WO2012028055A1 - Eft惰性复合电极的阴极板及其制备方法,包含该阴极板的电解设备 - Google Patents

Eft惰性复合电极的阴极板及其制备方法,包含该阴极板的电解设备 Download PDF

Info

Publication number
WO2012028055A1
WO2012028055A1 PCT/CN2011/078298 CN2011078298W WO2012028055A1 WO 2012028055 A1 WO2012028055 A1 WO 2012028055A1 CN 2011078298 W CN2011078298 W CN 2011078298W WO 2012028055 A1 WO2012028055 A1 WO 2012028055A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
graphite
cathode plate
graphite layer
active metal
Prior art date
Application number
PCT/CN2011/078298
Other languages
English (en)
French (fr)
Inventor
蒋亚熙
张定军
Original Assignee
Jiang Yaxi
Zhang Dingjun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiang Yaxi, Zhang Dingjun filed Critical Jiang Yaxi
Publication of WO2012028055A1 publication Critical patent/WO2012028055A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating

Definitions

  • the invention relates to an electrode plate of an inert composite electrode of an environmentally friendly technology (EFT), in particular to a cathode plate of an inert composite electrode, a preparation method of the electrode plate and an application thereof.
  • EFT environmentally friendly technology
  • Electrochemical water treatment technology is called “environmentally friendly” technology (EFT, Environment Friendly
  • electrofoaming/electric flotation/coprecipitation technology is the electrochemical principle of applying electrochemical oxidation reduction and controlling pollution.
  • a certain voltage of direct current is passed through the electrolytic cell, and the waste water is passed through the electrolytic cell, so that the anion of the electrolyte in the waste water is moved to the anode, and the electron is lost at the anode, and the cation is transferred to the cathode, and the electron is reduced at the cathode.
  • This reaction is used to cause the contaminated component to form a water-insoluble precipitate and generate a gas. It escapes from the water to purify the wastewater.
  • the electrochemical treatment of sewage is one-third of the operating cost of general chemical methods, physical methods, etc., and the process is simple, the operation is convenient, the infrastructure construction area is small, and the treated sewage can be stably discharged to the standard for a long time.
  • the electrochemical method for treating sewage has the advantages of no need to add chemicals such as oxidants and flocculants, and has the advantages of small volume, small floor space, and simple and flexible operation.
  • electrochemical methods have always had shortcomings such as high energy consumption (using electrical equipment running for a long period of time, generally more than 3 hours), high cost (fast consumption of electrode plates, main problems are passivation, active metal electrode plates), etc.
  • the application of electrochemical methods in the field of wastewater treatment is limited.
  • Electrocoagulation is often accompanied by air flotation, and hydrogen is reduced at the cathode, so there is also a method called electrocoagulation.
  • the electrode reaction is as follows:
  • the treatment method of wastewater generally adopts the physicochemical method of splitting - comprehensive two-stage treatment.
  • Multi-point treatment in the front section three types of water: water, cyanide water and integrated water (copper nickel zinc water).
  • the chrome water is reduced in price by a reducing agent, and the cyanide water is cyanogenated by two-stage oxidation, and the copper-nickel-zinc water directly merges with the first two waters to form integrated water.
  • the soluble electrodes widely used at home and abroad are mostly iron plates and aluminum plates.
  • the electrode plate material consumption is too high, it is easy to accumulate, easy to age, and the use of short life is about 30 days. , increased wastewater treatment costs.
  • the inventors succeeded in researching an electrode plate used as an inert composite electrode on the basis of extensive experimental research. According to the technical solution of the present invention, it is implemented as follows:
  • An electrode plate comprising a multilayer structure composed of at least an intermediate layer of an inner layer and a three-layer structure of a graphite layer on both sides of the intermediate layer.
  • the electrode plate according to (1), wherein the intermediate layer is an active metal layer, a stainless steel layer or a carbon steel layer.
  • the active metal layer is an iron layer or an aluminum layer.
  • the intermediate layer is an active metal layer, a stainless steel layer or a carbon steel layer.
  • An electrolysis apparatus characterized by comprising an electrode plate of any one of (1) to (13)
  • the electrolysis apparatus according to (14), characterized in that the electrolysis apparatus comprises at least one anode plate, and a transition plate between the cathode plate and the anode plate.
  • the electrolysis apparatus according to (15), characterized in that the electrolysis apparatus comprises at least one of the electrode plates of any one of (1) to (12) as a cathode plate, at least one anode plate, and at the cathode plate and the anode plate At least two, preferably three, transition plates between.
  • the preferred technical solution of the present invention is as follows:
  • Electrode plate characterized in that the electrode plate is composed of at least three layers of structures, which in turn comprise a graphite layer, The metal layer and the graphite layer, the active metal is iron or aluminum.
  • the electrode plate is composed of at least three layers of a structure consisting of a graphite layer, a carbon steel layer and a graphite layer.
  • a preferred electrode plate is composed of at least seven layers including a graphite layer, an active metal layer, a graphite layer, a glass steel layer, a graphite layer, an active metal layer, and a graphite layer.
  • a preferred electrode plate is composed of at least seven layers including a graphite layer, a carbon steel layer, a graphite layer, a glass steel layer, a graphite layer, a carbon steel layer, and a graphite layer.
  • the electrode plate ffl has at least five layers of structural composition, which in turn comprises a graphite layer, an active metal layer, a graphite layer, an active metal layer and a graphite layer.
  • the cathode plate of the present invention consists of the following structure:
  • a seven-layer structure consisting of a graphite layer, a spurted iron layer, a graphite layer, a glass steel layer, a graphite layer, a spurted iron layer, and a graphite layer;
  • a three-layer structure consisting of a graphite layer, an aluminum layer, and a graphite layer in sequence;
  • a five-layer structure consisting of a graphite layer, an aluminum layer, a graphite layer, an aluminum layer, and a graphite layer;
  • a three-layer structure consisting of a graphite layer, a layer of iron after pressing, and a layer of graphite;
  • a five-layer structure consisting of a graphite layer, a spurted iron layer, a graphite layer, a spurted iron layer, and a graphite layer; a graphite layer, a carbon steel layer, a graphite layer, a glass steel layer, a graphite layer, a carbon steel layer, and graphite 7-layer structure of the layer;
  • a three-layer structure consisting of a graphite layer, a carbon steel layer, and a graphite layer in this order.
  • the active metal layer it is preferred to subject the active metal layer to a spur treatment, and if a plurality of active metals are contained, a portion of the active metal layer may be optionally subjected to a spur treatment.
  • the purpose of the sprint is to make the active metal layer adhere better to the outer layer without adding other binders.
  • An electrolytic cell according to the present invention includes the above cathode plate, and further includes an anode plate and a transition plate.
  • An electrolysis apparatus comprising the above electrode plate, further comprising an anode plate, preferably comprising a transition plate.
  • the anode plate used may be a conventional anode plate, but it is preferable to use an anode plate of the invention titled "EFT inert composite electrode and a preparation method thereof, and an electrolytic device including the anode plate, which was submitted by the applicant on the same day.
  • the patent application is hereby incorporated by reference in its entirety.
  • the anode plate comprises a multilayer structure consisting of at least an active metal layer of the inner layer and a three-layer structure of graphite layers on either side of the active metal.
  • an insulating material layer and a graphite layer are sequentially disposed between the active metal and the graphite layer, and the side multilayer structure is a graphite layer, an insulating material layer, and a graphite layer from the outside to the inside.
  • an active metal layer is a graphite layer, an insulating material layer, and a graphite layer from the outside to the inside.
  • anode plate wherein an insulating material layer and a graphite layer are sequentially disposed between the active metal and the graphite layer on the other side, that is, the other side multilayer structure is a graphite layer, an insulating material layer, and an insulating layer in order from the outside to the inside.
  • Graphite layer and active metal layer is sequentially disposed between the active metal and the graphite layer on the other side, that is, the other side multilayer structure.
  • an active metal layer and an insulating material layer are further disposed between the graphite layer and the active metal, and the side multilayer structure is graphite in order from the inside to the inside.
  • an active metal layer and an insulating material layer are further disposed between the graphite layer and the active metal, and the side multilayer structure is a graphite layer from the outside to the inside. , an active metal layer, an insulating material layer and an active metal layer.
  • the outer layer of graphite on the one side is further provided with an active metal layer.
  • the insulating material layer is a glass steel layer.
  • the preferred anode plate is composed of the following seven layers of structure: a graphite layer, a glass steel layer, a graphite layer, an active metal layer, a graphite layer, a glass steel layer, and a graphite layer.
  • transition plate used in the present invention
  • the invention is entitled “Transition plate of " ⁇ " inert composite electrode and its preparation method, and the electrolysis device including the transition plate”, which is incorporated herein by reference in its entirety. Reference.
  • the basic structure of the transition board is as follows;
  • An electrode plate comprising at least a four-layer structure comprising a graphite layer, an intermediate layer, a graphite layer and a four-layer structure of the outer layer.
  • the intermediate layer and the outer layer are respectively an active metal layer, a stainless steel layer or a carbon steel layer.
  • the active metal layer is an iron layer or an aluminum layer.
  • an active metal layer, a stainless steel layer or a carbon steel layer, and optionally a graphite layer are further included outside the graphite layer on one side of the multilayer structure.
  • an outer layer of active metal, a layer of stainless steel or a layer of carbon steel, and optionally a layer of graphite are further included on the outside of the outer layer.
  • ffl is internally and outwardly composed of an insulating material layer, a graphite layer, an active metal layer, a graphite layer, optionally an insulating material layer, and optionally graphite. Layer composition.
  • the preferred transition plate is implemented as follows:
  • a 9-layer structure consisting of a graphite layer, a spurted active metal layer, a graphite layer, a glass steel layer, a graphite layer, an active metal layer, a graphite layer, a glass steel layer, and a graphite layer;
  • a preferred transition plate is composed of at least 9 layers including, in order, a graphite layer, a carbon steel layer, a graphite layer, a glass steel layer, a graphite layer, an aluminum layer, a graphite layer, a glass steel layer, and a graphite layer.
  • Layer structure is the structure.
  • the transition plate is composed of at least a four-layer structure in which a graphite layer, a spurted active metal layer, a graphite layer, and an active metal layer are sequentially formed.
  • the active metal layer described therein may also be replaced by a carbon steel layer or a stainless steel layer.
