WO2012029179A1 - 無線送電装置 - Google Patents

無線送電装置 Download PDF

Info

Publication number
WO2012029179A1
WO2012029179A1 PCT/JP2010/065167 JP2010065167W WO2012029179A1 WO 2012029179 A1 WO2012029179 A1 WO 2012029179A1 JP 2010065167 W JP2010065167 W JP 2010065167W WO 2012029179 A1 WO2012029179 A1 WO 2012029179A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
power transmission
electromagnetic wave
power
transmission device
Prior art date
Application number
PCT/JP2010/065167
Other languages
English (en)
French (fr)
Inventor
川野 浩康
田口 雅一
聡 下川
昭嘉 内田
清人 松井
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2010/065167 priority Critical patent/WO2012029179A1/ja
Priority to JP2012531645A priority patent/JP5488698B2/ja
Priority to CN201080068800.7A priority patent/CN103081293B/zh
Priority to EP10856728.0A priority patent/EP2613424B1/en
Priority to KR1020137005046A priority patent/KR20130041987A/ko
Publication of WO2012029179A1 publication Critical patent/WO2012029179A1/ja
Priority to US13/763,901 priority patent/US20130147283A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/346Preventing or reducing leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer

Definitions

  • the present invention relates to a power transmission device.
  • wireless power transmission technology an electromagnetic wave is radiated from a coil inside the power transmission device toward a coil inside the power reception device, and electric power is wirelessly transmitted via the radiated electromagnetic wave.
  • a power transmission device is provided with a mechanism for fixing the arrangement of the power reception device (cradle mechanism), and the power reception device is disposed to perform wireless power transmission.
  • leakage electromagnetic waves electromagnetic waves leaking into the space
  • an electromagnetic wave having a certain intensity or more adversely affects the human body.
  • a technique is known in which a leakage magnetic flux detection coil is provided on the power receiving device side, the detection result is fed back to the power transmission device side, and the leakage magnetic flux is reduced on the power transmission device side.
  • the electromagnetic wave having a strength that adversely affects the human body is not absorbed by the human body.
  • the conventional technology described above has a problem that the influence of electromagnetic waves on the surroundings cannot be sufficiently suppressed. Specifically, in the conventional technique for adjusting the position of the power receiving device, if the power receiving device is slightly deviated from the marking position, the leakage electromagnetic wave becomes larger than the reference value, which affects the surrounding electronic equipment or the human body. There is a risk of affecting.
  • the disclosed technology has been made to solve the above-described problems of the prior art, and an object thereof is to provide a power transmission device that can sufficiently suppress the influence of electromagnetic waves on the surroundings.
  • the power transmission device disclosed in the present application includes a first coil that radiates a first electromagnetic wave toward an external coil.
  • the power transmission device is arranged at a position where the central axis of the first coil and the central axis of the first coil are different from each other, and are arranged close to the first coil, so that the intensity distribution has a polarity opposite to that of the first electromagnetic wave.
  • a second coil that emits a second electromagnetic wave is provided.
  • FIG. 1 is a diagram illustrating an overview configuration of a power transmission / reception system including a power transmission device according to a first embodiment.
  • FIG. 2 is a plan view of the power transmission coil viewed from the power reception coil side.
  • FIG. 3 is a plan view of the power receiving coil viewed from the power transmitting coil side.
  • FIG. 4 is a diagram for explaining an example (part 1) of change in the electromagnetic wave intensity distribution caused by the arrangement of the correction coil.
  • FIG. 5 is an enlarged view of a portion P in FIG.
  • FIG. 6 is a diagram for explaining an example (part 2) of the change in the electromagnetic wave intensity distribution caused by the arrangement of the correction coil.
  • FIG. 7 is an enlarged view of a portion Q in FIG. FIG.
  • FIG. 8 is a diagram for explaining an example (part 3) of the change in the electromagnetic wave intensity distribution caused by the arrangement of the correction coil.
  • FIG. 9 is an enlarged view of a portion R in FIG.
  • FIG. 10 is a plan view showing a first arrangement example of the correction coil.
  • FIG. 11 is a side view of FIG.
  • FIG. 12 is a plan view showing a second arrangement example of the correction coil.
  • FIG. 13 is a side view of FIG.
  • FIG. 14 is a diagram illustrating an overview configuration of a power transmission / reception system including a power transmission device according to the second embodiment.
  • FIG. 15 is a diagram for explaining an example of a change in the electromagnetic wave intensity distribution caused by the arrangement of the correction coil.
  • FIG. 16 is an enlarged view of a portion S in FIG.
  • FIG. 17 is a plan view showing a first example of the arrangement of the correction coil.
  • FIG. 18 is a plan view showing a second arrangement example of the correction coil.
  • FIG. 1 is a diagram illustrating an overview configuration of a power transmission / reception system including a power transmission device according to a first embodiment.
  • the power transmission / reception system 1 illustrated in FIG. 1 includes a power transmission device 3 and a power reception device 5.
  • power is transmitted as electromagnetic energy from the power transmission device 3 to the power reception device 5.
  • electromagnetic energy is sometimes referred to as “electromagnetic wave”.
  • the power transmission device 3 includes therein an oscillator 31, a power source 32, a power transmission coil 33, power sources 34-1 to 34-n, correction coils 35-1 to 35-n, and a phase adjustment circuit 36.
  • the power receiving device 5 includes a power receiving coil 51 and a load circuit 52 therein.
  • the oscillator 31 oscillates a signal of a predetermined frequency, and inputs the oscillated frequency signal to the power supply 32 and the power supplies 34-1 to 34-n.
  • the power supply 32 outputs an alternating current having a frequency corresponding to the frequency signal input from the oscillator 31 to the power transmission coil 33.
  • the power supplies 34-1 to 34-n output alternating currents having frequencies corresponding to the frequency signals input from the oscillator 31 to the correction coils 35-1 to 35-n, respectively.
  • the power transmission coil 33 is a coil that radiates electromagnetic waves toward the power reception coil 51.
  • a configuration example of the power transmission coil 33 is shown in FIG. FIG. 2 is a plan view of the power transmission coil 33 viewed from the power reception coil 51 side.
  • the power transmission coil 33 includes a magnetic field resonance coil 33a and a power supply coil 33b.
  • the magnetic field resonance coil 33a is an LC resonance circuit and functions as a magnetic field resonance coil that generates magnetic field resonance with the magnetic field resonance coil 51a described later of the power receiving coil 51.
  • the capacitor component of the LC resonance circuit may be realized by an element, or may be realized by a stray capacitance with both ends of the coil being opened.
  • the power supply coil 33b is a power transmission / reception unit that is connected to the power supply 32 and supplies the power obtained from the power supply 32 to the magnetic resonance coil 33a by electromagnetic induction.
  • the arrangement of the power supply coil 33b and the magnetic field resonance coil 33a is a distance and an arrangement that can generate electromagnetic induction.
  • the power receiving coil 51 is a coil that receives an electromagnetic wave radiated from the power transmitting coil 33.
  • a configuration example of the power receiving coil 51 is shown in FIG. FIG. 3 is a plan view of the power reception coil 51 as viewed from the power transmission coil 33 side.
  • the power receiving coil 51 includes a magnetic field resonance coil 51a and a power extraction coil 51b.
  • the magnetic field resonance coil 51a is an LC resonance circuit and functions as a magnetic field resonance coil that generates magnetic field resonance with the magnetic field resonance coil 33a.
  • the capacitor component of the LC resonance circuit may be realized by an element, or may be realized by a stray capacitance with both ends of the coil being opened.
  • the power extraction coil 51b is disposed at a position where electromagnetic induction occurs between the magnetic field resonance coil 51a.
  • the power extraction coil 51b is electrically connected to the load circuit 52, and the energy transferred to the power extraction coil 51b by electromagnetic induction is provided to the load circuit 52 as electric power.
  • the load circuit 52 any circuit can be used, for example, a battery.
  • the power of the power supply 32 is radiated from the power transmission coil 33 to the power reception coil 51 as an electromagnetic wave and is finally supplied to the load circuit 52.
  • Electromagnetic waves leaking into the space may adversely affect surrounding electronic devices and human bodies.
  • the detection result is fed back to the power transmission device side, and the leakage magnetic flux is reduced on the power transmission device side, application to the coil is detected after detecting an increase in the strength of the magnetic flux.
  • Leakage electromagnetic waves are generated during the period until the voltage adjustment is completed, which may affect surrounding electronic devices and human bodies.
  • the power transmission device 3 reduces the leakage electromagnetic waves by arranging the correction coils 35-1 to 35-n in the power transmission coil 33 at predetermined positions.
  • the description of the correction coils 35-1 to 35-n will be continued.
  • the correction coils 35-1 to 35-n are simply referred to as “correction coils 35”.
  • the correction coil 35 is disposed on the power transmission coil 33 so that the central axis of the power transmission coil 33 and its own central axis do not overlap.
  • the correction coil 35 is an electromagnetic wave radiated from the power transmission coil 33 toward the power receiving coil 51 (hereinafter referred to as “first electromagnetic wave”) based on the current input from the power sources 34-1 to 34-n.
  • first electromagnetic wave an electromagnetic wave radiated from the power transmission coil 33 toward the power receiving coil 51
  • second electromagnetic wave having an intensity distribution of opposite polarity.
  • FIG. 4 is a view for explaining an example (No. 1) of change in the electromagnetic wave intensity distribution caused by the arrangement of the correction coil 35.
  • the horizontal axis in FIG. 4 indicates the distance from the central axis “0” of the power transmission coil 33, and the vertical axis in FIG. 4 indicates the electromagnetic wave intensity. Further, the horizontal axis shows the value after normalization with the radius of the power transmission coil 33 as 1. In this embodiment, the radius of the power transmission coil 33 is 25 mm. In the present embodiment, the radius of the correction coil 35 is assumed to be 25 mm, but it is not necessary to have the same diameter as the power transmission coil 33.
  • the electromagnetic wave intensity indicates the magnetic field intensity. This is because the direction in which wireless power feeding is performed on the power receiving device is the direction that penetrates the power transmission coil 33, but the magnetic field strength is dominant in this direction, and the electric field strength can be ignored.
  • FIG. 5 is an enlarged view of a portion P in FIG.
  • the intensity distribution 101 of the first electromagnetic wave radiated from the power transmission coil 33 has a peak value at the central axis “0” of the power transmission coil 33 and is away from the central axis “0” of the power transmission coil 33.
  • the correction coil 35 corresponds to ⁇ 1 ⁇ ⁇ from the central axis “0” of the power transmission coil 33 so that the central axis “0” of the power transmission coil 33 and the central axis of the correction coil 35 do not overlap. Place it at a distance.
  • the arrangement position of the correction coil 35 is not limited to the position where the correction coil 35 is separated from the central axis “0” of the power transmission coil 33 by a distance corresponding to ⁇ 1 ⁇ ⁇ . It is sufficient that the central axis “0” of the power transmission coil 33 and the central axis of the correction coil 35 are in positions that do not overlap each other.
  • the correction coil 35 radiates the second electromagnetic wave having intensity distributions 102 and 103 having opposite polarities with respect to the intensity distribution 101 of the first electromagnetic wave.
  • the correction coil 35 radiates the intensity distribution of the reverse polarity, so that a part of the first electromagnetic wave is canceled by the second electromagnetic wave, and as shown in FIG.
  • a range exceeding a predetermined reference value in the distance direction from the central axis of the power transmission coil 33 is reduced as compared with the intensity distribution 101 of the first electromagnetic wave. . That is, the power transmission device 3 can reduce the leaked electromagnetic wave exceeding the predetermined reference value by an amount corresponding to the intensity distribution 101, the curve 104, and the region 105 sandwiched between the reference values.
  • the correction coil 35 if there is no power receiving device serving as an electromagnetic wave shield in the range from ⁇ 2 to 2 in the distance direction from the central axis of the power transmission coil 33, the reference is performed by wireless power transmission. An electromagnetic wave exceeding the value is radiated to the space.
  • the correction coil 35 is provided, as shown in FIG. 5, if there is a power receiving device in the range from ⁇ 1.5 to 1.5 in the distance direction from the central axis of the power transmission coil 33, the reference value is exceeded. Electromagnetic waves are no longer emitted into space. Therefore, even if wireless power feeding is performed in a state where no power receiving device exists between ⁇ 2 to ⁇ 1.5 or 1.5 to 2, leaked electromagnetic waves exceeding the reference value are not radiated.
  • wireless power feeding can be performed in a state where there is no power receiving device between 0.5 mm and 6 mm on the horizontal axis.
  • FIG. 6 is a diagram for explaining an example (part 2) of change in the electromagnetic wave intensity distribution caused by the arrangement of the correction coil 35.
  • FIG. 7 is an enlarged view of a portion Q in FIG.
  • Reference numeral 204 in FIG. 6 represents a normalized distribution so that the maximum value of the electromagnetic wave intensity is “1”.
  • the output of the power transmission coil is the same, the output of the correction coil is adjusted as appropriate so that the expected combined electromagnetic wave intensity can be obtained. Further, the output (voltage, current) to each coil has the same value as in FIG.
  • the correction coil 35 corresponds to ⁇ 1 ⁇ ⁇ from the central axis “0” of the power transmission coil 33 so that the central axis “0” of the power transmission coil 33 and the central axis of the correction coil 35 do not overlap. Place it at a distance.
  • the correction coil 35 emits the second electromagnetic wave having intensity distributions 202 and 203 having opposite polarities with respect to the intensity distribution 201 of the first electromagnetic wave.
  • a part of the first electromagnetic wave is canceled by the second electromagnetic wave, and the width of the intensity distribution 201 of the first electromagnetic wave is reduced to the width of the curve 204 as shown in FIG.
  • the power transmission apparatus 3 can reduce the leakage electromagnetic wave exceeding a predetermined reference value by an amount corresponding to the intensity distribution 201, the curve 204, and the region 205 sandwiched between the reference values.
  • FIG. 8 is a diagram for explaining a change example (No. 3) of the electromagnetic wave intensity distribution caused by the arrangement of the correction coil 35.
  • FIG. 9 is an enlarged view of a portion R in FIG.
  • FIG. 8 shows an example in which the dispersion value ⁇ 2 of the second electromagnetic wave intensity distribution is changed to 2 when the dispersion value ⁇ 2 of the intensity distribution of the second electromagnetic wave in FIG.
  • Reference numeral 304 in FIG. 8 represents a distribution that is normalized so that the maximum value of the electromagnetic wave intensity is “1”.
  • the output of the power transmission coil is the same, the output of the correction coil is adjusted as appropriate so that the expected combined electromagnetic wave intensity can be obtained. Further, the output (voltage, current) to each coil has the same value as in the case of FIGS.
  • the correction coil 35 corresponds to ⁇ 1 ⁇ ⁇ from the central axis “0” of the power transmission coil 33 so that the central axis “0” of the power transmission coil 33 and the central axis of the correction coil 35 do not overlap. Place it at a distance.
  • the arrangement position of the correction coil 35 is not limited to the position where the correction coil 35 is separated from the central axis “0” of the power transmission coil 33 by a distance corresponding to ⁇ 1 ⁇ ⁇ . It is sufficient that the central axis “0” of the power transmission coil 33 and the central axis of the correction coil 35 are in positions that do not overlap each other.
  • the correction coil 35 radiates second electromagnetic waves having intensity distributions 302 and 303 having opposite polarities to the first electromagnetic wave intensity distribution 301.
  • the correction coil 35 radiates the intensity distribution having the reverse polarity, so that a part of the first electromagnetic wave is canceled by the second electromagnetic wave, and as shown in FIG.
  • the power transmission device 3 can reduce the leakage electromagnetic wave exceeding a predetermined reference value by an amount corresponding to the region 305 smaller than the region 105 in FIG.
  • the phase adjustment circuit 36 adjusts the current flowing through the power transmission coil 33 and the current flowing through the correction coil 35 so that they are in opposite phases. Specifically, the phase adjustment circuit 36 inverts the phase of the alternating current output from the power sources 34-1 to 34-n by 180 ° with respect to the phase of the alternating current output from the power source 32, so that these 2 The two alternating currents are adjusted so as to have opposite phases. The currents from the power sources 34-1 to 34-n inverted by 180 ° are provided to the correction coils 35-1 to 35-n, respectively. The correction coils 35-1 to 35-n are based on the provided currents. The second electromagnetic wave having an intensity distribution opposite in polarity to the first electromagnetic wave is emitted. Even if the 180 ° phase is not different, the phase of the current flowing through the correction coil may be a phase that creates an electromagnetic wave that weakens the electromagnetic wave generated by the power transmission coil. *
  • the correction coil 35 is arranged in the power transmission coil 33 so that the central axis of the power transmission coil 33 and its central axis do not overlap.
  • FIG. 10 is a plan view showing an arrangement example 1 of the correction coil 35.
  • FIG. 11 is a side view of FIG.
  • the two correction coils 35 are arranged close to the power transmission coil 33 so that the peripheral edge of the power transmission coil 33 and its own central axis overlap.
  • the two correction coils 35 radiate a second electromagnetic wave having an intensity distribution opposite in polarity to the first electromagnetic wave radiated from the power transmission coil 33.
  • two parts located in the vicinity of the overlapping part of the periphery of the power transmission coil 33 and the center axis of the two correction coils 35 in the first electromagnetic wave are canceled by the second electromagnetic wave.
  • FIG. 12 is a plan view showing an arrangement example 2 of the correction coil 35.
