WO2023078105A1 - 一种污水处理系统和方法 - Google Patents

一种污水处理系统和方法 Download PDF

Info

Publication number
WO2023078105A1
WO2023078105A1 PCT/CN2022/126761 CN2022126761W WO2023078105A1 WO 2023078105 A1 WO2023078105 A1 WO 2023078105A1 CN 2022126761 W CN2022126761 W CN 2022126761W WO 2023078105 A1 WO2023078105 A1 WO 2023078105A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment
sewage
component
air flotation
water
Prior art date
Application number
PCT/CN2022/126761
Other languages
English (en)
French (fr)
Other versions
WO2023078105A9 (zh
Inventor
李昆洲
陈鹏程
杨飞宇
谢礼
Original Assignee
上海特瑞思材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海特瑞思材料科技有限公司 filed Critical 上海特瑞思材料科技有限公司
Publication of WO2023078105A1 publication Critical patent/WO2023078105A1/zh
Publication of WO2023078105A9 publication Critical patent/WO2023078105A9/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/463Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • This specification relates to the technical field of sewage treatment, in particular to a sewage treatment system and method.
  • the sewage treatment system includes an electrocoagulation treatment assembly, and the electrocoagulation treatment assembly includes: a box body, the box body includes a water inlet and an overflow outlet; and at least two pole plates, wherein the at least two pole plate rows The material of the at least two pole plates is the same; the two pole plates at the ends of the at least two pole plates are connected to the power supply.
  • At least two pole plates are arranged in the box with a predetermined distance, wherein the predetermined distance is in the range of 3mm-10mm.
  • the material includes at least one of iron, aluminum or steel.
  • the sewage treatment system further includes an air flotation and sedimentation component, and the air flotation and sedimentation component is communicated with the overflow outlet so that the treated water treated by the electrocoagulation treatment component enters the air flotation and sedimentation component.
  • Floating and settling components are included in the sewage treatment system.
  • the system further includes an air flotation and sedimentation component for removing scum and sediment in sewage or intermediate treatment water, wherein the air flotation and sedimentation component communicates with the overflow outlet so that the The treated water treated by the electrocoagulation treatment component enters the air flotation and sedimentation component, and/or the air flotation and sedimentation component is connected to the water inlet so that the treatment after being treated by the air flotation and sedimentation component Water enters the electrocoagulation treatment assembly.
  • the system includes an air flotation component for removing scum in sewage or intermediate treatment water, wherein the air flotation component is in communication with the overflow outlet for treatment by the electrocoagulation treatment component
  • the final treated water enters the air flotation module, and/or the air flotation module communicates with the water inlet so that the treated water treated by the air flotation module enters the electrocoagulation treatment module.
  • the system includes a settling component for removing sediment in sewage or intermediate treatment water, wherein the settling component is communicated with the overflow outlet so that the treatment after being treated by the electrocoagulation treatment component Water enters the precipitation component, and/or the precipitation component communicates with the water inlet so that the treated water treated by the precipitation component enters the electrocoagulation treatment component.
  • the sewage treatment system further includes a filter assembly, the filter assembly communicates with the water outlet of the air flotation and sedimentation assembly, the air flotation assembly, or the sedimentation assembly, and the filter assembly includes ultrafiltration membrane.
  • One of the embodiments of the present specification provides a sewage treatment method, the sewage treatment method comprising: using the above-mentioned sewage treatment system to treat the sewage to obtain treated water.
  • the sewage treatment method further includes: controlling the sewage to enter the electrocoagulation treatment assembly at a predetermined flow rate, wherein the predetermined flow rate is equal to the sum of the surface areas of the at least two polar plates The ratio is in the range of 50L/m 2 ⁇ h-300L/m 2 ⁇ h.
  • the sewage treatment method further includes: controlling the power supply voltage of the power supply within the range of 140V-550V.
  • the sewage treatment method further includes: during the electrocoagulation treatment process, regularly or irregularly controlling the positive and negative pole reversing of the power supply.
  • FIG. 1 is a schematic diagram of an exemplary wastewater treatment system according to some embodiments of the present specification.
  • Fig. 2 is a schematic diagram of an exemplary sewage treatment system according to still other embodiments of the present specification.
  • Fig. 3 is a schematic diagram illustrating the connection between at least two polar plates and a power supply according to some embodiments of the present specification.
  • Fig. 4 is a structural diagram of an exemplary electrocoagulation treatment assembly and an exemplary air flotation and sedimentation assembly according to some embodiments of the present specification.
  • Fig. 5 is a front view of Fig. 4 .
  • FIG. 6 is a top view of FIG. 4 .
  • FIG. 7 is a partial sectional view of FIG. 6 .
  • Figure 8A is a schematic diagram of exemplary raw sewage according to some embodiments of the present specification.
  • Fig. 8B is a schematic diagram of the sewage shown in Fig. 8A after electrocoagulation treatment and air flotation and sedimentation treatment.
  • FIG. 8C is a schematic diagram of the treated water shown in FIG. 8B after being filtered.
  • Fig. 9, Fig. 10, Fig. 11, Fig. 13, Fig. 14, Fig. 15, Fig. 16 and Fig. 17 are schematic diagrams of exemplary sewage treatment systems according to other embodiments of this specification.
  • 12A and 18A are schematic diagrams of untreated sewage, respectively.
  • Fig. 12B and Fig. 18B are respectively schematic diagrams of the sewage shown in Fig. 12A and Fig. 18A being treated by the exemplary sewage treatment system shown in some embodiments of this specification.
  • 100 is a sewage treatment system
  • 110 is an electrocoagulation treatment component
  • 111 is a box body
  • 112 is at least two plates
  • 113 is a water inlet
  • 114 is a water outlet of an electrocoagulation reaction zone
  • 115 is a plate washing aeration Air inlet
  • 116 is the overflow outlet
  • 120 is the air flotation and sedimentation component
  • 121 is the air flotation tank
  • 1211 is the drainage port of the aeration area
  • 1212 is the sedimentation outlet
  • 1213 is the drainage port after the air flotation and sedimentation treatment
  • 1214 122 is the slag scraper outlet
  • 122 is the slag scraper power component
  • 1222 is the slag scraper transmission element
  • 1223 is the slag scraper component
  • 123 is the aeration part
  • 1231 is the air compressor
  • 1232 is the aeration pipeline
  • 1233 is an aeration head
  • 124 is a water level adjustment component
  • system means for distinguishing different components, elements, parts, parts or assemblies of different levels.
  • the words may be replaced by other expressions if other words can achieve the same purpose.
  • the sewage treatment system in the embodiment of this specification can treat industrial waste water with great difficulty and high treatment cost, such as printing and dyeing, electroplating, landfill leachate, petrochemical industry, and paper making.
  • this system is based on the principle of electrochemical and physical separation, combining electrocoagulation and membrane methods, which has good treatment effect, low treatment cost, does not use chemical flocculants, and generates very little solid sludge Etc.
  • FIG. 1 is a schematic diagram of an exemplary wastewater treatment system according to some embodiments of the present specification.
  • the wastewater treatment system 100 may include an electrocoagulation treatment assembly 110 .
  • the electrocoagulation treatment assembly 110 can be used for electrocoagulation treatment of sewage.
  • the electrocoagulation treatment assembly 110 may include a box, at least two plates and a power supply.
  • the tank may include a water inlet for introducing sewage into the electrocoagulation treatment assembly 110 (eg, the tank).
  • the box may include a bottom panel and at least two side panels.
  • the cabinet may or may not include a roof.
  • the bottom plate and at least two side panels can form a cylindrical box or a rectangular parallelepiped box with an open upper end.
  • the box body can include a bottom plate and four side panels, and the four side panels are perpendicular to the bottom plate to form a cuboid box body with an upper end opening.
  • At least two side panels may be of different heights.
  • three of the four side panels may have the same height and be higher than the other side panel.
  • the upper surface of the lowest side panel among the at least two side panels and the side portion of the remaining side panels higher than the lowest side panel can form an overflow outlet, which is used to treat the electrocoagulation treatment
  • the material of at least two side panels may include insulating material, or the inner side of at least two side panels may be glued with insulating material equal in area.
  • the insulating material may include, but is not limited to, fibers, rubber, or plastic, among others.
  • At least two pole plates may be arranged in the case.
  • at least two pole plates may be arranged in the box perpendicular to the bottom plate of the box and in parallel.
  • at least two pole plates may be arranged in the box at a predetermined distance.
  • the preset spacing will affect the treatment effect of sewage (for example, pollutant removal rate, sewage treatment efficiency), for example, if the preset spacing is too small, the flow rate of sewage between at least two plates will be reduced, or at least two The plates release too many metal ions (for example, Fe2+, Fe3+, Al3+), resulting in excessive treatment of sewage, thereby reducing the treatment efficiency; another example, if the preset distance is too large, the voltage will not be able to break down between at least two plates The sewage in the room can not destroy the charge balance in the sewage and reduce the removal rate of pollutants. Therefore, in some embodiments, the preset distance needs to satisfy a preset condition.
  • sewage for example, pollutant removal rate, sewage treatment efficiency
  • the preset distance may be in the range of 3mm-10mm. In some embodiments, the predetermined distance may be in the range of 3.5mm-9.5mm. In some embodiments, the predetermined distance may be in the range of 4mm-9mm. In some embodiments, the predetermined distance may be in the range of 4.5mm-8.5mm. In some embodiments, the preset distance may be in the range of 5mm-8mm. In some embodiments, the predetermined distance may be in the range of 5.5mm-7.5mm. In some embodiments, the predetermined distance may be in the range of 6mm-7mm. In some embodiments, the preset distance may be in the range of 6.4mm-6.8mm.
  • the preset distance range may include the distance range after at least two pole plates are changed during the sewage treatment process. For example, during the electrocoagulation process, portions of the at least two pole plates are consumed, resulting in a reduction in the thickness of the at least two pole plates, further resulting in an increase in the distance between the at least two pole plates.
  • the increased spacing is also within the aforementioned preset spacing range.
  • the materials of at least two pole plates may be the same.
  • the material of the plate can be selected according to the nature of the sewage (for example, the source of the sewage, the type and content of pollutants in the sewage, etc.).
  • the material may include at least one of iron, aluminum, iron alloy (eg, steel) or aluminum alloy.
  • the material of each of the at least two pole plates may be iron.
  • the material of each of the at least two pole plates may be aluminum.
  • the material of each of the at least two pole plates may be steel.
  • the material of each of the at least two pole plates may include iron and aluminum.
  • the two pole plates located at the ends may be connected to a power source to form a current loop.
  • two pole plates at the ends and one pole plate arranged in the middle can be connected in parallel with the power supply to form two current loops.
  • the two pole plates at the ends are anodes
  • one pole plate arranged in the middle is a cathode
  • the two pole plates at the ends of at least three pole plates are cathodes, and the arrangement One plate in the middle is the anode.
  • the intermediate treated water may refer to the treated water after being treated by at least one treatment component (eg, electrocoagulation treatment component, air flotation and sedimentation component, air flotation component, sedimentation component, filter component, etc.).
  • Treatment component eg, electrocoagulation treatment component, air flotation and sedimentation component, air flotation component, sedimentation component, filter component, etc.
  • Communication may include fluid communication.
  • the sewage treatment system 100 may further include an air flotation and sedimentation component 120 .
  • the air flotation and sedimentation module 120 can be used to remove scum and sediment in sewage or intermediate treatment water.
  • the air flotation and sedimentation component 120 can communicate with the overflow outlet of the electrocoagulation treatment component 110 , so that the treated water after electrocoagulation treatment enters the air flotation and sedimentation component 120 for air flotation and sedimentation treatment.
  • the air flotation and sedimentation component 120 may communicate with the water inlet of the electrocoagulation treatment component 110 so that the treated water treated by the air flotation and sedimentation component enters the electrocoagulation treatment component 110 .
  • the air flotation and sedimentation module 120 may include an air flotation module and a sedimentation module.
  • the air flotation components may include an air flotation box, a slag scraper and an air compressor.
  • the settling assembly can include a settling tank.
  • the air flotation tank and the settling tank may be the same tank or different tanks.
  • the air flotation tank and the sedimentation tank in the air flotation and sedimentation assembly 120 may be in the same tank or communicated through an intermediate tank.
  • the water inlet and water outlet of the air flotation and sedimentation component 120 can be located on the air flotation tank or the sedimentation tank.
  • the air flotation module and the sedimentation module in the air flotation and sedimentation module 120 may communicate with each other.
  • the air flotation component and the sedimentation component in the air flotation and sedimentation component 120 may be two independent components. Related descriptions about the air flotation and sedimentation module 120 can refer to other parts of this specification (for example, FIGS. 4-7 and their descriptions), and will not be repeated here.
  • the sewage treatment system 100 may include an air flotation component for removing scum in sewage or intermediate treatment water.
  • the air flotation component can communicate with the overflow outlet of the electrocoagulation treatment component 110, so that the treated water treated by the electrocoagulation treatment component enters the air flotation component for air flotation treatment.
  • the air flotation component may communicate with the water inlet of the electrocoagulation treatment component 110 so that the treated water treated by the air flotation component enters the electrocoagulation treatment component 110 .
  • the water inlet and outlet of the air flotation module can be located on the air flotation tank.
  • the sewage treatment system 100 may include a sedimentation component for removing sediment in sewage or intermediate treatment water.
  • the precipitation component may communicate with the overflow outlet of the electrocoagulation treatment component 110 , so that the treated water treated by the electrocoagulation treatment component enters the precipitation component for precipitation treatment.
  • the precipitation component can communicate with the water inlet of the electrocoagulation treatment component 110 so that the treated water treated by the precipitation component enters the electrocoagulation treatment component 110 .
  • the water inlet and outlet of the settling assembly may be located on the settling tank.
  • the sewage treatment system 100 may further include a filter assembly 130 for filtering sewage or intermediate treated water.
  • filter assembly 130 may include a water inlet and a water outlet.
  • the water inlet of the filter assembly 130 can communicate with the water outlet of the air flotation and sedimentation assembly 120, the air flotation assembly or the sedimentation assembly, so that the treated water after the air flotation and sedimentation, air flotation or sedimentation treatment enters
  • the filtration module 130 performs filtration treatment (for example, ultrafiltration treatment, membrane separation and biological treatment, membrane pressure filtration treatment).
  • the water outlet of the filter assembly 130 may communicate with the water inlet of the electrocoagulation treatment assembly 110, so that the filtered intermediate treatment water enters the electrocoagulation treatment assembly 110 for electrocoagulation treatment.
  • the filter module 130 may include, but is not limited to, a hollow fiber membrane module, a flat sheet membrane module, or a tubular membrane module.
  • filtration assembly 130 may include at least one of an ultrafiltration membrane component, a membrane bioreactor component, or a membrane filter press component.
  • at least two of the ultrafiltration membrane component, the membrane bioreactor component and the membrane filter press component can communicate with each other to perform at least two filtration treatments.
  • a water outlet of a membrane filter press component may communicate with a water inlet of an ultrafiltration membrane component or a membrane bioreactor component.
  • the water outlet of the membrane bioreactor component may communicate with the water inlet of the ultrafiltration membrane component or the membrane filter press component.
  • the water outlet of the membrane filter press component can communicate with the water inlet of the membrane bioreactor component, and the water outlet of the membrane bioreactor component can communicate with the water inlet of the ultrafiltration membrane component.
  • the ultrafiltration membrane component may include an ultrafiltration membrane.
  • the pore size of the ultrafiltration membrane may be in the range of 50nm-200nm. In some embodiments, the pore size of the ultrafiltration membrane may be in the range of 60nm-190nm. In some embodiments, the pore size of the ultrafiltration membrane may be in the range of 70nm-180nm. In some embodiments, the pore size of the ultrafiltration membrane may be in the range of 80nm-170nm. In some embodiments, the pore size of the ultrafiltration membrane may be in the range of 90nm-160nm. In some embodiments, the pore size of the ultrafiltration membrane may be in the range of 100nm-150nm. In some embodiments, the pore size of the ultrafiltration membrane may be in the range of 110 nm-140 nm. In some embodiments, the pore size of the ultrafiltration membrane may be in the range of 120nm-130nm.
  • the sewage treatment system 100 may further include a water storage tank for storing intermediate treated water.
  • the water storage tank may include a water inlet and a water outlet.
  • the water inlet and the water outlet of the water storage tank can be connected with other components or components in the sewage treatment system 100 (for example, electrocoagulation treatment components, air flotation and sedimentation components, air flotation components, sedimentation components, ultrafiltration components, etc.) Membrane parts, membrane filter press parts, membrane bioreactor parts) are connected to the water outlet or water inlet.
  • Fig. 2 is a schematic diagram of an exemplary sewage treatment system according to still other embodiments of the present specification.
  • the electrocoagulation treatment assembly 110 may include at least two boxes. At least two pole plates may be arranged in each of the at least two boxes. The pole plates in each of the at least two boxes are made of the same material. Related descriptions about the box body and at least two polar plates can refer to other parts of this specification (for example, FIG. 1 and its description), and will not be repeated here.
  • the boxes may include m boxes, which are respectively the first box, the second box...the mth box.
  • the numbers of the at least two pole plates in different boxes of the at least two boxes may be the same or different.
  • the materials of the plates in different boxes of at least two boxes may be the same or different.
  • the material of the pole plate in the first box and the material of the pole plate in the second box can be the same, both being iron.
  • the pole plates in the first box are made of iron, while the pole plates in the second box are made of steel.
  • the two pole plates located at the ends can be connected to the power supply to form multiple parallel circuits for treating a large amount of sewage.
  • the overflow outlet of each of the at least two tanks can be communicated, so that the electrocoagulation-treated treated water overflowing from each tank can be brought into the air flotation and sedimentation assembly 120 , for further air flotation and sedimentation treatment.
  • the water outlet of the air flotation and sedimentation module 120 may communicate with the filter module 130 to filter the treated water after the air flotation and sedimentation treatment.
  • Related descriptions about the air flotation and sedimentation module 120 and the filter module 130 can refer to other parts of this specification (for example, FIG. 1 and its description), and will not be repeated here.
  • the above description about the sewage treatment system 100 is only for illustration and description, and does not limit the scope of application of the present application.
  • various modifications and changes can be made to the sewage treatment system 100 under the guidance of this application.
  • such amendments and changes remain within the scope of this application.
  • the connection relationship can be adapted and adjusted according to the sewage water quality.
  • the embodiment of this specification also provides a sewage treatment method.
  • the method may be performed by one or more components in the wastewater treatment system 100 (eg, shown in FIG. 1 or FIG. 2 ).
  • the method can be performed automatically by a control system.
  • the method may be implemented by a control instruction, and the control system controls each component to complete each operation of the method based on the control instruction.
  • methods can be performed semi-automatically.
  • one or more operations of the method may be performed manually by an operator.
  • one or more additional operations not described may be added, and/or one or more operations discussed herein may be deleted.
  • the order of operations shown in FIG. 1 or FIG. 2 is not limiting.
  • sewage can be controlled to enter the electrocoagulation treatment component 110 at a preset flow rate.
  • the preset flow rate may be in the range of 10t/h-30t/h. In some embodiments, the preset flow rate may be in the range of 12t/h-28t/h. In some embodiments, the preset flow rate may be in the range of 14t/h-26t/h. In some embodiments, the preset flow rate may be in the range of 16t/h-24t/h. In some embodiments, the preset flow rate may be in the range of 18t/h-22t/h. In some embodiments, the preset flow rate may be in the range of 19t/h-20t/h.
  • the ratio of the predetermined flow rate to the sum of the surface areas of at least two plates may be in the range of 50L/m 2 ⁇ h-1000 L/m 2 ⁇ h. In some embodiments, the ratio of the predetermined flow rate to the sum of the surface areas of at least two plates may be in the range of 100L/m 2 ⁇ h-900L/m 2 ⁇ h. In some embodiments, the ratio of the preset flow rate to the sum of the surface areas of at least two plates may be in the range of 150L/m 2 ⁇ h-800L/m 2 ⁇ h.
  • the ratio of the preset flow rate to the sum of the surface areas of at least two plates may be in the range of 180L/m 2 ⁇ h-700L/m 2 ⁇ h. In some embodiments, the ratio of the predetermined flow rate to the sum of the surface areas of at least two plates may be in the range of 200L/m 2 ⁇ h-600L/m 2 ⁇ h. In some embodiments, the ratio of the preset flow rate to the sum of the surface areas of at least two plates may be in the range of 230 L/m 2 ⁇ h-500 L/m 2 ⁇ h.
  • the ratio of the predetermined flow rate to the sum of the surface areas of at least two plates may be in the range of 250L/m 2 ⁇ h-400L/m 2 ⁇ h. In some embodiments, the ratio of the preset flow rate to the sum of the surface areas of at least two plates may be in the range of 280L/m 2 ⁇ h-380L/m 2 ⁇ h. In some embodiments, the ratio of the preset flow rate to the sum of the surface areas of at least two plates may be in the range of 300L/m 2 ⁇ h-360L/m 2 ⁇ h. In some embodiments, the ratio of the preset flow rate to the sum of the surface areas of at least two plates may be in the range of 320L/m 2 ⁇ h-340L/m 2 ⁇ h.
  • the ratio of the predetermined flow rate to the sum of the surface areas of at least two plates may be in the range of 50L/m 2 ⁇ h-300L/m 2 ⁇ h. In some embodiments, the ratio of the preset flow rate to the sum of the surface areas of at least two plates may be in the range of 60L/m 2 ⁇ h-280L/m 2 ⁇ h. In some embodiments, the ratio of the preset flow rate to the sum of the surface areas of at least two plates may be in the range of 70L/m 2 ⁇ h-260L/m 2 ⁇ h.
  • the ratio of the preset flow rate to the sum of the surface areas of at least two plates may be in the range of 80L/m 2 ⁇ h-240L/m 2 ⁇ h. In some embodiments, the ratio of the preset flow rate to the sum of the surface areas of at least two plates may be in the range of 90L/m 2 ⁇ h-220L/m 2 ⁇ h. In some embodiments, the ratio of the preset flow rate to the sum of the surface areas of at least two plates may be in the range of 100L/m 2 ⁇ h-200L/m 2 ⁇ h.
  • the ratio of the predetermined flow rate to the sum of the surface areas of at least two plates may be in the range of 110 L/m 2 ⁇ h-190 L/m 2 ⁇ h. In some embodiments, the ratio of the preset flow rate to the sum of the surface areas of at least two plates may be in the range of 120L/m 2 ⁇ h-180L/m 2 ⁇ h. In some embodiments, the ratio of the preset flow rate to the sum of the surface areas of at least two plates may be in the range of 130L/m 2 ⁇ h-170L/m 2 ⁇ h. In some embodiments, the ratio of the preset flow rate to the sum of the surface areas of at least two plates may be in the range of 150L/m 2 ⁇ h-160L/m 2 ⁇ h.
  • the power supply voltage of the power supply can be controlled to provide an appropriate breakdown voltage to destroy the stability of the surface charge of the suspended matter in the sewage, and further improve the removal rate of pollutants in the sewage.
  • the supply voltage may be in the range of 60V-600V. In some embodiments, the supply voltage may be in the range of 80V-550V. In some embodiments, the supply voltage may be in the range of 100V-500V. In some embodiments, the supply voltage may be in the range of 120V-450V. In some embodiments, the supply voltage may be in the range of 150V-400V. In some embodiments, the supply voltage may be in the range of 180V-380V.
  • the supply voltage may be in the range of 200V-350V. In some embodiments, the supply voltage may be in the range of 210V-340V. In some embodiments, the supply voltage may be in the range of 220V-330V. In some embodiments, the supply voltage may be in the range of 230V-320V. In some embodiments, the supply voltage may be in the range of 240V-310V. In some embodiments, the supply voltage may be in the range of 250V-300V. In some embodiments, the supply voltage may be in the range of 260V-290V. In some embodiments, the supply voltage may be in the range of 270V-280V.
  • the supply voltage may be in the range of 140V-550V. In some embodiments, the supply voltage may be in the range of 160V-500V. In some embodiments, the supply voltage may be in the range of 180V-450V. In some embodiments, the supply voltage may be in the range of 100V-400V. In some embodiments, the supply voltage may be in the range of 120V-350V. In some embodiments, the supply voltage may be in the range of 140V-300V. In some embodiments, the supply voltage may be in the range of 160V-250V. In some embodiments, the supply voltage may be in the range of 180V-200V.
  • the output direct current can be controlled within the range of 1A-500A.
  • the DC current may be in the range of 5A-400A. In some embodiments, the DC current may be in the range of 10A-300A. In some embodiments, the DC current may be in the range of 12A-200A. In some embodiments, the DC current may be in the range of 14A-100A. In some embodiments, the DC current may be in the range of 16A-80A. In some embodiments, the DC current may be in the range of 18A-60A. In some embodiments, the DC current may be in the range of 20A-50A. In some embodiments, the DC current may be in the range of 22A-40A.
  • the DC current may be in the range of 24A-38A. In some embodiments, the DC current may be in the range of 26A-36A. In some embodiments, the DC current may be in the range of 28A-34A. In some embodiments, the DC current may be in the range of 30A-32A.
  • the positive and negative poles of the voltage can be controlled regularly or irregularly, so as to ensure that the plate will not be passivated, which can not only improve the utilization rate of the plate, but also reduce the pollution caused by pollutants. removal rate.
  • the combination of the electrocoagulation treatment component 110 and the air flotation and sedimentation component 120 , the air flotation component or the sedimentation component may be referred to as a pre-treatment component.
  • the combination of electrocoagulation treatment and air flotation and precipitation treatment, air flotation treatment or precipitation treatment can be called pretreatment.
  • the plates for example, iron plates, steel plates or aluminum plates
  • the metal is dissolved on the anode. Ions (eg, Fe 2+ , Fe 3+ or Al 3+ ).
  • reaction formulas (1)-(3) represent the acidic reactions of Fe 3+ cations
  • reaction formulas (4)-(6) represent the acidic reactions of Al 3+ cations.
  • OH - hydroxide ions
  • metal ions eg, Fe 2+ , Fe 3+ or Al 3+
  • OH - can also be used as a bridging group to connect two or more metal hydroxides, and more dimerization or polymerization reactions occur to generate gel-like hydroxides, which can be used by the reaction formula (7)-(8) are expressed as follows:
  • Gel-like hydroxides can further carry suspended solids or dissolved matter as they grow and settle.
  • the ability and characteristics of pollutant accumulation will vary with the physicochemical properties of the resulting gel-like hydroxide, the surrounding medium, and the type of suspended solids or dissolved pollutants in solution.
  • Key properties of gelled hydroxides include charge, porosity, and the type of bonding that occurs within the hydroxide or with contaminants. Due to sufficient overpotential, gas (usually O 2 and H 2 ) will be produced in the electrolysis of water at the two electrodes, and they will carry part of the condensed pollutants to float to the surface to form suspended solids.
  • the anode can release metal ions M n+ and gas molecules (eg, O 2 ), and the cathode can generate hydroxide ions OH - and gas molecules (eg, H 2 ). These ions and gas molecules can enter the sewage together, and the negatively charged and positively charged ions in the sewage can combine with Mn + and OH- respectively to form complexes.
  • the released hydrogen or oxygen can bring part of the complex to the water surface to form a floating layer.
  • Fig. 3 is a schematic diagram illustrating the connection between at least two polar plates and a power supply according to some embodiments of the present specification.
  • the at least two pole plates arranged in the box may also be referred to as a pole plate array.
  • the sewage flows into the air flotation and sedimentation component 120, the air flotation component or the sedimentation component through the overflow outlet, and most of the solid-liquid separation is completed in the air flotation and sedimentation component 120, the air flotation component or the sedimentation component, and the obtained Scraping and/or sedimentation and intermediate treatment of water.
  • the treated water after air flotation and sedimentation treatment, air flotation treatment or sedimentation treatment can enter the filter assembly 130 through the outlet of the air flotation and sedimentation assembly 120, the air flotation assembly or the sedimentation assembly respectively, and the filter assembly 130 can remove other impurities in the treated water. Suspended solid matter, discharged up to standard reusable water or treated water that can be directly discharged.
  • FIG. 4 is a structural diagram of an exemplary electrocoagulation treatment assembly and an exemplary air flotation and sedimentation assembly according to some embodiments of the present specification.
  • Fig. 5 is a front view of Fig. 4 .
  • FIG. 6 is a top view of FIG. 4 .
  • FIG. 7 is a partial sectional view of FIG. 6 .
  • the pretreatment component 400 may include an electrocoagulation treatment component 110 and an air flotation and sedimentation component 120 .
  • the electrocoagulation processing assembly 110 may include a box body 111 , at least two polar plates 112 and a power supply (not shown in the figure). At least two pole plates 112 may be arranged in the box body 111 . In some embodiments, the power source may be located outside the case 111 .
  • the tank 111 can be used as an independent component and connected to the air flotation and sedimentation component 120 (eg, air flotation tank, sedimentation tank) through pipelines. In some embodiments, the tank 111 can also be integrated with the air flotation and sedimentation component 120 (for example, an air flotation tank, a sedimentation tank).
  • the air flotation and sedimentation component 120 eg, air flotation tank, sedimentation tank
  • the tank 111 can also be integrated with the air flotation and sedimentation component 120 (for example, an air flotation tank, a sedimentation tank).
  • the box body 111 may include a water inlet 113 for introducing sewage into the electrocoagulation treatment assembly 110 (for example, the box body 111 ).
  • the water inlet 113 can also be used to introduce a cleaning solution (for example, clean water) for rinsing the plates into the box 111 to clean the box 111 and at least two plates 112 .
  • the box body 111 can also include an electrocoagulation reaction area drain 114, which is used to discharge stagnant water after electrocoagulation treatment in the box body 111 (for example, the treated water that cannot overflow to the air flotation and sedimentation assembly 120 through the overflow outlet 116 ) and waste water after cleaning the pole plate and the casing 111.
  • the box body 111 may also include an electrode plate flushing aeration inlet 115, which is used to introduce gas into the box body 111, so that the box body 111 and at least two Plate 112 is rinsed.
  • the electrocoagulation treatment component 110 eg, tank 111
  • the air flotation and sedimentation component 120 eg, air flotation tank, sedimentation tank
  • the air flotation and sedimentation component 120 may include an air flotation component and a sedimentation component.
  • the air flotation assembly may include an air flotation box 121 , a slag scraping component 122 and an aeration component 123 .
  • the settling assembly can include a settling tank. In some embodiments, as shown in Figures 4-7, the air flotation tank and the sedimentation tank are the same tank.
  • the air flotation tank 121 may include a drainage port 1211 in the aeration area, a sedimentation outlet 1212 , a drainage port 1213 after air flotation and sedimentation treatment, and a scraping slag outlet 1214 .
  • the scraping component 122 may include a scraping power element 1221 , a scraping transmission element 1222 and a scraping element 1223 .
  • the slag-scraping power element 1221 and the slag-scraping transmission element 1222 can be connected in transmission.
  • the scraping transmission element 1222 and the scraping element 1223 may be connected (eg, fixedly connected).
  • scraper drive element 1222 may include, but is not limited to, a gear chain drive element or a belt drive element.
  • the slag scraping power element 1221 (eg, a motor) can drive the slag scraping transmission element 1222 to move, and the slag scraping transmission element 1222 can further drive the scum scraping element 1223 (eg, a scraper) to move the scum floating on the water surface. Scraping, the scraped slag can be discharged through the scraping slag outlet 1214 .
  • the aeration component 123 may include an air compressor 1231 , an aeration pipeline 1232 and an aeration head 1233 .
  • the air compressor 1231 and the aeration head 1233 can be connected through an aeration pipeline 1232 .
  • the gas (for example, air) output by the air compressor 1231 can be discharged into the air flotation tank 121 through the aeration pipeline 1232 and the aeration head 1233 .
  • the air flotation tank 121 may include an explosion zone M and a leveling zone N.
  • the detonation zone M and the flow zone N can be divided by the partition L.
  • part of the treated water after electrocoagulation treatment is mixed with gas to produce dissolved air water.
  • the volume of the dissolved air water can be controlled to not exceed 20% of the volume of the treated water flowing out from the overflow outlet 116 .
  • the treated water can overflow to the top of the separator L and enter the advection zone N after being treated in the aeration zone M.
  • the treated water remaining in the aeration zone M (for example, the treated water that fails to overflow above the partition L) can be discharged through the aeration zone drain port 1211 .
  • the treated water after the air flotation and sedimentation treatment can be discharged from the other side of the advection zone N (for example, the side far away from the aeration zone M) through the water outlet 1213 after the air flotation and sedimentation treatment, and then enter the filter assembly 130 .
  • the air flotation and sedimentation assembly 120 may further include a water level adjustment component 124 and a water level adjustment outlet 125 for adjusting the water level in the air flotation tank 121 .
  • the dotted arrows in FIG. 7 may indicate the sewage treatment circuit in the post-treatment assembly 400 .
  • the sewage enters the box body 111 from the water inlet 113, the water level in the box body 111 rises, the sewage passes through the plate arrays with high-voltage DC voltage applied at both ends for electrocoagulation treatment, and then enters through the overflow outlet 116.
  • Explosive zone M In the explosion zone M, the treated water after electrocoagulation treatment mixes with the gas from the aeration head 1233 and overflows into the advection zone N.
  • the treatment process of this embodiment is as follows: (1) Pass sewage into the tank 111 at a preset flow rate.
  • the flow rate of sewage in each box (for example, the first box, the second box or the m-th box) can be in the range of 10 tons/hour-30 tons/hour.
  • the high-voltage DC power supply applies a high voltage of 60V-600V to the two pole plates at the end of the pole plate array composed of at least two pole plates 112 DC, will produce 1A-500A DC output.
  • the sewage After passing through the plate array, the sewage overflows through the overflow outlet 116 to the explosion area M of the air flotation and sedimentation component 120 or the air flotation component, enters and fills the area where the aeration head 1233 is located, and releases it with the aeration head 1233
  • the gas or dissolved gas mixed with water overflows into the advection area N of the air flotation and sedimentation unit 120 .
  • the treated water after the pretreatment (electrocoagulation treatment and air flotation and sedimentation treatment) is discharged from the water outlet 1213 after the air flotation and sedimentation treatment, and enters the filter assembly 130 .
  • Pollutants Pollutant removal rate (%) COD 60-95 biological oxygen demand (BOD) 80-99 Suspended particulate matter SS 95-100 ammonia 50-60 total nitrogen 70-95 color 80-93 Nitrate 43-78
  • the removal rate of pollutants can be improved by improving the sewage treatment system, for example, adjusting the quantity and connection relationship of each component.
  • the removal rate of COD can reach 60%-98%.
  • the removal rate of ammonia can reach 50%-70%.
  • the removal rate of tin can reach 90%-99%.
  • the removal rate of thallium can reach 86%-99%.
  • the removal rate of fluoride can reach 62%-99%.
  • the printing and dyeing wastewater of a printing and dyeing factory in Jiaxing has an initial COD of 980 mg/L.
  • the initial test data of other items of the sewage are shown in the column "Sewage" in Table 2.
  • the sewage treatment system shown in Figure 1 or Figure 4-7 Use the sewage treatment system shown in Figure 1 or Figure 4-7 to treat the printing and dyeing sewage.
  • the sewage enter the pre-treatment components (electrocoagulation treatment components and air flotation and sedimentation components), the plate material is made of low carbon steel, and the distance between the plates is within the range of 5mm-6mm.
  • Control the flow rate of the sewage to 10 tons/hour apply a DC voltage of 350V, and output a DC current of 32A.
  • the ratio of the flow rate of sewage to the sum of the surface area of the plate array (or the flow rate of sewage on the surface of the plate) is 280 liters/square meter per hour, and the energy density is about 1.35 kWh/ton (kWh/ton), namely Treating 1 ton of sewage consumes 1.35 kilowatt-hours of electricity.
  • the chemical substances in the sewage float up to form scum, as shown in Figure 8B.
  • the treated water enters the filter module (ultrafiltration membrane component) for filtration treatment, and the treated water after filtration is shown in FIG. 8C .
  • the COD in the treated water after filtration treatment dropped to 110mg/L, and the removal rate reached 88.78%.
  • the values and removal rates of other items in the sewage after treatment are shown in Table 2.
  • the non-detection of anilines is based on the minimum detection concentration of GB/T11889-1989 is lower than 0.03mg/L, and the non-detection of hexavalent chromium is based on the minimum detection concentration of GB/T7467-1987 is lower than 0.004mg/L.
  • the removal rate of unified labeling for indicators not detected after processing is 90%.
  • the Jiaxing printing and dyeing factory originally used the AO (Anoxic Oxic) activated sludge method and chemical flocculation method, and the treatment cost per ton of sewage (including various chemicals and power consumption, etc.) was about 6 yuan.
  • the consumption of the pole plate is 70g-80g, and the overall power consumption of the sewage treatment system is 1.8 degrees per ton of sewage.
  • the average daily electricity price of 0.6 yuan/kwh, low-carbon steel plate of 6,000 yuan/ton, and chemical agents of about 0.74 yuan/ton of sewage the total cost of sewage treatment per ton is 2.3 yuan.
  • the cost can be reduced by more than 60%.
  • intermittent aeration can be used in this embodiment, so it can only use the 12-hour low-valley electricity price of 0.25 yuan/kWh per day (according to the implementation of Jiaxing City on October 15, 2021 Large industrial electricity price), so the total treatment cost per ton of sewage is less than 1.7 yuan. Therefore, the total cost of this embodiment does not exceed one-third of the cost of the original treatment process.
  • the technical solution of this embodiment to treat the sewage of the Jiaxing printing and dyeing factory, about 100g of sludge is produced per ton of sewage.
  • the chemical flocculation method is used to treat the sewage of the Jiaxing printing and dyeing factory, and each ton of sewage produces about 400g of sludge.
  • the activated sludge method is used to treat the sewage of the Jiaxing printing and dyeing factory, and each ton of sewage produces about 3kg-5kg of sludge. Therefore, compared with the chemical flocculation method and the activated sludge method, the technical solution of this embodiment has the advantage of producing less solid sludge.
  • the chemical flocculation method usually needs to use a variety of chemical reagents, and the chemical reagents usually need a little excess. Compared with the chemical flocculation method, the technical solution of the embodiment of this specification can avoid the problem of secondary pollution of the treated water.
  • the sewage treatment system shown in Figure 9 to treat the printing and dyeing sewage of a printing and dyeing factory in Zhejiang.
  • the material of the pole plate is iron, and the distance between the pole plates is within the range of 7mm-9mm. Applying 420V DC voltage, the output DC current is 22.4A.
  • the ratio of the flow rate of sewage to the sum of the surface area of the plate array (or the flow rate of sewage on the surface of the plate) is 70 liters/square meter per hour.
  • the intermediate treated water after electrocoagulation treatment enters the air flotation module for separation, and the intermediate treated water after removing scum by using the scum scraping part enters the ultrafiltration membrane part for filtration treatment to obtain treated water.
  • the scum after the scraping treatment enters the diaphragm filter press for filtration treatment, and the intermediate treated water after the diaphragm press filtration enters the water storage tank, and then enters the ultrafiltration membrane part from the water storage tank for filtration treatment to obtain treated water.
  • the results of sewage treatment are shown in Table 7.
  • the sewage treatment system shown in Figure 10 was used to treat the nickel-containing sewage of an electroplating factory in Shanghai. Let the sewage enter the sedimentation component for sedimentation treatment. Then take the treated water (clear liquid) after the precipitation treatment, and make it enter the electrocoagulation treatment component.
  • the material of the pole plate is iron, and the distance between the pole plates is within the range of 5mm-6mm. Applying 300V DC voltage, the output DC current is 17.6A.
  • the ratio of the flow rate of sewage to the sum of the surface area of the plate array (or the flow rate of sewage on the surface of the plate) is 70 liters/square meter per hour.
  • the precipitate obtained after the precipitation treatment enters the membrane filter press part for filtration treatment, and the treated water after the membrane filter press treatment enters the water storage tank, and then enters the electrocoagulation treatment component from the water storage tank.
  • the intermediate treated water after electrocoagulation treatment enters the air flotation module for separation, and the intermediate treated water after removing scum by using the scum scraping part enters the ultrafiltration membrane part for filtration treatment to obtain treated water.
  • the scum after the scraping treatment enters the diaphragm filter press for filtration treatment, and the intermediate treated water after the diaphragm press filtration enters the water storage tank, and then enters the ultrafiltration membrane part from the water storage tank for filtration treatment to obtain treated water.
  • the sewage is treated from light green to clear and transparent treated water. The results of sewage treatment are shown in Table 8.
  • the sewage enters the first electrocoagulation treatment component
  • the material of the pole plate is aluminum, and the distance between the pole plates is in the range of 5mm-6mm. 350V DC voltage is applied, and the output DC current is 40A.
  • the ratio of the flow rate of sewage to the sum of the surface area of the plate array (or the flow rate of sewage on the surface of the plate) is 70 liters/square meter per hour.
  • the intermediate treatment water after the first electrocoagulation treatment component enters the air flotation and sedimentation component for separation, and the intermediate treatment water (clear liquid) after removing scum and precipitation enters the second electrocoagulation treatment component.
  • the material of the plate is iron.
  • the distance between the plates is in the range of 5mm-6mm. Applying 270V DC voltage, the output DC current is 64A.
  • the ratio of the sewage flow rate to the sum of the surface area of the plate array (that is, the flow rate of the sewage on the surface of the plate) is 115 liters per square meter per hour.
  • the scum and sediment enter the membrane filter press components for filtration treatment, and the intermediate treated water after the membrane filter press treatment enters the water storage tank, and then enters the second electrocoagulation treatment component from the water storage tank.
  • the treated water treated by the second electrocoagulation treatment component enters the air flotation and sedimentation component for separation, and the intermediate treated water (clear liquid) after removing scum and sediment enters the ultrafiltration membrane component for filtration treatment to obtain treated water.
  • the scum and sediment enter the membrane filter press components for filtration treatment, and the intermediate treated water after the membrane filter press treatment enters the water storage tank, and then enters the ultrafiltration membrane components from the water storage tank for filtration treatment to obtain treated water.
  • the sewage is treated from turbid pale white to clear and transparent treated water. The results of sewage treatment are shown in Table 9.
  • the sewage treatment system shown in Figure 11 was used to treat nickel-containing sewage from an electroplating factory in Shanghai, and the sewage was shown in Figure 12A.
  • the process parameters of each assembly are the same as in Example 5.
  • Treated water is shown in Figure 12B. It can be seen from FIG. 12A and FIG. 12B that the sewage is treated from black and turbid to clear and transparent treated water.
  • the results of sewage treatment are shown in Table 10.
  • the treated water after treatment by the sewage treatment system meets the discharge standards.
  • the Shanghai electroplating plant originally used chemical oxidation and chemical flocculation, and the treatment cost per ton of sewage (including various chemicals and power consumption, etc.) was about 40-50 yuan.
  • the total treatment cost per ton of sewage is about 6-7 yuan. Therefore, compared with the original treatment process (chemical oxidation and chemical flocculation), the cost can be reduced by 85%-88%.
  • the sewage treatment system shown in Figure 13 was used to treat the nickel-containing sewage of an electroplating factory in Shanghai.
  • the sewage enters the first electrocoagulation treatment component
  • the material of the pole plate is iron
  • the distance between the pole plates is within the range of 5mm-6mm.
  • 300V DC voltage is applied
  • the output DC current is 24A.
  • the ratio of the flow rate of sewage to the sum of the surface area of the plate array (or the flow rate of sewage on the surface of the plate) is 120 liters/square meter per hour.
  • the intermediate treatment water treated by the first electrocoagulation treatment component enters the sedimentation component for separation, and the intermediate treatment water (clear liquid) after removing the precipitation enters the second electrocoagulation treatment component.
  • the material of the plates is aluminum, and the distance between the plates is 5mm- 6mm range. Applying 300V DC voltage, the output DC current is 21A.
  • the ratio of the flow rate of sewage to the sum of the surface area of the plate array (or the flow rate of sewage on the surface of the plate) is 120 liters/square meter per hour.
  • the treated water treated by the second electrocoagulation treatment component enters the sedimentation component for separation, and the intermediate treatment water (clear liquid) after removing the precipitation enters the third electrocoagulation treatment component.
  • the plate material is made of iron, and the distance between the plates is 5mm-6mm within range. Applying 300V DC voltage, the output DC current is 19A.
  • the ratio of the flow rate of sewage to the sum of the surface area of the plate array (or the flow rate of sewage on the surface of the plate) is 120 liters/square meter per hour.
  • the sediment enters the membrane filter press components for filtration treatment, and the intermediate treated water after the membrane filter press treatment enters the water storage tank, and then enters the third electrocoagulation treatment component from the water storage tank.
  • the treated water treated by the third electrocoagulation treatment component enters the precipitation component for separation, and the intermediate treated water (clear liquid) after the precipitation is removed enters the ultrafiltration membrane component for filtration treatment to obtain treated water.
  • the sediment enters the membrane filter press parts for filtration treatment, and the intermediate treated water after the membrane filter press treatment enters the water storage tank, and then enters the ultrafiltration membrane parts from the water storage tank for filtration treatment to obtain treated water.
  • the sewage is treated from light green to clear and transparent treated water. The results of sewage treatment are shown in Table 11.
  • the sewage treatment system shown in Figure 14 was used to treat chromium-containing sewage from an electroplating factory in Shanghai. Firstly, the sewage enters the electrocoagulation treatment component.
  • the material of the pole plate is iron, and the distance between the pole plates is within the range of 5mm-6mm. Applying 350V DC voltage, the output DC current is 38A.
  • the ratio of the flow rate of sewage to the sum of the surface area of the plate array (or the flow rate of sewage on the surface of the plate) is 90 liters/square meter per hour.
  • the treated water treated by the electrocoagulation treatment component enters the air flotation and sedimentation component for separation, and the intermediate treated water (clear liquid) after removing scum and sediment enters the ultrafiltration membrane component for filtration treatment to obtain treated water.
  • the scum and sediment enter the membrane filter press components for filtration treatment, and the intermediate treated water after the membrane filter press treatment enters the water storage tank, and then enters the ultrafiltration membrane components from the water storage tank for filtration treatment to obtain treated water.
  • the sewage is treated from brown to clear and transparent treated water. The results of sewage treatment are shown in Table 12.
  • the wastewater treatment system shown in Figure 15 is used to treat wastewater from a lithium mine in Jiangxi.
  • the sewage enters the sedimentation component for separation, and the clear liquid after the precipitation is removed enters the electrocoagulation treatment component.
  • the material of the plates is iron, and the distance between the plates is within the range of 5mm-6mm. Apply 140V-200V DC voltage, the output DC current is 90A-100A.
  • the ratio of the flow rate of sewage to the sum of the surface area of the plate array (or the flow rate of sewage on the surface of the plate) is 130 liters/square meter per hour.
  • the precipitate enters the membrane filter press parts for filtration treatment, and the intermediate treated water after the membrane filter press treatment enters the water storage tank, and then enters the electrocoagulation treatment component from the water storage tank.
  • the intermediate treated water treated by the electrocoagulation treatment component enters the sedimentation component for separation, and the intermediate treated water (clear liquid) after the precipitation is removed enters the ultrafiltration membrane component for filtration treatment to obtain treated water.
  • the sediment enters the membrane filter press parts for filtration treatment, and the intermediate treated water after the membrane filter press treatment enters the water storage tank, and then enters the ultrafiltration membrane parts from the water storage tank for filtration treatment to obtain treated water.
  • the sewage is treated from light yellow to clear and transparent treated water. The results of sewage treatment are shown in Table 13.
  • Example 9 The sewage in Example 9 is different from Example 9 in that the distance between the pole plates is in the range of 13mm-14mm, and the output direct current is 181A.
  • the sewage treatment results are shown in Table 13-1.
  • Example 9 The sewage in Example 9 is different from Example 9 in that the distance between the pole plates is in the range of 3mm-4mm. Applying 55V DC voltage, the output DC current is 29A. The results of sewage treatment are shown in Table 13-2.
  • the sewage treatment system shown in Figure 16 is used to treat printing and dyeing sewage in Zhejiang.
  • the sewage enters the first electrocoagulation treatment component
  • the material of the pole plate is iron
  • the distance between the pole plates is within the range of 3mm-4mm.
  • Applying 370V DC voltage the output DC current is 48A.
  • the ratio of the flow rate of sewage to the sum of the surface area of the plate array (or the flow rate of sewage on the surface of the plate) is 85 liters/square meter per hour.
  • the treated water treated by the first electrocoagulation treatment component enters the air flotation component for separation, and the intermediate treated water (clear liquid) after removing scum enters the second electrocoagulation treatment component.
  • the plate material is made of aluminum, and the distance between the plates is 3mm -4mm range. Applying 350V DC voltage, the output DC current is 43A.
  • the ratio of the flow rate of sewage to the sum of the surface area of the plate array (or the flow rate of sewage on the surface of the plate) is 130 liters/square meter per hour.
  • the scum enters the parts of the membrane filter press for filtration treatment, and the intermediate treated water after the membrane filter press treatment enters the water storage tank, and then enters the second electrocoagulation treatment component from the water storage tank.
  • the treated water treated by the second electrocoagulation treatment module enters the air flotation module for separation, and the intermediate treated water (clear liquid) after removing scum enters the membrane bioreactor component for treatment (membrane separation and biological treatment).
  • the scum enters the membrane filter press part for filtration treatment, and the intermediate treated water after the membrane filter press treatment enters the membrane bioreactor part for treatment (membrane separation and biological treatment).
  • the intermediate treated water after being treated by the membrane bioreactor components enters the ultrafiltration membrane components for filtration treatment to obtain treated water.
  • the results of sewage treatment are shown in Table 14.
  • the sewage treatment system shown in Figure 17 to treat a certain printing and dyeing sewage in Shaoxing.
  • Sewage is shown in Figure 18A.
  • the sewage enters the electrocoagulation treatment assembly, the plate material is made of aluminum, and the distance between the plates is within the range of 7mm-9mm. Applying 400V DC voltage, the output DC current is 45A.
  • the ratio of the flow rate of sewage to the sum of the surface area of the plate array (or the flow rate of sewage on the surface of the plate) is 120 liters/square meter per hour.
  • the treated water treated by the electrocoagulation treatment module enters the air flotation module for separation, and the intermediate treated water (clear liquid) after removing scum enters the membrane bioreactor component for treatment (membrane separation and biological treatment).
  • the scum enters the membrane filter press part for filtration treatment, and the intermediate treated water after the membrane filter press treatment enters the membrane bioreactor part for treatment (membrane separation and biological treatment).
  • the intermediate treated water after being treated by the membrane bioreactor components enters the ultrafiltration membrane components for filtration treatment to obtain treated water.
  • Treated water is shown in Figure 18B. It can be seen from Fig. 18A and Fig. 18B that the sewage is treated from black to clear and transparent treated water. The results of sewage treatment are shown in Table 15.
  • the sewage enters the electrocoagulation treatment assembly, the material of the pole plate is iron, and the distance between the pole plates is within the range of 8mm-10mm. Apply 500V-550V DC voltage, and the output DC current is 25A-26A.
  • the ratio of the flow rate of sewage to the sum of the surface area of the plate array (or the flow rate of sewage on the surface of the plate) is 285 liters/square meter per hour.
  • the treated water treated by the electrocoagulation treatment module enters the air flotation module for separation, and the intermediate treated water (clear liquid) after removing scum enters the membrane bioreactor component for treatment (membrane separation and biological treatment).
  • the scum enters the membrane filter press part for filtration treatment, and the intermediate treated water after the membrane filter press treatment enters the membrane bioreactor part for treatment (membrane separation and biological treatment).
  • the intermediate treated water after being treated by the membrane bioreactor components enters the ultrafiltration membrane components for filtration treatment to obtain treated water.
  • the sewage is treated from black to clear and transparent treated water. The results of sewage treatment are shown in Table 16.
  • numbers describing the quantity of components and attributes are used. It should be understood that such numbers used in the description of the embodiments use the modifiers "about”, “approximately” or “substantially” in some examples. grooming. Unless otherwise stated, “about”, “approximately” or “substantially” indicates that the stated figure allows for a variation of ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that can vary depending upon the desired characteristics of individual embodiments. In some embodiments, numerical parameters should take into account the specified significant digits and adopt the general digit reservation method. Although the numerical ranges and parameters used in some embodiments of this specification to confirm the breadth of the range are approximations, in specific embodiments, such numerical values are set as precisely as practicable.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本说明书实施例提供一种污水处理系统和方法,该系统包括电凝处理组件,所述电凝处理组件包括:箱体,所述箱体包括进水口和溢流出口;以及至少两个极板,其中,所述至少两个极板排布在所述箱体内;所述至少两个极板的材质相同;所述至少两个极板中位于端部的两个极板与电源连接。相比于传统的生物和化学法,该系统具有处理效果好、处理成本低,不使用化学絮凝剂,产生固体污泥量极少等优点。

Description

一种污水处理系统和方法
相关申请的交叉引用
本申请要求于2022年06月27日提交中国国家知识产权局的申请号为202210733915.8、名称为“一种污水处理系统和方法”的中国专利申请的优先权及于2021年11月8日提交中国国家知识产权局的申请号为202111312103.8、名称为“一种污水处理系统和方法”的中国专利申请的优先权,上述申请的全部内容通过引用结合在本申请中。
技术领域
本说明书涉及污水处理技术领域,特别涉及一种污水处理系统和方法。
背景技术
随着工业与经济发展,洁净水资源的短缺问题以及工业生产过程中产生的大量污废水排放问题,对环境的不良影响日趋加重。随着人们环保意识的增强,以及政府对排放污水水质要求的提高,工业生产中产生的污废水处理成本与难度也在不断增加。现阶段的污水处理技术主要以生物降解、化学絮凝以及双膜法为主,但工业生产产生的大量污水绝大多数无法进行生物降解。化学絮凝需要使用大量的化学药剂,不仅成本高,过量的化学品还对处理水产生二次污染。使用反渗透的双膜法处理效果虽好,但建设与维运成本较高。为了实现碳中和与节能减排,以较低成本使工业废水处理达到新的国家标准,重复利用水资源,有必要提供一种新的污水处理系统和方法。
发明内容
本说明书实施例之一提供一种污水处理系统。该污水处理系统包括电凝处理组件,所述电凝处理组件包括:箱体,所述箱体包括进水口和溢流出口;以及至少两个极板,其中,所述至少两个极板排布在所述箱体内;所述至少两个极板的材质相同;所述至少两个极板中位于端部的两个极板与电源连接。
在一些实施例中,至少两个极板以预设间距排布在所述箱体内,其中所述预设间距在3mm-10mm范围内。
在一些实施例中,材质包括铁、铝或钢中的至少一种。
在一些实施例中,该污水处理系统还包括气浮兼沉淀组件,所述气浮兼沉淀组件与所述溢流出口连通以使经所述电凝处理组件处理后的处理水进入所述气浮兼沉淀组件。
在一些实施例中,所述系统还包括气浮兼沉淀组件,用于除去污水或中间处理水中的浮渣和沉淀,其中,所述气浮兼沉淀组件与所述溢流出口连通以使经所述电凝处理组件处理后的处理水进入所述气浮兼沉淀组件,和/或所述气浮兼沉淀组件与所述进水口连通以使经所述气浮兼沉淀组件处理后的处理水进入所述电凝处理组件。
在一些实施例中,所述系统包括气浮组件,用于除去污水或中间处理水中的浮渣,其中,所述气浮组件与所述溢流出口连通以使经所述电凝处理组件处理后的处理水进入所述气浮组件,和/或所述气浮组件与所述进水口连通以使经所述气浮组件处理后的处理水进入所述电凝处理组件。
在一些实施例中,所述系统包括沉淀组件,用于除去污水或中间处理水中的沉淀,其中,所述沉淀组件与所述溢流出口连通以使经所述电凝处理组件处理后的处理水进入所述沉淀组件,和/或所述沉淀组件与所述进水口连通以使经所述沉淀组件处理后的处理水进入所述电凝处理组件。
在一些实施例中,该污水处理系统还包括过滤组件,所述过滤组件与所述气浮兼沉淀组件、所述气浮组件或所述沉淀组件的出水口连通,所述过滤组件包括超滤膜。
本说明书实施例之一提供一种污水处理方法,该污水处理方法包括:使用如上所述的污水处理系统处理所述污水,得到处理水。
在一些实施例中,该污水处理方法还包括:控制所述污水以预设流速进入所述电凝处理组件中,其中,所述预设流速与所述至少两个极板的表面积之和的比值在50L/m 2˙h-300L/m 2˙h范围内。
在一些实施例中,该污水处理方法还包括:控制所述电源的供电电压在140V-550V范围内。
在一些实施例中,该污水处理方法还包括:在电凝处理过程中,定时或不定时控制所述电源的正负极换向。
附图说明
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的示例性污水处理系统的示意图。
图2是根据本说明书又一些实施例所示的示例性污水处理系统的示意图。
图3是根据本说明书一些实施例所示的示例性至少两个极板与电源的连接示意图。
图4是根据本说明书一些实施例所示的示例性电凝处理组件和示例性气浮兼沉淀组件的结构图。
图5是图4的主视图。
图6是图4的俯视图。
图7是图6的局部剖视图。
图8A是根据本说明书一些实施例所示的示例性的未经处理的污水的示意图。
图8B是图8A所示的污水经过电凝处理和气浮兼沉淀处理后的示意图。
图8C是图8B所示的处理水经过过滤处理后的示意图。
图9、图10、图11、图13、图14、图15、图16、图17是根据本说明书另一些实施例所示的示例性污水处理系统的示意图。
图12A、图18A分别是未经处理的污水的示意图。
图12B、图18B分别是图12A、图18A所示的污水经本说明书一些实施例所示的示例性污水处理系统处理后的示意图。
图中,100为污水处理系统,110为电凝处理组件,111为箱体,112为至少两个极板,113为进水口,114为电凝反应区排水口,115为极板冲洗曝气进气口,116为溢流出口,120为气浮兼沉淀组件,121为气浮箱,1211为曝气区排水口,1212为沉淀排出口,1213为气浮兼沉淀处理后排水口,1214为刮渣排出口,122为刮渣部件,1221为刮渣动力元件,1222为刮渣传动元件,1223为刮渣元件,123为曝气部件,1231为空压机,1232为曝气管路,1233为曝气头,124为水位调节部件,125为水位调节排出口,130为过滤组件,400为前处理组件。
具体实施方式
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模块”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本说明书中使用了流程图用来说明根据本说明书的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
本说明书实施例污水处理系统可以处理印染、电镀、垃圾渗滤液、石油化工、造纸等处理难度大、处理成本高的工业废水。相比于传统的生物和化学法,该系统基于电化学与物理分离原理,将电凝与膜法相结合,具有处理效果好、处理成本低,不使用化学絮凝剂,产生固体污泥量极少等优点。
图1是根据本说明书一些实施例所示的示例性污水处理系统的示意图。
在一些实施例中,污水处理系统100可以包括电凝处理组件110。电凝处理组件110可以用于对污水进行电凝处理。在一些实施例中,电凝处理组件110可以包括箱体、至少两个极板和电源。
在一些实施例中,箱体可以包括进水口,用于将污水引入电凝处理组件110(例如,箱体)内。
在一些实施例中,箱体可以包括底板和至少两块侧面板。在一些实施例中,箱体可以包括或不包括顶板。底板和至少两块侧面板可以围成上端开口的圆柱体箱体或长方体箱体等。例如,箱体可以包括底 板和四块侧面板,四块侧面板垂直于底板组成上端开口的长方体箱体。
在一些实施例中,至少两块侧面板的高度可以不同。例如,四块侧面板中三块侧面板的高度可以相同,且高于另一块侧面板。在一些实施例中,至少两块侧面板中高度最低的侧面板的上表面与其余侧面板高出高度最低的侧面板的侧面部分可以形成溢流出口,用于将经过电凝处理后的处理水排出电凝处理组件110(例如,箱体)。
在一些实施例中,至少两块侧面板的材质可以包括绝缘材料,或至少两块侧面板的内侧可以粘有与其面积相等的绝缘材料。在一些实施例中,绝缘材料可以包括但不限于纤维、橡胶或塑料等。
在一些实施例中,至少两个极板可以排布在箱体内。例如,至少两个极板可以垂直于箱体的底板、平行排布在箱体内。在一些实施例中,至少两个极板可以以预设间距排布在箱体内。
由于预设间距会影响污水的处理效果(例如,污染物去除率、污水处理效率),例如,预设间距太小,会导致污水在至少两个极板之间的流速降低,或至少两个极板释放过多的金属离子(例如,Fe2+、Fe3+、Al3+),导致对污水过度处理,进而降低处理效率;又例如,预设间距太大,会导致电压无法击穿至少两个极板之间的污水,进而无法破坏污水中的电荷平衡,降低污染物去除率。因此,在一些实施例中,预设间距需要满足预设条件。
在一些实施例中,预设间距可以在3mm-10mm范围内。在一些实施例中,预设间距可以在3.5mm-9.5mm范围内。在一些实施例中,预设间距可以在4mm-9mm范围内。在一些实施例中,预设间距可以在4.5mm-8.5mm范围内。在一些实施例中,预设间距可以在5mm-8mm范围内。在一些实施例中,预设间距可以在5.5mm-7.5mm范围内。在一些实施例中,预设间距可以在6mm-7mm范围内。在一些实施例中,预设间距可以在6.4mm-6.8mm范围内。需要说明的是,该预设间距范围可以包括在污水处理过程中,至少两个极板变化后的间距范围。例如,在电凝处理过程中,至少两个极板的部分被消耗,导致至少两个极板的厚度减少,进一步导致至少两个极板之间的间距增大。该增大后的间距也在上述预设间距范围内。
在一些实施例中,至少两个极板的材质可以相同。在一些实施例中,可以根据污水的性质(例如,污水来源、污水中的污染物种类和含量等),选择极板材质。在一些实施例中,材质可以包括铁、铝、铁合金(例如,钢)或铝合金中的至少一种。例如,至少两个极板中每个极板的材质可以是铁。又例如,至少两个极板中每个极板的材质可以是铝。又例如,至少两个极板中每个极板的材质可以是钢。又例如,至少两个极板中每个极板的材质可以包括铁和铝。
在一些实施例中,至少两个极板中位于端部的两个极板可以与电源连接,以形成一个电流回路。在一些实施例中,至少三个极板中位于端部的两个极板和排布在中部的一个极板可以与电源并联连接,以形成两个电流回路。例如,至少三个极板中位于端部的两个极板为阳极,排布在中部的一个极板为阴极,或者至少三个极板中位于端部的两个极板为阴极,排布在中部的一个极板为阳极。
本说明书实施例中,中间处理水可以指经过至少一个处理组件(例如,电凝处理组件、气浮兼沉淀组件、气浮组件、沉淀组件、过滤组件等)处理后的处理水。连通可以包括流体连通。
在一些实施例中,污水处理系统100还可以包括气浮兼沉淀组件120。在一些实施例中,气浮兼沉淀组件120可以用于除去污水或中间处理水中的浮渣和沉淀。在一些实施例中,气浮兼沉淀组件120可以与电凝处理组件110的溢流出口连通,以使经过电凝处理后的处理水进入气浮兼沉淀组件120进行气浮兼沉淀处理。在一些实施例中,气浮兼沉淀组件120可以与电凝处理组件110的进水口连通以使经气浮兼沉淀组件处理后的处理水进入电凝处理组件110。
在一些实施例中,气浮兼沉淀组件120可以包括气浮组件和沉淀组件。在一些实施例中,气浮组件可以包括气浮箱、刮渣机和空压机。在一些实施例中,沉淀组件可以包括沉淀箱。在一些实施例中,气浮箱与沉淀箱可以是同一个箱体或不同的箱体。例如,气浮兼沉淀组件120中的气浮箱与沉淀箱可以是同一个箱体或通过中间箱体相连通。在一些实施例中,气浮兼沉淀组件120的进水口和出水口可以位于气浮箱或沉淀箱上。在一些实施例中,气浮兼沉淀组件120中的气浮组件和沉淀组件可以相互连通。气浮兼沉淀组件120中的气浮组件和沉淀组件可以是彼此独立的两个组件。关于气浮兼沉淀组件120的相关描述可以参见本说明书其他部分(例如,图4-图7及其描述),在此不再赘述。
在一些实施例中,污水处理系统100可以包括气浮组件,用于除去污水或中间处理水中的浮渣。在 一些实施例中,气浮组件可以与电凝处理组件110的溢流出口连通,以使经过电凝处理组件处理后的处理水进入气浮组件进行气浮处理。在一些实施例中,气浮组件可以与电凝处理组件110的进水口连通以使经气浮组件处理后的处理水进入电凝处理组件110。在一些实施例中,气浮组件的进水口和出水口可以位于气浮箱上。
在一些实施例中,污水处理系统100可以包括沉淀组件,用于除去污水或中间处理水中的沉淀。在一些实施例中,沉淀组件可以与电凝处理组件110的溢流出口连通,以使经过电凝处理组件处理后的处理水进入沉淀组件进行沉淀处理。在一些实施例中,沉淀组件可以与电凝处理组件110的进水口连通以使经沉淀组件处理后的处理水进入电凝处理组件110。在一些实施例中,沉淀组件的进水口和出水口可以位于沉淀箱上。
在一些实施例中,污水处理系统100还可以包括过滤组件130,用于对污水或中间处理水进行过滤处理。在一些实施例中,过滤组件130可以包括进水口和出水口。在一些实施例中,过滤组件130的进水口可以与气浮兼沉淀组件120、气浮组件或沉淀组件的出水口连通,以使经过气浮兼沉淀、气浮或沉淀处理后的处理水进入过滤组件130进行过滤处理(例如,超滤处理、膜分离与生物处理、隔膜压滤处理)。在一些实施例中,过滤组件130的出水口可以与电凝处理组件110的进水口连通,以使经过滤处理后的中间处理水进入电凝处理组件110进行电凝处理。
在一些实施例中,过滤组件130可以包括但不限于中空纤维膜组件、平板膜组件或管式膜组件。
在一些实施例中,过滤组件130可以包括超滤膜部件、膜生物反应器部件或隔膜压滤机部件中的至少一种。在一些实施例中,超滤膜部件、膜生物反应器部件与隔膜压滤机部件中的至少两种可以相互连通,以进行至少两种过滤处理。例如,隔膜压滤机部件的出水口可以与超滤膜部件或膜生物反应器部件的进水口连通。又例如,膜生物反应器部件的出水口可以与超滤膜部件或隔膜压滤机部件的进水口连通。又例如,隔膜压滤机部件的出水口可以与膜生物反应器部件的进水口连通,且膜生物反应器部件的出水口可以与超滤膜部件的进水口连通。
在一些实施例中,超滤膜部件可以包括超滤膜。在一些实施例中,超滤膜的孔径可以在50nm-200nm范围内。在一些实施例中,超滤膜的孔径可以在60nm-190nm范围内。在一些实施例中,超滤膜的孔径可以在70nm-180nm范围内。在一些实施例中,超滤膜的孔径可以在80nm-170nm范围内。在一些实施例中,超滤膜的孔径可以在90nm-160nm范围内。在一些实施例中,超滤膜的孔径可以在100nm-150nm范围内。在一些实施例中,超滤膜的孔径可以在110nm-140nm范围内。在一些实施例中,超滤膜的孔径可以在120nm-130nm范围内。
在一些实施例中,污水处理系统100还可以包括储水箱,用于存储中间处理水。在一些实施例中,储水箱可以包括进水口和出水口。在一些实施例中,储水箱的进水口和出水口可以分别与污水处理系统100中的其他组件或部件(例如,电凝处理组件、气浮兼沉淀组件、气浮组件、沉淀组件、超滤膜部件、隔膜压滤机部件、膜生物反应器部件)的出水口或进水口连通。
图2是根据本说明书又一些实施例所示的示例性污水处理系统的示意图。
在一些实施例中,电凝处理组件110可以包括至少两个箱体。至少两个箱体中的每个箱体内可以排布有至少两个极板。至少两个箱体中的每个箱体内的极板材质相同。关于箱体和至少两个极板的相关描述可以参见本说明书其他部分(例如,图1及其描述),在此不再赘述。
如图2所示,箱体可以包括m个,分别为第1箱体、第2箱体…第m箱体。在一些实施例中,至少两个箱体中不同箱体内的至少两个极板的数量可以相同或不同。在一些实施例中,至少两个箱体中不同箱体内的极板材质可以相同或不同。例如,第1箱体内的极板材质与第2箱体内的极板材质可以相同,均为铁。又例如,第1箱体内的极板材质均为铁,而第2箱体内的极板材质均为钢。
如图2所示,至少两个箱体中每个箱体内的至少两个极板中位于端部的两个极板可以与电源连接,以形成多个并联回路,用于处理大量污水。在一些实施例中,至少两个箱体中每个箱体的溢流出口可以连通,以将从每个箱体中溢流出的经过电凝处理后的处理水汇入气浮兼沉淀组件120,以进一步进行气浮兼沉淀处理。在一些实施例中,气浮兼沉淀组件120的出水口可以与过滤组件130连通,以对经过气浮兼沉淀处理后的处理水进行过滤处理。关于气浮兼沉淀组件120和过滤组件130的相关描述可以参见本说明书其他部分(例如,图1及其描述),在此不再赘述。
应当注意的是,上述有关污水处理系统100的描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以对污水处理系统100进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。例如,污水处理系统100中电凝处理组件110、气浮兼沉淀组件120、气浮组件、沉淀组件、过滤组件130中超滤膜部件、膜生物反应器部件、隔膜压滤机部件的数量及连通关系可以根据污水水质做适应调整。
本说明书实施例还提供一种污水处理方法。在一些实施例中,该方法可以由污水处理系统100(例如,图1或图2所示的)中的一个或多个组件执行。在一些实施例中,方法可以由控制系统自动执行。例如,方法可以通过控制指令实现,控制系统基于控制指令,控制各个组件完成方法的各个操作。在一些实施例中,方法可以半自动执行。例如,方法的一个或多个操作可以由操作者手动执行。在一些实施例中,可以添加一个或以上未描述的附加操作,和/或删减一个或以上此处所讨论的操作。另外,图1或图2中所示的操作的顺序并非限制性的。
在一些实施例中,在电凝处理过程中,可以控制污水以预设流速进入电凝处理组件110。在一些实施例中,预设流速可以在10t/h-30t/h范围内。在一些实施例中,预设流速可以在12t/h-28t/h范围内。在一些实施例中,预设流速可以在14t/h-26t/h范围内。在一些实施例中,预设流速可以在16t/h-24t/h范围内。在一些实施例中,预设流速可以在18t/h-22t/h范围内。在一些实施例中,预设流速可以在19t/h-20t/h范围内。
在一些实施例中,预设流速与至少两个极板的表面积之和的比值可以在50L/m 2˙h-1000L/m 2˙h范围内。在一些实施例中,预设流速与至少两个极板的表面积之和的比值可以在100L/m 2˙h-900L/m 2˙h范围内。在一些实施例中,预设流速与至少两个极板的表面积之和的比值可以在150L/m 2˙h-800L/m 2˙h范围内。在一些实施例中,预设流速与至少两个极板的表面积之和的比值可以在180L/m 2˙h-700L/m 2˙h范围内。在一些实施例中,预设流速与至少两个极板的表面积之和的比值可以在200L/m 2˙h-600L/m 2˙h范围内。在一些实施例中,预设流速与至少两个极板的表面积之和的比值可以在230L/m 2˙h-500L/m 2˙h范围内。在一些实施例中,预设流速与至少两个极板的表面积之和的比值可以在250L/m 2˙h-400L/m 2˙h范围内。在一些实施例中,预设流速与至少两个极板的表面积之和的比值可以在280L/m 2˙h-380L/m 2˙h范围内。在一些实施例中,预设流速与至少两个极板的表面积之和的比值可以在300L/m 2˙h-360L/m 2˙h范围内。在一些实施例中,预设流速与至少两个极板的表面积之和的比值可以在320L/m 2˙h-340L/m 2˙h范围内。
在一些实施例中,预设流速与至少两个极板的表面积之和的比值可以在50L/m 2˙h-300L/m 2˙h范围内。在一些实施例中,预设流速与至少两个极板的表面积之和的比值可以在60L/m 2˙h-280L/m 2˙h范围内。在一些实施例中,预设流速与至少两个极板的表面积之和的比值可以在70L/m 2˙h-260L/m 2˙h范围内。在一些实施例中,预设流速与至少两个极板的表面积之和的比值可以在80L/m 2˙h-240L/m 2˙h范围内。在一些实施例中,预设流速与至少两个极板的表面积之和的比值可以在90L/m 2˙h-220L/m 2˙h范围内。在一些实施例中,预设流速与至少两个极板的表面积之和的比值可以在100L/m 2˙h-200L/m 2˙h范围内。在一些实施例中,预设流速与至少两个极板的表面积之和的比值可以在110L/m 2˙h-190L/m 2˙h范围内。在一些实施例中,预设流速与至少两个极板的表面积之和的比值可以在120L/m 2˙h-180L/m 2˙h范围内。在一些实施例中,预设流速与至少两个极板的表面积之和的比值可以在130L/m 2˙h-170L/m 2˙h范围内。在一些实施例中,预设流速与至少两个极板的表面积之和的比值可以在150L/m 2˙h-160L/m 2˙h范围内。
在一些实施例中,在电凝处理过程中,可以控制电源的供电电压,以提供合适的击穿电压破坏污水中悬浮物质表面电荷的稳定性,进一步提高污水中污染物的去除率。在一些实施例中,供电电压可以在60V-600V范围内。在一些实施例中,供电电压可以在80V-550V范围内。在一些实施例中,供电电压可以在100V-500V范围内。在一些实施例中,供电电压可以在120V-450V范围内。在一些实施例中,供电电压可以在150V-400V范围内。在一些实施例中,供电电压可以在180V-380V范围内。在一些实施例中,供电电压可以在200V-350V范围内。在一些实施例中,供电电压可以在210V-340V范围内。在一些实施例中,供电电压可以在220V-330V范围内。在一些实施例中,供电电压可以在230V-320V范围内。在一些实施例中,供电电压可以在240V-310V范围内。在一些实施例中,供电电压可以在 250V-300V范围内。在一些实施例中,供电电压可以在260V-290V范围内。在一些实施例中,供电电压可以在270V-280V范围内。
在一些实施例中,供电电压可以在140V-550V范围内。在一些实施例中,供电电压可以在160V-500V范围。在一些实施例中,供电电压可以在180V-450V范围内。在一些实施例中,供电电压可以在100V-400V范围内。在一些实施例中,供电电压可以在120V-350V范围内。在一些实施例中,供电电压可以在140V-300V范围内。在一些实施例中,供电电压可以在160V-250V范围内。在一些实施例中,供电电压可以在180V-200V范围内。
在一些实施例中,在电凝处理过程中,可以控制输出的直流电流在1A-500A范围内。在一些实施例中,直流电流可以在5A-400A范围内。在一些实施例中,直流电流可以在10A-300A范围内。在一些实施例中,直流电流可以在12A-200A范围内。在一些实施例中,直流电流可以在14A-100A范围内。在一些实施例中,直流电流可以在16A-80A范围内。在一些实施例中,直流电流可以在18A-60A范围内。在一些实施例中,直流电流可以在20A-50A范围内。在一些实施例中,直流电流可以在22A-40A范围内。在一些实施例中,直流电流可以在24A-38A范围内。在一些实施例中,直流电流可以在26A-36A范围内。在一些实施例中,直流电流可以在28A-34A范围内。在一些实施例中,直流电流可以在30A-32A范围内。
在一些实施例中,在电凝处理过程中,可以定时或不定时控制电压的正负极换向,以保证极板不会钝化,不仅可以提高极板的利用率,还可以提高污染物去除率。
在本说明书实施例中,可以将电凝处理组件110和气浮兼沉淀组件120、气浮组件或沉淀组件中一个的组合称为前处理组件。相应地,可以将电凝处理和气浮兼沉淀处理、气浮处理或沉淀处理中一个的组合称为前处理。在前处理过程中,污水进入电凝处理组件110后,在高压直流电压下,箱体内的极板(例如,铁板、钢板或铝板)在极板/溶液界面发生氧化,阳极上溶解出金属离子(例如,Fe 2+、Fe 3+或Al 3+)。这些金属离子有水合的趋势,特别是带+3价或更多电荷的金属离子会倾向于从周围的水合物质中提供水合氢阳离子(H 3O +,布仑斯惕酸)。反应式(1)-(3)表示了Fe 3+阳离子的酸性反应,反应式(4)-(6)表示了Al 3+阳离子的酸性反应。
Figure PCTCN2022126761-appb-000001
Figure PCTCN2022126761-appb-000002
Figure PCTCN2022126761-appb-000003
Figure PCTCN2022126761-appb-000004
Figure PCTCN2022126761-appb-000005
Figure PCTCN2022126761-appb-000006
阴极电解水产生氢氧根离子(OH -),氢氧根离子与来自阳极的金属离子(例如,Fe 2+、Fe 3+或Al 3+)结合,在合适的pH值下生成相应的氢氧化物或氧化物。在与金属离子偶联时,OH -还可以作为桥接基团共同连接两种或多种金属氢氧化物,发生更多的二聚或聚合反应,生成凝胶状氢氧化物,可以用反应式(7)-(8)表示如下:
2(Fe(H 2O) 5(OH)) 2+→(Fe 2(H 2O) 8(OH) 2) 4++2H 2O (7)
2(Al(H 2O) 5(OH)) 2+→(Al 2(H 2O) 8(OH) 2) 4++2H 2O (8)
凝胶状氢氧化物可以在其生长和沉降时进一步携带悬浮固体或溶解物质。污染物聚集的能力和特性会随着产生的凝胶状氢氧化物的物理化学性质、周围介质以及溶液中悬浮固体或溶解污染物的类型而改变。凝胶状氢氧化物的关键特性包括电荷、孔隙率和在氢氧化物中或与污染物产生的键合类型。由于有足够的过电位,在两极电解水还会产生气体(通常是O 2和H 2),他们会携带部分凝结污染物漂浮到表面形成悬浮固体。
由于电凝处理过程中多种复杂的协同效应,阳极可以释放金属离子M n+和气体分子(例如,O 2),阴极可以产生氢氧根离子OH -和气体分子(例如,H 2)。这些离子和气体分子可以一同进入污水中,污水中带负电和带正电的离子可以分别与M n+和OH -结合形成络合物。释放出的氢气或氧气可以将部分络合物带到水面上形成浮层。由于电子会从阴极击穿污水和排布在中部的极板移动到阳极,破坏污水中悬浮 物质表面电荷的稳定性,使悬浮物附着到水中的络合物上,一起被带到水面形成浮层。污水中的重金属离子以及有机物分子还会在极板上被氧化或被还原,生成气体、不溶于水的固体或络合物。上述几个过程相互作用,最终可以将污水中的污染物聚集,得到浮渣和沉淀。
电子从阴极击穿污水和排布在中部的极板移动到阳极的过程可以理解为强直流电场效应。图3是根据本说明书一些实施例所示的示例性至少两个极板与电源的连接示意图。在本说明书实施例中,箱体内排布的至少两个极板也可以称为极板阵列。如图3所示,在至少两个极板或极板阵列中位于端部的两个极板施加直流电压时,阳极极板a表面布满正电荷,场效应使与其相邻的极板b的电子(负电荷)移动到靠近阳极极板a的一侧,使该侧布满负电荷,因此极板b的另一侧(远离极板a的一侧,靠近极板c(与极板b相邻的极板)的一侧)将布满正电荷,以此连锁反应,排布在极板阵列中部的极板将相互之间形成电场,直到连接直流电源负极的阴极极板。由于极板阵列中极板之间流动的污水含有大量导电性离子、分子或悬浮颗粒,电子可以从阴极极板穿过污水和排布在中部的所有极板到达阳极极板。
在电凝处理过程中,由于电压的正负极会定时换向,极板阵列中的所有极板都会一侧释放金属离子和氧气,另一侧释放氢氧根离子和氢气,并且污水中的物质在所有极板两侧都可以被氧化或被还原。
污水经过电凝处理后,经由溢流出口流入气浮兼沉淀组件120、气浮组件或沉淀组件,在气浮兼沉淀组件120、气浮组件或沉淀组件内完成大部分的固液分离,得到刮渣和/或沉淀以及中间处理水。
经过气浮兼沉淀处理、气浮处理或沉淀处理后的处理水可以分别通过气浮兼沉淀组件120、气浮组件或沉淀组件的出水口进入过滤组件130,过滤组件130可以清除处理水中的其他悬浮固体物质,排出达标的可回用水或可直接排放的处理水。
图4是根据本说明书一些实施例所示的示例性电凝处理组件和示例性气浮兼沉淀组件的结构图。图5是图4的主视图。图6是图4的俯视图。图7是图6的局部剖视图。
如图4-7所示,前处理组件400可以包括电凝处理组件110和气浮兼沉淀组件120。
电凝处理组件110可以包括箱体111、至少两个极板112和电源(图中未示出)。至少两个极板112可以排布在箱体111内。在一些实施例中,电源可以位于箱体111外部。
在一些实施例中,箱体111可以作为独立部件通过管道与气浮兼沉淀组件120(例如,气浮箱、沉淀箱)连接。在一些实施例中,箱体111也可以与气浮兼沉淀组件120(例如,气浮箱、沉淀箱)集成为一体。
如图5和图7所示,箱体111可以包括进水口113,用于将污水引入电凝处理组件110(例如,箱体111)内。在一些实施例中,进水口113还可以用于将冲洗极板用清洗液(例如,清水)引入箱体111内,以对箱体111和至少两个极板112进行清洗。
箱体111还可以包括电凝反应区排水口114,用于排出箱体111内电凝处理后的滞留水(例如,未能通过溢流出口116溢流至气浮兼沉淀组件120的处理水)及清洗极板和箱体111后的废水。在一些实施例中,如图5和图7所示,箱体111还可以包括极板冲洗曝气进气口115,用于将气体导入箱体111内,以对箱体111和至少两个极板112进行冲洗。
如图7所示,电凝处理组件110(例如,箱体111)可以通过溢流出口116与气浮兼沉淀组件120(例如,气浮箱、沉淀箱)连通。
气浮兼沉淀组件120可以包括气浮组件和沉淀组件。在一些实施例中,气浮组件可以包括气浮箱121、刮渣部件122和曝气部件123。在一些实施例中,沉淀组件可以包括沉淀箱。在一些实施例中,如图4-7所示,气浮箱与沉淀箱为同一个箱体。
在一些实施例中,气浮箱121可以包括曝气区排水口1211、沉淀排出口1212、气浮兼沉淀处理后排水口1213和刮渣排出口1214。
在一些实施例中,刮渣部件122可以包括刮渣动力元件1221、刮渣传动元件1222和刮渣元件1223。在一些实施例中,刮渣动力元件1221与刮渣传动元件1222可以传动连接。在一些实施例中,刮渣传动元件1222与刮渣元件1223可以连接(例如,固定连接)。在一些实施例中,刮渣传动元件1222可以包括但不限于齿轮链条传动元件或皮带传动元件。作为示例,刮渣动力元件1221(例如,电机)可以带动刮渣传动元件1222运动,刮渣传动元件1222可以进一步带动刮渣元件1223(例如,刮板)运动,以将浮在水面的浮渣刮除,刮出的刮渣可以通过刮渣排出口1214排出。
在一些实施例中,曝气部件123可以包括空压机1231、曝气管路1232和曝气头1233。空压机1231与曝气头1233可以通过曝气管路1232连接。空压机1231输出的气体(例如,空气)可以通过曝气管路1232和曝气头1233排出至气浮箱121内。
在一些实施例中,如图7所示,气浮箱121可以包括爆气区M和平流区N。在一些实施例中,爆气区M和平流区N可以通过隔板L进行划分。在曝气区M内,部分经过电凝处理后的处理水与气体进行混合可以产生溶气水。在一些实施例中,可以通过控制曝气部件123的曝气量,控制溶气水的体积不超过从溢流出口116流出的处理水的体积的20%。
经过电凝处理后的处理水在曝气区M处理后,可以溢流至隔板L上方进入平流区N。曝气区M中滞留的处理水(例如,未能溢流至隔板L上方的处理水)可以通过曝气区排水口1211排出。经过气浮兼沉淀处理后的处理水可以从平流区N另一侧(例如,远离曝气区M的一侧),经气浮兼沉淀处理后排水口1213排出,进入过滤组件130。
在一些实施例中,气浮兼沉淀组件120还可以包括水位调节部件124和水位调节排出口125,用于调节气浮箱121内的水位。
图7中虚线箭头可以表示污水在后处理组件400中的处理线路。如图7所示,污水由进水口113进入箱体111,箱体111内的水位上升,污水穿过两端加有高压直流电压的极板阵列进行电凝处理,然后通过溢流出口116进入爆气区M。在爆气区M内,经过电凝处理后的处理水与从曝气头1233出来的气体混合并溢流进入平流区N。污水中的各种物质在平流区N进行反应,部分上浮到水面形成浮渣,部分形成沉淀沉入气浮箱121底。表面形成的浮渣被刮渣部件122刮走,沉淀由沉淀排出口1212排出。中间部分的清液由气浮兼沉淀处理后排水口1213排出,再进入过滤组件130,经过过滤组件130处理后最终排出达标排放水或可回用中水。
如图1至图7所示,本实施例的处理工艺流程如下:(1)将污水以预设流速通入箱体111。根据污水水质的不同,污水在每一个箱体(例如,第1箱体、第2箱体或第m箱体)内的流速可以在10吨/小时-30吨/小时范围内。
(2)根据污水水质和流速的不同,在污水进入箱体111时,高压直流电源在至少两个极板112组成的极板阵列中位于端部的两个极板上施加60V-600V的高压直流电,会产生1A-500A的直流电输出。
(3)污水穿过极板阵列后通过溢流出口116溢流到气浮兼沉淀组件120或气浮组件的爆气区M,进入并充满曝气头1233所在区域,与曝气头1233释放出来的气体或溶气水混合后溢流进入气浮兼沉淀组件120的平流区N。
(4)在气浮兼沉淀组件120的平流区N内污水中的部分物质会形成浮渣,浮在水面上。浮渣被刮渣部件122去除并进入污泥区,最终由刮渣排出口1214排出。在气浮兼沉淀组件120或沉淀组件的平流区N内污水中的部分物质会形成沉淀,最终由沉淀排出口1212排出。
(5)经过前处理(电凝处理和气浮兼沉淀处理)的处理水由气浮兼沉淀处理后排水口1213排出,进入过滤组件130。
(6)由过滤组件130进行过滤处理后,可以产生可以达标排放水或可以回用的中水。
根据本说明书实施例对多种含不同污染物的污水进行处理,得到的实验结果如表1所示。
表1污染物去除率实验结果表
污染物 污染物去除率(%)
化学需氧量COD 60-95
生物需氧量BOD 80-99
悬浮颗粒物SS 95-100
50-60
总氮 70-95
颜色 80-93
硝酸盐 43-78
亚硝酸盐 30-43
硫化氢 70-86
磷酸盐 35-99
70-99
镅241 90-99
90-94
30-97
80-94
20-71
90-97
80-98
50-99
70-83
94-99
60-76
89-99
90-99
40-99
80-95
60-98
80-92
90-99
60-99
86-99
氰化物 90-99
氟化物 62-70
90-99
乙苯 90-99
间二甲苯 90-99
邻二甲苯 80-99
多氯化联苯 70-86
苯酚 60-72
甲基叔丁基醚 90-99
石油烃 90-99
艾氏剂(农药) 90-98
毒死蜱(农药) 90-99
氯氰菊酯(农药) 80-95
滴滴涕(农药) 90-99
二嗪农(农药) 90-99
林丹(农药) 90-99
大肠杆菌 80-99
肠球菌 70-83
大肠菌群 80-99
在一些实施例中,通过对污水处理系统进行改进,例如,对各组件的数量和连通关系进行调整,可以提高污染物去除率。在一些实施例中,化学需氧量COD的去除率可以达到60%-98%。在一些实施例中,氨的去除率可以达到50%-70%。在一些实施例中,锡的去除率可以达到90%-99%。在一些实施例中,铊的去除率可以达到86%-99%。在一些实施例中,氟化物的去除率可以达到62%-99%。
实施例1
如图8A所示为嘉兴某印染厂的印染污水,该污水的初始COD为980mg/L。该污水的其他项目的初始测试数据如表2中“污水”列所示。
使用如图1或图4-7所示的污水处理系统处理该印染污水。使污水进入前处理组件(电凝处理组件和气浮兼沉淀组件),极板材质采用低碳钢,极板间距在5mm-6mm范围内。控制污水的流速为10吨/每小时,施加350V直流电压,输出直流电流为32A。污水流速与极板阵列的表面积之和的比值(或污水在极板表面的流速)为280升/每平方米˙每小时,能量密度约为1.35千瓦时/每吨(kWh/ton),即处理1吨污水消耗1.35度电。前处理后,污水中化学物质上浮形成浮渣,如图8B所示。采用刮渣部件去除浮渣后,处理水进入过滤组件(超滤膜部件)进行过滤处理,过滤处理后的处理水如图8C所示。过滤处理后的处理水中COD下降到了110mg/L,去除率达到88.78%。污水中其他项目处理后的数值与去除率如表2所示。
其中,去除率的计算方式为:去除率=(1-处理后浓度/处理前浓度)*100%。苯胺类的未检出是根据GB/T11889-1989最低检出浓度低于0.03mg/L,六价铬的未检出是根据GB/T7467-1987最低检出浓度低于0.004mg/L。对于处理后未检出的指标统一标注去除率为90%。
表2实施例1实验结果表
Figure PCTCN2022126761-appb-000007
该嘉兴印染厂原先使用的技术为AO(AnoxicOxic)活性污泥法与化学絮凝法,每吨污水的处理成本(包含各种化学药剂与电力消耗等)约为6元。
采用本实施例的技术方案,消耗极板70g-80g,污水处理系统整体耗电为1.8度/吨污水。以每日平均电价0.6元/度,低碳钢板6000元/吨,以及化学药剂约0.74元/吨污水,合计每吨污水处理成本为2.3元。相比原先的处理工艺(AO活性污泥法与化学絮凝法),成本可以降低60%以上。
相比活性污泥法需要不间断用电曝气,本实施例可以采用间歇式曝气,因此可以只使用每天12小时的低谷电价0.25元/度(根据嘉兴市2021年10月15日实行的大工业用电价格),由此合计每吨污水的处理成本不足1.7元。因此,本实施例的总成本不超过原先处理工艺成本的三分之一。
采用本实施例的技术方案处理该嘉兴印染厂的污水,每吨污水产生约100g污泥。而采用化学絮凝法处理该嘉兴印染厂的污水,每吨污水产生约400g污泥,采用活性污泥法处理该嘉兴印染厂的污水,每吨污水产生约3kg-5kg污泥。因此,相比于化学絮凝法和活性污泥法,本实施例的技术方案具有产生固体污泥量少的优点。
由于化学絮凝法通常需要使用多种化学试剂,且化学试剂通常需稍过量。相比于化学絮凝法,本说明书实施例的技术方案可以避免处理水的二次污染问题。
实施例2
使用如图1或图4-7所示的污水处理系统对嘉兴某印染厂的印染污水按如下表3所示的处理参数进行处理,得到的实验结果分别如表4-6所示。
表3实施例2处理参数表
Figure PCTCN2022126761-appb-000008
表4实施例2中#1实验结果表
Figure PCTCN2022126761-appb-000009
表5实施例2中#2实验结果表
Figure PCTCN2022126761-appb-000010
表6实施例2中#3实验结果表
Figure PCTCN2022126761-appb-000011
由表4-表6可知,经污水处理系统处理后的处理水均符合GB4287-2012间接排放标准。
实施例3
使用如图9所示的污水处理系统处理浙江某印染厂的印染污水。使污水进入电凝处理组件,极板材质采用铁,极板间距在7mm-9mm范围内。施加420V直流电压,输出直流电流为22.4A。污水流速与极板阵列的表面积之和的比值(或污水在极板表面的流速)为70升/每平方米˙每小时。经电凝处理后的中间处理水进入气浮组件进行分离,采用刮渣部件去除浮渣后的中间处理水进入超滤膜部件进行过滤处理,得到处理水。刮渣处理后的浮渣进入隔膜压滤机部件进行过滤处理,隔膜压滤处理后的中间处理水进入储水箱,再由储水箱进入超滤膜部件进行过滤处理,得到处理水。污水处理结果如表7所示。
表7实施例3实验结果表
Figure PCTCN2022126761-appb-000012
由表7可知,经污水处理系统处理后的处理水符合GB4287-2012间接排放标准。综合计算耗电与其他易耗品消耗,处理成本每吨约1.7元。
实施例4
使用如图10所示的污水处理系统处理上海某电镀厂的含镍污水。使污水进入沉淀组件进行沉淀处理。再取沉淀处理后的处理水(清液),使其进入电凝处理组件,极板材质采用铁,极板间距在5mm-6mm范围内。施加300V直流电压,输出直流电流为17.6A。污水流速与极板阵列的表面积之和的比值(或污水在极板表面的流速)为70升/每平方米˙每小时。沉淀处理后得到的沉淀进入隔膜压滤机部件进行过滤处理,隔膜压滤处理后的处理水进入储水箱,再由储水箱进入电凝处理组件。
经电凝处理后的中间处理水进入气浮组件进行分离,采用刮渣部件去除浮渣后的中间处理水进入超滤膜部件进行过滤处理,得到处理水。刮渣处理后的浮渣进入隔膜压滤机部件进行过滤处理,隔膜压滤处理后的中间处理水进入储水箱,再由储水箱进入超滤膜部件进行过滤处理,得到处理水。污水由浅绿色处理为清澈透明的处理水。污水处理结果如表8所示。
表8实施例4实验结果表
项目 排放标准 原水 处理后 单位 去除率
COD(Cr) 500 169 130 mg/L 23.1%
0.1 310-450 0.06 mg/L 99.98%-99.99%
由表8可知,经污水处理系统处理后的处理水符合排放标准。该上海电镀厂原先使用的技术为化学氧化与化学絮凝法,每吨污水的处理成本(包含各种化学药剂与电力消耗等)约为20元。采用本实施例合计每吨污水的处理成本约3.2元。因此,相比原先的处理工艺(化学氧化与化学絮凝法),成本可以降低84%。
实施例5
使用如图11所示的污水处理系统处理上海某电镀厂的含镍含氰化物的污水。先使污水进入第一电凝处理组件,极板材质采用铝,极板间距在5mm-6mm范围内。施加350V直流电压,输出直流电流为40A。污水流速与极板阵列的表面积之和的比值(或污水在极板表面的流速)为70升/每平方米˙每小时。经第一电凝处理组件处理后的中间处理水进入气浮兼沉淀组件进行分离,去除浮渣和沉淀后的中间处理水(清液)进入第二电凝处理组件,极板材质采用铁,极板间距在5mm-6mm范围内。施加270V直流电压,输出直流电流为64A。污水流速与极板阵列的表面积之和的比值(即污水在极板表面的流速)为115升/每平方米˙每小时。浮渣和沉淀进入隔膜压滤机部件进行过滤处理,隔膜压滤处理后的中间处理水进入储水箱,再由储水箱进入第二电凝处理组件。
经第二电凝处理组件处理后的处理水进入气浮兼沉淀组件进行分离,去除浮渣和沉淀后的中间处理水(清液)进入超滤膜部件进行过滤处理,得到处理水。浮渣和沉淀进入隔膜压滤机部件进行过滤处理,隔膜压滤处理后的中间处理水进入储水箱,再由储水箱进入超滤膜部件进行过滤处理,得到处理水。污水由浑浊的淡白色处理为清澈透明的处理水。污水处理结果如表9所示。
表9实施例5实验结果表
项目 排放限值 单位 污水 处理后 去除率
COD(Cr) 500 mg/L 130 90 30.8%
0.1 mg/L 20.7 0.03 99.85%
氰化物 0.5 mg/L 2.3 0.25 88.89%
由表9可知,经污水处理系统处理后的处理水符合排放标准。该上海电镀厂原先使用的技术为化学氧化与化学絮凝法,每吨污水的处理成本(包含各种化学药剂与电力消耗等)约为30元。采用本实施例合计每吨污水的处理成本约5.5元。因此,相比原先的处理工艺(化学氧化与化学絮凝法),成本可以降低81.67%。
实施例6
使用如图11所示的污水处理系统处理上海某电镀厂的含镍污水,污水如图12A所示。各组件的工艺参数与实施例5相同。处理水如图12B所示。由图12A与图12B可知,污水由黑色浑浊处理为清澈透明的处理水。污水处理结果如表10所示。
表10实施例6实验结果表
项目 排放限值 单位 污水 处理后 去除率
COD(Cr) 500 mg/L 550 109 80.2%
0.1 mg/L 62.3 0.012 99.98%
由表10可知,经污水处理系统处理后的处理水符合排放标准。该上海电镀厂原先使用的技术为化学氧化与化学絮凝法,每吨污水的处理成本(包含各种化学药剂与电力消耗等)约为40-50元。采用本实施例合计每吨污水的处理成本约6-7元。因此,相比原先的处理工艺(化学氧化与化学絮凝法),成本可以降低85%-88%。
实施例7
使用如图13所示的污水处理系统处理上海某电镀厂的含镍污水。先使污水进入第一电凝处理组件,极板材质采用铁,极板间距在5mm-6mm范围内。施加300V直流电压,输出直流电流为24A。污水流速与极板阵列的表面积之和的比值(或污水在极板表面的流速)为120升/每平方米˙每小时。经第一电凝处理组件处理后的中间处理水进入沉淀组件进行分离,去除沉淀后的中间处理水(清液)进入第二电凝处理组件,极板材质采用铝,极板间距在5mm-6mm范围内。施加300V直流电压,输出直流电流为21A。污水流速与极板阵列的表面积之和的比值(或污水在极板表面的流速)为120升/每平方米˙每小时。沉淀进入隔膜压滤机部件进行过滤处理,隔膜压滤处理后的中间处理水进入储水箱,再由储水箱进入第二电凝处理组件。
经第二电凝处理组件处理后的处理水进入沉淀组件进行分离,去除沉淀后的中间处理水(清液)进入第三电凝处理组件,极板材质采用铁,极板间距在5mm-6mm范围内。施加300V直流电压,输出直流电流为19A。污水流速与极板阵列的表面积之和的比值(或污水在极板表面的流速)为120升/每平方米˙每小时。沉淀进入隔膜压滤机部件进行过滤处理,隔膜压滤处理后的中间处理水进入储水箱,再由储水箱进入第三电凝处理组件。
经第三电凝处理组件处理后的处理水进入沉淀组件进行分离,去除沉淀后的中间处理水(清液)进入超滤膜部件进行过滤处理,得到处理水。沉淀进入隔膜压滤机部件进行过滤处理,经隔膜压滤处理后的中间处理水进入储水箱,再由储水箱进入超滤膜部件进行过滤处理,得到处理水。污水由浅绿色处理为清澈透明的处理水。污水处理结果如表11所示。
表11实施例7实验结果表
项目 排放限值 单位 污水 处理后 去除率
0.1 mg/L 62 0.03 99.95%
由表11可知,经污水处理系统处理后的处理水符合排放标准。
实施例8
使用如图14所示的污水处理系统处理上海某电镀厂的含铬污水。先使污水进入电凝处理组件,极板材质采用铁,极板间距在5mm-6mm范围内。施加350V直流电压,输出直流电流为38A。污水流速与极板阵列的表面积之和的比值(或污水在极板表面的流速)为90升/每平方米˙每小时。经电凝处理组件处理后的处理水进入气浮兼沉淀组件进行分离,去除浮渣和沉淀后的中间处理水(清液)进入超滤膜部件进行过滤处理,得到处理水。浮渣和沉淀进入隔膜压滤机部件进行过滤处理,经隔膜压滤处理后的中间处理水进入储水箱,再由储水箱进入超滤膜部件进行过滤处理,得到处理水。污水由褐色处理为清澈透明的处理水。污水处理结果如表12所示。
表12实施例8实验结果表
项目 排放限值 单位 污水 处理后 去除率
总铬 0.5 mg/L 256 0.06 99.98%
六价铬 0.1 mg/L 115 0.01 99.99%
由表12可知,经污水处理系统处理后的处理水符合排放标准。
实施例9
使用如图15所示的污水处理系统处理江西某锂矿开采污水。使污水进入沉淀组件进行分离,去除沉淀后的清液进入电凝处理组件,极板材质采用铁,极板间距在5mm-6mm范围内。施加140V-200V直流电压,输出直流电流为90A-100A。污水流速与极板阵列的表面积之和的比值(或污水在极板表面的流速)为130升/每平方米˙每小时。沉淀进入隔膜压滤机部件进行过滤处理,经隔膜压滤处理后的中间处理水进入储水箱,再由储水箱进入电凝处理组件。
经电凝处理组件处理后的中间处理水进入沉淀组件进行分离,去除沉淀后的中间处理水(清液)进入超滤膜部件进行过滤处理,得到处理水。沉淀进入隔膜压滤机部件进行过滤处理,经隔膜压滤处理后的中间处理水进入储水箱,再由储水箱进入超滤膜部件进行过滤处理,得到处理水。污水由浅黄色处理为清澈透明的处理水。污水处理结果如表13所示。
表13实施例9实验结果表
项目 排放限值 单位 污水 处理后 去除率
COD(Cr) 500 mg/L 200 140 30%
总磷 8 mg/L 3.9 0.37 90.5%
50 mg/L 35.6 2.73 92.33%
0.005 mg/L 0.056 0.003 94.64%
由表13可知,经污水处理系统处理后的处理水符合排放标准。
对比例1
处理实施例9的污水,与实施例9的不同之处在于,极板间距在13mm-14mm范围内,输出直流电流为181A。污水处理结果如表13-1所示。
表13-1对比例1实验结果表
项目 排放限值 单位 污水 处理后 去除率
0.005 mg/L 0.056 0.022 60.7%
由表13-1可知,经对比例1的污水处理系统处理后的处理水不符合排放标准。
对比例2
处理实施例9的污水,与实施例9的不同之处在于,极板间距在3mm-4mm范围内。施加55V直流电压,输出直流电流为29A。污水处理结果如表13-2所示。
表13-2对比例2实验结果表
项目 排放限值 单位 污水 处理后 去除率
0.005 mg/L 0.056 0.035 37.5%
由表13-2可知,经对比例2的污水处理系统处理后的处理水不符合排放标准。
实施例10
使用如图16所示的污水处理系统处理浙江某印染污水。先使污水进入第一电凝处理组件,极板材质采用铁,极板间距在3mm-4mm范围内。施加370V直流电压,输出直流电流为48A。污水流速与极板阵列的表面积之和的比值(或污水在极板表面的流速)为85升/每平方米˙每小时。经第一电凝处理组件处理后的处理水进入气浮组件进行分离,去除浮渣后的中间处理水(清液)进入第二电凝处理组件,极板材质采用铝,极板间距在3mm-4mm范围内。施加350V直流电压,输出直流电流为43A。污水流速与极板阵列的表面积之和的比值(或污水在极板表面的流速)为130升/每平方米˙每小时。浮渣进入隔膜压滤机部件进行过滤处理,经隔膜压滤处理后的中间处理水进入储水箱,再由储水箱进入第二电凝处理组件。
经第二电凝处理组件处理后的处理水进入气浮组件进行分离,去除浮渣后的中间处理水(清液)进入膜生物反应器部件进行处理(膜分离与生物处理)。浮渣进入隔膜压滤机部件进行过滤处理,经隔膜压滤处理后的中间处理水进入膜生物反应器部件进行处理(膜分离与生物处理)。
经膜生物反应器部件处理后的中间处理水进入超滤膜部件进行过滤处理,得到处理水。污水处理结果如表14所示。
表14实施例10实验结果表
项目 排放限值 单位 污水 处理后 去除率
COD(Cr) 200 mg/L 5450-6360 142-195 96.93%-97.4%
20 mg/L 1350 8 99.41%
总氮 30 mg/L 3425 23 99.33%
由表14可知,经污水处理系统处理后的处理水符合间接排放标准。
实施例11
使用如图17所示的污水处理系统处理绍兴某印染污水。污水如图18A所示。先使污水进入电凝处理组件,极板材质采用铝,极板间距在7mm-9mm范围内。施加400V直流电压,输出直流电流为45A。污水流速与极板阵列的表面积之和的比值(或污水在极板表面的流速)为120升/每平方米˙每小时。经电凝处理组件处理后的处理水进入气浮组件进行分离,去除浮渣后的中间处理水(清液)进入膜生物反应器部件进行处理(膜分离与生物处理)。浮渣进入隔膜压滤机部件进行过滤处理,经隔膜压滤处理后的中间处理水进入膜生物反应器部件进行处理(膜分离与生物处理)。
经膜生物反应器部件处理后的中间处理水进入超滤膜部件进行过滤处理,得到处理水。处理水如图18B所示。由图18A与图18B可知,污水由黑色处理为清澈透明的处理水。污水处理结果如表15所示。
表15实施例11实验结果表
项目 排放限值 单位 污水 处理后 去除率
COD(Cr) 200 mg/L 1390 178 87.2%
由表15可知,经污水处理系统处理后的处理水符合排放标准。
实施例12
使用如图17所示的污水处理系统处理南通某印染污水。先使污水进入电凝处理组件,极板材质采用铁,极板间距在8mm-10mm范围内。施加500V-550V直流电压,输出直流电流为25A-26A。污水流速与极板阵列的表面积之和的比值(或污水在极板表面的流速)为285升/每平方米˙每小时。经电凝处理组件处理后的处理水进入气浮组件进行分离,去除浮渣后的中间处理水(清液)进入膜生物反应器部件进行处理(膜分离与生物处理)。浮渣进入隔膜压滤机部件进行过滤处理,经隔膜压滤处理后的中间处理水进入膜生物反应器部件进行处理(膜分离与生物处理)。
经膜生物反应器部件处理后的中间处理水进入超滤膜部件进行过滤处理,得到处理水。污水由黑色处理为清澈透明的处理水。污水处理结果如表16所示。
表16实施例12实验结果表
项目 排放限值 单位 污水 处理后 去除率
COD(Cr) 200 mg/L 382 63 83.5%
由表16可知,经污水处理系统处理后的处理水符合排放标准。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,除非权利要求中明确说明,本说明书所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似” 或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本说明书引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本说明书作为参考。与本说明书内容不一致或产生冲突的申请历史文件除外,对本说明书权利要求最广范围有限制的文件(当前或之后附加于本说明书中的)也除外。需要说明的是,如果本说明书附属材料中的描述、定义、和/或术语的使用与本说明书所述内容有不一致或冲突的地方,以本说明书的描述、定义和/或术语的使用为准。
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。

Claims (10)

  1. 一种污水处理系统,其特征在于,所述系统包括电凝处理组件,所述电凝处理组件包括:
    箱体,所述箱体包括进水口和溢流出口;以及
    至少两个极板,其中,
    所述至少两个极板排布在所述箱体内;
    所述至少两个极板的材质相同;
    所述至少两个极板中位于端部的两个极板与电源连接。
  2. 根据权利要求1所述的污水处理系统,其特征在于,
    所述至少两个极板以预设间距排布在所述箱体内,其中所述预设间距在3mm-10mm范围内。
  3. 根据权利要求1所述的污水处理系统,其特征在于,
    所述材质包括铁、铝或钢中的至少一种。
  4. 根据权利要求1所述的污水处理系统,其特征在于,
    所述系统还包括气浮兼沉淀组件,用于除去所述污水或中间处理水中的浮渣和沉淀,其中,
    所述气浮兼沉淀组件与所述溢流出口连通以使经所述电凝处理组件处理后的处理水进入所述气浮兼沉淀组件,和/或
    所述气浮兼沉淀组件与所述进水口连通以使经所述气浮兼沉淀组件处理后的处理水进入所述电凝处理组件。
  5. 根据权利要求1所述的污水处理系统,其特征在于,
    所述系统包括气浮组件,用于除去所述污水或中间处理水中的浮渣,其中,
    所述气浮组件与所述溢流出口连通以使经所述电凝处理组件处理后的处理水进入所述气浮组件,和/或
    所述气浮组件与所述进水口连通以使经所述气浮组件处理后的处理水进入所述电凝处理组件。
  6. 根据权利要求1所述的污水处理系统,其特征在于,
    所述系统包括沉淀组件,用于除去所述污水或中间处理水中的沉淀,其中,
    所述沉淀组件与所述溢流出口连通以使经所述电凝处理组件处理后的处理水进入所述沉淀组件,和/或
    所述沉淀组件与所述进水口连通以使经所述沉淀组件处理后的处理水进入所述电凝处理组件。
  7. 根据权利要求4-6任一项所述的污水处理系统,其特征在于,
    所述系统还包括过滤组件,所述过滤组件与所述气浮兼沉淀组件、所述气浮组件或所述沉淀组件中的一个的出水口连通,所述过滤组件包括超滤膜。
  8. 一种污水处理方法,其特征在于,所述方法包括:
    使用如权利要求1所述的污水处理系统处理所述污水,得到处理水。
  9. 根据权利要求8所述的污水处理方法,其特征在于,所述方法还包括:
    控制所述污水以预设流速进入所述电凝处理组件中,其中,
    所述预设流速与所述至少两个极板的表面积之和的比值在50L/m 2˙h-300L/m 2˙h范围内。
  10. 根据权利要求8所述的污水处理方法,其特征在于,所述方法还包括:
    控制所述电源的供电电压在140V-550V范围内
PCT/CN2022/126761 2021-11-08 2022-10-21 一种污水处理系统和方法 WO2023078105A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111312103.8 2021-11-08
CN202111312103 2021-11-08
CN202210733915.8A CN115028297A (zh) 2021-11-08 2022-06-27 一种污水处理系统和方法
CN202210733915.8 2022-06-27

Publications (2)

Publication Number Publication Date
WO2023078105A1 true WO2023078105A1 (zh) 2023-05-11
WO2023078105A9 WO2023078105A9 (zh) 2024-05-10

Family

ID=83127741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126761 WO2023078105A1 (zh) 2021-11-08 2022-10-21 一种污水处理系统和方法

Country Status (2)

Country Link
CN (1) CN115028297A (zh)
WO (1) WO2023078105A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118471388A (zh) * 2024-07-10 2024-08-09 台州市环科环保设备运营维护有限公司 基于数据识别的船舶污水处理分析系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115028297A (zh) * 2021-11-08 2022-09-09 上海特瑞思材料科技有限公司 一种污水处理系统和方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1882509A (zh) * 2003-09-23 2006-12-20 阿奎诺克斯私人有限公司 废水净化方法
US20080223731A1 (en) * 2005-10-28 2008-09-18 Thiam Seng Lee Advanced Electro-Coagulation Device And Process Of Using The Same For Wastewater Treatment
CN102119129A (zh) * 2008-06-09 2011-07-06 P2W有限公司 用于从污染水中电凝移除污染物的系统
CN102115286A (zh) * 2009-12-30 2011-07-06 凯膜特种分离技术(上海)有限公司 一种焦化废水回用的处理方法及组合处理系统
CN203754559U (zh) * 2014-02-17 2014-08-06 江苏清溢环保设备有限公司 新型微电凝膜分离污水污泥处理设备
CN105329989A (zh) * 2015-11-01 2016-02-17 华南理工大学 一种预处理草甘膦高浓度污染废水的电絮凝方法
US20170015570A1 (en) * 2013-11-29 2017-01-19 Kolina Limited Method and apparatus for treatment of aqueous dispersion
CN108892211A (zh) * 2018-07-28 2018-11-27 范国防 一种电凝聚、电气浮以及电氧化还原除藻水处理一体机
CN209759191U (zh) * 2019-03-08 2019-12-10 杭州晓水环保技术有限公司 一种电絮凝协同臭氧纳米气泡气浮处理畜禽废水的装置
CN213265857U (zh) * 2020-09-22 2021-05-25 山东一贞环保科技有限公司 一种电絮凝气浮机
CN112919696A (zh) * 2021-02-10 2021-06-08 北京京润环保科技股份有限公司 一种除硅装置与除硅方法
CN213537568U (zh) * 2020-10-19 2021-06-25 天津滋源环保科技股份有限公司 一种絮凝浮沉一体装置
CN115028297A (zh) * 2021-11-08 2022-09-09 上海特瑞思材料科技有限公司 一种污水处理系统和方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203256088U (zh) * 2013-04-23 2013-10-30 北京中联动力技术有限责任公司 集成有机废水处理系统
CN103304010B (zh) * 2013-06-19 2014-12-24 广东沃杰森环保科技有限公司 一种污水处理高效电凝装置
CN204824475U (zh) * 2015-07-28 2015-12-02 中国环境科学研究院 一种多金属络合废水处理装置
CN116356777A (zh) * 2019-07-02 2023-06-30 上海特瑞思材料科技有限公司 油水分离膜及其制作方法及回收水上浮油的设备
CN110422913A (zh) * 2019-09-02 2019-11-08 广东凯达环保科技有限公司 一种电气浮结合电絮凝污水处理工艺及其处理设备
CN111439873A (zh) * 2020-04-30 2020-07-24 江苏暻慧诚环境工程有限公司 基于电絮凝的高盐含油污水处理系统及其工艺方法
CN214611954U (zh) * 2020-11-27 2021-11-05 无锡傲埔思环保科技有限公司 一种洗车污水处理装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1882509A (zh) * 2003-09-23 2006-12-20 阿奎诺克斯私人有限公司 废水净化方法
US20080223731A1 (en) * 2005-10-28 2008-09-18 Thiam Seng Lee Advanced Electro-Coagulation Device And Process Of Using The Same For Wastewater Treatment
CN102119129A (zh) * 2008-06-09 2011-07-06 P2W有限公司 用于从污染水中电凝移除污染物的系统
CN102115286A (zh) * 2009-12-30 2011-07-06 凯膜特种分离技术(上海)有限公司 一种焦化废水回用的处理方法及组合处理系统
US20170015570A1 (en) * 2013-11-29 2017-01-19 Kolina Limited Method and apparatus for treatment of aqueous dispersion
CN203754559U (zh) * 2014-02-17 2014-08-06 江苏清溢环保设备有限公司 新型微电凝膜分离污水污泥处理设备
CN105329989A (zh) * 2015-11-01 2016-02-17 华南理工大学 一种预处理草甘膦高浓度污染废水的电絮凝方法
CN108892211A (zh) * 2018-07-28 2018-11-27 范国防 一种电凝聚、电气浮以及电氧化还原除藻水处理一体机
CN209759191U (zh) * 2019-03-08 2019-12-10 杭州晓水环保技术有限公司 一种电絮凝协同臭氧纳米气泡气浮处理畜禽废水的装置
CN213265857U (zh) * 2020-09-22 2021-05-25 山东一贞环保科技有限公司 一种电絮凝气浮机
CN213537568U (zh) * 2020-10-19 2021-06-25 天津滋源环保科技股份有限公司 一种絮凝浮沉一体装置
CN112919696A (zh) * 2021-02-10 2021-06-08 北京京润环保科技股份有限公司 一种除硅装置与除硅方法
CN115028297A (zh) * 2021-11-08 2022-09-09 上海特瑞思材料科技有限公司 一种污水处理系统和方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118471388A (zh) * 2024-07-10 2024-08-09 台州市环科环保设备运营维护有限公司 基于数据识别的船舶污水处理分析系统及方法

Also Published As

Publication number Publication date
CN115028297A (zh) 2022-09-09
WO2023078105A9 (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
WO2023078105A1 (zh) 一种污水处理系统和方法
CN102603119B (zh) 垃圾渗滤液的处理装置及其处理方法
CN102786183B (zh) 垃圾渗滤液的处理方法
WO2013156002A1 (zh) 一种纳米催化电解絮凝气浮装置
CN102786182B (zh) 垃圾渗滤液的处理装置
CN111410345A (zh) 对阳极氧化工艺产生的综合废水进行处理的方法和系统
CN103922524A (zh) 一种焦化废水的深度处理方法
Gao et al. A novel bio-electrochemical system with sand/activated carbon separator, Al anode and bio-anode integrated micro-electrolysis/electro-flocculation cost effectively treated high load wastewater with energy recovery
CN107540135A (zh) 一种安全高效的垃圾渗滤液纳滤浓缩液处理组合工艺
CN105384222A (zh) 废水的电絮凝处理设备
CN108164095B (zh) 一种处理稠油污水的工艺和装置
KR101339303B1 (ko) 전기응집과 전기분해를 이용한 불소가 함유된 질소 함유 병합처리방법
CN113860645A (zh) 一种高浓度难降解有机废水处理方法
CN202610073U (zh) 垃圾渗滤液的处理装置
CN210012702U (zh) 一种污水深度净化装置
CN109851160B (zh) 一种污水深度处理方法
CN111115919A (zh) 一种制药废水的预处理方法
CN108996810B (zh) 一种高浓度难降解有机废水零排放系统及处理方法
CN107216006B (zh) 一种皮革废水处理系统及方法
KR20020018572A (ko) 순환와류방식을 이용한 하폐수 고도 처리 장치
CN212403790U (zh) 对阳极氧化工艺产生的综合废水进行处理的系统
CN105347580B (zh) 一种适合聚合物驱采出水处理达标外排的方法
CN203960004U (zh) 一种油墨废水铁碳处理设备
CN107226592A (zh) 一种铅盐生产废水的处理工艺
CN210559900U (zh) 一种化学镍废水电催化氧化处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE