WO2012032943A1 - 微小コイル、その製造方法及び製造装置 - Google Patents
微小コイル、その製造方法及び製造装置 Download PDFInfo
- Publication number
- WO2012032943A1 WO2012032943A1 PCT/JP2011/069151 JP2011069151W WO2012032943A1 WO 2012032943 A1 WO2012032943 A1 WO 2012032943A1 JP 2011069151 W JP2011069151 W JP 2011069151W WO 2012032943 A1 WO2012032943 A1 WO 2012032943A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- container body
- microcoil
- source gas
- gas
- base material
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/005—Growth of whiskers or needles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/08—Reaction chambers; Selection of materials therefor
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/10—Heating of the reaction chamber or the substrate
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
- D01F9/1273—Alkenes, alkynes
- D01F9/1275—Acetylene
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
- D01F9/133—Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/12—Oxidising
- B01J37/14—Oxidising with gases containing free oxygen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
Definitions
- the present invention relates to a microcoil, a manufacturing method thereof, and a manufacturing apparatus.
- Patent Document 1 a manufacturing apparatus for coiled carbon fiber described in Patent Document 1 below has been proposed.
- This manufacturing apparatus has a tubular reaction vessel required for growing coiled carbon fibers.
- the reaction vessel is provided with an inlet, a pair of inlets, and an outlet.
- the inflow port protrudes from the central upper peripheral surface of the reaction vessel, and the inflow port plays a role of flowing a raw material gas such as hydrocarbon gas or carbon monoxide gas into the reaction vessel.
- the pair of inlets are formed to protrude from the upper peripheral surfaces of both ends of the reaction vessel, and the pair of inlets plays a role of injecting a seal gas into the reaction vessel.
- the outlet is formed to protrude from the lower peripheral surface of the center of the reaction container so as to correspond to the inlet, and the outlet is provided in the source gas flowing into the reaction container or in the reaction container. It plays the role of flowing out the injected sealing gas.
- the inlet and the pair of inlets described above are provided in the reaction vessel so as to extend vertically upward from the upper portion thereof, and each of them plays a role. It is provided so as to extend vertically downward from its lower part and fulfill its role.
- the source gas when the source gas is supplied from the inlet in a state where the reaction vessel is heated to a predetermined temperature by the heater, the source gas flows downward into the reaction vessel and reacts. It is pyrolyzed in the container. Then, the vapor-grown carbon fiber grows while being wound in a coil shape on the base material that is coated with the metal catalyst in the reaction vessel under the pyrolyzed raw material gas.
- the inflow port extends vertically from the upper part of the reaction vessel to the upper side. This means that the manufacturing apparatus employs a method for forcibly introducing the raw material gas into the reaction vessel from the upper side to the lower side.
- the inflow port extends vertically from the upper part of the reaction vessel to the upper side, and the outflow port extends vertically from the lower part of the reaction vessel to the lower side. Therefore, in the manufacturing apparatus, it is difficult to stack a plurality of the reaction containers in the vertical direction, and as a result, there is a problem that coiled carbon fibers cannot be efficiently manufactured in large quantities.
- the present invention has been devised to introduce the raw material gas into the reaction vessel and to discharge the gas from the reaction vessel so that the flow of the raw material gas in the reaction vessel and the catalyst It is an object of the present invention to provide a microcoil, a method for manufacturing the same, and a manufacturing apparatus that are manufactured so as to be satisfactorily contacted with each other.
- the microcoil according to the present invention is: A cylindrical container main body (20a), and a base material (30) which is inserted into the container main body along the axial direction thereof and carries a catalyst so as to face the inner peripheral surface of the container main body;
- the raw material gas that generates gaseous carbon species when pyrolyzed is introduced into the container body from one of the laterally opposed wall parts of the laterally opposed wall parts of the container body, and
- the raw material gas introduced from the one laterally facing wall portion into the container body of the reaction vessel (20) adapted to discharge the gas in the container body from the other laterally facing wall portion of the facing wall portion at a predetermined high temperature.
- the source gas introduced into the container body from one laterally opposed wall portion of the container body flows smoothly and well in the lateral direction in the container body, It is possible to satisfactorily react the material with the catalyst. Therefore, the raw material gas introduced into the main body of the container can be thermally decomposed by the catalyst under the predetermined high temperature, and the gaseous carbon species can be favorably generated on the base material. As a result, microcoils can be obtained efficiently and efficiently with growth from a substrate based on the gaseous carbon species.
- the raw material gas that generates gaseous carbon species when pyrolyzed is introduced into the container body from the predetermined one-side wall part of both the lateral wall part and the lower wall part of the container body.
- the raw material gas introduced into the container main body is thermally decomposed by the catalyst in a state where the container main body is maintained at the predetermined high temperature to generate gaseous carbon species on the base material, Based on the gaseous carbon species, a microcoil was grown from the base material and manufactured.
- the source gas is introduced into the container body from the predetermined unidirectional wall portion of the container body in the reaction container, the source gas introduced into the container body in this way Inside, it can flow smoothly and satisfactorily in the lateral direction or upward direction, and the reaction of the substrate with the catalyst can be satisfactorily performed.
- the raw material gas introduced into the container main body can be thermally decomposed by the catalyst so that the gaseous carbon species can be favorably generated on the base material.
- the growth production from the base material of the microcoil based on the gaseous carbon species can be performed efficiently and efficiently.
- the predetermined one-way wall portion and the predetermined other-direction wall portion of the reaction container are each one of the horizontally opposed walls of the laterally opposed wall portions of the container body. And the other laterally facing wall.
- the raw material gas is introduced into the container body from the one lateral direction, and thus the raw material gas introduced into the container body in the container body is the one lateral direction.
- the reaction with the catalyst of the substrate can be satisfactorily performed by smoothly and favorably flowing in the other lateral direction opposite to the above.
- the present invention provides the method for producing a microcoil, wherein the predetermined one-way wall portion and the predetermined other-direction wall portion of the reaction container are respectively one of the vertically opposite wall portions of the upper and lower opposite wall portions of the container body. And the other upward facing wall part may be sufficient.
- the source gas is introduced into the container main body from below in the reaction container, the source gas introduced into the container main body in this way is smoothly and well upward in the container main body.
- the substrate can be reacted well with the catalyst.
- the base material has a cylindrical base body (31) that is inserted into the cylindrical container body in the axial direction and carries the catalyst on the outer peripheral surface,
- the raw material gas introduced into the cylindrical container body is thermally decomposed by the catalyst in a state where the cylindrical container body is maintained at the predetermined high temperature, and is applied to the outer peripheral surface of the cylindrical substrate.
- Gaseous carbon species may be generated, and microcoils may be grown from the outer peripheral surface of the cylindrical substrate based on the gaseous carbon species.
- the base material is a cylindrical base body that is inserted into the cylindrical container body in the axial direction and carries the catalyst on the outer peripheral surface, the microcoil grows from the outer peripheral surface of the cylindrical base body. Will be. As a result, it is possible to efficiently produce a larger amount of microcoils.
- the present invention provides the above-described method for manufacturing a microcoil
- the source gas is a mixed gas composed of acetylene gas, hydrogen gas and hydrogen sulfide gas
- the predetermined high temperature may be set to a temperature in the range of 600 (° C.) to 900 (° C.), and the container body may be heated and maintained at this temperature.
- the source gas is a mixed gas composed of acetylene gas, hydrogen gas, and hydrogen sulfide gas, and does not include components that cause harm to the source gas such as nitrogen gas and thiophene. Therefore, since the thermal decomposition by the reaction of the raw material gas with the catalyst can be performed satisfactorily, the growth of the microcoil can be further improved.
- the apparatus for manufacturing a microcoil includes: A casing (10, 10a, 10b), a reaction vessel (20), a substrate (30), and a heating control means (50, 60, 70);
- the reaction vessel A cylindrical container body (20a) inserted axially into the casing;
- At least one source gas introduction cylinder (23, 24, 25) introduced from the gas supply source into the container body; At least discharges the gas in the container body by extending outward from the predetermined one-way wall portion facing the predetermined one-way wall portion of the container body in the opposite direction to the at least one source gas introduction cylinder.
- One gas discharge cylinder (28),
- the base material is inserted along the axial direction into the container body, and carries the catalyst so as to face the inner peripheral surface of the container body,
- the heating control means controls the heating to maintain the container body at a predetermined high temperature, In a state where the container body is maintained at the predetermined high temperature, the raw material gas in the container body is thermally decomposed by the catalyst to generate a gaseous carbon species on the substrate, and from the substrate based on the gaseous carbon species. A microcoil was grown and manufactured.
- At least one source gas introduction tube extends from the predetermined one-way wall portion of the container body, and at least one gas discharge tube extends from the predetermined other-direction wall portion of the container body to the at least one. It extends in the opposite direction to the single raw material gas introduction cylinder.
- the raw material gas introduced into the container body in this way flows smoothly and satisfactorily in the lateral direction or upward along the base material in the container main body, and reacts with the catalyst of the base material. It can be done well. Therefore, the raw material gas introduced into the container main body can be thermally decomposed by the catalyst while the container main body is maintained at the predetermined high temperature, and the gaseous carbon species can be favorably generated on the base material. As a result, the growth production from the base material of the microcoil based on the gaseous carbon species can be performed efficiently and efficiently.
- the predetermined one-way wall portion and the predetermined other-direction wall portion of the reaction container are each in one lateral direction of both laterally opposed wall portions of the container body.
- An opposing wall part and the other horizontal direction opposing wall part may be sufficient.
- At least one source gas introduction cylinder extends from the container body in one lateral direction
- at least one gas discharge cylinder extends from the container body in another lateral direction opposite to the one lateral direction.
- the raw material gas introduced into the container body in this way flows smoothly and well in the lateral direction along the base material in the container main body, so that the reaction with the catalyst of the base material is good. You can get none. Therefore, the raw material gas introduced into the container main body can be thermally decomposed by the catalyst while the container main body is maintained at the predetermined high temperature, and the gaseous carbon species can be favorably generated on the base material. As a result, the growth production from the base material of the microcoil based on the gaseous carbon species can be performed efficiently and efficiently.
- the raw material gas introduction cylinder and the gas discharge cylinder extend in the opposite directions in the lateral direction of the reaction container as described above, even if a plurality of the reaction containers are stacked, each reaction container The raw material gas introduction cylinder and the gas discharge cylinder can be easily stacked without causing interference between the raw material gas introduction cylinder and the gas discharge cylinder positioned above and below.
- the present invention provides the manufacturing apparatus, wherein the predetermined one-way wall portion and the predetermined other-direction wall portion of the reaction container are each one of the lower facing wall portions of the upper and lower side facing wall portions of the container body. And it is the other upward facing wall part.
- At least one source gas introduction cylinder extends downward from the container body, and at least one gas discharge cylinder extends upward from the container body.
- the raw material gas introduced into the container body in this way flows smoothly and satisfactorily upward along the base material in the container main body, so that the reaction with the catalyst of the base material is excellent. obtain. Therefore, the raw material gas introduced into the container main body can be thermally decomposed by the catalyst while the container main body is maintained at the predetermined high temperature, and the gaseous carbon species can be favorably generated on the base material. As a result, the growth production from the base material of the microcoil based on the gaseous carbon species can be performed efficiently and efficiently.
- the base material may have a cylindrical base body (31) that is inserted into the cylindrical container body in the axial direction and carries the catalyst on the outer peripheral surface thereof.
- the raw material gas introduced into the cylindrical container main body flows along the outer peripheral surface of the cylindrical substrate, reacts with the catalyst, and grows microcoils from the cylindrical substrate by thermal decomposition. Therefore, the growth region of the microcoil becomes a wide range extending over the outer peripheral surface of the cylindrical base, and as a result, the microcoil can be grown in a larger amount and efficiently.
- the cylindrical base material has a cylindrical base (31) and a nickel metal having a thickness in the range of 2 ( ⁇ m) to 6 ( ⁇ m) after partial oxidation and partial sulfidation of the surface.
- the catalyst may be constituted by a catalyst layer (32) carried on the outer peripheral surface of the cylindrical substrate as the catalyst.
- thermal decomposition by reaction of the raw material gas with the catalyst can be further improved.
- the at least one source gas introduction cylinder is a plurality of source gas introduction cylinders
- the plurality of source gas introduction cylinders are 20 times the inner diameter of the source gas introduction cylinder in the axial direction of the cylindrical base material from a portion corresponding to a length of 1/3 or more of the axial length of the cylindrical base material.
- the radial facing distance between the outer peripheral surface of the cylindrical base material and the inner end opening of the raw material gas introduction cylinder may be set to a value in the range of 5 (mm) to 50 (mm).
- the reaction of the raw material gas in the container main body with the catalyst of the cylindrical base material can be efficiently performed.
- the present invention provides the above-described microcoil manufacturing apparatus, A plurality of casings, reaction vessels, base materials and heating control means are provided, The plurality of casings are stacked one above the other, Each of the plurality of reaction containers is inserted into the corresponding casing in an axial direction for each corresponding casing of the plurality of casings in the cylindrical container body, and is handled by the at least one source gas introduction cylinder. Extending outward from the one lateral wall of the cylindrical container body, and extending outward from the other lateral wall in the at least one gas discharge cylinder.
- Each of the plurality of base materials is inserted along the axial direction of each corresponding container body, and carries a catalyst so as to face the inner peripheral surface of each corresponding container body,
- Each of the plurality of heating control means controls the heating so as to maintain each corresponding container body at the predetermined high temperature, With each corresponding container body maintained at the predetermined high temperature, the raw material gas in each corresponding container body is thermally decomposed by each corresponding catalyst to generate gaseous carbon species on each corresponding substrate.
- a microcoil may be grown from each corresponding base material based on the gaseous carbon species.
- the said manufacturing apparatus will be comprised by laminating
- each reaction vessel has its raw material gas.
- the introduction tube and the gas discharge tube can be easily stacked without causing interference between the source gas introduction tube and the gas discharge tube positioned above and below the introduction tube and the gas discharge tube.
- FIG. 5 is a cross-sectional perspective view taken along line 5-5 in FIG. 4 of the apparatus main body in the first embodiment. It is a perspective view which shows the reaction container in the said 1st Embodiment with a heater.
- First embodiment 1 and 2 show a first embodiment in which the present invention is applied to a microcoil manufacturing apparatus, which includes an apparatus main body B (see FIG. 1) and a heating circuit E (FIG. 2).
- the microcoil is a microcoil grown from a carbon species and is also referred to as a carbon microcoil. This is because the coil diameter of the microcoil is on the order of ⁇ m.
- the left side and right side in the figure correspond to the rear side and front side of the apparatus main body B, respectively, and the upper side and lower side in the figure correspond to the left side and right side of the apparatus main body B, respectively.
- the near side and the far side of the paper surface correspond to the upper side and the lower side of the apparatus main body B, respectively.
- the apparatus main body B includes a casing 10, a reaction vessel 20, a cylindrical base material 30, and front and rear side end covers 40.
- the casing 10 includes a cylindrical body 10a having a rectangular cross section and a prismatic electric insulating filling member 10b (see FIG. 5).
- the cylindrical body 10a has a rectangular cylindrical shape with an upper wall 11 having a U-shaped cross section, a lower wall 12, a left wall 13 and a right wall 14 having a U-shaped cross section. It is made of stainless steel.
- the upper wall 11 is bent in an L shape downward at both left and right edges, and is assembled to the upper edges of the left and right walls 13 and 14 so as to be detachable from the outside.
- the lower wall 12 is bent in an L shape upward at both left and right edges, and is detachably assembled to the lower edges of the left and right walls 13 and 14 from the outside.
- the prismatic electric insulating filling member 10b is formed in a prismatic shape by a flexible electric insulating material such as rock wool, and the filling member 10b is coaxially accommodated in the cylindrical body 10a.
- the said filling member 10b plays the role which supports the container main body 20a coaxially in the said cylinder 10a, electrically insulating from the cylinder 10a so that it may mention later.
- the casing 10 is usually placed on the horizontal plane L of the base on the lower wall 12 of the cylindrical body 10a (see FIG. 1, FIG. 3, or FIG. 4).
- the reaction vessel 20 includes a cylindrical vessel body 20a, three sets of raw material gas introduction cylinder groups 20b to 20d, a seal gas injection cylinder group 20e, a gas A discharge cylinder group 20f.
- the container body 20a is formed in a cylindrical shape with transparent quartz, and the container body 20a is coaxially inserted into the through hole portion 15 of the electrically insulating filling member 10b.
- the through-hole part 15 is formed coaxially in the electrically insulating filling member 10b.
- the container body 20a extends in opposite directions from the axially opposite ends of the cylindrical body 10a and the axially opposite ends of the electrically insulating filling member 10b at the axially longitudinal front and rear ends 21 and 22.
- the filling member 10b is coaxially supported in the cylindrical body 10a while being electrically insulated from the cylindrical body 10a.
- transparent quartz is employed as the material for forming the container body 20a.
- Transparent quartz is used for catalytic activity, corrosion resistance to hydrogen sulfide, linear carbon fiber, solid carbon film, carbon powder, etc. This is because side reactions other than the micro coil generation reaction are suppressed and the inside of the container body 20a is easily seen through from the outside.
- the inner diameter of the container body 20a is 30 (mm) to 300 (mm) from the viewpoints of convection and mixing of the raw material gas (described later), contact with the metal catalyst, and efficient exhaust gas discharge. It is preferably set to a value in the range, and more preferably set to a value in the range of 100 (mm) to 150 (mm). In the first embodiment, the inner diameter of the container body 20a is set to 100 (mm).
- the total length of the container body 20a is preferably set to a value in the range of 600 (mm) to 2500 (mm), and further set to a value in the range of 1000 (mm) to 1800 (mm). It is even more preferable. In the first embodiment, the total length of the container body 20a is set to 1500 (mm).
- the three groups of source gas introduction cylinder groups 20b to 20d serve to introduce a source gas (described later) from a source gas supply source (not shown) into the container body 20a.
- a source gas described later
- the tube groups 20b to 20d are extended leftward from the left semi-cylindrical portion 26a of the container body 20a through the left wall 13 of the casing 10. ing.
- examples of the raw material gas include catalyst gas and hydrogen gas, hydrocarbon gas such as acetylene, methane, propane and carbon monoxide gas which are easily pyrolyzed to generate gaseous carbon species.
- hydrocarbon gas such as acetylene, methane, propane and carbon monoxide gas which are easily pyrolyzed to generate gaseous carbon species.
- acetylene is most preferred. This is because acetylene is easily thermally decomposed at the reaction temperature and reacts with the metal catalyst to efficiently develop the anisotropy of the catalytic activity on each crystal plane of the metal catalyst particles.
- acetylene gas is employed as the raw material gas together with hydrogen gas and hydrogen sulfide gas which is a catalyst gas.
- the catalyst gas is a gas containing Group 15 and Group 16 of the Periodic Table, which is a compound gas containing sulfur atoms such as sulfur, thiophene, methyl mercaptan, hydrogen sulfide, or phosphorus, trichloride. Examples thereof include a gas of a compound containing a phosphorus atom such as phosphorus.
- hydrogen sulfide gas is most preferred from the viewpoints of ease of use and obtaining fine coils with high yield and high yield.
- hydrogen sulfide gas is employed as one of the source gases as described above as the catalyst gas.
- concentration of hydrogen sulfide gas, which is the catalyst gas, in the reaction atmosphere is in the range of 0.01 (volume%) to 0.5, and 0.05 (volume%) to 0.2 (volume%).
- concentration is more preferably in the range of (volume%). Therefore, in the first embodiment, the supply concentration of hydrogen sulfide gas into the container body 20a is set to a concentration in the reaction atmosphere in the range of 0.05 (volume%) to 0.2 (volume%). Is set to
- the concentration of the hydrogen sulfide gas is less than 0.01 (volume%) or higher than 0.5 (volume%), the growth of the microcoil is hardly obtained. Further, since the flow rate of the hydrogen sulfide gas is small, a hydrogen balance gas having a value in the range of 1 (volume%) to 2 (volume%) is used.
- the three sets of source gas introduction cylinder groups 20b to 20d are arranged from the source gas introduction cylinder group 20b to the source gas introduction cylinder group 20d so that the upper part, the middle part, and the lower part of the left half cylindrical portion 26a of the container body 20a. It is extended from.
- the middle part corresponds to the central part in the vertical direction of the left half cylindrical part 26a of the container body 20a.
- the upper part corresponds to a central part between the middle part and the upper edge part of the left semi-cylindrical portion 26a, while the lower part is composed of the middle part and the left semi-cylindrical part. It corresponds to the central part between the lower edge part of 26a.
- the left semi-cylindrical portion 26a is located in a cross section (parallel cross section) parallel to the lower wall 12 of the casing 10 of the container main body 20a at the middle portion, and the upper half of the container main body 20a is
- the container is located in a cross section (upward inclined cross section) inclined upward by 45 ° with respect to the center of the container main body 20a with respect to the parallel cross section. It is located in a cross section (downward sloping cross section) inclined 45 ° downward with respect to the center of the main body 20a.
- the source gas introduction cylinder group 20b is composed of a plurality of (for example, 16) source gas introduction cylinders 23, and the plurality of source gas introduction cylinders 23 are arranged at their base end opening portions 23a at the container main body.
- the left side semi-cylindrical portion 26a of the 20a is joined by welding or the like at equal intervals in the front-rear direction of the upper part and communicates with the inside of the container body 20a.
- the plurality of source gas introduction cylinders 23 extend leftward from the base end opening 23 a through the upper part of the left wall 13 of the casing 10.
- the source gas introduction cylinder group 20c has a plurality (for example, 16) of source gas introduction cylinders 24, and the plurality of source gas introduction cylinders 24 are arranged at their base end opening portions 24a at the container main body. It is joined to the inside portion of the left semicylindrical portion 26a of 20a by welding or the like at equal intervals in the front-rear direction, and communicates with the inside of the container body 20a. Further, the plurality of source gas introduction cylinders 24 extend leftward from the base end opening portion 24 a through the middle portion of the left wall 13 of the casing 10.
- the source gas introduction cylinder group 20d has a plurality (for example, 16) of source gas introduction cylinders 25, and the plurality of source gas introduction cylinders 25 are container main bodies at their base end opening portions 25a. It is joined to the lower part of the left semi-cylindrical portion 26a of 20a by welding or the like at equal intervals in the front-rear direction, and communicates with the inside of the container body 20a.
- the plurality of source gas introduction cylinders 24 extend leftward from the base end portion of the casing 10 through the lower portion of the left wall 13.
- the corresponding source gas introduction cylinders 23, 24 and 25 are located at the same front-rear direction position of the container body 20a so as to correspond to each other in the vertical direction.
- the inner diameter of each of the three source gas introduction cylinder groups 20b to 20d is 3 (mm) to 20 mm in order to keep the flow rate and flow velocity of the source gas within a predetermined range. It is preferably set to a value in the range of 50 (mm), and more preferably set to a value in the range of 6 (mm) to 30 (mm).
- each source gas introduction cylinder of the source gas introduction cylinder group 20b to 20d is set to 9 (mm).
- the center interval between the two raw material gas introduction tubes adjacent to each other is set to 75 (mm).
- the seal gas injection cylinder group 20e plays a role of injecting seal gas (described later) into the container body 20a from a seal gas supply source (not shown).
- the seal gas injection cylinder group 20e is shown in FIG. 3, the container body 20 a extends leftward from the middle portion of the left semicylindrical portion 26 a of the container body 20 a through the left wall 13 of the casing 10.
- examples of the sealing gas include chemically inert gases such as nitrogen, argon, and helium, or hydrogen gas. This is to prevent the reaction system from being given an extra or harmful effect by oxygen gas mixed into the container body 20a from outside or nitrogen gas introduced into the container body 20a.
- hydrogen gas is employed as the seal gas.
- the seal gas injection cylinder group 20e is composed of, for example, two seal gas injection cylinders 27, and the two seal gas injection cylinders 27 are arranged at the base end opening portion of the left half of the container body 20a.
- the cylindrical portion 26a is joined to the inside portion of the cylindrical portion 26a by welding or the like on both the front and rear sides of the raw material gas introduction cylinder group 20b, and communicates with the inside of the container body 20a.
- each seal gas injection cylinder 27 extends leftward from the base end opening portion through the above-mentioned middle portion of the left wall 13 of the casing 10.
- the gas discharge cylinder group 20f plays a role of discharging the gas in the container main body 20a to the outside of the container main body 20a, and the gas discharge cylinder group 20f is as shown in FIG. 1, FIG. 4 or FIG.
- the container body 20 a extends rightward from the right half cylindrical portion 26 b of the container body 20 a via the right wall 14 of the casing 10.
- the gas discharge cylinder group 20f is composed of, for example, five gas discharge cylinders 28, and each gas discharge cylinder 28 is located in the right half cylinder part 26b of the container body 20a at the base end opening part 28a. It is joined to the side part by welding or the like at equal intervals in the front-rear direction, and communicates with the inside of the container main body 20a.
- the middle part of the right semi-cylindrical portion 26b faces the middle part of the left semi-cylindrical portion 26a via the longitudinal axis of the container body 20a.
- each gas discharge cylinder 28 extends rightward from the base end opening portion 28a through the middle portion of the right wall 14 of the casing 10 (corresponding to the middle portion of the left semi-cylindrical portion 26a).
- the inner diameter of each gas discharge cylinder 28 is the same between the gas discharge cylinders, but the sum of the inner diameters of the respective gas discharge cylinders 28 corresponds to the sum of the cross-sectional areas of all the raw material gas introduction cylinders 23 to 25. It is set to ensure the cross-sectional area. This is for smoothly discharging the gas in the container body 20a.
- the proximal end opening portion 28a of the gas discharge tube 28 located on the foremost end side of the container body 20a is 3 from the source gas introduction tube 24 located on the foremost end side of the container body 20a to the rear side.
- the proximal opening portion 28a of the gas discharge tube 28 that faces the proximal opening portion 24a of the first raw material gas introduction tube 24 and is located on the rearmost end side of the container main body 20a is the rearmost end side of the container main body 20a. From the source gas introduction cylinder 24 located at the front side to the proximal end opening 24a of the third source gas introduction cylinder 24.
- the cylindrical base material 30 plays a role of growing a large number of microcoils, and the cylindrical base material 30 is coaxially accommodated in the container body 20a as described later.
- the cylindrical base material 30 is opposed to the base end opening portion of each of the source gas introduction cylinders of the three groups of source gas introduction cylinder groups 20b to 20d of the container body 20a on the outer peripheral surface thereof.
- the cylindrical base material 30 is composed of a cylindrical base 31, a cylindrical catalyst layer 32, and both front and rear legs 33.
- the cylindrical base 31 is formed in a cylindrical shape with transparent quartz, and the outer peripheral surface of the cylindrical base 31 is subjected to sandblasting.
- the cylindrical catalyst layer 32 is formed in a cylindrical shape by applying metal catalyst powder over the outer peripheral surface of the base 31 using, for example, a brush.
- the outer peripheral surface of the cylindrical substrate 31 is subjected to the sand blasting process, so that the metal catalyst powder can be favorably supported on the outer peripheral surface of the substrate 31.
- the cylindrical base material 30 supports the metal catalyst powder in a cylindrical shape on the outer peripheral surface of the cylindrical base 31 with the catalyst layer 32.
- transition metal oxides carbides, sulfides, nitrides, phosphides, carbonates or carbon sulfides as well as simple metals and alloys of transition metals such as nickel, iron, titanium or tungsten And at least one compound selected from the above.
- the average particle size of the metal catalyst powder is a particle size in the range of 50 (nm) to 5 ( ⁇ m).
- the metal catalyst include metals such as nickel, titanium, and tungsten, alloys, solid solutions with oxygen, oxides, carbides, nitrides, sulfides, phosphides, carbonates, and carbon sulfides. .
- a solid solution of nickel and oxygen is most preferable as the metal catalyst from the viewpoint of anisotropy of catalyst activity on each crystal plane of the metal catalyst and cost.
- Ni, Fe, Nb, NiO, and Au has been used as the metal catalyst.
- a pure metal such as Ni, Fe, or Nb
- a considerable amount of large-sized carbon fibers or linear carbon fibers are deposited in addition to the regular fine coils that are wound regularly. Only low purity products were obtained. In the case of the NiO catalyst, the coil yield and coil purity were very low.
- the central part of the catalyst is a single crystal and there is a difference in the catalytic activity at each crystal plane, in other words, anisotropic. It is an essential condition to have sex.
- anisotropy is considered to be caused by a difference in composition ratio of a Ni—C—S—O-based quaternary liquid phase (liquid crystal phase) existing on the surface of a Ni single crystal.
- a Ni—C—S—O-based quaternary liquid phase liquid crystal phase
- the crystal planes of Ni (100), Ni (110), and Ni (111) differ in the reactivity and adsorption capacity with C, S, and O in the source gas in each crystal plane. Is attributed.
- NiO which is a Ni oxide, such an effect is small, and therefore the rate of becoming a coil is very low.
- a solid solution of nickel and oxygen is used as the metal catalyst.
- the nickel powder is subjected to partial oxidation and partial sulfidation treatment on the surface thereof to form a solid solution with oxygen to have a thickness within a range of 2 ( ⁇ m) to 5 ( ⁇ m).
- the catalyst layer 32 is applied by coating.
- the base 31 has an outer diameter in the range of 30 (mm) to 250 (mm).
- the opening surface (inner peripheral surface of the container main body 20a) of the base end opening portion of each of the three source gas introduction tube groups 20b to 20d and the outer peripheral surface (catalyst layer) of the cylindrical base material 30 is selected so that the predetermined facing distance along the radial direction of the base 31 with respect to the outer peripheral surface of the base 32 is set to a value within the range of 1 (mm) to 80 (mm).
- the predetermined facing interval is more preferably set within a range of 10 (mm) to 50 (mm), and most preferably within a range of 15 (mm) to 30 (mm).
- the outer diameter of the base 31 is selected.
- the predetermined spacing increases beyond 30 (mm)
- the proportion of regularly wound microcoils decreases, the coil diameter gradually increases and becomes irregular, and the proportion of greatly curled microcoils gradually increases.
- the predetermined facing distance is less than 1 (mm) or increases beyond 100 (mm)
- no microcoil is obtained and only linear carbon fiber or carbon powder is deposited.
- the base 31 between the opening surface of the base end opening of each of the source gas introduction cylinders of the three groups of source gas introduction cylinder groups 20 b to 20 d and the outer peripheral surface of the cylindrical base material 30 is provided.
- the predetermined facing interval along the radial direction is set to 25 (mm), and the outer diameter of the base 31 is set to 60 (mm).
- the front and rear side legs 33 both have the same bifurcated shape and extend detachably downward from the lower ends in the axial direction of the catalyst layer 32. This means that the front and rear side legs 33 are seated on both lower sides in the front-rear direction of the inner peripheral surface of the container body 20a at each bifurcated portion, and support the base 31 coaxially in the container body 20a. means.
- the front and rear side end covers 40 each have a disk-shaped wall portion 41 and an annular wall portion 42 extending from the outer peripheral portion of the disk-shaped wall portion 41, and are formed into a U-shaped longitudinal section by transparent quartz. Is formed.
- the front end cover 40 of the front and rear side end covers 40 is fitted to the axial front end 21 of the container body 20a in an airtight and detachable manner via the front heat-resistant O-ring 42a at the annular wall portion 42. It is disguised.
- the rear end cover 40 is airtightly fitted to the axial rear end portion 22 of the container body 20a through the rear heat resistant O-ring 42a at the annular wall portion 42.
- the front heat-resistant O-ring 42a is accommodated in an annular groove portion formed from the inner surface side at an axially intermediate portion of the annular wall portion 42 of the front end cover 40, and the rear heat-resistant O-ring 42a
- the annular wall 42 of the side end cover 40 is accommodated in an annular groove formed from the inner surface side at an axially intermediate portion.
- the heating circuit E includes a heater 50, a temperature sensor 60, and a temperature control circuit 70 as shown in FIG.
- the heater 50 includes a plurality of heating wire members 51.
- the plurality of heating wire members 51 respectively connect the parallel line portions 51a and 51b parallel to each other and the parallel line portions 51a and 51b.
- the connecting wire portion 51c is formed by bending a nichrome wire having a predetermined length so as to be U-shaped.
- the plurality of heating wire members 51 configured in this way are disposed along the outer peripheral surface of the container body 20 a at equal angular intervals in the circumferential direction.
- the member 51 is arranged so that the connecting portion 51c is positioned on the rear side of the container body 20a and the parallel line portions 51a and 51b extend along the front-rear direction of the container body 20a for each heating wire member. It is installed.
- the heater 50 is arrange
- the plurality of heating wire members 51 are connected to each other at the connection end portions of the parallel line portions 51a and the connection end portions of the parallel line portions 51b. Are connected to each other. Thereby, the heater 50 heats the container main body 20a from almost the entire outer peripheral surface by the heat generated by the heating wire members 51.
- the temperature sensor 60 is composed of a high-temperature detection type thermocouple, and the temperature sensor 60 is supported at the central portion in the hollow portion of the cylindrical base material 30 as can be seen from FIG. 1 or FIG.
- the central part in the hollow part is a central part in the front-rear direction of the hollow part of the cylindrical base material 30 and corresponds to the central part in the radial direction.
- the said temperature sensor 60 detects the temperature in the center part in the hollow part of the cylindrical base material 30 as the temperature of the container main body 20a.
- the temperature control circuit 70 is composed of an inverter.
- the temperature control circuit 70 is supplied with an AC voltage of 200 (V) from the AC power source PS via the open / close switch SW, and is heated based on the temperature detected by the temperature sensor 60.
- the device 50 is driven and controlled so that each heating wire member 51 generates heat.
- the drive control is performed so as to maintain the container body 20a at a predetermined high temperature based on the temperature detected by the temperature sensor 60. This means that the inside of the container body 20a is maintained at the predetermined high temperature.
- the predetermined high temperature is preferably set to a temperature within the range of 600 (° C.) to 950 (° C.) from the viewpoint of the yield and yield of the microcoil. It is even more preferable to set the temperature within the range of 700 (° C.) to 800 (° C.). Therefore, in the first embodiment, the predetermined high temperature is set to a temperature of 750 (° C.). When the predetermined high temperature is lower than 600 (° C.) or higher than 950 (° C.), the microcoil hardly grows.
- the microcoil is vapor-phase manufactured by the manufacturing apparatus as follows.
- the temperature sensor 60 detects the temperature at the center in the hollow portion of the cylindrical base material 30 as the temperature of the container body 20a.
- the nitrogen gas supply process S1 is performed.
- nitrogen gas from a nitrogen gas supply source (not shown) is supplied at a flow rate of 1000 (milliliter / minute) through the entire source gas introduction cylinder of the source gas introduction cylinder group 20b. It supplies in the container main body 20a.
- the nitrogen gas supplied into the container main body 20a flows through the container main body 20a and is discharged from the gas discharge cylinder group 20f so as to push out a gas such as oxygen in the container main body 20a. .
- a gas such as oxygen in the container main body 20a.
- the container body 20a is heated in the heating process S2.
- the temperature control circuit 70 is activated by applying an AC voltage from the AC power source PS in the closed state of the open / close switch SW, and the heater 50 is turned on based on the current detected temperature of the temperature sensor 60. The drive is controlled to generate heat.
- each heating wire member 51 heats the container body 20a so as to raise the temperature of the container body 20a to the predetermined high temperature by heat generation. Further, after the temperature of the container body 20a reaches the predetermined high temperature 750 (° C.), even if the temperature of the container body 20a fluctuates, the temperature control circuit 70 is based on the temperature detected by the temperature sensor 60 thereafter. The heater 50 is controlled so as to maintain the temperature of the container body 20a at the predetermined high temperature 750 (° C.). Thereby, the inside of the container main body 20a is maintained at the predetermined high temperature 750 (° C.).
- the inside of the container main body 20a includes an atmosphere of only hydrogen gas, which is a sealing gas, including the inside of the cylindrical base material 30.
- the nitrogen gas is not mixed into the source gas.
- the source gas supplied from the source gas supply source that is, a mixed gas of acetylene gas, hydrogen gas and hydrogen sulfide gas are introduced into the container body 20a from the left side through the respective source gas introduction cylinders of the three groups of source gas introduction cylinder groups 20b to 20d.
- the inside of the container main body 20a is maintained at the predetermined high temperature together with the outer peripheral surface of the cylindrical base material 30 and the inside thereof. This means that the outer peripheral surface of the catalyst layer 32 is also maintained at the predetermined high temperature.
- the reaction starts between the source gas and the metal catalyst of the catalyst layer 32.
- the source gas introduction step S5 is a reaction step.
- the reaction time in this reaction step is 2 hours.
- the raw material gas is 60 (milliliter / minute) acetylene gas, 265 (milliliter / minute) hydrogen gas, and 0.06 (milliliter / minute) hydrogen sulfide gas per one raw material gas introduction cylinder. It is composed.
- the raw material gas in the raw material gas supply source is 60 (milliliter / minute) acetylene gas, 265 (milliliter / minute) hydrogen gas, and 0.06 (milliliter / minute) sulfidation per introduction cylinder. It is previously mixed uniformly so as to be a mixed gas of hydrogen gas.
- the grounds for the composition of the source gas to be acetylene gas, hydrogen gas, and hydrogen sulfide gas as described above are as follows.
- the raw material gas was introduced into the container body 20a simultaneously and continuously as a mixed gas composed of acetylene gas, hydrogen gas, nitrogen gas, thiophene gas, and hydrogen sulfide gas and reacted with the catalyst. .
- nitrogen gas not only significantly suppresses thermal decomposition of acetylene, but also causes harmful side reactions, inhibits the growth of regularly wound microcoils, and reduces coil yield and purity.
- thiophene is harmful to the growth of regularly wound microcoils and is a factor that reduces coil yield and coil purity.
- the raw material gas is a mixed gas of acetylene gas, hydrogen gas, and hydrogen sulfide gas as described above.
- the source gas is thermally decomposed by heating as described later, gaseous carbon species are generated from the outer peripheral surface of the cylindrical base material 30.
- the linear velocity of the gas is preferably set to a value within the range of 100 (cm / min) to 3000 (cm / min) under the conditions of room temperature and 1 atmosphere.
- the linear velocity of the gas is more preferably set to a value within the range of 200 (cm / min) to 2000 (cm / min), and further, 500 (cm / min) to 1500 ( It is particularly preferable to set the value within the range of cm / min).
- the linear velocity of the gas is set to a value within the range of 500 (cm / min) to 1500 (cm / min). Further, the linear velocity of the gas is defined as an interval between the base end opening portion of the raw material gas introduction cylinder and the facing portion of the outer peripheral surface of the cylindrical base material 30 with respect to the base end opening portion (the predetermined facing interval). Have a close relationship. For this reason, if the linear velocity of the gas is a value within the range of, for example, 500 (cm / min) to 800 (cm / min), the predetermined facing interval is 10 (mm) to 20 (mm). It is preferably set to a value within the range.
- the microcoil is the base end opening portion of each source gas introduction cylinder of the three groups of source gas introduction cylinder groups 20b to 20d.
- the microcoil grows densely in a circle having a diameter in the range of 2 to 30 times the inner diameter of the source gas introduction cylinder.
- the interval between the adjacent introduction cylinders is such that the minute coils do not interfere with each other and there is no gap between them.
- it is preferably set to a value in the range of 2 to 30 times the inner diameter of the raw material gas introduction cylinder, and more preferably 5 to 20 times the inner diameter of the raw material gas introduction cylinder. More preferably, it is set to a value within the double range.
- the interval between the two adjacent source gas introduction cylinders described above is a value (75 (75 ()) within a range of 5 to 20 times the inner diameter (9 (mm)) of the source gas introduction cylinder. mm)).
- each microcoil has a substantially uniform thickness without substantially overlapping each other on the cylindrical base material 30 with respect to the base end opening portion of each of the source gas introduction cylinders of the three sets of source gas introduction cylinder groups 20b to 20d. (See FIG. 8). This means that a large number of microcoils are produced by growing on the cylindrical substrate 30.
- the cylindrical base material 30 is taken out from the inside of the container body 20a.
- the microcoil grown on the cylindrical base material 30 is collected.
- the three source gas introduction tube groups 20b to 20d extend leftward from the left semi-cylindrical portion 26a of the vessel body 20a.
- the gas discharge cylinder group 20f extends rightward from the right half cylindrical portion 26b of the container body 20a.
- the catalyst layer 32 is formed by subjecting the nickel catalyst to a partial oxidation / sulfurization treatment on the surface thereof so as to deposit fine coils. It is formed by applying to the surface.
- the raw material gas by mixing acetylene gas, hydrogen gas, and hydrogen sulfide gas is simultaneously and continuously maintained in a state where the container body 20a is heated to the predetermined high temperature 750 (° C.). Then, it is introduced into the container body 20a, and the microcoil is grown on the outer peripheral surface of the cylindrical base material 30 as described above.
- the coil yield of the microcoil obtained by this collection was 60 (g).
- the coil yield of the acetylene-based microcoil was 80 (%). This means that microcoils can be manufactured in large quantities efficiently and at a high purity.
- the microcoil produced in this way can be used for electromagnetic wave absorbers, microwave heating materials, microsensors, micromechanical elements, healing materials, cosmetics, analgesics, cancer therapeutics, food additives, and the like.
- the precipitate due to the growth is 100% microcoil (carbon microcoil). Most of these microcoils are regularly wound with a coil diameter in the range of 3 ( ⁇ m) to 5 ( ⁇ m). In addition, since there is almost no gap between adjacent coil portions in each of the minute coils, each of the minute coils has an electromagnetic minute solenoid shape.
- the ratio of the solenoid-shaped microcoil that is regularly wound with a constant coil diameter, that is, the coil purity in the above-described precipitate, is 100 (%).
- the three source gas introduction cylinder groups 20b to 20d in the reaction vessel 20 and the gas discharge cylinders of the gas discharge cylinder group 20f are provided. Are horizontally extended from the casing 10 so as to be parallel to the horizontal plane L of the base in opposite directions from the left and right side walls 26a, 26b of the container body 20a.
- the source gas is introduced into the container body 20a along the horizontal plane L of the base through each source gas introduction cylinder, the source gas introduced into the container body 20a in this way is the container body 20a.
- the source gas introduced into the container body 20a in this way is the container body 20a.
- the gas in the container main body 20a passes through each discharge cylinder 28 and is discharged along the horizontal plane L of the base, the gas can be discharged smoothly.
- each source gas introduction cylinder and each gas discharge cylinder extend horizontally from the casing 10 so as to be parallel to the horizontal plane L of the base, and therefore will be described in the first embodiment.
- the plurality of apparatus main bodies B are connected to three sets of source gas introduction cylinder groups 20b to 20d and gas discharge cylinder groups 20f. They can be easily stacked without causing interference.
- the coil yield of the microcoil and the coil yield can be increased in proportion to the number of stacked apparatus main bodies B, and the installation area of the plurality of apparatus main bodies B in the factory is reduced. It is possible to increase the utilization efficiency in factories and the like.
- Example 1-1 the apparatus main body B according to the first embodiment is referred to as Example 1-1, and Example 1-2 and Comparative Examples 1-1 to 1-7 are prepared for comparison with Example 1-1.
- the heating circuit of Example 1-2 and Comparative Examples 1-1 to 1-7 is the same as the heating circuit E in the first embodiment.
- Example 1-2 In the apparatus main body of Example 1-2, as the catalyst layer 32 of the cylindrical base material 30, a nickel catalyst layer made of nickel and having a partially oxidized surface is employed.
- the other configuration of the apparatus main body of Example 1-2 is the same as that of the apparatus main body B in Example 1.
- Example 1-2 in manufacturing the microcoil, in the manufacturing process described in the first embodiment, prior to performing the processing of the source gas introducing step S5, three sets of source gas introducing cylinders Only hydrogen sulfide is introduced into the container body 20a for 5 minutes through each of the raw material gas introduction cylinders of the groups 20b to 20d, and the above nickel is contained in the container body 20a maintained at 750 (° C.) in the heating step S2. After subjecting the surface of the catalyst layer to partial sulfidation, in the raw material gas introduction step S5, acetylene was introduced into the container body 20a through the respective raw material gas introduction cylinders to react with the nickel catalyst layer. Other steps are the same as the manufacturing steps described in the first embodiment.
- Example 1-2 the coil yield of the microcoil is 58 (g), the coil yield of the microcoil is 78 (%), and the coil purity of the microcoil is 100 (%). )Met. According to this, it can be seen that the manufacturing result of Example 1-2 is substantially the same as that of Example 1-1.
- Example 1-2 as in Example 1-1, the three sets of raw material gas introduction cylinder groups 20b to 20d and the gas discharge cylinder group 20f in the reaction vessel 20 are arranged on the left and right sides of the container body 20a.
- the cylindrical wall portions 26a and 26b extend from the casing 10 horizontally so as to be parallel to the horizontal plane L of the base in opposite directions.
- Example 1-2 when preparing a plurality of apparatus main bodies of Example 1-2 and laminating these plurality of apparatus main bodies upward in the respective casings 10, each of the raw material gas introduction cylinder groups 20b to 20d and the gas discharge cylinder groups The layers can be easily stacked without causing interference with 20f. According to this, also in Example 1-2, it is possible to increase the coil yield and coil yield of the microcoil in proportion to the number of stacks of the apparatus main body.
- Comparative Example 1-1 In the apparatus main body of Comparative Example 1-1, the gap between the opening surface of the base end opening portion of each of the source gas introduction cylinder groups of the three groups of source gas introduction cylinder groups 20 b to 20 d and the outer peripheral surface of the cylindrical base material 30 is between.
- the rest of the configuration of the apparatus main body of Comparative Example 1-1 is the same as that of Example 1-1 except that the predetermined facing interval along the radial direction of the substrate 31 is set to 60 (mm).
- a microcoil was manufactured in the same manner as the microcoil according to Example 1-1 according to the manufacturing process in the first embodiment.
- SEM electron microscope
- Comparative Example 1-1 it can be said that the coil yield and coil purity of the microcoil are lower than those according to Example 1-1.
- Comparative Example 1-2 In the apparatus main body of the comparative example 1-2, the gap between the opening surface of the base end opening portion of each of the three source gas introduction tube groups 20b to 20d and the outer peripheral surface of the cylindrical base material 30
- the other configuration of the apparatus main body of Comparative Example 1-2 is the same as that of the apparatus main body B in Example 1-1 except that the predetermined facing interval along the radial direction of the substrate 31 is 80 (mm). is there.
- the apparatus main body of Comparative Example 1-2 Using the apparatus main body of Comparative Example 1-2, a microcoil was manufactured in the same manner as the microcoil according to Example 1 according to the manufacturing process in the first embodiment. According to the electron microscope (SEM) photograph of the precipitate obtained in this way, as illustrated in FIG. 12, most of the coils are extremely irregularly wound or largely irregularly wound. The precipitate also includes linear carbon fibers. Therefore, no microcoil was observed.
- the catalyst layer 32 of the cylindrical base material 30 is a nickel catalyst layer having an average thickness of 0.5 ( ⁇ m) obtained by partially oxidizing the surface of the catalyst layer. A catalyst layer is employed.
- Other configurations of the apparatus main body of Comparative Example 1-3 are the same as those of the apparatus main body B described in Example 1-1.
- Comparative Example 1-4 the coil yield of the microcoil was very small and was only 5 (g). Note that most of the precipitates of Comparative Example 1-3 were linear carbon fibers.
- the catalyst layer 32 of the cylindrical base material 30 is a nickel catalyst layer having an average thickness of 15 ( ⁇ m) which is a catalyst layer made of nickel and partially oxidized on the surface thereof. Is adopted.
- Other configurations of the apparatus main body of Comparative Example 1-4 are the same as those of the apparatus main body B described in Example 1-1.
- the temperature in the container body 20a was started at the start of the reaction in the raw material gas introduction process S5.
- the temperature of the outer peripheral surface of the cylindrical base material 30 (the surface of the catalyst layer) rose to 850 ° C. or more after 10 minutes, and separated from the outer peripheral surface of the cylindrical base material 30 by 10 mm. temperature positions, was increased up to up to 820 (° C.).
- a hard carbon layer was deposited on the outer peripheral surface of the cylindrical base material 30 at a thickness in the range of 1.5 (mm) to 3 (mm). In this precipitate, the coil yield of the microcoil was only 10 (g). In addition, in the said deposit, the coil wound regularly was very few, and most were the coil wound very irregularly, the thing only wound large, or the linear carbon fiber.
- a catalyst layer made of pure nickel powder containing no oxygen is used as the catalyst layer 32 of the cylindrical base material 30.
- Other configurations of the apparatus main body of Comparative Example 5 are the same as those of the apparatus main body B described in Example 1-1.
- Comparative Example 1-6 When the manufacturing process described in the first embodiment was applied to manufacture a microcoil using such Comparative Example 1-5, the coil yield of the microcoil was only 15 (g). The coil purity of the microcoil was also as low as 30 (%) to 35 (%).
- Comparative Example 1-6 In the apparatus main body of Comparative Example 1-6, a catalyst layer made of nickel oxide is employed as the catalyst layer 32 of the cylindrical substrate 30. Other configurations of the apparatus main body of Comparative Example 6 are the same as those of the apparatus main body B described in Example 1-1.
- Comparative Example 1-7 The apparatus main body of Comparative Example 1-7 is the same as the apparatus main body B of Example 1.
- the raw material gas is 50 (milliliter / minute) per raw material gas introduction cylinder.
- the coil yield of the microcoil was very small, only 12 (g), and the coil purity of the microcoil was only 25 (%).
- the precipitates obtained by conventional manufacturing methods and manufacturing equipment are not limited to electromagnetic solenoid-shaped microcoils that are regularly wound with a constant coil diameter and coil pitch. It contains a lot of irregularly wound coils, coils with very large coil diameters, a large number of carbon fibers, and a large number of linear carbon fibers. , Abbreviated as “coil purity”) is in the range of 5% to 25% and is low. Thus it coils purity is low, very adversely affect many properties, such as the microwave electromagnetic wave absorption characteristics. Therefore, the industrial, coil purity of microcoil is requested to be at 80% or higher.
- the three sets of source gas introduction cylinder groups 20b to 20d and the seal gas injection cylinder group 20e described in the first embodiment are extended downward from the lower semi-cylindrical portion of the container body 20a of the reaction vessel 20.
- the gas discharge cylinder group 20f described in the first embodiment extends upward from the upper semi-cylindrical portion of the container body 20a.
- the reaction vessel 20 (see FIG. 6) described in the first embodiment is rotated by 90 °, and three sets of source gas introduction cylinder groups 20b to 20d and a seal are sealed.
- the gas injection cylinder group 20e is positioned below the container body 20a, and the gas discharge cylinder group 20f is positioned above the container body 20a.
- each of the plurality of source gas introduction cylinders 23, 24, and 25 is extended downward from the left side portion, the middle side portion (lower end portion), and the right side portion of the lower half cylindrical portion of the container body 20a.
- both seal gas injection cylinders 27 extend downward from the middle part of the lower semi-cylindrical portion of the container body 20a.
- Each gas discharge tube 28 extends downward from the middle portion (upper end portion) of the upper semi-cylindrical portion of the container body 20a.
- Other configurations are the same as those in the first embodiment.
- the microcoil is produced by vapor phase growth according to the manufacturing process described in the first embodiment.
- the raw material gas supplied from the raw material gas supply source passes through the raw material gas introduction tubes of the three sets of raw material gas introduction tube groups 20b to 20d and enters the container body 20a. It is introduced from the side.
- the gas in the container body 20a is discharged upward from the inside of the container body 20a through each gas discharge tube 28.
- the other manufacturing process processes are the same as those in the first embodiment.
- the coil yield was 65 (g), the coil yield was 88 (%), and the coil purity was 100 (%).
- each source gas introduction cylinder 23 to 25 extends downward from the container body 20 and each gas discharge cylinder 28 extends above the container body 20a. Adopted a configuration to make it out.
- the container body 20a is smoothly and satisfactorily upward along the outer peripheral surface of the cylindrical base material 30.
- the reaction with the catalyst of the cylindrical catalyst layer 32 of the cylindrical base material 30 can be satisfactorily performed without any limitation.
- the gas in the container main body 20a is discharged upward through each discharge tube 28, the gas can be discharged smoothly.
- each raw material gas introduction cylinder extends upward from the container main body 20a and each gas discharge cylinder extends downward from the container main body 20a
- the apparatus main body of the second embodiment is Even if a plurality of devices are prepared, the stacking of these apparatus main bodies is not possible because they are obstructed by the raw material gas introduction cylinders and the gas discharge cylinders. For this reason, it is difficult to increase the coil yield of the microcoil and the coil yield as expected when the apparatus main bodies of the first embodiment are stacked. Other functions and effects are the same as those of the first embodiment.
- Example 2-1 the apparatus main body according to the second embodiment is referred to as Example 2-1, and Comparative Examples 2-2 and 2-3 are prepared for comparison with Example 2-1.
- Comparative Example 2-2 In the apparatus main body of Comparative Example 2-2, in the reaction container of the apparatus main body of Example 2-1, unlike the reaction container, each raw material gas introduction cylinder is extended upward from the upper part of the container main body, Adopting a configuration in which each gas discharge cylinder extends downward from the lower part of the container body, the source gas is introduced upward into the container body from each source gas introduction cylinder, and the gas in the container body is transferred to each gas. It was made to discharge upward from the discharge tube.
- Other configurations of the apparatus main body of the comparative example 2-2 are the same as those of the example 2-1.
- the coil yield for the microcoil was 15 (g), and the coil purity was in the range of 20 (%) to 30 (%). Therefore, it can be seen that in Comparative Example 2-2, the coil yield and coil purity of the microcoil are considerably lower than those of Examples 1-1, 1-2, and 2-1.
- the thiophene gas was continuously introduced into the container body at the same time. Others were the same as in Comparative Example 2-2.
- FIGS. 13 and 14 show a third embodiment of a microcoil manufacturing apparatus to which the present invention is applied.
- the stacking device main body Ba is employed in place of the device main body B of the manufacturing apparatus described in the first embodiment.
- the stacking device main body Ba is configured by stacking a plurality (for example, three) of the device main bodies B described in the first embodiment. Of the three apparatus main bodies B, the lower apparatus main body B is placed on the horizontal surface L (see FIG. 1) of the base on the lower wall 12 of the casing 10.
- the middle apparatus main body B is placed on the upper wall 11 of the casing 10 of the lower apparatus main body B by the lower wall 12 of the casing 10.
- B is placed on the upper wall 11 of the casing 10 of the middle apparatus main body B by the lower wall 12 of the casing 10.
- each source gas introduction cylinder 23 constituting the source gas introduction cylinder group 20b is connected to the connection pipe 23b.
- the source gas introduction cylinders 24 that are connected to each other and constitute the source gas introduction cylinder group 20c are connected to each other by the connection pipe 24b, and the source gas introduction cylinders 25 that constitute the source gas introduction cylinder group 20d. They are connected to each other with a connecting pipe 25b.
- the source gas from the source gas supply source is introduced into the container main body 20a through the connecting pipe 25b and the source gas introduction cylinders of the three sets of the source gas introduction cylinder groups 20b to 20d.
- each reaction vessel 20 of the three apparatus main bodies B are connected to each other by a connection pipe 28b.
- the gas in each container main body 20a is discharged
- Other configurations of each device main body B in the stacking device main body Ba are the same as those in the first embodiment.
- the heating circuit in the third embodiment is configured by adopting the heating circuit E described in the first embodiment for each device main body B of the stacking device main body Ba.
- the temperature control circuit 70 of each heating circuit E is connected to the AC power source PS via the open / close switch SW.
- the heating circuit E is supplied with the AC voltage from the AC power source PS via the open / close switch SW in the temperature control circuit 70 for each apparatus body B of the laminated apparatus body Ba, and the detection output of the corresponding temperature sensor 60 is output. Based on the above, the corresponding heater 50 is driven, and the temperature of the corresponding container body 20a is controlled to be maintained at the predetermined high temperature.
- Other configurations are the same as those in the first embodiment.
- the microcoil is produced by vapor phase growth according to the manufacturing process described in the first embodiment.
- the temperature sensor 60 of each device main body B detects the temperature at the center in the hollow portion of the cylindrical base material 30 of the corresponding device main body B as the temperature of the container main body 20a of the corresponding device main body B.
- each apparatus main body in the heating process S2 in accordance with the process of the nitrogen gas supply process S1 shown in the manufacturing process of FIG. 9 or after the process of the nitrogen gas supply process S1.
- the B container body 20a is heated.
- each corresponding temperature control circuit 70 is applied with an AC voltage from the AC power supply PS in the closed state of the open / close switch SW, and becomes in an operating state, and the current detected temperature of each corresponding temperature sensor 60 is set to the detected temperature. Based on this, each corresponding heater 50 is controlled to generate heat.
- the heater 50 of each heating circuit E heats the corresponding container main body 20a to the predetermined high temperature so as to raise the temperature of the corresponding container main body 20a to the predetermined high temperature 750 (° C.). maintain.
- the source gas supplied from the source gas supply source that is, the mixed gas of acetylene gas, hydrogen gas, and hydrogen sulfide gas, for each container body 20a, three corresponding sets of source gases
- the material is introduced into the corresponding container body 20a from the left side through the source gas introduction cylinders of the introduction cylinder groups 20b to 20d.
- the reaction is started between the raw material gas and the metal catalyst of the catalyst layer 32 for each reaction vessel 20.
- the microcoils are densely grown in a circular shape having a diameter in the range of 2 to 30 times the inner diameter of the raw material gas introduction cylinder for each reaction vessel 20 as in the first embodiment. .
- the cylindrical base material 30 is attached to the container body 20a in substantially the same manner as in the first embodiment. Remove from the inside and collect the microcoil.
- microcoil collected in this way is highly purified as a solenoid-shaped microcoil that is regularly wound with a constant coil diameter, in the same manner as in the first embodiment, for each reaction vessel. A large amount can be obtained according to the number of layers.
- the three source gas introduction cylinder groups 20b to 20d in the reaction vessel 20 and the gas discharge cylinder group 20f extend horizontally from the casing 10 so as to be parallel to the horizontal plane L of the base in opposite directions from the left and right side walls 26a and 26b of the container main body 20a.
- each apparatus main body B causes interference with the three sets of the raw material gas introduction cylinder groups 20b to 20d and the gas discharge cylinder group 20f when stacked upward in each casing 10. It can be easily laminated without incurring. According to this, it is possible to increase the coil yield and coil yield of the microcoil in proportion to the number of layers of the manufacturing apparatus, and to reduce the installation area in the factory of the manufacturing apparatus. Use efficiency in factories can be increased. Other functions and effects are the same as those of the first embodiment.
- the container body 20a of the reaction vessel 20 is not limited to the transparent quartz described in the above embodiment, but is heat resistant such as opaque quartz, nickel, stainless steel, hastelloy, tungsten or titanium. You may form with various materials, such as a metal reaction tube which is a metal, an alumina, ceramics, a metal reaction tube, and the inner surface was ceramic-lined.
- the base 31 of the cylindrical substrate 30 is not limited to transparent quartz but may be formed of opaque quartz.
- the catalyst layer 32 is not limited to a metal catalyst powder, but may be a metal plate or a sintered plate of a metal catalyst powder.
- the catalyst layer 32 may apply a dispersion of a metal catalyst powder in water or alcohol to the outer peripheral surface of the substrate 31.
- a nickel catalyst layer formed by applying an aqueous solution of a nickel compound to the outer peripheral surface of the base 31 may be used.
- the thickness of the nickel catalyst layer is preferably a value within the range of 3 ( ⁇ m) to 6 ( ⁇ m).
- each of the source gas introduction cylinders of the source gas introduction cylinder groups 20b to 20d is different from the first embodiment in the base end opening portion. What is necessary is just to join to the container main body 20a so that it may oppose to a surface over about 3/1 or more of the area.
- the number of gas discharge cylinders 28 is not limited to the number described in the first embodiment, but is 1/3 to 1 with respect to the total number of source gas introduction cylinders 23 to 25. It is sufficient that the number is set in the range of / 20, and it is preferable that the number is set in the range of 1/5 to 1/10.
- an external energy field such as an electrostatic field, a fluctuating electric field, an ultrasonic field, a static magnetic field, a fluctuating magnetic field, or a plasma field is singly used while the container body 20a is maintained at the high temperature. Or you may make it act on the reaction field (reaction field with the catalyst of raw material gas) in the reaction container 20a superimposedly.
- a small coil with a small coil diameter can be obtained by reducing the anisotropy of the catalytic activity on the crystal surface of the metal catalyst, and conversely, by increasing the anisotropy, the coil diameter can be obtained. Can be obtained. This means that the coil diameter and coil pitch of the microcoil can be controlled.
- the number of stacked apparatus main bodies B described in the third embodiment is not limited to three, and may be increased or decreased as necessary.
- a polygonal substrate may be employed instead of the cylindrical substrate 30 described in the first embodiment, or a flat substrate may be employed. .
- the front and rear side end covers 40 are not limited to the U-shaped configuration in cross section, but are each a simple flat end cover. There may be.
- each flat end cover is brought into contact with each of the front and rear end faces of the cylindrical container body 20a via a heat-resistant O-ring at the outer periphery thereof, and is attached and detached by, for example, a plurality of screws. Fastened as possible.
- the source gas introduction cylinder group 20d among the source gas introduction cylinder groups 20b to 20d described in the first embodiment is different from the first embodiment in that the container main body 20a You may comprise so that it may extend rightward via the right wall 14 of the casing 10 from the upper side part (opposing the upper side part of the left anti-cylinder part 26a) of the right side semicylinder part 26b.
- each raw material gas introduction cylinder 25 differs from the first embodiment from the upper part of the right semi-cylindrical portion 26b of the container body 20a to the right so as to be positioned above each gas discharge cylinder 28. You may comprise so that it may extend.
- the source gas when the source gas is introduced into the container body 20a through each source gas introduction cylinder 25, the source gas can be smoothly introduced into the container body 20a without clogging the inside of each source gas introduction cylinder 25. .
- the amount of precipitates deposited in the container body 20a is compared with the amount of precipitates deposited by introduction of the source gas into the container body 20a by the source gas introduction cylinders 25 described in the first embodiment. Can be increased.
- each source gas introduction cylinder of each of the source gas introduction cylinder groups 20b, 20c, 20d is The gas discharge cylinders of the gas discharge cylinder group 20f extend obliquely downward from the left direction of the reaction container 20, and obliquely upward from the right direction of the reaction container 20 (extension of each raw material gas introduction cylinder). It may extend in the direction opposite to the outgoing direction.
- each of the seal gas injection cylinders of the seal gas injection cylinder group 20e may extend obliquely downward like each raw material gas introduction cylinder.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Textile Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Metallurgy (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
- Inorganic Fibers (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
【課題】原料ガスの反応容器内への導入及び当該反応容器からのガス排出の構成に工夫を凝らし、反応容器内における原料ガスの流動や触媒との接触を良好に行うようにして製造するようにした微小コイル、その製造方法及び製造装置を提供する。 【解決手段】反応容器20は、円筒状容器本体20aと、この容器本体20aの左右両側部から互いに逆方向に延出された原料ガス導入筒群20b~20d及びガス排出筒群20fと、容器本体20a内に挿入した円筒状基材30とを備えている。原料ガス導入筒群20b~20dから容器本体20a内に導入された原料ガスは、所定の高温下にて、基材30に担持した触媒と反応して熱分解して、基材30から微小コイルを成長させる。
Description
本発明は、微小コイル、その製造方法及び製造装置に関する。
従来、この種の製造装置としては、下記特許文献1に記載のコイル状炭素繊維の製造装置が提案されている。この製造装置は、コイル状炭素繊維を成長させるに要する円管状の反応容器を有している。
また、当該反応容器には、流入口、一対の注入口及び流出口が設けられている。上記流入口は、反応容器の中央上部周面に突出形成されており、当該流入口は、炭化水素ガス又は一酸化炭素ガス等の原料ガスを反応容器内に流入させる役割を果たす。上記一対の注入口は、反応容器の両端部の上部周面に突出形成されており、当該一対の注入口は、反応容器内にシールガスを注入させる役割を果たす。また、上記流出口は、反応容器の中央下部周面に、上記流入口に対応するように突出形成されており、当該流出口は、反応容器内に流入された原料ガスや、反応容器内に注入されたシールガスを流出させる役割を果たす。
換言すれば、上述した流入口及び一対の注入口は、反応容器にその上部から上方へ垂直に延出するように設けられて、それぞれの役割を果たし、また、上述した流出口は、反応容器にその下部から下方へ垂直に延出するように設けられて、その役割を果たす。
このように構成した製造装置において、反応容器を加熱器により所定温度に加熱した状態において、原料ガスを上記流入口から供給すると、当該原料ガスは、反応容器内に下方に向け流入して、反応容器内にて熱分解される。すると、このように熱分解した原料ガスのもとに、気相成長炭素繊維が、反応容器内に金属触媒を塗布して収容した基材上からコイル状に巻きながら成長する。
ところで、上記製造装置では、上述のごとく、流入口が、反応容器の上部からその上方へ垂直に延出されている。このことは、上記製造装置は、原料ガスを反応容器内にその上方から下方に向け強制的に導入する方式を採用していることを意味する。
従って、このような製造装置では、反応容器内における原料ガスの対流等の流動や金属触媒との接触が、上述のような反応容器に対する流入口の構成に起因して、制限されてしまう。その結果、十分な熱分解反応や触媒反応が反応容器内において起こりにくく、コイルの収量や純度も非常に低いという不具合が生じる。
また、上記製造装置では、上述のごとく、流入口が、反応容器の上部からその上方へ垂直に延出され、また、流出口が反応容器の下部からその下方へ垂直に延出されている。従って、上記製造装置において、当該反応容器を、複数、上下方向には積層しにくく、その結果、コイル状炭素繊維を効率よく多量に製造することができないという不具合も生ずる。
そこで、本発明は、以上のようなことに対処するため、原料ガスの反応容器内への導入及び当該反応容器からのガス排出の構成に工夫を凝らし、反応容器内における原料ガスの流動や触媒との接触を良好に行うようにして製造するようにした微小コイル、その製造方法及び製造装置を提供することを目的とする。
上記課題の解決にあたり、本発明に係る微小コイルは、
筒状容器本体(20a)と、この容器本体内にその軸方向に沿い挿入される基材であって容器本体の内周面に対向するように触媒を担持してなる基材(30)とを有して、熱分解されたときガス状炭素種を生成する原料ガスを容器本体の両横方向対向壁部の一方の横方向対向壁部から当該容器本体内に導入するとともに上記両横方向対向壁部の他方の横方向対向壁部から容器本体内のガスを排出するようにした反応容器(20)の容器本体に上記一方の横方向対向壁部から導入する上記原料ガスを所定の高温のもとに触媒により熱分解することで基材に生成させたガス状炭素種に基づき当該基材から成長してなるものである。
筒状容器本体(20a)と、この容器本体内にその軸方向に沿い挿入される基材であって容器本体の内周面に対向するように触媒を担持してなる基材(30)とを有して、熱分解されたときガス状炭素種を生成する原料ガスを容器本体の両横方向対向壁部の一方の横方向対向壁部から当該容器本体内に導入するとともに上記両横方向対向壁部の他方の横方向対向壁部から容器本体内のガスを排出するようにした反応容器(20)の容器本体に上記一方の横方向対向壁部から導入する上記原料ガスを所定の高温のもとに触媒により熱分解することで基材に生成させたガス状炭素種に基づき当該基材から成長してなるものである。
これによれば、反応容器において、容器本体の一方の横方向対向壁部から当該容器本体内に導入された原料ガスは、容器本体内において、横方向に円滑にかつ良好に流動して、基材の触媒との反応を良好になし得る。従って、容器本体を容器本体内に導入した上記原料ガスを、上記所定の高温のもとに、上記触媒により熱分解して、ガス状炭素種を基材に良好に生成させ得る。その結果、微小コイルが、当該ガス状炭素種に基づく基材からの成長でもって良好に効率よく得られる。
また、本発明に係る微小コイルの製造方法では、
筒状容器本体(20a)と、この容器本体内にその軸方向に沿い挿入される基材であって容器本体の内周面に対向するように触媒を担持してなる基材(30)とを有して、熱分解されたときガス状炭素種を生成する原料ガスを、容器本体の両横方向壁部及びその下方向壁部のうちの所定の一方向壁部から当該容器本体内に導入するとともに容器本体の上記所定の一方向壁部に対向する所定の他方向壁部から容器本体内のガスを排出するようにした反応容器(20)を準備して、
容器本体を所定の高温に加熱して維持する加熱工程(S2)と、
容器本体に上記所定の一方向壁部からから上記原料ガスを導入する原料ガス導入工程(S5)とを備えて、
当該原料ガス導入工程にて、容器本体を上記所定の高温に維持した状態にて、容器本体内に導入した上記原料ガスを上記触媒により熱分解して基材にガス状炭素種を生成させ、このガス状炭素種に基づき基材から微小コイルを成長させて製造するようにした。
筒状容器本体(20a)と、この容器本体内にその軸方向に沿い挿入される基材であって容器本体の内周面に対向するように触媒を担持してなる基材(30)とを有して、熱分解されたときガス状炭素種を生成する原料ガスを、容器本体の両横方向壁部及びその下方向壁部のうちの所定の一方向壁部から当該容器本体内に導入するとともに容器本体の上記所定の一方向壁部に対向する所定の他方向壁部から容器本体内のガスを排出するようにした反応容器(20)を準備して、
容器本体を所定の高温に加熱して維持する加熱工程(S2)と、
容器本体に上記所定の一方向壁部からから上記原料ガスを導入する原料ガス導入工程(S5)とを備えて、
当該原料ガス導入工程にて、容器本体を上記所定の高温に維持した状態にて、容器本体内に導入した上記原料ガスを上記触媒により熱分解して基材にガス状炭素種を生成させ、このガス状炭素種に基づき基材から微小コイルを成長させて製造するようにした。
これによれば、反応容器において、原料ガスが容器本体の上記所定の一方向壁部から当該容器本体内に導入されるから、このように当該容器本体内に導入された原料ガスは、容器本体内において、横方向或いは上方向に円滑にかつ良好に流動して、基材の触媒との反応を良好になし得る。
従って、容器本体を上記所定の高温に維持した状態にて、容器本体内に導入した上記原料ガスを上記触媒により熱分解してガス状炭素種を基材に良好に生成させ得る。その結果、このガス状炭素種に基づく微小コイルの基材からの成長製造が良好に効率よくなされ得る。
本発明は、上記微小コイルの製造方法において、反応容器の上記所定の一方向壁部及び上記所定の他方向壁部は、それぞれ、容器本体の両横方向対向壁部の一方の横方向対向壁部及び他方の横方向対向壁部であることを特徴とする。
これによれば、反応容器において、原料ガスが容器本体内にその一横方向から導入されるから、このように当該容器本体内に導入された原料ガスは、容器本体内において、上記一横方向とは逆の他の横方向へ円滑にかつ良好に流動して、基材の触媒との反応を良好になし得る。
本発明は、上記微小コイルの製造方法において、反応容器の上記所定の一方向壁部及び上記所定の他方向壁部は、それぞれ、容器本体の上下両方向対向壁部の一方の下方向対向壁部及び他方の上方向対向壁部であってもよい。
これによれば、反応容器において、原料ガスが容器本体内にその下方から導入されるから、このように当該容器本体内に導入された原料ガスは、容器本体内において、上方へ円滑にかつ良好に流動して、基材の触媒との反応を良好になし得る。その結果、上述した製造方法の発明と実質的に同様の作用効果が達成され得る。
また、本発明は、上述した微小コイルの製造方法において、
基材は、筒状容器本体内にその軸方向に挿入されて外周面に上記触媒を担持してなる筒状基体(31)を有しており、
上記原料ガス導入工程にて、筒状容器本体を上記所定の高温に維持した状態にて、筒状容器本体内に導入した上記原料ガスを上記触媒により熱分解させて筒状基体の外周面にガス状炭素種を生成させ、このガス状炭素種に基づき筒状基体の外周面から微小コイルを成長させて製造するようにしてもよい。
基材は、筒状容器本体内にその軸方向に挿入されて外周面に上記触媒を担持してなる筒状基体(31)を有しており、
上記原料ガス導入工程にて、筒状容器本体を上記所定の高温に維持した状態にて、筒状容器本体内に導入した上記原料ガスを上記触媒により熱分解させて筒状基体の外周面にガス状炭素種を生成させ、このガス状炭素種に基づき筒状基体の外周面から微小コイルを成長させて製造するようにしてもよい。
このように、基材が、筒状容器本体内にその軸方向に挿入されて外周面に上記触媒を担持してなる筒状基体であることから、微小コイルが筒状基体の外周面から成長することとなる。その結果、微小コイルをより一層多量に効率よく製造し得る。
また、本発明は、上述した微小コイルの製造方法において、
上記原料ガスは、アセチレンガス、水素ガス及び硫化水素ガスからなる混合ガスであり、
上記加熱工程において、上記所定の高温を600(℃)~900(℃)の範囲内の温度として、この温度に容器本体を加熱して維持するようにしてもよい。
上記原料ガスは、アセチレンガス、水素ガス及び硫化水素ガスからなる混合ガスであり、
上記加熱工程において、上記所定の高温を600(℃)~900(℃)の範囲内の温度として、この温度に容器本体を加熱して維持するようにしてもよい。
これによれば、原料ガスは、アセチレンガス、水素ガス及び硫化水素ガスからなる混合ガスであって、窒素ガスやチオフェンのような原料ガスに害をなすような成分を含まない。従って、原料ガスの触媒との反応による熱分解が良好になされ得ることから、微小コイルの成長がより一層良好になされ得る。
また、本発明に係る微小コイルの製造装置は、
ケーシング(10、10a、10b)と、反応容器(20)と、基材(30)と、加熱制御手段(50、60、70)とを備えて、
反応容器は、
ケーシング内に軸方向に挿入される筒状容器本体(20a)と、
この容器本体の両横方向壁部及びその下方向壁部のうちの所定の一方向壁部から外方へ延出されて、熱分解されたときガス状炭素種を生成する原料ガスを、原料ガス供給源から容器本体内に導入する少なくとも1本の原料ガス導入筒(23、24、25)と、
容器本体の上記所定の一方向壁部に対向する所定の他方向壁部から上記少なくとも1本の原料ガス導入筒とは逆方向に外方へ延出されて容器本体内のガスを排出する少なくとも1本のガス排出筒(28)とを具備しており、
基材は、容器本体内にその軸方向に沿い挿入されて、容器本体の内周面に対向するように触媒を担持してなり、
加熱制御手段は、容器本体を所定の高温に維持すべく加熱制御するようにして、
容器本体を上記所定の高温に維持した状態にて、容器本体内の上記原料ガスを上記触媒により加熱分解して基材にガス状炭素種を生成させ、このガス状炭素種に基づき基材から微小コイルを成長させて製造するようにした。
ケーシング(10、10a、10b)と、反応容器(20)と、基材(30)と、加熱制御手段(50、60、70)とを備えて、
反応容器は、
ケーシング内に軸方向に挿入される筒状容器本体(20a)と、
この容器本体の両横方向壁部及びその下方向壁部のうちの所定の一方向壁部から外方へ延出されて、熱分解されたときガス状炭素種を生成する原料ガスを、原料ガス供給源から容器本体内に導入する少なくとも1本の原料ガス導入筒(23、24、25)と、
容器本体の上記所定の一方向壁部に対向する所定の他方向壁部から上記少なくとも1本の原料ガス導入筒とは逆方向に外方へ延出されて容器本体内のガスを排出する少なくとも1本のガス排出筒(28)とを具備しており、
基材は、容器本体内にその軸方向に沿い挿入されて、容器本体の内周面に対向するように触媒を担持してなり、
加熱制御手段は、容器本体を所定の高温に維持すべく加熱制御するようにして、
容器本体を上記所定の高温に維持した状態にて、容器本体内の上記原料ガスを上記触媒により加熱分解して基材にガス状炭素種を生成させ、このガス状炭素種に基づき基材から微小コイルを成長させて製造するようにした。
これによれば、少なくとも1本の原料ガス導入筒が容器本体の上記所定の一方向壁部から延出され、少なくとも1本のガス排出筒が容器本体の上記所定の他方向壁部から上記少なくとも1本の原料ガス導入筒とは逆方向に延出されている。
このため、このように当該容器本体内に導入された原料ガスは、容器本体内において、基材に沿い横方向或いは上方へ円滑にかつ良好に流動して、当該基材の触媒との反応を良好になし得る。従って、容器本体を上記所定の高温に維持した状態にて、容器本体内に導入した上記原料ガスを上記触媒により熱分解してガス状炭素種を基材に良好に生成させ得る。その結果、このガス状炭素種に基づく微小コイルの基材からの成長製造が良好に効率よくなされ得る。
また、本発明は、上記微小コイルの製造装置において、反応容器の上記所定の一方向壁部及び上記所定の他方向壁部は、それぞれ、容器本体の両横方向対向壁部の一方の横方向対向壁部及び他方の横方向対向壁部であってもよい。
これによれば、少なくとも1本の原料ガス導入筒が容器本体から一横方向へ延出され、少なくとも1本のガス排出筒が容器本体から上記一横方向とは逆の他の横方向へ延出されている。
このため、このように当該容器本体内に導入された原料ガスは、容器本体内において、基材に沿い横方向へ円滑にかつ良好に流動して、当該基材の触媒との反応を良好になし得る。従って、容器本体を上記所定の高温に維持した状態にて、容器本体内に導入した上記原料ガスを上記触媒により熱分解してガス状炭素種を基材に良好に生成させ得る。その結果、このガス状炭素種に基づく微小コイルの基材からの成長製造が良好に効率よくなされ得る。
また、上述のように原料ガス導入筒及びガス排出筒が、反応容器の横方向において互い逆方向に延在しているから、当該反応容器を、複数、積層しても、各反応容器は、その原料ガス導入筒及びガス排出筒にて、その上下に位置する原料ガス導入筒及びガス排出筒との間で干渉を招くことなく、容易に積層することができる。
また、本発明は、上記製造装置において、反応容器の上記所定の一方向壁部及び上記所定の他方向壁部は、それぞれ、容器本体の上下両側方向対向壁部の一方の下方向対向壁部及び他方の上方向対向壁部であることを特徴とする。
これによれば、少なくとも1本の原料ガス導入筒が容器本体から下方へ延出され、少なくとも1本のガス排出筒が容器本体から上方へ延出されている。
このため、このように当該容器本体内に導入された原料ガスは、容器本体内において、基材に沿い上方へ円滑にかつ良好に流動して、当該基材の触媒との反応を良好になし得る。従って、容器本体を上記所定の高温に維持した状態にて、容器本体内に導入した上記原料ガスを上記触媒により熱分解してガス状炭素種を基材に良好に生成させ得る。その結果、このガス状炭素種に基づく微小コイルの基材からの成長製造が良好に効率よくなされ得る。
また、本発明は、上述した微小コイルの製造装置において、
基材は、筒状容器本体内にその軸方向に挿入されて外周面に上記触媒を担持してなる筒状基体(31)を有するようにしてもよい。
基材は、筒状容器本体内にその軸方向に挿入されて外周面に上記触媒を担持してなる筒状基体(31)を有するようにしてもよい。
これにより、筒状容器本体内に導入した原料ガスは、筒状基体の外周面に沿い流動して、触媒と反応して熱分解により筒状基体から微小コイルを成長させることとなる。従って、微小コイルの成長領域が、筒状基体の外周面に亘る広範囲となり、その結果、微小コイルをより一層多量に効率よく成長させ得る。
また、本発明は、上述した微小コイルの製造装置において、
筒状基材は、筒状基体(31)と、ニッケル金属を、その表面に部分酸化及び部分硫化を施した上で2(μm)~6(μm)の範囲内の厚さでもって、筒状基体の外周面に塗布することで、上記触媒として筒状基体の上記外周面に担持させてなる触媒層(32)とにより構成されていてもよい。
筒状基材は、筒状基体(31)と、ニッケル金属を、その表面に部分酸化及び部分硫化を施した上で2(μm)~6(μm)の範囲内の厚さでもって、筒状基体の外周面に塗布することで、上記触媒として筒状基体の上記外周面に担持させてなる触媒層(32)とにより構成されていてもよい。
このように、触媒層を形成することで、原料ガスの触媒との反応による熱分解をより一層良好にし得る。
また、本発明は、上述した微小コイルの製造装置において、
上記少なくとも1本の原料ガス導入筒は、複数の原料ガス導入筒であって、
当該複数の原料ガス導入筒は、筒状基材のうち軸方向長さの1/3以上の長さに対応する部位から当該筒状基材の軸方向に原料ガス導入筒の内径の20倍以内の間隔をおいて延出されており、
筒状基材の外周面と原料ガス導入筒の内端開口部との間の径方向対向間隔が、5(mm)~50(mm)の範囲内の値に設定されていてもよい。
上記少なくとも1本の原料ガス導入筒は、複数の原料ガス導入筒であって、
当該複数の原料ガス導入筒は、筒状基材のうち軸方向長さの1/3以上の長さに対応する部位から当該筒状基材の軸方向に原料ガス導入筒の内径の20倍以内の間隔をおいて延出されており、
筒状基材の外周面と原料ガス導入筒の内端開口部との間の径方向対向間隔が、5(mm)~50(mm)の範囲内の値に設定されていてもよい。
これによれば、容器本体内の原料ガスの筒状基材の触媒との反応が効率よくなされ得る。
また、本発明は、上記微小コイルの製造装置において、
ケーシング、反応容器、基材及び加熱制御手段を、それぞれ、複数備えており、
複数のケーシングは、それぞれ、上下に積層されており、
複数の反応容器は、それぞれ、その筒状容器本体にて、複数のケーシングの対応ケーシング毎に、当該対応ケーシング内に軸方向に挿入され、その上記少なくとも1本の原料ガス導入筒にて、対応の筒状容器本体の上記一方の横方向壁部から外方へ延出され、かつ、その上記少なくとも1本のガス排出筒にて、上記他方の横方向壁部から外方へ延出されており、
複数の基材は、それぞれ、各対応の容器本体にその軸方向に沿い挿入されて、各対応の容器本体の内周面に対向するように触媒を担持してなり、
複数の加熱制御手段は、それぞれ、各対応の容器本体を上記所定の高温に維持すべく加熱制御するようにして、
各対応の容器本体を上記所定の高温に維持した状態にて、各対応の容器本体内の上記原料ガスを各対応の上記触媒により加熱分解して各対応の基材にガス状炭素種を生成させ、このガス状炭素種に基づき各対応の基材から微小コイルを成長させて製造するようにしてもよい。
ケーシング、反応容器、基材及び加熱制御手段を、それぞれ、複数備えており、
複数のケーシングは、それぞれ、上下に積層されており、
複数の反応容器は、それぞれ、その筒状容器本体にて、複数のケーシングの対応ケーシング毎に、当該対応ケーシング内に軸方向に挿入され、その上記少なくとも1本の原料ガス導入筒にて、対応の筒状容器本体の上記一方の横方向壁部から外方へ延出され、かつ、その上記少なくとも1本のガス排出筒にて、上記他方の横方向壁部から外方へ延出されており、
複数の基材は、それぞれ、各対応の容器本体にその軸方向に沿い挿入されて、各対応の容器本体の内周面に対向するように触媒を担持してなり、
複数の加熱制御手段は、それぞれ、各対応の容器本体を上記所定の高温に維持すべく加熱制御するようにして、
各対応の容器本体を上記所定の高温に維持した状態にて、各対応の容器本体内の上記原料ガスを各対応の上記触媒により加熱分解して各対応の基材にガス状炭素種を生成させ、このガス状炭素種に基づき各対応の基材から微小コイルを成長させて製造するようにしてもよい。
これによれば、当該製造装置は、単一のケーシングを有する製造装置を上下に複数積層して構成されることとなる。従って、微小コイルの製造数をより一層増大させることができる。また、上述のような積層構成にあたっては、上述のように原料ガス導入筒及びガス排出筒が、反応容器の横方向において互い逆方向に延在しているから、各反応容器は、その原料ガス導入筒及びガス排出筒にて、その上下に位置する原料ガス導入筒及びガス排出筒との間で干渉を招くことなく、容易に積層され得る。
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す。
以下、本発明の各実施形態を図面により説明する。
(第1実施形態)
図1及び図2は、本発明を微小コイルの製造装置に適用してなる第1実施形態を示しており、この製造装置は、装置本体B(図1参照)と、加熱回路E(図2参照)とにより構成されている。本第1実施形態において、上記微小コイルは、炭素種から成長する微小コイルであって、カーボンマイクロコイルともいう。これは、微小コイルのコイル径がμmオーダーであることに起因する。
(第1実施形態)
図1及び図2は、本発明を微小コイルの製造装置に適用してなる第1実施形態を示しており、この製造装置は、装置本体B(図1参照)と、加熱回路E(図2参照)とにより構成されている。本第1実施形態において、上記微小コイルは、炭素種から成長する微小コイルであって、カーボンマイクロコイルともいう。これは、微小コイルのコイル径がμmオーダーであることに起因する。
なお、図1において、図示左側及び右側が、それぞれ、装置本体Bの後側及び前側に対応し、図示上側及び図示下側が、それぞれ、装置本体Bの左側及び右側に対応する。また、図1において、紙面の手前側及び奥側が、それぞれ、装置本体Bの上側及び下側に対応する。
装置本体Bは、図1にて示すごとく、ケーシング10と、反応容器20と、円筒状基材30と、前後両側エンドカバー40とを備えている。ケーシング10は、横断面矩形状筒体10aと、角柱状電気絶縁性充填部材10bとを備えている(図5参照)。
筒体10aは、図5にて例示するごとく、横断面コ字状の上壁11、横断面コ字状の下壁12、左壁13及び右壁14でもって矩形筒状となるように、ステンレスでもって形成されている。ここで、上壁11は、その左右両縁部にて、下方に向けL字状に折れ曲がって、左右両壁13、14の各上縁部に外方から着脱可能に組み付けられている。また、下壁12は、その左右両縁部にて、上方に向けL字状に折れ曲がって、左右両壁13、14の各下縁部に外方から着脱可能に組み付けられている。
角柱状電気絶縁性充填部材10bは、ロックウール等の柔軟性電気絶縁材料により角柱状に形成されており、この充填部材10bは、筒体10a内に同軸的に収容されている。これにより、当該充填部材10bは、後述のごとく、容器本体20aを、筒体10aから電気的に絶縁しつつ当該筒体10a内に同軸的に支持する役割を果たす。なお、当該装置本体Bの設置にあたり、ケーシング10は、通常、筒体10aの下壁12にて、基台の水平面L上に載置される(図1、図3或いは図4参照)。
反応容器20は、図1、図3~図7のいずれかにて示すごとく、円筒状容器本体20aと、3組の原料ガス導入筒群20b~20dと、シールガス注入筒群20eと、ガス排出筒群20fとを備えている。
容器本体20aは、透明の石英でもって円筒状に形成されており、この容器本体20aは、電気絶縁性充填部材10bの貫通穴部15内に同軸的に挿通されている。ここで、貫通穴部15は、電気絶縁性充填部材10b内に同軸的に形成されている。これにより、容器本体20aは、その軸方向前後両端部21、22にて、筒体10aの軸方向両端開口部及び電気絶縁性充填部材10bの軸方向両端開口部から互いに逆方向に延出するとともに、充填部材10bによって、上述のごとく、筒体10aから電気的に絶縁されつつ当該筒体10a内に同軸的に支持されている。
本第1実施形態において、容器本体20aの形成材料として、透明の石英を採用したのは、透明の石英が、触媒活性、硫化水素に対する耐食性、直線状炭素繊維や固形炭素膜や炭素粉等の微小コイル生成反応以外の副反応を抑制すること及び容器本体20aの内部を外部から透視し易いことに起因する。
また、容器本体20aの内径は、原料ガス(後述する)の対流等の流動や混合、金属触媒との接触、排気ガスの効率的排出等の点から、30(mm)~300(mm)の範囲の値に設定されることが好ましく、さらには、100(mm)~150(mm)の範囲内の値に設定されることが、より一層好ましい。本第1実施形態では、容器本体20aの内径は、100(mm)に設定されている。
また、容器本体20aの全長は、600(mm)~2500(mm)の範囲内の値に設定されることが好ましく、さらには、1000(mm)~1800(mm)の範囲の値に設定されることが、より一層好ましい。本第1実施形態では、容器本体20aの全長は、1500(mm)に設定されている。
3組の原料ガス導入筒群20b~20dは、原料ガス供給源(図示しない)からの原料ガス(後述する)を容器本体20a内に導入する役割を果たすもので、当該3組の原料ガス導入筒群20b~20dは、図3、図5、図6及び図7のいずれかにて示すごとく、容器本体20aの左側半円筒部26aからケーシング10の左壁13を介し左方へ延出されている。
ここで、上記原料ガスとしては、触媒ガス及び水素ガスの他、熱分解して容易にガス状炭素種を生成するアセチレン、メタン、プロパン等の炭化水素ガスや一酸化炭素ガスが挙げられる。これらの原料ガスのうち、アセチレンが最も好ましい。これは、アセチレンが、反応温度で容易に熱分解して金属触媒と反応し、金属触媒粒の各結晶面での触媒活性の異方性を効率よく発現させるからである。
そこで、本第1実施形態においては、アセチレンガスが、水素ガス、及び触媒ガスである硫化水素ガスとともに、上記原料ガスとして採用されている。
また、上記触媒ガスとしては、周期律表の第15属及び第16族を含むガスであって、イオウ、チオフェン,メチルメルカプタン、硫化水素等のイオウ原子を含む化合物のガス、或いはリン、3塩化リン等のリン原子を含む化合物のガスが挙げられる。上記触媒ガスのうち、使用の簡便性と微小コイルを高収量と高収率で得る観点から、硫化水素ガスが最も好ましい。
そこで、本第1実施形態では、硫化水素ガスが、上記触媒ガスとして、上述のごとく、原料ガスのうちの1つのガスとして、採用されている。また、上記触媒ガスである硫化水素ガスの反応雰囲気中の濃度は、0.01(容量%)~0.5の範囲内の濃度であり、さらに0.05(容量%)~0.2(容量%)範囲内の濃度であることがより好ましい。よって、本第1実施形態では、硫化水素ガスの容器本体20a内への供給濃度は、反応雰囲気中の濃度を0.05(容量%)~0.2(容量%)範囲内の濃度とするように設定されている。
なお、硫化水素ガスの濃度が0.01(容量%)未満或いは0.5(容量%)を超えて高くなると、微小コイルの成長は殆ど得られない。また、硫化水素ガスの流量は少ないので、1(容量%)~2(容量%)の範囲内の値の水素バランスガスが用いられる。
また、3組の原料ガス導入筒群20b~20dは、原料ガス導入筒群20bから原料ガス導入筒群20dにかけて、容器本体20aの左側半円筒部26aの上側部位、中側部位及び下側部位から延出されている。
また、左側半円筒部26aの上側部位、中側部位及び下側部位において、上記中側部位は、容器本体20aの左側半円筒部26aの上下方向中央部位に相当する。これに伴い、上記上側部位は、上記中側部位と左側半円筒部26aの上縁部位との間の中央部位に相当し、一方、上記下側部位は、上記中側部位と左側半円筒部26aの下縁部位との間の中央部位に相当する。
従って、左側半円筒部26aは、上記中側部位にて、容器本体20aのケーシング10の下壁12に平行な断面(平行断面)内に位置し、上記上側部位にて、容器本体20aの上記平行断面に対し当該容器本体20aの中心を基準に上方へ45°傾斜する断面(上方傾斜断面)内に位置し、また、上記下側部位にて、容器本体20aの上記平行断面に対し当該容器本体20aの中心を基準に下方へ45°傾斜する断面(下方傾斜断面)内に位置する。
原料ガス導入筒群20bは、複数本(例えば、16本)の原料ガス導入筒23からなるもので、当該複数の原料ガス導入筒23は、その各基端開孔部23aにて、容器本体20aの左側半円筒部26aの上記上側部位の前後方向において等間隔にて溶接等により接合されて、容器本体20aの内部に連通している。また、当該複数の原料ガス導入筒23は、その基端開孔部23aからケーシング10の左壁13の上側部位を通り左方へ延出している。
原料ガス導入筒群20cは、複数(例えば、16本)の原料ガス導入筒24を有しており、当該複数の原料ガス導入筒24は、その各基端開孔部24aにて、容器本体20aの左側半円筒部26aの上記中側部位に前後方向において上記等間隔にて溶接等により接合されて、容器本体20aの内部に連通している。また、当該複数の原料ガス導入筒24は、その基端開孔部24aからケーシング10の左壁13の中側部位を通り左方へ延出している。
原料ガス導入筒群20dは、複数(例えば、16本)の原料ガス導入筒25を有しており、当該複数の原料ガス導入筒25は、その各基端開孔部25aにて、容器本体20aの左側半円筒部26aの上記下側部位に前後方向において上記等間隔にて溶接等により接合されて、容器本体20aの内部に連通している。また、当該複数の原料ガス導入筒24は、その基端部からケーシング10の左壁13の下側部位を通り左方へ延出している。
なお、原料ガス導入筒群20bから原料ガス導入筒群20dにかけて、各対応の原料ガス導入筒23、24及び25は、互いに上下方向に対応するように、容器本体20aの同一の前後方向位置にある
本第1実施形態において、3組の原料ガス導入筒群20b~20dの各原料ガス導入筒の内径は、原料ガスの流量や流速を所定範囲内に保持するために、3(mm)~50(mm)の範囲の値に設定されることが好ましく、さらには、6(mm)~30(mm)の範囲の値に設定されることがより一層好ましい。
本第1実施形態において、3組の原料ガス導入筒群20b~20dの各原料ガス導入筒の内径は、原料ガスの流量や流速を所定範囲内に保持するために、3(mm)~50(mm)の範囲の値に設定されることが好ましく、さらには、6(mm)~30(mm)の範囲の値に設定されることがより一層好ましい。
本第1実施形態では、原料ガス導入筒群20b~20dの各原料ガス導入筒の内径は、9(mm)に設定されている。なお、原料ガス導入筒群20b、20b及び20dの各々において、互いに隣り合う各両原料ガス導入筒の中心間隔は、75(mm)に設定されている。
シールガス注入筒群20eは、シールガス供給源(図示しない)から容器本体20a内にシールガス(後述する)を注入する役割を果たすもので、当該シールガス注入筒群20eは、図1或いは図3にて示すごとく、容器本体20aの左側半円筒部26aの上記中側部位からケーシング10の左壁13を介し左方へ延出されている。本第1実施形態において、上記シールガスとして、窒素、アルゴン、ヘリウムなどの化学的に不活性なガス或いは水素ガスが挙げられる。これは、外部から容器本体20a内に混入される酸素ガスや当該容器本体20a内に導入される窒素ガス等によって、余分な或いは有害な影響を反応系に与えられることを防止するためである。本第1実施形態では、水素ガスがシールガスとして採用されている。
当該シールガス注入筒群20eは、例えば、2本のシールガス注入筒27からなるもので、当該2本のシールガス注入筒27は、その基端開孔部にて、容器本体20aの左側半円筒部26aの上記中側部位に原料ガス導入筒群20bの前後両側にて溶接等により接合されて、容器本体20aの内部に連通している。また、各シールガス注入筒27は、その基端開孔部からケーシング10の左壁13の上記中側部位を通り左方へ延出している。
ガス排出筒群20fは、容器本体20a内のガスを当該容器本体20aの外部に排出する役割を果たすもので、当該ガス排出筒群20fは、図1、図4或いは図6にて示すごとく、容器本体20aの右側半円筒部26bからケーシング10の右壁14を介し右方へ延出されている。
当該ガス排出筒群20fは、例えば、5本のガス排出筒28からなるもので、各ガス排出筒28は、その基端開孔部28aにて、容器本体20aの右側半円筒部26bの中側部位にその前後方向において等間隔にて溶接等により接合されて、容器本体20aの内部に連通している。ここで、右側半円筒部26bの中側部位は、容器本体20aの前後方向軸を介し左側半円筒部26aの中側部位に対向する。また、各ガス排出筒28は、その基端開孔部28aからケーシング10の右壁14の中側部位(左側半円筒部26aの中側部位に対応)を通り右方へ延出している。なお、各ガス排出筒28の内径は、ガス排出筒間で同一であるが、当該各ガス排出筒28の内径の総和は、全原料ガス導入筒23~25の各断面積の総和に相当する断面積を確保するように設定されている。これは、容器本体20a内のガスの排出を円滑に行うためである。
本第1実施形態において、容器本体20aの最前端側に位置するガス排出筒28の基端開孔部28aは、容器本体20aの最前端側に位置する原料ガス導入筒24から後側へ3本目の原料ガス導入筒24の基端開孔部24aに対向し、また、容器本体20aの最後端側に位置するガス排出筒28の基端開孔部28aは、容器本体20aの最後端側に位置する原料ガス導入筒24から前側へ3本目の原料ガス導入筒24の基端開孔部24aに対向する。
円筒状基材30は、多数の微小コイルを成長させる役割を果たすもので、この円筒状基材30は、後述のごとく、容器本体20a内にて同軸的に収容されている。なお、円筒状基材30は、その外周面にて、容器本体20aの3組の原料ガス導入筒群20b~20dの各原料ガス導入筒の基端開孔部に対向している。
当該円筒状基材30は、図1、図4或いは図6にて示すごとく、円筒状基体31と、円筒状触媒層32と、前後両側脚33とにより構成されている。円筒状基体31は、透明な石英でもって円筒状に形成されており、当該円筒状基体31の外周面には、サンドブラスト処理が施されている。
円筒状触媒層32は、金属触媒の粉末を基体31の外周面に亘り、例えば、刷毛を用いて塗布することで円筒状に形成されている。ここで、円筒状基体31の外周面には、上述のごとく、サンドブラスト処理が施されているから、金属触媒の粉末は、基体31の外周面に対し良好に担持され得る。このことは、円筒状基材30が、円筒状基体31の外周面に触媒層32でもって金属触媒の粉末を円筒状に担持することを意味する。
ここで、上記金属触媒としては、ニッケル、鉄、チタン或いはタングステン等の遷移金属の単体や合金の他、遷移金属の酸化物、炭化物、硫化物、窒化物、リン化物、炭酸化物或いは炭硫化物等から選択される少なくとも1種の化合物が挙げられる。
また、上記金属触媒の粉末の平均粒径は、50(nm)~5(μm)の範囲内の粒径である。上記金属触媒としては、より好ましくは、ニッケル、チタン、タングステンなどの金属、合金、酸素との固溶体、酸化物、炭化物、窒化物、硫化物、リン化物、炭酸化物或いは炭硫化物等が挙げられる。その中でも、金属触媒の各結晶面での触媒活性の異方性及びコストの点から、ニッケルと酸素の固溶体が、上記金属触媒として、最も好ましい。
この点につき詳細に述べれば、従来、金属触媒として、Ni、Fe、Nb、NiO、Auのうちの1種類の金属が用いられてきた。Ni、Fe、Nb等の純粋な金属を触媒として用いた場合、規則的に巻いた純粋な微小コイル以外にも、かなりの量の大きく巻いた炭素繊維や直線状の炭素繊維が析出し、コイル純度の低いものしか得られなかった。また、NiO触媒の場合、コイル収量やコイル純度は非常に低かった。
ガス状炭素種から気相成長する炭素繊維がコイル状に巻くためには、触媒の中心部分は単結晶であり、それぞれの結晶面での触媒活性に差があること、換言すれば、異方性があることが必須条件である。
例えば、Niの場合、異方性はNi単結晶表面に存在するNi-C-S-O系の4元系疑液相(液晶相)の組成比の違いによってもたらされると考えられている。これは、例えば、Ni(100)、Ni(110)及びNi(111)の結晶面では、それぞれの結晶面における原料ガス中の、C、S及びOとの反応性や吸着能が異なることに起因している。Ni酸化物であるNiOの場合、そのような効果は小さく、従って、コイルになる割合も非常に低い。
ニッケル触媒の触媒活性の異方性を十分発現させるためには、予めその表面を部分酸化及び部分硫化処理することが必須条件である。この処理により、その後アセチレンを導入して反応を行った際に、極めて効率よく異方性が発現され、微小コイルが効率よく成長する。部分酸化処理及び硫化処理を行わず、直接、アセチレンを導入して反応を行うと、十分な異方性が発現されず、従って、微小コイルのコイル収率及びコイル純度も著しく低下する。
このため、本第1実施形態では、ニッケルと酸素との固溶体が、上記金属触媒として用いられている。具体的には、ニッケルの粉末を、その表面にて部分酸化及び部分硫化処理した上で、酸素との固溶体とし、2(μm)~5(μm)の範囲内の厚さとなるように基体31に塗布して触媒層32としている。
また、本第1実施形態において、基体31は、30(mm)~250(mm)の範囲内の外径を有する。但し、三組の原料ガス導入筒群20b~20dの各原料ガス導入筒の基端開孔部の開孔面(容器本体20aの内周面)と円筒状基材30の外周面(触媒層32の外周面)との間の基体31の径方向に沿う所定対向間隔が、1(mm)~80(mm)の範囲内の値に設定されるように、基体31の外径が選定されている。また、当該所定対向間隔は、より好ましくは、10(mm)~50(mm)の範囲内に設定されるように、さらに最も好ましくは、15(mm)~30(mm)の範囲内に設定されるように、基体31の外径が選定される。
上記所定対向間隔が30(mm)を越えて増大するにつれて、規則的に巻いた微小コイルの割合が減少し、コイル径は次第に大きく不規則になり、また大きくカールした微小コイルの割合が次第に増加する。上記所定対向間隔が、1(mm)未満となるか、或いは100(mm)を超えて増大すると、微小コイルは全く得られず、直線状炭素繊維または炭素粉末のみが析出される。本第1実施形態では、三組の原料ガス導入筒群20b~20dの各原料ガス導入筒の基端開孔部の開孔面と円筒状基材30の外周面との間の基体31の径方向に沿う所定対向間隔は、25(mm)に設定されるとともに、基体31の外径は、60(mm)に設定されている。
前後両側脚33は、図1、図4或いは図6にて示すごとく、共に、同一の二股形状にて、触媒層32の軸方向両端下部から下方へ着脱可能に延出されている。このことは、前後両側脚33は、その各二股部にて、容器本体20aの内周面の前後方向両側下部上に着座して、基体31を容器本体20a内に同軸的に支持することを意味する。
前後両側エンドカバー40は、それぞれ、円板状壁部41と、この円板状壁部41の外周部から延出する環状壁部42とでもって、透明の石英により、縦断面コ字状に形成されている。
しかして、前後両側エンドカバー40のうち前側エンドカバー40は、その環状壁部42にて、前側耐熱性オーリング42aを介し、容器本体20aの軸方向前端部21に気密的に着脱可能に嵌装されている。また、後側エンドカバー40は、その環状壁部42にて、後側耐熱性オーリング42aを介し、容器本体20aの軸方向後端部22に気密的に嵌装されている。なお、前側耐熱性オーリング42aは、前側エンドカバー40の環状壁部42の軸方向中間部位にその内面側から形成した環状溝部内に収容されており、後側耐熱性オーリング42aは、後側エンドカバー40の環状壁部42の軸方向中間部位にその内面側から形成した環状溝部内に収容されている。
加熱回路Eは、図2にて示すごとく、加熱器50と、温度センサ60と、温度制御回路70とを備えている。加熱器50は、複数の発熱線部材51からなるもので、当該複数の発熱線部材51は、それぞれ、互いに並行な両並行線部51a、51bと、これら両並行線部51a、51bを連結する連結線部51cとでもって、U字状となるように、所定長さのニクロム線を折り曲げて形成されている。
このように構成した複数の発熱線部材51は、図6にて示すごとく、容器本体20aの外周面に沿い、その周方向に等角度間隔にて、配設されており、当該複数の発熱線部材51は、発熱線部材ごとに、その連結部51cを、容器本体20aの後側に位置させるとともに、両並行線部51a、51bを、容器本体20aの前後方向に沿い延在させるように配設されている。これにより、加熱器50は、複数の発熱線部材51にて、容器本体20aのほぼ全体に亘り分散して位置するように配設されている。
しかして、このように配設された加熱器50において、複数の発熱線部材51は、各並行線部51aの接続端部にて相互に接続されるとともに、各並行線部51bの接続端部にて相互に接続されている。これにより、加熱器50は、各発熱線部材51の発熱により、容器本体20aをその外周面のほぼ全体から加熱する。
温度センサ60は、高温検出型熱電対からなるもので、この温度センサ60は、図1或いは図5から分かるように、円筒状基材30の中空部内中央部に支持されている。ここで、当該中空部内中央部は、円筒状基材30の中空部の前後方向中央部であって径方向中央部に相当する。これにより、当該温度センサ60は、円筒状基材30の中空部内中央部における温度を、容器本体20aの温度として検出する。
温度制御回路70は、インバータからなるもので、この温度制御回路70は、交流電源PSから開閉スイッチSWを介し200(V)の交流電圧を供給されて、温度センサ60の検出温度に基づき、加熱器50をその各発熱線部材51にて発熱するように駆動制御する。ここで、この駆動制御は、温度センサ60の検出温度に基づき容器本体20aを所定の高温に維持するようになされる。このことは、容器本体20aの内部を上記所定の高温に維持することを意味する。
ここで、上記所定の高温は、微小コイルの収量及び収率の観点から、600(℃)~950(℃)の範囲内の温度に設定されることが好ましく、また、この範囲のうちでも、700(℃)~800(℃)の範囲内の温度に設定されることがより一層好ましい。そこで、本第1実施形態においては、上記所定の高温は、750(℃)の温度に設定されている。なお、上記所定の高温が600(℃)未満或いは950(℃)を超えて高い場合には、微小コイルは殆ど成長することがない。
以上のように構成した本第1実施形態において、微小コイルは、当該製造装置により次のように気相製造される。なお、この気相製造過程において、温度センサ60は、円筒状基材30の中空部内中央部における温度を、容器本体20aの温度として検出する。
しかして、まず、図9の製造工程にて示すごとく、窒素ガス供給工程S1の処理がなされる。この窒素ガス供給工程S1において、窒素ガス供給源(図示しない)からの窒素ガスを、1000(ミリリットル/分)の流量にて、原料ガス導入筒群20bの全原料ガス導入筒を通して反応容器20の容器本体20a内に供給する。
これに伴い、容器本体20a内に供給された窒素ガスは、当該容器本体20a内を流動して、この容器本体20a内の酸素等のガスを押し出すようにしてガス排出筒群20fから排出される。これにより、容器本体20aを含む反応容器20の内部の脱気処理及び脱酸素処理がなされ得る。
また、上記窒素ガス供給工程S1の処理にあわせ、或いは当該窒素ガス供給工程S1の処理の後に、加熱工程S2において、容器本体20aの加熱処理がなされる。この加熱処理では、温度制御回路70が、開閉スイッチSWの閉状態にて、交流電源PSから交流電圧を印加されて、作動状態となり、温度センサ60の現時点における検出温度に基づき、加熱器50を発熱するように駆動制御する。
これに伴い、各発熱線部材51が、発熱により、容器本体20aの温度を上記所定の高温に上昇させるように当該容器本体20aを加熱する。また、容器本体20aの温度が上記所定の高温750(℃)に達した後は、当該容器本体20aの温度が変動しても、温度制御回路70は、その後の温度センサ60の検出温度に基づき、容器本体20aの温度を上記所定の高温750(℃)に維持するように加熱器50を制御する。これにより、容器本体20aの内部は、上記所定の高温750(℃)に維持される。
このように加熱工程S2を処理した後、窒素ガス供給停止工程S3において、上記窒素ガス供給源から容器本体20a内への窒素ガスの供給を停止する。
然る後、次のシールガス注入工程S4において、シールガスである水素ガスを、1000(ミリリットル/分)にて、シールガス注入筒群20eの各シールガス注入筒27を通して容器本体20a内に注入する。これに伴い、先に容器本体20a内に供給済みの窒素ガスが、容器本体20a内への注入シールガスによりガス排出筒群20fの各排出筒28から排出される。
このため、容器本体20aの内部は、円筒状基材30の内部をも含め、シールガスである水素ガスのみの雰囲気となる。これにより、容器本体20aの内部においては、円筒状基材30の内部をも含め、余分な或いは有害な影響が反応系に与えられることを防止し得る。
従って、後述するように、原料ガス導入工程S5において容器本体20a内に原料ガスを導入しても、この原料ガスに対する窒素ガスの混入を招くことがない。その結果、窒素ガスが、原料ガス中に含まれるアセチレンの熱分解反応を阻害するという事態の発生を未然に防止して、微小コイルのコイル収量及びコイル純度(後述する)の低下を未然に防止し得る。
上述のようにシールガス注入工程S4の処理が終了すると、次の原料ガス導入工程S5において、上記原料ガス供給源から供給される原料ガス、即ち、アセチレンガス、水素ガス及び硫化水素ガスの混合ガスを、3組の原料ガス導入筒群20b~20dの各原料ガス導入筒を通して容器本体20a内にその左側から導入する。
現段階では、容器本体20aの内部が、円筒状基材30の外周面及びその内部とともに、上記所定の高温に維持されている。このことは、触媒層32の外周面も上記所定の高温に維持されていることを意味する。
このような状態において、上述のように原料ガスが容器本体20a内に導入されると、当該原料ガスと触媒層32の金属触媒との間で反応を開始する。このことは、原料ガス導入工程S5は、反応工程であることを意味する。なお、本第1実施形態では、この反応工程における反応時間は、2時間とした。
ここで、上記原料ガスは、原料ガス導入筒1本当たり、60(ミリリットル/分)のアセチレンガス、265(ミリリットル/分)の水素ガス、及び0.06(ミリリットル/分)の硫化水素ガスでもって構成される。
従って、上記原料ガス供給源内の原料ガスは、導入筒1本当たりにつき、60(ミリリットル/分)のアセチレンガス、265(ミリリットル/分)の水素ガス、及び0.06(ミリリットル/分)の硫化水素ガスの混合ガスとなるように、予め、均一に混合されたものである。
ここで、当該原料ガスの組成を、上述のように、アセチレンガス、水素ガス及び硫化水素ガスとした根拠は、次の通りである。
従来、原料ガスは、アセチレンガス、水素ガス、窒素ガス、チオフェンガス及び硫化水素ガスからなる混合ガスとして、同時にかつ連続的に容器本体20a内に導入されるとともに触媒との間で反応させていた。
しかし、窒素ガスは、上述したごとく、アセチレンの熱分解を著しく抑制するばかりか、有害な副反応を起こし、規則的に巻いた微小コイルの成長を阻害し、コイル収量及びコイル純度を低下させる。また、チオフェンは規則的に巻いた微小コイルの成長には有害であり、またコイル収量及びコイル純度を低下させる要因となっている。
そこで、本第1実施形態では、原料ガスを、上述のごとく、アセチレンガス、水素ガス及び硫化水素ガスによる混合ガスとした。なお、当該原料ガスは、後述のように加熱により熱分解されたとき、ガス状炭素種が円筒状基材30の外周面から生成される。
3組の原料ガス導入筒群20b~20dの各原料ガス導入筒を通して容器本体20a内の導入される原料ガスの流量をガスの線速度でもって示すと、微小コイルの収量及び収率を向上させるためには、当該ガスの線速度は、室温及び1気圧の条件下にて、100(cm/min)~3000(cm/min)の範囲内の値に設定されることが好ましい。また、当該ガスの線速度は、200(cm/min)~2000(cm/min)の範囲内の値に設定されることがより好ましく、また、さらには、500(cm/min)~1500(cm/min)の範囲内の値に設定されることが特に好ましい。
そこで、本第1実施形態では、当該ガスの線速度は、500(cm/min)~1500(cm/min)の範囲内の値に設定されている。さらに、上記ガスの線速度は、原料ガス導入筒の基端開孔部とこの基端開孔部に対する円筒状基材30の外周面の対向部位との間の間隔(上記所定対向間隔)と密接な関係を有する。このため、上記ガスの線速度が、例えば、500(cm/min)~800(cm/min)の範囲内の値であれば、上記所定対向間隔は、10(mm)~20(mm)の範囲内の値に設定されることが好ましい。
上述のように、原料ガスと触媒層32の金属触媒との間で反応を開始すると、微小コイルは、3組の原料ガス導入筒群20b~20dの各原料ガス導入筒の基端開孔部に対する円筒状基材30の基体31の円筒状外周面の対向表面部位において、原料ガス導入筒の内径の2倍~30倍の範囲内の径を有する円形内に密集して成長していく。
このため、3組の原料ガス導入筒群20b~20dの各原料ガス導入筒のうち各両隣接導入筒の間の間隔は、各微小コイルを、互いに干渉させることなく、かつ隙間なく円筒状基材30の外周面上に成長させるために、原料ガス導入筒の内径の2倍~30倍の範囲の値に設定されることが好ましく、さらには、原料ガス導入筒の内径の5倍~20倍の範囲内の値に設定されることがより好ましい。
そこで、本第1実施形態では、上述の各両隣接原料ガス導入筒の間の間隔は、原料ガス導入筒の内径(9(mm))の5倍~20倍の範囲内の値(75(mm))に設定されている。
これにより、各微小コイルが、3組の原料ガス導入筒群20b~20dの各原料ガス導入筒の基端開孔部に対する円筒状基材30上に殆ど互いに重なり合うことなく、ほぼ均一の厚さで成長し得る(図8参照)。このことは、多数の微小コイルが円筒状基材30上に成長することで製造されることを意味する。
上述のようにして原料ガス導入工程S5の処理が終了すると、次の原料ガス供給及び加熱の各停止工程S6において、上記原料ガス供給源から容器本体20a内への原料ガスの供給が停止されるとともに、温度制御回路70による加熱器50に対する制御が停止される。具体的には、開閉スイッチSWが開成される。これにより、原料ガスと触媒層32の金属触媒との間の反応が終了する。
然る後、円筒状基材取り出し工程S7において、上述のような加熱器50に対する制御の停止に伴い、容器本体20a内の温度が200(℃)まで降下したときに、装置本体Bの前後両側エンドカバー40を容器本体20aの両端部から外した上で、円筒状基材30を容器本体20aの内部から取り出す。ついで、円筒状基材30に成長した微小コイルを回収する。
以上説明したように、本第1実施形態によれば、反応容器20において、3組の原料ガス導入筒群20b~20dは、容器本体20aの左側半円筒部26aから左方へ延出するとともに、ガス排出筒群20fは、容器本体20aの右側半円筒部26bから右方へ延出している。また、容器本体20a内に挿入してなる円筒状基材30において、触媒層32が、ニッケル触媒を、微小コイルを析出するようにその表面を部分酸化・硫化処理して円筒状基体31の外周面に塗布して形成されている。
このような構成のもと、容器本体20aを上記所定の高温750(℃)に加熱して維持した状態にて、アセチレンガス、水素ガス及び硫化水素ガスの混合による原料ガスを、同時にかつ連続的に容器本体20a内に導入して、円筒状基材30の外周面上に、上述のごとく、微小コイルを成長させる。
このようにして成長した微小コイルを上述のように回収した結果、この回収による微小コイルのコイル収量は、60(g)であった。また、アセチレンベースの微小コイルのコイル収率は80(%)であった。このことは、微小コイルが、高純度にて、一度に効率よく多量に製造され得ることを意味する。なお、このようにして製造された微小コイルは、電磁波吸収材、マイクロ波発熱材、マイクロセンサー、マイクロメカニカル素子、癒し材、化粧品、鎮痛材、ガン治療薬、食品添加材等に利用され得る。
ちなみに、本第1実施形態にて得られた析出物の電子顕微鏡(SEM)写真によれば、図10にて示すように、成長による析出物は、100(%)の微小コイル(カーボンマイクロコイル)からなり、これら微小コイルの殆どが、3(μm)~5(μm)の範囲内のコイル径でもって規則的に巻いている。また、微小コイルの各々においてその各隣接コイル部間のギャップは殆ど無いため、当該微小コイルの各々は、電磁気的な微小のソレノイド形状となっている。
換言すれば、上述の析出物中において、一定のコイル径でもって規則的に巻いたソレノイド形状の微小コイルの割合、即ち、コイル純度は、100(%)であるといえる。
また、本第1実施形態にて述べた製造装置によれば、反応容器20における3組の原料ガス導入筒群20b~20dの各原料ガス導入筒と、ガス排出筒群20fの各ガス排出筒とが、容器本体20aの左右両側壁26a、26bから互いに逆方向に基台の水平面Lに平行となるように水平状にケーシング10から延出している。
従って、原料ガスは、各原料ガス導入筒を通り容器本体20a内に基台の水平面Lに沿うように導入されるから、このように容器本体20a内に導入された原料ガスは、容器本体20a内において、円筒状基材30の外周面に沿い左右方向に円滑にかつ良好に流動して、円筒状基材30の円筒状触媒層32の触媒との反応を、何ら制限されることなく、良好になし得る。また、容器本体20a内のガスが各排出筒28を通り基台の水平面Lに沿うように排出されるので、ガスの排出が円滑になされ得る。
その結果、原料ガスの触媒との間の十分な熱分解反応や触媒反応が容器本体20a内において起こり、微小コイルの収量や純度が非常に高くなる。
また、上述のように、各原料ガス導入筒及び各ガス排出筒が、基台の水平面Lに平行となるように水平状にケーシング10から延出しているので、本第1実施形態にて述べた装置本体Bを、複数準備して、その各ケーシング10にて上方に積層するにあたり、これら複数の装置本体Bを、3組の原料ガス導入筒群20b~20d及びガス排出筒群20fとの干渉を招くことなく、容易に積層することができる。
以上により、装置本体Bの積層数に比例して、微小コイルのコイル収量及びコイル収率を増大させることができるのは勿論のこと、当該複数の装置本体Bの工場等内における設置面積を減少させて工場等内の利用効率を高めることができる。
次に、本第1実施形態における装置本体Bを実施例1-1とし、この実施例1-1と対比すべく、実施例1-2及び各比較例1-1~1-7を準備した。なお、実施例1-2及び各比較例1-1~1-7の加熱回路は、本第1実施形態における加熱回路Eと同様である。
(実施例1-2)
この実施例1-2の装置本体においては、円筒状基材30の触媒層32として、ニッケルからなる触媒層であってその表面を部分酸化したニッケル触媒層が採用されている。当該実施例1-2の装置本体のその他の構成は、実施例1にいう装置本体Bと同様である。
(実施例1-2)
この実施例1-2の装置本体においては、円筒状基材30の触媒層32として、ニッケルからなる触媒層であってその表面を部分酸化したニッケル触媒層が採用されている。当該実施例1-2の装置本体のその他の構成は、実施例1にいう装置本体Bと同様である。
このような実施例1-2を用いて、微小コイルの製造にあたり、本第1実施形態にて述べた製造工程において、原料ガス導入工程S5の処理を行うに先立ち、3組の原料ガス導入筒群20b~20dの各原料ガス導入筒を通して5分間硫化水素のみを容器本体20a内に導入して、加熱工程S2の処理で750(℃)に維持されている容器本体20a内にて、上記ニッケル触媒層の表面に部分硫化処理を施した後、原料ガス導入工程S5において、上記各原料ガス導入筒を通して容器本体20a内にアセチレンを導入して上記ニッケル触媒層との反応を行った。その他の工程は、本第1実施形態にて述べた製造の工程と同様である。
この実施例1-2によれば、微小コイルのコイル収量は58(g)であり、当該微小コイルのコイル収率は78(%)であり、また、当該微小コイルのコイル純度は100(%)であった。これによれば、本実施例1-2でも、実施例1-1と実質的同様の製造結果をもたらすことが分かる。
また、この実施例1-2においても、実施例1-1と同様に、反応容器20における3組の原料ガス導入筒群20b~20dと、ガス排出筒群20fとが、容器本体20aの左右両側円筒壁部26a、26bから互いに逆方向に基台の水平面Lに平行となるように水平状にケーシング10から延出している。
従って、実施例1-2の装置本体を、複数準備して、これら複数の装置本体を、その各ケーシング10にて上方に積層するにあたり、各原料ガス導入筒群20b~20d及びガス排出筒群20fとの干渉を招くことなく、容易に積層することができる。これによれば、実施例1-2においても、装置本体の積層数に比例して、微小コイルのコイル収量及びコイル収率を増大させることができる。
(比較例1-1)
この比較例1-1の装置本体では、三組の原料ガス導入筒群20b~20dの各原料ガス導入筒の基端開孔部の開孔面と円筒状基材30の外周面との間の基体31の径方向に沿う所定対向間隔を60(mm)としたことを除き、当該比較例1-1の装置本体のその他の構成は、実施例1-1と同様である。
(比較例1-1)
この比較例1-1の装置本体では、三組の原料ガス導入筒群20b~20dの各原料ガス導入筒の基端開孔部の開孔面と円筒状基材30の外周面との間の基体31の径方向に沿う所定対向間隔を60(mm)としたことを除き、当該比較例1-1の装置本体のその他の構成は、実施例1-1と同様である。
当該比較例1-1の装置本体でもって、本第1実施形態における製造工程に従い実施例1-1による微小コイルと同様に微小コイルを製造した。これにより得られた析出物の電子顕微鏡(SEM)写真によれば、図10にて例示するように、3(μm)~5(μm)の範囲内のコイル径で規則的に巻いた微小コイルのほかに、不規則に巻いた微小コイルや、10(μm)以上のコイル径及び大きく崩れたコイル形状を有する微小コイルが多数観察された。なお、少量の直線状炭素繊維も観察された。
従って、この比較例1-1によれば、微小コイルのコイル収量やコイル純度が実施例1-1による場合に比べて低いといえる。
(比較例1-2)
この比較例1-2の装置本体では、三組の原料ガス導入筒群20b~20dの各原料ガス導入筒の基端開孔部の開孔面と円筒状基材30の外周面との間の基体31の径方向に沿う所定対向間隔を80(mm)としたことを除き、当該比較例1-2の装置本体のその他の構成は、実施例1-1にいう装置本体Bと同様である。
(比較例1-2)
この比較例1-2の装置本体では、三組の原料ガス導入筒群20b~20dの各原料ガス導入筒の基端開孔部の開孔面と円筒状基材30の外周面との間の基体31の径方向に沿う所定対向間隔を80(mm)としたことを除き、当該比較例1-2の装置本体のその他の構成は、実施例1-1にいう装置本体Bと同様である。
当該比較例1-2の装置本体を用いて、本第1実施形態における製造工程に従い実施例1による微小コイルと同様に微小コイルを製造した。これにより得られた析出物の電子顕微鏡(SEM)写真によれば、図12にて例示するように、殆どのコイルが、極めて不規則に巻いたものや大きく不規則に巻いたものであり、当該析出物には、直線状の炭素繊維も含まれている。従って、微小コイルは観察されなかった。
(比較例1-3)
この比較例1-3の装置本体においては、円筒状基材30の触媒層32として、ニッケルからなる触媒層であってその表面を部分酸化した0.5(μm)の平均厚さを有するニッケル触媒層が採用されている。当該比較例1-3の装置本体のその他の構成は、実施例1-1にいう装置本体Bと同様である。
(比較例1-3)
この比較例1-3の装置本体においては、円筒状基材30の触媒層32として、ニッケルからなる触媒層であってその表面を部分酸化した0.5(μm)の平均厚さを有するニッケル触媒層が採用されている。当該比較例1-3の装置本体のその他の構成は、実施例1-1にいう装置本体Bと同様である。
この比較例1-3によれば、微小コイルのコイル収量は非常に少なく5(g)にすぎなかった。なお、当該比較例1-3による析出物の大部分が直線状の炭素繊維であった。
(比較例1-4)
この比較例1-4の装置本体においては、円筒状基材30の触媒層32として、ニッケルからなる触媒層であってその表面を部分酸化した15(μm)の平均厚さを有するニッケル触媒層が採用されている。当該比較例1-4の装置本体のその他の構成は、実施例1-1にいう装置本体Bと同様である。
(比較例1-4)
この比較例1-4の装置本体においては、円筒状基材30の触媒層32として、ニッケルからなる触媒層であってその表面を部分酸化した15(μm)の平均厚さを有するニッケル触媒層が採用されている。当該比較例1-4の装置本体のその他の構成は、実施例1-1にいう装置本体Bと同様である。
このような比較例1-4を用いて、微小コイルを製造すべく、本第1実施形態にて述べた製造工程を適用したところ、原料ガス導入工程S5における反応開始と共に容器本体20a内の温度が急激に上昇し、1分経過後には円筒状基材30の外周面(触媒層の表面)の温度が850℃以上に上昇し、円筒状基材30の外周面から10(mm)離れた位置の温度が、最高で820(℃)まで上昇した。
また、円筒状基材30の外周面上には、堅い炭素層が、1.5(mm)~3(mm)の範囲内の厚さにて析出した。この析出物において、微小コイルのコイル収率は10(g)にすぎなかった。なお、当該析出物においては、規則的に巻いたコイルは非常に少なく、殆どが、非常に不規則に巻いたコイルや、大きく巻いただけのもの或いは直線状の炭素繊維であった。
(比較例1-5)
この比較例1-5の装置本体においては、円筒状基材30の触媒層32として、酸素を全く含まない純粋なニッケル粉末からなる触媒層が採用されている。当該比較例5の装置本体のその他の構成は、実施例1-1にいう装置本体Bと同様である。
(比較例1-5)
この比較例1-5の装置本体においては、円筒状基材30の触媒層32として、酸素を全く含まない純粋なニッケル粉末からなる触媒層が採用されている。当該比較例5の装置本体のその他の構成は、実施例1-1にいう装置本体Bと同様である。
このような比較例1-5を用いて、微小コイルを製造すべく、本第1実施形態にて述べた製造工程を適用したところ、微小コイルのコイル収量は15(g)にすぎず、また、当該微小コイルのコイル純度も、30(%)~35(%)の範囲内の値と低かった。
(比較例1-6)
この比較例1-6の装置本体においては、円筒状基材30の触媒層32として、酸化ニッケルからなる触媒層が採用されている。当該比較例6の装置本体のその他の構成は、実施例1-1にいう装置本体Bと同様である。
(比較例1-6)
この比較例1-6の装置本体においては、円筒状基材30の触媒層32として、酸化ニッケルからなる触媒層が採用されている。当該比較例6の装置本体のその他の構成は、実施例1-1にいう装置本体Bと同様である。
このような比較例1-6を用いて、微小コイルを製造すべく、本第1実施形態にて述べた製造工程を適用したところ、微小コイルのコイル収量は10(g)にすぎず、また、当該微小コイルのコイル純度も、10(%)~20(%)の範囲内の値と低かった。
(比較例1-7)
この比較例1-7の装置本体は、実施例1の装置本体Bと同様である。このような比較例1-7を用いて本第1実施形態にて述べた製造工程に従い、微小コイルを製造するにあたり、上記原料ガスが、原料ガス導入筒1本当たり、50(ミリリットル/分)のアセチレンガス、200(ミリリットル/分)の水素ガス及び0.06(ミリリットル/分)の硫化水素ガスを含むこと以外に、200(ミリリットル/分)の窒素ガスを同時に連続して容器本体内に導入するようにした。その他は、実施例1-1と同様に製造とした。
(比較例1-7)
この比較例1-7の装置本体は、実施例1の装置本体Bと同様である。このような比較例1-7を用いて本第1実施形態にて述べた製造工程に従い、微小コイルを製造するにあたり、上記原料ガスが、原料ガス導入筒1本当たり、50(ミリリットル/分)のアセチレンガス、200(ミリリットル/分)の水素ガス及び0.06(ミリリットル/分)の硫化水素ガスを含むこと以外に、200(ミリリットル/分)の窒素ガスを同時に連続して容器本体内に導入するようにした。その他は、実施例1-1と同様に製造とした。
この比較例1-7によれば、微小コイルのコイル収量は非常に少なく12(g)にすぎず、また、当該微小コイルのコイル純度は25(%)にすぎなかった。
ちなみに、微小コイルの製造にあたり、従来の製造方法や製造装置で得られる析出物は、規則的に一定のコイル径とコイルピッチで巻いた電磁気的ソレノイド状の良質の微小コイルの他に、多くの不規則の巻いたコイル、コイル径の非常に大きなコイル、大きく巻いただけの炭素繊維や、直線状の炭素繊維を多数含んでおり、全析出物中のソレノイド状の良質の微小コイルの割合(以下、“コイル純度”と略す)は、5(%)~25(%)の範囲内であって低い。このようにコイル純度が低いことは、マイクロ波電磁波吸収特性等の多くの特性に非常に悪影響を及ぼす。従って、工業的には、微小コイルのコイル純度は、80(%)以上であることが要請されている。
この点からすれば、実施例1-1及び実施例1-2の装置本体を用いて製造した微小コイルのコイル純度は、100(%)であるから十分であるといえる。
(第2実施形態)
次に、本発明を適用してなる微小コイルの製造装置の第2実施形態について説明すると、この第2実施形態では、上記第1実施形態にて述べた製造装置の装置本体Bにおいて、反応容器20が、ケーシング10との関連において、上記第1実施形態とは異なり、次のように構成されている。
(第2実施形態)
次に、本発明を適用してなる微小コイルの製造装置の第2実施形態について説明すると、この第2実施形態では、上記第1実施形態にて述べた製造装置の装置本体Bにおいて、反応容器20が、ケーシング10との関連において、上記第1実施形態とは異なり、次のように構成されている。
即ち、上記第1実施形態にて述べた3組の原料ガス導入筒群20b~20d及びシールガス注入筒群20eは、反応容器20の容器本体20aの下側半円筒部位から下方へ延出されており、一方、上記第1実施形態にて述べたガス排出筒群20fは、容器本体20aの上側半円筒部位から上方へ延出されている。
具体的には、本第2実施形態では、上記第1実施形態にて述べた反応容器20(図6参照)が、90°回転されて、3組の原料ガス導入筒群20b~20d及びシールガス注入筒群20eを容器本体20aの下側に位置させ、ガス排出筒群20fを容器本体20aの上側に位置させるように構成したものとなっている。
これに伴い、各複数本の原料ガス導入筒23、24及び25は、それぞれ、容器本体20aの下側半円筒部の左側部位、中側部位(下端部位)及び右側部位から下方へ延出されるとともに、両シールガス注入筒27は、容器本体20aの下側半円筒部の中側部位から下方へ延出されている。また、各ガス排出筒28は、容器本体20aの上側半円筒部の中側部位(上端部位)から下方へ延出されている。その他の構成は上記第1実施形態と同様である。
このように構成した第2実施形態において、微小コイルは、上記第1実施形態にて述べた製造工程に従い気相成長製造される。この製造工程のうち原料ガス導入工程S5において、上記原料ガス供給源から供給される原料ガスは、3組の原料ガス導入筒群20b~20dの各原料ガス導入筒を通して容器本体20a内にその下側から導入される。なお、容器本体20a内のガスの排出は、容器本体20aの内部から各ガス排出筒28を通し上方へ排出される。なお、その他の製造工程の処理は、上記第1実施形態と同様である。
このような製造工程を経て製造した微小コイルに関して、コイル収量は65(g)であり、コイル収率は88(%)であり、また、コイル純度は100(%)であった。
これによれば、本第2実施形態では、上記第1実施形態にて述べた製造装置による製造1と実質的に同様の製造結果を得ることができる。
但し、本第2実施形態では、上記第1実施形態とは異なり、各原料ガス導入筒23~25を容器本体20から下方へ延出させ、各ガス排出筒28を容器本体20aの上方へ延出させる構成を採用している。
従って、原料ガスが各原料ガス導入筒を通り容器本体20a内に上方に向けて導入されることから、容器本体20a内において、円筒状基材30の外周面に沿い上方向に円滑にかつ良好に流動して、円筒状基材30の円筒状触媒層32の触媒との反応を、何ら制限されることなく、良好になし得る。また、容器本体20a内のガスが各排出筒28を通り上方に排出されるので、ガスの排出が円滑になされ得る。
その結果、原料ガスの触媒との間の十分な熱分解反応や触媒反応が容器本体20a内において起こり、微小コイルの収量や純度が非常に高くなる。
なお、上述のように、各原料ガス導入筒が容器本体20aから上方へ延出するとともに各ガス排出筒が容器本体20aから下方へ延出していることから、本第2実施形態の装置本体を複数準備しても、これら装置本体の積層は、各原料ガス導入筒及び各ガス排出筒により邪魔されて不可能である。このため、上記第1実施形態の装置本体を積層する場合に期待されるような微小コイルのコイル収量及びコイル収率の増大は困難である。その他の作用効果は、上記第1実施形態と同様である。
ちなみに、本第2実施形態における装置本体を実施例2-1とし、この実施例2-1と対比すべく、各比較例2-2及び2-3を準備した。
(比較例2-2)
この比較例2-2の装置本体では、実施例2-1の装置本体の反応容器において、当該反応容器とは異なり、各原料ガス導入筒を容器本体の上部から上方に向けて延出させ、各ガス排出筒を容器本体の下部から下方へ延出させる構成を採用して、原料ガスを各原料ガス導入筒から容器本体内に上方に向けて導入し、この容器本体内のガスを各ガス排出筒から上方へ排出するようにした。当該比較例2-2の装置本体のその他の構成は、実施例2-1と同様である。
(比較例2-2)
この比較例2-2の装置本体では、実施例2-1の装置本体の反応容器において、当該反応容器とは異なり、各原料ガス導入筒を容器本体の上部から上方に向けて延出させ、各ガス排出筒を容器本体の下部から下方へ延出させる構成を採用して、原料ガスを各原料ガス導入筒から容器本体内に上方に向けて導入し、この容器本体内のガスを各ガス排出筒から上方へ排出するようにした。当該比較例2-2の装置本体のその他の構成は、実施例2-1と同様である。
この比較例2-2によれば、微小コイルに関して、コイル収量は15(g)であり、コイル純度は20(%)~30(%)の範囲内であった。従って、当該比較例2-2では、微小コイルのコイル収量及びコイル純度において、実施例1-1、1-2及び2-1のいずれと比較してもかなり低いことが分かる。
しかも、比較例2-2の装置本体を複数準備しても、これら装置本体の積層は、各原料ガス導入筒及び各ガス排出筒により邪魔されて、実施例2-1の積層の場合と同様に不可能である。このため、上記第1実施形態にて述べた実施例1や実施例2の装置本体を積層する場合に期待されるような微小コイルのコイル収量及びコイル収率の増大は不可能である。
(比較例2-3)
この比較例2-3の装置本体は、比較例2-2の装置本体と同様である。このような比較例2-3を用いて上記第1実施形態にて述べた製造工程に従い、微小コイルを製造するにあたり、上記原料ガスが、原料ガス導入筒1本当たり、50(ミリリットル/分)のアセチレンガス、200(ミリリットル/分)の水素ガス及び0.06(ミリリットル/分)の硫化水素ガスを含むこと以外に、200(ミリリットル/分)の窒素ガス及び0.20(ミリリットル/分)のチオフェンガスを同時に連続して容器本体内に導入するようにした。その他は、比較例2-2と同様に製造とした。
(比較例2-3)
この比較例2-3の装置本体は、比較例2-2の装置本体と同様である。このような比較例2-3を用いて上記第1実施形態にて述べた製造工程に従い、微小コイルを製造するにあたり、上記原料ガスが、原料ガス導入筒1本当たり、50(ミリリットル/分)のアセチレンガス、200(ミリリットル/分)の水素ガス及び0.06(ミリリットル/分)の硫化水素ガスを含むこと以外に、200(ミリリットル/分)の窒素ガス及び0.20(ミリリットル/分)のチオフェンガスを同時に連続して容器本体内に導入するようにした。その他は、比較例2-2と同様に製造とした。
この比較例2-3によれば、微小コイルに関し、そのコイル収量は非常に少なく15(g)にすぎず、また、そのコイル純度も20(%)と低かった。
(第3実施形態)
図13及び図14は、本発明を適用してなる微小コイルの製造装置の第3実施形態を示している。この第3実施形態においては、積層装置本体Baが、図13にて示すごとく、上記第1実施形態にて述べた製造装置の装置本体Bに代えて、採用されている。
(第3実施形態)
図13及び図14は、本発明を適用してなる微小コイルの製造装置の第3実施形態を示している。この第3実施形態においては、積層装置本体Baが、図13にて示すごとく、上記第1実施形態にて述べた製造装置の装置本体Bに代えて、採用されている。
積層装置本体Baは、上記第1実施形態にて述べた装置本体Bを複数(例えば、3つ)積層して構成されている。3つの装置本体Bのうち、下側装置本体Bは、ケーシング10の下壁12にて、基台の水平面L(図1参照)上に載置される。
また、3つの装置本体Bのうち、中側装置本体Bは、そのケーシング10の下壁12にて、下側装置本体Bのケーシング10の上壁11上に載置されており、上側装置本体Bは、そのケーシング10の下壁12にて、中側装置本体Bのケーシング10の上壁11上に載置されている。
本第3実施形態では、3つの装置本体Bの各々の反応容器20の原料ガス導入筒群20b~20dにおいて、原料ガス導入筒群20bを構成する各原料ガス導入筒23は、連結管23bでもって相互に連結され、原料ガス導入筒群20cを構成する各原料ガス導入筒24は、連結管24bでもって相互に連結され、また、原料ガス導入筒群20dを構成する各原料ガス導入筒25は、連結管25bでもって相互に連結されている。
これにより、上記原料ガス供給源からの原料ガスは、連結管25b及び3組の原料ガス導入筒群20b~20dの各原料ガス導入筒を通して容器本体20a内に導入される。
また、3つの装置本体Bの各々の反応容器20のガス排出筒群20fを構成する各ガス排出筒28は、連結管28bでもって相互に連結されている。これにより、各容器本体20a内のガスは、各対応の各ガス排出筒28及び連結管28bを通して排出される。積層装置本体Baにおける各装置本体Bのその他の構成は、上記第1実施形態と同様である。
本第3実施形態における加熱回路は、図14にて示すごとく、上記第1実施形態にて述べた加熱回路Eを、積層装置本体Baの装置本体B毎に採用して構成されている。ここで、各加熱回路Eの温度制御回路70が、ともに、開閉スイッチSWを介し交流電源PSに接続されている。
従って、積層装置本体Baの装置本体B毎に、加熱回路Eが、その温度制御回路70にて、開閉スイッチSWを介し交流電源PSから交流電圧を供給されて、対応の温度センサ60の検出出力に基づき、対応の加熱器50を駆動して、対応の容器本体20aの温度を上記所定の高温に維持するように制御する。その他の構成は、上記第1実施形態と同様である。
このように構成した本第3実施形態において、微小コイルは、上記第1実施形態にて述べた製造工程に従い気相成長製造される。なお、この製造過程において、各装置本体Bの温度センサ60は、対応装置本体Bの円筒状基材30の中空部内中央部における温度を、対応装置本体Bの容器本体20aの温度として検出する。
しかして、上記第1実施形態と同様に、図9の製造工程にて示す窒素ガス供給工程S1の処理にあわせ、或いは当該窒素ガス供給工程S1の処理の後に、加熱工程S2において、各装置本体Bの容器本体20aの加熱処理がなされる。この加熱処理では、各対応の温度制御回路70が、開閉スイッチSWの閉状態にて、交流電源PSから交流電圧を印加されて、作動状態となり、各対応の温度センサ60の現時点における検出温度に基づき、各対応の加熱器50を発熱するように制御する。
これに伴い、各加熱回路Eの加熱器50が、対応の容器本体20aの温度を上記所定の高温750(℃)に上昇させるように当該対応の容器本体20aを加熱して上記所定の高温に維持する。
また、原料ガス導入工程S5において、上記原料ガス供給源から供給される原料ガス、即ち、アセチレンガス、水素ガス及び硫化水素ガスの混合ガスを、容器本体20a毎に、対応の3組の原料ガス導入筒群20b~20dの各原料ガス導入筒を通して対応の容器本体20a内にその左側から導入する。
これに伴い、反応容器20ごとに、原料ガスと触媒層32の金属触媒との間で反応を開始する。すると、微小コイルは、反応容器20ごとに、上記第1実施形態と同様に、原料ガス導入筒の内径の2倍~30倍の範囲内の径を有する円形内に密集して成長していく。
然る後、反応容器20毎に、原料ガスと触媒層32の金属触媒との間の反応が終了すると、上記第1実施形態と実質的に同様に、円筒状基材30を容器本体20aの内部から取り出して、微小コイルを回収する。
このようにして回収された微小コイルは、反応容器毎に、上記第1実施形態と同様に、一定のコイル径でもって規則的に巻いたソレノイド形状の微小コイルとして高純度にて装置本体Bの積層数に応じて多量に得られる。
また、本第3実施形態にて述べた製造装置の積層装置本体Baによれば、反応容器20における3組の原料ガス導入筒群20b~20dの各原料ガス導入筒と、ガス排出筒群20fの各ガス排出筒とが、装置本体Bごとに、容器本体20aの左右両側壁26a、26bから互いに逆方向に基台の水平面Lに平行となるように水平状にケーシング10から延出している。
従って、本第3実施形態における製造装置において、各装置本体Bは、各ケーシング10にて上方に積層するにあたり、3組の原料ガス導入筒群20b~20d及びガス排出筒群20fとの干渉を招くことなく、容易に積層することができる。これによれば、製造装置の積層数に比例して、微小コイルのコイル収量及びコイル収率を増大させることができるのは勿論のこと、当該製造装置の工場等内における設置面積を減少させて工場等内の利用効率を高めることができる。その他の作用効果は上記第1実施形態と同様である。
なお、本発明の実施にあたり、上記実施形態に限ることなく、次のような種々の変形例が挙げられる。
(1)本発明の実施にあたり、反応容器20の容器本体20aは、上記実施形態にて述べた透明の石英に限ることなく、不透明の石英、ニッケル、ステンレス、ハステロイ、タングステン或いはチタンなどの耐熱性金属、アルミナ、セラミックス、金属製反応管であってその内面をセラミックスライニングした金属製反応管等の種々の材料でもって形成してもよい。
(2)本発明の実施にあたり、円筒状基材30の基体31は、透明な石英に限ることなく、不透明な石英でもって形成するようにしてもよい。
(3)本発明の実施にあたり、触媒層32は、金属触媒の粉末に限ることなく、金属板或いは金属触媒の粉末の焼結板であってもよい。
(4)本発明の実施にあたり、触媒層32は、上記第1実施形態とは異なり、金属触媒の粉末の水或いはアルコールなどへの分散液を基体31の外周面に塗布してもよく、また、これに代えて、ニッケル化合物の水溶液を基体31の外周面に塗布して形成されるニッケル触媒層であってもよい。このニッケル触媒層の厚さは、3(μm)~6(μm)の範囲内の値であることが好ましい。当該ニッケル触媒層の厚さが3(μm)未満と薄い場合には、このニッケル触媒層の原料ガスとの反応開始時にニッケル触媒層内で異常な温度上昇が起こり、硬い炭素層が厚く析出するため、コイル状炭素繊維の収量及び収率は共に低下するからである。
(5)本発明の実施にあたり、原料ガス導入筒群20b~20dの各原料ガス導入筒は、その基端開孔部にて、上記第1実施形態とは異なり、円筒状基材30の外周面にその面積の約3/1以上に亘り対向するように、容器本体20aに接合されていればよい。これにより、原料ガスの原料ガス導入筒群20b~20dによる容器本体20a内への導入量は、反応時において、適切な量を確保し得る。
(6)本発明の実施にあたり、ガス排出筒28の本数は、上記第1実施形態にて述べた数に限ることなく、全原料ガス導入筒23~25の数に対し、1/3~1/20の範囲の本数に設定されていればよく、好ましくは、1/5~1/10の範囲の本数に設定されていればよい。
(7)本発明の実施にあたり、容器本体20aの上記高温に維持した状態にて、静電場、変動電場、超音波場、静磁場、変動磁場或いはプラズマ場等の外部エネルギー場を単一的に或いは重畳的に反応容器20a内の反応場(原料ガスの触媒との反応場)に作用させるようにしてもよい。
(1)本発明の実施にあたり、反応容器20の容器本体20aは、上記実施形態にて述べた透明の石英に限ることなく、不透明の石英、ニッケル、ステンレス、ハステロイ、タングステン或いはチタンなどの耐熱性金属、アルミナ、セラミックス、金属製反応管であってその内面をセラミックスライニングした金属製反応管等の種々の材料でもって形成してもよい。
(2)本発明の実施にあたり、円筒状基材30の基体31は、透明な石英に限ることなく、不透明な石英でもって形成するようにしてもよい。
(3)本発明の実施にあたり、触媒層32は、金属触媒の粉末に限ることなく、金属板或いは金属触媒の粉末の焼結板であってもよい。
(4)本発明の実施にあたり、触媒層32は、上記第1実施形態とは異なり、金属触媒の粉末の水或いはアルコールなどへの分散液を基体31の外周面に塗布してもよく、また、これに代えて、ニッケル化合物の水溶液を基体31の外周面に塗布して形成されるニッケル触媒層であってもよい。このニッケル触媒層の厚さは、3(μm)~6(μm)の範囲内の値であることが好ましい。当該ニッケル触媒層の厚さが3(μm)未満と薄い場合には、このニッケル触媒層の原料ガスとの反応開始時にニッケル触媒層内で異常な温度上昇が起こり、硬い炭素層が厚く析出するため、コイル状炭素繊維の収量及び収率は共に低下するからである。
(5)本発明の実施にあたり、原料ガス導入筒群20b~20dの各原料ガス導入筒は、その基端開孔部にて、上記第1実施形態とは異なり、円筒状基材30の外周面にその面積の約3/1以上に亘り対向するように、容器本体20aに接合されていればよい。これにより、原料ガスの原料ガス導入筒群20b~20dによる容器本体20a内への導入量は、反応時において、適切な量を確保し得る。
(6)本発明の実施にあたり、ガス排出筒28の本数は、上記第1実施形態にて述べた数に限ることなく、全原料ガス導入筒23~25の数に対し、1/3~1/20の範囲の本数に設定されていればよく、好ましくは、1/5~1/10の範囲の本数に設定されていればよい。
(7)本発明の実施にあたり、容器本体20aの上記高温に維持した状態にて、静電場、変動電場、超音波場、静磁場、変動磁場或いはプラズマ場等の外部エネルギー場を単一的に或いは重畳的に反応容器20a内の反応場(原料ガスの触媒との反応場)に作用させるようにしてもよい。
これによれば、当該外部エネルギー場によって原料ガス種の拡散・混合や分子運動の活性化、内部ネルギーの活性化、触媒活性の向上等をもたらして、原料ガスの触媒との熱分解反応を促進することができ、その結果、微小コイルのコイル収量とコイル収率を向上させることができる。
また、外部エネルギー場の重畳効果により、金属触媒の結晶面での触媒活性の異方性を小さくすることによりコイル径の小さな微小コイルが得られ、逆に異方性を大きくすることによりコイル径の大きな微小コイルが得られる。このことは、微小コイルのコイル径及びコイルピッチの大きさを制御し得ることを意味する。
(8)本発明の実施にあたり、上記第3実施形態にて述べた装置本体Bの積層数は、3つに限ることなく、必要に応じて、適宜増減させてもよい。
(9)本発明の実施にあたり、上記第1実施形態にて述べた円筒状基材30に代えて、多角形状基材を採用してもよく、また、平板状基材を採用してもよい。
(10)本発明の実施にあたり、上記第1実施形態にて述べた装置本体Bにおいて、前後両側エンドカバー40は、断面コ字状の構成に限ることなく、それぞれ、単なる平板状のエンドカバーであってもよい。なお、この場合、当該平板状の各エンドカバーは、その外周部にて、耐熱性オーリングを介し円筒状容器本体20aの前後両端面の各々に当接されて、例えば、複数のネジにより着脱可能に締着される。
(11)本発明の実施にあたり、上記第1実施形態にて述べた原料ガス導入筒群20b~20dのうちの原料ガス導入筒群20dは、上記第1実施形態とは異なり、容器本体20aの右側半円筒部26bの上側部位(左側反円筒部位26aの上側部位に対向する)からケーシング10の右壁14を介し右方へ延出するように構成してもよい。
(8)本発明の実施にあたり、上記第3実施形態にて述べた装置本体Bの積層数は、3つに限ることなく、必要に応じて、適宜増減させてもよい。
(9)本発明の実施にあたり、上記第1実施形態にて述べた円筒状基材30に代えて、多角形状基材を採用してもよく、また、平板状基材を採用してもよい。
(10)本発明の実施にあたり、上記第1実施形態にて述べた装置本体Bにおいて、前後両側エンドカバー40は、断面コ字状の構成に限ることなく、それぞれ、単なる平板状のエンドカバーであってもよい。なお、この場合、当該平板状の各エンドカバーは、その外周部にて、耐熱性オーリングを介し円筒状容器本体20aの前後両端面の各々に当接されて、例えば、複数のネジにより着脱可能に締着される。
(11)本発明の実施にあたり、上記第1実施形態にて述べた原料ガス導入筒群20b~20dのうちの原料ガス導入筒群20dは、上記第1実施形態とは異なり、容器本体20aの右側半円筒部26bの上側部位(左側反円筒部位26aの上側部位に対向する)からケーシング10の右壁14を介し右方へ延出するように構成してもよい。
具体的には、各原料ガス導入筒25は、上記第1実施形態と異なり、各ガス排出筒28の上側に位置するように、容器本体20aの右側半円筒部26bの上側部位から右方へ延出するように構成してもよい。これにより、各原料ガス導入筒25を通して原料ガスを容器本体20a内に導入するにあたり、各原料ガス導入筒25の内部が詰まることなく、原料ガスを容器本体20a内に円滑に導入することができる。その結果、容器本体20a内における析出物の析出量が、上記第1実施形態にて述べた各原料ガス導入筒25による原料ガスの容器本体20a内への導入による析出物の析出量に比較して増大され得る。
(12)本発明の実施にあたり、上記第1実施形態にて述べた反応容器20において、上記第1実施形態とは異なり、各原料ガス導入筒群20b、20c、20dの各原料ガス導入筒は、反応容器20の左方向よりも斜め下方向に向けて延出し、かつガス排出筒群20fの各ガス排出筒は、反応容器20の右方向よりも斜め上方向(各原料ガス導入筒の延出方向とは逆の方向)に延出していてもよい。なお、同様に、シールガス注入筒群20eの各シールガス注入筒も、各原料ガス導入筒と同様に斜め下方向に向けて延出していてもよい。
(12)本発明の実施にあたり、上記第1実施形態にて述べた反応容器20において、上記第1実施形態とは異なり、各原料ガス導入筒群20b、20c、20dの各原料ガス導入筒は、反応容器20の左方向よりも斜め下方向に向けて延出し、かつガス排出筒群20fの各ガス排出筒は、反応容器20の右方向よりも斜め上方向(各原料ガス導入筒の延出方向とは逆の方向)に延出していてもよい。なお、同様に、シールガス注入筒群20eの各シールガス注入筒も、各原料ガス導入筒と同様に斜め下方向に向けて延出していてもよい。
Claims (22)
- 筒状容器本体と、この容器本体内にその軸方向に沿い挿入される基材であって前記容器本体の内周面に対向するように触媒を担持してなる基材とを有して、熱分解されたときガス状炭素種を生成する原料ガスを前記容器本体の両横方向対向壁部の一方の横方向対向壁部から当該容器本体内に導入するとともに前記両横方向対向壁部の他方の横方向対向壁部から前記容器本体内のガスを排出するようにした反応容器の前記容器本体に前記一方の横方向対向壁部から導入する前記原料ガスを所定の高温のもとに前記触媒により熱分解することで前記基材に生成させるガス状炭素種に基づき前記基材から成長してなる微小コイル。
- 筒状容器本体と、この容器本体内にその軸方向に沿い挿入される基材であって前記容器本体の内周面に対向するように触媒を担持してなる基材とを有して、熱分解されたときガス状炭素種を生成する原料ガスを、前記容器本体の両横方向壁部及びその下方向壁部のうちの所定の一方向壁部から当該容器本体内に導入するとともに前記容器本体の前記所定の一方向壁部に対向する所定の他方向壁部から前記容器本体内のガスを排出するようにした反応容器を準備して、
前記容器本体を所定の高温に加熱して維持する加熱工程と、
前記容器本体に前記所定の一方向壁部から前記原料ガスを導入する原料ガス導入工程とを備えて、
当該原料ガス導入工程にて、前記容器本体を前記所定の高温に維持した状態にて、前記容器本体内に導入した前記原料ガスを前記触媒により熱分解して前記基材にガス状炭素種を生成させ、このガス状炭素種に基づき前記基材から微小コイルを成長させて製造するようにした微小コイルの製造方法。 - 前記反応容器の前記所定の一方向壁部及び前記所定の他方向壁部は、それぞれ、前記容器本体の両横方向対向壁部の一方の横方向対向壁部及び他方の横方向対向壁部であることを特徴とする請求項2に記載の微小コイルの製造方法。
- 前記反応容器の前記所定の一方向壁部及び前記所定の他方向壁部は、それぞれ、前記容器本体の上下両側方向対向壁部の一方の下方向対向壁部及び他方の上側方向対向壁部であることを特徴とする請求項2に記載の微小コイルの製造方法。
- 前記基材は、前記筒状容器本体内にその軸方向に挿入されて外周面に前記触媒を担持してなる筒状基体を有しており、
前記原料ガス導入工程にて、前記筒状容器本体を前記所定の高温に維持した状態にて、前記筒状容器本体内に導入した前記原料ガスを前記触媒により熱分解させて前記筒状基体の外周面にガス状炭素種を生成させ、このガス状炭素種に基づき前記筒状基体の外周面から微小コイルを成長させて製造するようにしたことを特徴とする請求項3に記載の微小コイルの製造方法。 - 前記基材は、前記筒状容器本体内にその軸方向に挿入されて外周面に前記触媒を担持してなる筒状基体を有しており、
前記原料ガス導入工程にて、前記筒状容器本体を前記所定の高温に維持した状態にて、前記筒状容器本体内に導入した前記原料ガスを前記触媒により熱分解させて前記筒状基体の外周面にガス状炭素種を生成させ、このガス状炭素種に基づき前記筒状基体の外周面から微小コイルを成長させて製造するようにしたことを特徴とする請求項4に記載の微小コイルの製造方法。 - 前記原料ガスは、アセチレンガス、水素ガス及び硫化水素ガスからなる混合ガスであり、
前記加熱工程において、前記所定の高温を600(℃)~900(℃)の範囲内の温度として、この温度に前記容器本体を加熱して維持することを特徴とする請求項3に記載の微小コ イルの製造方法。 - 前記原料ガスは、アセチレンガス、水素ガス及び硫化水素ガスからなる混合ガスであり、
前記加熱工程において、前記所定の高温を600(℃)~900(℃)の範囲内の温度として、この温度に前記容器本体を加熱して維持することを特徴とする請求項4に記載の微小コ イルの製造方法。 - 前記原料ガスは、アセチレンガス、水素ガス及び硫化水素ガスからなる混合ガスであり、
前記加熱工程において、前記所定の高温を600(℃)~900(℃)の範囲内の温度として、この温度に前記容器本体を加熱して維持することを特徴とする請求項5に記載の微小コ イルの製造方法。 - 前記原料ガスは、アセチレンガス、水素ガス及び硫化水素ガスからなる混合ガスであり、
前記加熱工程において、前記所定の高温を600(℃)~900(℃)の範囲内の温度として、この温度に前記容器本体を加熱して維持することを特徴とする請求項6に記載の微小コ イルの製造方法。 - ケーシングと、反応容器と、基材と、加熱制御手段とを備えて、
前記反応容器は、
前記ケーシング内に軸方向に挿入される筒状容器本体と、
この容器本体の両横方向壁部及びその下方向壁部のうちの所定の一方向壁部から外方へ延出されて、熱分解されたときガス状炭素種を生成する原料ガスを、原料ガス供給源から前記容器本体内に導入する少なくとも1本の原料ガス導入筒と、
前記容器本体の前記所定の一方向壁部に対向する所定の他方向壁部から前記少なくとも1本の原料ガス導入筒とは逆方向に外方へ延出されて前記容器本体内のガスを排出する少なくとも1本のガス排出筒とを具備しており、
前記基材は、前記容器本体内にその軸方向に沿い挿入されて、前記容器本体の内周面に対向するように触媒を担持してなり、
前記加熱制御手段は、前記容器本体を所定の高温に維持すべく加熱制御するようにして、
前記容器本体を前記所定の高温に維持した状態にて、前記容器本体内の前記原料ガスを前記触媒により加熱分解して前記基材にガス状炭素種を生成させ、このガス状炭素種に基づき前記基材から微小コイルを成長させて製造するようにした微小コイルの製造装置。 - 前記反応容器の前記所定の一方向壁部及び前記所定の他方向壁部は、それぞれ、前記容器本体の両横方向対向壁部の一方の横方向対向壁部及び他方の横方向対向壁部であることを特徴とする請求項11に記載の微小コイルの製造装置。
- 前記反応容器の前記所定の一方向壁部及び前記所定の他方向壁部は、それぞれ、前記容器本体の上下両側方向対向壁部の一方の下方向対向壁部及び他方の上側方向対向壁部であることを特徴とする請求項11に記載の微小コイルの製造装置。
- 前記基材は、前記筒状容器本体内にその軸方向に挿入されて外周面に前記触媒を担持してなる筒状基体を有することを特徴とする請求項12に記載の微小コイルの製造装置。
- 前記基材は、前記筒状容器本体内にその軸方向に挿入されて外周面に前記触媒を担持してなる筒状基体を有することを特徴とする請求項13に記載の微小コイルの製造装置。
- 前記筒状基材は、筒状基体と、ニッケル金属を、その表面に部分酸化及び部分硫化を施した上で2(μm)~6(μm)の範囲内の厚さでもって、前記筒状基体の外周面に塗布することで、前記触媒として前記筒状基体の前記外周面に担持させてなる触媒層とにより構成されていることを特徴とする請求項14に記載の微小コイルの製造装置。
- 前記筒状基材は、筒状基体と、ニッケル金属を、その表面に部分酸化及び部分硫化を施した上で2(μm)~6(μm)の範囲内の厚さでもって、前記筒状基体の外周面に塗布することで、前記触媒として前記筒状基体の前記外周面に担持させてなる触媒層とにより構成されていることを特徴とする請求項15に記載の微小コイルの製造装置。
- 前記少なくとも1本の原料ガス導入筒は、複数の原料ガス導入筒であって、
当該複数の原料ガス導入筒は、前記筒状基材のうち軸方向長さの1/3以上の長さに対応する部位から当該筒状基材の軸方向に前記原料ガス導入筒の内径の20倍以内の間隔をおいて延出されており、
前記筒状基材の外周面と前記原料ガス導入筒の内端開口部との間の径方向対向間隔が、5(mm)~50(mm)の範囲内の値に設定されていることを特徴とする請求項14に記載の微小コイルの製造装置。 - 前記少なくとも1本の原料ガス導入筒は、複数の原料ガス導入筒であって、
当該複数の原料ガス導入筒は、前記筒状基材のうち軸方向長さの1/3以上の長さに対応する部位から当該筒状基材の軸方向に前記原料ガス導入筒の内径の20倍以内の間隔をおいて延出されており、
前記筒状基材の外周面と前記原料ガス導入筒の内端開口部との間の径方向対向間隔が、5(mm)~50(mm)の範囲内の値に設定されていることを特徴とする請求項15に記載の微小コイルの製造装置。 - 前記少なくとも1本の原料ガス導入筒は、複数の原料ガス導入筒であって、
当該複数の原料ガス導入筒は、前記筒状基材のうち軸方向長さの1/3以上の長さに対応する部位から当該筒状基材の軸方向に前記原料ガス導入筒の内径の20倍以内の間隔をおいて延出されており、
前記筒状基材の外周面と前記原料ガス導入筒の内端開口部との間の径方向対向間隔が、5(mm)~50(mm)の範囲内の値に設定されていることを特徴とする請求項16に記載の微小コイルの製造装置。 - 前記少なくとも1本の原料ガス導入筒は、複数の原料ガス導入筒であって、
当該複数の原料ガス導入筒は、前記筒状基材のうち軸方向長さの1/3以上の長さに対応する部位から当該筒状基材の軸方向に前記原料ガス導入筒の内径の20倍以内の間隔をおいて延出されており、
前記筒状基材の外周面と前記原料ガス導入筒の内端開口部との間の径方向対向間隔が、5(mm)~50(mm)の範囲内の値に設定されていることを特徴とする請求項17に記載の微小コイルの製造装置。 - 前記ケーシング、前記反応容器、前記基材及び前記加熱制御手段を、それぞれ、複数備えており、
前記複数のケーシングは、それぞれ、上下に積層されており、
前記複数の反応容器は、それぞれ、その前記筒状容器本体にて、前記複数のケーシングの対応ケーシング毎に、当該対応ケーシング内に軸方向に挿入され、その前記少なくとも1本の原料ガス導入筒にて、対応の前記筒状容器本体の前記一方の横方向壁部から外方へ延出され、かつ、その前記少なくとも1本のガス排出筒にて、前記他方の横方向壁部から外方へ延出されており、
前記複数の基材は、それぞれ、各対応の前記容器本体にその軸方向に沿い挿入されて、前記各対応の前記容器本体の内周面に対向するように触媒を担持してなり、
前記複数の加熱制御手段は、それぞれ、各対応の前記容器本体を前記所定の高温に維持すべく加熱制御するようにして、
前記各対応の前記容器本体を前記所定の高温に維持した状態にて、前記各対応の前記容器本体内の前記原料ガスを各対応の前記触媒により加熱分解して各対応の前記基材にガス状炭素種を生成させ、このガス状炭素種に基づき前記各対応の前記基材から微小コイルを成長させて製造するようにしたことを特徴とする請求項12に記載の微小コイルの製造装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20110823422 EP2597068B1 (en) | 2010-09-10 | 2011-08-25 | Micro coil manufacturing method and manufacturing device thereof |
US13/813,041 US20130136912A1 (en) | 2010-09-10 | 2011-08-25 | Micro coil, manufacturing method and manufacturing apparatus thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010202697A JP5710185B2 (ja) | 2010-09-10 | 2010-09-10 | 微小コイルの製造方法及び製造装置 |
JP2010-202697 | 2010-09-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012032943A1 true WO2012032943A1 (ja) | 2012-03-15 |
Family
ID=45810546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/069151 WO2012032943A1 (ja) | 2010-09-10 | 2011-08-25 | 微小コイル、その製造方法及び製造装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20130136912A1 (ja) |
EP (1) | EP2597068B1 (ja) |
JP (1) | JP5710185B2 (ja) |
KR (1) | KR101378615B1 (ja) |
CN (1) | CN102400250B (ja) |
TW (1) | TWI516652B (ja) |
WO (1) | WO2012032943A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018140100A (ja) * | 2017-02-28 | 2018-09-13 | 宮坂ゴム株式会社 | 血行改善用の健康装具 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1181051A (ja) | 1997-09-01 | 1999-03-26 | Seiji Motojima | コイル状炭素繊維、その製造方法及びその製造装置 |
JP2002201532A (ja) * | 2000-12-27 | 2002-07-19 | Seiji Motojima | コイル状炭素繊維の製造方法及び製造装置 |
JP2003213530A (ja) * | 2002-01-08 | 2003-07-30 | Futaba Corp | カーボンナノ繊維の製造方法及びその方法を用いて製造されたカーボンナノ繊維を用いた電子デバイス,二次電池又は燃料電池電極,水素吸蔵体,複合材及び電磁波吸収材。 |
JP2004261630A (ja) * | 2003-01-28 | 2004-09-24 | Japan Science & Technology Agency | カーボンナノコイル製造用触媒及びその製造方法並びにカーボンナノコイル製造方法 |
JP2007045637A (ja) * | 2005-08-05 | 2007-02-22 | Toho Gas Co Ltd | ナノカーボン材料の製造装置及び製造方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2650270B1 (fr) * | 1989-06-28 | 1994-03-25 | Central Glass Cy Ltd | Fibres carbonees ayant des filaments en serpentin et procede pour leur production |
FR2674450B1 (fr) * | 1991-03-26 | 1994-01-21 | Agence Spatiale Europeenne | Procede pour deposer un revetement sur un substrat par projection au plasma, et dispositif pour la mise en óoeuvre du procede. |
JP3491747B2 (ja) * | 1999-12-31 | 2004-01-26 | 喜萬 中山 | カーボンナノコイルの製造方法及び触媒 |
KR100478145B1 (ko) * | 2002-03-06 | 2005-03-22 | 재단법인 포항산업과학연구원 | 탄소나노섬유의 제조방법 |
EP1661855A4 (en) * | 2003-08-27 | 2012-01-18 | Mineo Hiramatsu | PROCESS FOR PRODUCING CARBON NANOPAROI, CARBON NANOPAROI, AND PRODUCTION APPARATUS THEREOF |
US20090320991A1 (en) * | 2005-09-30 | 2009-12-31 | Paul Boyle | Methods of synthesis of nanotubes and uses thereof |
JP4550040B2 (ja) * | 2005-12-16 | 2010-09-22 | セメス株式会社 | カーボンナノチューブの合成装置及び方法 |
US20090304924A1 (en) * | 2006-03-03 | 2009-12-10 | Prasad Gadgil | Apparatus and method for large area multi-layer atomic layer chemical vapor processing of thin films |
KR100824301B1 (ko) * | 2006-12-21 | 2008-04-22 | 세메스 주식회사 | 반응 챔버와 이를 포함하는 탄소나노튜브 합성 장치 및 설비 |
US8709374B2 (en) * | 2007-02-07 | 2014-04-29 | Seldon Technologies, Llc | Methods for the production of aligned carbon nanotubes and nanostructured material containing the same |
JP5156896B2 (ja) * | 2008-03-11 | 2013-03-06 | 一般財団法人ファインセラミックスセンター | カーボンナノコイル製造用触媒の製造方法及びカーボンナノコイルの製造方法 |
JP2010095405A (ja) * | 2008-10-16 | 2010-04-30 | Gifu Univ | コイル状炭素繊維の製造装置 |
-
2010
- 2010-09-10 JP JP2010202697A patent/JP5710185B2/ja active Active
-
2011
- 2011-02-28 KR KR1020110018111A patent/KR101378615B1/ko active IP Right Grant
- 2011-07-15 CN CN201110201305.5A patent/CN102400250B/zh active Active
- 2011-07-15 TW TW100125032A patent/TWI516652B/zh active
- 2011-08-25 EP EP20110823422 patent/EP2597068B1/en active Active
- 2011-08-25 WO PCT/JP2011/069151 patent/WO2012032943A1/ja active Application Filing
- 2011-08-25 US US13/813,041 patent/US20130136912A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1181051A (ja) | 1997-09-01 | 1999-03-26 | Seiji Motojima | コイル状炭素繊維、その製造方法及びその製造装置 |
JP2002201532A (ja) * | 2000-12-27 | 2002-07-19 | Seiji Motojima | コイル状炭素繊維の製造方法及び製造装置 |
JP2003213530A (ja) * | 2002-01-08 | 2003-07-30 | Futaba Corp | カーボンナノ繊維の製造方法及びその方法を用いて製造されたカーボンナノ繊維を用いた電子デバイス,二次電池又は燃料電池電極,水素吸蔵体,複合材及び電磁波吸収材。 |
JP2004261630A (ja) * | 2003-01-28 | 2004-09-24 | Japan Science & Technology Agency | カーボンナノコイル製造用触媒及びその製造方法並びにカーボンナノコイル製造方法 |
JP2007045637A (ja) * | 2005-08-05 | 2007-02-22 | Toho Gas Co Ltd | ナノカーボン材料の製造装置及び製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2597068A4 * |
Also Published As
Publication number | Publication date |
---|---|
TW201211334A (en) | 2012-03-16 |
US20130136912A1 (en) | 2013-05-30 |
EP2597068A1 (en) | 2013-05-29 |
KR20120027087A (ko) | 2012-03-21 |
CN102400250A (zh) | 2012-04-04 |
EP2597068A4 (en) | 2014-02-05 |
KR101378615B1 (ko) | 2014-03-26 |
JP5710185B2 (ja) | 2015-04-30 |
EP2597068B1 (en) | 2015-02-18 |
CN102400250B (zh) | 2015-01-14 |
TWI516652B (zh) | 2016-01-11 |
JP2012056811A (ja) | 2012-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shah et al. | Nonthermal plasma synthesis of ammonia over Ni-MOF-74 | |
US7033650B2 (en) | Method of producing a nanotube layer on a substrate | |
US7597869B2 (en) | Method for producing carbon nanotubes | |
CN102092704B (zh) | 碳纳米管阵列的制备装置及制备方法 | |
US9534296B2 (en) | Methods of manufacture of engineered materials and devices | |
US7935175B2 (en) | Apparatus for trapping carbon nanotube and system and method for producing the carbon nanotube | |
US20160289826A1 (en) | Method for continuous production of aligned nanostructures on a running substrate and related device | |
KR20090032654A (ko) | 탄소나노튜브 제조 설비 및 이를 이용한 탄소나노튜브의제조 방법 | |
US20140087939A1 (en) | Metal-Carbon Composite Supported Catalyst for Hydrogen Production Using Co-Evaporation and Method of Preparing the Same | |
JP2010516610A (ja) | 触媒に対してマイクロ波誘起メタン分解を使用する水素富化燃料を生成するための方法及びシステム | |
JP2001192204A (ja) | カーボンナノコイルの製造方法 | |
CN115516256A (zh) | 发热装置 | |
JP5710185B2 (ja) | 微小コイルの製造方法及び製造装置 | |
KR101581613B1 (ko) | 원자층 증착법으로 제조된 저온 일산화탄소 산화용 니켈계 촉매 및 이의 활용 | |
JP4976352B2 (ja) | 炭素ナノチューブ製造装置及びその方法 | |
JP2005029436A (ja) | カーボンナノチューブの製造方法及び製造装置 | |
CN109701513A (zh) | 一种火炸药废水降解光催化剂的批量制备方法 | |
JP6054499B1 (ja) | 多孔質グラフェンフィルタの製造方法、これを用いて製造される多孔質グラフェンフィルタ及びこれを用いたフィルタ装置 | |
KR100793172B1 (ko) | 탄소나노튜브 제조 설비 및 이를 이용한 탄소나노튜브의제조 방법 | |
Kurttepeli et al. | Synthesis and characterization of photoreactive TiO2–carbon nanosheet composites | |
Kukovitsky et al. | Increased Carbon chemical vapor deposition and Carbon nanotube growth on metal substrates in confined spaces | |
JPH11247030A (ja) | コイル状炭素繊維の気相製造方法 | |
JPH11229240A (ja) | コイル状炭素繊維の気相製造方法及びその製造装置 | |
KR20160002532A (ko) | 다공성 그래핀 필터의 제조 방법, 이를 이용하여 제조된 다공성 그래핀 필터 및 이를 이용한 필터 장치 | |
CN102897851B (zh) | 一种基于扩散限制凝聚(dla)原理制备镍、钴及其氧化物纳米结构的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11823422 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13813041 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011823422 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |