell Download PDFInfo
- Publication number
- WO2012036153A1 WO2012036153A1 PCT/JP2011/070852 JP2011070852W WO2012036153A1 WO 2012036153 A1 WO2012036153 A1 WO 2012036153A1 JP 2011070852 W JP2011070852 W JP 2011070852W WO 2012036153 A1 WO2012036153 A1 WO 2012036153A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- secondary battery
- holding member
- electrode
- exterior body
- negative electrode
- Prior art date
Links
- 239000005001 laminate film Substances 0.000 claims abstract description 24
- 239000008151 electrolyte solution Substances 0.000 claims description 27
- 239000011810 insulating material Substances 0.000 claims description 6
- 239000003792 electrolyte Substances 0.000 abstract description 9
- 238000010248 power generation Methods 0.000 description 12
- 238000002347 injection Methods 0.000 description 11
- 239000007924 injection Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 7
- 238000006073 displacement reaction Methods 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- 239000007772 electrode material Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- -1 polypropylene Polymers 0.000 description 4
- 230000003014 reinforcing effect Effects 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- BNOODXBBXFZASF-UHFFFAOYSA-N [Na].[S] Chemical compound [Na].[S] BNOODXBBXFZASF-UHFFFAOYSA-N 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910000652 nickel hydride Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/60—Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
- H01M50/609—Arrangements or processes for filling with liquid, e.g. electrolytes
- H01M50/627—Filling ports
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/172—Arrangements of electric connectors penetrating the casing
- H01M50/174—Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
- H01M50/178—Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0413—Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0436—Small-sized flat cells or batteries for portable equipment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/547—Terminals characterised by the disposition of the terminals on the cells
- H01M50/55—Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/552—Terminals characterised by their shape
- H01M50/553—Terminals adapted for prismatic, pouch or rectangular cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a laminate type secondary battery, and particularly to its mounting.
- a nickel-hydrogen secondary battery or a lithium ion secondary battery tends to be used as a secondary battery mounted on a movable object.
- Secondary batteries mounted on movable objects are required to be lightweight and have high output. For this reason, since it is necessary to reduce the weight as much as possible except for the main components (positive electrode, negative electrode, separator, electrolyte solution, etc.) constituting the battery, a laminate film is used as an exterior body particularly in a lithium ion secondary battery. There is a tendency.
- This laminate film has a three-layer structure of polypropylene / aluminum thin film / nylon.
- the polypropylene part is sealed by heat-sealing so that the electrolyte does not leak outside.
- an aluminum thin film in the film it is possible to prevent moisture from entering from the outside and to suppress denaturation of the electrolytic solution.
- the secondary battery is laminated by packing the constituent members of the secondary battery including the positive electrode, the negative electrode, the separator, the electrolytic solution, and the metal terminal for power extraction connected to each electrode. Is formed.
- a conventional laminate-side secondary battery surrounds the entire periphery of a laminate composed of a positive electrode, a negative electrode, and a separator with a reinforcing frame, and the frame is laminated with a laminate film. It is constituted by covering with.
- a laminate type secondary battery in which the reinforcing frame is not provided is also known. It is advantageous to reduce the size and weight when the reinforcing frame is not provided.
- a positive electrode 52, a separator 53, and a negative electrode 54 are stacked and accommodated in an exterior body 51 made of a laminate film, and an electrolytic solution 56 is accommodated. Further, a positive electrode terminal 57 connected to the positive electrode 52 and a negative electrode terminal 58 connected to the negative electrode 53 protrude from the exterior body 51 to the outside.
- the terminals 57 and 58 will be described unless it is necessary to distinguish between them.
- a seal member 59 is provided at a portion where the terminal 57 and the terminal 58 protrude from the exterior body 51.
- the positive electrode 52, the separator 53, and the negative electrode 54 are sequentially laminated. And the electrode laminated body 55 which welded the electrode which laminated
- heat sealing thermal fusion
- side and it is also possible for three sides simultaneously.
- one side (lower side in FIG. 8) 60 of the opened laminate film is directed upward, and the electrolytic solution 56 is injected therefrom. Then, this is decompressed, the inside air is exhausted, the permeability of the electrolyte solution 56 to the electrode material is increased, and one side of the laminate film opened in the reduced pressure state (ie, side 60) is heat-sealed.
- FIG. 10 is a bottom view as viewed from the opened side 60 side.
- FIG. 11 is a diagram showing a cross-sectional structure of the secondary battery 50 in which two sets of the positive electrode 52 and the negative electrode 54 are stacked.
- the stacked positive electrode 52 and negative electrode 54 have a cantilever structure.
- the electrode 52 and the electrode 54 may be relatively displaced in the in-plane direction as shown in FIG.
- the battery capacity decreases.
- the electrodes 52 and 54 are detached and a scratch mark on the separator 53 is generated, which may cause an internal short circuit.
- An object of the present invention is to provide a laminate type secondary battery having excellent vibration and impact resistance.
- the present invention employs the following means in order to solve the above problems. That is, in the secondary battery of the present invention, the positive electrode, the separator, and the negative electrode are stacked inside the exterior body formed of the laminate film, and the electrolytic solution is accommodated. In the secondary battery in which the terminal protrudes from the exterior body, each of the stacked electrodes and the separator is provided with a columnar holding member between both sides where the terminal does not exist and the exterior body. To do.
- the columnar holding members are installed between the both sides of the positive electrode and the negative electrode and the exterior body, displacement of the positive electrode and the negative electrode is prevented. Vibration resistance performance can be improved.
- FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is the bottom view which looked at the secondary battery of 1st Embodiment before electrolyte solution injection
- FIG. 9 is a sectional view taken along line BB in FIG. It is the bottom view which looked at the conventional secondary battery before electrolyte solution injection
- the secondary battery 1 includes a rectangular bag-shaped outer package 2 made of a laminate film, and an electrode stack 6 in which a positive electrode 3, a separator 4, and a negative electrode 5 are stacked inside the outer package 2, and an electrode Two holding members 7 arranged on the left and right sides of the laminate 6 and the electrolyte 8 are accommodated.
- the electrode 3 and the electrode 5 are connected to a terminal 9 and a terminal 10 for extracting electric power to the outside, respectively.
- a positive electrode terminal 9 is connected to the positive electrode 3, and a negative electrode terminal 10 is connected to the negative electrode 5.
- the terminals 9 and 10 are referred to unless specifically distinguished. These terminals 9 and 10 protrude outward from the side 2a of the exterior body 2.
- the positive electrode terminal 9 and the negative electrode terminal 10 are spaced apart from each other on the one side 2 a of the exterior body 2. Then, the four sides 2a, 2b, 2c and 2d of the outer peripheral portion of the exterior body 2 are joined and sealed, and a seal member 11 is provided at a portion where the terminals 9 and 10 protrude from the exterior body 2.
- the laminate film constituting the exterior body 2 is shown as a single layer, but in actuality, it is composed of three layers of polypropylene / aluminum thin film / nylon.
- the exterior body 2 is sealed so that the electrolyte solution 8 does not leak to the outside by heat-sealing the polypropylene portion of the innermost layer.
- the aluminum thin film prevents moisture from entering from the outside and suppresses denaturation of the electrolyte solution 8.
- One holding member 7 is provided between the left side of the electrode laminate 6 and the inner surface of the left side 2b of the outer package 2, and between the right side of the electrode laminate 6 and the inner surface of the right side 2c of the outer package 2. It is arranged one by one. As shown in FIGS. 3 and 4, the holding member 7 has a triangular prism shape, and one of the three side surfaces 7 a, 7 b, and 7 c of the holding member 7 is the left side or the right side of the electrode stack 6. The remaining two side surfaces 7b and 7c are disposed along the inner surface of the exterior body 2 that is continuous with the left side 2b or the right side 2c.
- the holding member 7 is formed of an insulating material, or at least the side surface 7a is covered with an insulating material. Of course, the entire surface of the holding member 7 may be covered with an insulating material.
- the holding member 7 has such a length that its upper and lower ends slightly protrude upward and downward from the electrode laminate 6.
- the secondary battery 1 is manufactured as follows. First, the electrode stack 6 is formed by sequentially stacking the positive electrode 3 including the positive electrode terminal 9, the separator 4, and the negative electrode 5 including the negative electrode terminal 10. At this time, by accurately positioning each component, it is possible to prevent variations in battery capacity and assembly failure (internal short circuit or seal failure). Then, the holding member 7 is placed in contact with both side portions of the electrode laminate 6. After that, on both the front and back sides, a laminate film, which is a material of the exterior body 2, is positioned with a jig or the like, and placed on the side 2a, the left side 2b, and the right side 2c on the side where the terminals 9 and 10 protrude in the laminate film.
- heat sealing heat fusion
- the side 2d side opened in the laminate film is positioned upward, and the electrolytic solution 8 is injected from the opening. Thereafter, the pressure was reduced and the air inside was removed, the permeability of the electrolyte solution 8 to the electrode material was increased, and the side 2d opened in a reduced pressure state was thermally fused, thereby applying pressure in the laminate film. In this state, the secondary battery 1 is completed.
- the electrode laminate 6 is also applied when a lateral external force is applied to the terminals 9 and 10 when the terminals 9 and 10 are connected to an external electric circuit. Since the holding member 7 is installed on both the left and right sides of the first electrode 3 and the holding member 7 is in contact with the side surfaces of the positive electrode 3 and the negative electrode 5, the displacement of the positive electrode 3 and the negative electrode 5 can be prevented. Therefore, the relative displacement between the electrode 3 and the electrode 5 of the electrode stack 6 can be significantly suppressed against vibration shock, and vibration shock resistance is improved. As a result, it is possible to reliably prevent a decrease in battery capacity, electrode detachment, and internal short circuit that have conventionally occurred due to electrode displacement.
- the reliability of the secondary battery 1 when the secondary battery 1 is mounted on a movable object is improved.
- the cross-sectional shape of the holding member 7 is a triangle, the stress applied to the laminate film can be reduced, and the life of the secondary battery 1 can be extended.
- the relative movement of the holding member 7 can be suppressed by adding the connecting member 12 that connects the lower ends of the left and right holding members 7, and further the vibration resistance performance is improved. It becomes possible to make it.
- the secondary battery 1 of the second embodiment is different from the secondary battery 1 of the first embodiment described above in the structure of the holding member 7, and the other points are the secondary battery of the first embodiment. Same as battery 1. Therefore, about the whole structure, drawing of FIGS. 1-3 is used, and description is abbreviate
- FIG. 6 is an external perspective view of the holding member 7 in the secondary battery 1 of the second embodiment, and corresponds to FIG. 4 in the first embodiment.
- the holding member 7 is hollow inside.
- One end 13 in the longitudinal direction of the holding member 7 is closed, and the other end 14 is open.
- One closed end portion (hereinafter referred to as a closed end portion) 13 of the holding member 7 is disposed on the side 2 a side in the exterior body 2.
- the other open end (hereinafter referred to as an open end) 14 is arranged on the side 2d side in the exterior body 2. That is, it arrange
- a plurality of circular holes 15 are provided on the side surface 7a of the holding member 7 that contacts the side portion of the electrode laminate 6 at predetermined intervals on a straight line in the longitudinal direction, and are continuous with the internal cavity.
- the holding member 7 is also formed of an insulating member, or at least the side surface 7a is covered with an insulating material.
- the holding member 7 has a function as an injection tube when injecting the electrolytic solution 8 in addition to the function of preventing the displacement of the electrodes 3 and 5.
- the laminate as the material of the exterior body 2 is formed on both the front and back sides.
- the film is positioned by positioning with a jig or the like. Further, after heat sealing is performed on the side 2a, the left side 2b, and the right side 2c on the side where the terminal 9 and the end portion 10 protrude in the laminated film, the side 2d side opened in the laminated film is positioned upward.
- the steps so far are the same as the manufacturing steps in the first embodiment.
- the electrolyte solution 8 is injected, it is not injected from the opening of the side 2d of the laminate film as in the case of the first embodiment, but inside the holding member 7 from the opening end portions 14 of both holding members 7.
- the electrolytic solution 8 is injected into.
- the electrolytic solution 8 injected into the holding member 7 is discharged from the hole 15 of the holding member 7 into the laminate film.
- the electrolytic solution 8 is injected from both side surfaces of the electrode laminate 6.
- the electrolyte solution 8 can be improved in permeability to the electrode material by injecting the electrolyte solution 8 from one holding member 7 and exhausting air from the other holding member 7. It is possible to shorten the time of the injection process. However, in this case, an injection pipe (not shown) connected to one holding member 7 and an exhaust pipe (not shown) connected to the other holding member 7 are projected from the opening of the side 2d of the laminate film and opened. Close the mouth. As described above, since the time of the electrolyte injection process can be shortened, the productivity is improved, the yield is improved, and as a result, the cost can be reduced.
- FIG. 7 shows a mode in which a movable body 20 that is movable relative to the holding member 7 in the longitudinal direction is provided on the side surface 7 a of the holding member 7 having the holes 15.
- the movable body 20 has a size capable of closing all the holes 15, and when the movable body 20 is slid from the position shown in FIG. 7 to the opening end 14 side of the holding member 7, the closed end of the holding member 7.
- the holes can be sequentially opened from the hole 15 on the side close to the portion 13. That is, the hole 15 can be opened and closed by sliding the movable body 20, whereby the injection position of the electrolytic solution 8 can be changed. Then, by appropriately selecting the injection position, the electrolyte solution 8 can be efficiently infiltrated into the electrode material, and further, the air can be efficiently discharged, so that the time of the electrolyte injection process As a result, the cost can be reduced.
- the present invention has been described with reference to the above embodiment, the present invention is not limited to the configuration of the above embodiment, and various modifications that can be made by those skilled in the art within the scope of the present invention. Of course, including modifications.
- the secondary battery including one positive electrode 3 and one negative electrode 5 has been described, but the present invention is applied to a secondary battery in which a number of positive electrodes, separators, and negative electrodes are stacked as shown in FIG.
- the invention can also be applied.
- the present invention can be applied to a secondary battery in which the positive electrode terminal drawing direction and the negative electrode terminal drawing direction are opposite to each other as shown in FIG.
- the holding member 7 may have a substantially triangular cross-sectional shape.
- the corners of the triangle may be rounded with a rounded shape, or the side surface 7b and the side surface 7c may be formed with curved surfaces that curve outward.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Filling, Topping-Up Batteries (AREA)
- Secondary Cells (AREA)
- Cell Separators (AREA)
Abstract
In the disclosed secondary cell, a casing formed from a laminate film houses an electrolyte and a laminate comprising a positive electrode, a separator and a negative electrode. Terminals connected to each electrode protrude from the casing for extracting power to the outside. Columnar holding members are provided between the casing and both sides of the laminated electrodes and separator on both sides where there are no terminals.
Description
本発明は、ラミネート型の二次電池、特にその実装に関するものである。
The present invention relates to a laminate type secondary battery, and particularly to its mounting.
近年、地球温暖化の要因となっている二酸化炭素排出量を削減する方策の一つとして、環境発電(太陽光、風力、地熱、潮汐等)が注目されている。これらの発電方式は、石油、原子力発電等に比べれば未だコスト高であるが、安全、クリーンという点で優れているので、今後積極的に導入される方向にある。また、スマートグリッド等に代表される電力エネルギー生成/蓄積のネットワーク化が進められ、社会全体で電力消費抑制と効率的な利用方法が確立されれば、電気自動車等の導入も容易となる。これにより、更に二酸化炭素排出量が削減され、環境に優しい社会の出現が期待されている。
In recent years, environmental power generation (solar power, wind power, geothermal heat, tide, etc.) has attracted attention as one of the measures to reduce carbon dioxide emissions, which are a cause of global warming. These power generation methods are still more expensive than oil and nuclear power generation, but are excellent in terms of safety and cleanliness. In addition, if electric power energy generation / storage networks such as smart grids are networked, and electric power consumption control and efficient usage methods are established throughout society, it will be easy to introduce electric vehicles and the like. As a result, carbon dioxide emissions are further reduced, and the emergence of an environmentally friendly society is expected.
但し、環境発電方式は、発電量が自然環境の変化に応じて変動するため、単独で安定な電力供給を行なうことは不可能に近い。特に太陽光発電は夜に発電することはできず、昼においても雲によって太陽光が遮られた場合には著しく発電量が低下する。
そのような発電量変動を抑制する手段として、発電量の変動分を単純に熱として廃棄することや、発電量の変動分を揚水(水力発電用に平地から水を持ち上げる)用の電力源として用いることが検討されている。最近では大規模な二次電池を使って発電量の変動分を充電することも増えている。このような用途の二次電池には、信頼性と低コストが優先して要求されることから鉛蓄電池やナトリウム・イオウ電池が用いられることが多い。しかし、比較的小規模な発電システム(個人向けソーラー発電等)では、システム全体として可能な限り小型化が要求されるので、ニッケル水素二次電池やリチウムイオン二次電池が使用されることが多くなっている。 However, in the energy harvesting method, since the amount of power generation varies according to changes in the natural environment, it is almost impossible to provide a stable power supply alone. In particular, solar power generation cannot generate power at night, and when sunlight is blocked by clouds even in the daytime, the amount of power generation is significantly reduced.
As a means to suppress such fluctuations in the amount of power generation, simply discard the fluctuations in the amount of power generation as heat, or use the fluctuations in the amount of power generation as a power source for pumping up water (lifting water from the ground for hydropower generation). Use is under consideration. Recently, a large-scale secondary battery is used to charge the fluctuations in the amount of power generation. For secondary batteries for such applications, lead storage batteries and sodium-sulfur batteries are often used because reliability and low cost are required preferentially. However, relatively small power generation systems (such as solar power generation for personal use) require miniaturization as much as possible as a whole system, so nickel hydride secondary batteries and lithium ion secondary batteries are often used. It has become.
そのような発電量変動を抑制する手段として、発電量の変動分を単純に熱として廃棄することや、発電量の変動分を揚水(水力発電用に平地から水を持ち上げる)用の電力源として用いることが検討されている。最近では大規模な二次電池を使って発電量の変動分を充電することも増えている。このような用途の二次電池には、信頼性と低コストが優先して要求されることから鉛蓄電池やナトリウム・イオウ電池が用いられることが多い。しかし、比較的小規模な発電システム(個人向けソーラー発電等)では、システム全体として可能な限り小型化が要求されるので、ニッケル水素二次電池やリチウムイオン二次電池が使用されることが多くなっている。 However, in the energy harvesting method, since the amount of power generation varies according to changes in the natural environment, it is almost impossible to provide a stable power supply alone. In particular, solar power generation cannot generate power at night, and when sunlight is blocked by clouds even in the daytime, the amount of power generation is significantly reduced.
As a means to suppress such fluctuations in the amount of power generation, simply discard the fluctuations in the amount of power generation as heat, or use the fluctuations in the amount of power generation as a power source for pumping up water (lifting water from the ground for hydropower generation). Use is under consideration. Recently, a large-scale secondary battery is used to charge the fluctuations in the amount of power generation. For secondary batteries for such applications, lead storage batteries and sodium-sulfur batteries are often used because reliability and low cost are required preferentially. However, relatively small power generation systems (such as solar power generation for personal use) require miniaturization as much as possible as a whole system, so nickel hydride secondary batteries and lithium ion secondary batteries are often used. It has become.
一方、電気自動車やロボット等の可動物体に搭載される二次電池においては、電気容量が大きいこととともに軽量であることが重要な要素である。このため、可動物体に搭載される二次電池として、ニッケル水素二次電池やリチウムイオン二次電池が使用される傾向にある。
可動物体に搭載される二次電池は軽量、高出力が求められる。このため、電池を構成する主要部品(正極、負極、セパレータ、電解液等)以外を可能な限り軽量化する必要があるので、特にリチウムイオン二次電池における外装体として、ラミネートフィルムが使用される傾向にある。このラミネートフィルムは、ポリプロピレン/アルミニウム薄膜/ナイロンという三層構造を持っている。ポリプロピレン部分が熱融着されることによってシールされ、電解液が外部へ漏れない構造となっている。また、フィルム内にアルミニウム薄膜を設けることによって外部からの水分の浸入を防止し、電解液の変性を抑制することが出来る。このように、ラミネートフィルムを用いて、正極、負極、セパレータ、電解液、および各電極に接続された電力取出し用の金属端子からなる二次電池の構成部材をパッキングすることによってラミネート型二次電池が形成される。 On the other hand, in a secondary battery mounted on a movable object such as an electric vehicle or a robot, it is an important factor that the electric capacity is large and the weight is light. For this reason, a nickel-hydrogen secondary battery or a lithium ion secondary battery tends to be used as a secondary battery mounted on a movable object.
Secondary batteries mounted on movable objects are required to be lightweight and have high output. For this reason, since it is necessary to reduce the weight as much as possible except for the main components (positive electrode, negative electrode, separator, electrolyte solution, etc.) constituting the battery, a laminate film is used as an exterior body particularly in a lithium ion secondary battery. There is a tendency. This laminate film has a three-layer structure of polypropylene / aluminum thin film / nylon. The polypropylene part is sealed by heat-sealing so that the electrolyte does not leak outside. In addition, by providing an aluminum thin film in the film, it is possible to prevent moisture from entering from the outside and to suppress denaturation of the electrolytic solution. Thus, by using the laminate film, the secondary battery is laminated by packing the constituent members of the secondary battery including the positive electrode, the negative electrode, the separator, the electrolytic solution, and the metal terminal for power extraction connected to each electrode. Is formed.
可動物体に搭載される二次電池は軽量、高出力が求められる。このため、電池を構成する主要部品(正極、負極、セパレータ、電解液等)以外を可能な限り軽量化する必要があるので、特にリチウムイオン二次電池における外装体として、ラミネートフィルムが使用される傾向にある。このラミネートフィルムは、ポリプロピレン/アルミニウム薄膜/ナイロンという三層構造を持っている。ポリプロピレン部分が熱融着されることによってシールされ、電解液が外部へ漏れない構造となっている。また、フィルム内にアルミニウム薄膜を設けることによって外部からの水分の浸入を防止し、電解液の変性を抑制することが出来る。このように、ラミネートフィルムを用いて、正極、負極、セパレータ、電解液、および各電極に接続された電力取出し用の金属端子からなる二次電池の構成部材をパッキングすることによってラミネート型二次電池が形成される。 On the other hand, in a secondary battery mounted on a movable object such as an electric vehicle or a robot, it is an important factor that the electric capacity is large and the weight is light. For this reason, a nickel-hydrogen secondary battery or a lithium ion secondary battery tends to be used as a secondary battery mounted on a movable object.
Secondary batteries mounted on movable objects are required to be lightweight and have high output. For this reason, since it is necessary to reduce the weight as much as possible except for the main components (positive electrode, negative electrode, separator, electrolyte solution, etc.) constituting the battery, a laminate film is used as an exterior body particularly in a lithium ion secondary battery. There is a tendency. This laminate film has a three-layer structure of polypropylene / aluminum thin film / nylon. The polypropylene part is sealed by heat-sealing so that the electrolyte does not leak outside. In addition, by providing an aluminum thin film in the film, it is possible to prevent moisture from entering from the outside and to suppress denaturation of the electrolytic solution. Thus, by using the laminate film, the secondary battery is laminated by packing the constituent members of the secondary battery including the positive electrode, the negative electrode, the separator, the electrolytic solution, and the metal terminal for power extraction connected to each electrode. Is formed.
従来のラミネート側二次電池は、例えば、特許文献1に開示されているように、正極、負極、セパレータからなる積層体の全周囲を補強用の枠体で包囲し、この枠体をラミネートフィルムで被覆して構成されている。
また、特許文献2に開示されているように、前記補強用の枠体を設けないラミネート型二次電池も知られている。補強用の枠体を設けない方が小型軽量化に有利である。 For example, as disclosed inPatent Document 1, a conventional laminate-side secondary battery surrounds the entire periphery of a laminate composed of a positive electrode, a negative electrode, and a separator with a reinforcing frame, and the frame is laminated with a laminate film. It is constituted by covering with.
Further, as disclosed inPatent Document 2, a laminate type secondary battery in which the reinforcing frame is not provided is also known. It is advantageous to reduce the size and weight when the reinforcing frame is not provided.
また、特許文献2に開示されているように、前記補強用の枠体を設けないラミネート型二次電池も知られている。補強用の枠体を設けない方が小型軽量化に有利である。 For example, as disclosed in
Further, as disclosed in
補強用の枠体を設けない従来のラミネート型二次電池の構造を、図8と図9を参照して説明する。二次電池50は、ラミネートフィルムで構成された外装体51の内部に、正極52と、セパレータ53と、負極54が積層されて収容されるとともに、電解液56が収容されている。また、正極52に接続された正極端子57と、負極53に接続された負極端子58が外装体51から外部に突出している。以下、特に区別する必要がない場合には端子57,58と記載する。端子57および端子58が外装体51から突出する部分にはシール部材59が設けられている。
The structure of a conventional laminated secondary battery without a reinforcing frame will be described with reference to FIGS. In the secondary battery 50, a positive electrode 52, a separator 53, and a negative electrode 54 are stacked and accommodated in an exterior body 51 made of a laminate film, and an electrolytic solution 56 is accommodated. Further, a positive electrode terminal 57 connected to the positive electrode 52 and a negative electrode terminal 58 connected to the negative electrode 53 protrude from the exterior body 51 to the outside. Hereinafter, the terminals 57 and 58 will be described unless it is necessary to distinguish between them. A seal member 59 is provided at a portion where the terminal 57 and the terminal 58 protrude from the exterior body 51.
実際の二次電池50の製造工程は、まず、正極52、セパレータ53および負極54を順次積層する。そして、正極52および負極54を各々積層した電極と端子57および端子58を溶接した電極積層体55を形成する。各部品が正確に位置決めされない場合、電池容量のばらつきや、不良発生(内部ショートや、シール不良)の原因となる。その後、電極積層体55の両面にラミネートフィルムを電極積層体55に対して冶具等にて位置決めを行なう。ラミネートフィルムにおいて端子57および58が突出する側の辺61とこの辺61に連なる左右の辺62と63に対して熱シール(熱融着)を実施する。辺におけるシールの順については特に制限はなく、三辺同時でも可能である。その後、開放されているラミネートフィルムの一辺(図8において下側の辺)60を上方にしてここから電解液56を注入する。その後、これを減圧して内部の空気を抜き、電解液56の電極材料への浸透性を高めて、減圧状態で開放されているラミネートフィルムの一辺(すなわち辺60)を熱融着することで、ラミネートフィルム内に圧力が加わった状態で二次電池50が完成する。なお、図10は、開放されている辺60側から見た底面図である。また、図11は、正極52および負極54が二組積層されている二次電池50の断面構造を示した図である。
In the actual manufacturing process of the secondary battery 50, first, the positive electrode 52, the separator 53, and the negative electrode 54 are sequentially laminated. And the electrode laminated body 55 which welded the electrode which laminated | stacked the positive electrode 52 and the negative electrode 54, respectively, and the terminal 57 and the terminal 58 is formed. If each component is not accurately positioned, it may cause variations in battery capacity and occurrence of defects (internal short circuit or seal failure). Thereafter, the laminate film is positioned on both surfaces of the electrode laminate 55 with respect to the electrode laminate 55 with a jig or the like. In the laminate film, heat sealing (thermal fusion) is performed on the side 61 on the side where the terminals 57 and 58 protrude and the left and right sides 62 and 63 connected to the side 61. There is no restriction | limiting in particular about the order of the seal | sticker in a edge | side, and it is also possible for three sides simultaneously. Thereafter, one side (lower side in FIG. 8) 60 of the opened laminate film is directed upward, and the electrolytic solution 56 is injected therefrom. Then, this is decompressed, the inside air is exhausted, the permeability of the electrolyte solution 56 to the electrode material is increased, and one side of the laminate film opened in the reduced pressure state (ie, side 60) is heat-sealed. The secondary battery 50 is completed in a state where pressure is applied to the laminate film. FIG. 10 is a bottom view as viewed from the opened side 60 side. FIG. 11 is a diagram showing a cross-sectional structure of the secondary battery 50 in which two sets of the positive electrode 52 and the negative electrode 54 are stacked.
このように構成された二次電池50において、端子57と端子58を外部の電気回路に接続する場合、内部の積層された正極52および負極54は片持ち構造となっているため、各電極52および電極54に図8において横方向の外力が加わると、図12に示すように電極52および電極54が面内方向に相対的にずれが発生する場合がある。このとき、電極52と電極54間の対向する面積が減少するため、電池容量が減少してしまう。また、さらに外力が加わった場合には、電極52,54の離脱や、セパレータ53へのスクラッチ痕が発生し、内部ショートの虞もある。また、薄い(数百ミクロン)電極52および電極54がラミネートフィルムからなる外装体51と接触する場合が発生し、外装体51が損傷する虞がある。
図13、図14は正極52の端子の引き出し方向と負極54の端子の引き出し方向を反対方向にした構造を示し、この場合には両持ち型になるため横方向の外力に対して強くなるが、やはり、電極52および電極54の相対ずれの可能性は残っている。
本発明の目的は、耐振動衝撃特性に優れたラミネート型の二次電池を提供する。 In thesecondary battery 50 configured as described above, when the terminal 57 and the terminal 58 are connected to an external electric circuit, the stacked positive electrode 52 and negative electrode 54 have a cantilever structure. When a lateral external force is applied to the electrode 54 in FIG. 8, the electrode 52 and the electrode 54 may be relatively displaced in the in-plane direction as shown in FIG. At this time, since the opposing area between the electrode 52 and the electrode 54 decreases, the battery capacity decreases. Further, when an external force is further applied, the electrodes 52 and 54 are detached and a scratch mark on the separator 53 is generated, which may cause an internal short circuit. In addition, there are cases where the thin (several hundred microns) electrode 52 and the electrode 54 come into contact with the outer package 51 made of a laminate film, and the outer package 51 may be damaged.
13 and 14 show a structure in which the lead-out direction of the terminal of thepositive electrode 52 and the lead-out direction of the terminal of the negative electrode 54 are opposite to each other. Again, the possibility of relative displacement of electrode 52 and electrode 54 remains.
An object of the present invention is to provide a laminate type secondary battery having excellent vibration and impact resistance.
図13、図14は正極52の端子の引き出し方向と負極54の端子の引き出し方向を反対方向にした構造を示し、この場合には両持ち型になるため横方向の外力に対して強くなるが、やはり、電極52および電極54の相対ずれの可能性は残っている。
本発明の目的は、耐振動衝撃特性に優れたラミネート型の二次電池を提供する。 In the
13 and 14 show a structure in which the lead-out direction of the terminal of the
An object of the present invention is to provide a laminate type secondary battery having excellent vibration and impact resistance.
本発明は、上記課題を解決するために、以下の手段を採用する。
すなわち、本発明の二次電池は、ラミネートフィルムで形成された外装体の内部に、正極とセパレータと負極が積層されるとともに電解液が収容され、前記各電極に接続され外部へ電力を取り出すための端子が前記外装体から突出している二次電池において、積層された前記各電極およびセパレータにおける前記端子が存在しない両側と前記外装体との間に、それぞれ柱状の保持部材を備えることを特徴とする。 The present invention employs the following means in order to solve the above problems.
That is, in the secondary battery of the present invention, the positive electrode, the separator, and the negative electrode are stacked inside the exterior body formed of the laminate film, and the electrolytic solution is accommodated. In the secondary battery in which the terminal protrudes from the exterior body, each of the stacked electrodes and the separator is provided with a columnar holding member between both sides where the terminal does not exist and the exterior body. To do.
すなわち、本発明の二次電池は、ラミネートフィルムで形成された外装体の内部に、正極とセパレータと負極が積層されるとともに電解液が収容され、前記各電極に接続され外部へ電力を取り出すための端子が前記外装体から突出している二次電池において、積層された前記各電極およびセパレータにおける前記端子が存在しない両側と前記外装体との間に、それぞれ柱状の保持部材を備えることを特徴とする。 The present invention employs the following means in order to solve the above problems.
That is, in the secondary battery of the present invention, the positive electrode, the separator, and the negative electrode are stacked inside the exterior body formed of the laminate film, and the electrolytic solution is accommodated. In the secondary battery in which the terminal protrudes from the exterior body, each of the stacked electrodes and the separator is provided with a columnar holding member between both sides where the terminal does not exist and the exterior body. To do.
本発明によれば、端子に横方向の外力が加わった場合にも、正極および負極の両側と外装体との間に柱状の保持部材が設置されているので、正極と負極の位置ずれを阻止することができ、耐振動衝撃性能が向上する。
According to the present invention, even when a lateral external force is applied to the terminal, since the columnar holding members are installed between the both sides of the positive electrode and the negative electrode and the exterior body, displacement of the positive electrode and the negative electrode is prevented. Vibration resistance performance can be improved.
以下、本発明に係る二次電池の実施形態を図1から図7の図面を参照して説明する。
初めに、本発明に係る二次電池の第1の実施形態を図1から図5の図面を参照して説明する。
二次電池1は、ラミネートフィルムで構成された矩形袋状の外装体2を備え、この外装体2の内部に、正極3とセパレータ4と負極5が積層されてなる電極積層体6と、電極積層体6の左右両側に配置された2つの保持部材7と、電解液8とが収容されている。電極3および電極5には、外部に電力を取り出すための端子9と端子10がそれぞれ接続されている。詳述すると、正極3には正極端子9が接続され、負極5には負極端子10が接続されていている。以下、特に区別する必要がない場合には端子9および端子10という。これら端子9および10は外装体2の一辺2a側から外方に突出している。正極端子9と負極端子10は外装体2の前記一辺2aにおいて左右に離間して配置されている。そして、外装体2の外周部分の四辺2a,2b,2cおよび2dが接合されてシールされ、さらに、端子9および10が外装体2から突出する部分にはシール部材11が設けられている。 Hereinafter, embodiments of a secondary battery according to the present invention will be described with reference to FIGS. 1 to 7.
First, a first embodiment of a secondary battery according to the present invention will be described with reference to FIGS. 1 to 5.
Thesecondary battery 1 includes a rectangular bag-shaped outer package 2 made of a laminate film, and an electrode stack 6 in which a positive electrode 3, a separator 4, and a negative electrode 5 are stacked inside the outer package 2, and an electrode Two holding members 7 arranged on the left and right sides of the laminate 6 and the electrolyte 8 are accommodated. The electrode 3 and the electrode 5 are connected to a terminal 9 and a terminal 10 for extracting electric power to the outside, respectively. More specifically, a positive electrode terminal 9 is connected to the positive electrode 3, and a negative electrode terminal 10 is connected to the negative electrode 5. Hereinafter, the terminals 9 and 10 are referred to unless specifically distinguished. These terminals 9 and 10 protrude outward from the side 2a of the exterior body 2. The positive electrode terminal 9 and the negative electrode terminal 10 are spaced apart from each other on the one side 2 a of the exterior body 2. Then, the four sides 2a, 2b, 2c and 2d of the outer peripheral portion of the exterior body 2 are joined and sealed, and a seal member 11 is provided at a portion where the terminals 9 and 10 protrude from the exterior body 2.
初めに、本発明に係る二次電池の第1の実施形態を図1から図5の図面を参照して説明する。
二次電池1は、ラミネートフィルムで構成された矩形袋状の外装体2を備え、この外装体2の内部に、正極3とセパレータ4と負極5が積層されてなる電極積層体6と、電極積層体6の左右両側に配置された2つの保持部材7と、電解液8とが収容されている。電極3および電極5には、外部に電力を取り出すための端子9と端子10がそれぞれ接続されている。詳述すると、正極3には正極端子9が接続され、負極5には負極端子10が接続されていている。以下、特に区別する必要がない場合には端子9および端子10という。これら端子9および10は外装体2の一辺2a側から外方に突出している。正極端子9と負極端子10は外装体2の前記一辺2aにおいて左右に離間して配置されている。そして、外装体2の外周部分の四辺2a,2b,2cおよび2dが接合されてシールされ、さらに、端子9および10が外装体2から突出する部分にはシール部材11が設けられている。 Hereinafter, embodiments of a secondary battery according to the present invention will be described with reference to FIGS. 1 to 7.
First, a first embodiment of a secondary battery according to the present invention will be described with reference to FIGS. 1 to 5.
The
なお、図2では図示の都合上、外装体2を構成するラミネートフィルムを一層で表しているが、実際には、ポリプロピレン/アルミニウム薄膜/ナイロンの三層で構成されている。そして、外装体2は、一番内側層のポリプロピレン部分が熱融着されることによって電解液8が外部へ漏れないようにシールされている。アルミニウム薄膜は外部からの水分の浸入を防止し、電解液8の変性を抑制する。
In FIG. 2, for convenience of illustration, the laminate film constituting the exterior body 2 is shown as a single layer, but in actuality, it is composed of three layers of polypropylene / aluminum thin film / nylon. The exterior body 2 is sealed so that the electrolyte solution 8 does not leak to the outside by heat-sealing the polypropylene portion of the innermost layer. The aluminum thin film prevents moisture from entering from the outside and suppresses denaturation of the electrolyte solution 8.
保持部材7は、電極積層体6の左側部と外装体2の左辺2bの内面との間、および電極積層体6の右側部と外装体2の右辺2cの内面との間に、それぞれ1つずつ配置されている。
図3および図4に示すように、保持部材7は三角柱状をなし、保持部材7の3つの側面7a,側面7bおよび側面7cのうちの1つの側面7aは電極積層体6の左側部あるいは右側部に当接しており、残る2つの側面7bと側面7cが外装体2において左辺2bあるいは右辺2cに連なる内面に沿って配置されている。つまり、正極3と負極5の左右両側面は、左右の保持部材7の側面7aに接している。このように保持部材7はその側面7aが正極3と負極5に接触しているので、少なくとも側面7aには絶縁性が必要である。そのため、保持部材7は絶縁材料で形成するか、または、少なくとも側面7aを絶縁性材料により被覆する。なお、保持部材7の全表面を絶縁性材料により被覆してもよいことは勿論である。保持部材7はその上下端が電極積層体6よりも上下に若干突き出る程度の長さとなっている。 One holdingmember 7 is provided between the left side of the electrode laminate 6 and the inner surface of the left side 2b of the outer package 2, and between the right side of the electrode laminate 6 and the inner surface of the right side 2c of the outer package 2. It is arranged one by one.
As shown in FIGS. 3 and 4, the holdingmember 7 has a triangular prism shape, and one of the three side surfaces 7 a, 7 b, and 7 c of the holding member 7 is the left side or the right side of the electrode stack 6. The remaining two side surfaces 7b and 7c are disposed along the inner surface of the exterior body 2 that is continuous with the left side 2b or the right side 2c. That is, the left and right side surfaces of the positive electrode 3 and the negative electrode 5 are in contact with the side surfaces 7 a of the left and right holding members 7. Thus, since the side surface 7a of the holding member 7 is in contact with the positive electrode 3 and the negative electrode 5, at least the side surface 7a needs to be insulative. Therefore, the holding member 7 is formed of an insulating material, or at least the side surface 7a is covered with an insulating material. Of course, the entire surface of the holding member 7 may be covered with an insulating material. The holding member 7 has such a length that its upper and lower ends slightly protrude upward and downward from the electrode laminate 6.
図3および図4に示すように、保持部材7は三角柱状をなし、保持部材7の3つの側面7a,側面7bおよび側面7cのうちの1つの側面7aは電極積層体6の左側部あるいは右側部に当接しており、残る2つの側面7bと側面7cが外装体2において左辺2bあるいは右辺2cに連なる内面に沿って配置されている。つまり、正極3と負極5の左右両側面は、左右の保持部材7の側面7aに接している。このように保持部材7はその側面7aが正極3と負極5に接触しているので、少なくとも側面7aには絶縁性が必要である。そのため、保持部材7は絶縁材料で形成するか、または、少なくとも側面7aを絶縁性材料により被覆する。なお、保持部材7の全表面を絶縁性材料により被覆してもよいことは勿論である。保持部材7はその上下端が電極積層体6よりも上下に若干突き出る程度の長さとなっている。 One holding
As shown in FIGS. 3 and 4, the holding
この二次電池1は次のようにして製造する。まず、正極端子9を備えた正極3、セパレータ4、負極端子10を備えた負極5を順次積層して、電極積層体6を形成する。このとき、各部品を正確に位置決めすることにより、電池容量のばらつきや、組み付け不良(内部ショートや、シール不良)が発生しないようにする。そして、電極積層体6の両側部に保持部材7を当接させて設置する。その後、これらの表裏両側に、外装体2の素材であるラミネートフィルムを冶具等にて位置決めを行なって配置し、ラミネートフィルムにおいて端子9および10が突出する側の辺2aと左辺2bと右辺2cに対して熱シール(熱融着)を実施する。それら3辺のシール順については特に制限はなく、三辺同時でも可能である。その後、ラミネートフィルムにおいて開放されている辺2d側を上方に位置させ、この開放口から電解液8を注入する。その後、減圧して内部の空気を抜き、電解液8の電極材料への浸透性を高めて、減圧状態で開放されている辺2dを熱融着することで、ラミネートフィルム内に圧力が加わった状態で二次電池1が完成する。
The secondary battery 1 is manufactured as follows. First, the electrode stack 6 is formed by sequentially stacking the positive electrode 3 including the positive electrode terminal 9, the separator 4, and the negative electrode 5 including the negative electrode terminal 10. At this time, by accurately positioning each component, it is possible to prevent variations in battery capacity and assembly failure (internal short circuit or seal failure). Then, the holding member 7 is placed in contact with both side portions of the electrode laminate 6. After that, on both the front and back sides, a laminate film, which is a material of the exterior body 2, is positioned with a jig or the like, and placed on the side 2a, the left side 2b, and the right side 2c on the side where the terminals 9 and 10 protrude in the laminate film. On the other hand, heat sealing (heat fusion) is performed. There is no particular limitation on the order of sealing these three sides, and it is possible to use three sides simultaneously. Then, the side 2d side opened in the laminate film is positioned upward, and the electrolytic solution 8 is injected from the opening. Thereafter, the pressure was reduced and the air inside was removed, the permeability of the electrolyte solution 8 to the electrode material was increased, and the side 2d opened in a reduced pressure state was thermally fused, thereby applying pressure in the laminate film. In this state, the secondary battery 1 is completed.
このように構成された二次電池1においては、端子9および端子10を外部の電気回路に接続するときなどに端子9と端子10に横方向の外力が加わった場合にも、電極積層体6の左右両側に保持部材7が設置されていて、保持部材7が正極3および負極5の側面に接しているので、正極3と負極5の位置ずれを阻止することができる。したがって、振動衝撃に対して電極積層体6の電極3と電極5の相対的なずれを大幅に抑制することが可能となり、耐振動衝撃性能が向上する。その結果、従来、電極ずれに起因して生じる電池容量の低下や、電極離脱や、内部ショートを、確実に防止することができる。
また、この二次電池1を可動物体(例えば車両)に搭載するときの二次電池1の信頼性が向上する。
また、保持部材7の断面形状が三角形であるので、ラミネートフィルムに加わる応力を減少させることが可能となり、二次電池1の寿命を延ばすことが可能となる。 In thesecondary battery 1 configured as described above, the electrode laminate 6 is also applied when a lateral external force is applied to the terminals 9 and 10 when the terminals 9 and 10 are connected to an external electric circuit. Since the holding member 7 is installed on both the left and right sides of the first electrode 3 and the holding member 7 is in contact with the side surfaces of the positive electrode 3 and the negative electrode 5, the displacement of the positive electrode 3 and the negative electrode 5 can be prevented. Therefore, the relative displacement between the electrode 3 and the electrode 5 of the electrode stack 6 can be significantly suppressed against vibration shock, and vibration shock resistance is improved. As a result, it is possible to reliably prevent a decrease in battery capacity, electrode detachment, and internal short circuit that have conventionally occurred due to electrode displacement.
Further, the reliability of thesecondary battery 1 when the secondary battery 1 is mounted on a movable object (for example, a vehicle) is improved.
Moreover, since the cross-sectional shape of the holdingmember 7 is a triangle, the stress applied to the laminate film can be reduced, and the life of the secondary battery 1 can be extended.
また、この二次電池1を可動物体(例えば車両)に搭載するときの二次電池1の信頼性が向上する。
また、保持部材7の断面形状が三角形であるので、ラミネートフィルムに加わる応力を減少させることが可能となり、二次電池1の寿命を延ばすことが可能となる。 In the
Further, the reliability of the
Moreover, since the cross-sectional shape of the holding
なお、図5に示すように、左右の保持部材7の下端同士を連結する連結部材12を加えることによって、保持部材7の相対的な移動を抑制することができ、更に耐振動衝撃性能を向上させることが可能となる。
In addition, as shown in FIG. 5, the relative movement of the holding member 7 can be suppressed by adding the connecting member 12 that connects the lower ends of the left and right holding members 7, and further the vibration resistance performance is improved. It becomes possible to make it.
次に、本発明に係る二次電池の第2の実施形態を図6と図7を参照して説明する。
第2の実施形態の二次電池1が前述した第1の実施形態の二次電池1と相違する点は、保持部材7の構造にあり、その他の点については第1の実施形態の二次電池1と同じである。したがって、全体構成については図1から図3の図面を援用して、説明を省略する。 Next, a second embodiment of the secondary battery according to the present invention will be described with reference to FIGS.
Thesecondary battery 1 of the second embodiment is different from the secondary battery 1 of the first embodiment described above in the structure of the holding member 7, and the other points are the secondary battery of the first embodiment. Same as battery 1. Therefore, about the whole structure, drawing of FIGS. 1-3 is used, and description is abbreviate | omitted.
第2の実施形態の二次電池1が前述した第1の実施形態の二次電池1と相違する点は、保持部材7の構造にあり、その他の点については第1の実施形態の二次電池1と同じである。したがって、全体構成については図1から図3の図面を援用して、説明を省略する。 Next, a second embodiment of the secondary battery according to the present invention will be described with reference to FIGS.
The
図6は、第2の実施形態の二次電池1における保持部材7の外観斜視図であり、第1の実施形態における図4に対応する図である。
この保持部材7は、内部が空洞になっている。保持部材7の長手方向の一方の端部13は閉塞され、他方の端部14は開口している。保持部材7の閉塞している一方の端部(以下、閉塞端部という)13は、外装体2内において辺2a側に配置されている。開口している他方の端部(以下、開口端部という)14は、外装体2内において辺2d側に配置されている。すなわち電解液8を注入する際に開放口となる側に配置されている。また、保持部材7において電極積層体6の側部に当接する側面7aには、複数の円形の孔15が長手方向一直線上に所定間隔おきに設けられており、内部の空洞に連なっている。この保持部材7も、絶縁部材で形成されているか、または、少なくとも側面7aが絶縁性材料により被覆されている。 FIG. 6 is an external perspective view of the holdingmember 7 in the secondary battery 1 of the second embodiment, and corresponds to FIG. 4 in the first embodiment.
The holdingmember 7 is hollow inside. One end 13 in the longitudinal direction of the holding member 7 is closed, and the other end 14 is open. One closed end portion (hereinafter referred to as a closed end portion) 13 of the holding member 7 is disposed on the side 2 a side in the exterior body 2. The other open end (hereinafter referred to as an open end) 14 is arranged on the side 2d side in the exterior body 2. That is, it arrange | positions at the side used as an open port, when inject | pouring the electrolyte solution 8. FIG. A plurality of circular holes 15 are provided on the side surface 7a of the holding member 7 that contacts the side portion of the electrode laminate 6 at predetermined intervals on a straight line in the longitudinal direction, and are continuous with the internal cavity. The holding member 7 is also formed of an insulating member, or at least the side surface 7a is covered with an insulating material.
この保持部材7は、内部が空洞になっている。保持部材7の長手方向の一方の端部13は閉塞され、他方の端部14は開口している。保持部材7の閉塞している一方の端部(以下、閉塞端部という)13は、外装体2内において辺2a側に配置されている。開口している他方の端部(以下、開口端部という)14は、外装体2内において辺2d側に配置されている。すなわち電解液8を注入する際に開放口となる側に配置されている。また、保持部材7において電極積層体6の側部に当接する側面7aには、複数の円形の孔15が長手方向一直線上に所定間隔おきに設けられており、内部の空洞に連なっている。この保持部材7も、絶縁部材で形成されているか、または、少なくとも側面7aが絶縁性材料により被覆されている。 FIG. 6 is an external perspective view of the holding
The holding
第2の実施形態の二次電池1において、保持部材7は、電極3および電極5の位置ずれを防止する機能に加えて、電解液8を注入する際の注入管としての機能を有する。
第2の実施形態では、二次電池1の製造工程において、電極積層体6の両側部に保持部材7を当接させて設置した後、これらの表裏両側に、外装体2の素材であるラミネートフィルムを冶具等にて位置決めを行なって配置する。さらに、ラミネートフィルムにおいて端子9および端部10が突出する側の辺2aと左辺2bと右辺2cに対して熱シールを実施した後、ラミネートフィルムにおいて開放されている辺2d側を上方に位置させる。ここまでは第1の実施形態における製造工程と同じである。 In thesecondary battery 1 of the second embodiment, the holding member 7 has a function as an injection tube when injecting the electrolytic solution 8 in addition to the function of preventing the displacement of the electrodes 3 and 5.
In the second embodiment, in the manufacturing process of thesecondary battery 1, after the holding members 7 are placed in contact with both side portions of the electrode laminate 6, the laminate as the material of the exterior body 2 is formed on both the front and back sides. The film is positioned by positioning with a jig or the like. Further, after heat sealing is performed on the side 2a, the left side 2b, and the right side 2c on the side where the terminal 9 and the end portion 10 protrude in the laminated film, the side 2d side opened in the laminated film is positioned upward. The steps so far are the same as the manufacturing steps in the first embodiment.
第2の実施形態では、二次電池1の製造工程において、電極積層体6の両側部に保持部材7を当接させて設置した後、これらの表裏両側に、外装体2の素材であるラミネートフィルムを冶具等にて位置決めを行なって配置する。さらに、ラミネートフィルムにおいて端子9および端部10が突出する側の辺2aと左辺2bと右辺2cに対して熱シールを実施した後、ラミネートフィルムにおいて開放されている辺2d側を上方に位置させる。ここまでは第1の実施形態における製造工程と同じである。 In the
In the second embodiment, in the manufacturing process of the
この後、電解液8を注入するときには、第1の実施形態の場合のようにラミネートフィルムの辺2dの開放口から注入するのではなく、両保持部材7の開口端部14から保持部材7内に電解液8を注入する。保持部材7内に注入された電解液8は、保持部材7の孔15からラミネートフィルム内に放出される。このように保持部材7の孔15から電解液を注入すると、電極積層体6の両側面から電解液8が注入される。これによって、電解液を電極材への浸透距離が一方方向から注入される場合に比べて短縮されるので、電解液注入工程にかかる時間を短縮することができる。特に積層数が多く、大面積のラミネート型二次電池の電解液注入工程の時間を大幅に短縮することが可能になる。
Thereafter, when the electrolyte solution 8 is injected, it is not injected from the opening of the side 2d of the laminate film as in the case of the first embodiment, but inside the holding member 7 from the opening end portions 14 of both holding members 7. The electrolytic solution 8 is injected into. The electrolytic solution 8 injected into the holding member 7 is discharged from the hole 15 of the holding member 7 into the laminate film. When the electrolytic solution is injected from the hole 15 of the holding member 7 in this way, the electrolytic solution 8 is injected from both side surfaces of the electrode laminate 6. As a result, since the penetration distance of the electrolyte into the electrode material is reduced as compared with the case where the electrolyte is injected from one direction, the time required for the electrolyte injection step can be reduced. In particular, the number of stacked layers is large, and the time required for the electrolyte injection process of a large-area laminated secondary battery can be greatly reduced.
また、一方の保持部材7から電解液8を注入し、他方の保持部材7から空気の排気を行なうことによっても、電極材への電解液8の浸透性を向上させることができるので、電解液注入工程の時間を短縮することが可能となる。ただし、この場合には、一方の保持部材7に接続した注入管(図示略)と他方の保持部材7に接続した排気管(図示略)をラミネートフィルムの辺2dの開放口から突出させ、開放口を閉塞する。
このように電解液注入工程の時間を短縮することができるので、生産性が向上し、歩留まりが向上して、結果としてコスト削減が可能となる。 Also, theelectrolyte solution 8 can be improved in permeability to the electrode material by injecting the electrolyte solution 8 from one holding member 7 and exhausting air from the other holding member 7. It is possible to shorten the time of the injection process. However, in this case, an injection pipe (not shown) connected to one holding member 7 and an exhaust pipe (not shown) connected to the other holding member 7 are projected from the opening of the side 2d of the laminate film and opened. Close the mouth.
As described above, since the time of the electrolyte injection process can be shortened, the productivity is improved, the yield is improved, and as a result, the cost can be reduced.
このように電解液注入工程の時間を短縮することができるので、生産性が向上し、歩留まりが向上して、結果としてコスト削減が可能となる。 Also, the
As described above, since the time of the electrolyte injection process can be shortened, the productivity is improved, the yield is improved, and as a result, the cost can be reduced.
図7は、孔15を有する前記保持部材7の側面7aに、保持部材7に対してその長手方向に相対移動可能な可動体20を備える態様を示している。可動体20は、全ての孔15を閉塞可能な寸法を有していて、可動体20を図7に示す位置から保持部材7の開口端部14側にスライドさせると、保持部材7の閉塞端部13に近い側の孔15から順次開口させることができる。つまり、可動体20をスライドすることによって孔15が開閉可能となっており、これにより電解液8の注入位置を変更することができる。そして、注入位置を適宜選択することによって、電極材に対して電解液8を効率的に浸透させることができ、更に空気を効率的に排出させることが可能となって、電解液注入工程の時間を短縮することができ、結果的にコスト削減が可能となる。
FIG. 7 shows a mode in which a movable body 20 that is movable relative to the holding member 7 in the longitudinal direction is provided on the side surface 7 a of the holding member 7 having the holes 15. The movable body 20 has a size capable of closing all the holes 15, and when the movable body 20 is slid from the position shown in FIG. 7 to the opening end 14 side of the holding member 7, the closed end of the holding member 7. The holes can be sequentially opened from the hole 15 on the side close to the portion 13. That is, the hole 15 can be opened and closed by sliding the movable body 20, whereby the injection position of the electrolytic solution 8 can be changed. Then, by appropriately selecting the injection position, the electrolyte solution 8 can be efficiently infiltrated into the electrode material, and further, the air can be efficiently discharged, so that the time of the electrolyte injection process As a result, the cost can be reduced.
以上、本発明を上記実施形態に即して説明したが、本発明は上記実施形態の構成にのみ制限されるものでなく、本発明の範囲内で当業者であればなし得ることができる各種変形、修正を含むことは勿論である。
例えば、上記実施形態では、正極3と負極5とをそれぞれ1つずつ備えた二次電池で説明したが、図11に示されるような正極とセパレータと負極が多数積層された二次電池に本発明を適用することも可能である。また、図14に示されるような正極端子の引き出し方向と負極端子の引き出し方向を反対方向にした二次電池に本発明を適用することも可能である。
また、保持部材7の断面形状はほぼ三角形であればよく、例えば三角形の角部をアールで丸みを付けてもよいし、側面7bおよび側面7cを外方に湾曲する曲面で形成してもよい。
本願は、2010年9月17日に、日本に出願された特願2010-209041号に基づき優先権を主張し、その内容をここに援用する。 Although the present invention has been described with reference to the above embodiment, the present invention is not limited to the configuration of the above embodiment, and various modifications that can be made by those skilled in the art within the scope of the present invention. Of course, including modifications.
For example, in the above embodiment, the secondary battery including onepositive electrode 3 and one negative electrode 5 has been described, but the present invention is applied to a secondary battery in which a number of positive electrodes, separators, and negative electrodes are stacked as shown in FIG. The invention can also be applied. Further, the present invention can be applied to a secondary battery in which the positive electrode terminal drawing direction and the negative electrode terminal drawing direction are opposite to each other as shown in FIG.
The holdingmember 7 may have a substantially triangular cross-sectional shape. For example, the corners of the triangle may be rounded with a rounded shape, or the side surface 7b and the side surface 7c may be formed with curved surfaces that curve outward. .
This application claims priority based on Japanese Patent Application No. 2010-209041 filed in Japan on September 17, 2010, the contents of which are incorporated herein by reference.
例えば、上記実施形態では、正極3と負極5とをそれぞれ1つずつ備えた二次電池で説明したが、図11に示されるような正極とセパレータと負極が多数積層された二次電池に本発明を適用することも可能である。また、図14に示されるような正極端子の引き出し方向と負極端子の引き出し方向を反対方向にした二次電池に本発明を適用することも可能である。
また、保持部材7の断面形状はほぼ三角形であればよく、例えば三角形の角部をアールで丸みを付けてもよいし、側面7bおよび側面7cを外方に湾曲する曲面で形成してもよい。
本願は、2010年9月17日に、日本に出願された特願2010-209041号に基づき優先権を主張し、その内容をここに援用する。 Although the present invention has been described with reference to the above embodiment, the present invention is not limited to the configuration of the above embodiment, and various modifications that can be made by those skilled in the art within the scope of the present invention. Of course, including modifications.
For example, in the above embodiment, the secondary battery including one
The holding
This application claims priority based on Japanese Patent Application No. 2010-209041 filed in Japan on September 17, 2010, the contents of which are incorporated herein by reference.
耐振動衝撃特性に優れたラミネート型の二次電池を提供する。
Provide laminate type secondary batteries with excellent vibration and shock resistance.
1 二次電池
2 外装体
3 正極
4 セパレータ
5 負極
6 電極積層体
7 保持部材
8 電解液
9 正極端子
10 負極端子
12 連結部材
15 孔
20 可動体 DESCRIPTION OFSYMBOLS 1 Secondary battery 2 Exterior body 3 Positive electrode 4 Separator 5 Negative electrode 6 Electrode laminated body 7 Holding member 8 Electrolytic solution 9 Positive electrode terminal 10 Negative electrode terminal 12 Connecting member 15 Hole 20 Movable body
2 外装体
3 正極
4 セパレータ
5 負極
6 電極積層体
7 保持部材
8 電解液
9 正極端子
10 負極端子
12 連結部材
15 孔
20 可動体 DESCRIPTION OF
Claims (6)
- ラミネートフィルムで形成された外装体の内部に、正極とセパレータと負極が積層されるとともに電解液が収容され、前記各電極に接続され外部へ電力を取り出すための端子が前記外装体から突出している二次電池において、
積層された前記各電極およびセパレータにおける前記端子が存在しない両側と前記外装体との間に、それぞれ柱状の保持部材を備えた、二次電池。 A positive electrode, a separator, and a negative electrode are stacked inside an exterior body formed of a laminate film, and an electrolytic solution is accommodated. A terminal connected to each of the electrodes and for taking out electric power protrudes from the exterior body. In secondary batteries,
A secondary battery comprising columnar holding members between both sides of the stacked electrodes and separator where the terminals do not exist and the exterior body. - 前記保持部材は絶縁材で構成されているか、あるいは絶縁性材料で被覆されている、請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the holding member is made of an insulating material or is covered with an insulating material.
- 前記保持部材は、前記電解液を前記外装体の内部に注入する際の空洞を有しており、前記保持部材における前記各電極に対向する面に孔が設けられている、請求項1または請求項2に記載の二次電池。 The said holding member has a cavity at the time of inject | pouring the said electrolyte solution into the said exterior body, The hole is provided in the surface facing each said electrode in the said holding member. Item 4. The secondary battery according to Item 2.
- 前記保持部材は、前記保持部材に対して相対移動可能で且つ前記孔を閉塞可能な可動体を備える、請求項3に記載の二次電池。 The secondary battery according to claim 3, wherein the holding member includes a movable body that can move relative to the holding member and close the hole.
- 前記二つの保持部材を連結する連結部材を備える、請求項1から請求項4のいずれか1項に記載の二次電池。 The secondary battery according to any one of claims 1 to 4, further comprising a connecting member that connects the two holding members.
- 前記保持部材は断面形状がほぼ三角形である、請求項1から請求項5のいずれか1項に記載の二次電池。 The secondary battery according to any one of claims 1 to 5, wherein the holding member has a substantially triangular cross-sectional shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012534012A JP6003647B2 (en) | 2010-09-17 | 2011-09-13 | Secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010209041 | 2010-09-17 | ||
JP2010-209041 | 2010-09-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012036153A1 true WO2012036153A1 (en) | 2012-03-22 |
Family
ID=45831612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/070852 WO2012036153A1 (en) | 2010-09-17 | 2011-09-13 | Secondary cell |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6003647B2 (en) |
WO (1) | WO2012036153A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009181897A (en) * | 2008-01-31 | 2009-08-13 | Sanyo Electric Co Ltd | Laminated battery and its manufacturing method |
JP2012080584A (en) * | 2012-01-05 | 2012-04-19 | Ntt Docomo Inc | Feedback method and mobile terminal device |
JP2020013637A (en) * | 2018-07-13 | 2020-01-23 | 日産自動車株式会社 | battery |
JP2021034187A (en) * | 2019-08-21 | 2021-03-01 | 積水化学工業株式会社 | Lamination type battery and method for manufacturing lamination type battery |
JP2022067753A (en) * | 2020-10-21 | 2022-05-09 | プライムプラネットエナジー&ソリューションズ株式会社 | Laminate-type power storage device |
WO2024204834A1 (en) * | 2023-03-29 | 2024-10-03 | 大日本印刷株式会社 | Power storage device and protective member for power storage device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000195475A (en) * | 1998-12-25 | 2000-07-14 | Mitsubishi Chemicals Corp | Secondary battery |
JP2006040901A (en) * | 2004-07-28 | 2006-02-09 | Samsung Sdi Co Ltd | Secondary battery |
JP2006066319A (en) * | 2004-08-30 | 2006-03-09 | Shin Kobe Electric Mach Co Ltd | Secondary battery |
JP2006190601A (en) * | 2005-01-07 | 2006-07-20 | Central Res Inst Of Electric Power Ind | Laminated cell |
JP2007157427A (en) * | 2005-12-02 | 2007-06-21 | Mitsubishi Motors Corp | Lithium ion secondary battery |
JP2009181897A (en) * | 2008-01-31 | 2009-08-13 | Sanyo Electric Co Ltd | Laminated battery and its manufacturing method |
JP2010198988A (en) * | 2009-02-26 | 2010-09-09 | Sumitomo Chemical Co Ltd | Film case type power storage device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000353541A (en) * | 1999-06-11 | 2000-12-19 | Matsushita Electric Ind Co Ltd | Sealed lead-acid battery |
-
2011
- 2011-09-13 JP JP2012534012A patent/JP6003647B2/en active Active
- 2011-09-13 WO PCT/JP2011/070852 patent/WO2012036153A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000195475A (en) * | 1998-12-25 | 2000-07-14 | Mitsubishi Chemicals Corp | Secondary battery |
JP2006040901A (en) * | 2004-07-28 | 2006-02-09 | Samsung Sdi Co Ltd | Secondary battery |
JP2006066319A (en) * | 2004-08-30 | 2006-03-09 | Shin Kobe Electric Mach Co Ltd | Secondary battery |
JP2006190601A (en) * | 2005-01-07 | 2006-07-20 | Central Res Inst Of Electric Power Ind | Laminated cell |
JP2007157427A (en) * | 2005-12-02 | 2007-06-21 | Mitsubishi Motors Corp | Lithium ion secondary battery |
JP2009181897A (en) * | 2008-01-31 | 2009-08-13 | Sanyo Electric Co Ltd | Laminated battery and its manufacturing method |
JP2010198988A (en) * | 2009-02-26 | 2010-09-09 | Sumitomo Chemical Co Ltd | Film case type power storage device |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009181897A (en) * | 2008-01-31 | 2009-08-13 | Sanyo Electric Co Ltd | Laminated battery and its manufacturing method |
JP2012080584A (en) * | 2012-01-05 | 2012-04-19 | Ntt Docomo Inc | Feedback method and mobile terminal device |
JP2020013637A (en) * | 2018-07-13 | 2020-01-23 | 日産自動車株式会社 | battery |
JP7163647B2 (en) | 2018-07-13 | 2022-11-01 | 日産自動車株式会社 | battery |
JP2021034187A (en) * | 2019-08-21 | 2021-03-01 | 積水化学工業株式会社 | Lamination type battery and method for manufacturing lamination type battery |
JP2022067753A (en) * | 2020-10-21 | 2022-05-09 | プライムプラネットエナジー&ソリューションズ株式会社 | Laminate-type power storage device |
JP7273773B2 (en) | 2020-10-21 | 2023-05-15 | プライムプラネットエナジー&ソリューションズ株式会社 | Laminated power storage device |
WO2024204834A1 (en) * | 2023-03-29 | 2024-10-03 | 大日本印刷株式会社 | Power storage device and protective member for power storage device |
Also Published As
Publication number | Publication date |
---|---|
JP6003647B2 (en) | 2016-10-05 |
JPWO2012036153A1 (en) | 2014-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021143668A1 (en) | Battery, battery module, battery pack, and automobile | |
JP6003647B2 (en) | Secondary battery | |
JP4562693B2 (en) | Secondary battery with improved stability by fixing a separator to the battery case | |
JP5252937B2 (en) | Stacked battery and method for manufacturing the same | |
EP2978050B1 (en) | Battery comprising gas discharging member and electrolyte injection member | |
KR101111074B1 (en) | Battery Cell Having Excellent Structure Stability and Insulation Resistance | |
KR101798276B1 (en) | Battery module | |
KR101565115B1 (en) | Battery Pack and method for manufacturing the same | |
JP6580715B2 (en) | Battery pack and automobile including the same | |
KR101596269B1 (en) | Battery Cell of Novel Structure | |
JP2011096418A (en) | Battery pack | |
KR101613771B1 (en) | Cell structure for secondary battery and method formanufacturing the same | |
KR20120031606A (en) | Electrode lead whose protection layer for anti-corrosion is selectively formed, and secondary battery comprising thereof | |
JP2012234670A (en) | Film outer package battery and manufacturing method therefor | |
KR20120009661A (en) | Method for fabricating pouch type lithium secondary battery and pouch type lithium secondary battery fabricated using the same | |
JP2018181510A (en) | Secondary battery | |
KR101297858B1 (en) | Second battery with porous structures and battery Module using the same | |
CN114447535A (en) | Battery and method for manufacturing same | |
KR20140030431A (en) | Secondary battery having case with multi electrode assembly-receiving portion | |
JP2010086753A (en) | Power storage device | |
JP6430760B2 (en) | All solid state battery and manufacturing method thereof | |
KR102668360B1 (en) | Electrochemical cell with thin metal foil packaging and method for manufacturing the same | |
JP2014060016A (en) | Method of manufacturing battery | |
KR101614319B1 (en) | Battery Cell Having Separation Film of Suppressed Thermal Shrinkage | |
KR101368236B1 (en) | Secondary battery having a plastic-bag, and manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11825155 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012534012 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11825155 Country of ref document: EP Kind code of ref document: A1 |