  • FIG. 13 is a side view of FIG.
  • the four correction coils 35 are arranged close to the power transmission coil 33 so that the peripheral edge of the power transmission coil 33 and the central axis of the four correction coils 35 overlap each other.
  • the four correction coils 35 radiate the second electromagnetic wave having an intensity distribution opposite to the first electromagnetic wave radiated from the power transmission coil 33. Thereby, among the first electromagnetic wave, in particular, the four portions located near the overlapping portion of the periphery of the power transmission coil 33 and the central axis of the four correction coils 35 are canceled by the second electromagnetic wave.
  • the power transmission device 3 includes the power transmission coil 33 that radiates the first electromagnetic wave toward the power reception coil 51 of the power reception device 5, and the second intensity distribution having a polarity opposite to that of the first electromagnetic wave.
  • the correction coils 35 that radiate the electromagnetic waves are arranged close to each other with their center axes shifted. For this reason, according to Example 1, since a part of 1st electromagnetic wave can be canceled by the 2nd electromagnetic wave, a leakage electromagnetic wave can be reduced. As a result, the influence of electromagnetic waves on surrounding electronic devices and human bodies can be reduced.
  • the phase adjustment circuit 36 adjusts the current flowing through the power transmission coil 33 and the current flowing through the correction coil 35 so that the phases are opposite to each other. A second electromagnetic wave is emitted based on the subsequent current. For this reason, according to Example 1, the 2nd electromagnetic wave used as intensity distribution of a reverse polarity with respect to a 1st electromagnetic wave can be produced
  • the correction coil 35 is disposed close to the power transmission coil 33 so that the peripheral edge of the power transmission coil 33 and its own central axis overlap. For this reason, according to the first embodiment, a portion of the first electromagnetic wave located in the vicinity of the overlapping portion between the periphery of the power transmission coil 33 and the central axis of the correction coil 35 can be canceled by the second electromagnetic wave.
  • the current flowing through the power transmission coil 33 and the current flowing through the correction coil 35 are adjusted so as to have opposite phases, thereby generating a second electromagnetic wave having an intensity distribution opposite to that of the first electromagnetic wave.
  • the method of generating the second electromagnetic wave is not limited to this.
  • the power transmission coil 33 and the correction coil 35 can be reversely wound to generate a second electromagnetic wave.
  • the phase adjustment circuit 36 shown in FIG. 1 is omitted.
  • the second electromagnetic wave can be generated by separately providing an adjusting means for adjusting the direction of the current so that the direction of the current flowing through the power transmission coil 33 and the direction of the current flowing through the correction coil 35 are different from each other.
  • FIG. 14 is a diagram illustrating an overview configuration of a power transmission / reception system including the power transmission device according to the second embodiment.
  • the power transmission / reception system 2 illustrated in FIG. 14 includes a power transmission device 3 a and a power reception device 5.
  • each of the power transmission coils 43-1 to 43-n has the same configuration as that of the power transmission coil 33.
  • the power transmission coils 43-1 to 43-n are simply referred to as “power transmission coil 43”.
  • the correction coil 35 is disposed close to the outer coil so that the outer peripheral edge of the plurality of power transmission coils 43 and the center axis of the outer coil overlap each other.
  • the correction coil 35 receives current from the power sources 34-1 to 34-n, the correction coil 35 has a second intensity distribution having a polarity opposite to that of the first electromagnetic wave radiated from the power transmission coil 43 toward the power reception coil 51. Radiates electromagnetic waves.
  • FIG. 15 is a diagram for explaining an example of a change in the electromagnetic wave intensity distribution caused by the arrangement of the correction coil 35.
  • the horizontal axis in FIG. 15 indicates the distances from the central axes “0”, “ ⁇ 2”, and “ ⁇ 4” of the five power transmission coils 43, and the vertical axis in FIG. 15 indicates the electromagnetic wave intensity. Further, the horizontal axis shows the value after normalization with the radius of the power transmission coil 33 as 1. In the present embodiment, the radius of the correction coil 35 is assumed to be 25 mm, but it is not necessary to have the same diameter as the power transmission coil 33.
  • the electromagnetic wave intensity indicates the magnetic field intensity. This is because the direction in which wireless power feeding is performed on the power receiving device is the direction that penetrates the power transmission coil 33, but the magnetic field strength is dominant in this direction, and the electric field strength can be ignored.
  • FIG. 16 is an enlarged view of a portion S in FIG.
  • the first electromagnetic wave intensity distribution 401 obtained by combining the electromagnetic wave intensity distributions 401 a to 401 e radiated from the five power transmission coils 43 is symmetric with respect to the central axis “0” of the central power transmission coil 43. It becomes a trapezoidal distribution.
  • the correction coil 35 is moved from the center axis “ ⁇ 4” of the outer coil such that the outer peripheral edge of the five power transmission coils 43 overlaps with the center axis of the correction coil 35. They are arranged at positions separated by a distance corresponding to ⁇ 1 ⁇ ⁇ .
  • the arrangement position of the correction coil 35 is not limited to the position where the correction coil 35 is separated from the central axis “ ⁇ 4” of the power transmission coil 33 by a distance corresponding to ⁇ 1 ⁇ ⁇ . It is sufficient that the central axis “ ⁇ ” of the power transmission coil 33 and the central axis of the correction coil 35 are positions where they do not overlap each other.
  • the correction coil 35 radiates second electromagnetic waves having intensity distributions 402 and 403 having opposite polarities to the first electromagnetic wave intensity distribution 401. It is assumed that the intensity distributions 401a to 401e of the electromagnetic waves emitted from the power transmission coil 43 and the intensity distributions 402 and 403 of the second electromagnetic waves emitted from the correction coil 35 have the same Gaussian distribution.
  • the correction coil 35 radiates the intensity distribution having the opposite polarity, a part of the first electromagnetic wave is canceled by the second electromagnetic wave, and as shown in FIG.
  • the range exceeding a predetermined reference value in the distance direction from the central axis of the power transmission coil 33 is reduced as compared with the first electromagnetic wave intensity distribution 401. . That is, the power transmission device 3a can reduce the leakage electromagnetic wave exceeding the predetermined reference value by an amount corresponding to the region 405.
  • the correction coil 35 is disposed close to the outer coil such that the outer peripheral edge of the outermost coil among the plurality of power transmission coils 43 overlaps with the central axis thereof.
  • FIG. 17 is a plan view showing an arrangement example 1 of the correction coil 35.
  • the four correction coils 35 are arranged so that the peripheral edges of the power transmission coils 43 a to 43 d located on the outermost side among the nine power transmission coils 43 arranged in a cross shape overlap with the central axis of the four correction coils 35.
  • the power transmission coils 43a to 43d are arranged close to each other.
  • the four correction coils 35 radiate the second electromagnetic wave having an intensity distribution opposite in polarity to the first electromagnetic wave radiated from the power transmission coil 43.
  • the portion of the first electromagnetic wave that is located near the overlapping portion between the periphery of the power transmission coils 43a and 43b and the central axis of the correction coil 35 is canceled by the second electromagnetic wave.
  • FIG. 18 is a plan view showing an arrangement example 2 of the correction coil 35.
  • twelve correction coils 35 are arranged close to the power transmission coil 43 so that the peripheral edges of the five power transmission coils 43 arranged in a single letter shape overlap with the center axis of the twelve correction coils 35.
  • all of the five power transmission coils 43 arranged in a single character are located on the outermost side, so all of the five power transmission coils 43 correspond to the outer coils.
  • the twelve correction coils 35 radiate the second electromagnetic wave having an intensity distribution opposite in polarity to the first electromagnetic wave radiated from the power transmission coil 43. Thereby, the part located in the vicinity of the overlapping part of the periphery of the power transmission coil 43 and the center axis of the correction coil 35 in the first electromagnetic wave is canceled by the second electromagnetic wave.
  • the power transmission device 3a according to the second embodiment is disposed close to the outer coil such that the outer periphery of the outermost coil among the plurality of power transmission coils 43 and the center axis thereof overlap. Yes.
  • a portion of the first electromagnetic wave located in the vicinity of the overlapping portion between the peripheral edge of the outer coil and the central axis of the correction coil 35 can be canceled by the second electromagnetic wave.
  • the influence of electromagnetic waves on surrounding electronic devices and human bodies can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 無線送電装置において、周囲への電磁波の影響を十分に抑えることを課題とする。この課題を解決するため、無線送電装置は、外部のコイルに向けて第一の電磁波を放射する第一のコイルを備える。また、無線送電装置は、第一のコイルの中心軸と自身の中心軸とが重複しないように第一のコイルに近接配置され、第一の電磁波と逆極性の強度分布となる第二の電磁波を放射する第二のコイルを備える。

