WO2012029243A1 - 投影画像生成装置、方法、及びプログラム - Google Patents

投影画像生成装置、方法、及びプログラム Download PDF

Info

Publication number
WO2012029243A1
WO2012029243A1 PCT/JP2011/004595 JP2011004595W WO2012029243A1 WO 2012029243 A1 WO2012029243 A1 WO 2012029243A1 JP 2011004595 W JP2011004595 W JP 2011004595W WO 2012029243 A1 WO2012029243 A1 WO 2012029243A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
projection
image
voxel
conversion
Prior art date
Application number
PCT/JP2011/004595
Other languages
English (en)
French (fr)
Inventor
仁樹 宮本
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012029243A1 publication Critical patent/WO2012029243A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5223Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data generating planar views from image data, e.g. extracting a coronal view from a 3D image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/08Volume rendering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical

Definitions

  • the present invention relates to a projection image generation apparatus, method, and program, and more particularly, to a projection image generation apparatus, method, and program for performing projection processing on three-dimensional image data to generate a projection image for display.
  • a maximum value projection method (MIP: maximum intensity projection) is known as one of methods for generating a projection image by performing projection processing on three-dimensional image data.
  • MIP maximum intensity projection
  • the maximum value of voxels existing on a straight line extending from the projection plane is used as the pixel value of the projection image. Since the pixel value of the projection image projected on the projection plane is the voxel value of the three-dimensional image data, the image is displayed after converting this into the pixel value of the display image according to a predetermined display conversion condition.
  • window conversion can be used.
  • the window conversion parameters include window center and window width.
  • the maximum value projection method is often used when a target has a high signal, such as CT (Computed Tomography) imaging using a contrast medium or blood vessel observation by MRI (magnetic resonance imaging).
  • CT Computerputed Tomography
  • MRI magnetic resonance imaging
  • the information in the depth direction viewed from the projection plane is lost, and thus there is a high signal other than the target object, for example, when the image includes contrast blood vessels and bones. If there is something, observation becomes difficult. For example, when the signal value of the bone part is higher than the signal value (voxel value) of the blood vessel part to be observed, many bone parts are projected on the projection surface, and as a result, the blood vessel part is hidden in the bone. , Observation of blood vessels becomes difficult
  • the maximum value projection method often generates a projection image after limiting the display target. For example, some area or object is extracted from the three-dimensional data, and the extraction result is given to the voxel corresponding to the extracted area as an attribute value. For example, by assigning a 1-byte information space to one voxel and making each bit correspond to a different attribute, eight attributes can be given to each voxel.
  • generating a projection image by designating an attribute to be displayed or an attribute to be excluded from the display target, it is possible to display an image by excluding only a specific attribute area or a specific attribute area. it can.
  • the blood vessel portion that is the observation target can be projected on the projection surface, and the state of the blood vessel can be observed well.
  • Patent Document 1 a signal value (voxel value) of a voxel corresponding to a peripheral structure is replaced with a signal value obtained by a predetermined conversion process, and the three-dimensional image data with the signal value replaced is used. And performing projection processing.
  • the signal value of the voxel corresponding to the heart portion is replaced with a signal value that is relatively smaller than the signal value of the voxel corresponding to the coronary artery blood vessel.
  • Patent Document 1 even when the voxel value of the surrounding structure is larger than the voxel value of the observation structure, the voxel of the observation structure can be projected onto the projection plane by changing the voxel value.
  • the observation structure and the peripheral structure are converted into a display image under the same display conversion condition. For example, while the signal value of the observation structure changes gently over a relatively wide range, the signal value of the peripheral structure may change sharply within a relatively narrow range. In such a case, if the voxel value projected on the projection plane is converted into the pixel value of the display image under the same conversion condition, an appropriate image as a whole cannot be obtained.
  • the present invention provides a projection image generation apparatus, method, and program capable of generating a projection image including two or more regions in a state suitable for observation when generating a projection image including two or more regions. For the purpose.
  • the present invention provides display target area setting means for setting at least two areas as display targets among three-dimensional image data including a plurality of areas obtained by imaging a subject, and the display target Display conversion condition setting means for setting a display conversion condition for each of at least two areas set as, and projection to voxels corresponding to the area set as the display target in the three-dimensional image data
  • Voxel projection means for generating a projection image by performing processing, and converting the voxel value of the voxel projected onto the projection image into a pixel value of the display image according to the display conversion condition set for the region to which the voxel belongs
  • a projection image generation apparatus comprising: an image conversion unit that converts the projection image into a display image by conversion.
  • the projection image generation apparatus of the present invention uses the voxel value of a voxel corresponding to at least one of the at least two areas set as the display target according to a predetermined signal conversion condition set for the area.
  • a voxel value converting means for converting can be further provided, and the voxel projecting means can perform a projection process on the three-dimensional image data in which the voxel values are converted.
  • the display conversion condition may define a correspondence relationship between the voxel value and a pixel value in the display image.
  • the image conversion unit may convert the voxel value into a pixel value in the display image image by window conversion, and the display conversion condition setting unit may set the window conversion parameter as a display conversion condition.
  • the image conversion unit may convert the voxel value into a pixel value in the display image image according to a color map, and the display conversion condition setting unit may set the color map as a conversion condition. Good.
  • the voxel projection means can perform projection processing on the voxel by the maximum value projection method or the minimum value projection method.
  • the display target area setting means may extract an area to be set as the display target from the 3D image data based on the 3D image data.
  • the voxel projecting unit generates projection source region information indicating which region of the display target region each pixel in the projection image is projected during the projection processing, and the image
  • the conversion unit may be configured to determine the region to which the voxel projected on the projection image belongs with reference to the projection source region information.
  • the present invention also includes a step of setting at least two areas as display targets among three-dimensional image data including a plurality of areas obtained by imaging a subject, and each of at least two areas set as display targets.
  • a step of setting a display conversion condition for the image a step of performing a projection process on a voxel corresponding to the region set as the display target in the three-dimensional image data, and generating a projection image; Converting the projected image into a display image by converting the voxel value of the voxel projected onto the image into a pixel value of the display image according to the display conversion condition set for the region to which the voxel belongs.
  • a projection image generation method characterized by comprising:
  • the present invention relates to a procedure for setting at least two areas as display targets among three-dimensional image data including a plurality of areas obtained by imaging a subject, and at least two areas set as the display targets.
  • a procedure for setting display conversion conditions for each of the above a procedure for generating a projection image by performing projection processing on voxels corresponding to the region set as the display target in the three-dimensional image data, The projection image is converted into a display image by converting the voxel value of the voxel projected onto the projection image into a pixel value of the display image according to the display conversion condition set for the region to which the voxel belongs.
  • a program for executing the procedure is
  • display conversion conditions are set for each of at least two regions to be displayed.
  • a voxel is projected onto the projection image (projection plane) by performing a projection process, and each voxel value in the projection image is converted into a pixel value of the display image according to a display conversion condition set for a region to which each voxel belongs. For example, even if the voxel values projected on the projected image are the same value, if the projection source voxel belongs to a different area, it is converted into a display image under the display conversion conditions set for each area. Therefore, when two or more areas are projected onto the projection image, a display image including these areas in a state suitable for observation can be generated.
  • FIG. 1 is a block diagram showing a projection image generation apparatus according to a first embodiment of the present invention.
  • the flowchart which shows an operation
  • the block diagram which shows the projection image generation apparatus of 2nd Embodiment of this invention.
  • FIG. 1 shows a projection image generating apparatus according to a first embodiment of the present invention.
  • the projection image generation apparatus 10 includes an image input unit 11, a display target area setting unit 12, a display conversion condition setting unit 13, a voxel projection unit 14, and an image conversion unit 15.
  • the function of each unit in the projection image generation apparatus 10 can be realized by a computer executing processing according to a predetermined program.
  • the image input means 11 inputs 3D image data to be processed (hereinafter also simply referred to as 3D data) and stores it in the 3D data storage unit 21.
  • the image input unit 11 inputs, for example, CT data obtained by imaging a subject with a multi-slice CT apparatus as three-dimensional data.
  • the input source device of the three-dimensional data is not particularly limited, and may be other than a multi-slice CT device.
  • the image input unit 11 inputs region information indicating the result of dividing the voxel of the three-dimensional data into a plurality of regions in addition to the three-dimensional data, and stores the region information in the region information storage unit 22.
  • an area dividing unit is provided in the projection image generating apparatus 10, and the 3D data is divided into a plurality of areas using the area dividing unit, and the area dividing result is stored in the area information. You may memorize
  • the display target area setting means 12 sets at least two areas as display targets in the three-dimensional data. For example, when the three-dimensional data is divided into regions using eight attributes 1 to 8, the display target region setting unit 12 sets a display target region using an arbitrary combination of these attributes. Also good.
  • the display target region setting means 12 sets, for example, the heart portion in the three-dimensional data as the peripheral structure region, and sets the coronary artery portion as the observation structure region.
  • the voxel projection means 14 performs a projection process on the voxel corresponding to the region set as the display target in the three-dimensional data to generate a projection image.
  • the voxel projection unit 14 generates a projection image by, for example, the maximum value projection method or the minimum value projection method.
  • the voxel projecting unit 14 shoots a ray to three-dimensional data via a projection plane from an arbitrary viewpoint position, and projects a voxel value having the maximum value or the minimum value among the voxels through which the ray passes on the projection plane.
  • a projection image is generated.
  • the display conversion condition setting unit 13 sets display conversion conditions for each of the areas set as display targets.
  • the display conversion condition defines a correspondence relationship between a voxel value in a projection image and a pixel value when the projection image is converted into a display image.
  • the display conversion condition setting unit 13 sets different display conversion conditions for each area, for example.
  • the image conversion unit 15 converts the projection image generated by the voxel projection unit 14 performing the projection process into a display image.
  • the image conversion means 15 converts the voxel value of the voxel projected on the projection image into the pixel value of the display image according to the display conversion condition set for the area to which the voxel belongs, thereby displaying the projection image for display. Convert to image.
  • the term “projection image” not only refers to an image obtained by projecting voxels of three-dimensional data onto a projection surface, but may also refer to an image obtained by converting the image into a display image.
  • Fig. 2 shows the operation procedure.
  • the image input means 11 inputs 3D data photographed by, for example, a CT apparatus or an MR apparatus (step S1).
  • the image input unit 11 may directly receive three-dimensional data from a CT device, an MR device, or the like, or may read stored three-dimensional data from a storage device (not shown).
  • the image input unit 11 stores the input 3D data in the 3D data storage unit 21.
  • the image input unit 11 also inputs region information indicating the region division result and stores the region information in the region information storage unit 22.
  • the display target area setting unit 12 sets at least two areas in the three-dimensional data as display target areas (step S2).
  • the display target area setting unit 12 sets, for example, a first area and a second area in the three-dimensional data as display target areas.
  • the display conversion condition setting unit 13 sets a display conversion condition used when the image conversion unit 15 converts a projection image into a display image for each of the regions set as display target regions (step S3).
  • the display conversion condition setting means 13 sets, for example, a first display conversion condition for the first area, and sets a second display conversion condition for the second area.
  • the display conversion condition setting unit 13 sets a window conversion parameter as a display conversion condition when, for example, the image conversion unit 15 converts a voxel value projected onto a projection image by window conversion into a pixel value of a display image.
  • the display conversion condition setting unit 13 may use the color map as the display condition when the image conversion unit 15 converts the image according to the color map that defines the correspondence between the voxel value of the projection image and the display color in the display image. May be set as When the image conversion unit 15 converts the pixels of the projection image into a single color according to which region the projection source voxel belongs to, the display conversion condition setting unit 13 corresponds to which color each region corresponds to. Can also be set as a display condition.
  • the voxel projection means 14 projects the voxel of the three-dimensional data onto the projection image (projection plane) by, for example, the maximum value projection method (Step S4). At this time, the voxel projecting unit 14 generates projection source region information indicating which region of the display target region the voxel projected on the projection image belongs to.
  • the image conversion means 15 converts the pixel value of each pixel of the projection image, that is, the voxel value of each voxel projected on the projection image, to the pixel value of the display image according to the display conversion condition set for the region to which the voxel belongs. Conversion is performed (step S5).
  • the image conversion means 15 refers to the projection source area information, and checks for each pixel of the projection image which area the voxel projected on each pixel belongs. For example, when a pixel in the projection image is a pixel on which a voxel belonging to the first region of the three-dimensional data is projected, the image conversion unit 15 displays the pixel value of the projection image in accordance with the first display conversion condition. To the pixel value. When another pixel of the projection image is a pixel on which a voxel belonging to the second region of the three-dimensional data is projected, the pixel value of the projection image is changed to the pixel value of the display image according to the second display conversion condition. Convert.
  • the image conversion means 15 outputs and displays the generated display image on a display monitor or the like (step S6).
  • the coronary artery portion is an observation structure to be mainly observed, and the heart portion is a peripheral structure.
  • FIG. 3 shows the region setting of the peripheral structure.
  • the display target region setting means 12 sets a voxel corresponding to the heart portion among the voxels constituting the three-dimensional data as the first region to be displayed.
  • FIG. 4 shows the region setting of the observation structure.
  • the display target region setting unit 12 sets a voxel corresponding to the coronary artery portion among the voxels constituting the three-dimensional data as the second region to be displayed.
  • FIG. 5A and 5B show display conversion conditions. 5A and 5B, the horizontal axis corresponds to the voxel value, and the vertical axis corresponds to the gradation value or display color of the pixel.
  • FIG. 5A shows display conversion conditions set for the first region corresponding to the heart portion.
  • the display conversion condition setting unit 13 sets, for example, the window center 400 and the window width 1000, which are parameters for window conversion, as the first display conversion condition for the first area.
  • FIG. 5B shows display conversion conditions set for the second region corresponding to the coronary artery portion.
  • the display conversion condition setting unit 13 sets, for example, the window center 300 and the window width 500, which are parameters for window conversion, as the second display conversion condition for the second area.
  • FIG. 6 shows a projection image converted into a display image.
  • the projected voxel values are converted into the pixel values of the display image according to the first display condition. To do.
  • the projected voxel values are converted into the pixel values of the display image according to the second display condition.
  • display conversion conditions are set according to the distribution of voxel values of the voxels constituting the heart part in the three-dimensional data, and for the coronary artery part, the distribution of the voxel values of the voxels constituting the coronary artery part in the three-dimensional data
  • display conversion conditions it is possible to convert the heart part and coronary artery part imaged in the projection image into display images under display conversion conditions suitable for both.
  • FIG. 7 shows an example in which a projection image is converted into a display image using the first display conversion condition (FIG. 5A).
  • the coronary artery portion that is preferably converted under the second display conversion condition (FIG. 5B) is converted into a display image under the first display conversion condition. It is difficult to distinguish between the coronary artery portion and the heart portion that is the surrounding structure.
  • FIG. 8 shows an example in which the projection image is converted into a display image using the second display conversion condition (FIG. 5B).
  • FIG. 8 shows an observation structure because a heart portion that is preferably converted under the first display conversion condition (FIG. 5A) is converted into a display image under the second display conversion condition. It is difficult to distinguish between the coronary artery portion and the heart portion that is the surrounding structure. Thus, in both FIG. 7 and FIG. 8, the coronary artery portion that is the observation structure and the heart portion that is the peripheral structure are more difficult to distinguish than in the case of FIG.
  • display conversion conditions are set for each of at least two areas to be displayed.
  • Projection processing is performed to project voxels onto the projected image, and each voxel value in the projected image is converted into a pixel value of the display image according to the display conversion condition set for the region to which each voxel belongs. For example, even if the voxel values projected on the projected image are the same value, if the projection source voxel belongs to a different area, it is converted into a display image under the display conversion conditions set for each area. Therefore, the pixel values in the converted display image can be different from each other.
  • a plurality of areas imaged in the projection image can be converted into display images under display conversion conditions suitable for each area. Can do. That is, when projecting two or more regions onto a projection image, a display image including these regions in a state suitable for observation can be generated.
  • FIG. 9 shows a projection image generation apparatus according to the second embodiment of the present invention.
  • the projection image generation device 10a of the present embodiment has a voxel value conversion means 16.
  • the voxel value conversion means 16 applies the voxel value of the voxel corresponding to at least one area of at least two areas set as the display target to the area. The conversion is performed in accordance with the set predetermined signal conversion conditions.
  • the voxel value conversion means 16 converts the voxel value of the voxel existing on the line of sight according to the signal conversion condition set for each area, for example, when the voxel projection means 14 obtains the maximum value on the line of sight in the projection process.
  • the voxel projection means 14 searches for the maximum value from the converted voxel values in the voxels on the line of sight, and projects the voxel having the maximum value on the projection image.
  • the voxel value conversion unit 16 may convert the voxel values before the voxel projection unit 14 performs the projection process, and the voxel projection unit 14 may perform the projection process on the converted voxel value.
  • the voxel value conversion means 16 converts the voxel value so that the signal value of the observation structure takes a relatively high signal value compared to the signal value of the surrounding structure. By performing such signal conversion, the observation structure can be projected onto the projection image. Window conversion can be used to convert voxel values.
  • the voxel value conversion means 16 performs voxel value conversion so that the voxel value is shifted to the low signal side, for example, for the voxels constituting the peripheral structure.
  • the voxel value conversion means 16 translates, for example, the voxel values of the voxels constituting the peripheral structure to the low signal side by a predetermined amount with respect to the voxel values before conversion.
  • the voxel value conversion means 16 multiplies the voxel values of the voxels constituting the peripheral structure by a predetermined coefficient smaller than 1 to shift the voxel values of the peripheral structure to the low signal side compared to before conversion. Also good.
  • the voxel value converting means 16 may convert the voxel value so that the voxel value is shifted to the high signal side with respect to the voxel constituting the observation structure.
  • the voxel value conversion means 16 may convert voxel values for both the voxels forming the peripheral structure forming the observation structure.
  • the voxel value conversion means 16 may shift, for example, the voxel value of the voxel constituting the observation structure to the high signal side and shift the voxel value of the voxel constituting the peripheral structure to the low signal side.
  • the voxel value conversion means 16 performs voxel value conversion for at least one of the display target areas, and the voxel projection means 14 performs the voxel value conversion on the three-dimensional data.
  • the projection processing is performed after converting the relative signal magnitude relationship between the voxel value of the voxel of the observation structure and the voxel value of the voxel of the surrounding structure into an appropriate relationship. Can do.
  • the voxels of the peripheral structure and the voxels of the observation structure can be projected onto the projection image by the maximum value projection method.
  • Other points are the same as in the first embodiment.
  • the display target region setting means may extract a region to be set as a display target from the three-dimensional data based on the three-dimensional data, and set the extracted region as a display target region.
  • the display target area setting unit may extract the heart part and the coronary artery part from the three-dimensional data, and set the extracted heart part and the coronary artery part as the display target area.
  • the present invention has been described based on the preferred embodiment.
  • the projection image generating apparatus, method, and program of the present invention are not limited to the above-described embodiment, and various configurations are possible from the configuration of the above-described embodiment. Those modified and changed as described above are also included in the scope of the present invention.

Abstract

【課題】2以上の領域を含む投影画像を生成する際に、それら領域を観察に適した状態で含む投影画像を生成する。 【解決手段】表示対象領域設定手段(12)は、三次元画像データのうちで、少なくとも2つの領域を表示対象として設定する。表示変換条件設定手段(13)は、表示対象として設定された少なくとも2つの領域のそれぞれに対して表示変換条件を設定する。ボクセル投影手段(14)は、三次元画像データのうちの表示対象として設定された領域に該当するボクセルに対して投影処理を行って投影画像を生成する。画像変換手段(15)は、投影画像に投影されたボクセルのボクセル値を、各ボクセルが属する領域に対して設定された表示変換条件に従って表示用画像の画素値に変換することにより、投影画像を表示用画像に変換する。

Description

投影画像生成装置、方法、及びプログラム
 本発明は、投影画像生成装置、方法、及びプログラムに関し、更に詳しくは、三次元画像データに対して投影処理を行って表示用の投影画像を生成する投影画像生成装置、方法、及びプログラムに関する。
 三次元画像データに対して投影処理を行って投影画像を生成する手法の1つとして、最大値投影法(MIP:maximum intensity projection)が知られている。最大値投影法では、投影面から伸ばした直線上に存在するボクセルの最大値を投影画像の画素値とする。投影面上に投影された投影画像の画素値は三次元画像データのボクセル値であるため、これを所定の表示変換条件に従って表示用画像の画素値に変換した上で画像表示を行う。表示変換には、例えばウィンドウ変換が用いることができる。ウィンドウ変換のパラメータには、ウィンドウセンター及びウィンドウ幅が含まれる。
 最大値投影法は、造影剤を用いたCT(Computed Tomography)撮影やMRI(magnetic resonance imaging)での血管観察のように、対象が高信号を有する場合に用いられることが多い。ただし、最大値投影法で得られる表示用画像では、投影面から見た奥行き方向の情報が失われるため、例えば画像に造影血管と骨とが含まれる場合など、対象物以外に高信号を有するものがあると観察が困難になる。例えば観察対象である血管部分の信号値(ボクセル値)よりも骨の部分の信号値が高いと、骨の部分が多く投影面に投影され、その結果、血管部分が骨に隠れる形となって、血管部分の観察が困難になる
 上記のような問題を回避するために、最大値投影法では表示対象を限定した上で投影画像を生成することが多い。例えば三次元データに対して何らかの領域や対象を抽出し、その抽出結果を、属性値として抽出された領域に対応するボクセルに与える。例えば1つのボクセルに対して1byteの情報空間を割り当て、各ビットをそれぞれ異なる属性に対応させることで、各ボクセルに8つの属性を与えることができる。投影画像の生成に際して、表示対象とすべき属性、或いは表示対象から除外すべき属性を指定することで、特定の属性の領域のみ、或いは特定の属性の領域を除外して画像表示を行うことができる。
 例えば高信号の骨の部分を投影面に対する投影の対象から除外することで、観察対象である血管部分を投影面に投影することができ、血管の様子を良好に観察できる。また表示に際しては、観察対象だけでなく、その周辺構造も表示されるようにすることが好ましい。周辺構造を表示することで、観察対象の位置が把握しやすくなる。
 ここで、観察構造と周辺構造とにおけるボクセル値が同じ値であるか、或いはボクセル値が近い値の場合、観察構造と周辺構造との区別が付きにくくなり、観察構造の観察が困難になる。この問題に対し、特許文献1では、周辺構造に該当するボクセルの信号値(ボクセル値)を、所定の変換処理により得られた信号値に付け替え、信号値が付け替えられた三次元画像データに対して投影処理を行うことが記載されている。例えば観察構造として冠動脈血管を考え、周辺構造として心臓を考えたとき、心臓部分に対応するボクセルの信号値を、冠動脈血管に対応するボクセルの信号値よりも相対的に小さい値の信号値に付け替える。このように信号値の付け替えを行った画像に対して最大値投影法により投影画像を生成することで、冠動脈血管部分の詳細な観察が可能になる。
 
特開2008-206965号公報
 特許文献1では、周辺構造のボクセル値が観察構造のボクセル値よりも大きな値であるときでも、ボクセル値の付け替えを行うことで、投影面に観察構造のボクセルを投影することができる。しかし、特許文献1においては、観察構造と周辺構造とを、同一の表示変換条件で表示用の画像に変換している。例えば、観察構造の信号値が比較的広い範囲の間に緩やかに変化するのに対し、周辺構造の信号値は比較的狭い範囲で急峻に変化することがある。このような場合に、投影面に投影されたボクセル値を同一の変換条件で表示用画像の画素値に変換すると、全体として適切な画像を得ることができない。
 本発明は、上記に鑑み、2以上の領域を含む投影画像を生成する際に、それら領域を観察に適した状態で含む投影画像を生成可能な投影画像生成装置、方法、及びプログラムを提供することを目的とする。
 上記目的を達成するために、本発明は、被検体を撮影した複数の領域を含む三次元画像データのうちで、少なくとも2つの領域を表示対象として設定する表示対象領域設定手段と、前記表示対象として設定された少なくとも2つの領域のそれぞれに対して表示変換条件を設定する表示変換条件設定手段と、前記三次元画像データのうちの前記表示対象として設定された領域に該当するボクセルに対して投影処理を行って投影画像を生成するボクセル投影手段と、前記投影画像に投影されたボクセルのボクセル値を、該ボクセルが属する領域に対して設定された前記表示変換条件に従って表示用画像の画素値に変換することにより、前記投影画像を表示用画像に変換する画像変換手段とを備えることを特徴とする投影画像生成装置を提供する。
 本発明の投影画像生成装置は、前記表示対象として設定された少なくとも2つの領域のうちの少なくとも1つの領域に該当するボクセルのボクセル値を、当該領域に対して設定された所定の信号変換条件に従って変換するボクセル値変換手段を更に備え、前記ボクセル投影手段が、ボクセル値が変換された三次元画像データに対して投影処理を行う構成を採用することができる。
 前記表示変換条件は、前記ボクセル値と表示用画像における画素値との対応関係を定義するものとすることができる。
 前記画像変換手段が、ウィンドウ変換により前記ボクセル値を前記表示画像用画像における画素値に変換し、前記表示変換条件設定手段が、前記ウィンドウ変換のパラメータを表示変換条件として設定する構成としてもよい。
 上記に代えて、前記画像変換手段が、カラーマップに従って前記ボクセル値を前記表示画像用画像における画素値に変換し、前記表示変換条件設定手段が、前記カラーマップを変換条件として設定する構成としてもよい。
 前記ボクセル投影手段は、最大値投影法又は最小値投影法により前記ボクセルに対して投影処理を行うことができる。
 表示対象領域設定手段が、前記三次元画像データに基づいて、該三次元画像データの中から前記表示対象として設定すべき領域を抽出することとしてもよい。
 前記ボクセル投影手段が、前記投影処理の際に前記投影画像における各画素が表示対象の領域のうちの何れの領域のボクセルを投影したものであるかを示す投影元領域情報を生成し、前記画像変換手段が、前記投影元領域情報を参照して、前記投影画像に投影されたボクセルが所属する領域を判別する構成としてもよい。
 本発明は、また、被検体を撮影した複数の領域を含む三次元画像データのうちで、少なくとも2つの領域を表示対象として設定するステップと、前記表示対象として設定された少なくとも2つの領域のそれぞれに対して表示変換条件を設定するステップと、前記三次元画像データのうちの前記表示対象として設定された領域に該当するボクセルに対して投影処理を行って投影画像を生成するステップと、前記投影画像に投影されたボクセルのボクセル値を、該ボクセルが属する領域に対して設定された前記表示変換条件に従って表示用画像の画素値に変換することにより、前記投影画像を表示用画像に変換するステップとを有することを特徴とする投影画像生成方法を提供する。
 更に本発明は、コンピュータに、被検体を撮影した複数の領域を含む三次元画像データのうちで、少なくとも2つの領域を表示対象として設定する手順と、前記表示対象として設定された少なくとも2つの領域のそれぞれに対して表示変換条件を設定する手順と、前記三次元画像データのうちの前記表示対象として設定された領域に該当するボクセルに対して投影処理を行って投影画像を生成する手順と、前記投影画像に投影されたボクセルのボクセル値を、該ボクセルが属する領域に対して設定された前記表示変換条件に従って表示用画像の画素値に変換することにより、前記投影画像を表示用画像に変換する手順とを実行させるためのプログラムを提供する。
 本発明の投影画像生成装置、方法、及びプログラムでは、表示対象とする少なくとも2つの領域のそれぞれに対して表示変換条件を設定する。投影処理を行って投影画像(投影面)にボクセルを投影し、投影画像における各ボクセル値を、各ボクセルが属する領域に対して設定された表示変換条件に従って表示用画像の画素値に変換する。例えば投影画像に投影されたボクセル値が同じ値であったとしても、投影元のボクセルが異なる領域に属する場合には、それぞれの領域に対して設定された表示変換条件で表示用画像への変換が行われるため、2以上の領域を投影画像に投影する際に、それら領域を観察に適した状態で含む表示用画像を生成することができる。
本発明の第1実施形態の投影画像生成装置を示すブロック図。 動作手順を示すフローチャート。 周辺構造の領域設定を示す図。 観察構造の領域設定を示す図。 表示変換条件を示す図。 表示変換条件を示す図。 表示用の画像に変換した投影画像を示す図。 同一の表示条件で表示用画像に変換した例を示す図。 別の同一の表示条件で表示用画像に変換した例を示す図。 本発明の第2実施形態の投影画像生成装置を示すブロック図。
 以下、図面を参照し、本発明の実施の形態を詳細に説明する。図1は、本発明の第1実施形態の投影画像生成装置を示す。投影画像生成装置10は、画像入力手段11、表示対象領域設定手段12、表示変換条件設定手段13、ボクセル投影手段14、及び画像変換手段15を有する。投影画像生成装置10内の各部の機能は、コンピュータが所定のプログラムに従って処理を実行することで実現可能である。
 画像入力手段11は、処理対象の三次元画像データ(以下、単に三次元データとも呼ぶ)を入力し、三次元データ記憶部21に格納する。画像入力手段11は、例えば被検体をマルチスライスCT装置で撮影したCTデータを三次元データとして入力する。三次元データの入力元の装置は特に限定されず、マルチスライスCT装置以外であってもよい。
 画像入力手段11は、三次元データに加えて、三次元データのボクセルを複数の領域に分割した結果を示す領域情報を入力し、領域情報記憶部22に記憶する。領域情報を外部から入力するのに代えて、投影画像生成装置10内に領域分割手段を設け、その領域分割手段を用いて三次元データを複数の領域に分割し、領域分割結果を領域情報記憶部22に記憶してもよい。
 表示対象領域設定手段12は、三次元データのうちで、少なくとも2つの領域を表示対象として設定する。例えば三次元データが属性1から属性8までの8つの属性を用いて領域分割されているとき、表示対象領域設定手段12は、それら属性の任意の組み合わせを用いて表示対象の領域を設定してもよい。表示対象領域設定手段12は、例えば三次元データ中の心臓部分を周辺構造の領域として設定し、冠動脈部分を観察構造の領域として設定する。
 ボクセル投影手段14は、三次元データのうちの表示対象として設定された領域に該当するボクセルに対して投影処理を行って投影画像を生成する。ボクセル投影手段14は、例えば最大値投影法又は最小値投影法により投影画像を生成する。ボクセル投影手段14は、例えば任意の視点位置から投影面を介して三次元データにレイを飛ばし、レイが通過するボクセルのうち、最大値又は最小値を有するボクセルの値を投影面上に投影することで投影画像を生成する。
 表示変換条件設定手段13は、表示対象として設定された領域のそれぞれに対して、表示変換条件を設定する。ここで表示変換条件とは、投影画像におけるボクセル値と、その投影画像を表示用の画像に変換した際の画素値との対応関係を定義するものである。表示変換条件設定手段13は、例えば各領域に、領域ごとに異なる表示変換条件を設定する。
 画像変換手段15は、ボクセル投影手段14が投影処理を行うことで生成した投影画像を、表示用画像に変換する。画像変換手段15は、投影画像に投影されたボクセルのボクセル値を、そのボクセルが属する領域に対して設定された表示変換条件に従って表示用画像の画素値に変換することにより、投影画像を表示用画像に変換する。なお、本明細書において、“投影画像”という用語は、三次元データのボクセルを投影面に投影した画像を指すだけでなく、その画像を表示用の画像に変換したものを指す場合があるものとする。
 図2は、動作手順を示す。画像入力手段11は、例えばCT装置やMR装置で撮影された三次元データを入力する(ステップS1)。画像入力手段11は、CT装置やMR装置などから三次元データを直接受け取ってもよく、或いは記憶済みの三次元データを図示しない記憶装置から読み出してもよい。画像入力手段11は、入力した三次元データを三次元データ記憶部21に格納する。また画像入力手段11は、領域分割結果を示す領域情報を入力し、領域情報記憶部22に格納する。
 表示対象領域設定手段12は、三次元データ中の少なくとも2つの領域を表示対象領域として設定する(ステップS2)。表示対象領域設定手段12は、例えば三次元データ中の第1の領域と第2の領域とを、表示対象の領域として設定する。表示変換条件設定手段13は、表示対象領域として設定された領域のそれぞれに対し、画像変換手段15が投影画像から表示用画像に変換する際に用いる表示変換条件を設定する(ステップS3)。表示変換条件設定手段13は、例えば第1の領域に対して第1の表示変換条件を設定し、第2の領域に対して第2の表示変換条件を設定する。
 表示変換条件設定手段13は、例えば画像変換手段15がウィンドウ変換により投影画像に投影されたボクセル値を表示用画像の画素値に変換するときは、ウィンドウ変換のパラメータを表示変換条件として設定する。あるいは表示変換条件設定手段13は、画像変換手段15が投影画像のボクセル値と表示用画像における表示色との対応関係を定義するカラーマップも従って画像の変換を行う場合は、カラーマップを表示条件として設定してもよい。表示変換条件設定手段13は、画像変換手段15が投影画像の画素を投影元のボクセルがどの領域に所属するかに従って単一の色に変換する場合には、各領域がどの色に対応するかを表示条件として設定することもできる。
 ボクセル投影手段14は、例えば最大値投影法により、三次元データのボクセルを投影画像(投影面)に投影する(ステップS4)。このとき、ボクセル投影手段14は、投影画像に投影されたボクセルが、表示対象領域のうちのどの領域に属しているかを示す投影元領域情報を生成する。画像変換手段15は、投影画像の各画素の画素値、すなわち投影画像に投影された各ボクセルのボクセル値を、ボクセルが属する領域に対して設定された表示変換条件に従って表示用画像の画素値に変換する(ステップS5)。
 画像変換手段15は、ステップS5では、投影元領域情報を参照して、投影画像の画素ごとに、各画素に投影されたボクセルが、どの領域に属しているかを調べる。画像変換手段15は、例えば投影画像のある画素が三次元データの第1の領域に属するボクセルが投影された画素であるときは、第1の表示変換条件に従って投影画像の画素値を表示用画像の画素値に変換する。また、投影画像の別の画素が三次元データの第2の領域に属するボクセルが投影された画素である場合は、第2の表示変換条件に従って投影画像の画素値を表示用画像の画素値に変換する。画像変換手段15は、生成した表示用画像を表示モニタなどに出力し表示する(ステップS6)。
 以下、冠動脈部分と心臓部分とを、投影画像を用いて観察する場合を例に挙げて説明する。冠動脈部分は主に観察したい観察構造であり、心臓部分は周辺構造である。図3は、周辺構造の領域設定を示す。表示対象領域設定手段12は、三次元データを構成するボクセルのうち、心臓部分に該当するボクセルを表示対象の第1の領域として設定する。図4は、観察構造の領域設定を示す。表示対象領域設定手段12は、三次元データを構成するボクセルのうち、冠動脈部分に該当するボクセルを表示対象の第2の領域として設定する。
 図5A及び図5Bは、それぞれ表示変換条件を示す。図5A及び図5Bにおいて、横軸はボクセル値に対応し、縦軸は画素の階調値又は表示色に対応している。図5Aは、心臓部分に該当する第1の領域に対して設定される表示変換条件を示す。表示変換条件設定手段13は、第1の領域に対して、例えばウィンドウ変換のパラメータであるウィンドウ中心400、ウィンドウ幅1000を第1の表示変換条件として設定する。図5Bは、冠動脈部分に該当する第2の領域に対して設定される表示変換条件を示している。表示変換条件設定手段13は、第2の領域に対して、例えばウィンドウ変換のパラメータであるウィンドウ中心300、ウィンドウ幅500を第2の表示変換条件として設定する。
 図6は、表示用の画像に変換された投影画像を示す。ボクセル値が投影された投影画像において、心臓部分に該当する第1の領域に属するボクセルが投影された画素については、投影されたボクセル値を第1の表示条件に従って表示用画像の画素値に変換する。また、冠動脈部分に該当する第2の領域に属するボクセルが投影された画素については、投影されたボクセル値を第2の表示条件に従って表示用画像の画素値に変換する。この変換により、図6に示す表示用画像が得られる。心臓部分については、三次元データにおいて心臓部分を構成するボクセルのボクセル値の分布に応じた表示変換条件を設定し、冠動脈部分については、三次元データにおいて冠動脈部分を構成するボクセルのボクセル値の分布に応じた表示変換条件を設定しておくことで、投影画像で画像化される心臓部分と冠動脈部分とを、双方に適した表示変換条件で表示用画像に変換することができる。
 比較例として、投影画像の全画素を、同一の表示変換条件で変換した場合を考える。図7は、投影画像を第1の表示変換条件(図5A)を用いて表示用画像に変換した例を示す。図7においては、本来であれば第2の表示変換条件(図5B)で変換することが好ましい冠動脈部分を、第1の表示変換条件で表示用画像に変換しているため、観察構造である冠動脈部分と周辺構造である心臓部分との区別が付きにくくなっている。
 また図8は、投影画像を第2の表示変換条件(図5B)を用いて表示用画像に変換した例を示す。図8においては、本来であれば第1の表示変換条件(図5A)で変換することが好ましい心臓部分を、第2の表示変換条件で表示用画像に変換しているため、観察構造である冠動脈部分と周辺構造である心臓部分との区別が付きにくくなっている。このように、図7及び図8の何れにおいても、観察構造である冠動脈部分と周辺構造である心臓部分とが、図6の場合に比して区別しづらくなっている。
 本実施形態では、表示対象とする少なくとも2つの領域のそれぞれに対して表示変換条件を設定する。投影処理を行って投影画像にボクセルを投影し、投影画像における各ボクセル値を、各ボクセルが属する領域に対して設定された表示変換条件に従って表示用画像の画素値に変換する。例えば投影画像に投影されたボクセル値が同じ値であったとしても、投影元のボクセルが異なる領域に属する場合には、それぞれの領域に対して設定された表示変換条件で表示用画像への変換が行われるため、変換後の表示用画像における画素値を、相互に異なる値にすることができる。本実施形態では、それぞれの領域に適した表示変換条件を設定しておくことで、投影画像で画像化される複数の領域を、各領域に適した表示変換条件で表示用画像に変換することができる。すなわち、2以上の領域を投影画像に投影する際に、それら領域を観察に適した状態で含む表示用画像を生成することができる。
 次いで本発明の第2実施形態を説明する。図9は、本発明の第2実施形態の投影画像生成装置を示す。本実施形態の投影画像生成装置10aは、図1に示す第1実施形態の投影画像生成装置10の構成に加えて、ボクセル値変換手段16を有する。ボクセル値変換手段16は、ボクセル投影手段14が投影処理を行う際に、表示対象として設定された少なくとも2つの領域のうちの少なくとも1つの領域に該当するボクセルのボクセル値を、その領域に対して設定された所定の信号変換条件に従って変換する。
 ボクセル値変換手段16は、例えばボクセル投影手段14が投影処理において視線上の最大値を求める際に、視線上に存在するボクセルのボクセル値を、領域ごとに設定された信号変換条件に従って変換する。ボクセル投影手段14は、視線上のボクセルにおける変換されたボクセル値の中から最大値を探し、最大値を有するボクセルを投影画像に投影する。これに代えてボクセル値変換手段16が、ボクセル投影手段14が投影処理を行う前にボクセル値の変換を行い、ボクセル投影手段14が変換されたボクセル値に対して投影処理を行ってもよい。
 三次元データにおいて、例えば観察構造の信号値(ボクセル値)が周辺構造の信号値よりも低いときに、最大値投影法で投影画像を生成すると、観察構造部分が投影画像に投影されなくなる。このような場合、ボクセル値変換手段16が、観察構造の信号値が、周辺構造の信号値に比べて相対的に高い信号値を取るようにボクセル値を変換する。このような信号変換を行うことで、観察構造を投影画像に投影することができる。ボクセル値の変換には、ウィンドウ変換を用いることができる。
 ボクセル値変換手段16は、例えば周辺構造を構成するボクセルに対して、ボクセル値が低信号側にシフトするようにボクセル値の変換を行う。ボクセル値変換手段16は、例えば周辺構造を構成するボクセルのボクセル値を、変換前のボクセル値に対して所定の量だけ低信号側に平行移動する。あるいはボクセル値変換手段16は、周辺構造を構成するボクセルのボクセル値に対して1より小さい所定の係数を乗じることで、周辺構造のボクセル値を変換前に比して低信号側にシフトさせてもよい。
 上記に代えて、ボクセル値変換手段16は、観察構造を構成するボクセルに対して、ボクセル値が高信号側にシフトするようにボクセル値の変換を行ってもよい。ボクセル値変換手段16は、観察構造を構成する周辺構造を構成するボクセルとの双方に対してボクセル値の変換を行ってもよい。ボクセル値変換手段16は、例えば観察構造を構成するボクセルのボクセル値を高信号側にシフトさせると共に、周辺構造を構成するボクセルのボクセル値を低信号側にシフトさせてもよい。
 本実施形態では、ボクセル値変換手段16が表示対象領域のうちの少なくとも1つの領域に対してボクセル値の変換を行、ボクセル投影手段14が、ボクセル値の変換がおこなわれた三次元データに対して投影処理を行う。このような構成を採用することで、観察構造のボクセルのボクセル値と、周辺構造のボクセルのボクセル値との相対的な信号の大小関係を適切な関係に変換した上で、投影処理を行うことができる。その結果、例えば周辺構造が観察構造よりも高信号であったとできでも、最大値投影法により、周辺構造のボクセルと観察構造のボクセルとを投影画像に投影することができる。その他の点は第1実施形態と同様である。
 なお、上記実施形態では、領域の分割と表示対象領域の設定とを別個に行う例を説明したが、これには限定されない。例えば表示対象領域設定手段が、三次元データに基づいて、三次元データの中から表示対象として設定すべき領域を抽出し、抽出した領域を表示対象の領域として設定してもよい。具体的には、表示対象領域設定手段が、三次元データから心臓部分と冠動脈部分とを抽出し、抽出した心臓部分と冠動脈部分とを表示対象領域として設定してもよい。
 以上、本発明をその好適な実施形態に基づいて説明したが、本発明の投影画像生成装置、方法、及びプログラムは、上記実施形態にのみ限定されるものではなく、上記実施形態の構成から種々の修正及び変更を施したものも、本発明の範囲に含まれる。

Claims (10)

  1.  被検体を撮影した複数の領域を含む三次元画像データのうちで、少なくとも2つの領域を表示対象として設定する表示対象領域設定手段と、
     前記表示対象として設定された少なくとも2つの領域のそれぞれに対して表示変換条件を設定する表示変換条件設定手段と、
     前記三次元画像データのうちの前記表示対象として設定された領域に該当するボクセルに対して投影処理を行って投影画像を生成するボクセル投影手段と、
     前記投影画像に投影されたボクセルのボクセル値を、該ボクセルが属する領域に対して設定された前記表示変換条件に従って表示用画像の画素値に変換することにより、前記投影画像を表示用画像に変換する画像変換手段とを備えることを特徴とする投影画像生成装置。
  2.  前記表示対象として設定された少なくとも2つの領域のうちの少なくとも1つの領域に該当するボクセルのボクセル値を、当該領域に対して設定された所定の信号変換条件に従って変換するボクセル値変換手段を更に備え、
     前記ボクセル投影手段が、ボクセル値が変換された三次元画像データに対して投影処理を行うものであることを特徴とする請求項1に記載の投影画像生成装置。
  3.  前記表示変換条件が、前記ボクセル値と表示用画像における画素値との対応関係を定義するものであることを特徴とする請求項1又は2に記載の投影画像生成装置。
  4.  前記画像変換手段が、ウィンドウ変換により前記ボクセル値を前記表示画像用画像における画素値に変換するものであり、前記表示変換条件設定手段が、前記ウィンドウ変換のパラメータを表示変換条件として設定するものであることを特徴とする請求項1から3何れかに記載の投影画像生成装置。
  5.  前記画像変換手段が、カラーマップに従って前記ボクセル値を前記表示画像用画像における画素値に変換するものであり、前記表示変換条件設定手段が、前記カラーマップを変換条件として設定するものであることを特徴とする請求項1から3何れかに記載の投影画像生成装置。
  6.  前記ボクセル投影手段が、最大値投影法又は最小値投影法により前記ボクセルに対して投影処理を行うものであることを特徴とする請求項1から5何れかに記載の投影画像生成装置。
  7.  表示対象領域設定手段が、前記三次元画像データに基づいて、該三次元画像データの中から前記表示対象として設定すべき領域を抽出するものであることを特徴とする請求項1から6何れかに記載の投影画像生成装置。
  8.  前記ボクセル投影手段が、前記投影処理の際に前記投影画像における各画素が表示対象の領域のうちの何れの領域のボクセルを投影したものであるかを示す投影元領域情報を生成し、前記画像変換手段が、前記投影元領域情報を参照して、前記投影画像に投影されたボクセルが所属する領域を判別するものであることを特徴とする請求項1から7何れかに記載の投影画像生成装置。
  9.  被検体を撮影した複数の領域を含む三次元画像データのうちで、少なくとも2つの領域を表示対象として設定するステップと、
     前記表示対象として設定された少なくとも2つの領域のそれぞれに対して表示変換条件を設定するステップと、
     前記三次元画像データのうちの前記表示対象として設定された領域に該当するボクセルに対して投影処理を行って投影画像を生成するステップと、
     前記投影画像に投影されたボクセルのボクセル値を、該ボクセルが属する領域に対して設定された前記表示変換条件に従って表示用画像の画素値に変換することにより、前記投影画像を表示用画像に変換するステップとを有することを特徴とする投影画像生成方法。
  10.  コンピュータに、
     被検体を撮影した複数の領域を含む三次元画像データのうちで、少なくとも2つの領域を表示対象として設定する手順と、
     前記表示対象として設定された少なくとも2つの領域のそれぞれに対して表示変換条件を設定する手順と、
     前記三次元画像データのうちの前記表示対象として設定された領域に該当するボクセルに対して投影処理を行って投影画像を生成する手順と、
     前記投影画像に投影されたボクセルのボクセル値を、該ボクセルが属する領域に対して設定された前記表示変換条件に従って表示用画像の画素値に変換することにより、前記投影画像を表示用画像に変換する手順とをコンピュータに実行させるためのプログラム。
PCT/JP2011/004595 2010-08-31 2011-08-16 投影画像生成装置、方法、及びプログラム WO2012029243A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010194711A JP2012050586A (ja) 2010-08-31 2010-08-31 投影画像生成装置、方法、及びプログラム
JP2010-194711 2010-08-31

Publications (1)

Publication Number Publication Date
WO2012029243A1 true WO2012029243A1 (ja) 2012-03-08

Family

ID=45772370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004595 WO2012029243A1 (ja) 2010-08-31 2011-08-16 投影画像生成装置、方法、及びプログラム

Country Status (2)

Country Link
JP (1) JP2012050586A (ja)
WO (1) WO2012029243A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6021340B2 (ja) * 2012-01-31 2016-11-09 東芝メディカルシステムズ株式会社 医用画像処理装置及び制御プログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07282293A (ja) * 1994-04-05 1995-10-27 Hitachi Ltd 3次元画像生成方法
JPH07320028A (ja) * 1994-05-24 1995-12-08 Ge Yokogawa Medical Syst Ltd 投影画像処理方法及び投影画像処理装置
JP2001084409A (ja) * 1999-09-13 2001-03-30 Toshiba Iyo System Engineering Kk 三次元画像処理方法及び三次元画像処理装置
JP2002236910A (ja) * 2001-02-09 2002-08-23 Hitachi Medical Corp 3次元画像作成方法
JP2010000144A (ja) * 2008-06-18 2010-01-07 Toshiba Corp 医用画像処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07282293A (ja) * 1994-04-05 1995-10-27 Hitachi Ltd 3次元画像生成方法
JPH07320028A (ja) * 1994-05-24 1995-12-08 Ge Yokogawa Medical Syst Ltd 投影画像処理方法及び投影画像処理装置
JP2001084409A (ja) * 1999-09-13 2001-03-30 Toshiba Iyo System Engineering Kk 三次元画像処理方法及び三次元画像処理装置
JP2002236910A (ja) * 2001-02-09 2002-08-23 Hitachi Medical Corp 3次元画像作成方法
JP2010000144A (ja) * 2008-06-18 2010-01-07 Toshiba Corp 医用画像処理装置

Also Published As

Publication number Publication date
JP2012050586A (ja) 2012-03-15

Similar Documents

Publication Publication Date Title
JP4233547B2 (ja) 画像表示処理方法
JP5637653B2 (ja) 医用画像処理装置、超音波診断装置、及び医用画像処理プログラム
JP5877833B2 (ja) 多重画像の融合
JP5818531B2 (ja) 画像処理システム、装置及び方法
JP2007528769A (ja) 表面レンダリングのためのエッジに沿った適合的なサンプリング
JP2006198060A (ja) 画像処理方法および画像処理プログラム
JP6040193B2 (ja) 3次元方向設定装置および方法並びにプログラム
US20090003668A1 (en) Image processing method, image processing program, and image processing device
JP6215057B2 (ja) 可視化装置、可視化プログラムおよび可視化方法
JP2013106870A (ja) 医用画像処理装置
JP2012045256A (ja) 領域分割結果修正装置、方法、及びプログラム
JP4122314B2 (ja) 投影画像処理方法、投影画像処理プログラム、投影画像処理装置
US8933926B2 (en) Image processing apparatus, method, and program
JP5595207B2 (ja) 医用画像表示装置
JP6564075B2 (ja) 医用画像を表示するための伝達関数の選択
WO2011040015A1 (ja) 医用画像表示装置および方法ならびにプログラム
JP4709603B2 (ja) 医用画像処理装置
JP2007181659A (ja) 画像処理装置、磁気共鳴イメージング装置及び画像処理方法
JP2012100955A (ja) 医用画像表示装置
JP2001022964A (ja) 三次元画像表示装置
US20030095120A1 (en) Method and device for the simultaneous display of arbitrarily selectable, complementary sectional images
JP6533687B2 (ja) 医用画像処理装置、医用画像処理方法、及び医用画像処理プログラム
JP2010131315A (ja) 医用画像処理装置及び医用画像処理プログラム
WO2012029243A1 (ja) 投影画像生成装置、方法、及びプログラム
JP6418344B1 (ja) コンピュータプログラム、画像処理装置及び画像処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821268

Country of ref document: EP

Kind code of ref document: A1