WO2012034298A1 - 封堵器及其制造方法 - Google Patents

封堵器及其制造方法 Download PDF

Info

Publication number
WO2012034298A1
WO2012034298A1 PCT/CN2010/078075 CN2010078075W WO2012034298A1 WO 2012034298 A1 WO2012034298 A1 WO 2012034298A1 CN 2010078075 W CN2010078075 W CN 2010078075W WO 2012034298 A1 WO2012034298 A1 WO 2012034298A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesh
order
occluder
woven
stage
Prior art date
Application number
PCT/CN2010/078075
Other languages
English (en)
French (fr)
Inventor
刘香东
曾卫军
Original Assignee
先健科技深圳有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 先健科技深圳有限公司 filed Critical 先健科技深圳有限公司
Priority to US13/823,869 priority Critical patent/US9877726B2/en
Priority to EP10857154.8A priority patent/EP2617386B1/en
Publication of WO2012034298A1 publication Critical patent/WO2012034298A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12109Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12168Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure
    • A61B17/12172Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure having a pre-set deployed three-dimensional shape
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/06Braid or lace serving particular purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00004(bio)absorbable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00526Methods of manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00592Elastic or resilient implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00606Implements H-shaped in cross-section, i.e. with occluders on both sides of the opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene
    • D10B2509/06Vascular grafts; stents

Definitions

  • the present invention relates to a medical device and a method of manufacturing the same, and more particularly to an interventional treatment device and a method of manufacturing the same that can be used to block intracardiac or intravascular defects.
  • VSD atrial septal defect
  • ASD ventricular septal defect
  • PDA patent ductus arteriosus
  • PFO patent foramen ovale Congenital heart disease
  • a heart occluder is disclosed, for example, in Chinese Patent No. 97194488.1.
  • the cardiac occluder comprises a plug 1, a metal mesh 2, a baffle 3 and a head 4.
  • one end of the plug head 1 is provided with a steel sleeve 6 for fixing the metal mesh 2
  • the steel sleeve 6 is embedded in the blind hole 7 at one end of the plug head 1 and welded and fixed, so that the entire metal mesh 2 and the bolt are
  • the heads 1 are joined together to form one end of the wire 201 of the metal mesh 2 and a solder joint 203.
  • an internally threaded bore 8 for connecting the fixed delivery occluder device.
  • FIG. 3 and FIG. 4 Another occluder is disclosed in Chinese Patent No. 200780010436.7.
  • the occluder comprises a plug 101, a metal mesh 102 and a baffle film 103.
  • the plug structure is as shown in FIG.
  • the bolt structure shown is basically the same.
  • the structure of Figure 1 lacks a closure, and the woven mesh is a complete closed structure.
  • the structure depicted in Figure 1 has a permanent closure at the distal end (the distal end is defined as the end away from the operator during surgical procedures), thereby increasing the amount of metal residue in the body of the occluder. If the metal material of the head is different from the metal mesh material, local galvanic corrosion will also occur, and the electric field will damage the physiological environment of the surrounding tissue, and also increase the risk of wire breakage. The large amount of metal ions released therefrom also has long-term damage to surrounding tissues.
  • the technical problem to be solved by the present invention is to provide an occluder and a manufacturing method thereof for solving the long-term damage to the tissue in the heart by the permanent metal sealing head of the occluder in the prior art, and the different metal compartments at the head.
  • the long-term corrosion, the phenomenon of the filament generated at the distal end of the occluder increases the resistance of the occluder to the sheath, the difficulty of adapting to the smaller sheath, and the difficulty and risk of aggravating the operation.
  • an occluder comprising a distal end, a proximal end, and a wire mesh disposed between the proximal end and the distal end
  • An elastic braid composed of a multi-stage woven mesh comprising at least a first-order woven mesh woven closest to the distal end and woven by a plurality of first-order mesh wires And a second-order woven mesh co-woven by a plurality of first-order meshes and second-order meshes, wherein the first-order woven mesh has a minimum cross-sectional area after being compressed perpendicular to the axial direction of the elastic braid The minimum cross-sectional area of any other order woven mesh after compression to the axis.
  • all of the mesh wires at the proximal end are tightened and secured by a peg to close the proximal end.
  • each of the woven meshes is provided with an edge adjacent to the distal end, and an edge of the first-order woven mesh forms an opening.
  • the edges are formed by the bent portions on the mesh.
  • each of the mesh wires is bent into a thin ring that is deformed as each wire is twisted.
  • a flexible ring of a corresponding fixed circumference is disposed at the edge of any of the first-order woven meshes, and the flexible ring passes through the bent portion to prevent the respective mesh from being discrete.
  • the opening of the flexible ring disposed at the edge of the first-order woven mesh is reduced, and the opening is reduced or closed.
  • the flexible loop is formed by one of the meshes passing through the bent portion of the same-order mesh, the flexibility surrounding the edge one week.
  • the same-order mesh is provided with a thin ring at each of the bent portions, and the flexible ring passes through the thin ring on the same-order mesh to prevent the corresponding mesh Discrete.
  • the first-order mesh is made of a shape memory alloy material or a stainless steel material or a bioabsorbable material; the second-order mesh is made of a shape memory alloy material or a stainless steel material. production.
  • a head made of a bioabsorbable material is disposed at a distal end of the occluder at a center of the first-stage woven mesh, the head will be the first The mesh of the woven mesh is fixed and fixed.
  • the bioabsorbable material comprises a magnesium or magnesium alloy material.
  • the occluder further includes a flow blocking film and a suture disposed in the multi-stage woven mesh, the suture fixing the flow blocking film to the multi-stage weaving Online.
  • the occluder further includes a connection device disposed at the proximal end.
  • the present invention also provides a method of manufacturing an occluder, comprising the steps of:
  • Step 1 A plurality of hanging rods are arranged at one end of the mold bar, and the hanging rods are distributed outward from the axis of the mold bar on a plurality of concentric circles, and the hanging rods of the same order are located on the same circle, on each of the hanging rods. Wrap a wire around the two wires from each wire;
  • Step 2 using the wire branch on the mold bar to make a tubular multi-stage woven mesh, first woven the mesh on the innermost first-stage hanging screw into a first-order woven mesh, and then the innermost The first-stage Threaded Rod and the slightly second-order Threaded Thread on the second-stage Threaded Thread are woven into a second-order woven mesh, which is sequentially woven, and then all the wires are woven along the side wall of the mold bar to achieve the desired The length of the network management;
  • Step 3 heat-treating the woven mesh on the mold bar to form a stable mesh structure, the opening formed in the center of the first-stage woven mesh of the woven mesh is smaller than the diameter of the mesh pipe, and the opening is located in the occluder Remote end
  • Step 4 The other end of the woven mesh is gathered and fixed to form a proximal end of the occluder, and a closed cavity is formed between the distal end and the proximal end of the occluder;
  • Step 5 Place the woven mesh in a heat set mold with the desired occluder shape and sufficient elasticity.
  • the occluder connection device is fixed to the proximal end of the occluder.
  • the method further includes the step of suturing the flow blocking film in the cavity formed by the woven mesh after the occluder is shaped.
  • the method further comprises the steps of: sequentially passing the flexible filaments through the first-order mesh of the opening edge of the first-stage woven mesh, and then closing the flexible filaments into a flexible loop to make the first step.
  • the extent to which the first-order mesh of the woven mesh edge is dispersed is limited to the circumference of the flexible loop.
  • the invention has the following advantages: the occluder of the invention reduces the long-term metal release of the occluder due to the absence of a permanent metal seal, thereby eliminating long-term electrochemical corrosion of the part, and avoiding The head is permanently protruded to cause long-term damage to human tissue, which is more conducive to tissue climbing; in addition, the occluder of the present invention has a multi-stage woven mesh, so that the pile at the distal end of the occluder is well avoided.
  • the silk phenomenon greatly reduces the sheathing resistance, can adapt to smaller sheaths, reduces the difficulty of surgery, reduces the risk of surgery, and can adapt to younger patients with smaller blood vessels.
  • Figure 1 is a front elevational view of a conventional occluder with a head
  • Figure 2 is a right side view of the occluder with a head in Figure 1;
  • Figure 3 is a front elevational view of a conventional non-headed occluder
  • Figure 4 is a right side view of the occluder without head in Figure 3 with a wire stacking therebetween;
  • Figure 5 is a schematic view showing the structure of a plug commonly used for an occluder connection device
  • Figure 6 is a schematic view of a metal mesh tube that is stepped and woven on a mold bar
  • Figure 7 is a plan view of the first-stage mesh hanging on the first-stage hanging screw
  • Figure 8 is a schematic view of a first-stage woven mesh
  • Figure 9 is a plan view of the second-order wire hook hung on the corresponding second-stage wire rod
  • Figure 10 is a schematic view of weaving a second-order woven mesh on the basis of a first-order woven mesh
  • Figure 11 is a structurally stable metal mesh tube taken from a mold bar after heat setting
  • Figure 12 is a side elevational view showing the opening of the metal mesh tube at the distal end
  • Figure 13 is a side view showing the mesh of the proximal end of the metal mesh tube being fixed and welded together with the steel sleeve;
  • Figure 14 is a side view of the proximal weld head of the metal mesh tube
  • Figure 15 is a schematic cross-sectional view showing the heat treatment of a metal mesh tube placed in a mold to form a double disc structure
  • Figure 16 is a side view showing the inner surface of the occluder double disc structure with a spoiler
  • Figure 17 is a schematic view showing the first-stage mesh thread passing through the edge of the opening of the first-stage woven mesh with a suture and connected in a ring shape;
  • Figure 18 is a front elevational view of an occluder comprising a multi-stage woven mesh, wherein the center of the first-order woven mesh has an opening;
  • Figure 19 is a plan view of the occluder of Figure 18;
  • Figure 20 is a schematic view showing a wire in the first-order mesh wire passing through other mesh wires to form a ring and then wound on the corresponding first-stage wire-hanging rod;