  • the transition plate is composed of at least four layers including a graphite layer, a carbon steel plate layer, a graphite layer, and an aluminum layer.
  • the transition plate has a five-layer structure consisting at least of a graphite layer, a spurted active metal layer, a graphite layer, an active metal layer, and a graphite layer.
  • the active metal layer described therein may also be replaced by a carbon steel layer or a stainless steel layer.
  • the active metal layer preferably an aluminum plate or an iron plate layer, more preferably an iron plate layer.
  • the insulating material is preferably a glass steel layer, preferably a glass steel layer composed of an epoxy resin and a glass fiber composite.
  • the transition plate of the present invention is not directly connected to an external power source, in the electrolytic cell, the transition plate of the present invention itself substantially corresponds to the characteristics of both the anode plate and the cathode plate.
  • the use of the transition plate is capable of reducing current and enhancing wastewater treatment capacity.
  • the current of the single pole wiring method is greater than 1000A under the same water quality, but when there is a transition plate, the current of the same water quality multipole wiring method does not exceed 800 ⁇ , Preferably it does not exceed 600 A, more preferably does not exceed 500 A, and most preferably does not exceed 400 / ⁇ .
  • transition plate when a DC power source is employed, when a transition plate is used between the cathode plate and the anode plate, at least two transition plates are preferred, and more preferably at least three transition plates are preferred. If high voltage pulses and high frequency residual power are used, the transition plate can be unlimited.
  • the transition plate can also serve as an electrode in the electrolysis device, and the two sides of the transition plate can serve as an anode and a cathode, respectively, so that the sides of the transition plate can be set differently.
  • the transition plate Under the condition of DC power supply, the transition plate is not in communication with the current, so it essentially reduces the current of the electrolysis device and greatly reduces the risk.
  • graphite is an inert material, it has unique acid resistance, alkali resistance, high temperature resistance and superior electrical conductivity. It can be solved by processing the composite into EFT inert composite electrode through reasonable technology and bonding of FRP and active metal.
  • the electrode plate In the process of electrochemical treatment of wastewater, the electrode plate is easy to stain, easy to scale, easy to corrode, easy to passivate, short service life, high running cost, etc.; and can control the electrode plate anode plate in the set circle Release, the negative plate can be used for a long time, and heavy metals can be recycled. The sewage treatment effect is stable for a long time.
  • the graphite layer may be selected from graphite of various raw materials, preferably expanded graphite, more preferably superior expanded graphite having a content of more than 99 8%.
  • the electrode plates are preferably iron or aluminum plates.
  • the spur treatment on the electrode plate of the electrolytic reaction. If the electrode plate is multi-layered, it is optional to spur the partial electrode plate. There is no need to add other adhesives to the sprinted electrode plates.
  • the anode plate and the transition plate may be perforated, and the shape of the holes may be grooved, circular, elliptical, square, etc., preferably elliptical and circular, more preferably elliptical. It preferably contains from 0 to 40 pores, preferably from 15 to 30 pores, more preferably from 20 to 24 pores. The pore size is determined by the amount of flocculation required to treat the wastewater.
  • a preferred embodiment of the EFT composite electrode sewage electrolysis apparatus of the present invention is to include at least two of the present invention, preferably at least three sequentially placed transition plates, and at least one anode plate and one cathode plate.
  • the preparation process of the electrode plate includes a conductive rubber pressing step. Specifically includes the following steps - a. Preparation of graphite layer
  • the composite plate has a thickness of 0.9-1 leg.
  • the thickness of the flat plate is not particularly required, and is set to the above range in consideration of cost and the like.
  • the graphite layer, the optionally spurted active metal, the carbon steel or stainless steel layer and the inert layer are prepared.
  • the sequential discharge is flattened by adhesive bonding, and then the nylon bolt is used for fixing and flattening.
  • the active ingredient, the carbon steel or the stainless steel layer is separately prepared to contain the active ingredient.
  • the first composite material or the second composite material of the metal, carbon steel or stainless steel layer is then sequentially discharged to obtain the desired electrode plate according to the requirements of the multilayer structure.
  • the order of the above steps & , b, c is not particularly required, and may be an order of b, c, a or c, b, a or the like.
  • the raw materials of the above respective layers can be obtained commercially, or a layer having a thickness, a length, and a width can be obtained by a conventional process in the art.
  • the preparation process of the electrolysis apparatus of the EFT inert composite electrode is achieved by: using EFT inert composite electrode composition 20 40 'preferably 24-36, more preferably 26 30 pitch 80 240 mm, preferably 100 200 legs are more preferably 120 160 mm electrolytic cell, the electrode wiring method is multi-pole wiring method, preferably (+ 0 0 - 0 0 100 0 -), that is, anode plate, transition plate, transition plate, cathode plate, transition plate, Transition plate, repeating the wiring in sequence, or preferably (+ 0 0 0 - 0 0 + 0 0 0), ie anode plate, transition plate, transition plate, transition plate, cathode plate, transition plate, transition plate, transition plate, transition plate , Repeat the wiring in sequence.
  • the electrode wiring method is multi-pole wiring method, preferably (+ 0 0 - 0 0 100 0 -), that is, anode plate, transition plate, transition plate, cathode plate, transition plate, Transition plate,
  • the external power supply is 220V, and the voltage is 12V, 24V, 36V.
  • the current density depends on the sewage quality.
  • Cell size 4000-6000 legs long, preferably 4200-5600 legs, more preferably 4500-4800 legs; width 800-2000 legs, preferred
  • Plate size length 800-2000 ram, preferably 1000 1100 legs; width 800 2000 ram, preferably 1000 1100 legs, thickness 1. 5 mm all 10 mm. Preferably 2- 8 legs, more preferably 4- 6 mm.
  • the initial current is 260-420A, preferably 275-360 A, more preferably 285--400 A;
  • the current after 10 minutes is 240-386 A, preferably 256 300 A, More preferably 275-276 A;
  • the current after 45 minutes is from 1.80 to 320 A, more preferably from 206 to 295 A, more preferably from 262 to 270 A;
  • the current after 60 minutes is from 150 to 300 A, preferably from 1,75 to 265 A, more preferably from 230 to 250 A.
  • the starting current is 275 A, 10 minutes 256 A, .45 minutes 206 A, 60 minutes 175 A.
  • the initial current is 385 A, 10 minutes 275 A, 45 minutes 262 A, 60 minutes 230 A.
  • the initial current is 360 A, 276 A for 10 minutes, 270 A for 45 minutes, and 265 A for 60 minutes.
  • the initial current is 420 A, 10 minutes 386 A -, 45 minutes 295 A, 60 minutes 265 A.
  • the wastewater treatment process of the present invention is to pass sewage, such as electroplating sewage, into a sewage treatment facility (EFT) containing the electrode plate of the present invention, and then adjust it by an EFT-pH automatic regulating machine, and then adjust the sewage.
  • EFT sewage treatment facility
  • They are respectively introduced into a plurality of side-by-side mud-water separation tanks, and the separated clean water is directly introduced into the clean water collecting tank, and the impurity portion is introduced into the sludge collecting tank.
  • the clean water obtained in the clean water collection tank is passed to a carbon sand filter tower for secondary treatment, and then the treated wastewater is reused or discharged into a clean water tank for use.
  • an EFT inert composite electrode is used as a consumable material for treating wastewater in the anode and cathode electrode plates.
  • the EFT inert composite electrode processed and composited by the invention can be used as a positive and negative electrode material in the wastewater treatment, and the treated wastewater can be stably discharged for a long period of time, and can meet the standard discharge, and the running cost is very low; and the electrode in the field of electrochemical treatment of wastewater is solved.
  • the board is prone to aging and high energy consumption. It has created a new material technology revolution for the treatment of domestic sewage and industrial sewage. The success of this material's gelation will give electrochemical technology an active role in wastewater treatment, and will contribute to water conservation and environmental protection.
  • the electrode plate of the present invention is processed and composited into an EFT inert composite electrode, the above problems are solved, and the treatment of 150 tons of electroplating wastewater per day is more than 400 days, which greatly reduces the cost of wastewater treatment.
  • the EFT inert composite electrode of the invention can be used as a technical feature for treating electric flocculation in sewage, and can recover valuable substances in sewage treatment. It can not only treat single Cr (VI)-containing wastewater, but also ferrite and coprecipitation can treat Cr' (VI), Cr 3 ⁇ Cu 2 ⁇ Ni 2 ⁇ Zn 2+ , Cd 2 ⁇ Pb
  • the comprehensive electroplating wastewater of 2+ and other heavy metal ions does not need to be diverted, and the treatment is up to one standard, which greatly simplifies the treatment process and the water quality after treatment is stable. Since the back of the electroflocculation process has a lime milk coagulation sedimentation unit, this further ensures the removal of heavy metal ions.
  • the EFT inert composite electrode After the EFT inert composite electrode is fabricated into an electrolytic cell and equipment, more than 30 metal ions can be electrodeposited from the aqueous solution to the cathode EFT inert composite electrode, including precious metals and heavy metals, by treating the electroplating wastewater.
  • the handling rate of heavy metals is almost 100%, and the processing rate of non-metals has reached 96.5%.
  • ⁇ Inert composite electrode is made into electrolytic cell and equipment, which can be widely used in the treatment of various electroplating, dyes, pigments, coatings, pesticides, medicines, veterinary drugs, explosives and other production wastewater; refinery wastewater, oil field wastewater and other fine chemical wastewater, with Turbid decolorization, lowering COI), BOD, especially for decolorization and removal of heavy metals; especially in car washing yards, it is more effective in removing suspended solids, various colloids, various bacteria, Disperse oil, emulsified oil, remove odor in water, and the quality of wastewater treatment reaches the standard of miscellaneous water quality.
  • FIG. i Schematic structure of the cathode plate of Embodiment 1
  • FIG. 1 Schematic diagram of the cathode plate of Example 2
  • FIG. 3 Schematic diagram of the cathode plate of Example 3
  • Figure 4 Cathode plate structure prepared according to the method of the present invention
  • a high-quality epoxy resin and glass fiber was pressed into a composite plate of 0.6 mm thickness.
  • a composite layer of 0.88 mm of graphite, a thickness of the spurted active metal iron layer, and a 0.8 mm graphite layer were sequentially bonded by gluing to obtain two composite materials.
  • Example 2 Cathode plate, a three-layer structure consisting of a graphite layer, an aluminum layer, and a graphite layer.
  • a cathode layer of the present invention was obtained by sequentially bonding a 0.6 m graphite layer, a 1 TM thick active metal aluminum layer, and a 0.6 mm graphite layer by gluing.
  • Example 3 Cathode plate, a 5-layer structure consisting of a graphite layer, an aluminum layer, a graphite layer, an aluminum layer, and a graphite layer.
  • a 1 mm thick active metal aluminum material is used.
