WO2012029244A1 - 基地局、端末、送信方法、及び受信方法 - Google Patents

基地局、端末、送信方法、及び受信方法 Download PDF

Info

Publication number
WO2012029244A1
WO2012029244A1 PCT/JP2011/004629 JP2011004629W WO2012029244A1 WO 2012029244 A1 WO2012029244 A1 WO 2012029244A1 JP 2011004629 W JP2011004629 W JP 2011004629W WO 2012029244 A1 WO2012029244 A1 WO 2012029244A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
dci
pdcch
unit
control information
Prior art date
Application number
PCT/JP2011/004629
Other languages
English (en)
French (fr)
Inventor
西尾 昭彦
中尾 正悟
綾子 堀内
英範 松尾
今村 大地
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201180041000.0A priority Critical patent/CN103069905B/zh
Priority to JP2012531668A priority patent/JPWO2012029244A1/ja
Priority to US13/818,417 priority patent/US9326272B2/en
Publication of WO2012029244A1 publication Critical patent/WO2012029244A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to a base station, a terminal, a transmission method, and a reception method.
  • LTE 3rd Generation Partnership Project Project Radio Access Network Long Term Evolution
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA uplink communication method
  • Single Carrier Frequency Division Multiple Access is employed (for example, see Non-Patent Documents 1, 2, and 3).
  • a radio communication base station apparatus uses a radio communication terminal apparatus (hereinafter referred to as “subframe”) for each time unit called a subframe. Communication is performed by assigning to “terminal”. Also, the base station transmits downlink control information (L1 / L2 control information) for notifying the resource allocation result for downlink data and uplink data to the terminal. This downlink control information is transmitted to the terminal using a downlink control channel such as PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • each PDCCH occupies a resource composed of one or a plurality of continuous CCEs (Control Channel Element).
  • the number of CCEs occupied by the PDCCH (the number of CCE connections: CCE aggregation level) is selected from 1, 2, 4, 8 depending on the number of downlink control information bits or the channel state of the terminal Is done. Note that LTE supports a frequency band having a maximum width of 20 MHz as a system bandwidth.
  • the allocation control information transmitted from the base station is called DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • a base station assigns a plurality of terminals to one subframe, it transmits a plurality of DCIs simultaneously.
  • the base station transmits the CRC bit masked (or scrambled) with the terminal ID of the transmission destination in the DCI in order to identify the transmission destination terminal of each DCI.
  • the terminal performs blind decoding on the PDCCH by demasking (or descrambling) the CRC bits with the terminal ID of the terminal in a plurality of DCIs that are likely to be addressed to the terminal. Is detected.
  • DCI includes information on resources (resource allocation information) allocated to the terminal by the base station, MCS (Modulation and channel Coding Scheme), and the like.
  • DCI has a plurality of formats for uplink, downlink MIMO (Multiple Input Multiple Output) transmission, downlink non-contiguous band allocation, and the like.
  • the terminal needs to receive both downlink allocation control information having a plurality of formats (allocation control information regarding the downlink) and uplink allocation control information having one format (allocation control information regarding the uplink).
  • a plurality of sizes of formats are defined by the transmission antenna control method and resource allocation method of the base station.
  • a downlink allocation control information format (hereinafter simply referred to as “downlink allocation control information”) for performing bandwidth allocation (hereinafter referred to as “continuous bandwidth allocation”) for allocating consecutive RBs, and continuous band allocation
  • the uplink allocation control information format (hereinafter simply referred to as “uplink allocation control information”) has the same size.
  • These formats (DCI format) include type information (for example, 1-bit flag) indicating the type of allocation control information (downlink allocation control information or uplink allocation control information).
  • the terminal confirms the type information included in the allocation control information, thereby performing downlink allocation control.
  • Information or uplink allocation control information can be specified.
  • DCI format 0 (hereinafter referred to as DCI 0)
  • DCI format 1A (hereinafter referred to as DCI 1A)
  • DCI 0 and DCI 1A have the same size and can be distinguished by type information. Therefore, in the following description, DCI 0 and DCI 1A are collectively referred to as DCI 0 / 1A.
  • DCI format 1 (hereinafter referred to as DCI 1) and spatial multiplexing MIMO transmission for performing bandwidth allocation (hereinafter referred to as “non-contiguous bandwidth allocation”) for assigning non-consecutive numbers of RBs in the downlink.
  • DCI format 2 and 2A to be allocated (hereinafter referred to as DCI 2 and 2A), downlink allocation control information format to which beam forming transmission is allocated (“beam forming allocation downlink format”: DCI format 1B), and downlink allocation control information to which multi-user MIMO transmission is allocated Format (“multiuser MIMO allocation downlink format”: DCI format 1D).
  • DCI 1, 2, 2A, 1B, and 1D are formats used depending on the downlink transmission mode (non-contiguous band allocation, spatial multiplexing MIMO transmission, beamforming transmission, multiuser MIMO transmission) of the terminal. This is a format set for each terminal.
  • DCI 0 / 1A is a format that can be used for terminals in any transmission mode without depending on the transmission mode, that is, a format commonly used for all terminals. When DCI 0 / 1A is used, 1 antenna transmission or transmission diversity is used as the default transmission mode.
  • DCI format 0A for performing non-contiguous band allocation and DCI format 0B for allocating spatial multiplexing MIMO transmission are being studied. These are all formats set for each terminal.
  • CCE regions (hereinafter referred to as “Search Space”) that can be subjected to blind decoding by each terminal are limited.
  • the unit of the CCE region allocated to each terminal (that is, corresponding to the unit for blind decoding) is called “downlink control information allocation region candidate (DCI allocation region candidate)” or “decoding target unit region candidate”.
  • the search space is set randomly for each terminal.
  • the number of CCEs constituting this search space is defined for each number of PCECH CCE connections.
  • the number of CCEs constituting the search space is 6, 12, 8, and 16 corresponding to the PDCCH CCE concatenation numbers 1, 2, 4, and 8, respectively.
  • each terminal only needs to perform blind decoding only on the decoding target unit region candidate group in the search space assigned to the terminal, and thus the number of times of blind decoding can be reduced.
  • the search space of each terminal is set using the terminal ID of each terminal and a hash function that is a function for performing randomization.
  • This terminal-specific CCE region is called an individual region (UE-specific search-Space: UE-SS).
  • control information for data allocation common to terminals for example, allocation information related to downlink broadcast signals and allocation information related to signals for paging
  • PDCCH allocation information related to downlink broadcast signals and allocation information related to signals for paging
  • PDCCH control information for a common channel
  • a CCE region hereinafter referred to as a common region (Common-Search-Space: C-SS)
  • C-SS Common-Search-Space
  • the terminal has a DCI format (DCI 0 / 1A) commonly used for all terminals and a DCI format (one from DCI 1, 2, 2A) depending on the transmission mode.
  • Blind decoding is performed for each of the two types of DCI formats.
  • the terminal performs the above-described 16 blind decodings in the UE-SS for two types of DCI formats. Which two sizes of DCI formats are to be blind-decoded depends on the transmission mode notified from the base station.
  • the terminal performs the above-described 6 blind decodings for each of DCI format 1C (hereinafter referred to as DCI 1C) and DCI 1A, which are common channel allocation formats, regardless of the notified transmission mode (ie, Total 12 blind decodings). Therefore, the terminal performs blind decoding a total of 44 times per subframe.
  • DCI 1C DCI format 1C
  • DCI 1A DCI format 1A
  • the terminal performs blind decoding a total of 44 times per subframe.
  • DCI 1A used for common channel assignment and DCI 0 / 1A used for terminal-specific data assignment have the same size, and are distinguished from each other by terminal ID. Therefore, the base station can also transmit DCI 0 / 1A that performs terminal-specific data allocation by C-SS without increasing the number of times of terminal blind decoding.
  • LTE-A 3GPP LTE-Advanced
  • LTE-A terminals base stations and terminals
  • LTE-A terminals capable of communicating at a wideband frequency of 40 MHz or more in order to realize a downlink transmission rate of 1 Gbps or more and an uplink transmission rate of 500 Mbps or more at the maximum. Is expected.
  • the LTE-A system is required to accommodate not only LTE-A terminals but also terminals (hereinafter referred to as LTE terminals) corresponding to the LTE system.
  • R-PDCCH downlink control channel
  • FIG. 2 shows an example of the R-PDCCH region. (1) The mapping start position in the time axis direction of R-PDCCH is fixed to the fourth OFDM symbol from the beginning of one subframe.
  • Each R-PDCCH occupies a resource composed of one or a plurality of consecutive R-CCEs (Relay-Control Channel Elements).
  • the number of REs constituting one R-CCE differs for each slot or for each reference signal arrangement.
  • the R-CCE has a range from the third OFDM symbol to the end of the slot 0 in the time direction and a range of 1 RB width in the frequency direction (however, the reference signal is Excluding mapped areas).
  • slot 1 a resource region having a range from the beginning of slot 1 to the end of slot 1 in the time direction and a range of 1 RB width in the frequency direction (however, excluding the region where the reference signal is mapped) ).
  • slot 1 a proposal has been made to divide the above-mentioned resource area into two and to make each one one R-CCE.
  • PDCCH area an area in which PDCCH is mapped as the number of terminals increases.
  • PDCCH area an area in which PDCCH is mapped as the number of terminals increases.
  • PDSCH region a resource region to which downlink data is mapped is vacant, it cannot be used, and there is a possibility that the system throughput is reduced.
  • R-PDCCH region the region to which the above-mentioned R-PDCCH is mapped.
  • the R-PDCCH for DCI transmission toward a terminal connected to the base station, it is possible to suppress DCI reception performance degradation. That is, in order for the terminals under the femto / pico base station to receive the DCI with a sufficiently low error rate, the macro base station transmits the DCI with the transmission power lowered at a specific RB, while the femto / pico base station The DCI is transmitted to the terminal under the specific RB.
  • the terminal connected to the femto / pico base station can receive DCI with an RB with low interference from the macro base station, and thus can receive DCI with a good error rate.
  • a terminal connected to a macro base station can also receive DCI with a good error rate by transmitting DCI with an RB with low interference from the femto / pico base station.
  • the number of times of blind decoding including both PDCCH and R-PDCCH is 8 times for PDCCH and 8 times for R-PDCCH, for a total of 32 times.
  • the number of blind decodings similar to that of LTE can be suppressed.
  • an ACK / NACK is transmitted on the uplink, which may cause an error regarding ACK / NACK of another terminal. Since these cause a decrease in system throughput in the uplink and downlink, it is necessary to reduce the false alarm.
  • An object of the present invention is to provide a base station, a terminal, a transmission method, and a reception method that can prevent a decrease in system throughput by reducing erroneous detection of control information.
  • the base station includes a forming unit that forms control information including both a cyclic redundancy check (CRC) bit masked or scrambled by terminal identification information and a known bit known by the terminal; A mapping unit that maps the formed control information to a resource area that can be used for both the control channel and the data channel.
  • CRC cyclic redundancy check
  • a terminal is a resource region that can be used for both a control channel and a data channel, a cyclic redundancy check (CRC) bit masked or scrambled by identification information of a destination terminal, a predetermined bit, A receiving unit that receives control information including both of the above and a determination unit that determines that the control information is addressed to the own station when the predetermined bit matches a known bit.
  • CRC cyclic redundancy check
  • the transmission method is formed by forming control information including both a cyclic redundancy check (CRC) bit masked or scrambled by terminal identification information and a known bit known by the terminal.
  • the control information is mapped to a resource area that can be used for both the control channel and the data channel.
  • a reception method includes a cyclic redundancy check (CRC) bit masked or scrambled by identification information of a destination terminal in a resource region usable for both a control channel and a data channel, and a predetermined bit. If the predetermined bit matches the known bit, it is determined that the control information is addressed to its own station.
  • CRC cyclic redundancy check
  • a base station a terminal, a transmission method, and a reception method that can prevent a decrease in system throughput by reducing erroneous detection of control information.
  • Figure for explaining relay station A diagram showing an example of an R-PDCCH region Diagram for explaining R-PDCCH Diagram for explaining heterogeneous network
  • Main configuration diagram of base station according to Embodiment 1 of the present invention Main configuration diagram of terminal according to Embodiment 1 of the present invention
  • the block diagram which shows the structure of the base station which concerns on Embodiment 1 of this invention. It is a figure which shows the example of a setting of UE-SS with respect to C-SS and a certain terminal.
  • the block diagram which shows the structure of the terminal which concerns on Embodiment 1 of this invention.
  • the communication system according to Embodiment 1 of the present invention includes a base station 100 and a terminal 200.
  • the base station 100 is, for example, an LTE-A base station
  • the terminal 200 is, for example, an LTE-A terminal.
  • the base station 100 maps and transmits downlink allocation control information (DCI) addressed to the terminal 200 to a resource area that can be used for both the downlink control channel area and the downlink data channel area.
  • DCI downlink allocation control information
  • FIG. 5 is a main configuration diagram of base station 100 according to Embodiment 1 of the present invention.
  • the PDCCH generation unit 104 generates a cyclic redundancy check (CRC) bit masked or scrambled by the identification information of the terminal 200 and a mutually known bit string (that is, Virtual CRC) between the terminal 200 and the base station 100.
  • CRC cyclic redundancy check
  • the downlink allocation control information unit (that is, DCI) including both is formed, and the multiplexing unit 109 can use the formed DCI for both the downlink control channel region and the downlink data channel region (that is, R -PDCCH region). That is, PDCCH generation section 104 includes Virtual CRC in DCI only when DCI addressed to terminal 200 is mapped to the R-PDCCH region.
  • FIG. 6 is a main configuration diagram of terminal 200 according to Embodiment 1 of the present invention.
  • terminal 200 cyclic section masked or scrambled by demultiplexing section 205 in the resource area (that is, the R-PDCCH area) that can be used for both the downlink control channel area and the downlink data channel area by the identification information of the destination terminal.
  • the downlink allocation control information unit that is, DCI
  • CRC redundancy check
  • the predetermined bit string that is, Virtual CRC
  • FIG. 7 is a block diagram showing a configuration of base station 100 according to Embodiment 1 of the present invention.
  • a base station 100 includes a setting unit 101, a control unit 102, a search space setting unit 103, a PDCCH generation unit 104, encoding / modulation units 105, 106, and 107, an allocation unit 108, and a multiplexing unit.
  • IFFT Inverse Fast Fourier Transform
  • CP Cyclic Prefix
  • transmission RF unit 112 transmission RF unit 112
  • reception RF unit 114 reception RF unit 114
  • CP removal unit 115 FFT (Fast (Fourier Transform) section 116
  • extraction section 117 IDFT (Inverse Discrete Fourier transform) section 118
  • data reception section 119 and ACK / NACK reception section 120.
  • the setting unit 101 sets a resource area (that is, a transmission area) used for DCI transmission for the terminal 200, and sets the transmission mode for each of the uplink and downlink of the terminal 200.
  • the setting of the resource area and the setting of the transmission mode are performed for each terminal 200 to be set.
  • the setting information regarding the resource region and the transmission mode is sent to the control unit 102, the search space setting unit 103, the PDCCH generation unit 104, and the encoding / modulation unit 106.
  • the setting unit 101 includes a transmission area setting unit 131 and a transmission mode setting unit 132.
  • the transmission area setting unit 131 sets a resource area used for DCI transmission for the terminal 200.
  • the resource area candidates to be set include a PDCCH area and an R-PDCCH area. That is, transmission region setting section 131 sets for each terminal 200 whether or not to include an R-PDCCH region in addition to the PDCCH region as a region (transmission region) for transmitting DCI. For example, normally, when a PDCCH region is set for the terminal 200 and there is a concern that the PDCCH region may become tight due to the large number of terminals 200 communicating with the base station 100, interference in the PDCCH region may occur.
  • both the PDCCH region and the R-PDCCH region are set for the terminal 200. That is, transmission region setting section 131 sets whether to decode only the PDCCH region for each terminal 200 or to perform blind decoding on both the PDCCH region and the R-PDCCH region (or only the R-PDCCH region). It should be noted that it is not limited based on what conditions the transmission region setting unit 131 determines whether to include the R-PDCCH region as a DCI transmission region. In addition, the transmission region setting unit 131 sets a target RB group to be used as an R-PDCCH region used for DCI transmission in the entire RB group. This use target RB group is a blind decoding target RB region when DCI is transmitted in the R-PDCCH region for terminal 200.
  • the transmission mode setting unit 132 transmits each uplink transmission mode and downlink transmission mode of each terminal 200 (for example, spatial multiplexing MIMO transmission, beamforming transmission, non-contiguous band allocation, etc.) based on the propagation path condition for each terminal 200 and the like. Set.
  • the setting unit 101 sets setting information including information indicating the DCI transmission region set to each terminal 200 and information indicating the transmission mode, the control unit 102, the search space setting unit 103, the PDCCH generation unit 104, and the encoding Output to the modulation unit 106.
  • the setting information related to the resource region and the transmission mode is notified to each terminal 200 via the encoding / modulation section 106 as higher layer control information (referred to as RRC control information or RRC signaling).
  • the control unit 102 generates allocation control information according to the setting information received from the setting unit 101.
  • the control unit 102 generates allocation control information including HACS related information such as MCS information, resource (RB) allocation information, and NDI (New data indicator).
  • HACS related information such as MCS information, resource (RB) allocation information, and NDI (New data indicator).
  • uplink resource allocation information indicating uplink resources (for example, PUSCH (Physical-Uplink-Shared-Channel)) to which uplink data of the terminal 200 is allocated, or downlink resources to which downlink data addressed to the terminal 200 is allocated.
  • PUSCH Physical-Uplink-Shared-Channel
  • PDSCH Physical Downlink Shared Channel
  • control unit 102 assigns allocation control information (either DCI 0A or 0B) according to the uplink transmission mode of terminal 200, according to the downlink transmission mode.
  • allocation control information (DCI 1, 1B, 1D, 2, 2A) or allocation control information common to all terminals (DCI 0 / 1A) is generated for each terminal 200.
  • control unit 102 allocates control information (DCI 1) according to the transmission mode of each terminal 200 so that data transmission can be performed in the transmission mode set for each terminal 200 in order to improve throughput. , 1B, 1D, 2, 2A, 0A, or 0B). Thereby, since data transmission can be performed in the transmission mode set in each terminal 200, the throughput can be improved.
  • DCI 1 control information
  • control unit 102 generates allocation control information in a format (DCI 0 / 1A) common to all terminals, and transmits data using a robust default transmission mode. As a result, more robust data transmission is possible even when the propagation environment changes suddenly.
  • the control unit 102 when transmitting higher layer control information (RRC signaling) for notifying a change of the transmission mode when the channel condition deteriorates, assigns allocation control information (DCI 0 / 1A common to all terminals). ) And transmit information using the default transmission mode.
  • the number of information bits of DCI 0 / 1A common to all terminals is smaller than the number of information bits of DCI 1, 2, 2A, 0A, 0B depending on the transmission mode. For this reason, when the same CCE number is set, DCI 0 / 1A can transmit at a lower coding rate than DCI 1, 2, 2A, 0A, 0B. Therefore, when the channel condition deteriorates, the control unit 102 can use DCI 0 / 1A to receive allocation control information (and data) with a good error rate even in a terminal with a poor channel condition. .
  • control unit 102 allocates common channel allocation control information (for example, DCI 1C) for data allocation common to a plurality of terminals such as broadcast information and paging information. , 1A).
  • common channel allocation control information for example, DCI 1C
  • control unit 102 outputs MCS information and NDI among the generated allocation control information for terminal-specific data allocation to the PDCCH generation unit 104, and outputs uplink resource allocation information to the PDCCH generation unit 104 and the extraction unit 117. Then, the downlink resource allocation information is output to PDCCH generation section 104 and multiplexing section 109. In addition, the control unit 102 outputs the generated common channel allocation control information to the PDCCH generation unit 104.
  • the search space setting unit 103 based on the DCI transmission area indicated in the setting information input from the setting unit 101 and the reference signal to be used, the common search space (C-SS) and the individual search space (UE -SS) is set.
  • the common search space (C-SS) is a search space common to all terminals
  • the individual search space (UE-SS) is an individual search space for each terminal.
  • the search space setting unit 103 sets a preset CCE (for example, CCE for 16 CCEs from the top CCE) as C-SS.
  • CCE is a basic unit.
  • the search space setting unit 103 sets UE-SS for each terminal.
  • the search space setting unit 103 for example, the UE-SS of a certain terminal, the CCE number calculated using the terminal ID of the terminal and a hash function that performs randomization, and the number of CCEs constituting the search space Calculate from (L).
  • FIG. 8 is a diagram showing a setting example of UE-SS for a C-SS and a certain terminal.
  • four DCI allocation area candidates (that is, CCE 0 to 3, CCE 4 to 7, CCE 8 to 11, and CCE 12 to 15) are set as C-SS with respect to the number of CCE connections of PDCCH. Further, two DCI allocation region candidates (that is, CCE 0 to 7 and CCE 8 to 15) are set as C-SS for the number of CCE connections of PDCCH. That is, in FIG. 8, a total of six DCI allocation area candidates are set as C-SS.
  • each of CCEs 16 to 21 six DCI allocation area candidates (that is, each of CCEs 16 to 21) are set as UE-SS.
  • six DCI allocation area candidates (that is, two CCEs 6 to 17 divided into two) are set as UE-SS.
  • two DCI allocation region candidates that is, CCE 20 to 23, CCE 24 to 27
  • two DCI allocation region candidates that is, CCE 16 to 23, CCE 24 to 31
  • a total of 16 DCI allocation area candidates are set as UE-SS.
  • the search space setting unit 103 performs a search having the plurality of DCI allocation region candidates described above in the PDCCH region and the R-PDCCH region. Set the space (C-SS and UE-SS).
  • the search space setting unit 103 outputs search space information indicating the set C-SS and UE-SS of each terminal to the allocation unit 108 and the encoding / modulation unit 106.
  • the PDCCH generation unit 104 receives allocation control information for terminal-specific data allocation received from the control unit 102 (that is, MCS information, HARQ information, etc. for each terminal, and uplink resource allocation information or downlink resource allocation). DCI including information) or DCI including common channel allocation control information (that is, broadcast information common to terminals, paging information, and the like).
  • PDCCH generation section 104 uses DCI for DCI.
  • DCI DCI
  • “known bit” is inserted as VirtualVCRC. Note that the number of known bits may be a fixed number determined in advance, or the number of bits shared between the base station and the terminal by the base station 100 notifying or notifying the terminal 200. There may be.
  • PDCCH generation section 104 adds CRC bits to DCI including uplink allocation control information and downlink allocation control information generated for each terminal 200 and “Virtual CRC”, and further masks the CRC bits with a terminal ID (or , Scrambling). Then, PDCCH generation section 104 outputs DCI with the CRC bits masked to encoding / modulation section 105.
  • the PDCCH generation unit 104 generates DCI including uplink allocation control information, downlink allocation control information, and Virtual-CRC and having a CRC bit added.
  • the CRC bits are masked (or scrambled) by the terminal ID, while the Virtual-CRC is not masked (or scrambled).
  • Encoding / modulating section 105 modulates the DCI received from PDCCH generating section 104 after channel coding, and outputs the modulated signal to allocating section 108.
  • the encoding / modulation section 105 sets the coding rate based on channel quality information (CQI: Channel Quality ⁇ Indicator) information reported from each terminal so that each terminal can obtain sufficient reception quality.
  • CQI Channel Quality ⁇ Indicator
  • the coding / modulation section 105 sets a lower coding rate as the terminal is located near the cell boundary (that is, as the terminal has poor channel quality).
  • Allocation unit 108 receives DCI including common channel allocation control information and DCI including allocation control information for terminal-specific data allocation for each terminal, which are input from encoding / modulation unit 105, as search space setting unit It is assigned to CCE or R-CCE in C-SS or CCE or R-CCE in UE-SS for each terminal indicated in the search space information input from 103.
  • the allocation unit 108 selects one DCI allocation area candidate from the DCI allocation area candidate group in the C-SS (for example, FIG. 8). Then, allocating section 108 simply refers to the DCI including the allocation control information for the common channel as CCE (or R-CCE in the selected DCI allocation region candidate.
  • CCE and R-CCE are not distinguished from each other. May be assigned).
  • the CCE is a resource unit constituting the PDCCH
  • the R-CCE is a resource unit constituting the R-PDCCH.
  • the allocation unit 108 assigns the allocation target terminal to the allocation target terminal.
  • a CCE in the UE-SS configured for the DCI is assigned.
  • the allocation unit 108 selects the CCE in the C-SS or the allocation target terminal. Assign CCE in the configured UE-SS to DCI.
  • the number of concatenated CCEs assigned to one DCI differs depending on the coding rate and the number of bits of DCI (that is, the amount of information of assignment control information). For example, since the coding rate of the PDCCH signal addressed to the terminal located near the cell boundary is set low, more physical resources are required. Therefore, allocating section 108 allocates more CCEs to DCI addressed to terminals located near the cell boundary.
  • allocation section 108 outputs information on CCE allocated to DCI to multiplexing section 109 and ACK / NACK reception section 120. Also, assignment section 108 outputs the encoded / modulated DCI to multiplexing section 109.
  • the encoding / modulation unit 106 modulates the setting information input from the setting unit 101 and the search space information input from the search space setting unit 103 (that is, control information of the upper layer) after channel encoding,
  • the modulated setting information and search space information are output to multiplexing section 109.
  • Encoding / modulating section 107 modulates input transmission data (downlink data) after channel coding, and outputs the modulated transmission data signal to multiplexing section 109.
  • the multiplexing unit 109 receives the encoded / modulated DCI signal received from the allocating unit 108, the modulated setting information and search space information (that is, control information of the upper layer) received from the encoding / modulating unit 106, and the encoding A data signal (that is, a PDSCH signal) received from the modulation unit 107 is multiplexed on the time axis and the frequency axis.
  • multiplexing section 109 multiplies the DCI in the R-PDCCH region for terminals that use DM-RS as a demodulation reference signal, the PDSCH signal or the like by a weight, and performs IFFT (Inverse for each antenna).
  • IFFT Inverse for each antenna
  • multiplexing section 109 performs SFBC (Spatial frequency block coding) processing on signals for which transmission weights are not set (that is, DCI in the PDCCH region), and performs IFFT (Inverse Fast Fourier Transform) unit 110 for each antenna.
  • SFBC Spacal frequency block coding
  • IFFT Inverse Fast Fourier Transform
  • the multiplexing unit 109 maps the PDCCH signal and the data signal (PDSCH signal) based on the downlink resource allocation information received from the control unit 102.
  • the multiplexing unit 109 may map the setting information and the search space information to the PDSCH.
  • the IFFT unit 110 converts the multiplexed signal for each antenna received from the multiplexing unit 109 into a time waveform, and the CP adding unit 111 obtains an OFDM signal by adding the CP to the time waveform.
  • the transmission RF unit 112 performs transmission radio processing (up-conversion, digital analog (D / A) conversion, etc.) on the OFDM signal received from the CP adding unit 111 and transmits the signal via the antenna 113.
  • transmission radio processing up-conversion, digital analog (D / A) conversion, etc.
  • the reception RF unit 114 performs reception radio processing (down-conversion, analog digital (A / D) conversion, etc.) on the reception radio signal received in the reception band via the antenna 113, and the obtained reception signal is processed.
  • the data is output to the CP removal unit 115.
  • CP removing section 115 removes CP from the received signal
  • FFT (Fast Fourier Transform) section 116 converts the received signal after CP removal into a frequency domain signal.
  • the extraction unit 117 Based on the uplink resource allocation information received from the control unit 102, the extraction unit 117 extracts uplink data from the frequency domain signal received from the FFT unit 116, and the IDFT unit 118 converts the extracted signal into a time domain signal.
  • the time domain signal is output to data receiving section 119 and ACK / NACK receiving section 120.
  • the data receiving unit 119 decodes the time domain signal input from the IDFT unit 118. Data receiving section 119 then outputs the decoded uplink data as received data.
  • the ACK / NACK receiving unit 120 extracts an ACK / NACK signal from each terminal for downlink data (PDSCH signal) from the time domain signal received from the IDFT unit 118. Specifically, the ACK / NACK receiving unit 120 extracts the ACK / NACK signal from the uplink control channel (for example, PUCCH (Physical-Uplink-Control-Channel)) based on the information received from the allocation unit 108.
  • the uplink control channel is an uplink control channel associated with the CCE used for transmission of downlink allocation control information corresponding to the downlink data.
  • the ACK / NACK receiving unit 120 performs ACK / NACK determination of the extracted ACK / NACK signal.
  • each terminal determines the PUCCH used for transmission of the ACK / NACK signal based on the CCE in which downlink allocation control information (DCI) to the terminal is mapped according to this association.
  • DCI downlink allocation control information
  • FIG. 9 is a block diagram showing a configuration of terminal 200 according to Embodiment 1 of the present invention.
  • Terminal 200 receives downlink data and transmits an ACK / NACK signal for the downlink data to base station 100 using PUCCH that is an uplink control channel.
  • terminal 200 includes antenna 201, reception RF section 202, CP removal section 203, FFT section 204, separation section 205, setting information reception section 206, PDCCH reception section 207, and PDSCH reception section. 208, modulation sections 209 and 210, DFT section 211, mapping section 212, IFFT section 213, CP addition section 214, and transmission RF section 215.
  • the reception RF unit 202 sets the reception band based on the band information received from the setting information reception unit 206.
  • the reception RF unit 202 performs reception radio processing (down-conversion, analog digital (A / D) conversion, etc.) on a radio signal (here, an OFDM signal) received in the reception band via the antenna 201, and is obtained.
  • the received signal is output to the CP removing unit 203.
  • the received signal may include PDSCH signal, DCI, and higher layer control information including setting information and search space information.
  • the DCI (assignment control information) addressed to the terminal 200 is a common search space (C-SS) set for the terminal 200 and other terminals, or an individual search space set for the terminal 200. (UE-SS).
  • C-SS common search space
  • CP removing section 203 removes the CP from the received signal, and FFT section 204 converts the received signal after the CP removal into a frequency domain signal. This frequency domain signal is output to the separation unit 205.
  • the demultiplexing unit 205 outputs to the PDCCH receiving unit 207 a component that may contain DCI among signals received from the FFT unit 204 (that is, a signal extracted from the PDCCH region and the R-PDCCH region). Separating section 205 outputs a higher layer control signal including setting information (for example, RRC signaling) to setting information receiving section 206, and outputs a data signal (that is, PDSCH signal) to PDSCH receiving section 208.
  • setting information for example, RRC signaling
  • the setting information receiving unit 206 receives the band information set for the own terminal, the information indicating the terminal ID set for the own terminal, the search space set for the own terminal from the upper layer control signal input from the separating unit 205 Information, information indicating a reference signal set in the own terminal, and information indicating a transmission mode set in the own terminal are read.
  • the band information set in the own terminal is output to the PDCCH reception unit 207, the reception RF unit 202, and the transmission RF unit 215.
  • information indicating the terminal ID set to the own terminal is output to the PDCCH receiving unit 207 as terminal ID information.
  • information indicating a resource area used for DCI transmission set in the terminal itself is output to PDCCH receiving section 207 as search space area information.
  • information indicating the reference signal set in the own terminal is output to PDCCH receiving section 207 as reference signal information.
  • information indicating the transmission mode set for the terminal itself is output to PDCCH receiving section 207 as transmission mode information.
  • the PDCCH reception unit 207 performs blind decoding (monitoring) on the signal input from the separation unit 205 to obtain DCI addressed to the terminal itself.
  • the PDCCH receiving unit 207 has a DCI format for data allocation common to all terminals (for example, DCI 0 / 1A) and a DCI format (for example, DCI 1, 1B, 1D, 2, 2A, 0A, 0B) and a DCI format (for example, DCI 1C, 1A) for common channel allocation common to all terminals, are subjected to blind decoding. Thereby, DCI including allocation control information of each DCI format is obtained.
  • PDCCH receiving section 207 is common to the C-SS indicated in the search space area information. Blind decoding of a DCI format for channel allocation (DCI 1C, 1A) and a DCI format for data allocation common to all terminals (DCI 0 / 1A) is performed. That is, PDCCH receiving section 207 determines the size of the DCI format for common channel assignment and data common to all terminals for each blind decoding area candidate in C-SS (that is, a candidate for CCE area allocated to terminal 200). Demodulate and decode for the size of the DCI format for allocation.
  • the PDCCH receiving unit 207 determines whether the DCI 0 / 1A allocation control information is for the common channel or the data allocation for the own terminal among terminal IDs (a plurality of terminals). They are distinguished by a common ID or a terminal ID of the terminal 200).
  • the PDCCH receiving unit 207 also includes the PDCCH region in the same manner as the PDCCH region described above even when the R-PDCCH region is included as the search space region indicated by the search space region information input from the setting information receiving unit 206. And the search space set in the R-PDCCH region is blind-decoded (monitored) to obtain DCI addressed to the terminal transmitted using the PDCCH and R-PDCCH.
  • terminal 200 is not aware of the search space and is not aware of search space. You may perform blind decoding in the transmission area
  • PDCCH receiving section 207 outputs downlink resource allocation information included in DCI addressed to its own terminal to PDSCH receiving section 208 when receiving downlink allocation control information, and when receiving uplink allocation control information, PDCCH receiving section 207 receives uplink allocation control information.
  • the resource allocation information is output to the mapping unit 212.
  • the PDSCH receiving unit 208 extracts received data (downlink data) from the PDSCH signal received from the separating unit 205 based on the downlink resource allocation information received from the PDCCH receiving unit 207. That is, PDSCH receiving section 208 performs downlink data (allocation control information) based on downlink resource allocation information (allocation control information) addressed to terminal 200 allocated to any one of a plurality of DCI allocation area candidates (blind decoding area candidates). Downlink data signal) is received. PDSCH receiving section 208 also performs error detection on the extracted received data (downlink data).
  • the PDSCH receiving unit 208 generates a NACK signal as the ACK / NACK signal, and if there is no error in the received data, the PDSCH receiving unit 208 receives the ACK / NACK signal as the ACK / NACK signal. Generate a signal. This ACK / NACK signal is output to modulation section 209.
  • Modulation section 209 modulates the ACK / NACK signal input from PDSCH reception section 208 and outputs the modulated ACK / NACK signal to mapping section 212.
  • Modulation section 210 modulates transmission data (uplink data) and outputs the modulated data signal to DFT section 211.
  • the DFT unit 211 converts the data signal input from the modulation unit 210 into the frequency domain, and outputs a plurality of frequency components obtained to the mapping unit 212.
  • the mapping unit 212 maps a plurality of frequency components received from the DFT unit 211 to the PUSCH according to the uplink resource allocation information received from the PDCCH receiving unit 207. Further, mapping section 212 identifies the PUCCH according to the CCE number received from PDCCH receiving section 207. Then, mapping section 212 maps the ACK / NACK signal input from modulation section 209 to the specified PUCCH.
  • the IFFT unit 213 converts a plurality of frequency components mapped to the PUSCH into a time domain waveform, and the CP adding unit 214 adds a CP to the time domain waveform.
  • the transmission RF unit 215 is configured to be able to change the transmission band.
  • the transmission RF unit 215 sets the transmission band based on the band information received from the setting information reception unit 206. Then, the transmission RF unit 215 performs transmission radio processing (up-conversion, digital analog (D / A) conversion, etc.) on the signal to which the CP is added, and transmits the signal via the antenna 201.
  • transmission radio processing up-conversion, digital analog (D / A) conversion, etc.
  • FIG. 10 is a flowchart for explaining the operation of the base station 100.
  • step S101 the PDCCH generation unit 104 generates DCI.
  • step S102 the PDCCH generation unit 104 determines whether to use the R-PDCCH for DCI transmission based on the setting information received from the setting unit 101.
  • step S102 When R-PDCCH is used (step S102: YES), the PDCCH generation unit 104 adds “Virtual CRC” to the generated DCI in step S103. Here, a “known bit” is newly added. This “known bit” is also held in terminal 200, and is used for determining whether DCI is addressed to the terminal 200 in terminal 200, as will be described later.
  • step S104 the PDCCH generation unit 104 calculates CRC bits from all the bit strings of the DCI to which “Virtual CRC” is added in step S103, and adds the CRC bits to the DCI. If it is determined in step S102 that R-PDCCH is not used (that is, if it is determined that PDCCH is used), PDCCH generation unit 104 generates “Virtual CRC” generated in step S101. CRC bits are calculated from all the bit strings of the DCI not added to the DCI, and the CRC bits are added to the DCI.
  • step S105 the encoding / modulation unit 105 performs convolution encoding on the DCI received from the PDCCH generation unit 104.
  • step S106 the encoding / modulation unit 105 modulates the codeword obtained in step S105 (for example, QPSK modulation).
  • step S107 the assignment unit 108 and the multiplexing unit 109 map the DCI received from the encoding / modulation unit 105 to the CCE or R-CCE. That is, if it is determined in step S102 that R-PDCCH is used, DCI is mapped to R-CCE, whereas if it is determined that R-PDCCH is not used, DCI is mapped to CCE. Is done.
  • the DCI mapped to the R-CCE (or CCE) in this way is transmitted to the terminal 200.
  • PDCCH receiving section 207 includes the PDCCH area when the R-PDCCH area is also included as the search space area indicated in the search space area information input from setting information receiving section 206. And the search space set in the R-PDCCH region is blind-decoded (monitored) to obtain DCI addressed to the terminal transmitted using the PDCCH and R-PDCCH.
  • erroneous detection of DCI addressed to another terminal as DCI addressed to the own terminal is a corresponding part of the CRC bit masked by the terminal ID in the base station 100. Can only occur if it is received in a different state than it was sent. That is, only a part of the CRC bits (that is, a bit portion where the erroneously detected DCI is different from the terminal ID of the allocation target terminal) is equivalent to an error.
  • the R-PDCCH region can be used for data transmission. For this reason, when the number of control channels to be transmitted is small, only the PDCCH region is often used without using the R-PDCCH region. That is, in the PDCCH region, DCI is actually actually transmitted, including DCI addressed to other terminals.
  • the convolution decoding result is not correct.
  • the same DCI format is often used for terminals having similar communication environments in the same cell, even if such a case is taken into consideration, the possibility of erroneous detection occurring in the PDCCH region is low.
  • FIG. 12 is a diagram showing a probability distribution of information transmitted in each of the PDCCH region and the R-PDCCH region.
  • FIG. 12A in the PDCCH region, there are three cases: when the same DCI format is transmitted, when different DCI formats are transmitted, and when there is no signal.
  • FIG. 12B in the R-PDCCH region, there are cases where data is transmitted in addition to these three cases.
  • the probability of false detection occurring in the PDCCH region or the R-PDCCH region is the sum of the multiplication results obtained by multiplying the probability of the case itself and the probability of false detection in that case, for all cases. It is calculated by taking. Therefore, as shown in FIG. 12, in the R-PDCCH region, the probability of erroneous detection is higher than in the PDCCH region.
  • PDCCH generation section 104 performs a cyclic redundancy check (CRC) bit masked or scrambled by identification information of terminal 200 and terminal 200.
  • a downlink allocation control information unit that is, DCI
  • DCI downlink allocation control information unit
  • allocation section 108 and multiplexing section 109 convert the formed DCI into a downlink control channel region and a downlink It maps to a resource area (that is, R-PDCCH area) that can be used for any of the data channel areas. That is, PDCCH generation section 104 includes Virtual CRC in DCI only when DCI addressed to terminal 200 is mapped to the R-PDCCH region.
  • demultiplexing section 205 is masked or scrambled by the identification information of the destination terminal in a resource area (that is, R-PDCCH area) that can be used for both the downlink control channel area and the downlink data channel area.
  • the downlink allocation control information unit that is, DCI
  • CRC cyclic redundancy check
  • the PDCCH receiving unit 207 receives the predetermined bit string (that is, Virtual CRC) Only when the criterion bit string held in the station matches, the received DCI is determined to be addressed to the own station.
  • terminal 200 can use Virtual-CRC in addition to the CRC bit check result as a criterion for determining whether or not received DCI is addressed to itself.
  • erroneous detection of control information can be reduced, so that a decrease in system throughput can be prevented.
  • the error detection performance in the R-PDCCH which has a higher probability of erroneous detection than that in the PDCCH, can be improved, so that the probability of generating a false alarm in the entire system can be efficiently reduced.
  • the number of constituent bits of the known bit string may be a predetermined fixed number, or may be the number that the base station 100 has notified (or broadcasted) to the terminal 200 in advance. In the latter case, by appropriately selecting the number of configuration bits, a necessary and sufficient DCI error detection rate can be set depending on the cell environment (environment with a large number of terminals, environment with a small number of terminals) or operation mode.
  • Embodiment 2 In the second embodiment, a part of the RB allocation bit string for notifying the terminal of the resource block (RB) allocated as the downlink data channel region is used as the known bit string (that is, Virtual CRC).
  • the known bit string that is, Virtual CRC.
  • transmission region setting section 131 sets candidate RB groups (that is, resource block regions) that are candidates to be allocated as downlink data channel regions to terminal 200.
  • transmission region setting section 131 sets a part of the entire RB group as a candidate RB group (valid RB in the figure) for terminal 200, while other RB groups Is set as an RB group that does not map DCI for terminal 200 (invalid RB in the figure).
  • Information regarding the valid RB for the terminal 200 set in this way is included in the setting information and transmitted to the terminal 200.
  • the control unit 102 selects a use RB actually used as a downlink data channel region from the candidate RB group for the terminal 200 that transmits DCI using the R-PDCCH region.
  • Information regarding the selected use RB is included in the allocation control information as resource allocation information.
  • a part of the RB allocation bit string becomes a fixed bit string, or possible bit combinations are limited. In this embodiment, this fixed bit string or a limited bit combination is used as the Virtual CRC.
  • PDCCH generation section 104 determines that “Virtual CRC” Is generated.
  • configuration information reception section 206 reads information on valid RBs included in the configuration information transmitted from base station 100 and outputs the information to PDCCH reception section 207.
  • a part of the bit string indicating the information on the effective RB is used as the determination reference bit string.
  • PDCCH generation section 104 performs a cyclic redundancy check (CRC) bit masked or scrambled by identification information of terminal 200 and terminal 200.
  • CRC cyclic redundancy check
  • a downlink allocation control information unit that is, DCI
  • DCI downlink allocation control information unit
  • allocation section 108 and multiplexing section 109 convert the formed DCI into a downlink control channel region and a downlink It maps to a resource area (that is, R-PDCCH area) that can be used for any of the data channel areas.
  • RB allocation bit string for notifying the terminal 200 of the resource block (RB) allocated as the downlink data channel region is used.
  • the same effect as in the first embodiment can be obtained. Further, since a part of the RB allocation bit string included in the DCI transmitted in the PDCCH region (that is, a part of the existing RB allocation field in the DCI) can be used as the Virtual-CRC, the number of bits of the DCI Will not increase.
  • demultiplexing section 205 is masked or scrambled by the identification information of the destination terminal in a resource area (that is, R-PDCCH area) that can be used for both the downlink control channel area and the downlink data channel area.
  • the downlink allocation control information unit that is, DCI
  • CRC cyclic redundancy check
  • the PDCCH receiving unit 207 receives the predetermined bit string (that is, Virtual CRC) Only when the criterion bit string held in the station matches, the received DCI is determined to be addressed to the own station.
  • the determination reference bit string a part of the RB allocation bit string for notifying terminal 200 of the resource block (RB) allocated as the downlink data channel region is used.
  • the base station 100 sets an RB having a small influence of interference as an effective RB, and allocates a terminal existing near the cell boundary to the effective RB, thereby suppressing a substantial decrease in freedom of RB allocation.
  • the probability of occurrence of false detection can be reduced. That is, in a heterogeneous network, using R-PDCCH for DCI transmission is effective for controlling interference between a macro base station and a femto / pico base station. This interference control is performed by reducing the transmission power of different specific RBs by the macro base station and the femto / pico base station.
  • the R-PDCCH is arranged in the RB, the number of RBs that can transmit data is reduced by the amount used as the R-PDCCH. Accordingly, PDCCH resources can be effectively used by using PDCCH for terminals in the center of the cell with little inter-cell interference, and using R-PDCCH for terminals near the cell boundary with much inter-cell interference. In such an operation, the terminal near the cell boundary that needs to use the R-PDCCH transmits data (PDSCH) using RB with low interference, thereby improving the throughput.
  • PDSCH data
  • the effective RB may be matched with the blind decoding target RB of the terminal 200 when DCI is transmitted in the R-PDCCH region.
  • setting section 101 of base station 100 only has to notify the blind decoding target RB of terminal 200 when DCI is transmitted in the R-PDCCH region, so that the amount of control information can be reduced.
  • an RB with low interference is allocated as the R-PDCCH region. Therefore, even if the data allocation target is limited to the RB, data allocation is free. The degree is not impaired.
  • the effective RB may be matched with the RB region that the terminal 200 excludes from other cell quality measurement (reception quality measurement of other cell signals for handover or the like).
  • the setting unit 101 of the base station 100 only needs to notify the RB area of another cell quality measurement target (or non-target), so the amount of control information can be reduced.
  • the RB area that is, the RB area that is not subject to quality measurement
  • the effective RB that is, the RB area that has low interference
  • Embodiment 3 In the third embodiment, a part of a notification bit string for notifying a modulation scheme and a coding scheme is used as a known bit string (that is, Virtual CRC).
  • a known bit string that is, Virtual CRC.
  • the setting unit 101 sets a candidate MCS group (that is, an effective MCS) that is a candidate for a modulation scheme and a coding scheme (MCS) applied to downlink data for the terminal 200.
  • a candidate MCS group that is, an effective MCS
  • MCS coding scheme
  • the setting unit 101 sets a part of the entire MCS group as a candidate MCS group for the terminal 200 (that is, an effective MCS), and other MCSs are not applied to downlink data transmitted to the terminal 200. (That is, set as invalid MCS). For example, the setting unit 101 sets only MCSs whose modulation scheme order is QPSK or less as effective MCSs.
  • the threshold value that becomes the boundary between the effective MCS and the invalid MCS may be determined in advance.
  • Information regarding the effective MCS for the terminal 200 set in this way is included in the setting information and transmitted to the terminal 200.
  • the control unit 102 selects, from the candidate MCS group, the MCS to be actually used for the downlink data for the terminal 200 that transmits DCI using the R-PDCCH region.
  • Information regarding the selected used MCS is included in the allocation control information as MCS information.
  • a part of the MCS notification bit string becomes a fixed bit string. In the present embodiment, this fixed bit string is used as Virtual CRC.
  • PDCCH generation section 104 determines that “Virtual CRC” Is generated.
  • setting information receiving section 206 reads information on valid MCS included in the setting information transmitted from base station 100 and outputs the information to PDCCH receiving section 207.
  • a part of the bit string indicating information related to the effective MCS is used as the determination reference bit string.
  • the PDCCH receiving unit 207 determines that the DCI is valid if the MCS indicated by the MCS information belongs to the valid MCS, Output to PDSCH receiver 208. On the other hand, if the MCS indicated by the MCS information does not belong to the valid MCS, the PDCCH receiving unit 207 determines that the DCI is invalid and ignores it.
  • PDCCH generation section 104 performs a cyclic redundancy check (CRC) bit masked or scrambled by identification information of terminal 200 and terminal 200.
  • CRC cyclic redundancy check
  • a downlink allocation control information unit that is, DCI
  • DCI downlink allocation control information unit
  • allocation section 108 and multiplexing section 109 convert the formed DCI into a downlink control channel region and a downlink It maps to a resource area (that is, R-PDCCH area) that can be used for any of the data channel areas.
  • the known bit string that is, the Virtual CRC
  • a part of the MCS notification bit string for notifying the terminal 200 of the modulation scheme and the coding scheme is used.
  • the same effect as in the first embodiment can be obtained. Furthermore, since a part of the MCS notification bit string included in the DCI transmitted in the PDCCH region (that is, a part of the existing MCS field in the DCI) can be used as the Virtual CRC, the number of bits of the DCI is There is no increase.
  • demultiplexing section 205 is masked or scrambled by the identification information of the destination terminal in a resource area (that is, R-PDCCH area) that can be used for both the downlink control channel area and the downlink data channel area.
  • the downlink allocation control information unit that is, DCI
  • CRC cyclic redundancy check
  • the PDCCH receiving unit 207 receives the predetermined bit string (that is, Virtual CRC) Only when the criterion bit string held in the station matches, the received DCI is determined to be addressed to the own station.
  • the determination reference bit string a part of the MCS notification bit string for notifying the terminal 200 of the lower modulation scheme and the encoding scheme is used.
  • a terminal using R-PDCCH is often a terminal near a cell boundary that requires interference control for R-PDCCH.
  • the reception quality of data is also improved by interference control
  • a terminal near the cell boundary nevertheless rarely uses a high MCS level (16QAM, 64QAM, etc.) like a terminal in the center of the cell. That is, even if the effective RB is limited as in the present embodiment, the MCS level that is less frequently used cannot be used, and thus there is almost no deterioration in throughput.
  • Embodiment 4 DCI transmitted on R-PDCCH has the same size in the same cell.
  • FIG. 14 is a block diagram showing a configuration of base station 300 according to Embodiment 4 of the present invention.
  • the base station 300 includes a setting unit 301 and a PDCCH generation unit 304.
  • the setting unit 301 sets the DCI size (that is, the number of configuration bits) when DCI is transmitted in the R-PDCCH region.
  • Information regarding the set DCI size is included in the setting information and transmitted to the terminal 200.
  • the same DCI size is set for all terminals existing in the same cell.
  • the DCI size is set larger than the DCI format size set for each terminal 400.
  • the configuration information may be notified individually for each terminal (that is, by RRC signaling) or broadcast by BCH.
  • the PDCCH generation unit 304 adds padding bits to the DCI transmitted in the R-PDCCH region until the DCI reaches the set DCI size. All of the padding bits may be zero, or other known bits.
  • FIG. 15 is a block diagram showing a configuration of terminal 400 according to Embodiment 4 of the present invention.
  • terminal 400 includes setting information receiving section 406 and PDCCH receiving section 407.
  • the setting information receiving unit 406 reads information on the setting DCI size included in the setting information transmitted from the base station 300 and outputs the information to the PDCCH receiving unit 407.
  • the PDCCH receiving unit 407 performs blind decoding using the set DCI size received from the setting information receiving unit 406 as a decoding unit when the R-PDCCH region is to be subjected to blind decoding.
  • the PDCCH receiving unit 407 performs blind decoding using each of the sizes of two set DCI formats (for example, DCI 0 / 1A and DCI 1) as decoding units.
  • setting section 301 sets the DCI size (that is, the number of configuration bits) when DCI is transmitted in the R-PDCCH region to all terminals existing in the same cell.
  • the same size is set, and the PDCCH generation unit 304 adds padding bits to the DCI transmitted in the R-PDCCH region until the DCI reaches the set DCI size.
  • the control unit 102 When the DCI size set by the setting unit 301 is smaller than the size of the DCI format set for each terminal 400, the control unit 102 reduces the number of bits of the RB allocation field or the MCS field, thereby reducing the DCI size. May be the set DCI size.
  • the set DCI size is set to one size
  • the DCI format is described as two types commonly set for the PDCCH and the R-PDCCH for each terminal.
  • the DCI format itself is an R-PDCCH. May be set to one type.
  • the data transmission method that is, transmission diversity or non-consecutive RB allocation
  • the number of DCI bits is increased.
  • the number of DCI bits can be reduced, but the transmission method setting flexibility is reduced.
  • the DCI size adjustment process in the present embodiment can be applied to the base station 100 in the first to third embodiments.
  • the DCI size is set to the set DCI size by adjusting the number of bits of Virtual CRC (by using Virtual CRC as the padding bits in this embodiment). be able to. Thereby, the erroneous detection of control information can be further reduced.
  • a known bit may be added only to a specific DCI format (control information format).
  • a virtual CRC may be attached only to a DCI format other than DCI 0 / 1A. Since DCI 0 / 1A is a format common to all terminals, there is a high possibility that decoding of convolutional coding will be successful, and the probability of erroneous detection occurring is low.
  • DCI formats other than DCI 0 / 1A depend on the transmission mode. Therefore, there is a high possibility that the format set between the other terminal and the own station is different, so the probability of occurrence of erroneous detection is high.
  • the Virtual-CRC may not be inserted in the DCI transmitted by the C-SS. This is because the DCI format transmitted by the C-SS is limited, and therefore, there is a high possibility that the formats set in the other terminals and the local station are the same, and the probability of erroneous detection occurring is low.
  • an RNTI such as C-RNTI (Cell-Radio Network Temporary Identifier) may be used as the terminal ID.
  • the format independent of the terminal transmission mode has been described as DCI 0 / 1A.
  • the format is not limited to this, and any format may be used as long as it does not depend on the terminal transmission mode.
  • formats other than DCI 1, 2, 2A, 2B, 2C, 2D, 0A, 0B may be used as DCI depending on the transmission mode.
  • continuous band allocation transmission may be included as an uplink or downlink transmission mode.
  • the DCI depending on the transmission mode is DCI 0 (uplink) and DCI 1A (downlink), respectively.
  • the UE-SS may perform blind decoding for one format each on the uplink and downlink.
  • the UE-SS may perform blind decoding for one format each on the uplink and downlink.
  • the CCE and R-CCE described in the above embodiments are logical resources.
  • CCEs and R-CCEs are allocated to actual physical time / frequency resources, CCEs are distributed over the entire band, and R-CCEs are distributed within a specific RB. Arranged. Further, the effects of the present invention can be obtained in the same manner even with other arrangement methods.
  • the R-PDCCH in each of the above embodiments may be called an E-PDCCH (Enhanced-PDCCH).
  • E-PDCCH Enhanced-PDCCH
  • the present invention is applied to a control channel that is transmitted using a frequency resource with which data may be transmitted, and the same effect can be obtained even if it is not an R-PDCCH. Obtainable.
  • An antenna port refers to a logical antenna composed of one or more physical antennas. That is, the antenna port does not necessarily indicate one physical antenna, but may indicate an array antenna composed of a plurality of antennas.
  • 3GPP LTE it is not specified how many physical antennas an antenna port is composed of, but it is specified as a minimum unit in which a base station can transmit different reference signals (Reference signal).
  • the antenna port may be defined as a minimum unit for multiplying the weight of a precoding vector (Precoding vector).
  • Each functional block used in the description of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the base station, terminal, transmission method, and reception method of the present invention are useful as those capable of preventing a decrease in system throughput by reducing erroneous detection of control information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 制御情報の誤検出を低減することにより、システムスループットの低下を防止できる基地局、端末、送信方法、及び受信方法。基地局(100)において、PDCCH生成部(104)が、端末(200)の識別情報によってマスキング又はスクランブリングされた巡回冗長検査(CRC)ビットと、端末(200)との間で互いに既知のビット列(つまり、Virtual CRC)との両方を含む下り割当制御情報ユニット(つまり、DCI)を形成し、割当部(108)及び多重部(109)が、形成されたDCIを、下り制御チャネル領域及び下りデータチャネル領域のいずれにも利用可能なリソース領域(つまり、R-PDCCH領域)にマッピングする。すなわち、PDCCH生成部(104)は、端末200宛のDCIをR-PDCCH領域にマッピングする場合にのみ、DCIにVirtual CRCを含める。

Description

基地局、端末、送信方法、及び受信方法
 本発明は、基地局、端末、送信方法、及び受信方法に関する。
 3GPP-LTE(3rd Generation Partnership Project Radio Access Network Long Term Evolution、以下、LTEという)では、下り回線の通信方式としてOFDMA(Orthogonal Frequency Division Multiple Access)が採用され、上り回線の通信方式としてSC-FDMA(Single Carrier Frequency Division Multiple Access)が採用されている(例えば、非特許文献1、2、3参照)。
 LTEでは、無線通信基地局装置(以下、「基地局」と省略する)は、システム帯域内のリソースブロック(Resource Block:RB)を、サブフレームと呼ばれる時間単位毎に無線通信端末装置(以下、「端末」と省略する)に対して割り当てることにより通信を行う。また、基地局は、下り回線データおよび上り回線データに対するリソース割当結果を通知するための下り制御情報(L1/L2制御情報)を端末へ送信する。この下り制御情報は、例えばPDCCH(Physical Downlink Control Channel)等の下り回線制御チャネルを用いて端末へ送信される。ここで、各PDCCHは、1つまたは連続する複数のCCE(Control Channel Element)で構成されるリソースを占有する。LTEでは、PDCCHが占有するCCE数(CCE連結数:CCE aggregation level)は、下り制御情報の情報ビット数または端末の伝搬路状態に応じて、1,2,4,8の中の1つが選択される。なお、LTEでは、システム帯域幅として最大20MHzの幅を持つ周波数帯域がサポートされる。
 また、基地局から送信される割当制御情報はDCI(Downlink Control Information)と呼ばれる。基地局は1サブフレームに複数の端末を割り当てる場合、複数のDCIを同時に送信する。このとき、基地局は、各DCIの送信先の端末を識別するために、送信先の端末IDでマスキング(または、スクランブリング)したCRCビットをDCIに含めて送信する。そして、端末は、自端末宛ての可能性がある複数のDCIにおいて、自端末の端末IDでCRCビットをデマスキング(または、デスクランブリング)することによりPDCCHをブラインド復号して、自端末宛のDCIを検出する。
 また、DCIには、基地局が端末に対して割り当てたリソースの情報(リソース割当情報)およびMCS(Modulation and channel Coding Scheme)等が含まれる。また、DCIには、上り回線用、下り回線MIMO(Multiple Input Multiple Output)送信用、下り回線非連続帯域割当用等の複数のフォーマットがある。端末は、複数のフォーマットを有する下り割当制御情報(下り回線に関する割当制御情報)および1つのフォーマットを有する上り割当制御情報(上り回線に関する割当制御情報)の両方を受信する必要がある。
 例えば、下り割当制御情報には、基地局の送信アンテナ制御方法およびリソース割当方法等により複数のサイズのフォーマットが定義される。その複数のフォーマットのうち、連続する番号のRBを割り当てる帯域割当(以下、「連続帯域割当」という)を行う下り割当制御情報フォーマット(以下、単に「下り割当制御情報」という)と、連続帯域割当を行う上り割当制御情報フォーマット(以下、単に「上り割当制御情報」という)とは同一サイズを有する。これらのフォーマット(DCIフォーマット)には、割当制御情報の種別(下り割当制御情報または上り割当制御情報)を示す種別情報(例えば、1ビットのフラグ)が含まれる。よって、端末は、下り割当制御情報を示すDCIのサイズと、上り割当制御情報を示すDCIのサイズとが同一であっても、割当制御情報に含まれる種別情報を確認することにより、下り割当制御情報または上り割当制御情報のいずれであるかを特定することができる。
 なお、連続帯域割当を行う上り割当制御情報が送信される際のDCIフォーマットは、DCI format0(以下、DCI 0という)と呼ばれ、連続帯域割当を行う下り割当制御情報が送信される際のDCIフォーマットは、DCI format1A(以下、DCI 1Aという)と呼ばれる。なお、上述したようにDCI 0およびDCI 1Aは、同一サイズであり種別情報によって区別できるので、以下の説明では、DCI 0およびDCI 1AをDCI 0/1Aとまとめて表記する。
 また、上記DCIフォーマット以外にも、下り回線において、連続しない番号のRBを割り当てる帯域割当(以下、「非連続帯域割当」という)を行うDCI format1(以下、DCI 1という)および空間多重MIMO送信を割り当てるDCI format2および2A(以下、DCI 2,2Aという)、ビームフォーミング送信を割り当てる下り割当制御情報のフォーマット(「ビームフォーミング割当下りフォーマット」:DCI format1B)、マルチユーザMIMO送信を割り当てる下り割当制御情報のフォーマット(「マルチユーザMIMO割当下りフォーマット」:DCI format1D)等がある。ここで、DCI 1,2,2A,1B,1Dは、端末の下り送信モード(非連続帯域割当,空間多重MIMO送信,ビームフォーミング送信,マルチユーザMIMO送信)に依存して使用されるフォーマットであり、端末毎に設定されるフォーマットである。一方、DCI 0/1Aは、送信モードに依存せず、いずれの送信モードの端末に対しても使用できるフォーマット、つまり、全端末に対して共通に使用されるフォーマットである。また、DCI 0/1Aが用いられた場合には、デフォルトの送信モードとして1アンテナ送信または送信ダイバーシチが用いられる。一方、上り回線割当向けのフォーマットとして、非連続帯域割当を行うDCI format 0A及び空間多重MIMO送信を割り当てるDCI format 0Bが検討されている。これらはいずれも端末毎に設定されるフォーマットである。
 また、端末の回路規模を低減するためにブラインド復号の回数を削減することを目的として、ブラインド復号の対象となるCCEを、端末毎に限定する方法が検討されている。この方法では、各端末によるブラインド復号の対象と成りうるCCE領域(以下、「サーチスペース(Search Space)」という)を限定する。ここでは、各端末に割り当てられるCCE領域の単位(つまり、ブラインド復号する単位に相当)は、「下り制御情報割当領域候補(DCI割当領域候補)」又は「復号対象単位領域候補」と呼ぶ。
 LTEでは、サーチスペースは、端末毎にランダムに設定される。このサーチスペースを構成するCCE数は、PDCCHのCCE連結数毎に定義される。例えば、サーチスペースの構成CCEの数は、PDCCHのCCE連結数1,2,4,8それぞれに対応して、6,12,8,16となる。この場合、復号対象単位領域候補の数は、PDCCHのCCE連結数1,2,4,8それぞれに対応して、6候補(6=6÷1),6候補(6=12÷2),2候補(2=8÷4),2候補(2=16÷8)となる。すなわち、復号対象単位領域候補は、合計16候補に限定される。これにより、各端末は、自端末に割り当てられたサーチスペース内の復号対象単位領域候補群に対してのみ、ブラインド復号を行えばよいため、ブラインド復号の回数を削減することができる。ここで、各端末のサーチスペースは、各端末の端末IDと、ランダム化を行う関数であるハッシュ(hash)関数とを用いて設定される。この端末特有のCCE領域は、個別領域(UE specific Search Space:UE-SS)と呼ばれる。
 一方、PDCCHには、複数の端末に対して同時に通知される、端末共通のデータ割当のための制御情報(例えば、下り報知信号に関する割当情報および呼び出し(Paging)用の信号に関する割当情報)(以下、「共通チャネル向け制御情報」と呼ぶ)も含まれる。共通チャネル向け制御情報を伝送するために、PDCCHには、下り報知信号を受信すべき全端末に共通するCCE領域(以下、共通領域(Common Search Space:C-SS)と呼ぶ)が用いられる。C-SSには、復号対象単位領域候補が、CCE連結数4および8それぞれに対して、4候補(4=16÷4),2候補(2=16÷8)の合計6候補だけ存在する。
 また、端末は、UE-SSでは、全端末に対して共通に使用されるDCIフォーマット(DCI 0/1A)、および、送信モードに依存したDCIフォーマット(DCI 1,2,2Aから1つ)の2種類のサイズのDCIフォーマットそれぞれについてブラインド復号を行う。例えば、端末は、2種類のサイズのDCIフォーマットに対して、UE-SS内でそれぞれ上記16回のブラインド復号を行う。どの2種類のサイズのDCIフォーマットをブラインド復号するかは、基地局より通知される送信モードに依って決まる。また、端末は、C-SSでは、通知された送信モードに依らず、共通チャネル割当用フォーマットであるDCI format1C(以下、DCI 1Cという)およびDCI 1Aのそれぞれについて上記6回のブラインド復号(つまり、合計12回のブラインド復号)を行う。従って、端末は、サブフレームあたり、合計44回のブラインド復号を行うことになる。
 ここで、共通チャネル割当に用いられるDCI 1Aと端末個別のデータ割当に用いられるDCI 0/1Aとは同一サイズであり、端末IDによりそれぞれが区別される。そのため、基地局は、端末のブラインド復号回数を増やすことなく、端末個別のデータ割当を行うDCI 0/1AをC-SSでも送信することができる。
 また、LTEよりも更なる通信の高速化を実現する3GPP LTE-Advanced(以下、LTE-Aという)の標準化が開始されている。LTE-Aでは、最大1Gbps以上の下り伝送速度および最大500Mbps以上の上り伝送速度を実現するために、40MHz以上の広帯域周波数で通信可能な基地局および端末(以下、LTE-A端末という)が導入される見込みである。また、LTE-Aシステムは、LTE-A端末のみでなく、LTEシステムに対応する端末(以下、LTE端末という)を収容することが要求されている。
 さらに、LTE-Aでは、カバレッジの拡大を達成するために、無線通信中継装置(以下、「中継局」又は「RN:Relay Node」という)の導入も規定された(図1参照)。これに伴い、基地局から中継局への下り回線制御チャネル(以下、「R-PDCCH」という)に関する標準化が進んでいる(例えば、非特許文献4乃至7参照)。現在の段階では、R-PDCCHに関して、以下の事項が検討されている。図2には、R-PDCCH領域の一例が示されている。
 (1)R-PDCCHの時間軸方向のマッピング開始位置は、1サブフレームの先頭から4番目のOFDMシンボルに固定される。これは、PDCCHが時間軸方向に占める割合に依存しない。
 (2)各R-PDCCHは、1つまたは連続する複数のR-CCE(Relay-Control Channel Element)で構成されるリソースを占有する。1つのR-CCEを構成するREの数は、スロット毎、又は、参照信号の配置毎に異なる。具体的には、R-CCEは、スロット0では、時間方向では第3OFDMシンボルからスロット0の終わりまでの範囲を持ち、且つ、周波数方向では1RB幅の範囲を持つリソース領域(ただし、参照信号がマッピングされている領域を除く)として規定される。また、スロット1では、時間方向ではスロット1のはじめからスロット1の終わりまでの範囲を持ち、且つ、周波数方向では1RB幅の範囲を持つリソース領域(ただし、参照信号がマッピングされている領域を除く)として規定される。ただし、スロット1では、上記したリソース領域を2つに分けて、それぞれを1つのR-CCEにする提案も為されている。
3GPP TS 36.211 V8.7.0, "Physical Channels and Modulation (Release 8)," September 2008 3GPP TS 36.212 V8.7.0, "Multiplexing and channel coding (Release 8)," September  2008 3GPP TS 36.213 V8.7.0, "Physical layer procedures (Release 8),"September  2008 3GPP TSG RAN WG1 meeting, R1-102700, "Backhaul Control Channel Design in Downlink," May 2010 3GPP TSG RAN WG1 meeting, R1-102881, "R-PDCCH placement,"May 2010 3GPP TSG RAN WG1 meeting, R1-103040, "R-PDCCH search space design"May 2010 3GPP TSG RAN WG1 meeting, R1-103062, "Supporting frequency diversity and frequency selective R-PDCCH transmissions" May 2010
 ところで、今後、M2M(Machine to Machine)通信等、様々な機器が無線通信端末として導入されることを考慮すると、端末数の増加によりPDCCHがマッピングされる領域(以下、「PDCCH領域」という)のリソース不足が懸念される。このリソース不足によってPDCCHがマッピングできなくなると、端末に対する下りデータ割当を行えない。このため、下りデータがマッピングされるリソース領域(以下、「PDSCH領域」という)が空いていても使用することができずに、システムスループットが低下してしまう恐れがある。このリソース不足を解消する方法として、基地局配下の端末に向けたDCIを、前述のR-PDCCHがマッピングされる領域(以下、「R-PDCCH領域」という)にも配置することが考えられる(図3参照)。
 また、図4に示すようなマクロ基地局とフェムト/ピコ基地局とから構成されるヘテロジニアスネットワークにおいては、いずれのセルでも、他のセルからの影響によりPDCCH領域での干渉が増大するという懸念がある。例えば、マクロセルに接続している端末がフェムトセルの近傍に位置する場合(特に、その端末がフェムト基地局への接続を許可されていない場合)には、その端末は、フェムトセルから大きな干渉を受ける。又は、ピコセルに接続している端末がピコセルのセルエッジ付近(例えば、Range expansion領域)に位置する場合、その端末はマクロセルから大きな干渉を受ける。このため、PDCCH領域では、各端末での制御情報の受信性能が劣化してしまう。
 一方で、基地局接続された端末に向けたDCIの送信にR-PDCCHを用いることにより、DCIの受信性能劣化を抑えることができる。すなわち、フェムト/ピコ基地局配下の端末が十分低い誤り率でDCIを受信できるように、マクロ基地局では、特定のRBで送信電力を下げてDCIが送信される一方、フェムト/ピコ基地局では、その特定のRBで配下の端末向けにDCIが送信される。これにより、フェムト/ピコ基地局に接続されている端末は、マクロ基地局からの干渉が低いRBでDCIを受信できるので、良好な誤り率でDCIを受信できる。同様に、マクロ基地局に接続された端末も、マクロ基地局がフェムト/ピコ基地局からの干渉の低いRBでDCIを送信することにより、良好な誤り率でDCIを受信できる。
 しかしながら、基地局接続された端末に向けたDCIを送信する領域として、PDCCH領域に、R-PDCCH領域を単純に加えるだけでは、端末におけるブラインド復号回数が増加し、消費電力および処理遅延の増大、および、回路規模の増大が発生してしまうという課題が生じる。
 この課題を解決するためには、PDCCHとR-PDCCHとの両方を合わせたブラインド復号回数を所定の値以下に抑えることが望ましい。例えば、ブラインド復号対象の2つのDCIフォーマット(例えば、DCI format 0/1AとDCI format 2)のそれぞれに対するブラインド復号回数を、PDCCHで8回、R-PDCCHで8回、合計で32回とすることにより、LTEと同様のブラインド復号回数に抑えることができる。
 しかしながら、端末数が増加すると、システム内でFalse alarm(制御情報の誤検出)の起こる確率が増加する。False alarm(制御情報の誤検出)とは、他の端末宛のDCIまたは送信されていない信号(つまり、ノイズ成分)を自端末宛のDCIとして検出してしまうことである。以下では、単に「誤検出」と言う場合、このFalse alarm(制御情報の誤検出)を意味する。この誤検出が起こった場合には、システムに対して次のような悪影響を及ぼす。例えば、上り割当制御情報の誤検出の場合には、上り回線のデータが送信されるため、他端末への干渉が増加してしまう。また、下り割当制御情報の誤検出の場合には、上り回線でACK/NACKが送信されるため、他端末のACK/NACKについての誤りが引き起こされる恐れがある。これらは上り回線及び下り回線におけるシステムスループットの低下を招くので、False alarmを低減することが必要となる。
 本発明の目的は、制御情報の誤検出を低減することにより、システムスループットの低下を防止できる基地局、端末、送信方法、及び受信方法を提供することである。
 本発明の一態様の基地局は、端末の識別情報によってマスキング又はスクランブリングされた巡回冗長検査(CRC)ビットと、前記端末が既知の既知ビットとの両方を含む制御情報を形成する形成部と、形成された前記制御情報を、制御チャネル及びデータチャネルのいずれにも使用可能なリソース領域にマッピングするマッピング部と、を具備する。
 本発明の一態様の端末は、制御チャネル及びデータチャネルのいずれにも使用可能なリソース領域で、宛先端末の識別情報によってマスキング又はスクランブリングされた巡回冗長検査(CRC)ビットと、所定のビットとの両方を含む制御情報を受信する受信部と、前記所定のビットと、既知の既知ビットとが一致する場合に、前記制御情報が自局宛であると判定する判定部と、を具備する。
 本発明の一態様の送信方法は、端末の識別情報によってマスキング又はスクランブリングされた巡回冗長検査(CRC)ビットと、前記端末が既知の既知ビットとの両方を含む制御情報を形成し、形成された前記制御情報を、制御チャネル及びデータチャネルのいずれにも使用可能なリソース領域にマッピングする。
 本発明の一態様の受信方法は、制御チャネル及びデータチャネルのいずれにも使用可能なリソース領域で、宛先端末の識別情報によってマスキング又はスクランブリングされた巡回冗長検査(CRC)ビットと、所定のビットとの両方を含む制御情報を受信し、前記所定のビットと、既知の既知ビットとが一致する場合に、前記制御情報が自局宛であると判定する。
 本発明によれば、制御情報の誤検出を低減することにより、システムスループットの低下を防止できる基地局、端末、送信方法、及び受信方法を提供することができる。
中継局の説明に供する図 R-PDCCH領域の一例を示す図 R-PDCCHの説明に供する図 ヘテロジニアスネットワークの説明に供する図 本発明の実施の形態1に係る基地局の主要構成図 本発明の実施の形態1に係る端末の主要構成図 本発明の実施の形態1に係る基地局の構成を示すブロック図 C-SS及び或る端末に対するUE-SSの設定例を示す図である。 本発明の実施の形態1に係る端末の構成を示すブロック図 基地局の動作説明に供するフロー図 基地局の動作説明に供する他のフロー図 PDCCH領域及びR-PDCCH領域のそれぞれで送信される情報の確率分布を示す図 本発明の実施の形態2に係る基地局によって割り当てられる下りデータチャネル領域の説明に供する図 本発明の実施の形態4に係る基地局の構成を示すブロック図 本発明の実施の形態4に係る端末の構成を示すブロック図
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、実施の形態において、同一の構成要素には同一の符号を付し、その説明は重複するので省略する。
 [実施の形態1]
 [通信システムの概要]
 本発明の実施の形態1に係る通信システムは、基地局100と端末200とを有する。基地局100は、例えば、LTE-A基地局であり、端末200は、例えば、LTE-A端末である。基地局100は、端末200宛の下り割当制御情報(DCI)を、下り制御チャネル領域及び下りデータチャネル領域のいずれにも利用可能なリソース領域にマッピングして送信する。
 図5は、本発明の実施の形態1に係る基地局100の主要構成図である。基地局100において、PDCCH生成部104が、端末200の識別情報によってマスキング又はスクランブリングされた巡回冗長検査(CRC)ビットと、端末200との間で互いに既知のビット列(つまり、Virtual CRC)との両方を含む下り割当制御情報ユニット(つまり、DCI)を形成し、多重部109が、形成されたDCIを、下り制御チャネル領域及び下りデータチャネル領域のいずれにも利用可能なリソース領域(つまり、R-PDCCH領域)にマッピングする。すなわち、PDCCH生成部104は、端末200宛のDCIをR-PDCCH領域にマッピングする場合にのみ、DCIにVirtual CRCを含める。
 図6は、本発明の実施の形態1に係る端末200の主要構成図である。端末200において、分離部205が、下り制御チャネル領域及び下りデータチャネル領域のいずれにも利用可能なリソース領域(つまり、R-PDCCH領域)で、宛先端末の識別情報によってマスキング又はスクランブリングされた巡回冗長検査(CRC)ビットと、所定のビット列との両方を含む下り割当制御情報ユニット(つまり、DCI)を受信し、PDCCH受信部207が、所定のビット列(つまり、Virtual CRC)と、自局で保持している判定基準ビット列とが一致する場合にのみ、受信DCIが自局宛であると判定する。
 [基地局100の構成]
 図7は、本発明の実施の形態1に係る基地局100の構成を示すブロック図である。図7において、基地局100は、設定部101と、制御部102と、サーチスペース設定部103と、PDCCH生成部104と、符号化・変調部105,106,107と、割当部108と、多重部109と、IFFT(Inverse Fast Fourier Transform)部110と、CP(Cyclic Prefix)付加部111と、送信RF部112と、アンテナ113と、受信RF部114と、CP除去部115と、FFT(Fast Fourier Transform)部116と、抽出部117と、IDFT(Inverse Discrete Fourier transform)部118と、データ受信部119と、ACK/NACK受信部120とを有する。
 設定部101は、端末200向けのDCIの送信に利用するリソース領域(つまり、送信領域)を設定すると共に、端末200の上り回線および下り回線それぞれの送信モードを設定する。リソース領域の設定及び送信モードの設定は、設定対象の端末200毎に行われる。リソース領域及び送信モードに関する設定情報は、制御部102、サーチスペース設定部103、PDCCH生成部104および符号化・変調部106へ送出される。
 具体的には、設定部101は、送信領域設定部131と、送信モード設定部132とを有する。
 送信領域設定部131は、端末200向けのDCIの送信に利用するリソース領域を設定する。設定されるリソース領域の候補には、PDCCH領域と、R-PDCCH領域とが含まれる。すなわち、送信領域設定部131は、DCIを送る領域(送信領域)として、PDCCH領域に加え、R-PDCCH領域も含めるか否かを端末200毎に設定する。例えば、通常時には、端末200向けにPDCCH領域が設定され、基地局100の配下で通信している端末200の数が多いためPDCCH領域が逼迫する懸念が生じた場合、又はPDCCH領域での干渉が大きいと判断された場合等には、端末200向けにPDCCH領域及びR-PDCCH領域の両方(又は、R-PDCCH領域のみ)が設定される。すなわち、送信領域設定部131は、端末200毎にPDCCH領域のみをブラインド復号するか、PDCCH領域及びR-PDCCH領域の双方(又は、R-PDCCH領域のみ)をブラインド復号するかを設定する。なお、送信領域設定部131において、DCIの送信領域としてR-PDCCH領域も含めるか否かを、どのような条件に基づき判断するかは限定されない。また、送信領域設定部131は、RB群全体の内で、DCIの送信に利用するR-PDCCH領域として使用する使用対象RB群を設定する。この使用対象RB群は、端末200にとっては、R-PDCCH領域でDCIが送信される場合のブラインド復号対象RB領域である。
 送信モード設定部132は、端末200毎の伝搬路状況等に基づいて、各端末200の上り回線及び下り回線それぞれの送信モード(例えば、空間多重MIMO送信、ビームフォーミング送信、非連続帯域割当等)を設定する。
 そして、設定部101は、各端末200に設定したDCIの送信領域を示す情報及び送信モードを示す情報を含む設定情報を、制御部102、サーチスペース設定部103、PDCCH生成部104、及び符号化・変調部106に出力する。なお、リソース領域及び送信モードに関する設定情報は、上位レイヤの制御情報(RRC制御情報又はRRC signalingという)として、符号化・変調部106を介して各端末200へ通知される。
 制御部102は、設定部101から受け取る設定情報に応じて、割当制御情報を生成する。
 具体的には、制御部102は、MCS情報、リソース(RB)割当情報、及び、NDI(New data indicator)等のHARQ関連情報を含む割当制御情報を生成する。ここで、リソース割当情報には、端末200の上り回線データを割り当てる上りリソース(例えば、PUSCH(Physical Uplink Shared Channel))を示す上りリソース割当情報、又は、端末200宛ての下り回線データを割り当てる下りリソース(例えば、PDSCH(Physical Downlink Shared Channel))を示す下りリソース割当情報が含まれる。
 さらに、制御部102は、設定部101から受け取る設定情報に基づいて、端末200の上り回線の送信モードに応じた割当制御情報(DCI 0A,0Bのいずれか)、下り回線の送信モードに応じた割当制御情報(DCI 1,1B,1D,2,2Aのいずれか)、または、全端末共通の割当制御情報(DCI 0/1A)を、端末200毎に生成する。
 例えば、通常のデータ送信時には、制御部102は、スループット向上のために、各端末200に設定した送信モードでデータ伝送が行えるように、各端末200の送信モードに応じた割当制御情報(DCI 1,1B,1D,2,2A,0A,0Bのいずれか)を生成する。これにより、各端末200に設定した送信モードでデータ伝送が行えるので、スループットを向上することができる。
 しかし、急激な伝搬路状況の変化または隣接セルからの干渉の変化等によっては、各端末200に設定した送信モードではデータの受信誤りが頻発する状況も起こり得る。この場合には、制御部102は、全端末に共通のフォーマット(DCI 0/1A)で、割当制御情報を生成し、ロバスト(Robust)なデフォルト送信モードを用いてデータを送信する。これにより、急激に伝搬環境が変動した場合であってもよりロバストなデータ伝送が可能となる。
 また、伝搬路状況が悪化した場合に送信モードの変更を通知するための上位レイヤの制御情報(RRC signaling)の送信時にも、制御部102は、全端末共通の割当制御情報(DCI 0/1A)を生成し、デフォルト送信モードを用いて情報を送信する。ここで、全端末共通のDCI 0/1Aの情報ビット数は、送信モードに依存するDCI 1,2,2A,0A,0Bの情報ビット数よりも少ない。このため、同じCCE数が設定された場合、DCI 0/1Aの方が、DCI 1,2,2A,0A,0Bよりも、低い符号化率で送信することができる。よって、伝搬路状況が悪化した場合に制御部102がDCI 0/1Aを用いることにより、伝搬路状況が劣悪な端末でも良好な誤り率で割当制御情報(および、データ)を受信することができる。
 また、制御部102は、端末個別のデータ割当向けの割当制御情報の他に、報知情報及びPaging情報等の複数の端末共通のデータ割当のための、共通チャネル向け割当制御情報(例えば、DCI 1C,1A)を生成する。
 そして、制御部102は、生成した端末個別のデータ割当向けの割当制御情報のうち、MCS情報およびNDIをPDCCH生成部104に出力し、上りリソース割当情報をPDCCH生成部104および抽出部117に出力し、下りリソース割当情報をPDCCH生成部104および多重部109に出力する。また、制御部102は、生成した共通チャネル向け割当制御情報をPDCCH生成部104に出力する。
 サーチスペース設定部103は、設定部101から入力される設定情報に示されるDCIの送信領域、及び、使用する参照信号に基づいて、共通サーチスペース(C-SS)、及び、個別サーチスペース(UE-SS)を設定する。共通サーチスペース(C-SS)は、上述のとおり、全端末に共通のサーチスペースであり、個別サーチスペース(UE-SS)は、各端末に個別のサーチスペースである。
 具体的には、サーチスペース設定部103は、予め設定したCCE(例えば、先頭CCEから16CCE分のCCE)をC-SSとして設定する。CCEは、基本単位である。
 一方、サーチスペース設定部103は、各端末に対してUE-SSを設定する。サーチスペース設定部103は、例えば、或る端末のUE-SSを、その端末の端末ID及びランダム化を行うハッシュ(hash)関数を用いて算出されるCCE番号と、サーチスペースを構成するCCE数(L)とから、算出する。
 図8は、C-SS及び或る端末に対するUE-SSの設定例を示す図である。
 図8では、PDCCHのCCE連結数4に対して、4つのDCI割当領域候補(つまり、CCE0~3,CCE4~7,CCE8~11,CCE12~15)が、C-SSとして設定されている。また、PDCCHのCCE連結数8に対して、2つのDCI割当領域候補(つまり、CCE0~7,CCE8~15)が、C-SSとして設定されている。すなわち、図8では、合計6つのDCI割当領域候補が、C-SSとして設定されている。
 また、図8では、CCE連結数1に対して、6つのDCI割当領域候補(つまり、CCE16~21のそれぞれ)が、UE-SSとして設定されている。また、CCE連結数2に対して、6つのDCI割当領域候補(つまり、CCE6~17を2つずつ分割したもの)が、UE-SSとして設定されている。また、CCE連結数4に対して、2つのDCI割当領域候補(つまり、CCE20~23,CCE24~27)が、UE-SSとして設定されている。また、CCE連結数8に対して、2つのDCI割当領域候補(つまり、CCE16~23,CCE24~31)が、UE-SSとして設定されている。すなわち、図8では、合計16個のDCI割当領域候補が、UE-SSとして設定されている。
 また、サーチスペース設定部103は、DCIの送信領域としてPDCCH領域及びR-PDCCH領域の双方が設定されている場合、PDCCH領域及びR-PDCCH領域に、上述した複数のDCI割当領域候補を有するサーチスペース(C-SS及びUE-SS)を設定する。
 そして、サーチスペース設定部103は、設定したC-SS及び各端末のUE-SSを示すサーチスペース情報を割当部108及び符号化・変調部106に出力する。
 図7に戻り、PDCCH生成部104は、制御部102から受け取る、端末個別のデータ割当向けの割当制御情報(つまり、端末毎のMCS情報、HARQ情報等、及び、上りリソース割当情報又は下りリソース割当情報)を含むDCI、又は、共通チャネル向け割当制御情報(つまり、端末共通の報知情報及びPaging情報等)を含むDCIを生成する。
 ここで、PDCCH生成部104は、端末200向けのDCIの送信にR-PDCCHが用いられる場合(つまり、端末200向けのDCIに割当部108でR-CCEが割り当てられる場合)には、DCIに「Virtual CRC」を含める。ここでは、Virtual CRCとして、「既知ビット」が挿入される。なお、既知ビットのビット数は、あらかじめ決められた固定の数であっても良いし、基地局100が端末200に報知または通知することによって基地局と端末との間で共有されるビット数であっても良い。
 さらに、PDCCH生成部104は、端末200毎に生成する上り割当制御情報及び下り割当制御情報並びに「Virtual CRC」を含むDCIに対してCRCビットを付加し、さらにCRCビットを端末IDでマスキング(又は、スクランブリング)する。そして、PDCCH生成部104は、CRCビットがマスキングされたDCIを、符号化・変調部105に出力する。
 すなわち、PDCCH生成部104は、上り割当制御情報、下り割当制御情報、及びVirtual CRCを含み且つCRCビットが付加されたDCIを生成する。そして、CRCビットは端末IDでマスキング(又は、スクランブリング)される一方、Virtual CRCはマスキング(又は、スクランブリング)されない。
 符号化・変調部105は、PDCCH生成部104から受け取るDCIをチャネル符号化後に変調して、変調後の信号を割当部108に出力する。ここで、符号化・変調部105は、各端末から報告されるチャネル品質情報(CQI:Channel Quality Indicator)情報に基づいて、各端末で十分な受信品質が得られるように符号化率を設定する。例えば、符号化・変調部105は、セル境界付近に位置する端末ほど(つまり、チャネル品質が悪い端末ほど)、より低い符号化率を設定する。
 割当部108は、符号化・変調部105から入力される、共通チャネル向け割当制御情報を含むDCI、及び、各端末に対する端末個別のデータ割当向けの割当制御情報を含むDCIを、サーチスペース設定部103から入力されるサーチスペース情報に示される、C-SS内のCCE又はR-CCE、もしくは、端末毎のUE-SS内のCCE又はR-CCEに、それぞれ割り当てる。
 例えば、割当部108は、C-SS(例えば、図8)内のDCI割当領域候補群の中から1つのDCI割当領域候補を選択する。そして、割当部108は、共通チャネル向け割当制御情報を含むDCIを、選択したDCI割当領域候補内のCCE(または、R-CCE。以下、CCEとR-CCEを区別せず、単にCCEと呼ぶことがある)に割り当てる。ここで、前述したようにCCEはPDCCHを構成するリソース単位であり、R-CCEはR-PDCCHを構成するリソース単位である。
 また、割当部108は、割当対象端末向けのDCIフォーマットが送信モード依存のDCIフォーマット(例えば、DCI 1,1B,1D,2,2A,0A,0B)である場合には、その割当対象端末に対して設定されたUE-SS内のCCEをDCIに対して割り当てる。一方、割当部108は、割当対象端末向けのDCIフォーマットが全端末共通のフォーマット(例えば、DCI 0/1A)である場合には、C-SS内のCCE、又は、その割当対象端末に対して設定されたUE-SS内のCCEをDCIに対して割り当てる。
 ここで、1つのDCIに割り当てられるCCEの連結数は、符号化率及びDCIのビット数(つまり、割当制御情報の情報量)によって異なる。例えば、セル境界付近に位置する端末宛てのPDCCH信号の符号化率は低く設定されるので、より多くの物理リソースが必要である。従って、割当部108は、セル境界付近に位置する端末宛てのDCIに対して、より多くのCCEを割り当てる。
 そして、割当部108は、DCIに割当てたCCEに関する情報を多重部109及びACK/NACK受信部120に出力する。また、割当部108は、符号化・変調後のDCIを多重部109に出力する。
 符号化・変調部106は、設定部101から入力される設定情報、及び、サーチスペース設定部103から入力されるサーチスペース情報(つまり、上位レイヤの制御情報)をチャネル符号化後に変調して、変調後の設定情報及びサーチスペース情報を多重部109に出力する。
 符号化・変調部107は、入力される送信データ(下り回線データ)をチャネル符号化後に変調して、変調後の送信データ信号を多重部109に出力する。
 多重部109は、割当部108から受け取る符号化・変調後のDCI信号、符号化・変調部106から受け取る変調後の設定情報及びサーチスペース情報(すなわち、上位レイヤの制御情報)、並びに、符号化・変調部107から受け取るデータ信号(つまり、PDSCH信号)を、時間軸上及び周波数軸上で多重する。
 ここで、多重部109は、復調用の参照信号としてDM-RSを使用する端末向けのR-PDCCH領域でのDCI、又はPDSCH信号等に対して、ウェイトを乗算し、アンテナ毎のIFFT(Inverse Fast Fourier Transform)部110に出力する。また、多重部109は、送信ウェイトが設定されない信号(つまり、PDCCH領域でのDCI等)については、SFBC(Spatial frequency block coding)処理を行い、アンテナ毎のIFFT(Inverse Fast Fourier Transform)部110に出力する。また、多重部109は、制御部102から受け取る下りリソース割当情報に基づいて、PDCCH信号及びデータ信号(PDSCH信号)をマッピングする。なお、多重部109は、設定情報及びサーチスペース情報をPDSCHにマッピングしても良い。
 IFFT部110は、多重部109から受け取るアンテナ毎の多重信号を時間波形に変換し、CP付加部111は、この時間波形にCPを付加することによりOFDM信号を得る。
 送信RF部112は、CP付加部111から受け取るOFDM信号に対して送信無線処理(アップコンバート、ディジタルアナログ(D/A)変換など)を施し、アンテナ113を介して送信する。
 一方、受信RF部114は、アンテナ113を介して受信帯域で受信した受信無線信号に対して受信無線処理(ダウンコンバート、アナログディジタル(A/D)変換など)を施し、得られた受信信号をCP除去部115に出力する。
 CP除去部115は、受信信号からCPを除去し、FFT(Fast Fourier Transform)部116は、CP除去後の受信信号を周波数領域信号に変換する。
 抽出部117は、制御部102から受け取る上りリソース割当情報に基づいて、FFT部116から受け取る周波数領域信号から上り回線データを抽出し、IDFT部118は、抽出信号を時間領域信号に変換し、その時間領域信号をデータ受信部119およびACK/NACK受信部120に出力する。
 データ受信部119は、IDFT部118から入力される時間領域信号を復号する。そして、データ受信部119は、復号後の上り回線データを受信データとして出力する。
 ACK/NACK受信部120は、IDFT部118から受け取る時間領域信号のうち、下り回線データ(PDSCH信号)に対する各端末からのACK/NACK信号を抽出する。具体的には、ACK/NACK受信部120は、そのACK/NACK信号を、割当部108から受け取る情報に基づいて、上り回線制御チャネル(例えば、PUCCH(Physical Uplink Control Channel))から抽出する。また、その上り回線制御チャネルは、その下り回線データに対応する下り割当制御情報の送信に用いられたCCEに対応付けられた上り回線制御チャネルである。
 そして、ACK/NACK受信部120は、抽出したACK/NACK信号のACK/NACK判定を行う。
 なお、ここでは、CCEとPUCCHとが対応付けられているのは、端末がACK/NACK信号の送信に用いるPUCCHを基地局から各端末へ通知するためのシグナリングを不要にするためである。これにより、下り回線の通信リソースを効率良く使用することができる。従って、各端末は、この対応付けに従って、自端末への下り割当制御情報(DCI)がマッピングされているCCEに基づいて、ACK/NACK信号の送信に用いるPUCCHを判定している。
 [端末200の構成]
 図9は、本発明の実施の形態1に係る端末200の構成を示すブロック図である。端末200は、下り回線データを受信し、その下り回線データに対するACK/NACK信号を上り制御チャネルであるPUCCHを用いて基地局100へ送信する。
 図9において、端末200は、アンテナ201と、受信RF部202と、CP除去部203と、FFT部204と、分離部205と、設定情報受信部206と、PDCCH受信部207と、PDSCH受信部208と、変調部209,210と、DFT部211と、マッピング部212と、IFFT部213と、CP付加部214と、送信RF部215とを有する。
 受信RF部202は、設定情報受信部206から受け取る帯域情報に基づいて、受信帯域を設定する。受信RF部202は、アンテナ201を介して受信帯域で受信した無線信号(ここでは、OFDM信号)に対して受信無線処理(ダウンコンバート、アナログディジタル(A/D)変換など)を施し、得られた受信信号をCP除去部203に出力する。なお、受信信号には、PDSCH信号、DCI、及び、設定情報及びサーチスペース情報を含む上位レイヤの制御情報が含まれている可能性がある。また、端末200宛てのDCI(割当制御情報)は、端末200及び他の端末に対して設定された共通のサーチスペース(C-SS)、又は、端末200に対して設定された個別のサーチスペース(UE-SS)に割り当てられている。
 CP除去部203は、受信信号からCPを除去し、FFT部204は、CP除去後の受信信号を周波数領域信号に変換する。この周波数領域信号は、分離部205に出力される。
 分離部205は、FFT部204から受け取る信号のうち、DCIを含む可能性のある成分(すなわち、PDCCH領域及びR-PDCCH領域から抜き出された信号)を、PDCCH受信部207に出力する。また、分離部205は設定情報を含む上位レイヤの制御信号(例えば、RRC signaling等)を設定情報受信部206に出力し、データ信号(つまり、PDSCH信号)をPDSCH受信部208に出力する。
 設定情報受信部206は、分離部205から入力される上位レイヤの制御信号から、自端末に設定された帯域情報、自端末に設定された端末IDを示す情報、自端末に設定されたサーチスペース情報、自端末に設定された参照信号を示す情報、及び自端末に設定された送信モードを示す情報を読み取る。
 そして、自端末に設定された帯域情報はPDCCH受信部207、受信RF部202及び送信RF部215に出力される。また、自端末に設定された端末IDを示す情報は、端末ID情報としてPDCCH受信部207に出力される。また、自端末に設定された、DCIの送信に利用するリソース領域を示す情報は、サーチスペース領域情報としてPDCCH受信部207に出力される。また、自端末に設定された参照信号を示す情報は、参照信号情報としてPDCCH受信部207に出力される。また、自端末に設定された送信モードを示す情報は、送信モード情報としてPDCCH受信部207に出力される。
 PDCCH受信部207は、分離部205から入力される信号をブラインド復号(モニタ)して、自端末宛てのDCIを得る。ここで、PDCCH受信部207は、全端末共通のデータ割当向けのDCIフォーマット(例えば、DCI 0/1A)、自端末に設定された送信モード依存のDCIフォーマット(例えば、DCI 1,1B,1D,2,2A,0A,0B)及び全端末共通の共通チャネル割当向けのDCIフォーマット(例えば、DCI 1C,1A)のそれぞれに対して、ブラインド復号する。これにより、各DCIフォーマットの割当制御情報を含むDCIが得られる。
 具体的には、PDCCH受信部207は、設定情報受信部206から受け取るサーチスペース領域情報の示す領域がPDCCH領域である場合には、そのサーチスペース領域情報に示されるC-SSに対して、共通チャネル割当向けのDCIフォーマット(DCI 1C,1A)及び全端末共通のデータ割当向けDCIフォーマット(DCI 0/1A)のブラインド復号を行う。すなわち、PDCCH受信部207は、C-SS内の各ブラインド復号領域候補(つまり、端末200に割り当てられるCCE領域の候補)について、共通チャネル割当向けのDCIフォーマットのサイズ、及び、全端末共通のデータ割当向けのDCIフォーマットのサイズを対象として、復調及び復号する。そして、PDCCH受信部207は、復号後の信号に対して、複数の端末の間で共通のIDによってCRCビットをデマスキングする。そして、PDCCH受信部207は、デマスキングの結果、CRC=OK(誤り無し)となった信号を、共通チャネル向けの割当制御情報が含まれるDCIであると判定する。また、PDCCH受信部207は、復号後の信号に対して、端末ID情報が示す自端末の端末IDによってCRCビットをデマスキングする。そして、PDCCH受信部207は、デマスキングの結果、CRC=OK(誤り無し)となった信号を、自端末向けの割当制御情報が含まれるDCIであると判定する。すなわち、PDCCH受信部207は、C-SSでは、DCI 0/1Aの割当制御情報が共通チャネル向けであるか又は自端末向けのデータ割当向けであるかを、端末ID(複数の端末の間で共通のID、又は、端末200の端末ID)によって区別する。
 また、PDCCH受信部207は、設定情報受信部206から入力される端末ID情報に示される自端末の端末IDを用いて、自端末のUE-SSを、各CCE連結数に対してそれぞれ算出する。そして、PDCCH受信部207は、算出したUE-SS内の各ブラインド復号領域候補(各CCE連結数のCCE候補)について、自端末に設定された送信モード(送信モード情報に示される送信モード)に対応したDCIフォーマットのサイズ及び全端末共通のDCIフォーマット(DCI 0/1A)のサイズを対象として、復調及び復号する。そして、PDCCH受信部207は、復号後の信号に対して、自端末の端末IDでCRCビットをデマスキングする。そして、PDCCH受信部207は、デマスキングの結果、CRC=OK(誤り無し)となった信号を、自端末宛てのDCIであると判定する。
 一方、PDCCH受信部207は、設定情報受信部206から入力されるサーチスペース領域情報に示されるサーチスペース領域としてR-PDCCH領域も含まれる場合にも、上述したPDCCH領域と同様にして、PDCCH領域及びR-PDCCH領域に設定されたサーチスペースをブラインド復号(モニタ)して、PDCCH及びR-PDCCHを用いて送信される自端末宛てのDCIを得る。
 ここで、DCIがR-PDCCHを介して送信されていた場合(つまり、R-PDCCH領域においてCRC=OKとなったDCIが存在する場合)には、PDCCH受信部207は、そのDCIにおけるVirtual CRC対応部分のビットパターンと、既知ビット系列(判定基準ビット列)のビットパターンとが同一であるかどうかを確認する。そして、同一でない場合には、PDCCH受信部207は、DCIの誤検出が発生したと判断し、CRC=OKとなったDCIであっても無視する。なお、設定情報受信部206から入力されるサーチスペース領域情報がない場合(つまり、基地局100がサーチスペース情報を送信しない場合)には、端末200は、サーチスペースを意識せずに、端末200宛ての可能性がある複数のDCIの送信領域においてブラインド復号を行っても良い。
 そして、PDCCH受信部207は、下り割当制御情報を受信した場合には自端末宛てのDCIに含まれる下りリソース割当情報をPDSCH受信部208に出力し、上り割当制御情報を受信した場合には上りリソース割当情報をマッピング部212に出力する。また、PDCCH受信部207は、自端末宛てのDCIの送信に用いられたCCE(CRC=OKとなった信号の送信に用いられていたCCE)のCCE番号(CCE連結数が複数の場合は先頭のCCEのCCE番号)をマッピング部212に出力する。
 PDSCH受信部208は、PDCCH受信部207から受け取る下りリソース割当情報に基づいて、分離部205から受け取るPDSCH信号から、受信データ(下り回線データ)を抽出する。すなわち、PDSCH受信部208は、複数のDCI割当領域候補(ブラインド復号領域候補)の内のいずれかに割り当てられた端末200宛の下りリソース割当情報(割当制御情報)に基づいて、下り回線データ(下りデータ信号)を受信する。また、PDSCH受信部208は、抽出した受信データ(下り回線データ)に対して誤り検出を行う。そして、PDSCH受信部208は、誤り検出の結果、受信データに誤りがある場合には、ACK/NACK信号としてNACK信号を生成し、受信データに誤りが無い場合には、ACK/NACK信号としてACK信号を生成する。このACK/NACK信号は、変調部209に出力される。
 変調部209は、PDSCH受信部208から入力されるACK/NACK信号を変調し、変調後のACK/NACK信号をマッピング部212に出力する。
 変調部210は、送信データ(上り回線データ)を変調し、変調後のデータ信号をDFT部211に出力する。
 DFT部211は、変調部210から入力されるデータ信号を周波数領域に変換し、得られる複数の周波数成分をマッピング部212に出力する。
 マッピング部212は、PDCCH受信部207から受け取る上りリソース割当情報に従って、DFT部211から受け取る複数の周波数成分を、PUSCHにマッピングする。また、マッピング部212は、PDCCH受信部207から受け取るCCE番号に従ってPUCCHを特定する。そして、マッピング部212は、変調部209から入力されるACK/NACK信号を、上記特定したPUCCHにマッピングする。
 IFFT部213は、PUSCHにマッピングされた複数の周波数成分を時間領域波形に変換し、CP付加部214は、その時間領域波形にCPを付加する。
 送信RF部215は、送信帯域を変更可能に構成されている。送信RF部215は、設定情報受信部206から受け取る帯域情報に基づいて、送信帯域を設定する。そして、送信RF部215は、CPが付加された信号に送信無線処理(アップコンバート、ディジタルアナログ(D/A)変換など)を施して、アンテナ201を介して送信する。
 [基地局100及び端末200の動作]
 以上の構成を有する基地局100及び端末200の動作について説明する。図10は、基地局100の動作説明に供するフロー図である。
 ステップS101でPDCCH生成部104は、DCIを生成する。
 ステップS102でPDCCH生成部104は、設定部101から受け取る設定情報に基づいて、DCIの送信にR-PDCCHを用いるか否かを判定する。
 R-PDCCHが用いられる場合(ステップS102:YES)には、ステップS103でPDCCH生成部104は、生成されたDCIに「Virtual CRC」を付加する。ここでは、「既知ビット」が新たに付加される。なお、この「既知ビット」は、端末200においても保持されており、後述するように、端末200においてDCIが自端末宛であるか否かの判定に用いられる。
 ステップS104でPDCCH生成部104は、ステップS103で「Virtual CRC」が付加されたDCIの全ビット列から、CRCビットを算出し、当該CRCビットをDCIに付加する。なお、ステップS102でR-PDCCHが用いられないと判定された場合(つまり、PDCCHが用いられると判定された場合)には、PDCCH生成部104は、ステップS101で生成された、「Virtual CRC」の付加されていないDCIの全ビット列から、CRCビットを算出し、当該CRCビットをDCIに付加する。
 ステップS105で符号化・変調部105は、PDCCH生成部104から受け取るDCIを畳み込み符号化する。
 ステップS106で符号化・変調部105は、ステップS105で得られた符号語を変調(例えば、QPSK変調)する。
 ステップS107で割当部108及び多重部109は、符号化・変調部105から受け取るDCIを、CCE又はR-CCEにマッピングする。すなわち、ステップS102でR-PDCCHが用いられると判定された場合には、DCIはR-CCEにマッピングされる一方、R-PDCCHが用いられないと判定された場合には、DCIはCCEにマッピングされる。
 なお、ここでは、「Virtual CRC」及びCRCビットがDCIに付加される場合に、最初に、「Virtual CRC」が付加され、次に、CRCビットが付加される場合について説明した。しかしながら、これに限定されるものではなく、最初に、CRCビットが付加され、次に、「Virtual CRC」が付加されても良い。すなわち、図11に示すようなフローによって処理が行われても良い。こうすることにより、端末200においてCRCチェックの対象となるビット列を構成するビット数が少なくなるため、誤検出する確率を低減できる。一方で、「Virtual CRC」を付加してからCRCビットを付加する場合には、端末200における、PDCCH(R-PDCCH)受信、畳み込み復号、及びCRCチェックを含む一連の処理が、LTEと同様の処理となるため、端末200の構成を簡素化することができる。
 このようにしてR-CCE(又はCCE)にマッピングされたDCIは、端末200へ送信される。
 端末200において、PDCCH受信部207は、設定情報受信部206から入力されるサーチスペース領域情報に示されるサーチスペース領域としてR-PDCCH領域も含まれる場合にも、PDCCH領域と同様にして、PDCCH領域及びR-PDCCH領域に設定されたサーチスペースをブラインド復号(モニタ)して、PDCCH及びR-PDCCHを用いて送信される自端末宛てのDCIを得る。
 そして、DCIがR-PDCCHを介して送信されていた場合(つまり、R-PDCCH領域においてCRC=OKとなったDCIが存在する場合)には、PDCCH受信部207は、そのDCIにおけるVirtual CRC対応部分のビットパターンと、既知ビット系列(つまり、判定基準ビット列)のビットパターンとが同一であるかどうかを確認する。そして、同一でない場合には、PDCCH受信部207は、DCIの誤検出が発生したと判断し、CRC=OKとなったDCIであっても無視する。
 ここで、DCIの復号結果が正しいにも関わらず、他端末宛のDCIを自端末宛のDCIであると誤検出することは、基地局100において端末IDによってマスキングされているCRCビットの対応部分のみが、送信された状態と異なった状態で受信されている場合にのみ起こりうる。すなわち、CRCビットの一部(つまり、その誤検出されたDCIが割当対象端末の端末IDと異なるビット箇所)のみが誤ったものと等価である。
 そして、DCIの復号結果が正しいにも関わらず、他端末宛のDCIを自端末宛のDCIであると誤検出することは、CRCビットと同じ長さだけ連続するビット群が誤った場合に発生する。このため、構成ビットの全てが互いに異なる2つの端末IDを、2つの端末に割り当てない限り、この種の誤検出は生じない。
 一方で、DCIの復号結果にランダム誤りが発生する場合(つまり、他端末向けも含めて実際にはDCIがマッピングされていないリソースに対してブラインド復号を行った場合)には、ランダムなビット列がCRC長だけ連続して誤る確率で、誤検出が生じる。すなわち、式(1)で表される確率で、誤検出が生じる。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、Kは、CRC長であり、Mは、ブラインド復号回数である。
 また、R-PDCCH領域はデータ送信に用いることができる。このため、送信対象である制御チャネルの数が少ない場合には、R-PDCCH領域が用いられずに、PDCCH領域のみが用いられることが多い。すなわち、PDCCH領域では、他端末宛のDCIも含めて、DCIが実際に送信されていることが多い。
 このため、PDCCH領域では、DCIの畳み込み復号結果が正しくなる確率が高いので、上述の通り、誤検出の確率は低くなる。
 一方、R-PDCCH領域ではDCIではなくデータ信号が送信されることがあるので、DCIの畳み込み復号結果が誤る確率が高くなり、結果として、誤検出の確率も高くなる。
 なお、PDCCH領域でも、ブラインド復号対象とするDCIフォーマットと異なるDCIフォーマットがマッピングされている場合には、畳み込み復号結果が正しくならない。しかしながら、同一セル内では通信環境が似た端末向けに同じDCIフォーマットが用いられることが多いので、このようなケースを考慮したとしても、PDCCH領域で誤検出が生じる可能性は低い。
 図12は、PDCCH領域及びR-PDCCH領域のそれぞれで送信される情報の確率分布を示す図である。図12Aに示されるように、PDCCH領域では、同一DCIフォーマットが送信される場合、異なるDCIフォーマットが送信される場合、及び、信号がない場合の3つのケースがある。これに対して、図12Bにしめされるように、R-PDCCH領域では、これら3つのケースに加えて、データが送信されるケースがある。PDCCH領域又はR-PDCCH領域で誤検出が生じる確率は、各ケースについて、そのケース自体が生じる確率と、そのケースで誤検出が生じる確率とを掛け合わせた乗算結果を、全てのケースについて総和をとることにより、算出される。従って、図12に示すように、R-PDCCH領域では、誤検出の生じる確率が、PDCCH領域よりも高くなる。
 以上のように本実施の形態によれば、基地局100において、PDCCH生成部104が、端末200の識別情報によってマスキング又はスクランブリングされた巡回冗長検査(CRC)ビットと、端末200との間で互いに既知のビット列(つまり、Virtual CRC)との両方を含む下り割当制御情報ユニット(つまり、DCI)を形成し、割当部108及び多重部109が、形成されたDCIを、下り制御チャネル領域及び下りデータチャネル領域のいずれにも利用可能なリソース領域(つまり、R-PDCCH領域)にマッピングする。すなわち、PDCCH生成部104は、端末200宛のDCIをR-PDCCH領域にマッピングする場合にのみ、DCIにVirtual CRCを含める。
 こうすることで、端末200が自局の端末IDでデマスキング又はデスクランブリングしたCRCビットのチェック結果の他に、Virtual CRCに基づいて、DCIが自局宛であるか否かを判定することができるので、制御情報の誤検出を低減することができる。この結果として、システムスループットの低下を防止できる。
 また、端末200において、分離部205が、下り制御チャネル領域及び下りデータチャネル領域のいずれにも利用可能なリソース領域(つまり、R-PDCCH領域)で、宛先端末の識別情報によってマスキング又はスクランブリングされた巡回冗長検査(CRC)ビットと、所定のビット列との両方を含む下り割当制御情報ユニット(つまり、DCI)を受信し、PDCCH受信部207が、所定のビット列(つまり、Virtual CRC)と、自局で保持している判定基準ビット列とが一致する場合にのみ、受信DCIが自局宛であると判定する。
 こうすることで、自局の端末IDでデマスキング又はデスクランブリングしたCRCビットのチェック結果が正しいことを示している場合でも、受信DCIに含められている所定のビット列と、判定基準ビット列とが一致しない場合には、その受信DCIを無視することができる。すなわち、端末200は、受信DCIが自局宛のものであるか否かの判定基準として、CRCビットのチェック結果の他に、Virtual CRCを利用することができる。この結果、制御情報の誤検出を低減することができるので、システムスループットの低下を防止できる。なお、PDCCHに比べて誤検出の発生確率が高いR-PDCCHにおける誤り検出性能を向上できるので、システム全体におけるFalse alarmの発生確率を効率良く低減することができる。
 ここで、本実施の形態では、R-PDCCH領域で送信されるDCIに対して、PDCCH領域で送信されるDCIには含まれない既知ビット列(つまり、Virtual CRC)を付加することを前提としているので、DCIの符号化率は高くなる。しかし、R-PDCCH領域にはRBリソースが用いられるため、R-PDCCH領域で送信されるDCIは、隣接セル間での干渉制御が施されるか、又は、ビームフォーミング送信を行うことができる。これにより、R-PDCCH領域で送信されるDCIは、高い受信品質(受信SIR)で受信されることになるので、DCIの誤り率の劣化量を抑えることができる。
 なお、既知ビット列(つまり、Virtual CRC)の構成ビット数は、予め決められた固定の数でも良いし、基地局100が予め端末200に対して通知(又は報知)した数であっても良い。後者の場合には、構成ビット数を適切に選択することにより、セル環境(端末数の多い環境、少ない環境等)又は運用形態によって必要十分なDCI誤検出率に設定することができる。
 [実施の形態2]
 実施の形態2では、既知ビット列(つまり、Virtual CRC)として、下りデータチャネル領域として割り当てるリソースブロック(RB)を端末へ通知するためのRB割当ビット列の一部が用いられる。実施の形態2に係る基地局及び端末の基本構成は、実施の形態1と共通するので、図7、9を援用して説明する。
 実施の形態2の基地局100において、送信領域設定部131は、端末200に対して下りデータチャネル領域として割り当てる候補となる候補RB群(つまり、リソースブロック領域)を設定する。
 具体的には、送信領域設定部131は、図13に示すように、RB群全体の内、一部を端末200に対する候補RB群(図中では、有効RB)として設定する一方、その他のRBを端末200に対するDCIをマッピングしないRB群(図中では、無効RB)として設定する。
 こうして設定された端末200に対する有効RBに関する情報は、設定情報に含められて端末200へ送信される。
 制御部102は、R-PDCCH領域によってDCIを送信する端末200に対して、下りデータチャネル領域として実際に用いる使用RBを、候補RB群の中から選択する。この選択された使用RBに関する情報は、リソース割当情報として割当制御情報に含められる。ここで、端末200に対する候補RB群を、RB群全体の内の一部に固定することにより、RB割当ビット列の一部が固定のビット列となるか、あるいは、取りうるビット組み合わせが限定される。本実施の形態では、この固定のビット列、または限定されたビット組み合わせをVirtual CRCとして用いる。
 そして、PDCCH生成部104は、端末200向けのDCIの送信にR-PDCCHが用いられる場合(つまり、端末200向けのDCIに割当部108でR-CCEが割り当てられる場合)には、「Virtual CRC」を含むDCIを生成する。
 実施の形態2の端末200において、設定情報受信部206は、基地局100から送信された設定情報に含まれる有効RBに関する情報を読み取り、PDCCH受信部207へ出力する。この有効RBに関する情報を示すビット列の一部が、判定基準ビット列として用いられる。
 PDCCH受信部207は、DCIがR-PDCCHを介して送信されていた場合(つまり、R-PDCCH領域においてCRC=OKとなったDCIが存在する場合)には、そのDCIにおけるVirtual CRC対応部分のビットパターンと、既知ビット系列(つまり、判定基準ビット列)のビットパターンとが同一であるかどうかを確認する。そして、同一でない場合には、PDCCH受信部207は、DCIの誤検出が発生したと判断し、CRC=OKとなったDCIであっても無視する。すなわち、PDCCH受信部207は、R-PDCCH領域におけるブラインド復号によって検出されたDCIに対しては、RB割当情報が示すRBが有効RBに属していれば、そのDCIは有効であると判定して、PDSCH受信部208へ出力する。一方、RB割当情報が示すRBが有効RBに属していなければ、PDCCH受信部207は、そのDCIを無効であると判定し、無視する。
 以上のように本実施の形態によれば、基地局100において、PDCCH生成部104が、端末200の識別情報によってマスキング又はスクランブリングされた巡回冗長検査(CRC)ビットと、端末200との間で互いに既知のビット列(つまり、Virtual CRC)との両方を含む下り割当制御情報ユニット(つまり、DCI)を形成し、割当部108及び多重部109が、形成されたDCIを、下り制御チャネル領域及び下りデータチャネル領域のいずれにも利用可能なリソース領域(つまり、R-PDCCH領域)にマッピングする。
 そして、既知ビット列(つまり、Virtual CRC)としては、端末200に対して、下りデータチャネル領域として割り当てるリソースブロック(RB)を通知するためのRB割当ビット列の一部が用いられる。
 こうすることで、実施の形態1と同様の効果が得られる。さらに、PDCCH領域で送信されるDCIにも含まれているRB割当ビット列の一部(つまり、DCI内の既存のRB割当フィールドの一部)をVirtual CRCとして用いることができるので、DCIのビット数を増やすことがない。
 また、端末200において、分離部205が、下り制御チャネル領域及び下りデータチャネル領域のいずれにも利用可能なリソース領域(つまり、R-PDCCH領域)で、宛先端末の識別情報によってマスキング又はスクランブリングされた巡回冗長検査(CRC)ビットと、所定のビット列との両方を含む下り割当制御情報ユニット(つまり、DCI)を受信し、PDCCH受信部207が、所定のビット列(つまり、Virtual CRC)と、自局で保持している判定基準ビット列とが一致する場合にのみ、受信DCIが自局宛であると判定する。
 そして、判定基準ビット列としては、端末200に対して、下りデータチャネル領域として割り当てるリソースブロック(RB)を通知するためのRB割当ビット列の一部が用いられる。
 なお、基地局100は、干渉の影響が小さいRBを有効RBに設定し、当該有効RBに、セル境界付近に存在する端末を割り当てることにより、実質的なRB割当の自由度の低下を抑えつつ、誤検出の発生確率を低減することができる。すなわち、ヘテロジニアスネットワークにおいては、DCIの送信にR-PDCCHを用いることが、マクロ基地局と、フェムト/ピコ基地局との間の干渉を制御することに有効である。この干渉制御は、マクロ基地局とフェムト/ピコ基地局とによって、互いに異なる特定RBの送信電力が下げられることによって、行われる。ここで、R-PDCCHはRBに配置されるので、R-PDCCHとして用いた分だけ、データを送信できるRBの数が減ってしまう。そこで、セル間干渉の少ないセル中心部の端末には、PDCCHを用いる一方、セル間干渉の多いセル境界付近の端末には、R-PDCCHを用いることにより、PDCCHリソースを有効利用できる。このような運用においては、R-PDCCHを用いる必要のあるセル境界付近の端末がデータ(PDSCH)についても干渉の低いRBで送信することにより、スループットを向上できる。
 また、有効RBと、R-PDCCH領域でDCIが送信される場合の、端末200のブラインド復号対象RBとを一致させても良い。この場合、基地局100の設定部101は、R-PDCCH領域でDCIが送信される場合の、端末200のブラインド復号対象RBを通知するだけでよいので、制御情報量を低減できる。ヘテロジニアスネットワークにおいては、R-PDCCH領域でDCIが送信される場合には、干渉の低いRBがR-PDCCH領域として割り当てられるので、そのRBにデータ割当対象を限定しても、データ割当の自由度が損なわれることがない。
 また、有効RBと、端末200が他セル品質測定(ハンドオーバー等のための他セル信号の受信品質測定)の対象外とするRB領域とを一致させても良い。この場合、基地局100の設定部101は、他セル品質測定対象(または対象外)のRB領域を通知するだけで良いので、制御情報量を低減できる。ハンドオーバーのためには、他セルで送信電力を下げずに送信しているRB領域に関して品質測定が行えれば良いので、送信電力を下げて送信しているRB領域での品質測定結果によっては正しいハンドオーバー先セルを選択することができなくなる。そこで、他セルで送信電力を下げて送信しているRB領域(つまり、品質測定対象外のRB領域)と、有効RB(つまり、干渉の小さいRB領域)とを一致させるようにしても、データ割当の自由度が損なわれることがない。
 [実施の形態3]
 実施の形態3では、既知ビット列(つまり、Virtual CRC)として、変調方式及び符号化方式を通知するための通知ビット列の一部が用いられる。実施の形態3に係る基地局及び端末の基本構成は、実施の形態1と共通するので、図7、9を援用して説明する。
 設定部101は、端末200に対して下りデータに適用される変調方式及び符号化方式(MCS)の候補となる候補MCS群(つまり、有効MCS)を設定する。
 具体的には、LTEでは、MCS群として、29種類だけ用意されている。そこで、設定部101は、MCS群全体の内、一部を端末200に対する候補MCS群(つまり、有効MCS)として設定し、その他のMCSを端末200へ送信される下りデータには適用されないMCS群(つまり、無効MCS)として設定する。例えば、設定部101は、変調方式の次数がQPSK以下となるMCSのみを有効MCSとして設定する。この有効MCSと無効MCSとの境界となる閾値は、予め決められたものであっても良い。
 こうして設定された端末200に対する有効MCSに関する情報は、設定情報に含められて端末200へ送信される。
 制御部102は、R-PDCCH領域によってDCIを送信する端末200に対して、下りデータに対して実際に使用する使用MCSを、候補MCS群の中から選択する。この選択された使用MCSに関する情報は、MCS情報として割当制御情報に含められる。ここで、端末200に対する候補MCS群を、MCS群全体の内の一部に固定することにより、MCS通知ビット列の一部が固定のビット列となる。本実施の形態では、この固定のビット列をVirtual CRCとして用いる。
 そして、PDCCH生成部104は、端末200向けのDCIの送信にR-PDCCHが用いられる場合(つまり、端末200向けのDCIに割当部108でR-CCEが割り当てられる場合)には、「Virtual CRC」を含むDCIを生成する。
 実施の形態3の端末200において、設定情報受信部206は、基地局100から送信された設定情報に含まれる有効MCSに関する情報を読み取り、PDCCH受信部207へ出力する。この有効MCSに関する情報を示すビット列の一部が、判定基準ビット列として用いられる。
 PDCCH受信部207は、DCIがR-PDCCHを介して送信されていた場合(つまり、R-PDCCH領域においてCRC=OKとなったDCIが存在する場合)には、そのDCIにおけるVirtual CRC対応部分のビットパターンと、既知ビット系列(つまり、判定基準ビット列)のビットパターンとが同一であるかどうかを確認する。そして、同一でない場合には、PDCCH受信部207は、DCIの誤検出が発生したと判断し、CRC=OKとなったDCIであっても無視する。すなわち、PDCCH受信部207は、R-PDCCH領域におけるブラインド復号によって検出されたDCIに対しては、MCS情報が示すMCSが有効MCSに属していれば、そのDCIは有効であると判定して、PDSCH受信部208へ出力する。一方、MCS情報が示すMCSが有効MCSに属していなければ、PDCCH受信部207は、そのDCIを無効であると判定し、無視する。
 以上のように本実施の形態によれば、基地局100において、PDCCH生成部104が、端末200の識別情報によってマスキング又はスクランブリングされた巡回冗長検査(CRC)ビットと、端末200との間で互いに既知のビット列(つまり、Virtual CRC)との両方を含む下り割当制御情報ユニット(つまり、DCI)を形成し、割当部108及び多重部109が、形成されたDCIを、下り制御チャネル領域及び下りデータチャネル領域のいずれにも利用可能なリソース領域(つまり、R-PDCCH領域)にマッピングする。
 そして、既知ビット列(つまり、Virtual CRC)としては、端末200に対して、変調方式及び符号化方式を通知するためのMCS通知ビット列の一部が用いられる。
 こうすることで、実施の形態1と同様の効果が得られる。さらに、PDCCH領域で送信されるDCIにも含まれているMCS通知ビット列の一部(つまり、DCI内の既存のMCSフィールドの一部)をVirtual CRCとして用いることができるので、DCIのビット数を増やすことがない。
 また、端末200において、分離部205が、下り制御チャネル領域及び下りデータチャネル領域のいずれにも利用可能なリソース領域(つまり、R-PDCCH領域)で、宛先端末の識別情報によってマスキング又はスクランブリングされた巡回冗長検査(CRC)ビットと、所定のビット列との両方を含む下り割当制御情報ユニット(つまり、DCI)を受信し、PDCCH受信部207が、所定のビット列(つまり、Virtual CRC)と、自局で保持している判定基準ビット列とが一致する場合にのみ、受信DCIが自局宛であると判定する。
 そして、判定基準ビット列としては、端末200に対して、下変調方式及び符号化方式を通知するためのMCS通知ビット列の一部が用いられる。
 なお、上述したように、ヘテロジニアスネットワークにおいては、R-PDCCHを使う端末は、R-PDCCHに対して干渉制御が必要なセル境界付近の端末であることが多い。干渉制御によってデータの受信品質も改善されるが、それでもセル境界付近の端末が、セル中心部の端末のように高いMCSレベル(16QAM、64QAMなど)を用いることはまれである。すなわち、本実施の形態のような有効RBを限定しても、使用頻度の少ないMCSレベルが使用できなくなるだけなので、これによるスループット劣化はほとんどない。
 [実施の形態4]
 実施の形態4では、R-PDCCHで送信されるDCIは、同一セル内で同一サイズとする。
 図14は、本発明の実施の形態4に係る基地局300の構成を示すブロック図である。図14において、基地局300は、設定部301と、PDCCH生成部304とを有する。
 設定部301は、DCIをR-PDCCH領域で送信する場合のDCIサイズ(つまり、構成ビット数)を設定する。この設定DCIサイズに関する情報は、設定情報に含められて端末200へ送信される。ここで、同一セル内に存在する全端末に対して、同一のDCIサイズが設定される。また、DCIサイズは、各端末400に設定されるDCIフォーマットのサイズよりも大きく設定される。なお、設定情報は、端末個別に(つまり、RRCシグナリングによって)通知されても良いし、BCHによって報知されも良い。
 PDCCH生成部304は、R-PDCCH領域で送信されるDCIに対して、そのDCIが上記設定DCIサイズになるまで、パディングビットを付加する。このパディングビットとしては、全てビットゼロであっても良いし、他の既知ビットであっても良い。
 図15は、本発明の実施の形態4に係る端末400の構成を示すブロック図である。図15において、端末400は、設定情報受信部406と、PDCCH受信部407とを有する。
 設定情報受信部406は、基地局300から送信された設定情報に含まれる設定DCIサイズに関する情報を読み取り、PDCCH受信部407へ出力する。
 PDCCH受信部407は、R-PDCCH領域をブラインド復号対象とする場合には、設定情報受信部406から受け取る設定DCIサイズを復号単位としてブラインド復号を行う。因みに、PDCCH領域をブラインド復号する際には、PDCCH受信部407は、設定された2つのDCIフォーマット(例えば、DCI 0/1A及びDCI 1)のサイズのそれぞれを復号単位としてブラインド復号を行う。
 以上のように本実施の形態によれば、設定部301が、DCIをR-PDCCH領域で送信する場合のDCIサイズ(つまり、構成ビット数)を、同一セル内に存在する全端末に対して同一サイズに設定し、PDCCH生成部304が、R-PDCCH領域で送信されるDCIに対して、そのDCIが設定DCIサイズになるまで、パディングビットを付加する。
 こうすることで、R-PDCCH領域で送信されるDCIのサイズが全端末で共通となるので、R-PDCCH領域で他端末宛のDCIが送信されている場合でも、そのDCI自体は正しく復号される可能性が高くなる。すなわち、PDCCHに比べて誤検出の発生確率が高いR-PDCCHにおける誤り検出性能を向上できるので、システム全体におけるFalse alarmの発生確率を効率良く低減することができる。
 なお、設定部301で設定されるDCIサイズが各端末400に設定されるDCIフォーマットのサイズよりも小さい場合には、制御部102がRB割当フィールド又はMCSフィールドのビット数を少なくすることにより、DCIのサイズを設定DCIサイズにしても良い。
 また、上記説明では、設定DCIサイズを1つのサイズとし、且つ、DCIフォーマットを端末毎にPDCCHとR-PDCCHとで共通に設定した2種類として説明したが、DCIフォーマット自体をR-PDCCHの場合には1種類に設定しても良い。前者の場合には、データ送信方法(つまり、送信ダイバーシチ又は非連続RB割当)を柔軟に設定できるが、Padding処理が必要となるので、DCIビット数の増加を招く。一方、後者の場合にはDCIビット数を少なくできるが、送信方法設定の柔軟性は低下する。
 また、本実施の形態におけるDCIサイズ調整処理は、実施の形態1乃至3の基地局100に対しても適用することができる。
 特に、実施の形態1に適用する場合には、Virtual CRCの構成ビット数を調整することにより(本実施の形態のパディングビットとしてVirtual CRCを用いることにより)、DCIのサイズを設定DCIサイズにすることができる。これにより、制御情報の誤検出をさらに低減することができる。
 [他の実施の形態]
 (1)上記各実施の形態においては、特定のDCIフォーマット(制御情報フォーマット)のみに対して既知ビット(Virtual CRC)を付加してもよい。例えば、DCI 0/1A以外のDCIフォーマットのみにVirtual CRCを付けるようにしても良い。DCI 0/1Aは全端末共通のフォーマットであるので、畳み込み符号化の復号が成功する可能性が高く、誤検出が発生する確率は低い。一方、DCI 0/1A以外のDCIフォーマットは送信モードに依存する。従って、他の端末と自局とで設定されているフォーマットが異なる可能性が高いので、誤検出の発生する確率が高い。より誤検出される確率が高いDCIフォーマットにのみVirtual CRCを付加することにより、オーバーヘッドの増加を抑えることができる。
 (2)上記各実施の形態において、R-PDCCH領域にもC-SSを定義する場合には、C-SSで送信されるDCIには、Virtual CRCを挿入しないようにしても良い。C-SSで送信されるDCIフォーマットは限定されるので、他の端末と自局とで設定されているフォーマットが同一である可能性が高く、誤検出の発生する確率が低いためである。
 (3)上記各実施の形態において、Virtual CRCを付加する代わりに、CRCサイズを増やすようにしても、実施の形態1と同様の効果が得られる。また、R-PDCCH領域でDCIが送信される場合には、そのDCIに対して、別途CRCビットが付加されても良い。
 (4)上記各実施の形態において、端末IDとして、C-RNTI(Cell-Radio Network Temporary Identifier)などのRNTIが用いられても良い。
 (5)上記各実施の形態における「全端末共通のDCIフォーマット」という表現は、「送信モードに依存しないDCIフォーマット」と読み替えることもできる。
 (6)上記各実施の形態では、端末送信モードに依存しないフォーマットをDCI 0/1Aとして説明したが、これに限定されるものではなく、端末送信モードに依存せず用いられるフォーマットなら何でもよい。
 また、送信モード依存のDCIとして、DCI 1,2,2A,2B,2C,2D,0A,0B以外のフォーマットが用いられても良い。
 また、上り回線または下り回線の送信モードとして、連続帯域割当送信を含めてもよい。この送信モードが設定された端末は、送信モード依存のDCIは、それぞれDCI 0(上り回線)とDCI 1A(下り回線)となる。この場合、全端末共通のDCIフォーマットと送信モード依存のフォーマットとが同一となるので、UE-SSでは、上り回線及び下り回線でそれぞれ1種類のフォーマットを対象としてブラインド復号すれば良い。なお、上り下りともに連続帯域割当の場合は、あわせて1種類となる。
 DCI 0/1Aをよりサーチスペースが広い送信モード依存のDCIに設定することにより、もともと伝搬路状況が劣悪なためDCI 0/1AでしかPDCCHが割り当てられない端末に対するブロック率の増加を防ぐことができる。
 (7)上記各実施の形態で説明したCCE及びR-CCEは論理的なリソースである。CCE及びR-CCEが実際の物理的な時間・周波数リソースへ配置される場合には、CCEは、全帯域に渡って分散して配置され、R-CCEは特定のRB内に渡って分散して配置される。また、それ以外の配置方法であっても、同様に本発明の効果を得ることができる。
 (8)上記各実施の形態におけるR-PDCCHは、E-PDCCH(Enhanced-PDCCH)と呼ばれることもある。
 (9)上記各実施の形態においては、データが送信される可能性のある周波数リソースを用いて送信される制御チャネルであれば、R-PDCCHでなくても本発明を適用し同様の効果を得ることができる。
 (10)上記各実施の形態ではアンテナとして説明したが、本発明はアンテナポート(antenna port)でも同様に適用できる。
 アンテナポートとは、1本又は複数の物理アンテナから構成される、論理的なアンテナを指す。すなわち、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。
 例えば3GPP LTEにおいては、アンテナポートが何本の物理アンテナから構成されるかは規定されず、基地局が異なる参照信号(Reference signal)を送信できる最小単位として規定されている。
 また、アンテナポートはプリコーディングベクトル(Precoding vector)の重み付けを乗算する最小単位として規定されることもある。
 (11)上記説明したPDCCH領域においてはPDCCH以外にもPHICHやPCFICHなどの別の制御チャネル及び参照信号が送信されてもよい。
 (12)上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はハードウェアとの連携においてソフトウェアでも実現することも可能である。
 (13)上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 2010年9月3日出願の特願2010-197765の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明の基地局、端末、送信方法、及び受信方法は、制御情報の誤検出を低減することにより、システムスループットの低下を防止できるものとして有用である。
 100,300 基地局
 101,301 設定部
 102 制御部
 103 サーチスペース設定部
 104,304 PDCCH生成部
 105,106,107 符号化・変調部
 108 割当部
 109 多重部
 110,213 IFFT部
 111,214 CP付加部
 112,215 送信RF部
 113,201 アンテナ
 114,202 受信RF部
 115,203 CP除去部
 116,204 FFT部
 117 抽出部
 118 IDFT部
 119 データ受信部
 120 ACK/NACK受信部
 131 送信領域設定部
 132 送信モード設定部
 200,400 端末
 205 分離部
 206,406 設定情報受信部
 207,407 PDCCH受信部
 208 PDSCH受信部
 209,210 変調部
 211 DFT部
 212 マッピング部

Claims (11)

  1.  端末の識別情報によってマスキング又はスクランブリングされた巡回冗長検査(CRC)ビットと、前記端末が既知の既知ビットとの両方を含む制御情報を形成する形成部と、
     形成された前記制御情報を、制御チャネル及びデータチャネルのいずれにも使用可能なリソース領域にマッピングするマッピング部と、
     を具備する基地局。
  2.  前記制御情報は、複数のフィールドから構成され、前記既知ビットは、特定の前記フィールドに含まれる、
     請求項1に記載の基地局。
  3.  前記既知ビットは、前記端末に対して、前記データチャネルとして割り当てるリソースブロック(RB)を示すための前記フィールドに含まれる、
     請求項2に記載の基地局。
  4.  前記既知ビットは、前記端末に対して、変調方式及び符号化方式を示すための前記フィールドに含まれる、
     請求項2に記載の基地局。
  5.  前記形成部は、前記制御情報が一定のビットサイズになるように、パディングビットを付加する、
     請求項1に記載の基地局。
  6.  制御チャネル及びデータチャネルのいずれにも使用可能なリソース領域で、宛先端末の識別情報によってマスキング又はスクランブリングされた巡回冗長検査(CRC)ビットと、所定のビットとの両方を含む制御情報を受信する受信部と、
     前記所定のビットと、既知の既知ビットとが一致する場合に、前記制御情報が自局宛であると判定する判定部と、
     を具備する端末。
  7.  前記制御情報は、複数のフィールドから構成され、前記既知ビットは、特定の前記フィールドに含まれている、
     請求項6に記載の端末。
  8.  前記既知ビットは、前記宛先端末に対して、前記データチャネルとして割り当てられたリソースブロック(RB)を示すための前記フィールドに含まれている、
     請求項7に記載の端末。
  9.  前記既知ビットは、前記宛先端末に対して、変調方式及び符号化方式を示すための前記フィールドに含まれている、
     請求項7に記載の端末。
  10.  端末の識別情報によってマスキング又はスクランブリングされた巡回冗長検査(CRC)ビットと、前記端末が既知の既知ビットとの両方を含む制御情報を形成し、
     形成された前記制御情報を、制御チャネル及びデータチャネルのいずれにも使用可能なリソース領域にマッピングする、
     送信方法。
  11.  制御チャネル及びデータチャネルのいずれにも使用可能なリソース領域で、宛先端末の識別情報によってマスキング又はスクランブリングされた巡回冗長検査(CRC)ビットと、所定のビットとの両方を含む制御情報を受信し、
     前記所定のビットと、既知の既知ビットとが一致する場合に、前記制御情報が自局宛であると判定する、
     受信方法。
PCT/JP2011/004629 2010-09-03 2011-08-19 基地局、端末、送信方法、及び受信方法 WO2012029244A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180041000.0A CN103069905B (zh) 2010-09-03 2011-08-19 基站、终端、发送方法及接收方法
JP2012531668A JPWO2012029244A1 (ja) 2010-09-03 2011-08-19 基地局、端末、送信方法、及び受信方法
US13/818,417 US9326272B2 (en) 2010-09-03 2011-08-19 Base station, terminal, transmission method, and reception method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010197765 2010-09-03
JP2010-197765 2010-09-03

Publications (1)

Publication Number Publication Date
WO2012029244A1 true WO2012029244A1 (ja) 2012-03-08

Family

ID=45772371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004629 WO2012029244A1 (ja) 2010-09-03 2011-08-19 基地局、端末、送信方法、及び受信方法

Country Status (4)

Country Link
US (1) US9326272B2 (ja)
JP (1) JPWO2012029244A1 (ja)
CN (1) CN103069905B (ja)
WO (1) WO2012029244A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141530A1 (en) * 2012-03-19 2013-09-26 Samsung Electronics Co., Ltd. Method and apparatus for configuring search space of a downlink control channel
WO2014076857A1 (en) * 2012-11-14 2014-05-22 Nec Corporation Control signalling method
WO2014084383A1 (ja) * 2012-11-30 2014-06-05 シャープ株式会社 基地局装置、端末装置、通信システム、送信方法、受信方法、通信方法および集積回路
WO2014098542A1 (en) 2012-12-21 2014-06-26 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving control channel by beamforming in a wireless communication system
US9155091B2 (en) 2012-03-21 2015-10-06 Samsung Electronics Co., Ltd. Method and apparatus for configuring search space of a downlink control channel
WO2016095488A1 (zh) * 2014-12-15 2016-06-23 深圳市中兴微电子技术有限公司 一种识别误检控制信息的方法、装置及存储介质
JP2016163290A (ja) * 2015-03-05 2016-09-05 Kddi株式会社 基地局装置、端末装置、通信システムおよび通信方法
US9750003B2 (en) 2012-12-21 2017-08-29 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving control channel by beamforming in a wireless communication system

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE042274T2 (hu) * 2010-09-07 2019-06-28 Sun Patent Trust Lefelé irányú kapcsolati vezérlési információ adása/vétele egy elsõ erõforrás-területen és/vagy egy második erõforrás-területen belül
CN109274476B (zh) 2012-01-09 2023-09-26 华为技术有限公司 一种控制信道传输、接收方法及基站、用户设备
CN103200687B (zh) * 2012-01-09 2016-09-14 华为技术有限公司 一种控制信道资源映射方法、基站及用户设备
US9591429B2 (en) * 2012-05-11 2017-03-07 Qualcomm Incorporated Methods and apparatus for managing machine-type communications
AU2013296189B2 (en) 2012-08-03 2016-06-16 Intel Corporation Enhanced physical downlink control channel scrambling and demodulation reference signal sequence generation
US9407302B2 (en) 2012-12-03 2016-08-02 Intel Corporation Communication device, mobile terminal, method for requesting information and method for providing information
KR101797441B1 (ko) 2013-09-27 2017-11-13 엘지전자 주식회사 반송파 집성 시스템에서 기지국의 하향링크 제어 정보 전송 방법 및 장치
CN105472780B (zh) * 2015-12-28 2019-02-22 深圳市金溢科技股份有限公司 一种广域物联网基站的数据传输方法及广域物联网基站
US20180041992A1 (en) * 2016-01-13 2018-02-08 Telefonaktiebolaget Lm Ericsson (Publ) Control channel for a wireless network
US10361717B2 (en) * 2016-06-17 2019-07-23 Huawei Technologies Co., Ltd. Apparatus and methods for error detection coding
AU2017306778B2 (en) 2016-08-01 2022-02-24 Nokia Technologies Oy On the usage of control resources for data transmission
CN107888358A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 传输控制信息的方法、用户设备和网络设备
CN108347312B (zh) 2017-01-25 2020-06-16 华为技术有限公司 控制信息的发送及接收方法、网络设备及终端设备
CN108631923B (zh) * 2017-03-24 2020-11-17 华为技术有限公司 传输信息的方法、网络设备和终端设备
KR102202998B1 (ko) * 2017-03-24 2021-01-14 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) Mtc 디바이스들에 대한 전력 소비를 감소시키기 위한 시그널링 표시
KR102338507B1 (ko) * 2017-08-04 2021-12-13 삼성전자 주식회사 무선 통신 시스템에서 하향링크 제어정보를 송수신하는 방법 및 장치
US10911177B2 (en) * 2018-06-13 2021-02-02 Qualcomm Incorporated Channel state information measurement and feedback for transmission mode switching
EP3797520A1 (en) * 2018-10-31 2021-03-31 Huawei Technologies Co., Ltd. Transmitting and receiving devices for reliable reception of control messages

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206790A (ja) * 2008-02-27 2009-09-10 Nippon Telegr & Teleph Corp <Ntt> 無線通信システムおよびスケジュール方法
JP2010041596A (ja) * 2008-08-07 2010-02-18 Toshiba Corp 無線通信装置
WO2010050232A1 (ja) * 2008-10-31 2010-05-06 パナソニック株式会社 無線端末装置、無線基地局装置及びチャネル信号形成方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101489773B1 (ko) 2007-02-28 2015-02-04 가부시키가이샤 엔티티 도코모 이동통신 시스템, 기지국 장치 및 방법
US8446868B2 (en) * 2009-05-07 2013-05-21 Qualcomm Incorporated Method and apparatus for processing blind decoding results in a wireless communication system
KR101641968B1 (ko) * 2009-09-14 2016-07-29 엘지전자 주식회사 다중입출력 무선 통신 시스템에서 하향링크 신호 전송 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206790A (ja) * 2008-02-27 2009-09-10 Nippon Telegr & Teleph Corp <Ntt> 無線通信システムおよびスケジュール方法
JP2010041596A (ja) * 2008-08-07 2010-02-18 Toshiba Corp 無線通信装置
WO2010050232A1 (ja) * 2008-10-31 2010-05-06 パナソニック株式会社 無線端末装置、無線基地局装置及びチャネル信号形成方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141530A1 (en) * 2012-03-19 2013-09-26 Samsung Electronics Co., Ltd. Method and apparatus for configuring search space of a downlink control channel
US9807754B2 (en) 2012-03-19 2017-10-31 Samsung Electronics Co., Ltd. Method and apparatus for configuring search space of a downlink control channel
US9820270B2 (en) 2012-03-19 2017-11-14 Samsung Electronics Co., Ltd. Method and apparatus for configuring search space of a downlink control channel
US9155091B2 (en) 2012-03-21 2015-10-06 Samsung Electronics Co., Ltd. Method and apparatus for configuring search space of a downlink control channel
WO2014076857A1 (en) * 2012-11-14 2014-05-22 Nec Corporation Control signalling method
US9717095B2 (en) 2012-11-14 2017-07-25 Nec Corporation Control signalling method
JP2016501453A (ja) * 2012-11-14 2016-01-18 日本電気株式会社 制御シグナリング方法
WO2014084383A1 (ja) * 2012-11-30 2014-06-05 シャープ株式会社 基地局装置、端末装置、通信システム、送信方法、受信方法、通信方法および集積回路
WO2014098542A1 (en) 2012-12-21 2014-06-26 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving control channel by beamforming in a wireless communication system
US10455568B2 (en) 2012-12-21 2019-10-22 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving control channel by beamforming in a wireless communication system
EP2936702A4 (en) * 2012-12-21 2016-08-24 Samsung Electronics Co Ltd METHOD AND DEVICE FOR SENDING AND RECEIVING CONTROL CHANNEL INFORMATION BY LIGHT SHAPING IN A WIRELESS COMMUNICATION SYSTEM
CN104885377B (zh) * 2012-12-21 2018-06-22 三星电子株式会社 在无线通信系统中通过波束成形发送和接收控制信道的方法和装置
JP2016506667A (ja) * 2012-12-21 2016-03-03 サムスン エレクトロニクス カンパニー リミテッド 無線通信システムにおけるビームフォーミングを利用した制御チャネルの送受信方法及び装置
CN104885377A (zh) * 2012-12-21 2015-09-02 三星电子株式会社 在无线通信系统中通过波束成形发送和接收控制信道的方法和装置
US9750003B2 (en) 2012-12-21 2017-08-29 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving control channel by beamforming in a wireless communication system
WO2016095488A1 (zh) * 2014-12-15 2016-06-23 深圳市中兴微电子技术有限公司 一种识别误检控制信息的方法、装置及存储介质
CN105763286A (zh) * 2014-12-15 2016-07-13 深圳市中兴微电子技术有限公司 一种识别误检控制信息的方法及装置
WO2016140343A1 (ja) * 2015-03-05 2016-09-09 Kddi株式会社 基地局装置、端末装置、通信システムおよび通信方法
JP2016163290A (ja) * 2015-03-05 2016-09-05 Kddi株式会社 基地局装置、端末装置、通信システムおよび通信方法

Also Published As

Publication number Publication date
JPWO2012029244A1 (ja) 2013-10-28
CN103069905A (zh) 2013-04-24
US9326272B2 (en) 2016-04-26
CN103069905B (zh) 2016-11-09
US20130148623A1 (en) 2013-06-13

Similar Documents

Publication Publication Date Title
US11871432B2 (en) Communication apparatus and communication reception method
WO2012029244A1 (ja) 基地局、端末、送信方法、及び受信方法
JP6410197B2 (ja) 通信装置、通信方法、及び集積回路
US20200252937A1 (en) Integrated circuit
JP5836521B2 (ja) 通信装置、送信方法及び集積回路
WO2012029245A1 (ja) 基地局及び制御情報送信方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180041000.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821269

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012531668

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13818417

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821269

Country of ref document: EP

Kind code of ref document: A1