  • Figure 21 is a schematic view showing each of the second-order mesh wires forming a thin ring around the corresponding second-stage wire-hanging rod and dividing into two branches for knitting;
  • Figure 22 is a schematic illustration of a suture passing through the fine loops of all second-order mesh edges to join them;
  • Figure 23 is a plan view showing the first-order mesh wires hung and then the second-order mesh wires are hung and they do not cross each other;
  • Figure 24 is a plan view showing the first-stage mesh and the second-order mesh simultaneously starting to weave
  • Figure 25 is a schematic view showing the use of a suture to join the heads of the first-order mesh
  • Figure 26 is a plan view of the first-order mesh wire spanning three first-stage wire-hanging bars to form a staggered structure
  • Figure 27 is a plan view showing the second-stage mesh and the first-order mesh which are interlaced at the same time start knitting;
  • Figure 28 is a schematic view showing the use of two sutures to connect the first-order mesh edge and the second-order mesh edge respectively;
  • Figure 29 is a schematic illustration of the fabrication of a first order woven mesh and closure using a bioabsorbable material.
  • the invention provides an implanted occluder comprising a distal end (the distal end is defined as an end away from the operator during a surgical operation) and a proximal end (the proximal end is defined as being close to the operator during the surgical operation) One end) and an elastic braid disposed between the proximal end and the distal end.
  • the elastic braid is a cylinder having a variable diameter including a plurality of meshes, and includes at least a first-order woven mesh woven from a plurality of first-order mesh wires and a plurality of first-order mesh wires and a second step A second-order woven mesh that is woven together by a mesh.
  • a two-stage woven mesh is used.
  • a third-order woven mesh can also be used.
  • the third woven mesh is composed of a plurality of first-order meshes, second-order meshes, and third-order meshes. Weaved, and so on.
  • the first order woven mesh comprises fewer meshes than any other order.
  • the mesh of the first-order woven mesh is more sparse than the mesh of any other woven mesh.
  • the minimum cross-sectional area of the first-order woven mesh after compression to the axis is less than the minimum cross-sectional area of any other woven mesh after compression to the axis.
  • the woven mesh can be compressed into the sheath tube, and the external force can be removed to the preset expanded shape by itself.
  • the distal end of the occluder may be provided with an opening located at the center of the first-order woven mesh and formed by the edges of the first-order woven mesh.
  • the woven mesh at the proximal end of the occluder is tightened and secured by the plug to close the proximal end.
  • the woven mesh is woven from a shape memory alloy, such as a nickel-titanium alloy wire, which is superelastic by heat treatment.
  • the woven mesh may also be made of a metal material such as stainless steel or other material suitable for the human body.
  • the use of nickel-titanium alloy wire can ensure that the occluder automatically returns to its original shape after being released from the delivery sheath with a smaller diameter, sealing the heart septal defect or occluding the blood vessel, and maintaining sufficient radial support force to avoid sealing. The shift occurred.
  • the first-stage woven mesh may be constructed of a bioabsorbable metal material, or an absorbable closure that retracts the first-order woven mesh at the distal end.
  • the first-order woven mesh and the head that can be absorbed by the human body can be made of pure magnesium or medical magnesium alloy.
  • the first-order woven mesh begins at the distal end of the occluder and terminates at a circumferential edge of the second-order woven mesh, with a continuous transition between the first-order woven mesh and the second-order woven mesh.
  • each of the woven meshes terminates at the circumferential edge of the next-stage woven mesh, and the adjacent two-stage woven mesh continuously transitions.
  • the multi-stage woven mesh forms a continuous braid, and the last-stage woven mesh terminates at the proximal end of the occluder.
  • the edges of the first-order woven mesh are closer to the distal end of the occluder than the edges of the other-stage woven mesh.
  • the edges of each woven mesh are interlaced by continuous mesh bends.
  • each of the wires at the edges is bent into a thin ring that is deformable as the wire is twisted.
  • a flexible circumference of a fixed circumference is provided at the edge of each of the woven meshes, the flexible loop passing through the wire bending portion of the edge of each of the woven meshes to prevent the mesh of the edge of each of the woven meshes from being discrete.
  • the flexible loop is formed by a single wire around the edge of each of the woven meshes, and the mesh is woven in the same manner as the other meshes through the bent portions of the other meshes at the edges of each of the woven meshes.
  • a flexible loop is provided at the edge of the first-order woven mesh, and narrowing the circumference of the flexible loop reduces the opening and also allows the opening to approach closure.
  • the flexible ring disposed at the edge of each step of the woven mesh may also be made by using a suture.
  • the central opening of the woven mesh of the present invention can also be stitched to enhance the stability of the woven mesh.
  • the diameter of the opening left after suturing the opening is optional, both to maintain the original aperture, to reduce the aperture, and even to tighten the closure.
  • the occluder of the present invention may further comprise a flow blocking membrane and a suture, the flow blocking membrane being secured to the woven mesh by sutures.
  • a connecting device can also be provided at the proximal end.
  • the occluder with multi-stage woven mesh can be applied to include various types of cardiac occlusion devices such as atrial septal defect (VSD) occluder, ventricular septal defect (ASD) occluder, patent ductus arteriosus (PDA) occlusion. And patent foramen ovale (PFO) occluder and vascular occlusion devices.
  • VSD atrial septal defect
  • ASD ventricular septal defect
  • PDA patent ductus arteriosus
  • PFO patent foramen ovale
  • vascular occlusion devices can also be applied to various medical fields that need to be blocked, and can also be used to repair local blood vessels.
  • the invention also provides a method for manufacturing an occluder having a multi-stage woven mesh, comprising the following steps:
  • Step 1 A plurality of hanging rods are arranged at one end of the mold bar, and the hanging rods are distributed outward from the axis of the mold bar on a plurality of concentric circles, and the hanging rods of the same order are located on the same circle, on each of the hanging rods. Wrap a wire around the two wires from each wire;
  • Step 2 using the wire branch on the mold bar to make a tubular multi-stage woven mesh, first woven the mesh on the innermost first-stage hanging screw into a first-order woven mesh, and then the innermost The first-stage Threaded Rod and the slightly second-order Threaded Thread on the second-stage Threaded Thread are woven into a second-order woven mesh, which is sequentially woven, and then all the wires are woven along the side wall of the mold bar to achieve the desired The length of the network management;
  • Step 3 heat-treating the woven mesh on the mold bar to form a stable mesh structure, the opening formed in the center of the first-stage woven mesh of the woven mesh is smaller than the diameter of the mesh pipe, and the opening is located in the occluder Remote end
  • Step 4 The other end of the woven mesh is folded and fixed to form a proximal end of the occluder, and a closed cavity is formed between the distal end and the proximal end of the occluder;
  • Step 5 Place the woven mesh in a heat set mold with the desired occluder shape and sufficient elasticity.
  • the occluder manufacturing method of the present invention can also add the following two steps, or any one of the steps: for the shaped occluder, the choke membrane is sutured in the woven mesh cavity to improve the effect of blocking blood flow;
  • the flexible filaments are sequentially passed through the mesh of the opening edge of the first-stage woven mesh, and the flexible filaments are then closedly connected into a loop, so that the first-order mesh of the edge of the first-order woven mesh is dispersed in a flexible range.
  • the circumference of the ring is limited to enhance the stability of the woven mesh structure.
  • the metal mesh tube 30 is first woven on the cylindrical metal mold bar 10 with a nickel-titanium alloy wire, and a braided chuck 13 is provided at the head of the mold rod 10, and two cores are respectively arranged around the axis of the mold rod 10.
  • Circle holes. The two circles are concentric circles. On the first circle are twelve holes arranged symmetrically in the axis, and twenty-four holes in the second ring are arranged on the periphery. Twelve rays are drawn from the center of the circle to the twelve small holes, and the outer ring meets twelve points. The twelve points and the outer twenty-four small holes are evenly distributed on the outer ring, and there are two small holes between the two adjacent points.
  • This embodiment is a two-stage woven mesh, and two small holes are required to be provided on the woven chuck 13. Similarly, for a multi-stage woven mesh, a plurality of small holes can be provided, and the knitting method is similar.
  • the first-stage wire-hanging rods 11 are respectively inserted into the first ring-shaped holes, and then the first-stage wire 21 is respectively hung on each of the first-stage wire-hanging wires.
  • the rod 11 is viewed from above perpendicular to the woven collet as shown in FIG.
  • Each of the first-order mesh wires 21 is bent at the same angle around the corresponding first-stage wire-hanging bars 11, each forming two branches.
  • the branches of all the first-order mesh wires 21 are tensioned, and sequentially intersect with the adjacent first-order mesh wires 21, and can be formed into a net after three-wheel weaving, as shown in FIG.
  • the first-order woven mesh 221 includes twelve first-order mesh wires 21, for a total of twenty-four branches.
  • the second-order woven mesh 222 includes twelve first-order mesh wires 21 and twenty-four second-order mesh wires 22, for a total of seventy-two branches.
  • the mesh densities of the first-order woven mesh 221 and the second-order woven mesh 222 are different, the first-order woven mesh 221 is sparse than the second-order woven mesh 222, and the first-order woven mesh 221 has a higher Spatial compression ratio.
  • the center of the first order woven mesh 221 has a circular opening 32 which will be the opening at the distal end of the occluder.
  • the first-order mesh 21 and the second-order mesh 22 are wires made of a nickel-titanium alloy.
  • the wire first wraps around the braided chuck 13 and then covers the side of the mold bar 10 to become a circular tube.
  • the tubular multi-stage woven mesh is fixed on the die bar 10 and heat-treated to form a stable tubular structure.
  • the metal mesh pipe 30 taken out from the die bar 10 is as shown in FIG. Figure 12 is a side view of Figure 11 .
  • the bent portion of the first-order mesh 21 (the portion surrounding the first-stage threaded rod 11) constitutes the boundary of the circular opening of the first-stage woven mesh 221.
  • the bent portion of the second-order mesh 22 (the portion surrounding the second-stage hanging screw 12) constitutes a boundary of the second-order woven mesh 222, and the diameter of the boundary of the second-order woven mesh 222 is larger than that of the first-order woven mesh 221 opening diameter.
  • the free ends of the first-stage mesh 21 and the second-order mesh 22 terminate in a cylindrical opening 31 (shown in FIG. 12) at the tail of the metal mesh tube, and the diameter of the cylindrical opening 31 at the tail of the metal mesh tube 30 A diameter greater than the boundary of the second-order mesh 22 .
  • the distal first-stage woven mesh 221 is woven from a small number of wires, and the distal end portion is compressed toward the axis to achieve a smaller cross-sectional area. It makes it easier for the occluder to be recycled into the tiny sheath.
  • the tails of the metal mesh tube 30 are gathered and the ends of all the wires are secured using a steel sleeve 40 to close the proximal end of the metal mesh tube 30 while maintaining a stepped weave at the other end.
  • the end of the wire is then welded to the steel sleeve 40 to form the proximal end of the metal mesh tube 30, as shown in FIG.
  • a connecting device is fixed at the proximal end, and the connecting device can be a plug structure as shown in FIG. 5, one end of which is a blind hole welded and matched with the steel sleeve, and the other end is an internally threaded hole.
  • the plug is placed over the welded part and soldered and fixed, as shown in Figure 14.
  • the metal mesh tube 30 is then placed in a set of molds (including the upper mold, the middle mold, and the lower mold) for heat treatment setting, as shown in FIG.
  • the original metal mesh tube is extruded into a double disc-shaped braid 34, the portion of the multi-stage woven mesh near the distal end is placed in the upper mold to form a first disc surface 36; the proximal plug head and another portion of the metal mesh tube 30 Placed in the upper mold to form a second disc surface 38; the middle portion is used to define the waist between the two disc faces, and the entire occluder is axially symmetric.
  • Other shapes, such as columnar, disc-shaped, etc., can be determined according to actual needs.
  • a circular blocking film 60 of different sizes is formed by using a polyester film or a polytetrafluoroethylene film, and the surgical suture 70 (see FIG. 17) is respectively sewn to three positions inside the braid 34, which are respectively the first surface.
  • the maximum diameter of 36, the maximum diameter of the second disk surface 38, and the waist between the two disks are as shown in FIG.
  • the suture 70 is sequentially passed through the bent portion of the first-stage mesh 21, and connected to a flexible ring of a certain circumference to make the multi-stage woven mesh structure more stable, as shown in FIG.
  • the final product of the occluder is shown in Figures 18 and 19, and the entire occluder includes a braid 34, a baffle film 60 disposed inside the braid 34, and a plug 80 on one side of the braid 34.
  • the braid 34 includes a multi-stage woven mesh divided into a first panel surface 36 and a second panel surface 38 having a circular opening 32 at its distal end.
  • the multi-stage woven mesh includes a first-order woven mesh 221 and a second-order woven mesh 222.
  • the second embodiment of the present invention is improved on the basis of the first embodiment.
  • the first-stage mesh 21 When the first-stage mesh 21 is placed, one of the first-order mesh wires is passed through all the other first-order mesh wires at the portion of the corresponding first-stage hanging wire rod 11, and the first-order net is bent.
  • the wire forms a ring around the other first-stage threaded rods 11 of the same circle and then hangs on the corresponding first-stage wire-hanging rods 11, and then starts the weaving of the first-stage woven mesh 221, as shown in FIG. Shown.
  • the subsequent process is substantially the same as the first embodiment except that the step of joining the openings 32 using the suture 70 is reduced, as the second embodiment above also achieves this purpose.
  • the third embodiment of the present invention is improved on the basis of the first embodiment.
  • the first few steps are identical to the first embodiment.
  • each second-order wire 22 is formed into a thin ring around a second-stage wire-hanging rod 12, and the two branches formed by the two branches are woven together, as shown in FIG. 21 .
  • the subsequent process is identical to the first embodiment.
  • the thin ring formed by the bending of the mesh wire is not easy to be broken during compression deformation, improves the safety of the metal mesh, and facilitates the suture passing therethrough.
  • the fourth embodiment of the present invention is improved on the basis of the third embodiment.
  • the manufacturing steps and methods are substantially the same as those of the third embodiment except that after the occluder is shaped, the suture 70 is used to bend the thin ring formed by the second-stage mesh 22 to be bound by the circumference of the suture 70.
  • the boundary of the second-order woven mesh 222 further stabilizes the structure of the occluder as shown in FIG.
  • the fifth embodiment of the present invention is improved on the basis of the first embodiment.
  • the main difference between the fifth embodiment and the first embodiment is that the first-order mesh 21 of the embodiment is hung on the first-stage hanging rod 11, and the first-stage woven mesh is not directly produced, but is immediately
  • the second-order wire rod 22 is hung on the second-stage wire-hanging rod 12, and is viewed from above perpendicular to the knitting chuck, as shown in FIG. After the two-stage mesh is hung, seventy-two non-crossed branches are formed, and then weaved like a conventional seventy-two mesh tube, and a multi-stage woven mesh can be obtained. The effect is shown in FIG.
  • the first-order woven mesh 221 of this form is the most sparse and has a minimum cross-section when compressed axially.
  • the sixth embodiment of the present invention is improved on the basis of the fifth embodiment.
  • the main difference between the sixth embodiment and the fifth embodiment is that each of the first-order mesh wires 21 of the sixth embodiment spans three first-stage wire-hanging bars 11, one branch of each first-order wire 21 and A branch of the other first-order mesh 21 is crossed, and the two wires are rotationally symmetric at ninety degrees to form a staggered structure, as viewed from above the woven collet, as shown in FIG.
  • the sutures 70 are used to stabilize the structure to constrain the boundaries of the opening 32 and the second-order woven mesh 222, respectively, as shown in FIG.
  • the first-order mesh 21 may be a bioabsorbable material.
  • the occluder is composed of two kinds of metal meshes: the magnesium metal constitutes the first-order woven mesh 221, which reduces the resistance when recycled into the sheath; the second-order woven mesh 222 is still a nickel-titanium alloy, providing superelastic support. structure. Under normal circumstances, after the occluder is implanted in the human body, the endothelium will soon be wrapped around the surface of the occluder.
  • the magnesium metal mesh is gradually absorbed by the human body, leaving only a structurally complete Nitinol mesh, without the spikes left by the broken mesh.
  • the defect portion has also healed, and even if the first-order woven mesh 221 disappears, the second-order woven mesh 222 will not loosen. Since magnesium is quickly eliminated from the body by human metabolism, the amount of occluder metal remaining in the human body is small, reducing the amount of harmful long-term metal release.
  • the first-order mesh 21 is replaced with a pure magnesium wire or a medical magnesium alloy wire.
  • the head of the first-order mesh 21 is gathered, and then a magnesium metal head 90 is assembled. Fixed together, as shown in Figure 29.
  • the magnesium metal head 90 can further reduce the resistance of the occluder when it is recovered into the sheath tube; in the human body, the magnesium metal head 90 and the first-order woven mesh 221 are gradually absorbed by the human body, reducing the metal residue and the long-term. The amount released. Since the magnesium metal head 90 is absorbed by the human body, long-term electrochemical corrosion between the head and the metal mesh is avoided, and the human tissue is not worn for a long time like a permanent head.

Description

封堵器及其制造方法 技术领域
本发明涉及一种医疗器械及其制造方法,尤其涉及一种可用于封堵心脏内或血管内缺损的介入治疗装置及其制造方法。
背景技术
随着介入材料器械和介入心脏病学的不断发展,经导管介入封堵器微创治疗房间隔缺损(VSD)、室间隔缺损(ASD)、动脉导管未闭(PDA)和卵圆孔未闭(PFO)等先天性心脏病成为重要方法。用介入方式进行血管腔内封堵,也是广为接受的治疗手段。
如中国专利第97194488.1号专利揭示了一种心脏封堵器,如图1和图2所示,该心脏封堵器包括栓头1、金属网2,阻流膜3和封头4。如图5所示,其中栓头1的一端设有用于固定金属网2的钢套6,钢套6嵌入栓头1一端的盲孔7内并焊接固定,于是就将整个金属网2与栓头1连接在一起,构成金属网2的网丝201一端与一焊接头203。在栓头1的另一端设有一内螺纹孔8,该内螺纹孔8用于连接固定输送封堵器器件。
如中国专利第200780010436.7号专利揭示了另一种封堵器,如图3和图4所示,该封堵器包括栓头101、金属网102和阻流膜103,栓头结构如图5所示的栓头结构基本相同。而其结构相对图1则缺少封头,其编织网为完整的封闭结构。
虽然以上两类结构的封堵器都可以实现对心脏间隔缺损或血管进行封堵,但都有明显的结构缺陷。图1所描述的结构在远端有(远端的定义为手术操作时远离操作人员的一端)一个永久性封头,从而增加了封堵器在人体内的金属残留量。如果封头金属材料与金属网材料不相同,还会造成局部的电偶腐蚀,其电场会破坏周边组织的生理环境,也增加了该处金属丝断裂的风险。其释放的大量金属离子对周边组织也有长期损害。同时,由于其封头永久突出,不仅容易造成对人体心脏内组织的长期损害,而且也不利于内皮组织爬覆。而图3所描述的结构虽没有封头,避免了以上的风险,但此类封堵器回收入鞘管时,会在远端出现严重的金属丝堆积,从而造成在手术的过程中封堵器回收入鞘阻力过大(如选用更大的鞘管,则额外增加了鞘管对血管内壁的损伤),增加了手术的风险,同时也减少了其对器械的适用范围。
技术问题
本发明要解决的技术问题在于提供一种封堵器及其制造方法,以解决现有技术中的封堵器具有的永久性金属封头对心脏内组织的长期损害,封头处不同金属间的长期腐蚀,封堵器远端产生的堆丝现象增加封堵器的回收入鞘阻力、较难适应更小的鞘管、以及加重手术的难度和风险等问题。
技术解决方案
解决本发明的技术问题所采用的技术方案是:一种封堵器,所述封堵器包括远端、近端以及和设置于所述近端和远端之间且由网丝制成的弹性编织体,所述弹性编织体是由多阶编织网构成的,所述多阶编织网至少包括最靠近所述远端且由多根第一阶网丝编织而成的第一阶编织网及由多根第一阶网丝和第二阶网丝共同编织而成的第二阶编织网,所述第一阶编织网朝垂直于弹性编织体的轴线方向压缩后的最小横截面积小于任何其它阶编织网向轴线压缩后的最小横截面积。
在本发明的封堵器中,位于所述近端的所有网丝都通过一栓头收紧并固定以使所述近端封闭。
在本发明的封堵器中,每一阶编织网都设有靠近所述远端的边缘,所述第一阶编织网的边缘形成一开口。
在本发明的封堵器中,所述边缘都由所述网丝上的弯折部形成的。
在本发明的封堵器中,在所述任何一阶编织网的边缘处,每一根网丝弯折成一个随每根网丝扭曲而变形的细环。
在本发明的封堵器中,在所述任何一阶编织网的所述边缘设置一个相应的固定周长的柔性环,所述柔性环穿过所述弯折部位以防止相应网丝离散,缩小设置于所述第一阶编织网的边缘的柔性环周长,则缩小或闭合所述开口。
在本发明的封堵器中,所述柔性环由其中一根网丝穿过同一阶网丝的所述弯折部位而形成,所述柔性环绕所述边缘一周。
在本发明的封堵器中,所述同一阶网丝在各自的所述弯折部设有一个细环,所述柔性环穿过同一阶网丝上的所述细环以防止相应网丝离散。
在本发明的封堵器中,所述第一阶网丝是由形状记忆合金材料或不锈钢材料或者生物可吸收的材料制成;所述第二阶网丝是由形状记忆合金材料或不锈钢材料制成。
在本发明的封堵器中,在所述封堵器的远端位于所述第一阶编织网的中心设置一个生物可吸收的材料制成的封头,所述封头将所述第一阶编织网的网丝收拢固定。
在本发明的封堵器中,所述生物可吸收的材料包括镁或镁合金材料。
在本发明的封堵器中,所述封堵器还包括设置在所述多阶编织网里的阻流膜和缝合线,所述缝合线将所述阻流膜固定于所述多阶编织网上。
在本发明的封堵器中,所述封堵器还包括设置在近端的连接装置。
此外,本发明还提供了一种封堵器的制造方法,其包括如下步骤:
步骤一:在模棒一端设置多个挂丝杆,挂丝杆从模棒轴线向外分布于多个同心圆圈上,同一阶的挂丝杆位于同一个圆圈上,在每根挂丝杆上绕一根网丝,从每根网丝向外引出两条分支;
步骤二:在模棒上用所述网丝分支,制作管状的多阶编织网,先将最内的第一阶挂丝杆上的网丝织成第一阶编织网,再将最内的第一阶挂丝杆和稍外的第二阶挂丝杆上的网丝织成第二阶编织网,依次分阶编织,然后将所有网丝沿模棒侧壁编织成长管状,达到所需网管长度为止;
步骤三:对模棒上的编织网进行热处理,定形成稳定的网状结构,在所述编织网的第一阶编织网中心形成的开口小于网管的直径,所述开口位于所述封堵器的远端;
步骤四:将编织网的另一端收拢固定,构成所述封堵器的近端,所述封堵器的远端和近端之间构成闭合空腔;
步骤五:将编织网置于热定形模具中,使其具有所需的封堵器外形和足够的弹性。
在本发明的制造方法中,在所述步骤四中,将封堵器连接装置固定在所述封堵器的近端。
在本发明的制造方法中,进一步包括如下步骤,在定形好封堵器之后,将阻流膜缝合在编织网组成的空腔内。
在本发明的制造方法中,进一步包括如下步骤,用柔性丝依次穿过其第一阶编织网的开口边缘的第一阶网丝,再将柔性丝闭合连接成一个柔性环,使第一阶编织网边缘的第一阶网丝散开的范围以柔性环的周长为限。
有益效果
与现有技术相比,本发明具备以下优点:本发明的封堵器由于没有永久性金属封头从而减少了封堵器的长期金属释放量,消除了该部位的长期电化学腐蚀,避免了封头永久突出而造成对人体组织的长期损害,更利于组织爬覆;此外,本发明的封堵器具有多阶编织网,从而很好地避免了封堵器远端回收入鞘时的堆丝现象,大大减小了入鞘阻力,可适应更小的鞘管,减小了手术的难度,降低了手术的风险,能更加适应较小血管的低龄患者。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是现有带封头的封堵器的主视图;
图2是图1中带封头的封堵器的右视图;
图3是现有无封头的封堵器的主视图;
图4是图3中无封头的封堵器的右视图,其中间有丝堆积;
图5是封堵器连接装置常用的栓头的结构示意图;
图6是在模棒上分阶编织的金属网管的示意图;
图7是第一阶网丝挂在第一阶挂丝杆上的俯视图;
图8是第一阶编织网的示意图;
图9是第二阶网丝挂于对应的第二阶挂丝杆上的俯视图;
图10 是在第一阶编织网的基础上编织第二阶编织网的示意图;
图11是热定形之后从模棒上取下来的结构稳定的金属网管;
图12 是金属网管的远端有一个开口的侧面示意图;
图13是金属网管近端的网丝收拢固定并与钢套焊接在一起的侧面示意图;
图14 是金属网管的近端焊接栓头的侧面示意图;
图15 是金属网管置于模具中热处理定形成双盘结构的剖面示意图;
图16 是在封堵器双盘结构的内部缝上阻流膜的侧面示意图;
图17是用缝合线穿过第一阶编织网开口边缘的第一阶网丝并连接起来成环状的示意图;
图18是包含多阶编织网的封堵器的主视图,其中第一阶编织网的中心有一开口;
图19是图18中封堵器的俯视图;
图20是第一阶网丝中的一根网丝穿过其它网丝形成一圆环后再绕在对应的第一阶挂丝杆上的示意图;
图21是每根第二阶网丝分别绕对应的第二阶挂丝杆形成一细环再分成两支进行编织的示意图;
图22是用缝合线穿过所有第二阶网丝边缘的细环而将其连接起来的示意图;
图23是第一阶网丝挂好后随即挂上第二阶网丝且它们相互不交叉的俯视图;
图24 是第一阶网丝和第二阶网丝同时开始编织的俯视图;
图25 是使用缝合线将第一阶网丝的头部连接起来的示意图;
图26 是第一阶网丝都跨越三根第一阶挂丝杆从而形成一种交错结构的俯视图;
图27是第二阶网丝与相互交错的第一阶网丝同时开始编织的俯视图;
图28 是使用两根缝合线分别连接第一阶网丝边缘和第二阶网丝边缘的示意图;
图29 是采用生物可吸收材料制造第一阶编织网和封头的示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供的一种植入人体的封堵器,其包含远端(远端的定义为在手术操作时远离操作人员的一端)、近端(近端的定义为在手术操作时靠近操作人员的一端)和设置于该近端和该远端之间的弹性编织体。该弹性编织体为包括多个网格的直径可变的筒形,至少包含由多根第一阶网丝编织而成的第一阶编织网和由多根第一阶网丝及第二阶网丝共同编织而成的第二阶编织网。在本发明实施例中,采用两阶编织网,可以理解,还可以采用三阶编织网,该第三编织网由多根第一阶网丝、第二阶网丝及第三阶网丝共同编织而成的,依此类推。该第一阶编织网包含的网丝数量少于任何其它阶包含的网丝数。在扩展状态下,该第一阶编织网的网格比任何其它阶编织网的网格更稀疏。第一阶编织网向轴线压缩后的最小横截面积,小于任一其它阶编织网向轴线压缩后的最小横截面积。该编织网可被压缩进鞘管内,撤去外力还能自行恢复到预设扩展形状。
该封堵器的远端可以设置一开口,该开口位于该第一阶编织网的中心,且通过第一阶编织网的边缘形成。该封堵器近端的编织网通过栓头收紧并固定以使近端封闭。该编织网最好是通过形状记忆合金编织而成,例如镍钛合金丝,通过热处理使封堵器具有超弹性。该编织网也可以用不锈钢等金属材料或者其他适宜人体的弹性较好的材料等。采用镍钛合金丝可保证封堵器从比自身直径小的输送鞘管释放后自动回复到原来的形状,封堵住心脏间隔缺损或堵塞血管,并保持足够的径向支撑力,避免封堵器发生移位。另外,第一阶编织网还可采用生物可吸收的金属材料,或者再加可吸收的封头,该封头可在远端将第一阶编织网收拢固定。可被人体吸收的第一阶编织网和封头,都可采用纯镁或医用镁合金。
第一阶编织网起始于封堵器的远端并终止于第二阶编织网的圆周状边缘,第一阶编织网与第二阶编织网之间是连续过渡的。以此类推,每一阶编织网都终止于下一阶编织网的圆周状边缘,相邻两阶编织网连续过渡。多阶编织网构成连续的编织体,最后一阶编织网终止于封堵器的近端。因此,第一阶编织网的边缘比其它阶编织网的边缘更靠近封堵器的远端。 每一阶编织网的边缘,都由连续的网丝弯折交错而成。优选地,边缘处的每根网丝弯折成一个细环,该细环可随该网丝的扭曲而变形。
进一步地,在每一阶编织网边缘设置一个固定周长的柔性环,该柔性环穿过每一阶编织网边缘的网丝弯折部位以防止每一阶编织网边缘的网丝离散。该柔性环由一根网丝绕每一阶编织网边缘一周而形成,该网丝穿过每一阶编织网边缘的其它网丝的弯折部位再与其它网丝用同样方式编织。特别地,在第一阶编织网的边缘设置一个柔性环,缩小该柔性环的周长可缩小该开口,也可使该开口趋近闭合。
所述每一阶编织网边缘设置的柔性环,也可采用缝合线制作。本发明的编织网的中心开口也可被缝合起来以增强编织网的稳定性。根据不同封堵器尺寸和对支撑力的要求,缝合开口之后所留下的开口直径是可以选择的,既可以维持原孔径,也可以缩小孔径,甚至收紧闭合。
本发明封堵器还可以包括阻流膜和缝合线,阻流膜由缝合线固定于编织网上。进一步地,在近端还可设置连接装置。
该具有多阶编织网的封堵器可应用于包括各类心脏封堵器比如房间隔缺损(VSD)封堵器、室间隔缺损(ASD)封堵器、动脉导管未闭(PDA)封堵器和卵圆孔未闭(PFO)封堵器以及血管封堵器械等。此外,也可应用于各类需进行封堵的医疗领域,还可用于修补局部血管。
本发明还提供一种具有多阶编织网的封堵器的制造方法,包括如下步骤:
步骤一:在模棒一端设置多个挂丝杆,挂丝杆从模棒轴线向外分布于多个同心圆圈上,同一阶的挂丝杆位于同一个圆圈上,在每根挂丝杆上绕一根网丝,从每根网丝向外引出两条分支;
步骤二:在模棒上用所述网丝分支,制作管状的多阶编织网,先将最内的第一阶挂丝杆上的网丝织成第一阶编织网,再将最内的第一阶挂丝杆和稍外的第二阶挂丝杆上的网丝织成第二阶编织网,依次分阶编织,然后将所有网丝沿模棒侧壁编织成长管状,达到所需网管长度为止;
步骤三:对模棒上的编织网进行热处理,定形成稳定的网状结构,在所述编织网的第一阶编织网中心形成的开口小于网管的直径,所述开口位于所述封堵器的远端;
步骤四:将编织网另一端收拢固定,构成所述封堵器的近端,所述封堵器的远端和近端之间构成闭合空腔;
步骤五:将编织网置于热定形模具中,使其具有所需的封堵器外形和足够的弹性。
本发明的封堵器制造方法还可以增加以下两个步骤,或其中的任一步骤:对定形好的封堵器,将阻流膜缝合在编织网腔内,以提高阻隔血流的效果;另外,用柔性丝依次穿过其第一阶编织网的开口边缘的网丝,再将柔性丝闭合连接成一个环,使第一阶编织网边缘的第一阶网丝散开的范围以柔性环的周长为限,以增强编织网结构稳定。
以下通过多个实施例来举例说明本发明的封堵器的编织过程和所用器具等方面。
实施例1
如图6所示,先用镍钛合金丝在圆柱形金属模棒10上编织金属网管30,在模棒10头部设有一个编织夹头13,围绕模棒10的轴心分别打有两圈孔洞。这两个圈是同心圆,第一圈上是轴对称排列的十二个孔,在外围排列第二圈的二十四个孔。从圆心向内圈上的十二个小孔引出十二条射线,与外圈交汇于十二个点。该十二个点与外围二十四个小孔均匀分布在外圈上,相邻两点之间有两个小孔。本实施例是两阶编织网,需在编织夹头13上设置两圈小孔。类似地,对于多阶编织网,可设置多圈小孔,编织方法也类似。
在制作图8所示的第一阶编织网221时,将第一阶挂丝杆11分别插入第一圈孔内,然后再将第一阶网丝21分别挂在每个第一阶挂丝杆11上,从垂直于编织夹头的上方俯视,如图7所示。每根第一阶网丝21绕相应的第一阶挂丝杆11弯折成相同角度,各自形成两个分支。拉紧所有第一阶网丝21的分支,依次与邻近的第一阶网丝21进行交叉,经过三轮编织即可成网,如图8所示。当编好第一阶编织网221后再将第二阶挂丝杆12插入外围的孔内,然后再将第二阶网丝22挂于对应的第二阶挂丝杆12上并与第一阶网丝21混合编织,从垂直于编织夹头的上方俯视,其编织过程如图9所示,编织后效果如图10所示。第一阶编织网221包含十二根第一阶网丝21,共二十四条分支。第二阶编织网222包含了十二根第一阶网丝21以及新增的二十四根第二阶网丝22,共七十二条分支。因此,第一阶编织网221和第二阶编织网222的网格密度是不同的,第一阶编织网221比第二阶编织网222要稀疏一些,第一阶编织网221具有更高的空间压缩比。第一阶编织网221的中心有一个圆形开口32,将成为封堵器远端的开口。在本实施例中,第一阶网丝21和第二阶网丝22是以镍钛合金为材料的金属丝。
在编织过程中,金属丝先包住编织夹头13,再覆盖模棒10的侧面,变成圆管状。当完成一定的编织长度后,将管状的多阶编织网固定在模棒10上并进行热处理定形,使其成稳定管状结构,从模棒10上取下来的金属网管30如图11所示,图12为图11的侧视图。第一阶网丝21的弯折部位(围绕该第一阶挂丝杆11的部分)构成第一阶编织网221的圆形开口的边界。第二阶网丝22的弯折部位(围绕该第二阶挂丝杆12的部分)构成第二阶编织网222的边界,该第二阶编织网222的边界的直径大于第一阶编织网221开口的直径。该第一阶网丝21和第二阶网丝22的自由端都终止于金属网管尾部的圆筒状开口31(如图12所示),该金属网管30尾部的圆筒状开口31的直径大于第二阶网丝22边界的直径。用这种多阶编织网制成的封堵器,其远端的第一阶编织网221由较少的金属丝编织而成,其远端部分向轴线压缩后可以实现更小的横截面积,使封堵器更容易回收进入细小的鞘管。
将金属网管30的尾部收拢并使用钢套40固定住所有网丝末端,使金属网管30的近端封闭,另一端则保持分阶编织结构。然后将网丝末端与钢套40焊接在一起,构成金属网管30的近端,如图13所示。然后在近端固定一个连接装置,该连接装置可以为如图5所示的栓头结构,其一端为与钢套焊接配合的盲孔,另一端则为内螺纹孔。将栓头套在焊接部位,同时再对其进行焊接固定,如图14所示。
然后将金属网管30置于一套模具(包括上模、中模及下模)中热处理定形,如图15所示。原来的金属网管被挤压成双盘状的编织体34,其多阶编织网的靠近远端的部分置于上模中,形成第一盘面36;近端栓头与金属网管30的另一部分置于上模中,形成第二盘面38;用中模定出两个盘面之间的腰部,整个封堵器成轴对称结构。根据实际需要还可定为其他形状,如柱状,盘状等。再用聚酯膜或聚四氟乙烯膜制成不同尺寸的圆形阻流膜60,用手术缝合线70(参见图17)分别缝于编织体34内部的三个位置,分别是第一盘面36的最大直径处、第二盘面38的最大直径处和两盘之间的腰部,如图16所示。对定形好的封堵器,使用缝合线70依次穿过第一阶网丝21的弯折部位,连接成一定周长的柔性环,使多阶编织网结构更稳定,如图17所示。封堵器的最后成品如图18和图19所示,整个封堵器包括编织体34、设置在编织体34内部的阻流膜60和编织体34一侧的栓头80。编织体34包含多阶编织网,分为第一盘面36和第二盘面38,其远端有一个圆形开口32。该多阶编织网包括第一阶编织网221和第二阶编织网222。
实施例2
本发明的第二实施例是在第一实施例基础上改进的。在放置第一阶网丝21时,使其中的一根第一阶网丝穿过所有其他第一阶网丝在相应的第一阶挂丝杆11弯折的部位,这根第一阶网丝绕着同一圈的其他的第一阶挂丝杆11形成一圆环后再挂在与之对应的第一阶挂丝杆11上,然后开始第一阶编织网221的编织,如图20所示。随后的工艺跟第一实施例基本相同,只是减少了使用缝合线70将其开口32连接起来的步骤,因为以上第二实施例同样可达此目的。
实施例3
本发明的第三实施例是在第一实施例基础上改进的。其前几个步骤与第一实施例完全相同。而在放置第二阶网丝22时,使每根第二阶网丝22分别绕一根第二阶挂丝杆12形成一个细环,各自形成的两条分支再一起进行编织,如图21所示。随后的工艺跟第一实施例完全相同。网丝弯折形成的细环,在压缩变形时不易折断,提高金属网的安全性,还便于缝合线穿过其间。
实施例4
本发明的第四实施例是在第三实施例基础上改进的。其制造步骤和方法与第三实施例基本相同,只是在封堵器定形完成后再使用缝合线70穿过第二阶网丝22弯折形成的细环,以用缝合线70闭合的周长来约束第二阶编织网222的边界,进一步稳定封堵器的结构,如图22所示。
实施例5
本发明的第五实施例是在第一实施例基础上改进的。第五实施例与第一实施例的主要区别在于,本实施例的第一阶网丝21挂于第一阶挂丝杆11上,并不直接制作第一阶编织网,而是立即在第二阶挂丝杆12上挂上第二阶网丝22,从垂直于编织夹头的上方俯视,如图23所示。这两阶网丝都挂好后,就形成七十二股不交叉的分支,然后像常规的七十二股网管那样进行编织,也能得到多阶编织网,效果如图24所示。为稳定多阶编织网的结构,最后再使用缝合线70将第一阶网丝21的头部连接起来,构成了第一阶编织网的开口32的边界,如图25所示。这种形态的第一阶编织网221最稀疏,在轴向压缩时有最小的横截面。
实施例6
本发明的第六实施例在第五实施例基础上改进的。第六实施例与第五实施例的主要区别在于,第六实施例的每根第一阶网丝21都跨越三根第一阶挂丝杆11,每根第一阶网丝21的一个分支与另一根第一阶网丝21的一个分支交叉,这两根丝成九十度旋转对称,从而形成一种交错结构,从垂直于编织夹头的上方俯视,如图26所示。当挂好第一阶网丝21后随即挂上第二阶网丝22,这两阶网丝构成七十二股分支,在第一阶网丝21中每一对交叉的分支则为相邻的两股,编织过程如图27所示。为稳定结构最后再使用缝合线70将开口32和第二阶编织网222边界分别约束起来,如图28所示。
对以上任一实施例,第一阶网丝21可采用生物可吸收材料。大量研究表明,镁可以被人体吸收,也具有很好的血液相容性,因此,上述第一阶网丝21可以换成纯镁丝或医用镁合金丝。封堵器由两种金属网丝交织在一起而构成:镁金属构成第一阶编织网221,降低回收进入鞘管时的阻力;第二阶编织网222仍是镍钛合金,提供超弹性支撑结构。正常情况下,封堵器植入人体后,很快会有内皮组织包裹在封堵器表面。经过二至四个月,镁金属网逐渐被人体吸收,只剩下结构完整的镍钛合金网,不会有断头网丝留下的尖刺。人体组织完全包住封堵器后,缺损部位也已经愈合,即使第一阶编织网221消失,第二阶编织网222也不会松脱。由于镁元素很快通过人体代谢排除体外,残留在人体内的封堵器金属量较少,降低了有害的长期金属释放量。
在第五实施例基础上,该第一阶网丝21换成纯镁丝或医用镁合金丝,网管定形后,将第一阶网丝21的头部聚拢,再与一个镁金属封头90固定在一起,如图29所示。这样,镁金属封头90可以进一步降低封堵器回收进入鞘管时的阻力;在人体内,镁金属封头90和第一阶编织网221都逐渐被人体吸收,降低了金属残留量和长期释放量。由于镁金属封头90被人体吸收,避免了封头与金属网丝之间的长期电化学腐蚀,也不会像永久性封头那样长期磨损人体组织。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (17)

  1. 一种封堵器,所述封堵器包括远端、近端以及和设置于所述近端和远端之间且由网丝制成的弹性编织体,其特征在于:所述弹性编织体是由多阶编织网构成的,所述多阶编织网至少包括最靠近所述远端且由多根第一阶网丝编织而成的第一阶编织网及由多根第一阶网丝和第二阶网丝共同编织而成的第二阶编织网,所述第一阶编织网朝垂直于弹性编织体的轴线方向压缩后的最小横截面积小于任何其它阶编织网向轴线压缩后的最小横截面积。
  2. 如权利要求1所述的封堵器,其特征在于:位于所述近端的所有网丝都通过一栓头收紧并固定以使所述近端封闭。
  3. 如权利要求1所述的封堵器,其特征在于:每一阶编织网都设有靠近所述远端的边缘,所述第一阶编织网的边缘形成一开口。
  4. 如权利要求3所述的封堵器,其特征在于:所述边缘都是由所述网丝上的弯折部形成的。
  5. 如权利要求3所述的封堵器,其特征在于:在所述任何一阶编织网的边缘处,每一根网丝弯折成一个随每根网丝扭曲而变形的细环。
  6. 如权利要求4所述的封堵器,其特征在于:在所述任何一阶编织网的所述边缘设置一个相应的固定周长的柔性环,所述柔性环穿过所述弯折部位以防止相应网丝离散;缩小设置于所述第一阶编织网的边缘的柔性环周长,则缩小或闭合所述开口。
  7. 如权利要求6所述的封堵器,其特征在于:所述柔性环由其中一根网丝穿过同一阶网丝的所述弯折部位而形成,所述柔性环绕所述边缘一周。
  8. 如权利要求6所述的封堵器,其特征在于:所述同一阶网丝在各自的所述弯折部设有一个细环,所述柔性环穿过同一阶网丝上的所述细环以防止相应网丝离散。
  9. 如权利要求1所述的封堵器,其特征在于:所述第一阶网丝是由形状记忆合金材料或不锈钢材料或者生物可吸收的材料制成;所述第二阶网丝是由形状记忆合金材料或不锈钢材料制成。
  10. 如权利要求1所述的封堵器,其特征在于:在所述封堵器的远端位于所述第一阶编织网的中心设置一个生物可吸收的材料制成的封头,所述封头将所述第一阶编织网的网丝收拢固定。
  11. 如权利要求9或10所述的封堵器,其特征在于:所述生物可吸收的材料包括镁或镁合金材料。
  12. 如权利要求1所述的封堵器,其特征在于:所述封堵器还包括设置在所述多阶编织网里的阻流膜和缝合线,所述缝合线将所述阻流膜固定于所述多阶编织网上。
  13. 如权利要求1所述的封堵器,其特征在于:所述封堵器还包括设置在近端的连接装置。
  14. 一种封堵器的制造方法,其包括如下步骤:
    步骤一:在模棒一端设置多个挂丝杆,挂丝杆从模棒轴线向外分布于多个同心圆圈上,同一阶的挂丝杆位于同一个圆圈上,在每根挂丝杆上绕一根网丝,从每根网丝向外引出两条分支;
    步骤二:在模棒上用所述网丝分支,制作管状的多阶编织网,先将最内的第一阶挂丝杆上的网丝织成第一阶编织网,再将最内的第一阶挂丝杆和稍外的第二阶挂丝杆上的网丝织成第二阶编织网,依次分阶编织,然后将所有网丝沿模棒侧壁编织成长管状,达到所需网管长度为止;
    步骤三:对模棒上的编织网进行热处理,定形成稳定的网状结构,在所述编织网的第一阶编织网中心形成的开口小于网管的直径,所述开口位于所述封堵器的远端;
    步骤四:将编织网另一端收拢固定,构成所述封堵器的近端,所述封堵器的远端和近端之间构成闭合空腔;
    步骤五:将编织网置于热定形模具中,使其具有所需的封堵器外形和足够的弹性。
  15. 如权利要求14所述的制造方法,其特征在于:在所述步骤四中,将封堵器连接装置固定在所述封堵器的近端。
  16. 如权利要求14所述的制造方法,其特征在于:进一步包括如下步骤,在定形好封堵器之后,将阻流膜缝合在编织网组成的空腔内。
  17. 如权利要求14所述的制造方法,其特征在于:进一步包括如下步骤,用柔性丝依次穿过其第一阶编织网的开口边缘的第一阶网丝,再将柔性丝闭合连接成一个柔性环,使第一阶编织网边缘的第一阶网丝散开的范围以柔性环的周长为限。
PCT/CN2010/078075 2010-09-16 2010-10-25 封堵器及其制造方法 WO2012034298A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/823,869 US9877726B2 (en) 2010-09-16 2010-10-25 Occlusion device and method for its manufacture
EP10857154.8A EP2617386B1 (en) 2010-09-16 2010-10-25 Occlusion device and method for its manufacture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102836522A CN101933850B (zh) 2010-09-16 2010-09-16 封堵器及其制造方法
CN201010283652.2 2010-09-16

Publications (1)

Publication Number Publication Date
WO2012034298A1 true WO2012034298A1 (zh) 2012-03-22

Family

ID=43387576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078075 WO2012034298A1 (zh) 2010-09-16 2010-10-25 封堵器及其制造方法

Country Status (5)

Country Link
US (1) US9877726B2 (zh)
EP (1) EP2617386B1 (zh)
CN (1) CN101933850B (zh)
DE (1) DE202010018194U1 (zh)
WO (1) WO2012034298A1 (zh)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10342546B2 (en) * 2013-01-14 2019-07-09 Microvention, Inc. Occlusive device
US11076860B2 (en) 2014-03-31 2021-08-03 DePuy Synthes Products, Inc. Aneurysm occlusion device
US11154302B2 (en) 2014-03-31 2021-10-26 DePuy Synthes Products, Inc. Aneurysm occlusion device
EP3970635A1 (en) 2014-04-30 2022-03-23 Cerus Endovascular Limited Occlusion device
DE102014018086A1 (de) * 2014-12-04 2016-06-09 Acoredis Gmbh Multiflexibler Occluder zum Verschluss von PFO- und ASD-Defekten und dessen Herstellung
CN104605909A (zh) * 2014-12-30 2015-05-13 先健科技(深圳)有限公司 封堵器及其制作方法以及用于制作封堵器的编织网管
JP7001476B2 (ja) 2015-02-25 2022-02-03 ギャラクシー セラピューティクス インコーポレイテッド 動脈瘤を治療するための装置
CN108992120B (zh) * 2015-07-28 2022-01-07 杭州德诺电生理医疗科技有限公司 一种改进的左心耳封堵器
CN106491167B (zh) * 2015-09-07 2019-09-17 先健科技(深圳)有限公司 可吸收封堵器
EP3146903B1 (en) * 2015-09-23 2019-05-08 Lepu Medical Technology (Beijing) Co., Ltd. Occlusion device for closing an apical hole in the heart wall
EP3386402B1 (en) 2015-12-07 2022-02-23 Cerus Endovascular Limited Occlusion device
CN105433991B (zh) * 2015-12-28 2018-12-07 先健科技(深圳)有限公司 封堵器
JP6752289B2 (ja) * 2015-12-31 2020-09-09 上海錦葵医療器械股分有限公司Mallow Medical (Shanghai)Co.,Ltd. 分解可能なオクルーダー
CN106923886B (zh) * 2015-12-31 2022-04-22 先健科技(深圳)有限公司 左心耳封堵器
US10729447B2 (en) 2016-02-10 2020-08-04 Microvention, Inc. Devices for vascular occlusion
EP3426181B1 (en) 2016-03-11 2020-10-21 Cerus Endovascular Limited Occlusion device
CN106175867A (zh) * 2016-08-30 2016-12-07 上海心玮医疗科技有限公司 一种左心耳封堵器及其制备方法
CN111544060B (zh) 2016-12-31 2023-01-03 先健科技(深圳)有限公司 封堵器
CA3054556A1 (en) 2017-02-23 2018-08-30 DePuy Synthes Products, Inc. Aneurysm device and delivery system
CN107440761A (zh) * 2017-07-20 2017-12-08 上海心玮医疗科技有限公司 一种具有嵌入式钢套的封堵器
US11812971B2 (en) 2017-08-21 2023-11-14 Cerus Endovascular Limited Occlusion device
EP3459469A1 (en) 2017-09-23 2019-03-27 Universität Zürich Medical occluder device
US20210251618A1 (en) * 2017-10-13 2021-08-19 Sree Chitra Tirunal Institute For Medical Sciences And Technology Implantable atrial septal defect occlusion device with woven central section on left atrial flange
US10905430B2 (en) 2018-01-24 2021-02-02 DePuy Synthes Products, Inc. Aneurysm device and delivery system
CN110313946A (zh) * 2018-03-28 2019-10-11 上海微创医疗器械(集团)有限公司 一种封堵装置及其制备方法
US11058430B2 (en) 2018-05-25 2021-07-13 DePuy Synthes Products, Inc. Aneurysm device and delivery system
US11596412B2 (en) 2018-05-25 2023-03-07 DePuy Synthes Products, Inc. Aneurysm device and delivery system
US10939915B2 (en) 2018-05-31 2021-03-09 DePuy Synthes Products, Inc. Aneurysm device and delivery system
US11051825B2 (en) 2018-08-08 2021-07-06 DePuy Synthes Products, Inc. Delivery system for embolic braid
US11123077B2 (en) 2018-09-25 2021-09-21 DePuy Synthes Products, Inc. Intrasaccular device positioning and deployment system
US11076861B2 (en) 2018-10-12 2021-08-03 DePuy Synthes Products, Inc. Folded aneurysm treatment device and delivery method
US11406392B2 (en) 2018-12-12 2022-08-09 DePuy Synthes Products, Inc. Aneurysm occluding device for use with coagulating agents
CN111388044A (zh) * 2018-12-17 2020-07-10 柯惠有限合伙公司 闭塞装置
US11272939B2 (en) 2018-12-18 2022-03-15 DePuy Synthes Products, Inc. Intrasaccular flow diverter for treating cerebral aneurysms
US11911272B2 (en) 2019-01-18 2024-02-27 W. L. Gore & Associates, Inc. Bioabsorbable medical devices
US11134953B2 (en) 2019-02-06 2021-10-05 DePuy Synthes Products, Inc. Adhesive cover occluding device for aneurysm treatment
US11337706B2 (en) 2019-03-27 2022-05-24 DePuy Synthes Products, Inc. Aneurysm treatment device
WO2020221233A1 (zh) * 2019-04-29 2020-11-05 上海锦葵医疗器械股份有限公司 两端无外突点结构的封堵器
US11602350B2 (en) 2019-12-05 2023-03-14 DePuy Synthes Products, Inc. Intrasaccular inverting braid with highly flexible fill material
US11672542B2 (en) 2019-05-21 2023-06-13 DePuy Synthes Products, Inc. Aneurysm treatment with pushable ball segment
US11607226B2 (en) 2019-05-21 2023-03-21 DePuy Synthes Products, Inc. Layered braided aneurysm treatment device with corrugations
US11413046B2 (en) 2019-05-21 2022-08-16 DePuy Synthes Products, Inc. Layered braided aneurysm treatment device
US10653425B1 (en) 2019-05-21 2020-05-19 DePuy Synthes Products, Inc. Layered braided aneurysm treatment device
US11497504B2 (en) 2019-05-21 2022-11-15 DePuy Synthes Products, Inc. Aneurysm treatment with pushable implanted braid
US11278292B2 (en) 2019-05-21 2022-03-22 DePuy Synthes Products, Inc. Inverting braided aneurysm treatment system and method
CN110680415A (zh) * 2019-09-20 2020-01-14 珠海崇健医疗科技有限公司 包覆型封堵器
EP4033999A2 (en) 2019-09-26 2022-08-03 Universität Zürich Left atrial appendage occlusion devices
US11457926B2 (en) 2019-12-18 2022-10-04 DePuy Synthes Products, Inc. Implant having an intrasaccular section and intravascular section
US11406404B2 (en) 2020-02-20 2022-08-09 Cerus Endovascular Limited Clot removal distal protection methods
CN113521633A (zh) * 2020-04-14 2021-10-22 拓荆科技股份有限公司 一种形状记忆金属材料的应用
US11931041B2 (en) 2020-05-12 2024-03-19 Covidien Lp Devices, systems, and methods for the treatment of vascular defects
CN114073560B (zh) * 2020-08-12 2022-11-04 先健科技(深圳)有限公司 封堵装置
CN112773419B (zh) * 2020-12-31 2022-01-07 上海锦葵医疗器械股份有限公司 两端面平整的心脏卵圆孔未闭封堵器及其制造方法
CN112932564A (zh) * 2021-02-01 2021-06-11 上海锦葵医疗器械股份有限公司 可降解的心脏房间隔缺损封堵器及其制造方法
CN112932589B (zh) * 2021-02-01 2022-06-28 上海锦葵医疗器械股份有限公司 两端面平整的心脏动脉导管未闭封堵器及其制造方法
CN112932588A (zh) * 2021-02-01 2021-06-11 上海锦葵医疗器械股份有限公司 可降解的心脏动脉导管未闭封堵器及其制造方法
CN113057694B (zh) * 2021-03-29 2022-05-13 聚辉医疗科技(深圳)有限公司 封堵器及其制作方法
WO2023024221A1 (zh) * 2021-08-24 2023-03-02 上海形状记忆合金材料有限公司 一种编织的单铆可降解植入器械
CN114767179B (zh) * 2022-04-09 2023-05-12 四川大学华西医院 一种房间隔缺损封堵器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1468638A (zh) * 2002-07-16 2004-01-21 王安勤 记忆型封堵支架及其制作方法
CN2613248Y (zh) * 2003-03-21 2004-04-28 龚善石 一种心脏室间隔缺损封堵器
WO2005020822A1 (de) * 2003-08-22 2005-03-10 Jen.Meditech Gmbh Occlusionsinstrument und verfahren zu dessen herstellung
CN2737327Y (zh) * 2004-09-29 2005-11-02 上海锦葵医疗器械有限公司 心房间隔缺损闭合器
CN2741533Y (zh) * 2004-09-29 2005-11-23 上海锦葵医疗器械有限公司 心室间隔缺损闭合器
US20070112381A1 (en) * 2005-11-14 2007-05-17 Jen.Meditec Gmbh Occlusion device and surgical instrument and method for its implantation/explantation
WO2008025405A1 (de) * 2006-08-29 2008-03-06 Peter Osypka Stiftung Stiftung des bürgerlichen Rechts Verschlusselement für öffnungen im herzen, insbesondere asd-verschlusselement
CN201814682U (zh) * 2010-09-16 2011-05-04 先健科技(深圳)有限公司 封堵器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2133382T3 (es) * 1992-01-21 1999-09-16 Univ Minnesota Dispositivo para el cierre de defectos septales.
US5725552A (en) * 1994-07-08 1998-03-10 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US6622604B1 (en) * 2000-01-31 2003-09-23 Scimed Life Systems, Inc. Process for manufacturing a braided bifurcated stent
US8398670B2 (en) * 2004-03-19 2013-03-19 Aga Medical Corporation Multi-layer braided structures for occluding vascular defects and for occluding fluid flow through portions of the vasculature of the body
US7665466B2 (en) * 2005-11-14 2010-02-23 Occlutech Gmbh Self-expanding medical occlusion device
DE102006013770A1 (de) * 2006-03-24 2007-09-27 Occlutech Gmbh Occlusionsinstrument und Verfahren zu dessen Herstellung
US20070265658A1 (en) * 2006-05-12 2007-11-15 Aga Medical Corporation Anchoring and tethering system
DE102006050385A1 (de) * 2006-10-05 2008-04-10 pfm Produkte für die Medizin AG Implantierbare Einrichtung
US9414842B2 (en) * 2007-10-12 2016-08-16 St. Jude Medical, Cardiology Division, Inc. Multi-component vascular device
US20110184439A1 (en) * 2008-05-09 2011-07-28 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Biological Matrix for Cardiac Repair
BR112012010758A2 (pt) * 2009-11-05 2019-09-24 Sequent Medical Inc dispositivos filamentares de camadas múltiplas para tratamento de defeitos vasculares
ES2403009T3 (es) 2010-05-23 2013-05-13 Occlutech Holding Ag Dispositivo médico trenzado y método para su fabricación

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1468638A (zh) * 2002-07-16 2004-01-21 王安勤 记忆型封堵支架及其制作方法
CN2613248Y (zh) * 2003-03-21 2004-04-28 龚善石 一种心脏室间隔缺损封堵器
WO2005020822A1 (de) * 2003-08-22 2005-03-10 Jen.Meditech Gmbh Occlusionsinstrument und verfahren zu dessen herstellung
CN2737327Y (zh) * 2004-09-29 2005-11-02 上海锦葵医疗器械有限公司 心房间隔缺损闭合器
CN2741533Y (zh) * 2004-09-29 2005-11-23 上海锦葵医疗器械有限公司 心室间隔缺损闭合器
US20070112381A1 (en) * 2005-11-14 2007-05-17 Jen.Meditec Gmbh Occlusion device and surgical instrument and method for its implantation/explantation
WO2008025405A1 (de) * 2006-08-29 2008-03-06 Peter Osypka Stiftung Stiftung des bürgerlichen Rechts Verschlusselement für öffnungen im herzen, insbesondere asd-verschlusselement
CN201814682U (zh) * 2010-09-16 2011-05-04 先健科技(深圳)有限公司 封堵器

Also Published As

Publication number Publication date
EP2617386A1 (en) 2013-07-24
US9877726B2 (en) 2018-01-30
EP2617386B1 (en) 2017-10-11
DE202010018194U1 (de) 2014-08-07
US20130178886A1 (en) 2013-07-11
EP2617386A4 (en) 2015-12-16
CN101933850B (zh) 2012-07-18
CN101933850A (zh) 2011-01-05

Similar Documents

Publication Publication Date Title
WO2012034298A1 (zh) 封堵器及其制造方法
US20210378646A1 (en) Multi-layer braided structures for occluding vascular defects
WO2016107357A1 (zh) 封堵器及其制作方法以及用于制作封堵器的编织网管
EP2228020B2 (en) Multi-layer braided structures for occluding vascular defects
WO2014117661A1 (zh) 一种具有可变夹角的扁平盘面的封堵器
US20180132835A1 (en) Multi-layer braided structures for occluding vascular defects and for occluding fluid flow through portions of the vasculature of the body
WO2017113531A1 (zh) 可降解的封堵器
CN113876370A (zh) 封堵器及封堵系统
WO2023160665A1 (zh) 一种封堵器
US20230139430A1 (en) Occluder and Occlusion System
US20220346803A1 (en) Occluder, occluding system, and knotting method for tightening element in occluder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857154

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13823869

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010857154

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010857154

Country of ref document: EP