  • the cathode layer of the present invention is obtained by sequentially bonding a graphite layer, an active metal aluminum layer, a graphite layer, an active metal aluminum layer, and a graphite layer to a pressure-bonding.
  • Example 4 Cathode plate, a three-layer structure consisting of a graphite layer, a spurted iron layer, and a graphite layer.
  • High-quality expanded graphite worms with a content of more than 99 8% were pressed into 1; two composite plates of mn thickness were used.
  • the active metal iron material having a thickness of 0.8 to mn is used for the sprint treatment.
  • the third step preparation of the cathode plate
  • a cathode plate of the present invention was obtained by sequentially bonding a 1 mni graphite layer, (a 18 m thick spurted iron layer, and a 1 iam graphite layer) by gluing.
  • Example 5 Cathode plate, graphite layer 5 layers of iron layer, graphite layer, sprinted iron layer and graphite layer after sprinting
  • the high-quality expanded graphite worms having a content of more than 99.8% are pressed into three composite plates each having a thickness of 0.5 mm.
  • Two pieces of active metal iron material of 1. 2 ⁇ thick were selected for sprinting treatment.
  • Example 6 A cathode plate consisting of a 7-layer structure of a graphite layer, a carbon steel layer, a graphite layer, a glass steel layer, a graphite layer, a carbon steel layer, and a graphite layer.
  • a high-quality epoxy resin and glass fiber are used to press a composite plate with a thickness of 1 mm.
  • the third step preparation of active metal layer
  • Two pieces of carbon steel sheet material with thicknesses of 0.3 mm and 0.5 mra were selected for use.
  • Example 7 Cathode plate, a three-layer structure consisting of a graphite layer, a carbon steel layer and a graphite layer in this order
  • the high-quality expanded graphite worms with a content of more than 99.8% were pressed into two composite plates each having a thickness of 1 mm.
  • the third step preparation of the cathode plate
  • a cathode plate of the present invention was obtained by sequentially bonding a 1 mm graphite layer, a 0.5 m thick carbon steel layer, and a 1 ⁇ graphite layer by a rubber bond.
  • Example 8 EFT sewage treatment equipment
  • the inside of the sewage treatment apparatus of the present invention is alternately arranged by an anode plate, two transition plates, a cathode plate, and two transition plates, for a total of 31 plates.
  • the anode plate is composed of a graphite layer, a glass steel layer, a graphite layer, an aluminum layer, a graphite layer, a glass steel layer, and a graphite layer; wherein each graphite layer has a thickness of 0, 5 mm; and the aluminum layer has a thickness of 0, 8 mm;
  • the thickness of the FRP layer is 1 mm, and the preparation process is the same as that of the cathode plate of the present invention. After the flattening is carried out by adhesive bonding, the anode plate is obtained.
  • the cathode plate is composed of the cathode plate of the first embodiment, that is, a seven-layer structure consisting of a graphite layer, a spurted active metal layer, a graphite layer, a glass steel layer, a graphite layer, a spurted active metal layer and a graphite layer.
  • the thickness of the graphite layer is 0. 8 i
  • the thickness of the iron layer after sprinting is 1 m
  • the thickness of the glass fiber reinforced layer is 0.6 ⁇ .
  • the transition plate is composed of a graphite layer, a spurted active metal layer, a graphite layer, an active metal layer and a graphite layer, wherein the thickness of the graphite layer is I mia, and the aluminum layer is ( ⁇ 8 mni The thickness of the thick and sprinted iron plate layer is 0.8 mm.
  • the preparation process is the same as that of the cathode plate of the present invention, and the transition plate is obtained after flat bonding by adhesive bonding.
  • the inside of the sewage treatment apparatus of the present invention is alternately arranged by an anode plate, two transition plates, a cathode plate, and two transition plates, for a total of 27 plates.
  • each graphite layer is 0. 8 leg aluminum layer thickness is 1 m; glass steel reinforced plastic layer The thickness of the layer is 0, 8 mm, and the preparation process is the same as that of the cathode plate of the present invention, and after the flattening by adhesive bonding, the anode plate is obtained.
  • the transition plate is composed of a graphite layer, a spurted active metal layer, a graphite layer, a glass steel layer, a graphite layer, an active metal layer, a graphite layer, a glass steel layer and a graphite layer, wherein the thickness of the graphite layer is 0. 5 iTiin, an aluminum layer is 1 mm thick, the slab layer is 1 mm thick, and the FRP layer is 0, 5 mm.
  • the preparation process is the same as that of the cathode plate of the present invention. Get the transition board.
  • the inside of the sewage treatment apparatus of the present invention is alternately arranged by an anode plate, two transition plates, a cathode plate, and two transition plates, for a total of 31 plates.
  • the thickness of the aluminum layer is 1. 2 legs ⁇
  • the thickness of the aluminum layer is 1. 2
  • the thickness of the rmi FRP layer is 0.8 mm, and the preparation process is the same as that of the cathode plate of the present invention. After the flattening is carried out by adhesive bonding, the anode plate is obtained.
  • the cathode plate is composed of a three-layer structure consisting of a graphite layer, an aluminum layer and a graphite layer.
  • the thickness of each graphite layer is 0.6, and the thickness of the aluminum layer is 1.
  • the transition plate is composed of a graphite layer, a spurted aluminum layer, a graphite layer, and an aluminum layer.
  • the thickness of the graphite layer is 0. 8 liiin
  • the aluminum layer is 1 m! n thick
  • the sprinted iron layer The preparation process is the same as the process of the cathode plate of the present invention, and the transition plate is obtained after bonding and pressing the vgl adhesive.
  • EFT sewage treatment equipment four As shown in the drawing, the interior of the sewage treatment apparatus of the present invention is alternately arranged in an alternating manner from an anode plate, two transition plates, a cathode plate, and two transition plates, for a total of 31 plates.
  • the anode plate is composed of a graphite layer lm, a FRP layer of 0.5 mm, a graphite layer of 0.5, an aluminum layer of 3 m, a graphite layer of 0.5, a FRP layer of 0 5 mm, and a graphite layer of 1 mm.
  • the process of the transition plate of the present invention is the same, and after the flattening by adhesive bonding, the anode plate is obtained.
  • the graphite layer has a 7-layer structure of 0.5 inm; the preparation process is the same as the process of the transition plate of the present invention, and after the flattening is performed by adhesive bonding, the cathode plate is obtained.
  • Aluminium layer 2ram graphite layer 0. 5 m, FRP layer 0 0. 5 legs, aluminum layer 2ram, graphite layer 0. 5 m, glass steel layer 0 5 m, graphite 0. 5am of 9-layer structure.
  • the inside of the sewage treatment apparatus of the present invention is alternately arranged by an anode plate, two transition plates, a cathode plate, and two transition plates, for a total of 31 plates.
  • the anode plate is composed of a graphite layer liam, a glass steel layer of 0.5 mni, a graphite layer of 0.5 inm, an aluminum layer of 3 miru graphite layer 0, a 5-leg, a glass steel layer (X 5 im, a graphite layer of 1 m, a 7-layer structure, a preparation process
  • the anode plate is obtained after the glue is bonded and flattened.
  • the cathode plate is composed of the three-layer structure of the seventh embodiment, that is, the graphite layer lmm and the carbon steel plate layer of 0.5 miTK graphite layer; the preparation process is the same as the process of the transition plate of the present invention, and is obtained by gluing and bonding. Cathode plate.
  • the transition plate is composed of a four-layer structure of a graphite layer li carbon steel plate layer of 0 5 mm, a graphite layer of 1 mm, and an aluminum layer of 1 ⁇ 2 inch.
  • Example 9 EFT wastewater treatment process
  • the wastewater treatment process of the present invention is to pass sewage, such as electroplating sewage, into a sewage treatment facility (EFT) containing the electrode plate of the present invention, and then adjust it by an EFT-pH automatic adjustment machine, and then
  • the conditioned sewage is separately introduced into a plurality of muddy water separation tanks, and the separated clean water is directly introduced into the clear water collecting tank, and the impurities are passed into the sludge collecting tank.
  • the clean water obtained in the clean water collection tank is passed to a carbon sand filter tower for secondary treatment, and then the treated wastewater is reused or discharged into a clean water tank for use.
  • Example 10 Application of Composite Electrode Ffl EFT inert composite electrode when treating sewage
  • the wastewater treatment is carried out according to the process of carrying out the feeding 7.
  • the water quality can be used for recycling and reaching the country. 2008 special emission standards.
  • Electrolytic cells with a spacing of 160 ram were formed.
  • the electrode wiring method is multi-pole wiring method (+ 0 0 ⁇ 0 0 + 0 0 ), and the external power supply 220V transformer is 12V, 24V, 36V, and the current density depends on the sewage quality.
  • Cell size 5000mm long, 1500 legs wide, high iSOOiam (10 tons of electroplating wastewater per hour)
  • Electrode plate size length 1 100 i K width 1 100 i K thickness (L 5 m to 5. 5 mm)
  • the 60-minute sewage treatment was monitored by the local environmental monitoring station.
  • the data results are:
  • Example 2 when treating wastewater with EF'i' inert composite electrode
  • the waste water M is carried out according to the process of the reversed step 7.
  • the water quality of the EFT inert electrolysis apparatus of the eighth embodiment of the present invention is treated for 60 minutes, and the water quality can be reused. , to meet the national 2008 special emission standards.
  • Electrode wiring method is multi-pole wiring method ( + 0 0 -- 0 0 + 0 0 ⁇ ) plus power supply 220V transformer voltage is 12V, 24V, 36V, and the current density is determined by the sewage quality.
  • Cell size 4800 legs long 1400 leaks, 1800 mm high (10 tons of electroplating wastewater per hour).
  • Electrode wrench size 1000 inches long, 900 legs wide, and thick (1.5 legs to 6, 5 mm). Starting current 275A, 10 minutes 256A, 45 minutes 206, 60 minutes 175 A
  • Example 7 for the electroplating wastewater with a treatment capacity of 300 tons per day
  • the wastewater treatment can be carried out by using the EFT inert electrolysis apparatus of the eighth embodiment of the present invention for 60 minutes, and the water quality can be reused to achieve the new emission of the national 2008. standard.
  • the electrode wiring method is multi-pole wiring method (+ 0 0 ⁇ 0 0 + 0 0 --- ).
  • the external power supply 220V transformer is 12V, 24V, 36V, and the current density depends on the sewage quality.
  • Cell size 4800mm long, iSOOmnu high iSOOiam (10 tons of electroplating wastewater per hour).
  • Electrode plate size 1200 mm long, 1100 ram wide, and thick (L 5 mia to 8 mm). Starting current 385 10 minutes 275A, 45 minutes 262, 60 minutes 230A
  • Example 7 for the electroplating wastewater with a daily treatment capacity of 2,000 tons in an electroplating plant
  • the wastewater treatment can be carried out by using the EFT inert electrolysis apparatus of the eighth embodiment of the present invention for 60 minutes, and the water quality can be used to return to the national 2008 new discharge. standard.
  • EFT inert composite electrode was used to make 30 electrolytic cells with a pitch of 180 fibers.
  • the electrode wiring method is multi-pole wiring method (+ 0 0 0 — 0 0 0 + 0 0 0 —).
  • Xi Bujia power supply 220V transformer pressure is 12V, 24 V, 36V, current density depends on the quality of sewage.
  • Cell size Cell size: 4800 m long, 1500 mm wide, 1800 mm high (10 tons of electroplating wastewater per hour).
  • Extremely sized 1 100 legs long, 1100 legs wide, and thick (1.5 ram to 10 legs). Starting current 420A, 10 minutes 386A, 45 minutes 295A, 60 minutes 265A.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明涉及一种环境友好技术(EFT,EnvironmentFriendlyTechnology)的EFT惰性复合电极的阴极板及其制备方法,包含该阴极板的电解设备,该阴极板包括多层结构,至少由内层的中间层、以及在所述中间层两侧的石墨层的三层结构组成,所述的中间层为活性金属层、不锈钢层或碳钢层。使用本发明的阴极板,处理后污水可以达标排放,而且阴极板的使用寿命大大延长。

Description

EFT惰性复合电极的阴极板及其制备方法, 包含该阴极板的电解设备 技术领域
本发明涉及一种环境友好技术 (EFT, Environment Fri end ly Technology ) 的惰性 复合电极的电极板, 尤其是惰性复合电极的阴极板, 该电极板的制备方法及其应用。 背景技术
电化学法水处理技术被称为 "环境友好"技术(EFT, Environment Friendly
Technology。 EFT电化学技术的要点是; 电絮凝 /电气浮 /共沉淀技术,是应用电化学氧化 还原的反应原理、 控制污染的电化学法。 在电解槽中通入一定电压的直流电, 让废水通 过电解槽, 使废水中的电解质的阴离子移向阳极, 并在阳极失去电子而被氧化, 阳离子 移向阴极, 并在阴极得到电子而被还原。 利用这种反应使污染成分生成不溶于水的沉淀 物, 并生成气体.从水中逸出, 使废水净化。 电化学法处理污水是一般化学法, 物理法等方法运行成本的 1/3 , 而且工艺简单, 操 作方便, 基础建设占地面积少, 处理污水能够长期稳定达标排放。 电化学方法治理污水, 具有无需添加氧化剂、 絮凝剂等化学药品, 设备体积小, 占地面积少, 操作简便灵活等 优点。 但电化学方法一直存在着能耗大 (使用电能设备运行 ^间长, 一般 3个多小时) 、 成本高 (电极板消耗快, 主要问题是钝化, 活性金属电极板) 等缺点, 从而大大限制了 电化学方法在处理废水领域中的应用。
在外加电压的作用下, 利用可溶性的阳极, 产生大量的阳离子 (如 Fe2+、 Al3+等) , 对废水进行凝聚沉淀, 这种方法称为电凝聚。 电凝聚往往伴随着气浮, 在阴极有氢气被 还原, 故也有称为电凝聚浮上法的。 电极反应如下:
阳极: Fe -- 2e ― Fe2+ 或 A 1 -― 3e ― Al3+
阴极: 2H+ + 2e → H2个 或 ¾ + ne → Re 在几种电化学处理废水类型中, 电凝聚与电气浮的运用比较成熟。 与化学凝聚相比, 电凝聚方法无需投资加药设施, 且村料消耗要少许多。 其缺陷在于能耗问题。 铁离子或铝离子与氢氧根结合起到凝聚作用。 同时, 在阴极发生还原反应, 逸出的氢 气形成极小的气泡, 将废水中的凝聚物浮上电解槽的液体表面。 电凝聚作为废水处理的 一种有效手段, 很早就得到了应用, 但由于其在实际应用中单位铝、 铁耗材过大, 使电 凝聚法的发展及应用受到了限制。 目前废水的处理方法一般采用物化法分流——综合两段处理。 前段处理多分:三类 水: 珞水、 氰水和综合水 (铜镍锌水) 。 铬水用还原剂使之变价还原, 氰水用两级氧化 破氰, 铜镍锌水直接与前两股水汇合而成为综合水。后段处理综合水, 基本上是用碱(烧 碱或石灰) 、 聚合氯化铝 (PAC) 和有 絮凝剂 (PAM) , 具体操作是: 把综合水的 pH值 调整到 10— 13, 碱浓度大而迫使碱与重金属的反应向生成氫氧化物的方向进行。 由于 pH 值>9,排放口又需要使 ^酸进行中和从而使 pH值降到 9以下。 这属于传统的处理工艺, 存在诸多不足。 例如前处理 支污水的划分, 不符合生产实际, 铬水以铬为主、 氰水以 氰为主、 铜镍锌三合水以 3元素居多。 这些实际情况, 是在废水处理的实践中发现的, 几乎所有企业的废水都是如此。 由于第二段处理的污水中各种污染物都存在, 用简单的 药剂化学方法很难使终端水达标排放。 前段处理不可能达到反渗透膜的处理要求, 处理 运行成本高, 又不能达标排放。 后段处理成了各家污水处理企业追求的方向和目标。
而且电化学法处理污水过程中, 电解一段时间后, 阳极会发生钝化现象, 阴极会发 生结垢问题, 钝化时电极表面附着一层氧化物保护膜, 表现为阳极溶出停止, 处理的污 水不能达标排放, 而且电极材料、 电能源消耗大, 污水处理运行成本高等。 这些问题 直困扰着电化学法在污水处理生产化中的应用。
同 , 目前国内外广泛采 ^的可溶性电极多为铁板、 铝板, 作为处理污水的萦凝剂, 但是电极板材料消耗太高, 容易积垢, 易老化, 使用寿侖短 (30天左右) , 增加了废水 处理成本。
发明内容
本发明人在经过大量实验研究的基础上, 成功研究了用作惰性复合电极的电极板。 根据本发明的技术方案, 其通过如下方式实现:
( 1 ) 一种电极板, 其包括多层结构, 其至少由内层的中间层、 以及在所述中间层 两侧的石墨层的三层结构组成。
(2 ) 根据 (1 ) 所述的电极板, 其中所述的中间层为活性金属层、 不锈钢层或碳 钢层。 (3) 根据 (2) 所述的电极板, 其中的活性金属层为铁层或铝层。
(4) 根据前述任一项所述的电极板, 其中在该多层结构的一侧的石墨层外侧, 由 内向外还依次设置活性金属层和石墨层。
(5) 根据 ) 所述的电极板, 其中在该多层结构的另一侧的石墨外层, 由内向 外还设有活性金属层和石墨层。
(6) 根据前述任一项所述的电极板, 其中在该多层结构的一侧, 在所述石墨层外 侧, 由內向夕卜还设有绝缘材料层、 石墨层、 活性金属层和石墨层。
(7) 根据 (6) 所述的电极板, 其中在该多层结构的另一侧, 在所述石墨层外侧, 由 Λ向外还包括绝缘材料层、 石墨层、 中间层和石墨层, 其中所述中间层为活 性金属层、 不锈钢层或碳钢层。
(8) 根据 (7) 所述的电极板, 其中在该多层结钩的另一侧 ύ 在所述石墨层外侧, 由内向外还包括绝缘材料层、 石墨层、 中间层和石墨层, 其中所述中间层为活 性金属层、 不锈钢层或碳钢层。
(9) 根据前述任一项所述的电极板, 其特征在于在一侧的石墨层和中间层之间还 设有绝缘村料层。
(10) 根据前述任一项所述的电极板, 其特征在于在另一侧的石墨层和中间层 之间设有绝缘村料层。
(11) 根据 6) — (10)任一项所述的电极板, 其特征在于所述的绝缘材料层 为玻璃钢层。
(12) 根据 (11) 所述的电极板, 其中所述的玻璃钢层为环氧树脂和玻璃纤维 的复合材料层。
(13) 根据 (1) ― (12)任一项所述的电极板, 其特征在于该电极板用作阴极 板。
(14) 一种电解设备, 其特征在于包含 (1) ― (13) 任一项的电极板
(15) 根据 (14) 的电解设备, 其特征在于该电解设备至少包括一个阳极板、 以及位于阴极板和阳极板之间的过渡板。
(16) 根据 (15) 的电解设备, 其特征在于, 该电解设备包括至少一块 (1) - (12) 任一项的电极板作为阴极板, 至少一块阳极板, 以及位于阴极板和阳极 板之间的至少两块、 优选三块过渡板。
根据上述技术方案, 本发明的优选技术方案如下:
一种电极板, 其特征在于, 该电极板由至少 3层结构组成, 其依次包括石墨层, 活 性金属层和石墨层, 所述的活性金属为铁或铝。
根据本发明, 所述电极板由至少 3层结构组成, 其依次 ώ石墨层、 碳钢板层、 石墨 层组成。
根据本发明, 优选的电极板由至少 7层结构组成, 其依次包括石墨层、 活性金属层、 石墨层、 玻璃钢层、 石墨层、 活性金属层和石墨层。
根据本发明, 优选的电极板由至少 7层结构组成, 其依次包括石墨层、 碳钢板层、 石墨层、 玻璃钢层、 石墨层、 碳钢板层和石墨层。
根据本发明的另一优选实施方案, 所述电极板 ffl至少 5层结构组成, 其依次包括石 墨层、 活性金属层、 石墨层、 活性金属层和石墨层。
根据本发明的实施方案, 最优选本发明的阴极板由如下结构组成:
由石墨层、 冲刺后的铁层、 石墨层、 玻璃钢层、 石墨层、 冲刺后的铁层及石墨层依 次组成的 7层结构;
由石墨层、 铝层、 石墨层依次组成的 3层结构;
由石墨层、 铝层、 石墨层、 铝层、 石墨层依次组成的 5层结构;
由石墨层、 冲剠后的铁层、 石墨层依次组成的 3层结构;
由石墨层、 冲刺后的铁层、 石墨层、 冲刺后的铁层、 石墨层依次组成的 5层结构; 由石墨层、 碳钢板层、 石墨层、 玻璃钢层、 石墨层、 碳钢板层、 石墨层的 7层结构 组成;
由石墨层、 碳钢板层、 石墨层依次组成的 3层结构。
根据本发明, 优选对活性金属层进行冲刺处理, 如果包含多层活性金属, 可以选择 对部分活性金属层进行冲刺处理。冲刺的目的是为了使得活性金属层与外层粘合的更好, 而且无需增加其他的粘合剂。
根据本发明的电解槽, 其包括上述阴极板, 还包括阳极板和过渡板。
根据本发明的电解设备, 其包括上述电极板, 还包括阳极板, 优选包括过渡板。 在本发明中, 使用的阳极板可以为常规的阳极板, 但优选使用本申请人于同日提交 的、 发明名称为 "EFT惰性复合电极的阳极板及其制备方法, 包含该阳极板的电解设备" 的专利申请, 其全文引入本文作为参考。
根据本发明的优选实施方案, 所述阳极板包括多层结构, 至少由内层的活性金属层, 以及在所述活性金属两侧的石墨层的三层结构组成。 优选在该多层结构的一侧, 在所述 活性金属和石墨层之间还依次设有绝缘材料层和石墨层, 该侧多层结构由外向内依次为 石墨层、 绝缘材料层、 石墨层和活性金属层。 根据前述的阳极板, 其中在另一侧的活性金属和石墨层之间同时依次设有绝缘材料 层和石墨层, 即该另一侧多层结构由外向内依次为石墨层、 绝缘材料层、 石墨层和活性 金属层。
根据前述的阳极板, 其中在该多层结构的一侧, 在所述石墨层和活性金属之间还设 有活性金属层和绝缘材料层, 该侧多层结构由夕卜向内依次为石墨层、 活性金属层、 绝缘 材料层和活性金属层。
根据前述的阳极板, 其中在该多层结构的另一侧, 在所述石墨层和活性金属之间还 设有活性金属层和绝缘材料层, 该侧多层结构由外向内依次为石墨层、 活性金属层、 绝 缘材料层和活性金属层。
根据前述的阳极板, 其特征在于该一侧的石墨外层, 还设有一层活性金属层。
根据前述所述的阳极板, 其中所述的绝缘材料层为玻璃钢层。
优选的阳极板由如下 7层结构依次组成: 石墨层、 玻璃钢层、 石墨层、 活性金属层、 石墨层、 玻璃钢层和石墨层。
用于本发明的过渡板, 可以参见申请人于同日申请的、 发明名称为" ΕΡΊ'惰性复合电 极的过渡板及其制备方法, 包含该过渡板的电解设备" 的专利申请, 其全文引入本文作 为参考。
过渡板的基本结构如下;
种电极板, 其至少包括四层结构, 包括石墨层、 中间层、 石墨层以及外层的四层 结构。
根据前述的电极板, 其中所述的中间层及外层分别为活性金属层、 不锈钢层或碳钢 层。
根据前述的电极板, 其中的活性金属层为铁层或铝层。
优选地, 在多层结构一侧的石墨层外侧还包括一层活性金属层、 不锈钢层或碳钢层, 以及任选的石墨层。
优选地, 在外层的外侧还包括一层活性金属层、 不锈钢层或碳钢层, 以及任选的石 墨层。
根据前述的电极板, 其中在该多层结构一侧的石墨层外侧, ffl内向外依次由绝缘材 料层、 石墨层、 活性金属层、 石墨层、 任选地绝缘材料层、 及任选地石墨层组成。
优选的过渡板由如下方式实现:
由石墨层、 冲刺后的活性金属层、 石墨层、 玻璃钢层、 石墨层、 活性金属层、 石墨 层、 玻璃钢层、 石墨层依次组成的 9层结构; 根据本发明的优选实施方案, 优选的过渡板由至少 9层结构组成, 依次包括石墨层、 碳钢板层、 石墨层、 玻璃钢层、 石墨层、 铝层、 石墨层、 玻璃钢层、 石墨层的 9层结构。
根据本发明的优选方案, 所述过渡板至少由石墨层、 冲刺后的活性金属层、 石墨层、 活性金属层依次组成的 4层结构组成。 其中所述的活性金属层也可以被碳钢层或者不锈 钢层替代。
根据本发明的优选方案, 所述过渡板由至少 4层结构组成, 依次包括石墨层、 碳钢 板层、 石墨层、 铝层。
根据本发明的优选方案, 所述过渡板至少由石墨层、 冲刺后的活性金属层、 石墨层、 活性金属层及石墨层依次组成的 5层结构。 其中所述的活性金属层也可以被碳钢层或者 不锈钢层替代。
根据前述的电极, 优选对活性金属层, 优选铝板或铁板层, 更优选铁板层进行冲刺 处理。
所述绝缘材料优选为玻璃钢层, 优选 环氧树脂和玻璃纤维复合而成的玻璃钢层。 尽管本发明的过渡板并不直接与外加电源连接, 但在电解槽中, 本发明的过渡板本 身实际上相当于同时兼具阳极板和阴极板的特性。
在本发明的电解设备中,使用过渡板的作用是是能够降低电流和增强废水处理能力。 当阳极板和阴极板组成的电解槽中无过渡板时, 同样水质下, 单极接线法电流会大于 1000A,但当存在过渡板时,则同一水质的多极接线法电流不超过 800 Α,优选不超过 600A, 更优选不超过 500 A, 最优选不超过 400 /\。
当采用直流电源时, 当在阴极板和阳极板中间使用过渡板时, 优选至少 2块过渡板, 更优选至少 3块过渡板。 如果采用高压脉冲和高频餘冲电源时, 过渡板可以无限制。
在本发明中, 使用过渡板降低电流的原因在于, 该过渡板在电解设备中也可以充当 电极, 而 ϋ一块过渡板的两侧可以分别充当阳极、 阴极, 故过渡板的两侧可以设置不同。 在直流电源的条件下, 于过渡板并不与电流相通, 因此实质上起到了降低电解设备的 电流, 大大降低了风险。
在电极板的外表面使用石墨的原因在于, 石墨不易脱落, 不易被侵蚀, 因此增加石 墨后, 在电极的表层不会产生钝化, 从而能够有效地保护电极板的使用寿侖: 同时也保 证了阳极和阴极设定距离间电解槽电流密度的稳定分布, 处理后的废水能达标排放且能 长期稳定。
由于石墨为惰性材料, 其本身具有独特的耐酸、 耐碱、 耐高温和优越的导电性能, 通过合理的科技工艺和玻璃钢、 活性金属粘合, 加工复合成 EFT惰性复合电极后, 解决 了电化学技术处理废水过程中, 电极板易沾污、 易结垢、 易腐蚀、 易钝化、 使用寿命短、 运行成本高等问题; 并能控制电极板阳极板在设定范圈内有序释放, 负极板能长期使用, 并且重金属可以回收。 污水处理效果长期稳定。
石墨层可以选用各种不同原料的石墨,优选膨胀石墨,更优选含量为 99 8%以上的优 质膨胀石墨。
出于对水处理的经济性考虑, 电极板优选使用铁或铝板。
为了使得进行电解反应的电极板与相邻层之间的粘合力更强, 优选对该电解反应的 电极板进行冲刺处理。 如果包含多层该电极板, 可以选择对部分电极板进行冲刺处理。 冲刺处理的电极板中无需增加其他的粘合剂。
为了使得废水处理更完全, 可以对阳极板和过渡板进行穿孔, 孔的形状可以为槽状、 圆形、 椭圆形、 方形等, 优选橢圆形和圆形, 更优选椭圆形。 优选含有 ] 0— 40个孔, 优 选 15— 30个孔, 更优选 20- 24个孔。 孔径大小以处理废水需释放的絮凝量要求而定。
本发明的 EFT复合电极污水电解设备优选的技术方案是包括本发明的至少两块, 优 选至少 3块顺序放置的过渡板, 以及至少一块阳极板和一块阴极板。
根据本发明, 所述电极板的制备工艺包括导电胶压合步骤。 具体包括如下步骤- a.石墨层的制备
选用各种不同原料的石墨,优选含量为 99. 8%以上的优质膨胀石墨蠕虫压成 (L 4-2mm, 优选 0. 6-1. 5mm, 更优选 0. 8-1. 2 腿, 最优选 0. 9-1腿厚度的复合平板。
平板的厚度并无特别要求, 考虑到成本等原因, 故设置成如上范围。
b.任选地惰性材料层的制备
选用优质的环氧辆'脂加玻璃纤维压成 0. 3-3,、 优选 0. 5 2 mm, 更优选 0, 6~1. 5 ram, 更优选 0, 8 1 mm厚度的复合平板。
c.活性金属、 碳钢或不锈钢层的制备
选用 0, 2- 5nim、优选 0, 4-3 漏,更优选 0, 6-2 ram,还更优选 0, 8~1. 5 漏,最优选 0, 9- Imia 厚的活性金属、 碳钢或不锈钢村料, 任选地迸行冲剠处理, 优选对作为阴极面的部分迸 行冲刺处理。
d.阴极板的制备
将所制备得到石墨层、 任选冲刺的活性金属、 碳钢或不锈钢层以及惰性 料层, 根 据阴极板的多层结构, 顺序排放用胶粘合压平后, 任选用尼龙螺栓固定平整, 获得本发 优选, 在步骤 d中, 根据活性金属、 碳钢或不锈钢层数的数量, 分别制成包含活性 金属、碳钢或不锈钢层的第一复核材料或者第二复合材料, 然后再根据多层结构的要求, 顺序排放制得所需电极板。
根据本发明, 上述步骤&、 b、 c的顺序没有特别要求, 可以是 b、 c , a或者 c、 b、 a 等顺序。
根据本发明, 上述各层的原料均可以商业上获得, 或者通过本领域常规的工艺制得 厚度、 长度、 宽度不一的板层。
根据本发明, 所述 EFT惰性复合电极的电解设备的制备工艺通过下述方式实现: 利用 EFT惰性复合电极组成 20 40个' 优选 24- 36个, 更优选 26 30个间距为 80 240mm, 优选 100 200 腿 更优选 120 160 mm的电解槽, 电极接线方式为多极接线法, 优选 (+ 0 0 — 0 0 十 0 0 — ) , 即阳极板、 过渡板、 过渡板、 阴极板、 过 渡板、 过渡板, 重复依次排列接线, 或者优选 (+ 0 0 0 -- 0 0 0 + 0 0 0 ) , 即阳极板、 过渡板、 过渡板、 过渡板、 阴极板、 过渡板、 过渡板、 过渡板, 重复 依次排列接线。
外加电源 220V , 变压为 12V、 24V , 36V , 电流密度视污水水质而定。 电解槽尺寸: 长 4000- 6000腿, 优选 4200- 5600腿, 更优选 4500- 4800 腿; 宽 800— 2000腿, 优选
1000- 1500腿; 髙 1000-2400 ram, 优选 1200- 1800腿 „ 每小时可处理 8-10吨电镀废水。
极板尺寸: 长 800-2000 ram, 优选 1000 1100腿; 宽 800 2000 ram, 优选 1000 1100腿、 厚 1. 5 mm全 10 mm. 优选 2- 8腿, 更优选 4- 6mm。
采用本发明的电解设备, 其优选技术方案中, 起始电流为 260— 420A , 优选为 275— 360 A, 更优选 285- -400 A; 10分钟后的电流为 240— 386A, 优选 256 300A, 更优选 275- 276 A; 45分钟后的电流为 1.80- 320A, 更优选 206— 295A, 更优选 262- 270A; 60分钟后 的电流为 150 300A, 优选 1 75— 265A, 更优选 230— 250A。
根据优选实施方案, 起始电流 275A、 10分钟 256A、 .45分钟 206 A、 60分钟 175 A。 根据另一实施方案, 起始电流 385A、 10分钟 275A、 45分钟 262 A、 60分钟 230A。 根据另一实施方案, 起始电流 360A、 10分钟 276 A、 45分钟 270 A、 60分钟 265 A。 根据另一实施方案, 起始电流 420A、 10分钟 386A -、 45分钟 295A、 60分钟 265A。 本发明的废水处理工艺流程是, 将污水, 如电镀污水通入到含有本发明电极板的污 水处理设备 (EFT ) 中, 然后通过 EFT—pH自动调节机进行调节, 然后将经调节后的污水 分别通入多个并排的泥水分离箱中, 经分离后的清水直接通入清水收集池中, 并将杂质 部分通入淤泥收集池中。 如需进一步处理, 还将清水收集池中获得的清水通入碳砂过滤 塔进行二次处理, 然后将处理后的废水回用或排放到清水池中待用。 在外加电压的作用下, 利用 EFT惰性复合电极, 作为阳极和阴极电极板处理废水时 的耗材材料。 使用本发明经过加工复合成的 EFT惰性复合电极, 在废水处理中作为正负 电极材料后, 处理的废水能长期稳定, 能达标排放, 运行成本非常低; 解决了电化学技 术处理废水领域中电极板易老化、 耗能高等问题。 为治理生活污水、 工业污水开创了新 的材料技术革命。 此材料革侖性的成功将给电化学技术在污水治理中发挥积极的作用, 同^将为节约水资源和保护环境做出贡献。
使 本发明的电极板, 经加工复合成的 EFT惰性复合电极后, 就解决了以上问题, 每天处理 150吨电镀废水使用寿侖 400天以上, 大大降低了废水处理成本。
采^本发明的 EFT惰性复合电极, 作为处理污水中电絮凝的技术特点, 可以在污水 处理中回收有价值的物质。 不仅可以处理单 ·的含 Cr (VI) 的废水, 其铁氧体作用和共 沉淀作用还可以处理含 Cr' (VI) 、 Cr3\ Cu2\ Ni2\ Zn2+、 Cd2\ Pb2+等多种重金属离子的 综合性电镀废水, 无需分流, 一次处理达标, 大大地简化了处理流程, 且处理后的水质 稳定。 由于电絮凝工艺后端还有加石灰乳混凝沉淀单元, 这进一步保障了重金属离子的 去除效果。 如处理电镀、 电解废水时, 可以同时回收铬或铜等 30多种贵金属; 在垃圾渗 滤液处理中, 可以去除重金属、 除盐、 杀菌, 并保留其中的氮、 磷、 钾及有机质, 使其 成为有机无机复合液肥等;使用 EFT惰性复合电极技术处理污水^对诸如 C0D、B0D、NM - N
、大!/杆菌、悬浮物、 重金属等的除去率高达 99%。所以 EFT惰性复合电极技术出现, 让污水处理资源化成为现实, 使传统的污水处理观念有了一个新的发展。
该 EFT惰性复合电极制成电解槽以及设备后, 通过对电镀废水的处理, 30多种金属 离子可从水溶液中电沉积到阴极 EFT惰性复合电极上, 包括贵金属和重金属。 重金属处 理率儿乎百分之百, 同时非金属的处理率也达到了 96. 5%。
ΕΓΓ惰性复合电极制成电解槽以及设备, 可广泛应用于处理各种电镀、 染料、 颜料、 涂料、 农药、 医药、 兽药、 炸药等生产废水; 炼油废水、 油田废水和其他精细化工废水, 具有除浊脱色, 降低 C0I)、 BOD, 尤其对脱色及去除重金属效果更加显著; 特别是汽车洗 车场应 ^该设备后,更能有效地去除洗车废水中的悬浮物、各类胶体、各类细菌、分散油、 乳化油、 去除水中臭味, 废水处理水质达到生活杂用水水质标准。 附图说明
图 i : 实施例 1的阴极板示意图结构
付图 2: 实施例 2的阴极板示意图结构
ϋ图 3: 实施例 3的阴极板示意图结构 對图 4: 根据本发明方法制备的阴极板结构
^图 5 : EFT污水处理电解槽剖面示意图
付图 6 : ΕΡΊ'污水处理电化学工艺流程图 具体实施方式
以下结合实施例对本发明做进一歩描述, 需要说明的是, 下述实施^不能作为对本 发明保护范围的限制, 任何在本发明基础上作出的改进都在本发明的保护范围之内。 实施倒 L 阴极板, 由石墨层、 冲刺后的铁层、 石墨层、 玻璃钢层、 石墨层、 冲刺后 的铁层及石墨层依次组成的 7层结构
第一步: 石墨层的制备
选用含量为 99. 8%以上的优质膨胀石墨蠕虫压成 0. 8 m 厚度的复合平板各 4块。 第二步; 玻璃钢层的制备
选用优质的环氧树脂加玻璃纤维压成 0. 6mm厚度的复合平板 1块。
第 Ξ!步: 活性金属层的制备
选用 1 Π 厚度的活性金属铁材料两块, 进行冲剠处理。
第四步: 过渡板的制备
将 0. 8mm的石墨层、 1 厚度的冲刺后的活性金属铁层以及 0 8mm的石墨层依次用 胶粘合压平后, 获得两块复合材料。
然后将两块复合材料分别放置在玻璃钢层的两侧, 用导电胶粘合压平后, 再用尼龙 嫘栓固定平整, 从而获得本发明的阴极板。 实施例 2. 阴极板, 由石墨层、 铝层、 石墨层依次组成的 3层结构
第一步; 石墨层的制备
选用含量为 99. 8%以上的优质膨胀石墨蠕虫压成 0, 6mm厚度的复合平板各 2块。 第二步: 活性金属层的制备
选用 1 Π 厚度的活性金属铝材料。
第. Ξ步: 过渡板的制备
将 0. 6 m 的石墨层、 1 ™厚度的活性金属铝层以及 0 6 mm的石墨层依次用胶粘合 压平后, 获得本发明的阴极板。 实施例 3. 阴极板, 由石墨层、 铝层、 石墨层、 铝层、 石墨层依次组成的 5层结构 第一步: 石墨层的制备
选用含量为 99. 8%以上的优质膨胀石墨蠕虫压成 0. SmiTi厚度的复合平板各 3块。 第二步: 活性金属层的制备
选用 1 mm厚度的活性金属铝材料。
第三步; 过渡板的制备
将石墨层、 活性金属铝层、 石墨层、 活性金属铝层以及石墨层依次 ^胶粘合压平后, 获得本发明的阴极板。 实施例 4. 阴极板, 由石墨层、 冲刺后的铁层、 石墨层依次组成的 3层结构
第一步: 石墨层的制备
选用含量为 99 8%以上的优质膨胀石墨蠕虫压成 1 ; mn厚度的复合平板各 2块。
第二步: 活性金属层的制备
选用 0. 8 !mn厚度的活性金属铁材料进行冲刺处理。
第三步: 阴极板的制备
将 1 mni的石墨层、 (1 8 m厚度的冲刺后的铁层以及 1 iam的石墨层依次用胶粘合压 平后, 获得本发明的阴极板。 实施例 5. 阴极板, 由石墨层、 冲刺后的铁层、 石墨层、 冲刺后的铁层、 石墨层依次 组成的 5层结构
第一步: 石墨层的制备
选用含量为 99. 8%以上的优质膨胀石墨蠕虫压成 0. 5 mm厚度的复合平板各 3块。 第二步; 活性金属层的制备
选用 1. 2 ^厚的活性金属铁材料各两块, 进行冲刺处理。
第 .≡步: 阴极板的制备
将石墨层、 冲刺后的铁层、 石墨层、 冲刺后的铁层以及石墨层依次用胶粘合压平后, 获得本发明的阴极板。 实施例 6. 阴极板, 由石墨层、 碳钢板层、 石墨层、 玻璃钢层、 石墨层、 碳钢板层、 石墨层的 7层结构组成
第一步: 石墨层的制备 选用含量为 99 8%以上的优质膨胀石墨蠕虫压成 0. 5 mm厚度的复合平板各 4块。 第二步: 玻璃钢层的制备
选用优质的环氧树脂加玻璃纤维压成 1 mm厚度的复合平板 1块。
第三步: 活性金属层的制备
分别选用 0. 3 mm和 0. 5 mra厚度的碳钢板层材料两块待用。
第四步; 过渡板的制备
将 0. 5mm石墨层、 0 3mm碳钢板层、 0. Srnrn石墨层依次用胶粘合压平后, 获得第一复 合材料, 再将 0. 5mm石墨层、 0. 5!mn碳钢板层、 0. 5!mn石墨层依次用胶粘合压平后, 获得 第二复合材料。
然后将两块复合材料分别放置在 Inim玻璃钢层的两侧, 用导电胶粘合压平后, 再用 尼龙螺栓固定平整, 从而获得本发明的阴极板。 实施例 7 阴极板, 由石墨层、 碳钢板层、 石墨层依次组成的 3层结构
第一步: 石墨层的制备
选用含量为 99. 8%以上的优质膨胀石墨蠕虫压成 1 mm厚度的复合平板各 2块。
第二步: 活性金属层的制备
选用 0. 5mm厚的碳钢板层待/¾。
第三步: 阴极板的制备
将 1 mm的石墨层、 0. 5 m厚的碳钢板层以及 1誦的石墨层依次用胶粘合压平后, 获 得本发明的阴极板。 实施例 8. EFT污水处理设备
EFT污水; ¾理设备一
如附图所示, 本发明的污水处理设备内部由阳极板、 两块过渡板、 阴极板、 两块过 渡板交替依次排列, 总计 31块板。
所述阳极板由石墨层、 玻璃钢层、 石墨层、 铝层、 石墨层、 玻璃钢层、 石墨层 7层 结构组成; 其中各石墨层的厚度为 0, 5mm; 铝层的厚度为 0, 8mm; 玻璃钢层的厚度为 Imm, 制备工艺与本发明阴极板的工艺相同, 采用胶粘合压平后, 获得阳极板。
所述阴极板由实施例 1的阴极板构成, 即由石墨层、 冲刺后的活性金属层、 石墨层、 玻璃钢层、 石墨层、 冲刺后的活性金属层及石墨层依次组成的 7层结构组成; 其中各石 墨层的厚度为 0. 8 i , 冲刺后的铁层厚 1 m以及 0. 6 ιηιη厚的玻璃钢层。 所述过渡板由石墨层、 冲刺后的活性金属层、 石墨层、 活性金属层及石墨层依次组 成的 5层结构组成, 其中石墨层的厚度为 I mia, —块铝层为 (λ 8 mni厚, 冲刺的铁板层厚 0. 8 mm, 制备工艺与本发明阴极板的工艺相同, 采用胶粘合压平后, 获得过渡板。
EFT污水效理设备二
如附图所示, 本发明的污水处理设备内部由阳极板、 两块过渡板、 阴极板、 两块过 渡板交替依次排列, 总计 27块板。
所述阳极板由石墨层、 玻璃钢层、 石墨层、 铝层、 石墨层、 玻璃钢层、 石墨层 7层 结构组成;其中各石墨层的厚度为 0. 8腿 铝层的厚度为 1 m ;玻璃钢层的厚度为 0, 8 mm, 制备工艺与本发明阴极板的工艺相同, 采用胶粘合压平后, 获得阳极板。
所述阴极板由实施例 3的阴极板, 即由石墨层、 活性金属层、 石墨层、 活性金属层、 石墨层依次组成的 5层结构组成; 其中各石墨层的厚度为 0. 8ΐ 铝层厚 1 mm,
所述过渡板由石墨层、 冲刺后的活性金属层、 石墨层、 玻璃钢层、 石墨层、 活性金 属层、石墨层、玻璃钢层、石墨层依次组成的 9层结构组成,其中石墨层的厚度为 0. 5 iTiin, 一块铝层为 1 mm厚, 冲刺的铁板层厚 1 mm, 玻璃钢层厚为 0, 5 mm, 制备工艺与本发明 阴极板的工艺相同, 采用胶粘合压平后, 获得过渡板。
EFT污水; ¾理设备三
如附图所示, 本发明的污水处理设备内部由阳极板、 两块过渡板、 阴极板、 两块过 渡板交替依次排列, 总计 31块板。
所述阳极板由石墨层、 玻璃钢层、 石墨层、 铝层、 石墨层、 玻璃钢层、 石墨层 7层 结构组成; 其中各石墨层的厚度为 0. 6腿^ 铝层的厚度为 1. 2 rmi 玻璃钢层的厚度为 0. 8 mm, 制备工艺与本发明阴极板的工艺相同, 采用胶粘合压平后, 获得阳极板。
所述阴极板实施飼 2, 即由石墨层、 铝层、石墨层依次组成的 3层结构组成; 其中各 石墨层的厚度为 0. 6 、 铝层厚 1 。
所述过渡板由石墨层、 冲刺后的铝层、 石墨层、 铝层依次组成的 4层结构其中石墨 层的厚度为 0. 8 liiin, 铝层为 1 m!n厚, 冲刺的铁板层厚 1 mm, 制备工艺与本发明阴极板 的工艺相同, 采 ffl胶粘合压平后, 获得过渡板。
EFT污水处理设备四 如附图所示, 本发明的污水处理设备内部由阳极板、 两块过渡板、 阴极板、 两块过 渡板交替依次排列, 总计 31_块板。
所述阳极板由石墨层 l m、玻璃钢层 0. 5mm、石墨层 0. 5 ,铝层 3 m 、石墨层 0. 5 、 玻璃钢层 0 5 mm、 石墨层 1mm的 7层结构组成, 制备工艺与本发明过渡板的工艺相同, 采用胶粘合压平后, 获得阳极板。
所述阴极板由实施例 6 , 即由石墨层 0. 5min、 碳钢板层 0. 3m 、 石墨层 0, 5 m、 玻璃 钢层 1腿、 石墨层 0. 5腿、 碳钢板层 0. 5腿、 石墨层 0. 5inm的 7层结构组成; 制备工艺与 本发明过渡板的工艺相同, 采用胶粘合压平后, 获得阴极板。
所述过渡板 ώ石墨层 0. 5腿、 碳钢板层 0 2mm、 石墨层 0. 5min、 玻璃钢层 0. 5腿、 石 墨 0. 5mm、 铝层 2ram、 石墨层 0. 5 m、 玻璃钢层 0. 5 m、 石墨 0. 5am的 9层结构组成。
EFT污水处理设备五
如附图所示, 本发明的污水处理设备内部由阳极板、 两块过渡板、 阴极板、 两块过 渡板交替依次排列, 总计 31块板。
所述阳极板由石墨层 liam、玻璃钢层 0. 5mni、石墨层 0. 5inm、铝层 3 miru石墨层 0, 5 腿、 玻璃钢层 (X 5 im、 石墨层 1m 的 7层结构组成, 制备工艺与本发明过渡板的工艺相同, 采 ^胶粘合压平后, 获得阳极板。
所述阴极板由实施例 7, 即石墨层 lmm、 碳钢板层 0. 5miTK 石墨层 1腿的 3层结构组 成; 制备工艺与本发明过渡板的工艺相同, 采用胶粘合压平后, 获得阴极板。
所述过渡极板由石墨层 li 碳钢板层 0 5mm, 石墨层 lmm、 铝层 :½Ώ的 4层结构组 成。 实施例 9. EFT废水处理工艺流程
如附图所示, 本发明的废水处理工艺流程是, 将污水, 如电镀污水通入到含有本发 明电极板的污水处理设备 (EFT ) 中, 然后通过 EFT—pH自动调节机进行调节, 然后将经 调节后的污水分别通入多个并棑的泥水分离箱中, 经分离后的清水直接通入清水收集池 中, 并将杂质部分通入淤泥收集池中。 如需进一步处理, 还将清水收集池中获得的清水 通入碳砂过滤塔进行二次处理, 然后将处理后的废水回用或排放到清水池中待用。 实施例 10. 复合电极的应用 利 ffl EFT惰性复合电极处理污水时的实^ ί
针对某电镀厂日处理量 150吨的电镀废水按实施飼 7的工艺进行废水处理,利用本发 明实施例 8的 EF'i'惰性处理设备一处理 60分钟后, 水质可用于回用、 达到国家 2008特 别排放标准。
利用 EFT惰性复合电极组成 30个间距为 160 ram的电解槽。 电极接线方式为多极接线 法(+ 0 0 ― 0 0 + 0 0 ) , 外加电源 220V变压为 12V、 24V、 36V, 电流 密度示污水水质而定。 电解槽尺寸: 长 5000mm、 宽 1500腿、 高 iSOOiam (每小时处理 10 吨电镀废水)
电极板尺寸: 长 1 100 i K 宽 1 100 i K 厚 (L 5 m 至 5. 5 mm )
起始电流 360A、 10分钟 276 A、 45分钟 270 A、 60分钟 265 A
处理 60分钟的污水有当地环保监测站监测, 数据结果为:
Figure imgf000016_0001
Figure imgf000016_0002
利用 EF'i'惰性复合电极处理污水时的实例 2
针对某电子电路有限公司日处理量 1000吨的镀铜废水按实施倒 7的工艺进行废水处 M, 利 ]¾本发明实施例 8的 EFT惰性电解设备二处理 60分钟后, 水质可用于回用、 达到 国家 2008特别排放标准。
利用 EFT惰性复合电极组成 30个间距为 160mm的电解槽。 电极接线方式为多极接线 法 ( + 0 0 -- 0 0 + 0 0 ― )外加电源 220V变压为 12V、 24V、 36V, 电流密 度示污水水质而定。 电解槽尺寸: 长 4800 腿 宽 1400 漏、 高 1800 mm (每小时处理 10吨电镀废水) 。 电极扳尺寸: 长 1000誦、 宽 900 腿、 厚 ( 1. 5 腿至 6, 5 mm) 。 起始 电流 275A , 10分钟 256A、 45分钟 206 、 60分钟 175 A
处理 60分钟的污水有当地环保监测站监测, 数据结果如表二所示: 污染物 总铜 COD 氨氮 PH值
进水浓度 /mg/L 1 5. 3 264 0. lo 8. 5
出水浓度 /mg/L 0, 050L 16. 8 4, 94 7. 3 利 ffl EFT惰性复合电极处理污水时的实^ 3
针对某电镀 Γ日处理量 300吨的电镀废水按实施例 7的工艺进行废水处理,利用本发 明实施例 8的 EFT惰性电解设备四处理 60分钟后, 水质可用于回用、 达到国家 2008新 建排放标准。
利用 EFT惰性复合电极组成 24个间距为 180 mm的电解槽。 电极接线方式为多极接线 法 (+ 0 0 ― 0 0 + 0 0 --- ) 。 外加电源 220V变压为 12V、 24V、 36V, 电流 密度示污水水质而定。 电解槽尺寸: 长 4800mm、 宽 iSOOmnu 高 iSOOiam (每小时处理 10 吨电镀废水) 。 电极板尺寸: 长 1200漏、 宽 1100ram、 厚 (L 5 mia至 8 mm) 。 起始电流 385 10分钟 275A、 45分钟 262 、 60分钟 230A
处理 60分钟的污水有当地环保监测站监测, 数据结果如表三所示:
Figure imgf000017_0001
Figure imgf000017_0002
利用 EFT惰性复合电极处理污水时的实例 4
针对某电镀厂日处理量 2000吨的电镀废水按实施例 7的工艺进行废水处理, 利用本 发明实施例 8的 EFT惰性电解设备五处理 60分钟后, 水质可用于回 ¾、 达到国家 2008 新建排放标准。
利用 EFT惰性复合电极组成 30个间距为 180纖的电解槽。 电极接线方式为多极接线 法 (+ 0 0 0 — 0 0 0 + 0 0 0 — ) 。 夕卜加电源 220V变压为 12V、 24 V, 36V, 电流密度示污水水质而定。 电解槽尺寸: 电解槽尺寸: 长 4800 m、 宽 1500mm、 高 1800mm (每小时处理 10吨电镀废水) 。 极扳尺寸: 长 1 100腿、 宽 1100腿、 厚 ( 1. 5 ram 至 10 腿) 。 起始电流 420A、 10分钟 386A、 45分钟 295A、 60分钟 265A。
处理 60分钟的污水有当地环保监测站监测, 数据结果如下表四所示-
Figure imgf000018_0002
Figure imgf000018_0001
86Z8.0/llOZN3/X3d

Claims

权 利 要 求 书
1.一种阴极板, 其特征在于, 包括多层结构, 至少由内层的中间层、 以及在所述中 间层两侧的石墨层的 -三层结构组成, 所述的中间层为活性金属层、 不锈钢层或碳钢层。
2.根据权利要求 1所述的阴极板, 其特征在于, 所述的活性金属层为铁层或铝层。
3.根据权利要求 1或 2所述的阴极板, 其特征在于, 在所述多层结构的一侧的石墨 层外侧, 由内向外还依次设置活性金属层和石墨层。
4.根据权利要求 3所述的阴极板, 其特征在于, 在所述多层结构的另一侧的石墨外 层, 由内向外还设有活性金属层和石墨层。
5.根据权利要求 1 -4任一项所述的阴极板, 其特征在于, 在所述多层结构的一侧, 在所述石墨层外侧, 由内向外还设有绝缘材料层、 石墨层、 中间层和石墨层, 其中所述 中间层为活性金属层、 不锈钢层或碳钢层。
6.根据权利要求 5所述的阴极板, 其特征在于, 在所述多层结构的另一侧, 在所述 石墨层外侧, 由内向外还包括绝缘材料层、 石墨层、 中间层和石墨层, 其中所述中间层 为活性金属层、 不锈钢层或碳钢层。
7.根据权利要求 1 6任一项所述的阴极板, 其特征在于, 在一侧的石墨层和中间层 之间还设有绝缘材料层。
8.根据权利要求 7所述的阴极板, 其特征在于, 在另一侧的石墨层和中间层之间设 有绝缘材料层。
9 根据权利要求 5-8任一项所述的阴极板, 其特征在于, 所述的绝缘材料层为玻璃 钢层。
10.根据权利要求 9所述的阴极板, 其特征在于, 所述的玻璃钢层为环氧树脂和玻璃 纤维的复合材料层。
1丄根据权利要求 1 10任一项所述的阴极板, 其特征在于, 活性金属层为进行冲刺 处理的活性金属层。
12.根据权利要求 1所述的阴极板, 其特征在于, 所述阴极板由至少 3层结钩组成, 其依次为石墨层、 碳钢板层、 石墨层。
13.根据权利要求 1所述的阴极板, 其特征在于, 所述阴极板由石墨层、 铝层、 石墨 层依次组成。
1A根据权利要求 1所述的阴极板, 其特征在于所述阴极板由至少 7层结构组成, 其 依次为石墨层、 活性金属层、 石墨层、 玻璃钢层、 石墨层、 活性金属层和石墨层。
15.根据权利要求 1所述的阴极板, 其特征在于, 所述阴极板由至少 7层结构组成, 其依次为石墨层、 碳钢板层、 石墨层、 玻璃钢层、 石墨层、 碳钢板层和石墨层。
16.根据权利要求 1所述的阴极板, 其特征在于, 所述阴极板由至少 5层结构组成, 其依次为石墨层、 活性金属层、 石墨层、 活性金属层和石墨层。
17.根据权利要求 16所述的阴极板, 其特征在于, 所述阴极板由石墨层、 铝层、 石 墨层、 铝层、 石墨层依次组成。
18.根据权利要求 11所述的阴极板, 其特征在于, 所述阴极板由石墨层、 冲刺后的 铁层、 石墨层、 玻璃钢层、 石墨层、 冲剌后的铁层及石墨层依次组成。
19.根据权利要求 11所述的阴极板, 其特征在于, 所述阴极板由石墨层、 冲刺后的 铁层、 石墨层依次组成的 3层结构;
20. 根据权利要求 11的阴极板, 其特征在于, 所述阴极板由石墨层、冲剌后的铁层、 石墨层、 冲刺后的铁层、 石墨层依次组成。
21. ·种电解设备, 其特征在于, 包含权利要求 1-20任一项的阴极板。
22.根据权利要求 21所述的电解设备, 其特征在于, 该电解设备至少包括一个阳极 板、 以及位于阴极板和阳极板之间的过渡板。
23.根据权利要求 22的电解设备, 其特征在于, 该电解设备包括至少一块权利要求 1 -20任一项的电极板作为阴极板, 至少一块阳极板, 以及位于阴极板和阳极板之间的至 少两块过渡板。
24.根据权利要求 23的电解设备, 其特征在于, 包括 块过渡板。
25.根据权利要求 22— 24任一项的电解设备, 其特征在于, 所述过渡板至少包括石 墨层、 中间层、 石墨层以及夕卜层的四层结构, 其中所述的中间层及外层分别为活性金属 层、 不锈钢层或碳钢层。
26.根据权利要求 22— 24任一项的电解设备, 其特征在于, 所述阳极板由石墨层、 玻璃钢层、 石墨层、 铝层、 石墨层、 玻璃钢层、 石墨层 7层结构组成。
27.一种阴极板的制造方法, 其特征在于, 包括导电胶压合步骤。
28. 根据权利要求 27所述的阴极板的制造方法, 其特征在于, 包括如下步骤: a- 石墨层的刺备
选用各种不同原料的石墨, 优选含量为 99. 8%以上的优质膨胀石墨蠕虫压成 0, 4-:½¾ 厚度的复合平板;
b. 任选地惰性材料层的刺备
选用优质的环氧树脂加玻璃纤维压成 0. 3-3^厚度的复合平板; c,活性金属层、 碳钢或不锈钢层的制备
选用 0. 2- 5mni厚的活性金属材料, 碳钢或不锈钢材料, 任选地进行冲刺处理, 优选 对作为阴极面的部分进行冲刺处理:
d.阴极板的制备
将所制备得到石墨层、 任选冲刺的活性金属层以及惰性材料层, 根据阳极板的多层 结构, 顺序排放, ^导电胶粘合压平后, 任选用尼龙嫘栓固定平整, 获得所述的阳极板。
29.根据权利要求 28所述的阴极板的制造方法, 其特征在于, 在步骤 d中, 根据活 性金属、 碳钢或不锈钢层数的数量, 分别制成包含活性金属、 碳钢或不锈钢层的第一复 合材料或者第二复合村料, 然后再根据多层结构的要求, 顺序排放制得所需电极板。
30.根据权利要求 28或 29所述的阴极板的制造方法, 其特征在于, 所述步骤&、 b、 G的顺序可变。
PCT/CN2011/078298 2010-08-30 2011-08-11 Eft惰性复合电极的阴极板及其制备方法,包含该阴极板的电解设备 WO2012028055A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102665637A CN101985759B (zh) 2010-08-30 2010-08-30 Eft惰性复合电极的阴极板及其制备方法,包含该阴极板的电解设备
CN201010266563.7 2010-08-30

Publications (1)

Publication Number Publication Date
WO2012028055A1 true WO2012028055A1 (zh) 2012-03-08

Family

ID=43710152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078298 WO2012028055A1 (zh) 2010-08-30 2011-08-11 Eft惰性复合电极的阴极板及其制备方法,包含该阴极板的电解设备

Country Status (2)

Country Link
CN (1) CN101985759B (zh)
WO (1) WO2012028055A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985758B (zh) * 2010-08-30 2012-06-27 蒋亚熙 Eft惰性复合电极的电极板及其制备方法,包含该电极板的电解设备
CN101985759B (zh) * 2010-08-30 2012-06-20 蒋亚熙 Eft惰性复合电极的阴极板及其制备方法,包含该阴极板的电解设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4265727A (en) * 1979-10-22 1981-05-05 Hitco Composite electrodes
US6306270B1 (en) * 1999-02-25 2001-10-23 Csem Centre Suisse D'electronique Et De Microtechnique Sa Electrolytic cell with bipolar electrode including diamond
CN101085694A (zh) * 2007-03-15 2007-12-12 归建明 电解催化裂解污水处理装置
CN101409336A (zh) * 2007-10-11 2009-04-15 中国人民解放军63971部队 一种复合电极及其制备方法
CN101475243A (zh) * 2008-01-04 2009-07-08 上海爱启生态科技有限公司 一种新型双复合电极的电化学装置
CN101985759A (zh) * 2010-08-30 2011-03-16 蒋亚熙 Eft惰性复合电极的阴极板及其制备方法,包含该阴极板的电解设备
CN201908136U (zh) * 2010-08-30 2011-07-27 蒋亚熙 Eft惰性复合电极的电极板,包含该电极板的电解设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009455A (ja) * 1999-06-29 2001-01-16 Tsukuba Rika Seiki Kk 電気分解用多層電極板構造及び電気分解装置
CN2564548Y (zh) * 2002-07-29 2003-08-06 庄培领 一种印染废水电解净化设备
US20040129578A1 (en) * 2003-01-07 2004-07-08 Mclachlan David Electrostatic fluid treatment apparatus and method
CN201850161U (zh) * 2010-08-30 2011-06-01 蒋亚熙 Eft惰性复合电极的阴极板及包含该阴极板的电解设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4265727A (en) * 1979-10-22 1981-05-05 Hitco Composite electrodes
US6306270B1 (en) * 1999-02-25 2001-10-23 Csem Centre Suisse D'electronique Et De Microtechnique Sa Electrolytic cell with bipolar electrode including diamond
CN101085694A (zh) * 2007-03-15 2007-12-12 归建明 电解催化裂解污水处理装置
CN101409336A (zh) * 2007-10-11 2009-04-15 中国人民解放军63971部队 一种复合电极及其制备方法
CN101475243A (zh) * 2008-01-04 2009-07-08 上海爱启生态科技有限公司 一种新型双复合电极的电化学装置
CN101985759A (zh) * 2010-08-30 2011-03-16 蒋亚熙 Eft惰性复合电极的阴极板及其制备方法,包含该阴极板的电解设备
CN201908136U (zh) * 2010-08-30 2011-07-27 蒋亚熙 Eft惰性复合电极的电极板,包含该电极板的电解设备

Also Published As

Publication number Publication date
CN101985759A (zh) 2011-03-16
CN101985759B (zh) 2012-06-20

Similar Documents

Publication Publication Date Title
Guo et al. Electrochemical methods for landfill leachate treatment: A review on electrocoagulation and electrooxidation
Asfaha et al. Hybrid process of electrocoagulation and electrooxidation system for wastewater treatment: a review
EP2649014B1 (en) Carbon bed electrolyser for treatment of liquid effluents and a process thereof
WO2013156002A1 (zh) 一种纳米催化电解絮凝气浮装置
CN107540135B (zh) 一种安全高效的垃圾渗滤液纳滤浓缩液处理组合工艺
CN110002639B (zh) 一种中晚期生活垃圾填埋场垃圾渗滤液的处理装置及方法
CN102120668A (zh) 印刷线路板综合废水资源化利用方法
CN101717162A (zh) 一种铝型材表面处理废水治理回用方法
CN102092821A (zh) 高性能活性碳纤维在电絮凝法处理工业废水中的应用方法
CN107298490B (zh) 电化学反应器和电絮凝去除废水中氯离子的方法及沉淀产物和用途
KR20090047641A (ko) 전기분해에 의한 폐수처리장치
CN101698523A (zh) 成型碳在电絮凝法处理工业废水中的应用方法
CN101985372B (zh) Eft污水处理电解设备
WO2012028054A1 (zh) Eft惰性复合电极的电极板及其制备方法,包含该电极板的电解设备
WO2012028055A1 (zh) Eft惰性复合电极的阴极板及其制备方法,包含该阴极板的电解设备
CN102923829A (zh) 一种新型多层电化学废水处理装置
CN201850161U (zh) Eft惰性复合电极的阴极板及包含该阴极板的电解设备
WO2012028052A1 (zh) Eft惰性复合电极的过渡板及其制备方法,包含该过渡板的电解设备
WO2023078105A1 (zh) 一种污水处理系统和方法
CN106865836B (zh) 垃圾渗透液膜浓缩液处理方法
Li Development in electrochemical technology for environmental wastewater treatment
CN201850163U (zh) Eft污水处理电解设备
CN201908136U (zh) Eft惰性复合电极的电极板,包含该电极板的电解设备
CN201915151U (zh) Eft惰性复合电极的过渡板及包含该过渡板的电解设备
Zhiqiang et al. Effect of Cu2+ concentration in cathode on power generation and copper removal of thermally regenerative ammonia-based battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821081

Country of ref document: EP

Kind code of ref document: A1