Description

[規則37.2に基づきISAが決定した発明の名称] 無線送電装置
 本発明は、送電装置に関する。
 近年、電磁誘導や磁界共鳴など電力を無線伝送する技術(以下「無線送電技術」という)が種々検討されている。無線送電技術は、送電装置内部のコイルから受電装置内部のコイルに向けて電磁波を放射し、放射した電磁波を介して電力を無線伝送するものである。
 例えば、電磁誘導を利用した無線送電技術では、送電装置に受電装置の配置を固定する機構を設け(クレードル機構)、受電装置を配置し、無線送電を行う技術がある。
 ここで、無線送電技術では、送電装置内部のコイルから放射された電磁波の大部分は受電装置により遮蔽される。一方、受電装置により遮蔽仕切れなかった電磁波の残り部分は空間に漏洩する。空間に漏洩した電磁波(以下「漏洩電磁波」という)が、周囲の電子機器や人体等に吸収された場合は、人体等に影響を及ぼす可能性がある。特に、一定強度以上の電磁波は、人体に悪影響を及ぼすことが知られている。
 また、受電装置側に漏れ磁束検知コイルを設け、検知結果を送電装置側にフィードバックし、送電装置側で、漏れ磁束を小さくする技術が知られている。
特開2008-295274号公報
 上述のとおり、人体等に悪影響を与える強度の電磁波が、人体に吸収されないようにすることが求められる。例えば、送電装置内部のコイルに対する受電装置の位置を予め定めたマーキング位置に適宜調整し、受電装置による電磁波の遮蔽効率を向上させることが考えられる。 
 しかしながら、上記した従来技術では、周囲への電磁波の影響を十分に抑えることができないという問題がある。具体的には、受電装置の位置を調整する従来技術では、受電装置がマーキング位置から少しでもずれた場合には、漏洩電磁波が基準値よりも大きくなるため、周囲の電子機器や人体等に影響を及ぼす恐れがある。
 さらに、特許文献1に開示の技術では、受電機器側に追加の構成を設ける必要があり、コスト面で問題がある。
 開示の技術は、上述した従来技術の課題を解決するためになされたものであり、周囲への電磁波の影響を十分に抑えることができる送電装置を提供することを目的とする。
 本願の開示する送電装置は、外部のコイルに向けて第一の電磁波を放射する第一のコイルを備える。また、送電装置は、第一のコイルの中心軸と自身の中心軸とが互いに異なる位置に配置されるとともに、第一のコイルに近接配置され、第一の電磁波と逆極性の強度分布となる第二の電磁波を放射する第二のコイルを備える。
 本願の開示する送電装置の一つの態様によれば、周囲への電磁波の影響を十分に抑えることができるという効果を奏する。
図1は、実施例1に係る送電装置を含んだ送受電システムの概観構成を示す図である。 図2は、受電コイル側から見た送電コイルの平面図である。 図3は、送電コイル側から見た受電コイルの平面図である。 図4は、補正コイルの配置によって生じる電磁波強度分布の変化例(その1)を説明するための図である。 図5は、図4のP部分の拡大図である。 図6は、補正コイルの配置によって生じる電磁波強度分布の変化例(その2)を説明するための図である。 図7は、図6のQ部分の拡大図である。 図8は、補正コイルの配置によって生じる電磁波強度分布の変化例(その3)を説明するための図である。 図9は、図8のR部分の拡大図である。 図10は、補正コイルの配置例1を示す平面図である。 図11は、図10の側面図である。 図12は、補正コイルの配置例2を示す平面図である。 図13は、図12の側面図である。 図14は、実施例2に係る送電装置を含んだ送受電システムの概観構成を示す図である。 図15は、補正コイルの配置によって生じる電磁波強度分布の変化例を説明するための図である。 図16は、図15のS部分の拡大図である。 図17は、補正コイルの配置例1を示す平面図である。 図18は、補正コイルの配置例2を示す平面図である。
 以下に、本願の開示する送電装置の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
 まず、図1を用いて、実施例1に係る送電装置を含んだ送受電システムの構成について説明する。図1は、実施例1に係る送電装置を含んだ送受電システムの概観構成を示す図である。図1に示した送受電システム1は、送電装置3と受電装置5とを含んでいる。送受電システム1では、送電装置3から受電装置5に向けて電力が電磁エネルギーとして伝送される。なお、以下では、電磁エネルギーのことを「電磁波」と呼ぶことがあるものとする。
 送電装置3は、その内部に発振器31、電源32、送電コイル33、電源34-1~34-n、補正コイル35-1~35-n、位相調整回路36を有する。また、受電装置5は、その内部に受電コイル51、負荷回路52を有する。
 このうち、発振器31は、所定の周波数の信号を発振し、発振した周波数信号を電源32及び電源34-1~34-nに入力する。電源32は、発振器31から入力される周波数信号に対応する周波数の交流電流を送電コイル33に出力する。電源34-1~34-nは、発振器31から入力される周波数信号に対応する周波数の交流電流を補正コイル35-1~35-nにそれぞれ出力する。
 送電コイル33は、受電コイル51に向けて電磁波を放射するコイルである。送電コイル33の構成例を図2に示す。図2は、受電コイル51側から見た送電コイル33の平面図である。図2に示すように、送電コイル33は、磁界共鳴コイル33aと、電力供給コイル33bとを有する。
 磁界共鳴コイル33aは、LC共振回路であり、受電コイル51の後述する磁界共鳴コイル51aとの間で磁界共鳴を発生する磁界共鳴コイルとして機能する。LC共振回路のコンデンサ成分については素子によって実現してもよいし、コイルの両端を開放し、浮遊容量によって実現してもよい。
 電力供給コイル33bは、電源32に接続されており、電源32から得られた電力を電磁誘導によって磁界共鳴コイル33aに供給する電力送受信部である。電力供給コイル33bと磁界共鳴コイル33aの配置は、電磁誘導が発生可能な距離及び配置とする。
 受電コイル51は、送電コイル33から放射された電磁波を受信するコイルである。受電コイル51の構成例を図3に示す。図3は、送電コイル33側から見た受電コイル51の平面図である。図3に示すように、受電コイル51は、磁界共鳴コイル51aと、電力取出コイル51bとを有する。
 磁界共鳴コイル51aは、LC共振回路であり、磁界共鳴コイル33aとの間で磁界共鳴を発生する磁界共鳴コイルとして機能する。LC共振回路のコンデンサ成分については素子によって実現してもよいし、コイルの両端を開放し、浮遊容量によって実現してもよい。
 磁界共鳴コイル33aの共振周波数と磁界共鳴コイル51aの共振周波数とが十分に近い場合、磁界共鳴コイル33aと磁界共鳴コイル51aとの間に磁界共鳴が発生する。そして、磁界共鳴が発生すると、磁界共鳴コイル33aから磁界共鳴コイル51aに電磁エネルギーを伝送することができる。
 電力取出コイル51bは、磁界共鳴コイル51aとの間で電磁誘導が発生する位置に配置される。磁界共鳴コイル51aが共振によって磁界共鳴すると、磁界共鳴コイル51aから電力取出コイル51bに電磁誘導によってエネルギーが移動する。電力取出コイル51bは、負荷回路52に電気的に接続されており、電磁誘導によって電力取出コイル51bに移動したエネルギーは電力として負荷回路52に提供される。負荷回路52としては、任意の回路を用いることができ、例えばバッテリーであってもよい。
 このように、送受電システム1では、電磁誘導や磁界共鳴が発生する結果、電源32の電力が、送電コイル33から受電コイル51に電磁波として放射され、最終的に負荷回路52に供給される。
 ここで、送電コイル33から受電コイル51に向けて放射された電磁波の大部分は、受電装置5により遮蔽される。一方、受電装置5により遮蔽仕切れなかった電磁波の残り部分は空間に漏洩する。空間に漏洩した電磁波(以下「漏洩電磁波」という)は、周囲の電子機器や人体等に悪影響を及ぼす可能性がある。なお、受電装置側に漏れ磁束検知コイルを設け、検知結果を送電装置側にフィードバックし、送電装置側で、漏れ磁束を小さくする従来技術では、磁束の強度増加を検知してからコイルへの印加電圧の調整が完了するまでの期間に漏洩電磁波が発生するため、周囲の電子機器や人体等に影響を及ぼす恐れがある。 
 そこで、本実施例に係る送電装置3は、送電コイル33に補正コイル35-1~35-nを、所定の位置に配置することによって、漏洩電磁波を減少させている。以下、図1の説明に戻って補正コイル35-1~35-n等の説明を続ける。なお、以下では、補正コイル35-1~35-nを特に区別する必要がない場合には、補正コイル35-1~35-nを単に「補正コイル35」と表記するものとする。
 補正コイル35は、送電コイル33の中心軸と自身の中心軸とが重複しないように送電コイル33に配置される。そして、補正コイル35は、電源34-1~34-nからの入力される電流を基にして、受電コイル51に向けて送電コイル33から放射された電磁波(以下「第一の電磁波」という)と逆極性の強度分布となる電磁波(以下「第二の電磁波」という)を放射する。
 ここで、図4~図9を用いて、補正コイル35の配置によって生じる電磁波強度分布の変化を説明する。図4は、補正コイル35の配置によって生じる電磁波強度分布の変化例(その1)を説明するための図である。図4の横軸は、送電コイル33の中心軸「0」からの距離を示し、図4の縦軸は、電磁波強度を示す。さらに、横軸は、送電コイル33の半径を1として規格化した後の値を示している。本実施例においては、送電コイル33の半径を25mmとする。また、本実施例においては、補正コイル35の半径を25mmとして、説明するが、送電コイル33と同一の径である必要はない。また、本実施例では、例えば、13.56MHzで、磁界強度が0.15A/m以上、電界強度が61V/m以上であれば、人体等に悪影響を与える可能性が高いものとして、以下、説明する。さらに、本実施例においては、電磁波強度は、磁界強度を示すものとする。なぜなら、受電機器に対して無線給電を行う方向は、送電コイル33を貫く方向であるが、当該方向については、磁界強度が支配的であり、電界強度は無視できるからである。また、図5は、図4のP部分の拡大図である。
 図4に示すように、送電コイル33から放射された第一の電磁波の強度分布101は、送電コイル33の中心軸「0」にてピーク値となり、送電コイル33の中心軸「0」から離れるに連れて減少するガウス分布となる。なお、図4は、分散値はσ=1であるとして示した図である。図4の例において、送電コイル33の中心軸「0」と補正コイル35の中心軸とが重複しないように、補正コイル35を送電コイル33の中心軸「0」から±1×σに相当する距離だけ離れた位置に配置する。なお、補正コイル35の配置位置は、補正コイル35を送電コイル33の中心軸「0」から±1×σに相当する距離だけ離れた位置に限られない。送電コイル33の中心軸「0」と補正コイル35の中心軸とが、互いに重ならない位置であれば良い。
 図4の104は、電磁波強度の最大値が「1」となるように、規格化した分布を表している。なお、送電コイル33の出力が同じである場合、補正コイル35の出力は、期待する合成電磁波強度が得られるように、適宜調整される。
 そして、補正コイル35が、第一の電磁波の強度分布101に対して逆極性の強度分布102、103となる第二の電磁波を放射する。なお、第二の電磁波の強度分布102,103は、第一の電磁分布と同じ、分散値σ=1のガウス分布を持つ。補正コイル35が逆極性の強度分布を放射することで、第一の電磁波の一部が第二の電磁波により相殺され、図5に示すように、第一の電磁波の強度分布101と第二の電磁波の強度分布102,103との合成強度分布104は、送電コイル33の中心軸からの距離方向において、所定の基準値を超える範囲が、第一の電磁波の強度分布101と比較して縮減する。つまり、送電装置3は、所定の基準値を超える漏洩電磁波を、強度分布101と曲線104と基準値に挟まれた領域105 に相当する分だけ減少させることができる。
 つまり、補正コイル35を有さない場合は、送電コイル33の中心軸からの距離方向において、-2から2までの範囲に、電磁波の遮蔽物となる受電装置がなければ、無線送電によって、基準値を超える電磁波が空間へ放射される。しかし、補正コイル35を有する場合は、図5のように、送電コイル33の中心軸からの距離方向において、-1.5から1.5までの範囲に受電機器があれば、基準値を超える電磁波が空間へ放射されることが無くなる。したがって、-2から-1.5または1.5から2の間に受電機器が存在しない状態で、無線給電を行っても、基準値を超えた漏洩電磁波が放射されることはない。
 本実施例において、送電コイル33の半径を25mmとした場合に、横軸上で、0.5つまり、6mmの間に受電機器が存在しない状態で、無線給電を行うことができる。
 図6は、補正コイル35の配置によって生じる電磁波強度分布の変化例(その2)を説明するための図である。図7は、図6のQ部分の拡大図である。なお、図6は、図4の第一の電磁波と第二の電磁波との強度分布を、分散値σ=1から分散値σ=0.5まで変化させた例である。図6の204は、電磁波強度の最大値が「1」となるように、規格化した分布を表している。なお、送電コイルの出力が同じである場合、補正コイルの出力は、期待する合成電磁波強度が得られるように、適宜調整される。また、各コイルへの出力(電圧、電流)は、図4の場合と同一値である。
 図6の例において、送電コイル33の中心軸「0」と補正コイル35の中心軸とが重複しないように、補正コイル35を送電コイル33の中心軸「0」から±1×σに相当する距離だけ離れた位置に配置する。なお、補正コイル35の配置位置を決定した際の分散値は、分散値σ=1とする。そして、補正コイル35が、第一の電磁波の強度分布201に対して逆極性の強度分布202、203となる第二の電磁波を放射する。そうすると、第一の電磁波の一部が第二の電磁波により相殺され、図7に示すように、第一の電磁波の強度分布201の幅が曲線204の幅まで縮減する。これにより、送電装置3は、所定の基準値を超える漏洩電磁波を、強度分布201と曲線204と基準値に挟まれた領域205に相当する分だけ減少することができる。
 図8は、補正コイル35の配置によって生じる電磁波強度分布の変化例(その3)を説明するための図である。図9は、図8のR部分の拡大図である。なお、図8は、図4の第一の電磁波と第二の電磁波との強度分布を、分散値σ=1から分散値σ=2まで変化させた例である。図8は、図4の第二の電磁波の強度分布の分散値σを1とした場合に、第二の電磁波の強度分布の分散値σを2まで変化させた例である。図8の304は、電磁波強度の最大値が「1」となるように、規格化した分布を表している。なお、送電コイルの出力が同じである場合、補正コイルの出力は、期待する合成電磁波強度が得られるように、適宜調整される。また、各コイルへの出力(電圧、電流)は、図4および図6の場合と同一値である。
 図8の例において、送電コイル33の中心軸「0」と補正コイル35の中心軸とが重複しないように、補正コイル35を送電コイル33の中心軸「0」から±1×σに相当する距離だけ離れた位置に配置する。なお、補正コイル35の配置位置は、補正コイル35を送電コイル33の中心軸「0」から±1×σに相当する距離だけ離れた位置に限られない。送電コイル33の中心軸「0」と補正コイル35の中心軸とが、互いに重ならない位置であれば良い。
 図8の304は、電磁波強度の最大値が「1」となるように、規格化した分布を表している。なお、送電コイル33の出力が同じである場合、補正コイル35の出力は、期待する合成電磁波強度が得られるように、適宜調整される。そして、補正コイル35が、第一の電磁波の強度分布301に対して逆極性の強度分布302、303となる第二の電磁波を放射する。補正コイル35が逆極性の強度分布を放射することで、第一の電磁波の一部が第二の電磁波により相殺され、図9に示すように、第一の電磁波の強度分布301と第二の電磁波の強度分布302、303との合成強度分布304は、送電コイル33の中心軸からの距離方向において、所定の基準値を超える範囲が、第一の電磁波の強度分布301と比較して縮減する。つまり、送電装置3は、所定の基準値を超える漏洩電磁波を図5の領域105よりも小さい領域305に相当する分だけ減少することができる。
 図1の説明に戻り、位相調整回路36は、送電コイル33に流れる電流と補正コイル35に流れる電流とを互いに逆位相となるように調整する。具体的には、位相調整回路36は、電源34-1~34-nから出力される交流電流の位相を電源32から出力される交流電流の位相に対して180°反転することによって、これら2つの交流電流を互いに逆位相となるように調整する。180°反転された電源34-1~34-nからの電流は、補正コイル35-1~35-nにそれぞれ提供され、補正コイル35-1~35-nが、提供された電流を基にして第一の電磁波と逆極性の強度分布となる第二の電磁波を放射する。なお、180°位相が異ならなくとも、補正コイルに流れる電流の位相は、送電コイルが発生する電磁波を弱める電磁波を作るような位相であればよい。 
 次に、補正コイル35の配置例について図10~図13を用いて説明する。既に述べたように、補正コイル35は、送電コイル33の中心軸と自身の中心軸とが重複しないように送電コイル33に配置される。
 図10は、補正コイル35の配置例1を示す平面図である。図11は、図10の側面図である。図10及び図11に示す例では、2つの補正コイル35が、送電コイル33の周縁と自身の中心軸とが重複するように送電コイル33に近接配置されている。2つの補正コイル35は、送電コイル33から放射された第一の電磁波と逆極性の強度分布の第二の電磁波を放射する。これにより、第一の電磁波のうち特に送電コイル33の周縁と2つの補正コイル35の中心軸との重複部分近傍に位置する2つの部分が、第二の電磁波により相殺される。
 図12は、補正コイル35の配置例2を示す平面図である。図13は、図12の側面図である。図12及び図13に示す例では、4つの補正コイル35が、送電コイル33の周縁と自身の中心軸とが重複するように送電コイル33に近接配置されている。4つの補正コイル35は、送電コイル33から放射された第一の電磁波と逆極性の強度分布の第二の電磁波を放射する。これにより、第一の電磁波のうち特に送電コイル33の周縁と4つの補正コイル35の中心軸との重複部分近傍に位置する4つの部分が、第二の電磁波により相殺される。
 上述してきたように、実施例1に係る送電装置3は、受電装置5の受電コイル51に向けて第一の電磁波を放射する送電コイル33と、第一電磁波と逆極性の強度分布の第二の電磁波を放射する補正コイル35とを互いの中心軸をずらして近接配置している。このため、実施例1によれば、第一の電磁波の一部を第二の電磁波で相殺することができるため、漏洩電磁波を減少することができる。その結果、周囲の電子機器や人体等に対する電磁波の影響を小さくすることができる。
 また、実施例1に係る送電装置3では、位相調整回路36が、送電コイル33に流れる電流と補正コイル35に流れる電流とを互いに逆位相となるように調整し、補正コイル35は、位相調整後の電流を基に第二の電磁波を放射する。このため、実施例1によれば、第一の電磁波と逆極性の強度分布となる第二の電磁波を容易に生成することができる。
 また、実施例1に係る送電装置3では、補正コイル35は、送電コイル33の周縁と自身の中心軸とが重複するように送電コイル33に近接配置されている。このため、実施例1によれば、第一の電磁波のうち特に送電コイル33の周縁と補正コイル35の中心軸との重複部分近傍に位置する部分を第二の電磁波で相殺することができる。
 なお、実施例1では、送電コイル33に流れる電流と補正コイル35に流れる電流とを互いに逆位相となるように調整することで、第一電磁波と逆極性の強度分布の第二の電磁波を生成しているが、第二の電磁波の生成手法はこれに限られない。例えば、送電コイル33及び補正コイル35は互いに逆巻きに形成することで、第二の電磁波を生成することもできる。なお、この構成では、図1に示した位相調整回路36が省略される。
 また、送電コイル33に流れる電流の向きと補正コイル35に流れる電流の向きとが互いに異なるように電流の向きを調整する調整手段を別途設けることで、第二の電磁波を生成することもできる。
 図14は、実施例2に係る送電装置を含んだ送受電システムの概観構成を示す図である。図14に示した送受電システム2は、送電装置3aと受電装置5とを含んでいる。なお、以下では、図1にて既に説明した構成部位と同一の構成部位には同一の符号を付してその説明を省略する。
 図14に示した送電装置3aは、送電コイル33に代えて、複数の送電コイル43-1~43-nを有する。送電コイル43-1~43-nの各々は、送電コイル33の構成と同様である。以下では、送電コイル43-1~43-nを特に区別する必要がない場合には、送電コイル43-1~43-nを単に「送電コイル43」と表記するものとする。
 補正コイル35は、複数の送電コイル43のうち最も外側に位置する外側コイルの周縁と自身の中心軸とが重複するように外側コイルに近接配置されている。そして、補正コイル35は、電源34-1~34-nからの電流を受け取ると、受電コイル51に向けて送電コイル43から放射された第一の電磁波と逆極性の強度分布となる第二の電磁波を放射する。
 ここで、図15~図16を用いて、補正コイル35の配置によって生じる電磁波強度分布の変化を説明する。図15は、補正コイル35の配置によって生じる電磁波強度分布の変化例を説明するための図である。図15の横軸は、5つの送電コイル43の中心軸「0」、「±2」及び「±4」からの距離を示し、図15の縦軸は、電磁波強度を示す。さらに、横軸は、送電コイル33の半径を1として規格化した後の値を示している。また、本実施例においては、補正コイル35の半径を25mmとして、説明するが、送電コイル33と同一の径である必要はない。また、本実施例では、例えば、13.56MHzで、磁界強度が0.15A/m以上、電界強度が61V/m以上であれば、人体等に悪影響を与える可能性が高いものとして、以下、説明する。さらに、本実施例においては、電磁波強度は、磁界強度を示すものとする。なぜなら、受電機器に対して無線給電を行う方向は、送電コイル33を貫く方向であるが、当該方向については、磁界強度が支配的であり、電界強度は無視できるからである。また、図16は、図15のS部分の拡大図である。
 図15に示すように、5つの送電コイル43から放射された電磁波の強度分布401a~401eを合成した第一の電磁波の強度分布401は、中央の送電コイル43の中心軸「0」に関して対称な台形状の分布となる。図15の例において、5つの送電コイル43のうち最も外側に位置する外側コイルの周縁と補正コイル35の中心軸とが重複するように、補正コイル35を外側コイルの中心軸「±4」から±1×σに相当する距離だけ離れた位置に配置する。なお、補正コイル35の配置位置は、補正コイル35を送電コイル33の中心軸「±4」から±1×σに相当する距離だけ離れた位置に限られない。送電コイル33の中心軸「±」と補正コイル35の中心軸とが、互いに重ならない位置であれば良い。そして、補正コイル35が、第一の電磁波の強度分布401に対して逆極性の強度分布402、403となる第二の電磁波を放射する。送電コイル43から放射された電磁波の強度分布401a乃至401eおよび、補正コイル35から放射された第二の電磁波の強度分布402,403は、同じガウス分布を持つものとする。補正コイル35が逆極性の強度分布を放射することで、第一の電磁波の一部が第二の電磁波により相殺され、図16に示すように、第一の電磁波の強度分布401と第二の電磁波の強度分布402、403との合成強度分布404は、送電コイル33の中心軸からの距離方向において、所定の基準値を超える範囲が、第一の電磁波の強度分布401と比較して縮減する。つまり、送電装置3aは、所定の基準値を超える漏洩電磁波を領域405に相当する分だけ減少することができる。
 次に、補正コイル35の配置例について図17~図18を用いて説明する。既に述べたように、補正コイル35は、複数の送電コイル43のうち最も外側に位置する外側コイルの周縁と自身の中心軸とが重複するように外側コイルに近接配置される。
 図17は、補正コイル35の配置例1を示す平面図である。図17に示す例では、4つの補正コイル35が、十字状に配列された9つの送電コイル43のうち最も外側に位置する送電コイル43a~43dの周縁と自身の中心軸とが重複するように送電コイル43a~43dに近接配置されている。4つの補正コイル35は、送電コイル43から放射された第一の電磁波と逆極性の強度分布の第二の電磁波を放射する。これにより、第一の電磁波のうち特に送電コイル43a~43bの周縁と補正コイル35の中心軸との重複部分近傍に位置する部分が、第二の電磁波により相殺される。
 図18は、補正コイル35の配置例2を示す平面図である。図18に示す例では、12の補正コイル35が、一字状に配列された5つの送電コイル43の周縁と自身の中心軸とが重複するように送電コイル43に近接配置されている。なお、図18に示す例では、一字状に配列された5つの送電コイル43の全てが最も外側に位置するため、5つの送電コイル43の全てが外側コイルに該当する。12の補正コイル35は、送電コイル43から放射された第一の電磁波と逆極性の強度分布の第二の電磁波を放射する。これにより、第一の電磁波のうち特に送電コイル43の周縁と補正コイル35の中心軸との重複部分近傍に位置する部分が、第二の電磁波により相殺される。
 上述してきたように、実施例2に係る送電装置3aは、複数の送電コイル43のうち最も外側に位置する外側コイルの周縁と自身の中心軸とが重複するように外側コイルに近接配置されている。このため、実施例2によれば、第一の電磁波のうち特に外側コイルの周縁と補正コイル35の中心軸との重複部分近傍に位置する部分を第二の電磁波で相殺することができる。その結果、複数の送電コイル43を用いた場合であっても、周囲の電子機器や人体等に対する電磁波の影響を小さくすることができる。
1、2 送受電システム
3、3a 送電装置
5 受電装置
31 発振器
32 電源
33、43 送電コイル
34 電源
35 補正コイル
36 位相調整回路
51 受電コイル
52 負荷回路

