WO2012033317A2 - Cao를 다량 함유한 비산회 재활용 방법 - Google Patents
Cao를 다량 함유한 비산회 재활용 방법 Download PDFInfo
- Publication number
- WO2012033317A2 WO2012033317A2 PCT/KR2011/006557 KR2011006557W WO2012033317A2 WO 2012033317 A2 WO2012033317 A2 WO 2012033317A2 KR 2011006557 W KR2011006557 W KR 2011006557W WO 2012033317 A2 WO2012033317 A2 WO 2012033317A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fly ash
- magnetic
- aggregate
- weight
- ash
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/06—Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
- C04B18/08—Flue dust, i.e. fly ash
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/02—Agglomerated materials, e.g. artificial aggregates
- C04B18/027—Lightweight materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Definitions
- the present invention relates to a fly ash recycling method containing a large amount of CaO, more specifically, the fly ash generated in a fluidized bed boiler of a thermal power plant is separated into magnetic fly ash and non-magnetic fly ash, and the non-magnetic fly ash is mixed with cement to aggregate
- the magnetic fly ash is prepared or mixed with the low ash obtained from the fluidized bed boiler relates to a fly ash recycling method, characterized in that to produce a lightweight aggregate.
- a boiler is a device for generating steam necessary for a power plant or industrial use, and its components can be viewed from the main body (Furnace, superheater, reheater, pelletizer) and circulation system that generate steam, and the supply and combustion of fuel.
- Combustion apparatus to supply heat source in the inside, supply of air for combustion and ventilation to release combustion and gas, air preheater to recover heat from combustion gas exiting the boiler, remove ash attached to the heating surface of boiler body It consists of additional equipment such as a refining machine and a safety valve to protect the boiler body.
- the PC boiler is a pulverized coal combustion apparatus, and has a combustion temperature of 1500 ° C. and has a problem of generating Nox because it is a high temperature, and coal burns well when the calorific value is high, but it is not efficient when the calorific value is low.
- a circulating fluidized bed (CFB) boiler is a boiler developed for burning low ash coal with a lot of ash, and does not generate nox, which is the most environmentally friendly among conventional boilers. This minimizes the generation of pollutants by minimizing the generation of nitrates and sulfur oxides that can occur during fuel combustion.
- the combustion method unlike PC boilers and other boilers, reduces the temperature of the fuel to maintain the combustion temperature below 1200 °C. It is designed to increase size and to burn slowly while flowing in the furnace.
- Fig. 1 schematically shows the configuration of such a fluidized bed boiler.
- some of the ashes burned in the combustion furnace 1 are cyclone 2 or fluidized bed heat exchanger (FBHE).
- Bed Heat Exchanger (3) is circulated back to the combustion furnace (1), a part of the fly ash (Fly Ash) is introduced into the electrostatic precipitator (5) through the convection heat transfer (4).
- Fly ash obtained from such a fluidized bed boiler, CaO, which is injected excessively at the same time as fuel input for desulfurization treatment, forms a compound such as CaSO 4 in the fluidized bed boiler, or unreacted CaO exists. It appears to contain a large amount.
- the bottom ash gathered at the lower side of the convection heat exchanger 4 is ashed together with air or water through a reservoir / hydro ejector 6 together with the ash captured by the electrostatic precipitator 5. Go to facility (company head) 7.
- Anthracite coal is generated annually in power plants using such boilers, of which about 800,000 tons of fly ash and about 200,000 tons of low ash are generated annually. By the way, most of these fly ashes and low ashes cannot be recycled, and there have been abandoned wastes.
- the present inventors pay attention to the fact that the magnetic fly ash contains a large amount of CaO, the fly ash is separated according to the magnetic status and confirmed that the magnetic fly ash, non-magnetic fly ash can be recycled by using each to prepare aggregate.
- the invention has been completed.
- a fly ash recycling method characterized in that to produce a lightweight aggregate.
- the present invention in the recycling method of fly ash generated in a fluidized bed boiler of a thermal power plant, by separating the fly ash by magnetic force, separating the magnetic fly ash and non-magnetic fly ash, and then separated Sex fly ash is mixed with cement to produce aggregates;
- the separated magnetic fly ash is mixed with the low ash obtained from the fluidized bed boiler to provide a fly ash recycling method, characterized in that to produce a lightweight aggregate.
- Figure 1 shows the structure of a conventionally known fluidized bed boiler.
- Figure 2 is a graph showing the results of XRD analysis of the components of magnetic fly ash and non-magnetic fly ash of Yeosu cogeneration plant.
- FIG. 3 is a flow chart of a fly ash recycling method according to an embodiment of the present invention.
- FIG. 4 is a flow chart of a fly ash recycling method according to another embodiment of the present invention.
- FIG. 5 is a graph showing the results of analyzing the components of fly ash suspension and fly ash suspension injected with CO 2 by XRD.
- Figure 6 is a graph showing a result of analyzing the components of the injected magnetic non-magnetic fly ash and fly ash with a CO 2 CO 2 injection in XRD.
- combustion furnace 2 cyclone
- electrostatic precipitator 6 reservoir / hydro ejector
- the present invention relates to a fly ash recycling method obtained from a fluidized bed boiler, and more particularly, in the fly ash recycling method generated in a fluidized bed boiler of a thermal power plant, the fly ash is magnetically selected, and the magnetic fly ash and the nonmagnetic fly ash circuit are used. After the separation, the separated non-magnetic fly ash is mixed with cement to produce aggregate for carbon dioxide storage, or the separated magnetic fly ash is mixed with the low ash obtained from the fluidized bed boiler to produce a light aggregate. It is about a method.
- the fly ash obtained from the fluidized bed boiler contains a large amount of CaO components.
- the fly ash and the low ash chemical composition obtained from the Yeosu cogeneration plant are examined through XRF analysis.
- fly ash generated from the coal ash of the fluidized bed boiler contains 42.03wt% of CaO component and 22.65wt% of low ash. I can see that there is.
- Ig-Loss is called ignition loss, which means the weight loss caused by volatilization of organic matter, crystal water or CO 2 contained in coal ash at a high temperature of 1,000 ° C.
- a large amount of CaO was detected in the fluidized bed boiler coal ash because a large amount of CaO was added for the desulfurization treatment, and the added CaO reacted with sulfur gas in the fluidized bed boiler, and sulfates such as CaSO 4 and CaO-SiO 2 -H 2 O System compounds and unreacted CaO is present. Therefore, in the present invention, the unreacted CaO is combined with CO 2 to be used as a carbon dioxide storage medium.
- CaO is hydrated with H 2 O first rather than with CO 2 in air at room temperature, resulting in Ca (OH) 2 .
- Ca (OH) 2 is referred to as the CaCO 3 there is slowly reacted with the CO 2 in the air, typically concrete neutralization reaction of the reaction.
- Fe Fe
- Table 1 6.73wt% Fe 2 O 3 is present in the fly ash, and XRF analysis is elemental analysis, so iron (Fe) represented by Fe 2 O 3 contains a large amount of Fe 3 O 4 . This may be explained as the Fe 3 O 4 is generated by the reaction scheme as the coal burns in the fluidized bed boiler.
- the fly ash obtained from the fluidized bed boiler is separated from the magnetic fly ash and the non-magnetic fly ash, and the component thereof is examined using XRD, for example, the fly ash obtained from the Yeosu cogeneration plant is separated by the magnetic fly ash and the non-magnetic fly ash through the magnetic screening, respectively.
- XRD analysis as shown in FIG.
- the fly ash obtained from the fluidized bed boiler is separated from the magnetic fly ash and the nonmagnetic fly ash through magnetic screening.
- the magnetic screening means separating the magnetic and non-magnetic particles using a magnet
- generally magnetic screening methods include dry magnetic screening and wet magnetic screening.
- Fluidized bed boiler fly ash has a very fine particle size, so when dry magnetic screening is performed, static electricity is generated and separation is impossible, and thus, wet magnetic screening is preferable.
- the wet magnetic screening process is specifically, by dispersing fly ash in water (the mixing weight ratio of fly ash and water is 1: 10-20), and separating it by magnetic force of 2,000-10,000 gauss.
- the magnetic force is less than 2,000 gauss, the fly ash is hardly separated.
- it is more than 10,000 gauss, almost all the fly ash is attached to the magnet, making it difficult to separate.
- the aggregate can be prepared by mixing the non-magnetic fly ash and cement, wherein the non-magnetic fly ash and the cement mixture is 5 to 25 parts by weight of cement based on 100 parts by weight of fly ash. You can do If less than 5 parts by weight, strength is not expressed, and if it exceeds 25 parts by weight, there is a problem in that it is not economical due to the cost increase of the aggregate.
- the mixing ratio of the nonmagnetic fly ash and the cement may be characterized in that 90:10.
- the method for producing aggregate by mixing nonmagnetic fly ash and cement may include the following steps:
- the molding refers to a general molding process, which means all of the molding, extrusion molding, compression molding, injection molding, etc., and thus all molding methods known in the art will be applicable.
- the aggregate in molding the aggregate, may be molded in various forms, and it will be apparent to those skilled in the art that the aggregate may be formed in a "panel form".
- various additives such as plastic resin may be mixed together, and then put into a mold and compressed to 90 to 150 ° C. by a press to form a panel having a predetermined size.
- the production of aggregates in the form of panels can be applied in the production of lightweight aggregates as below.
- the compressive strength of the aggregate can be improved, and at the same time, the aggregate can be used as a storage medium for carbon dioxide.
- the gas method means curing while passing CO 2 gas, and the dried aggregate is densified by CO 2 gas injection, thereby improving compressive strength. In storing such CO 2 , it is not possible only under special pressure or temperature conditions.
- the process of producing aggregates in addition to this, it can be treated under conditions of 10 atm or lower, such as 5 atm, but in this case, the aggregate must be prepared for a longer time, and at a pressure of 80 atm where CO 2 becomes a supercritical gas. 2 can be stored.
- the aggregate produced through the steps (i) to (iii) additionally, (iv) at the same time including the step of supplying the CO 2 gas to the aggregate at room temperature to 100 °C of 5 to 15 atm, CO 2 storage and Can produce aggregates with good strength. If the temperature exceeds 100 ° C, the crystal water of the cement hydrate may fall off and the strength may be reduced.
- the cement may be mainly used in Portland cement (OPC), depending on the nature and use of Portland cement, crude steel portland cement, medium heat Portland cement, alumina cement, blast furnace cement, silica cement, fly ash cement, white portland Cement can be used.
- OPC Portland cement
- High Early Strength Portland Cement Higher early strength and higher heat of hydration than ordinary Portland cement. It is good for use in steel construction and shortening of air, but there is a risk of cracking due to internal stress. .
- Moderate-Heat Portland Cement It is suitable for dam or bridge construction because of low heat of hydration and less cracking and less shrinkage.
- Alumina Cement It is good for winter construction because of its high short-term strength and high heat of hydration.
- Fly Ash Cement Cement made by mixing fly ash.
- White Portland Cement It can make colored cement. When manufactured using white clay, it becomes a product such as tile joint and terrazzo tile.
- the magnetic fly ash screened as described above it is possible to produce a lightweight aggregate by mixing the low fly ash obtained from the magnetic fly ash and the fluidized bed boiler, wherein the mixture of magnetic fly ash and low ash is low ash 10 with respect to 100 parts by weight of the magnetic fly ash To 90 parts by weight, for example, the mixing ratio may be characterized in that the magnetic fly ash and low ash is 50:50.
- the method for producing artificial lightweight aggregate by mixing magnetic fly ash and low ash may include the following steps:
- step (iii) the drying may be performed in a rotary dryer for 30 to 90 minutes
- step (iv) the sintering may be performed in a rotary kiln for 30 to 90 minutes.
- the aggregate refers to sand, gravel, crushed stone, slag and the like means a material that is cured with cement, water to make concrete, aggregate may be divided into heavy aggregate and lightweight aggregate.
- the present invention is a recycling method of fly ash generated in a fluidized bed boiler of a thermal power plant, the fly ash is suspended in water, injecting CO 2 gas, and then separated magnetically and non-magnetic fly ash by magnetic separation The separated non-magnetic fly ash is mixed with cement to produce aggregate;
- the separated magnetic fly ash relates to a recycling method of fly ash, characterized in that to produce a light aggregate by mixing with the low ash obtained from the fluidized bed boiler.
- fly ash is suspended in water, CO 2 gas is injected into the suspended mixture, and then separated by magnetic fly ash and non-magnetic fly ash by magnetic separation.
- the non-magnetic fly ash separated as described above is mixed with cement to produce aggregate, and the magnetic fly ash is mixed with low ash obtained from the fluidized bed boiler to produce lightweight aggregate.
- Aggregates, lightweight aggregates manufactured according to the present invention include those that are manufactured in the form of panels, in addition to the production of aggregates, as well as to be manufactured in the form of bricks, blocks, etc., greatly Will be included in the category of aggregate produced according to the invention.
- Fly ash obtained from the fluidized bed boiler of Yeosu cogeneration plant was dispersed in water in a high liquid ratio of 1:10 and magnetically sorted by a 4,000 gaussian wet magnetic separator.
- a specimen of 50 ⁇ 50 ⁇ 50 mm was formed by mixing 10 parts by weight of ordinary portland cement with 100 parts by weight of the non-fly fly ash.
- the molded specimens were cured in a curing furnace at 40 ° C. for 72 hours to prepare aggregate specimens.
- the cured specimen was pressurized for 6 hours after filling with 10% CO 2 and 90% N 2 gas in an autoclave at 20 ° C and 10 atm.Then, the sample was pressurized and the CO 2 storage volume and neutralization depth (KS F 2596) was measured.
- the prepared aggregates are all the same aggregate as the average crushed aggregates in the range of 2.25 ⁇ 2.4 specific gravity, the neutralization length of 25mm means that CO 2 penetrates all over the specimen,
- Example 1 In the case of fly ash aggregate manufactured using non-magnetic fly ash, 17.9% of CO 2 was stored, so that the more COO content of fly ash was, the more effective CO 2 storage was.
- the magnetic fly ash obtained by wet magnetic screening of the fly ash obtained from the Yeosu cogeneration plant and the bottom ash were mixed at a weight part ratio of 3: 7, 5: 5, and 7: 3, respectively.
- the mixed raw materials were extruded to form 10 mm aggregates, and the formed aggregates were dried at a rotary dryer for 1 hour at 150 ° C., and then the dried aggregates were calcined at 1150 ° C. for 1 hour at a rotary kiln.
- the physical properties of the fired lightweight aggregates are shown in Table 5. Since the specific weight is between 1.6 and 1.7 and the absorption ratio is 17 to 21%, it is possible to manufacture the light weight aggregate, and it is confirmed that the effective recycling of magnetic fly ash and low ash is possible. .
- a fly ash suspension was prepared by adding 200 ml of distilled water to 20 g of fly ash obtained from a Yeosu cogeneration plant, and then 99.9% of CO 2 gas was injected at 0.5 L / min for 1 hour.
- the fly ash suspension injected with CO 2 was magnetically screened by a 10,000 gaussian wet magnetic separator, and the CO 2 injected fly ash and the magnetic fly ash were separated.
- the combined heat and Yeosu fly ash, fly ash suspension, each of the composition and the content ratio of the CO 2 is injected into the non-magnetic fly ash and the CO 2 is injected to the magnetic fly ash obtained from the power plant is as shown in Table 6.
- the magnetic fly ash injected with CO 2 shown in Table 6 and the bottom ash were mixed in a weight part ratio of 3: 7, 5: 5, and 7: 3, respectively.
- 10 mm aggregate was formed by extruding the mixed raw materials, and the formed aggregate was dried at a rotary dryer for 1 hour at 150 ° C., and then the dried aggregate was calcined at 1150 ° C. for 1 hour at a rotary kiln to produce lightweight aggregate.
- fly ash recycling method of the present invention by using fly ash and low ash of the power plant which is buried annually for the production of aggregates, it can be effectively recycled, not only solve the environmental problems caused by coal ash landfill, but also aggregate In manufacturing, raw material costs can be reduced, and economical, aggregates with improved compressive strength can be produced.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Civil Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
본 발명은 CaO를 다량 함유한 비산회 재활용 방법에 관한 것으로, 보다 상세하게는, 화력 발전소의 유동층 보일러에서 발생되는 비산회를 자성 비산회와 비자성 비산회로 분리하고, 비자성 비산회는 시멘트와 혼합하여 골재를 제조하거나, 자성 비산회는 상기 유동층 보일러로부터 얻은 저회와 혼합하여 경량골재를 제조하는 것을 특징으로 하는 비산회 재활용 방법에 관한 것이다. 본 발명의 비산회 재활용 방법에 따르면, 매년 매립되고 있는 발전소의 비산회 및 저회를 골재 제조에 이용함으로써, 효과적으로 재활용 할 수 있어, 석탄회 매립에 따른 환경 문제를 해결할 수 있을 뿐만 아니라, 골재 제조에 있어서도 원재료비를 절감할 수 있어 경제적이고, 압축 강도가 향상된 골재를 제조할 수 있다.
Description
본 발명은 CaO를 다량 함유한 비산회 재활용 방법에 관한 것으로, 보다 상세하게는, 화력 발전소의 유동층 보일러에서 발생되는 비산회를 자성 비산회와 비자성 비산회로 분리하고, 비자성 비산회는 시멘트와 혼합하여 골재를 제조하거나, 자성 비산회는 상기 유동층 보일러로부터 얻은 저회와 혼합하여 경량골재를 제조하는 것을 특징으로 하는 비산회 재활용 방법에 관한 것이다.
일반적으로, 보일러는 발전소 또는 산업용으로 필요한 증기를 생성하는 장치로서, 그 구성요소를 살펴보면 증기를 발생시키는 본체(Furnace, 과열기, 재열기, 절탄기) 및 순환계통과, 연료의 공급 및 연소를 통해 보일러 내에 열원을 공급하는 연소장치, 연소에 필요한 공기의 공급 및 연소와 가스를 방출시키는 통풍장치, 기타 보일러를 빠져 나가는 연소가스로부터 열량을 회수하는 공기 예열기, 보일러 본체 전열면에 부착되는 회분을 제거하기 위한 제매기, 보일러 본체를 보호하기 위한 안전 밸브 등 부대설비로 이루어진다.
이러한 보일러 중 PC 보일러는 미분탄 연소장치로써, 1500℃의 연소 온도를 가지며, 고온이므로 Nox를 발생시키는 문제점이 있고, 발열량이 높을 때는 석탄이 잘 타지만, 발열량이 낮을 경우 효율적이지 못하다.
한편, 유동층(CFB, Circulating Fluidized Bed) 보일러는 회분이 많은 저질탄을 연소하기 위하여 개발된 보일러이며, Nox를 생성하지 않아, 기존의 보일러 중 가장 환경 친화적이다. 이는 연료 연소 시 발생될 수 있는 질산화물과 황산화물의 발생을 최소화시킴으로써 오염물질의 발생을 줄이는 것으로, 연소방법은 PC 보일러와 비롯한 다른 보일러와는 달리 연소온도를 1200℃ 이하로 낮게 유지하기 위하여 연료의 크기를 크게 하고 연소로 내에서 유동하면서 서서히 연소되도록 설계되었다.
도 1은 이러한 유동층 보일러의 구성을 개략적으로 도시하고 있다.도면에 도시된 바와 같이, 연소로(1)에서 연소된 회(Ash) 중 일부는 사이크론(2) 또는 유동층 열교환부(FBHE: Fluidized Bed Heat Exchanger)(3)를 거쳐 다시 연소로(1)로 순환되고, 일부는 대류전열부(4)를 거쳐 비산회(Fly Ash)는 전기 집진기(5)로 유입된다. 이러한 유동층 보일러에서 얻어지는 비산회(Fly Ash)의 경우 탈황처리를 위해 연료투입 시 동시에 과량으로 투입되는 CaO가 유동층 보일러에서 CaSO4등의 화합물을 형성하거나 미반응 CaO가 존재하므로 화학성분 분석을 하면 CaO가 다량 함유된 것으로 나타난다.
그리고, 상기 대류전열부(4)의 하측에 모이는 저회(Bottom Ash)는 전기집진기(5)에서 포획되는 회와 더불어 저장소/하이드로 이젝터(Hydro Ejector)(6)를 거쳐 공기 또는 물과 함께 회처리 설비(회사장)(7)로 이동한다.
이러한 보일러를 이용하는 발전소에서 매년 발생되고 있는 무연탄재는 약 100만톤이며, 이중에서 비산회는 약 80만톤, 저회는 약 20만톤 정도 매년 발생되고 있다. 그런데, 이러한 비산회와 저회가 대부분 재활용 되지 못하고, 버려지는 폐단이 있어왔다.
이에, 본 발명자들은 상기 자성 비산회에 CaO가 다량 함유되어 있음에 착안하여, 비산회를 자성 여부에 따라 분리하고 이들 자성 비산회, 비자성 비산회를 골재를 제조하는데 각각 이용하여 재활용 할 수 있음을 확인하고 본 발명을 완성하였다.
발명의 요약
본 발명의 목적은, 화력 발전소의 유동층 보일러에서 발생되는 비산회를 자성 비산회와 비자성 비산회로 분리하고, 비자성 비산회는 시멘트와 혼합하여 골재를 제조하거나, 자성 비산회는 상기 유동층 보일러로부터 얻은 저회와 혼합하여 경량골재를 제조하는 것을 특징으로 하는 비산회 재활용 방법을 제공하는 것이다.
상기와 같은 목적을 달성하기 위하여, 본 발명은, 화력발전소의 유동층 보일러에서 발생되는 비산회의 재활용 방법에 있어서, 상기 비산회를 자력 선별하여, 자성 비산회와 비자성 비산회로 분리한 다음, 상기 분리된 비자성 비산회는 시멘트와 혼합하여 골재를 제조하거나; 상기 분리된 자성 비산회는 상기 유동층 보일러로부터 얻은 저회와 혼합하여 경량골재를 제조하는 것을 특징으로 하는 비산회의 재활용 방법을 제공한다. 본 발명의 다른 특징 및 구현예는 다음의 상세한 설명 및 첨부된 특허청구범위로부터 더욱 명백해 질 것이다.
도 1은 종래 알려져 있는 유동층 보일러의 구조를 도시한 것이다.
도 2는 여수 열병합 발전소의 자성 비산회와 비자성 비산회의 성분을 XRD로 분석한 결과를 나타낸 그래프이다.
도 3은 본 발명의 일 실시예에 따른 비산회 재활용 방법의 순서도이다.
도 4는 본 발명의 다른 실시예에 따른 비산회 재활용 방법의 순서도이다.
도 5는 비산회 현탁액과 CO2가 주입된 비산회 현탁액의 성분을 XRD로 분석한 결과를 나타낸 그래프이다.
도 6는 CO2가 주입된 비자성 비산회와 CO2가 주입된 자성 비산회의 성분을 XRD로 분석한 결과를 나타낸 그래프이다.
<도면의 주요 부분에 대한 부호의 설명>
1 : 연소로 2 : 사이크론
3 : 유동층 열교환부 4 : 대류전열부
5: 전기 집진기 6: 저장소/하이드로이젝터
7: 회사장
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법 은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
이하, 본 발명을 상세히 설명한다.
일 관점에서, 본 발명은 유동층 보일러로부터 얻어지는 비산회 재활용 방법에 관한 것으로, 구체적으로, 화력발전소의 유동층 보일러에서 발생되는 비산회의 재활용 방법에 있어서, 상기 비산회를 자력 선별하여, 자성 비산회와 비자성 비산회로 분리한 다음, 상기 분리된 비자성 비산회는 시멘트와 혼합하여 이산화탄소 저장용 골재를 제조하거나, 상기 분리된 자성 비산회는 상기 유동층 보일러로부터 얻은 저회와 혼합하여 경량골재를 제조하는 것을 특징으로 하는 비산회의 재활용 방법에 관한 것이다.
유동층 보일러로부터 얻어지는 비산회는 CaO 성분이 다량 함유되어 있는데, 그 일 예로, 여수 열병합 발전소에서 얻은 비산회 및 저회의 화학 조성을 XRF 분석을 통해 그 성분을 살펴보면 아래와 같다.
일반적인 비산회의 CaO 함량이 1 ~ 5wt%인 것에 비하여, 유동층 보일러의 석탄회에서 발생하는 비산회의 경우, 상기 표 1에 나타난 바와 같이, CaO 성분이 42.03wt% 이고, 저회는 22.65wt%로 다량 함유되어 있는 것을 알 수 있다. 또한, Ig-Loss는 강열감량이라고 하는데 석탄회에 포함된, 유기물이나 결정수 또는 CO2가 1,000℃의 고온에서 휘발되어 나타나는 무게 감량을 의미한다.
유동층 보일러 석탄회에 다량의 CaO가 검출된 것은 탈황처리를 위해 CaO를 다량 첨가하였기 때문이고, 첨가된 CaO는 유동층 보일러 안에서 황가스와 반응하여, CaSO4등의 황산염과 CaO-SiO2-H2O계의 화합물을 형성하고, 미반응 CaO가 존재한다. 따라서, 본 발명에서는 이러한 미반응 CaO를 CO2와 결합시켜 이산화탄소 저장매체로 이용하는 것을 특징으로 한다.
그런데 CaO는 상온에서 공기 중의 CO2와의 반응보다는 H2O와 수화반응이 먼저 일어나 Ca(OH)2가 된다. 이렇게 생성된 Ca(OH)2는 공기중의 CO2와 서서히 반응하여 CaCO3가 되는데, 이 반응을 일반적으로 콘크리트 중성화 반응이라고 부른다.
본 발명에서는 콘크리트 중성화 반응을 이용하여 유동층 보일러 비산회를 이산화탄소 저장매체로 활용하기 위하여 비산회 중 CaO 성분을 집적할 필요가 있어 자력선별을 한 것이다.
상기 표 1에 나타난 바와 같이, 비산회에는 6.73wt%의 Fe2O3가 존재하는데 XRF분석은 원소분석이므로, Fe2O3로 표현되는 철분(Fe)은 Fe3O4도 다량 포함하고 있다. 이는 유동층 보일러 내에서 석탄이 연소하면서 아래와 같은 반응식에 의해 Fe3O4가 생성되는 것으로 설명될 수 있다.
반응식 1
C + O2→ CO2
C + CO2→ 2CO
3Fe2O3+CO→ 2Fe3O4+CO2
생성된 Fe3O4는 자성물질이기에 자력선별을 하면 자성을 띈 비산회와 비자성인 CaO를 분리할 수 있게 된다.
이러한 유동층 보일러로부터 얻어진 비산회를 자성 비산회와 비자성 비산회로 분리하여 그 성분을 XRD를 이용하여 살펴보면, 예컨대, 여수 열병합 발전소에서 얻어진 비산회를 자력 선별을 통해 자성 비산회 및 비자성 비산회로 분리하여 각각의 성분을 XRD 분석하면 도 2와 같이 나타난다.
도 2에 도시된 바와 같이, 비자성 비산회의 경우, Ca(OH)2의 함량이 높은 반면, 자성 비산회의 경우는 그에 비해 Ca(OH)2의 함량이 낮게 나타났고, SiO2의 함량은 자성 비산회의 경우가 높게 나타난다.
따라서, 본 발명에서는 상기 유동층 보일러부터 얻어진 비산회를 자력 선별을 통하여 자성 비산회와 비자성 비산회로 분리한다.
여기서, 자력 선별은 자석을 이용하여 자성과 비자성 입자로 분리하는 것을 의미하며, 일반적으로 자력 선별방법에는 건식자력선별과 습식자력선별이 있다.
유동층 보일러 비산회는 입도가 매우 미세하므로 건식자력선별을 할 경우에는 정전기가 발생하여 분리가 불가능하므로, 습식자력선별이 바람직하다.
습식 자력 선별 과정은, 구체적으로, 비산회를 물에 분산시켜서 (비산회와 물의 혼합 중량비는 1:10∼20), 2,000 내지 10,000 가우스의 자력으로 분리한다. 자력이 2,000 가우스 미만일 경우에는 비산회의 분리가 거의 안 일어나며 10,000 가우스 이상일 때는 거의 모든 비산회가 자석에 붙어 분리가 힘들게 된다.
이렇게 선별된 비자성 비산회의 경우, 상기 비자성 비산회와 시멘트를 혼합하여 골재를 제조할 수 있고, 여기서, 비자성 비산회 및 시멘트의 혼합은 비산회 100중량부에 대하여, 시멘트 5 내지 25 중량부인 것을 특징으로 할 수 있다. 상기 5 중량부 미만인 경우, 강도발현이 되지 않고, 25 중량부 초과하는 경우에는 골재의 원가 상승으로 경제적이지 못한 문제점이 있다. 바람직하게는, 비자성 비산회 및 시멘트의 혼합비는 90:10 인 것을 특징으로 할 수 있다.
또한, 비자성 비산회와 시멘트를 혼합하여 골재를 제조하는 방법은, 다음의 단계를 포함할 수 있다:
(i) 상기 비자성 비산회 100중량부에 대하여 시멘트 5 내지 25중량부를 혼합하는 단계; (ii) 상기 혼합물을 성형하는 단계; 및 (iii) 상기 성형체를 30∼50℃에서 24 내지 72 시간동안 건조하는 단계를 통하여 골재를 제조할 수 있다.
여기서, 상기 성형은 일반적인 성형 가공 과정을 의미하는 것으로, 조립성형, 압출성형, 압축 성형, 사출 성형 등을 모두 통칭하는 의미로, 따라서 동 기술분야에 알려져 있는 성형 방법 모두가 적용가능할 것이다.
아울러, 골재를 성형함에 있어서, 골재는 다양한 형태로 성형될 수 있으며, 골재를 "패널 형태"로 성형할 수 있음은 당업자에게 자명할 것이다.
또한, 상기와 같이 제작된 골재를 이용하여 플라스틱 수지 등 다양한 첨가물을 함께 혼합한 다음, 금형에 넣고 프레스로 90~150℃로 압축하여 소정 크기의 패널형태로 성형할 수 있다.
이러한 패널 형태의 골재 제조는 아래 경량골재의 제조에서도 마찬가지로 적용될 수 있다.
이렇게 제조된 골재를 가스법(CO2법)을 이용함으로써, 골재의 압축 강도를 향상시킬 수 있음과 동시에, 이러한 골재는 이산화탄소의 저장 매체로 사용할 수 있다. 가스법이란, CO2가스를 통과시켜주면서 경화되는 것을 의미하며, 건조된 골재가 CO2가스 주입을 통해 조직이 치밀해져 압축강도가 향상되는 것이다. 이러한 CO2를 저장시키는데 있어서, 특별한 압력조건이나 온도조건에서만 가능한 것은 아니다.
일반적인 패널이나 파일 제조에 있어서, 강도 증진을 위해 오토클레이브에서 약 180℃, 10 기압으로 양생하므로, 예컨대, 상온 10기압의 오토클레이브에서 2 내지 10시간동안 놓아둘 경우, CO2를 효율적으로 저장할 수 있으므로, 이산화탄소 저장용 골재로써 사용될 수 있다.
골재 제조 과정에 있어서, 이 이외에도 10 기압 이하의 조건, 예컨대 5 기압에서도 처리할 수 있으나, 이 경우 더 많은 시간동안 제조된 골재를 두어야 하고, CO2가 초임계 가스가 되는 80기압의 조건에서도 CO2저장이 가능하다.
따라서, 상기 (i) 내지 (iii) 단계를 통해 제조된 골재는 추가적으로, (iv) 5 내지 15기압의 상온 내지 100℃에서 CO2가스를 골재에 공급하는 단계를 포함하여, CO2저장함과 동시에, 우수한 강도를 가진 골재를 제조할 수 있다. 만약, 100℃를 초과하면 시멘트 수화물의 결정수가 탈락하여 강도저하가 우려된다.
또한, 상기 시멘트는 주로 보통 포틀랜드 시멘트(OPC)가 사용될 수 있으며, 그 성질과 용도에 따라 포틀랜드 시멘트, 조강 포틀랜드 시멘트, 중용열 포틀랜드 시멘트, 알루미나 시멘트, 고로 시멘트, 실리카 시멘트, 플라이 애쉬 시멘트, 백색 포틀랜드 시멘트가 사용될 수 있다.
① 보통 포틀랜드 시멘트(Portland Cement): 수경성 시멘트의 대표적인 것으로 가장 보편적인 시멘트로서 구조용이나 마감용으로 많이 사용된다.
② 조강 포틀랜드 시멘트(High Early Strength Portland Cement): 보통 포틀랜드 시멘트에 비해서 조기 강도가 크며 수화열이 높아 겨우리철 공사에 사용하기 좋고 공기단축을 위한 공사에 사용하나 내부응력에 의한 균열 발생의 우려가 있다.
③ 중용열 포틀랜드 시멘트(Moderate - Heat Portland Cement): 수화열이 낮아 균열발생이 적고 수축율이 적기 때문에 댐이나 교량공사에 적합하다.
④ 알루미나 시멘트(Alumina Cement): 단기강도가 크고 수화열이 매우 높아 겨울철 공사에 좋으며 긴급공사에 쓰이나 수화열이 높아 균열발생의 우려가 크다.
⑤ 고로 시멘트(Slag Cement): 광재(Slag)가 첨가된 시멘트로써 수화열이 낮고 균열발생이 적어서 댐이나 해안공사에 적합하다.
⑥ 실리카 시멘트(Silica Cement): 수화열이 낮아 수밀성이 크며 화학적 성질이 강해서 해안공사 등에 사용한다.
⑦ 플라이 애시 시멘트(Fly - Ash Cement): 플라이 애시를 혼합하여 만든 시멘트로서 시공연도가 좋아지고 장기강도가 강해지는 시멘트이다.
⑧ 백색 포틀랜드 시멘트(White Portland Cement): 착색 시멘트를 만들 수 있으며 백색 점토를 사용하여 제조하면 타일줄눈 및 테라조타일 등의 제품이 된다.
또한, 상기와 같이 선별된 자성 비산회의 경우, 상기 자성 비산회와 상기 유동층 보일러로부터 얻은 저회를 혼합하여 경량 골재를 제조할 수 있으며, 여기서 자성 비산회 및 저회의 혼합은 자성 비산회 100중량부에 대하여 저회 10 내지 90중량부인 것을 특징으로 할 수 있으며, 예컨대, 혼합 비율은 자성 비산회와 저회가 50:50 인 것을 특징으로 할 수 있다.
또한, 자성 비산회와 저회를 혼합하여 인공 경량 골재를 제조하는 방법은 다음의 단계를 포함할 수 있다:
(i) 상기 자성 비산회 100중량부에 대하여, 저회 10 내지 90중량부를 혼합하는 단계; (ii) 상기 혼합물을 성형하는 단계; (iii) 상기 성형체를 100~200℃에서 건조하는 단계; 및 (iv) 상기 건조된 성형체를 1000~1200℃에서 소결하는 단계.
여기서, 상기 (iii) 단계에서 건조는 30~90분 동안 로타리 건조기에서 수행되는 것을 특징으로 할 수 있으며, (iv) 단계에서 소결은 30~90분 동안 로타리 킬른에서 수행되는 것을 특징으로 할 수 있다.
여기서, 골재는 모래, 자갈, 쇄석, 슬래그 등을 칭하는 것으로 콘크리트를 만들기 위해 시멘트, 물과 함께 경화하는 재료를 의미하며, 골재는 중량 골재와 경량 골재로 나뉠 수 있다.
다른 관점에서, 본 발명은 화력발전소의 유동층 보일러에서 발생되는 비산회의 재활용 방법에 있어서, 상기 비산회를 물에 현탁시키고, CO2가스를 주입한 다음, 자력선별하여 자성 비산회와 비자성 비산회로 분리하고, 상기 분리된 비자성 비산회는 시멘트와 혼합하여 골재를 제조하거나; 상기 분리된 자성 비산회는 상기 유동층 보일러로부터 얻은 저회와 혼합하여 경량골재를 제조하는 것을 특징으로 하는 비산회의 재활용 방법에 관한 것이다.
본 발명에 따른 비산회 재활용 방법은 도 4에 나타난 바와 같이, 비산회를 물에 현탁시키고, 상기 현탁된 혼합물에 CO2가스를 주입한 다음, 자력선별하여 자성 비산회와 비자성 비산회로 분리한다. 전술된 바와 같이 분리된 비자성 비산회는 시멘트와 혼합하여 골재로 제조하고, 자성 비산회는 상기 유동층 보일러로부터 얻은 저회와 혼합하여 경량골재를 제조한다.
본 발명에 따라 제조된 골재, 경량 골재는, 앞서 언급한 바와 같이, 패널 형태로 제작되는 것을 포함하며, 이 이외에도, 골재로써의 제작뿐만 아니라, 벽돌, 블럭 등의 형태로 제작되는 것 또한, 크게는, 본 발명에 따라 생산되는 골재의 범주에 포함될 것이다.
이하 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1: CaO를 함유한 비산화 재활용 방법
1-1: 비자성 비산회의 재활용 방법
(1) 비자성 비산회를 이용한 골재의 제조
여수 열병합 발전소의 유동층 보일러로부터 얻은 비산회를 고액비 1:10으로 물에 분산시키고, 4,000 가우스의 습식 자력 선별기에서 자력 선별하였다.
상기 표 2와 같이, 분리된 비산회 중에서 비자성비산회 100중량부에 10중량부의 보통 포틀랜드 시멘트를 섞어서 50×50×50mm의 시편을 성형하였다. 성형된 시편을 40℃의 양생로에서 72시간동안 양생하여, 골재 시편을 제조하였다.
아울러, 비교예로써, 상기 자력선별을 하지 아니한 비산회 (비교예 1) 및 자성 비산회(비교예 2)도 동일한 함량비와 제조과정으로 골재시편을 제조하였다.
이렇게 양생된 시편을 20℃, 10기압의 오토클래이브에서 CO210%,N290%의 가스를 채운 후 6시간동안 가압하고, 가압이 끝난 시편을 꺼내서 CO2저장량과 중성화 깊이(KS F 2596)를 측정하였다.
상기 표 3에 나타난 바와 같이, 제조된 골재들은 모두 비중이 2.25∼2.4 범위로 일반 쇄석 골재와 같은 골재이며, 중성화 길이가 25mm인 것은 CO2가 시편 전부위에 침투한 것을 의미하며, 실시예 1의 비자성 비산회를 이용하여 제작한 비산회 골재의 경우, 17.9%의 CO2를 저장함으로써, 비산회의 CaO함량이 많을수록 CO2저장이 효과적이라는 것을 확인할 수 있었고, 비산회의 효과적인 재활용이 가능하였다.
상기 표 4에 나타난 바와 같이, 제조된 골재를 CO2처리 전 (상기 10기압의 오토클래이브에서 CO210%,N290%의 가스를 채운 후 6시간동안 가압 과정의 처리 전)과 처리 후에 압축 강도를 측정한 결과, CO2반응 후의 골재의 압축강도가 현저히 증가되었다.
1-2: 자성 비산회의 재활용 방법
(1) 자성 비산회를 이용한 경량 골재의 제조
여수 열병합 발전소로부터 얻은 비산회를 상기와 같은 과정으로 습식 자력 선별하여 얻은 자성 비산회와 저회를 각각 3:7, 5:5, 7:3의 중량부 비율로 혼합하였다. 혼합된 원료를 압출 성형하여 10mm의 골재를 성형하고, 성형된 골재는 150℃에서 1시간 로타리 건조기에서 건조한 다음, 건조된 골재를 로타리킬른에서 1150℃에서 1시간 소성하였다.
이렇게 소성된 경량골재의 물성을 표 5에 도시하였으며, 비중이 1.6~1.7 사이이고, 흡수율이 17~21%인 인공경량골재의 제조가 가능하므로, 자성 비산회와 저회의 효과적인 재활용이 가능함을 확인하였다.
실시예 2: CaO를 함유한 비산화 재활용 방법
여수 열병합 발전소로부터 얻은 비산회 20g에 증류수 200ml를 첨가시켜 비산회 현탁액을 제조한 다음, 상기 제조된 비산회 현탁액에 99.9%의 CO2가스를 0.5L/min로 1시간 동안 주입하였다. 상기 CO2가 주입된 비산회 현탁액은 10,000 가우스의 습식 자력 선별기에서 자력 선별하여 CO2가 주입된비자성비산회와자성비산회로각각선별하였다. 상기 여수 열병합 발전소로부터 얻은 비산회, 비산회 현탁액, CO2가 주입된 비자성 비산회 및 CO2가 주입된 자성 비산회의 각각의 조성 및 함량비는 하기 표 6에 기재된 바와 같다.
또한, 비산회 현탁액과 CO2가 주입된 비산회 현탁액의 성분을 XRD로 측정하였다. 그 결과, 도 5에 도시된 바와 같이, CO2가 주입되지 않은 비산회 현탁액의 경우 CaCO3의 함량이 낮게 나타났고, Ca(OH)2의 함량은 높게 나타난 반면, CO2가 주입된 비산회 현탁액의 경우에는 CaCO3성분만이 높은 것으로 나타났다. 이는 수화된 비산회 내의 Ca(OH)2가CO2의 주입으로CO2와 반응하여 CaCO3가 합성된 것을 알 수 있었다.
또한, CO2가 주입된 비자성 비산회와 자성 비산회의 성분을 XRD로 측정하였다. 그 결과, 도 6에 도시된 바와 같이, CO2가 주입된 비자성 비산화와 자성 비산회 성분 모두 CaCO3가 함유되어 있는 것으로 나타났다.
상기 표 6에 나타낸 CO2가 주입된 비자성 비산회 100중량부에 10중량부의 보통 포틀랜드 시멘트를 섞어서 50×50×50mm의 시편을 성형하였다. 성형된 시편을 40℃의 양생로에서 72시간동안 양생하여, 골재 시편을 제조하였다.
한편, 상기 표 6에 나타낸 CO2가 주입된 자성 비산회와 저회를 각각 3:7, 5:5, 7:3의 중량부 비율로 혼합하였다. 혼합된 원료를 압출 성형하여 10mm의 골재를 성형하고, 성형된 골재는 150℃에서 1시간 로타리 건조기에서 건조한 다음, 건조된 골재를 로타리킬른에서 1150℃에서 1시간 소성하여 경량골재를 제조하였다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
이상 설명한 바와 같이, 본 발명의 비산회 재활용 방법에 따르면, 매년 매립되고 있는 발전소의 비산회 및 저회를 골재 제조에 이용함으로써, 효과적으로 재활용 할 수 있어, 석탄회 매립에 따른 환경 문제를 해결할 수 있을 뿐만 아니라, 골재 제조에 있어서도 원재료비를 절감할 수 있어 경제적이고, 압축 강도가 향상된 골재를 제조할 수 있다.
Claims (15)
- 화력발전소의 유동층 보일러에서 발생되는 비산회의 재활용 방법에 있어서,상기 비산회를 자력 선별하여, 자성 비산회와 비자성 비산회로 분리한 다음, 상기 분리된 비자성 비산회는 시멘트와 혼합하여 골재를 제조하거나; 상기 분리된 자성 비산회는 상기 유동층 보일러로부터 얻은 저회와 혼합하여 경량골재를 제조하는 것을 특징으로 하는 비산회의 재활용 방법.
- 제1항에 있어서, 상기 자력 선별은 습식 자력 선별 방법인 것을 특징으로 하는 방법.
- 제1항에 있어서, 상기 비자성 비산회 100중량부에 대하여 시멘트 5 내지 25중량부 혼합하는 것을 특징으로 하는 방법.
- 제1항에 있어서, 상기 골재는,(i) 비자성 비산회 100중량부에 대하여 시멘트 5 내지 25중량부를 혼합하는 단계;(ii) 상기 혼합물을 성형하는 단계; 및(iii) 상기 성형체를 30~50℃에서 건조하는 단계를 통하여 제조하는 것을 특징으로 하는 방법.
- 제1항에 있어서, 상기 자성 비산회 100중량부에 대하여 저회 10 내지 90중량부를 혼합하는 것을 특징으로 하는 방법.
- 제4항에 있어서, (iv) 상기 (iii) 단계에서 제조된 골재에 CO2가스를 주입하는 단계를 추가로 포함하는 것을 특징으로 하는 방법.
- 제6항에 있어서, 상기 (iv) 단계는 5 ~ 15기압의 상온 ~ 100℃에서 CO2가스를 주입하는 것을 특징으로 하는 방법.
- 제1항에 있어서, 상기 경량골재는,(i) 자성 비산회 100중량부에 대하여 저회 10 내지 90중량부를 혼합하는 단계;(ii) 상기 혼합물을 성형하는 단계;(iii) 상기 성형체를 100~200℃에서 건조하는 단계; 및(iv) 상기 건조된 성형체를 1000~1200℃에서 소결하는 단계를 통하여 제조하는 것을 특징으로 하는 방법.
- 화력발전소의 유동층 보일러에서 발생되는 비산회의 재활용 방법에 있어서,상기 비산회를 물에 현탁시키고, 상기 현탁물에 CO2가스를 주입한 다음, 자력선별하여 자성 비산회와 비자성 비산회로 분리하고, 상기 분리된 비자성 비산회는 시멘트와 혼합하여 골재를 제조하거나; 상기 분리된 자성 비산회는 상기 유동층 보일러로부터 얻은 저회와 혼합하여 경량골재를 제조하는 것을 특징으로 하는 비산회의 재활용 방법.
- 제9항에 있어서, 상기 자력 선별은 습식 자력 선별 방법인 것을 특징으로 하는 방법.
- 제9항에 있어서, 상기 비자성 비산회 100중량부에 대하여 시멘트 5 내지 25중량부 혼합하는 것을 특징으로 하는 방법.
- 제9항에 있어서, 상기 골재는,(i) 비자성 비산회 100중량부에 대하여 시멘트 5 내지 25중량부를 혼합하는 단계;(ii) 상기 혼합물을 성형하는 단계; 및(iii) 상기 성형체를 30~50℃에서 건조하는 단계를 통하여 제조하는 것을 특징으로 하는 방법.
- 제9항에 있어서, 상기 자성 비산회 100중량부에 대하여 저회 10 내지 90중량부를 혼합하는 것을 특징으로 하는 방법.
- 제9항에 있어서, 상기 CO2가스 주입은 5 ~ 15기압의 상온 ~ 100℃에서 수행되는 것을 특징으로 하는 방법.
- 제9항에 있어서, 상기 경량골재는,(i) 자성 비산회 100중량부에 대하여 저회 10 내지 90중량부를 혼합하는 단계;(ii) 상기 혼합물을 성형하는 단계;(iii) 상기 성형체를 100~200℃에서 건조하는 단계; 및(iv) 상기 건조된 성형체를 1000~1200℃에서 소결하는 단계를 통하여 제조하는 것을 특징으로 하는 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2010-0088142 | 2010-09-08 | ||
KR20100088142A KR101226263B1 (ko) | 2010-09-08 | 2010-09-08 | CaO를 다량 함유한 비산회 재활용 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012033317A2 true WO2012033317A2 (ko) | 2012-03-15 |
WO2012033317A3 WO2012033317A3 (ko) | 2012-05-31 |
Family
ID=45811057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/006557 WO2012033317A2 (ko) | 2010-09-08 | 2011-09-05 | Cao를 다량 함유한 비산회 재활용 방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101226263B1 (ko) |
WO (1) | WO2012033317A2 (ko) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101354249B1 (ko) * | 2012-11-19 | 2014-01-22 | 주식회사 디제론 | 유동층상 보일러의 비산재를 이용한 아우인계 시멘트 조성물 및 그 제조방법 |
KR101642923B1 (ko) * | 2013-10-29 | 2016-07-26 | 한국남동발전 주식회사 | 석탄회로부터 추출된 실리카 알루미나계 혼화재가 배합된 시멘트 콘크리트 및 그 제조방법 |
KR101985912B1 (ko) * | 2018-07-11 | 2019-06-04 | 강원대학교산학협력단 | 유동층 석탄보일러 바닥회의 재활용 방법 |
KR101962847B1 (ko) | 2018-08-09 | 2019-03-27 | 케이하나시멘트(주) | 저발열 혼합시멘트용 고성능 플라이애시의 제조방법 |
CN109605231B (zh) * | 2018-12-06 | 2019-12-17 | 福建省圣新能源股份有限公司 | 一种鸡粪锅炉喷砂扬尘的收集方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0582008A1 (en) * | 1992-08-04 | 1994-02-09 | Municipal Services Corporation | Fixation and utilization of ash residue from the incineration of municipal solid waste |
JPH1129346A (ja) * | 1997-07-07 | 1999-02-02 | Boogen Fuairu:Kk | 人工骨材・軽量骨材等として用いる吸着酸化触媒材及びその製造方法 |
JP2005074349A (ja) * | 2003-09-02 | 2005-03-24 | Kazuo Nakano | 燃焼灰からの金属化合物類の分別回収方法 |
KR20100004568A (ko) * | 2008-07-04 | 2010-01-13 | 주식회사 유진테크 | 석탄회 재활용 장치 및 방법 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950011361A (ko) * | 1993-10-12 | 1995-05-15 | 천성순 | 플라이 애쉬를 이용한 경량 골재의 제조 방법 및 경량 골재 |
-
2010
- 2010-09-08 KR KR20100088142A patent/KR101226263B1/ko active IP Right Grant
-
2011
- 2011-09-05 WO PCT/KR2011/006557 patent/WO2012033317A2/ko active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0582008A1 (en) * | 1992-08-04 | 1994-02-09 | Municipal Services Corporation | Fixation and utilization of ash residue from the incineration of municipal solid waste |
JPH1129346A (ja) * | 1997-07-07 | 1999-02-02 | Boogen Fuairu:Kk | 人工骨材・軽量骨材等として用いる吸着酸化触媒材及びその製造方法 |
JP2005074349A (ja) * | 2003-09-02 | 2005-03-24 | Kazuo Nakano | 燃焼灰からの金属化合物類の分別回収方法 |
KR20100004568A (ko) * | 2008-07-04 | 2010-01-13 | 주식회사 유진테크 | 석탄회 재활용 장치 및 방법 |
Also Published As
Publication number | Publication date |
---|---|
WO2012033317A3 (ko) | 2012-05-31 |
KR101226263B1 (ko) | 2013-01-25 |
KR20120025937A (ko) | 2012-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010002216A2 (ko) | 석탄회 재활용 장치 및 방법 | |
US4265671A (en) | Method of utilizing fly ash from power works and refuse disposal plants in the production of cement clinkers, and a plant for carrying out said method | |
WO2012033317A2 (ko) | Cao를 다량 함유한 비산회 재활용 방법 | |
KR101242097B1 (ko) | 친환경 상온순환아스콘 | |
WO2013039311A2 (ko) | 석탄 폐자원을 이용한 미네랄펄프 제조방법 | |
CN102989744B (zh) | 一种电解槽大修槽渣混合料渣的回收利用方法 | |
WO2018151526A1 (ko) | 순환유동층발전소 발전회의 이산화탄소 고용화를 통한 복합탄산칼슘 제조방법 및 이에 따라 제조된 복합탄산칼슘 | |
WO2013006011A2 (ko) | 폐기물을 이용한 경량 건축자재의 제조 방법 및 이로부터 제조된 경량 건축자재 | |
WO2018074643A1 (ko) | 순환유동층 보일러의 이산화탄소가 고정화된 비산재 및 바닥재를 포함하는 광산채움재 조성물 | |
WO2017122916A1 (ko) | 무시멘트 결합재 및 이의 응용 | |
CN102978659A (zh) | 一种电解槽大修槽渣的深度资源化综合利用方法 | |
WO2017131330A1 (ko) | 황산처리된 굴패각을 포함하는 고화재 및 이를 이용한 시공방법 | |
CN108314366B (zh) | 一种利用生活垃圾焚烧飞灰和炉渣制砖的方法 | |
WO2022158640A1 (ko) | 고로슬래그 잔골재 및 레미콘회수수가 적용된 친환경 모르타르 조성물 | |
WO2019013390A1 (ko) | 실리카계 슬래그 미분말을 포함하는 phc 파일용 콘크리트 조성물, 이를 이용한 phc 파일의 제조방법 및 이에 의해 제조된 고성능 phc 파일 | |
EP4259590A1 (en) | Method of producing a synthetic carbonated mineral component in a cement manufacturing plant | |
CN102992298A (zh) | 一种电解槽大修槽渣废阴极炭块的回收利用方法 | |
WO2013032086A1 (ko) | 유기성 슬러지 고화제 및 이를 이용한 인공토양 제조방법 | |
WO2017023050A1 (ko) | 페로니켈 슬래그 미분을 이용한 마그네시아 인산염 복합체의 제조방법 및 이에 의해 제조된 페로니켈 슬래그 미분을 이용한 마그네시아 인산염 복합체 | |
WO2010101412A2 (ko) | 냉연 및 열연 슬러지를 이용한 인공경량골재의 제조방법 | |
CN108191320B (zh) | 一种利用生活垃圾焚烧飞灰制作防水氯氧镁耐火砖的方法 | |
WO2023075512A1 (ko) | 정련슬래그를 이용한 저탄소 슬래그 분말 제조방법, 상기 방법으로 제조된 슬래그 분말을 이용한 급결제 및 시멘트 조성물 | |
KR100502070B1 (ko) | 산업부산물을 포함하는 무기질 결합재와, 이를 이용한 모르타르 및 콘크리트 | |
KR101237710B1 (ko) | 아스팔트 포장용 채움재 조성물 | |
WO2022169056A1 (ko) | 하수슬러지 중의 유기물 함유 파우더를 이용한 모르타르용 조성물 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11823750 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11823750 Country of ref document: EP Kind code of ref document: A2 |