Claims (7)

  1.  受電装置へ無線で電力を送電する送電装置であって、
     第一の電磁波を放射する第一のコイルと、
     前記第一のコイルの中心軸と自身の中心軸とが互いに異なる位置に配置されるとともに、前記第一の電磁波と逆極性の強度分布となる第二の電磁波を放射する第二のコイルと
     を有することを特徴とする送電装置。
  2.  前記送電装置は、さらに、
     前記第一のコイルおよび前記第二のコイルに電力を供給する少なくとも一つの電源部と
     前記第二のコイルに出力する電流の位相と前記第一のコイルに出力する電流の位相とに、該第一のコイルが放射する電磁波と、該第二のコイルが放射する電磁波とが逆極性となる位相差を発生させる位相調整回路とを有し、
     前記電源装置と前記位相調整回路とが接続されていることを特徴とする請求項1記載の送電装置。
  3.  前記位相調整回路は、180度の前記位相差を発生させることを特徴とする請求項2記載の送電装置。
  4.  前記第一のコイルおよび前記第二のコイルに電力を供給する少なくとも一つの電源部を有し、
     前記第一のコイルに流れる電流の向きと、前記第二のコイルに流れる電流の向きとが異なることを特徴とする請求項1記載の送電装置。
  5.  前記第一のコイル及び前記第二のコイルは、互いに逆巻きであることを特徴とする請求項1記載の送電装置。
  6.  前記第二のコイルは、前記第一のコイルの周縁と自身の中心軸とが重複する位置に配置されることを特徴とする請求項1乃至請求項5のいずれか一つに記載の送電装置。
  7.  複数の前記第一のコイルを備え、
     前記第二のコイルは、複数の前記第一のコイルのうち最も外側に位置する前記第一のコイルである外側コイルの周縁と自身の中心軸とが重複する位置に配置されることを特徴とする請求項1記載の送電装置。
PCT/JP2010/065167 2010-09-03 2010-09-03 無線送電装置 WO2012029179A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2010/065167 WO2012029179A1 (ja) 2010-09-03 2010-09-03 無線送電装置
JP2012531645A JP5488698B2 (ja) 2010-09-03 2010-09-03 無線送電装置
CN201080068800.7A CN103081293B (zh) 2010-09-03 2010-09-03 无线送电装置
EP10856728.0A EP2613424B1 (en) 2010-09-03 2010-09-03 Wireless power transmission device
KR1020137005046A KR20130041987A (ko) 2010-09-03 2010-09-03 송전 장치
US13/763,901 US20130147283A1 (en) 2010-09-03 2013-02-11 Power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/065167 WO2012029179A1 (ja) 2010-09-03 2010-09-03 無線送電装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/763,901 Continuation US20130147283A1 (en) 2010-09-03 2013-02-11 Power transmission device

Publications (1)

Publication Number Publication Date
WO2012029179A1 true WO2012029179A1 (ja) 2012-03-08

Family

ID=45772311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065167 WO2012029179A1 (ja) 2010-09-03 2010-09-03 無線送電装置

Country Status (6)

Country Link
US (1) US20130147283A1 (ja)
EP (1) EP2613424B1 (ja)
JP (1) JP5488698B2 (ja)
KR (1) KR20130041987A (ja)
CN (1) CN103081293B (ja)
WO (1) WO2012029179A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014507925A (ja) * 2011-01-28 2014-03-27 サムスン エレクトロニクス カンパニー リミテッド 均一な磁場を有するソース共振器を含む無線電力送信装置及びその方法
JP2014072968A (ja) * 2012-09-28 2014-04-21 Tdk Corp ワイヤレス電力伝送装置
KR101413490B1 (ko) * 2012-07-24 2014-07-01 (주)기술과가치 무선전력 전송장치 및 이를 이용한 무선충전공간을 구축하는 방법
JP2015023631A (ja) * 2013-07-17 2015-02-02 株式会社アドバンテスト 電磁界抑制器、それを用いたワイヤレス送電システム
JP2015106940A (ja) * 2013-11-28 2015-06-08 Tdk株式会社 コイルユニット
JP2015192505A (ja) * 2014-03-27 2015-11-02 パナソニックIpマネジメント株式会社 非接触給電装置及び非接触給電装置の漏れ磁界測定方法
WO2015170510A1 (ja) * 2014-05-07 2015-11-12 株式会社エクォス・リサーチ 電力伝送システム
JP2016021795A (ja) * 2014-07-14 2016-02-04 Tdk株式会社 コイルユニットおよびワイヤレス電力伝送装置
US9716390B2 (en) 2013-11-28 2017-07-25 Tdk Corporation Power feeding coil unit and wireless power transmission device
US9728325B2 (en) 2013-11-28 2017-08-08 Tdk Corporation Power feeding coil unit and wireless power transmission device
WO2017145266A1 (ja) * 2016-02-23 2017-08-31 Tdk株式会社 非接触給電装置及び非接触電力伝送装置
CN107210126A (zh) * 2014-09-11 2017-09-26 奥克兰联合服务有限公司 具有受控磁通抵消的磁通耦合结构

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160037652A (ko) * 2014-09-29 2016-04-06 엘지이노텍 주식회사 무선 전력 송신 장치 및 무선 전력 수신 장치
KR20160082124A (ko) * 2014-12-31 2016-07-08 삼성전기주식회사 전력 송신 코일 구조 및 그를 이용한 무선 전력 송신 장치
US10516304B2 (en) * 2015-12-22 2019-12-24 Intel Corporation Wireless charging coil placement for reduced field exposure
US10411492B2 (en) 2015-12-23 2019-09-10 Intel Corporation Wireless power transmitter shield with capacitors
CN109155537A (zh) * 2016-05-19 2019-01-04 夏普株式会社 供电装置
JP2022068790A (ja) * 2020-10-22 2022-05-10 キヤノン株式会社 無線伝送システム、制御方法、およびプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837121A (ja) * 1994-07-26 1996-02-06 Matsushita Electric Works Ltd 給電装置
JP2008295274A (ja) 2007-05-28 2008-12-04 Sony Ericsson Mobilecommunications Japan Inc 無接点電力伝送コイルユニット、携帯端末、送電装置、及び、無接点電力伝送システム
JP2009164293A (ja) * 2007-12-28 2009-07-23 Nec Tokin Corp 非接触電力伝送装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3247186B2 (ja) * 1993-03-29 2002-01-15 江藤電気株式会社 可動体側電動駆動手段への給電装置
US7126450B2 (en) * 1999-06-21 2006-10-24 Access Business Group International Llc Inductively powered apparatus
AU2000251049A1 (en) * 2000-06-02 2001-12-17 Yamatake Corporation Electromagnetic induction coupling apparatus
JP2006314181A (ja) * 2005-05-09 2006-11-16 Sony Corp 非接触充電装置及び非接触充電システム並びに非接触充電方法
EP2087575A1 (en) * 2006-10-26 2009-08-12 Philips Intellectual Property & Standards GmbH Inductive power system and method of operation
GB0716679D0 (en) * 2007-08-28 2007-10-03 Fells J Inductive power supply
RU2506678C2 (ru) * 2008-04-03 2014-02-10 Конинклейке Филипс Электроникс Н.В. Система беспроводной передачи энергии
JP5682992B2 (ja) * 2008-04-04 2015-03-11 Necトーキン株式会社 非接触電力伝送装置
JP5671200B2 (ja) * 2008-06-03 2015-02-18 学校法人慶應義塾 電子回路
TWI451458B (zh) * 2009-08-25 2014-09-01 Access Business Group Int Llc 磁通量集中器及製造一磁通量集中器的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837121A (ja) * 1994-07-26 1996-02-06 Matsushita Electric Works Ltd 給電装置
JP2008295274A (ja) 2007-05-28 2008-12-04 Sony Ericsson Mobilecommunications Japan Inc 無接点電力伝送コイルユニット、携帯端末、送電装置、及び、無接点電力伝送システム
JP2009164293A (ja) * 2007-12-28 2009-07-23 Nec Tokin Corp 非接触電力伝送装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2613424A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014507925A (ja) * 2011-01-28 2014-03-27 サムスン エレクトロニクス カンパニー リミテッド 均一な磁場を有するソース共振器を含む無線電力送信装置及びその方法
KR101413490B1 (ko) * 2012-07-24 2014-07-01 (주)기술과가치 무선전력 전송장치 및 이를 이용한 무선충전공간을 구축하는 방법
JP2014072968A (ja) * 2012-09-28 2014-04-21 Tdk Corp ワイヤレス電力伝送装置
JP2015023631A (ja) * 2013-07-17 2015-02-02 株式会社アドバンテスト 電磁界抑制器、それを用いたワイヤレス送電システム
US9793718B2 (en) 2013-11-28 2017-10-17 Tdk Corporation Coil unit having plural coils for wireless power transmission
JP2015106940A (ja) * 2013-11-28 2015-06-08 Tdk株式会社 コイルユニット
US9716390B2 (en) 2013-11-28 2017-07-25 Tdk Corporation Power feeding coil unit and wireless power transmission device
US9728325B2 (en) 2013-11-28 2017-08-08 Tdk Corporation Power feeding coil unit and wireless power transmission device
JP2015192505A (ja) * 2014-03-27 2015-11-02 パナソニックIpマネジメント株式会社 非接触給電装置及び非接触給電装置の漏れ磁界測定方法
WO2015170510A1 (ja) * 2014-05-07 2015-11-12 株式会社エクォス・リサーチ 電力伝送システム
JP2015213411A (ja) * 2014-05-07 2015-11-26 株式会社エクォス・リサーチ 電力伝送システム
US10608478B2 (en) 2014-05-07 2020-03-31 Equos Research Co., Ltd. Power transmission system
JP2016021795A (ja) * 2014-07-14 2016-02-04 Tdk株式会社 コイルユニットおよびワイヤレス電力伝送装置
JP2017530562A (ja) * 2014-09-11 2017-10-12 オークランド ユニサービシズ リミテッドAuckland Uniservices Limited 制御された磁束キャンセルを伴う磁束結合構造
CN107210126A (zh) * 2014-09-11 2017-09-26 奥克兰联合服务有限公司 具有受控磁通抵消的磁通耦合结构
US11031826B2 (en) 2014-09-11 2021-06-08 Auckland Uniservices Limited Magnetic flux coupling structures with controlled flux cancellation
JPWO2017145266A1 (ja) * 2016-02-23 2018-12-13 Tdk株式会社 非接触給電装置及び非接触電力伝送装置
WO2017145266A1 (ja) * 2016-02-23 2017-08-31 Tdk株式会社 非接触給電装置及び非接触電力伝送装置

Also Published As

Publication number Publication date
JP5488698B2 (ja) 2014-05-14
EP2613424B1 (en) 2016-05-18
CN103081293B (zh) 2016-02-03
US20130147283A1 (en) 2013-06-13
EP2613424A1 (en) 2013-07-10
EP2613424A4 (en) 2014-04-23
JPWO2012029179A1 (ja) 2013-10-28
CN103081293A (zh) 2013-05-01
KR20130041987A (ko) 2013-04-25

Similar Documents

Publication Publication Date Title
JP5488698B2 (ja) 無線送電装置
US20220085654A1 (en) Wireless power transfer using multiple coil arrays
US9672976B2 (en) Multi-mode wireless charging
JP5488760B2 (ja) ワイヤレス給電装置、ワイヤレス受電装置およびワイヤレス電力伝送システム
WO2016007594A1 (en) Resonators for wireless power transfer systems
CN108695048B (zh) 磁耦合装置以及使用其的无线电力传输系统
KR20160090420A (ko) 무선 전력 송수신 장치
KR20170009683A (ko) 전자파 저감 장치 및 방법
US11398753B2 (en) Method and apparatus for wireless power transfer utilizing a magnetic shield
US10003128B2 (en) Resonant type power transmission antenna device
KR20190143242A (ko) 전자파 차폐 기능을 가지는 무선충전기
JP2016187260A (ja) ワイヤレス給電装置
US20200403449A1 (en) Uniform wireless charging device
CN108695988B (zh) 磁耦合装置以及使用其的无线电力传输系统
US10971956B2 (en) Leakage magnetic field shielding device and wireless power transmission system including the same
JP2016136698A (ja) アンテナ構造体、非接触電力伝送機構及び電子機器
US20160380480A1 (en) Method and apparatus for coil integration for uniform wireless charging
JP2013120890A (ja) 電磁誘導方式非接触電力伝送コイル及び電磁誘導方式非接触電力伝送装置
KR101925052B1 (ko) 균일한 무선 충전을 위한 코일 내장을 위한 방법 및 장치
JP2022034827A (ja) 非接触給電構造
JP6533669B2 (ja) 電磁波模擬装置
JP2014050302A (ja) 非接触給電装置
JP2017099186A (ja) 受電装置及び電力伝送システム
JP2016054623A (ja) ワイヤレス送電装置およびワイヤレス給電システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068800.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856728

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012531645

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010856728

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137005046

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE