WO2012028052A1 - Eft惰性复合电极的过渡板及其制备方法,包含该过渡板的电解设备 - Google Patents

Eft惰性复合电极的过渡板及其制备方法,包含该过渡板的电解设备 Download PDF

Info

Publication number
WO2012028052A1
WO2012028052A1 PCT/CN2011/078262 CN2011078262W WO2012028052A1 WO 2012028052 A1 WO2012028052 A1 WO 2012028052A1 CN 2011078262 W CN2011078262 W CN 2011078262W WO 2012028052 A1 WO2012028052 A1 WO 2012028052A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
graphite
active metal
transition plate
graphite layer
Prior art date
Application number
PCT/CN2011/078262
Other languages
English (en)
French (fr)
Inventor
蒋亚熙
张定军
Original Assignee
Jiang Yaxi
Zhang Dingjun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiang Yaxi, Zhang Dingjun filed Critical Jiang Yaxi
Publication of WO2012028052A1 publication Critical patent/WO2012028052A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating

Definitions

  • Transition plate of EFT inert composite electrode and preparation method thereof, electrolysis device including the same
  • the invention relates to an electrode plate of an inert composite electrode of an environmentally friendly technology (EFT), in particular to a transition plate of an inert composite electrode, a preparation method of the electrode plate and an application thereof.
  • EFT environmentally friendly technology
  • Electrochemical water treatment technology is known as "environmentally friendly” technology (EFT, Emdr 0 m nen t Friendly Technology).
  • electrofoaming/electric flotation/coprecipitation technology is an electrochemical method that uses electrochemical redox reaction principles to control pollution.
  • a certain voltage of direct current is passed through the electrolytic cell, and the waste water is passed through the electrolytic cell, so that the anion of the electrolyte in the waste water is moved to the anode, and the electron is lost at the anode, and the cation is transferred to the cathode, and the electron is reduced at the cathode.
  • This reaction is used to cause the contaminated components to form water-insoluble precipitates and to form a gas. It escapes from the water to purify the wastewater.
  • the electrochemical treatment of sewage is one-third of the operating cost of general chemical methods, physical methods, etc., and the process is simple, the operation is convenient, the infrastructure construction area is small, and the treated sewage can be stably discharged to the standard for a long time.
  • the electrochemical method for treating sewage has the advantages of no need to add chemicals such as oxidants and flocculants, and has the advantages of small volume, small floor space, and simple and flexible operation.
  • electrochemical methods have always had shortcomings such as high energy consumption (using electrical equipment running for a long period of time, generally more than 3 hours), high cost (fast consumption of electrode plates, main problems are passivation, active metal electrode plates), etc.
  • the application of electrochemical methods in the field of wastewater treatment is limited.
  • Electrocoagulation is often accompanied by air flotation, and hydrogen is reduced at the cathode, so there is also a method called electrocoagulation.
  • the electrode reaction is as follows - anode: Fe - 2e ⁇ Fe 2+ or Ai - 3e ⁇ Ai 3 ⁇
  • the treatment method of wastewater generally adopts the physicochemical method for split-one-integrated two-stage treatment.
  • Multi-point treatment in the front section ⁇ water-like; chrome water, cyanide water and integrated water (copper nickel zinc water).
  • Water] 3 ⁇ 4 reducing agent makes it cost-reducing, cyanide water] 3 ⁇ 4 two-stage oxidation cyanide, copper nickel zinc water directly merges with the first two waters to become integrated water.
  • the latter stage treats the integrated water, basically using alkali (caustic soda or lime), polyaluminum chloride (PAC) and organic flocculant ( ⁇ ).
  • the specific operation is: adjust the pH value of the integrated water to 0-43, alkali
  • concentration is large and the reaction of the alkali with the heavy metal is forced to proceed in the direction in which the hydroxide is formed.
  • ⁇ ⁇ ⁇ value >9, the vents need to be neutralized with acid to reduce the ⁇ ⁇ value to below 9.
  • Chromium water is mainly chromium
  • cyanide water is mainly cyanide
  • copper-nickel-zinc trihydrate is mostly composed of three elements.
  • the anode will be passivated, and the cathode will have a scaling problem.
  • the passivation the surface of the electrode faces an oxide protective film, which means that the anode is dissolved and stopped.
  • the sewage can not reach the standard discharge, and the electrode village material and electric energy consumption are large, and the sewage treatment operation cost is high.
  • the inventors succeeded in researching an electrode plate used as an inert composite electrode on the basis of extensive experimental research. According to the technical solution of the present invention, it is implemented as follows:
  • An electrode plate comprising at least a four-layer structure comprising a graphite layer, an intermediate layer, a graphite layer, and a four-layer structure of an outer layer.
  • the electrode plate according to 5 further comprising an active metal layer on the outer side of the outer layer, and an optional graphite layer.
  • the electrolysis apparatus according to (11), characterized in that it further comprises an anode plate and a cathode plate.
  • the electrolysis apparatus according to (U) or (12), characterized in that the electrolysis apparatus comprises at least one cathode plate of any one of (1) to (10), an anode plate, and a cathode plate and an anode plate. At least two between, preferably: three transition plates.
  • the preferred technical solution of the present invention is as follows:
  • the electrode plate is composed of at least four layers of a structure including a graphite layer, an active metal layer, a graphite layer, and an active metal layer, and preferably the active metal layer is subjected to a punching treatment.
  • the four-layer structure comprises, in order, a graphite layer, an active metal layer, a graphite layer, and a spurted active metal layer; or a graphite layer, a spurted active metal layer, a graphite layer, and an active metal layer in this order.
  • the active metal layer described therein may also be replaced by a carbon steel layer or a stainless steel layer.
  • the electrode plate is composed of at least four layers of a structure including a graphite layer, a carbon steel plate layer, a graphite layer, and an aluminum layer.
  • the electrode plate is composed of at least five layers including a graphite layer, an active metal layer, a graphite layer, an active metal layer, and a graphite layer.
  • the 5-layer structure comprises, in order, a graphite layer, a washed active metal layer, a graphite layer, an active metal layer and a graphite layer, or preferably the 5-layer structure comprises a graphite layer, an active metal layer, a graphite layer, and an activity after spurting.
  • Metal layer and graphite layer may be replaced by a carbon steel layer or a stainless steel layer.
  • a layer of inert material is added to the transition sheet of the present invention to increase adhesion to the active metal layer.
  • the multilayer combination of the inert material may be a graphite layer, an inert layer, a graphite layer, an active metal layer, or a stone.
  • the active metal layer described therein may also be replaced by a carbon steel layer or a stainless steel layer.
  • a preferred electrode plate is composed of at least 9 layers including, in order, a graphite layer, an active metal layer, a graphite layer, a glass steel layer, a graphite layer, an active metal layer, a graphite layer, a glass steel layer, and a graphite layer.
  • the 9-layer structure comprises, in order, a graphite layer, a post-crushed active metal layer, a graphite layer, a glass steel layer, a graphite layer, an active metal layer, a graphite layer, a glass steel layer, and a graphite layer; or the 9-layer structure includes a graphite layer in this order; Active metal layer, graphite layer, glass steel layer, graphite layer, spur active metal layer, graphite layer, glass steel layer, graphite layer.
  • the active metal layer described therein may also be replaced by a carbon steel layer or a stainless steel layer.
  • a preferred electrode plate is composed of at least 9 layers of a structure including a graphite layer, a carbon steel layer, a graphite layer, a glass steel layer, a graphite layer, an aluminum layer, a graphite layer, a glass steel layer, and a graphite layer. Layer structure.
  • the electrode plate of the present invention is composed of a graphite layer, a sprinted iron layer, a graphite layer, a glass steel layer, a graphite layer, an aluminum layer, a graphite layer, a glass steel layer, and a graphite layer.
  • a 4-layer structure consisting of a graphite layer, a washed iron layer, a graphite layer, and an aluminum layer;
  • a five-layer structure consisting of a graphite layer, a spurted iron layer, a graphite layer, an aluminum layer, and a graphite layer;
  • It consists of a 9-layer structure of a graphite layer, a carbon steel layer, a graphite layer, a glass steel layer, a graphite layer, an aluminum layer, a graphite layer, a glass steel layer, and a graphite layer;
  • a four-layer structure consisting of a graphite layer, a carbon steel layer, a graphite layer, and an aluminum layer in this order.
  • the electrode plate of the present invention is preferably used as a transition plate, which functions to reduce current and enhance wastewater treatment capacity.
  • the current of the single pole wiring method is greater than 1000 A under the same water quality, but when there is a transition plate, the current of the same water quality multipole wiring method does not exceed 800 A.
  • it does not exceed 600 A, more preferably does not exceed 500 A, and most preferably does not exceed 400 A.
  • transition plate when a DC power source is employed, when a transition plate is used between the cathode plate and the anode plate, at least two transition plates are preferred, and more preferably at least three transition plates are preferred. If high voltage pulse and high frequency pulse power supply are used, the transition plate can be unlimited, f can be one or more transition plates.
  • transition plate of the present invention is not directly connected to the power supply, in the electrolytic cell, the transition plate of the present invention itself substantially corresponds to the characteristics of both the anode plate and the cathode plate.
  • An electrolytic cell according to the present invention includes the above transition plate, and further includes an anode plate and a cathode plate.
  • An electrolysis apparatus includes the above transition plate, and further includes an anode plate and a cathode plate.
  • the anode plate used may be a conventional anode plate, but is preferably submitted by the applicant on the same day.
  • the anode plate comprises a multilayer structure composed of at least an active metal layer of the inner layer and a three-layer structure of a graphite layer on both sides of the active metal.
  • an insulating material layer and a graphite layer are sequentially disposed between the active metal and the graphite layer, and the side multilayer structure is a graphite layer and an insulating material layer in this order.
  • Graphite layer and active metal layer are sequentially disposed between the active metal and the graphite layer.
  • anode plate wherein an insulating material layer and a graphite layer are sequentially disposed between the active metal and the graphite layer on the other side, that is, the other side multilayer structure is a graphite layer, an insulating material layer, and an insulating layer in order from the outside to the inside.
  • Graphite layer and active metal layer is sequentially disposed between the active metal and the graphite layer on the other side, that is, the other side multilayer structure.
  • an active metal layer and an insulating material layer are further disposed between the graphite layer and the active metal, and the side multilayer structure is graphite in order from the inside to the inside.
  • an active metal layer and an insulating material layer are further disposed between the graphite layer and the active metal, and the side multilayer structure is a graphite layer from the outside to the inside. , an active metal layer, an insulating material layer and an active metal layer.
  • the outer layer of graphite on the one side is further provided with an active metal layer.
  • the insulating material layer is a glass steel layer.
  • the preferred anode plate is composed of the following seven layers of structure: a graphite layer, a glass steel layer, a graphite layer, an active metal layer, a graphite layer, a glass steel layer, and a graphite layer.
  • the cathode plate used may be a conventional cathode plate, but it is preferable to use a cathode plate of the invention titled "EFT inert composite electrode and a preparation method thereof, and an electrolytic device including the cathode plate, which was submitted by the applicant on the same day.
  • the patent application is hereby incorporated by reference in its entirety.
  • the cathode plate comprises a multilayer structure composed of at least an intermediate layer of the inner layer and a three-layer structure of the graphite layer on both sides of the intermediate layer.
  • the intermediate layer is an active metal layer, a stainless steel layer or a carbon steel layer, wherein the active metal layer is an iron layer or an aluminum layer.
  • cathode plate wherein the outer side of the graphite layer on one side of the multilayer structure is provided with an active metal layer and a graphite layer in this order from the inside.
  • the outer layer of graphite on the other side of the multilayer structure is provided with an active metal layer and a graphite layer from the inside to the outside.
  • an insulating material layer, a graphite layer, an active metal layer and a graphite layer are further provided from the inside to the outside on the outside of the graphite layer.
  • an insulating layer is further provided between the graphite layer and the intermediate layer on one or both sides.
  • the layer of insulating material is a layer of glass steel. More preferably, the glass reinforced plastic layer is a composite layer of epoxy resin and glass fiber.
  • a cathode plate characterized in that the electrode plate is composed of at least three layers, which in turn comprises a graphite layer, an active metal layer and a graphite layer,
  • the active metal is iron or aluminum.
  • the cathode plate is composed of at least three layers of a structure, which is composed of a ffl graphite layer, a carbon steel layer, and a graphite layer.
  • a preferred cathode plate is composed of at least seven layers including a graphite layer, an active metal layer, a graphite layer, a glass steel layer, a graphite layer, an active metal layer, and a graphite layer.
  • a preferred cathode plate is composed of at least seven layers including a graphite layer, a carbon steel layer, a graphite layer, a glass steel layer, a graphite layer, a carbon steel layer, and a graphite layer.
  • the cathode plate ffl has at least five layers of structural composition, which in turn comprises a graphite layer, an active metal layer, a graphite layer, an active metal layer and a graphite layer.
  • the reason why graphite is used in the electrode plate is that the graphite is not easily peeled off and is not easily eroded. Therefore, after the graphite is added, no passivation is formed on the surface of the electrode, so that the service life of the electrode plate can be effectively protected; and the anode and the anode are also ensured.
  • the cathode sets the stable distribution of the current density of the electrolytic cell between the distances, and the treated wastewater can reach the standard and can be stable for a long time.
  • the electrode plate is easy to stain, easy to scale, easy to decay candle, easy to passivate, short service life, high running cost, etc.; and can control the electrode plate anode plate in the set specification Release, the negative plate can be used for a long time, and heavy metals can be recycled.
  • the sewage treatment effect is stable for a long time.
  • the graphite layer may be selected from graphite of various raw materials, preferably expanded graphite, and more preferably high-quality expanded graphite having a content of 99 or more.
  • the electrode plates are preferably iron or aluminum plates.
  • the spur treatment on the electrode plate of the electrolytic reaction. If the electrode plate is multi-layered, it is optional to perform a punching treatment on a part of the electrode plate. There is no need to add other adhesives to the sprinted electrode plates.
  • the anode plate and the transition plate may be perforated, and the shape of the hole may be grooved, Round, elliptical, square, etc., preferably a round shape and a round shape, more preferably an elliptical shape. It preferably contains 10 to 40 pores, preferably 15 to 30 pores, more preferably 20 to 24 pores. The pore size is determined by the amount of flocculation required to treat the wastewater.
  • a preferred embodiment of the EFT composite electrode sewage electrolysis apparatus of the present invention is to include at least two of the present invention, preferably at least three sequentially placed transition plates, and at least one anode plate and one cathode plate.
  • the preparation process of the transition plate includes a conductive adhesive press step. Specifically includes the following steps - a. Preparation of graphite layer
  • the thickness of the flat plate is not particularly required, and is set to the above range in consideration of cost and the like.
  • a high-quality epoxy resin and glass fiber are used to form a composite flat plate having a thickness of 0, 3 - 3 mm, preferably 0.5 - 2 Torr, more preferably 0, 6 - 1.5 mm, more preferably 0.8 - 1 mm.
  • the graphite layer, the optionally spurted active metal, the carbon steel or stainless steel layer and the inert material layer are prepared. According to the multilayer structure of the transition plate, the sequential discharge is bonded and flattened with a conductive adhesive, and then the nylon bolt is used for fixing and flattening.
  • the transition plate of the present invention is obtained.
  • the first composite material or the second composite material comprising the active metal, carbon steel or stainless steel layer is respectively formed according to the number of active metal, carbon steel or stainless steel layers, and then according to the multilayer structure The requirements for sequential discharge produce the required electrode plates.
  • the order of the above steps &, b, c is not particularly required, and may be an order of b, c, a or c, b, a or the like.
  • the raw materials of the above respective layers can be obtained commercially, or a layer having a thickness, a length, and a width can be obtained by a conventional process in the art.
  • the preparation process of the electrolysis apparatus of the EFT inert composite electrode is achieved by: using an EFT inert composite electrode to form 20 40, preferably 24 to 36, more preferably 26 to 30 pitches.
  • the electrode wiring method is multi-pole wiring method, preferably (+ 0 0 - 0 0 0 0 0 -), that is, anode plate, transition plate, transition Plate, cathode plate, Transition plate, transition plate, repeating the wiring in sequence, or preferably (+ 0 0 0 - 0 0 + 0 0 0 1), that is, anode plate, transition plate, transition plate, transition plate, cathode plate, transition plate, transition plate , transition board, repeating power supply 220V, variable voltage: I 2V, 24 V, 36V, current density depends on the sewage quality.
  • Cell size 4000-6000mm long, preferably 4200-5600mm, more preferably 4500-800mm; width 800-2000mm, preferred
  • Plate size length 800-2000 mm, preferably 1000-i 100 mm; width 800-2000 mm, preferably 1000-i l00 mm, thickness 1 , 5 mm all 10 mm, preferably 2- 8 mm, more preferably 4- 6 mm.
  • the initial current is 260-420A, preferably 275-
  • the current after 10 minutes is 240-386 A, preferably 256-300 A, more preferably 275-
  • current after 45 minutes is 180-320 A, more preferably 206-295 A, more preferably 262-270 A; current after 60 minutes is 150-300 A, preferably 175-265 A, more preferably 230-250 A.
  • the initial current is 275 A, 10 minutes, 256 A, 45 minutes, 206 A, 60 minutes, 175 A.
  • the initial current is 385A, 10 minutes 275A, 45 minutes 262 A, 60 minutes '230A.
  • the initial current is 360A, 10 minutes 276 A, 45 minutes 270 A, 60 minutes 265 A.
  • the initial current is 420A, **0 minutes 386A, 45 minutes 295A, 60 minutes 265A.
  • the wastewater treatment process of the present invention is to pass sewage, such as electroplating sewage, into a sewage treatment facility (EFT) containing the electrode plate of the present invention, and then adjust it by an EFT-pH automatic regulator, and then adjust the sewage.
  • EFT sewage treatment facility
  • They are respectively introduced into a plurality of side-by-side mud-water separation tanks, and the separated clean water is directly introduced into the clean water collecting tank, and the impurity portion is introduced into the sludge collecting tank.
  • the clean water obtained in the clean water collection tank is passed to the carbon sand filter tower for secondary treatment, and then the treated wastewater is reused or discharged to the clean water tank for use.
  • the EFT inert composite electrode processed by the invention is used, and after the waste water treatment is used as the positive and negative electrode materials, the treated wastewater can be stably stabilized for a long time, can meet the standard discharge, and the running cost is very low;
  • Electrochemical technology deals with the problems of easy aging and high energy consumption of electrode plates in the field of wastewater.
  • a new material technology revolution has been created to control domestic sewage and industrial wastewater. This revolutionary success will give electrochemical technology an active role in wastewater treatment and will contribute to water conservation and environmental protection.
  • the electrode plate of the present invention By using the electrode plate of the present invention, after processing the composite EFT inert composite electrode, 150 tons of electroplating wastewater is treated every day to make the ffl life of more than 400 days, which greatly reduces the wastewater treatment cost.
  • the EFT inert composite electrode of the present invention can recover valuable substances in sewage treatment. Not only can a single Cr ( VI ) -containing wastewater be treated, but its ferrite scam and coprecipitation can also be treated with Or ( VI ) and Cr 3+ .
  • the EFT inert composite electrode is fabricated into an electrolytic cell and equipment, more than 30 metal ions can be electrodeposited from the aqueous solution to the cathode EFT inert composite electrode, including precious metals and heavy metals, by treating the electroplating wastewater.
  • the rate of heavy metal treatment is 100%, and the processing rate of non-metals has reached 96.5%.
  • the EFT inert composite electrode of the invention is made into an electrolytic cell and a device, and can be widely used for treating various electroplating, dyes, pigments, coatings, pesticides, medicines, veterinary drugs, explosives and other production wastewater; refinery wastewater, oil field wastewater and other fine chemical wastewater It has the function of removing turbidity and decoloration, reducing COD BOD, especially for decoloring and removing heavy metals. Especially after the application of this equipment in car washing yard, it can effectively remove suspended solids, various kinds of colloids and various bacteria in car wash wastewater. Disperse oil, emulsified oil, remove odor in water, and the quality of wastewater treatment reaches the standard of miscellaneous water quality.
  • Figure 1 Schematic diagram of a transition plate of the present invention
  • FIG. 2 Schematic structure of another transition plate of the present invention
  • FIG. 3 Transition plate structure prepared according to the method of the present invention
  • Transition plate a 9-layer structure consisting of a graphite layer, a spurted iron layer, a graphite layer, a glass steel layer, a graphite layer, an aluminum layer, a graphite layer, a glass steel layer, and a graphite layer.
  • Step 2 Preparation of FRP layer Use high-quality epoxy resin and glass fiber to press into a composite plate with a thickness of 0.5mm.
  • a 0.5 mm graphite layer, a 0.1 mm thick sprinted active metal iron layer, and a 0.5 mm graphite layer were sequentially bonded and flattened to obtain a first composite material; a 0.5 mm graphite layer, 1 mm was further obtained.
  • the active metal aluminum above the thickness and the graphite layer of 0.5 mm are sequentially flattened by adhesive bonding to obtain a second composite material.
  • the first and second composite materials are respectively placed on both sides of the FRP layer, and then pressed and flattened by glue; then, in the graphite outer layer of the second composite material, the FRP layer prepared in the second step is sequentially placed and the first The graphite layer prepared in the step is bonded and flattened with a conductive adhesive, and then fixed by nylon bolts to obtain a transition plate of the present invention.
  • Transition plate a four-layer structure consisting of a graphite layer, a spurted iron layer, a graphite layer, and an aluminum layer.
  • a high-quality expanded graphite worm with a content of more than 99% was selected and pressed into a composite plate of 0.8 mm thickness.
  • the aluminum plate with a thickness of mm is selected, and the active metal iron material with a thickness of 0.1 mm is used for the sprint treatment.
  • the third step preparation of the transition plate
  • a 0.8 mm graphite layer, a 0.1 mm thick spurted iron layer, and a 0.8 mm graphite layer are sequentially laminated with a conductive adhesive to obtain a first composite; the composite is further coated with an active metal having a thickness of 1 mm.
  • the aluminum layer is then flattened with a conductive adhesive and then flattened with nylon bolts to obtain the transition plate of the present invention.
  • Example 3 Transition plate, a 5-layer structure consisting of a graphite layer, a spurted iron layer, a graphite layer, an aluminum layer, and a graphite layer.
  • the high-quality swelled graphite worms with a content of more than 99.8% were selected into three composite sheets of thickness: mm.
  • An aluminum plate of i mm thickness was selected, and an iron plate of thickness of 0,3 mm was selected for sprinting treatment to obtain two active metal layers.
  • the graphite layer, the sprinted 0.3 mm iron plate layer and the graphite layer are sequentially bonded with the conductive adhesive to obtain the first composite material; and the graphite layer and the ⁇ mm thick aluminum plate layer are sequentially bonded by the conductive adhesive. After the flat, get the second composite Material.
  • the transition plate consists of a 9-layer structure consisting of a graphite layer, a carbon steel layer, a graphite layer, a glass steel layer, a graphite layer, an aluminum layer, a graphite layer, a glass steel layer, and a graphite layer.
  • the third step preparation of active metal layer
  • a 2 mm thick aluminum plate was used, and a carbon steel layer of 0, 2 mm and 0.5 mm thickness was selected, and a total of 3 active metal layers were used.
  • 0.5mm of graphite layer, 0.2nim of carbon steel layer, 0,5mm of graphite layer are sequentially bonded and flattened with conductive adhesive to obtain first composite material; then 0.5mm of graphite, 2mm of aluminum layer and 0.5mm of graphite layer are electrically conductive. After the adhesive bond is flattened, a second composite material is obtained.
  • Transition plate a four-layer structure consisting of a graphite layer, a carbon steel layer, a graphite layer, and an aluminum layer.
  • a high-quality expanded graphite worm with a content of more than 99,8% is pressed into a composite plate of ⁇ mm thickness.
  • the first composite material is obtained by sequentially bonding a 1 mm graphite layer, a 0.5 mm thick carbon steel layer and a 1 mm graphite layer with a conductive adhesive, and then using the conductive material with the 3 mm thick aluminum plate. After the adhesive is flattened, it is flattened with nylon bolts, and the transition plate of the present invention is obtained.
  • Example 6 EFT sewage treatment equipment
  • the inside of the sewage treatment apparatus of the present invention is alternately arranged by an anode plate, two transition plates, a cathode plate, and two transition plates, for a total of 31 plates.
  • the anode plate is composed of a graphite layer, a glass steel layer, a graphite layer, an aluminum layer, a graphite layer, a glass steel layer and a graphite layer; wherein each graphite layer has a thickness of 0.5 mm or more; the aluminum layer has a thickness of 1 mm or more; The thickness of the layer is 0.5 mm or more, and the preparation process is the same as that of the transition plate of the present invention, and after the flattening by adhesive bonding, the anode plate is obtained.
  • the cathode plate ⁇ graphite layer, the spurted active metal layer, the graphite layer, the glass steel layer, the graphite layer, the spurted active metal layer and the graphite layer are sequentially composed of a 7-layer structure; wherein each graphite layer has a thickness of 0.5 mm
  • the thickness of the above iron layer after the puncturing is 0.3 mm or more, and the thickness of the FRP layer is 0,5 mm or more.
  • the preparation process is the same as that of the transition plate of the present invention, and after the flattening by the adhesive bonding, the cathode plate is obtained.
  • the transition plate is composed of a three-layer structure consisting of a graphite layer, a post-crushed active metal layer, a graphite layer, an active metal layer and a graphite layer, wherein the thickness of the graphite layer is ⁇ mm, - block
  • the aluminum layer is Imm thick or more, and the sprinted iron plate layer is 0.3 mm or more thick.
  • the internal anode plate, the two transition plates, the cathode plate, and the two transition plates of the sewage treatment apparatus of the present invention are alternately arranged in order, for a total of 31 plates.
  • the anode plate is composed of a graphite layer, a glass steel layer, a graphite layer, an aluminum plate layer, a graphite layer, a glass steel layer and a graphite layer 7 layer structure; wherein each graphite layer has a thickness of 0.8 mm ; the aluminum plate layer has a thickness of 1 mm or more; The thickness of the layer is 0.8 mm, and the preparation process is the same as that of the transition plate of the present invention. After the bonding of the adhesive is flattened, the anode plate is obtained.
  • the cathode plate is composed of a five-layer structure consisting of a graphite layer, an aluminum plate layer, a graphite layer, an active metal layer and a graphite layer; wherein each graphite layer has a thickness of 0.8 mni and an aluminum layer thickness] mni or more, the preparation process and the invention The process of the transition plate is the same, and after the flattening with the adhesive bond, the cathode plate is obtained.
  • the transition plate is composed of a structure, that is, a 9-layer structure consisting of a graphite layer, a washed iron plate layer, a graphite layer, a glass steel layer, a graphite layer, an aluminum plate layer, a graphite layer, a glass steel layer, and a graphite layer.
  • the thickness of the graphite layer is 0.5 mm
  • the thickness of the aluminum layer is i mm thick
  • the thickness of the iron plate is more than 0.3 mm
  • the thickness of the glass steel layer is 0.5 mm.
  • EFT sewage treatment equipment three As shown in the drawing, the inside of the sewage treatment apparatus of the present invention is alternately arranged by an anode plate, two transition plates, a cathode plate, and two transition plates, for a total of 31 plates.
  • the anode plate is composed of a graphite layer, a glass steel layer, a graphite layer, an aluminum layer, a graphite layer, a glass steel layer and a graphite layer; wherein each graphite layer has a thickness of 0.6 mm; the aluminum layer has a thickness of 1.2 mm; the glass steel layer The thickness is 0.8 mm, and the puncturing process is the same as the process of the transition plate of the present invention. After the flattening is performed by adhesive bonding, the anode plate is obtained.
  • the cathode plate is composed of a three-layer structure consisting of a graphite layer, an aluminum layer and a graphite layer in sequence; wherein each graphite layer has a thickness of 0.6 mm and an aluminum layer thickness of 0.1 mm or more, and the preparation process is the same as the process of the transition plate of the present invention. After the adhesive bonding is flattened, a cathode plate is obtained.
  • the transition plate ⁇ Embodiment 2 a 4-layer structure consisting of a graphite layer, a washed iron layer, a graphite layer, and an aluminum layer, wherein the graphite layer has a thickness of 0.8 mm, the aluminum layer has a thickness of 1 mm, and the sprinted iron The thickness of the ply is 0.1 mm or more.
  • the internal anode plate, the two transition plates, the cathode plate, and the two transition plates of the sewage treatment apparatus of the present invention are alternately arranged in order, for a total of 31 plates.
  • the anode plate is composed of a graphite layer] mm, a FRP layer 0.5 mm, a graphite layer 0.5 mm, an aluminum layer 3 mm, a graphite layer 0.5 mm, a FRP layer 0.5 ram, a graphite layer 1 mm, a 7-layer structure, a thorn preparation process and the present invention.
  • the process of the transition plate is the same, and after the flattening is performed by adhesive bonding, the anode plate is obtained.
  • the cathode plate is composed of a 7-layer structure of a graphite layer of 0.5 mm, a carbon steel layer of 0.3 mm, a graphite layer of 0, 5 mm, a FRP layer of 1 mm, a graphite layer of 0.5 mm, a carbon steel layer of 0.5 mm, and a graphite layer of 0.5 mm;
  • the process of the transition plate of the present invention is the same, and after the flattening by the adhesive bonding, the cathode plate is obtained.
  • the transition plate is composed of Example 4, namely, graphite layer 0.5 mm, carbon steel plate layer 0.2 mm, graphite layer 0.5 mm, glass steel layer 0.5 mm, graphite 0.5 mm, aluminum layer 2 mm, graphite layer 0.5 mm, glass steel layer 0.5 mm, graphite.
  • the internal anode plate, the two transition plates, the cathode plate, and the two transition plates of the sewage treatment apparatus of the present invention are alternately arranged in order, for a total of 31 plates.
  • the anode plate is composed of a graphite layer lmm, a FRP layer of 0,5 mm, a graphite layer of 0.5 mm, an aluminum layer of 3 mmu graphite layer of 0.5 mm, a FRP layer of 0.5 ram, and a graphite layer of 1 mm of a 7-layer structure, and the thorn preparation process and the transition of the present invention
  • the process of the board is the same, and the anode plate is obtained after flattening with a glue bond.
  • the cathode plate is composed of a three-layer structure of a graphite layer imm, a carbon steel plate layer of 0.5 mm, and a graphite layer of 1 mm.
  • the preparation process is the same as that of the transition plate of the present invention, and the cathode plate is obtained by gluing and bonding.
  • the transition plate is composed of the fifth embodiment of the embodiment 5, that is, a graphite layer lmm, a carbon steel layer (I5 mm, a graphite layer) mm, and an aluminum layer 3 mm.
  • Example 7 EFT wastewater treatment process
  • the wastewater treatment process of the present invention is to pass sewage, such as electroplating sewage, into a sewage treatment facility (EFT) containing the electrode plate of the present invention, and then adjust it by an EFT-pH automatic adjustment machine, and then
  • the conditioned sewage is separately introduced into a plurality of side-by-side mud-water separation tanks, and the separated clean water is directly introduced into the clean water collecting tank, and the impurities are passed into the sludge collecting tank. If further processing is required, the clean water obtained in the clean water collection tank is passed to the carbon sand filter tower for secondary treatment, and then the treated wastewater is reused or discharged to the clean water tank for use.
  • EFT sewage treatment facility
  • Example 1 Using EFT inert composite electrode
  • the wastewater treatment is carried out according to the process of Example 5, and after being treated for 60 minutes by the EFT inert treatment device of the sixth embodiment of the present invention, the water quality can be used to return to the national 2008 special discharge standard. .
  • the electrode wiring method is multi-pole wiring method (10 0 0 - 0 0 + 0 0 -- ), and the power supply 220V transformer is i2V, 24 V. 36V, and the current density depends on the sewage quality.
  • Cell size 4800mm long, 1500mm wide, 1800mm high (10 tons of electroplating wastewater per hour)
  • Electrode plate size length l] 00 mm, width 1 100 legs 1, thickness (1, 5 mm to 5.5 mm)
  • the 60-minute sewage treatment was monitored by the local environmental monitoring station.
  • the data results are:
  • the copper-plated wastewater of 00 tons of the daily processing capacity of an electronic circuit company is treated according to the process of Example 5, and the EFT inert electrolysis apparatus of the sixth embodiment of the invention is treated for 60 minutes, and the water quality can be used for returning
  • Electrode wiring method is multi-pole wiring method (+ 0 0 -- 0 0 + 0 0 -- - ).
  • the power supply 220V transformer is i2V, 24V, 36V, and the current density depends on the sewage quality.
  • Cell size 4800 mm long, 1400 mm wide, and 1800 mm high (10 tons of electroplating wastewater per hour).
  • Electrode plate size length 1000mm, width 900 mm, thickness (1,5 mm to 6.5 mm). Starting current 275A, 10 minutes 256A, 45 minutes 206 A, 60 minutes 175 A
  • Example 3 when using EFT inert composite electrode to treat sewage
  • the electroplating wastewater of 300 tons per day in an electroplating plant was treated with wastewater according to the process of Example 5, and after being treated for 60 minutes by the EFT inert electrolysis apparatus of Example 6 of the present invention, the water quality can be used to return to the country. Emission Standards.
  • the electrode wiring method is multi-pole wiring method (+ 0 0 — 0 0 + 0 0 — ).
  • the external power supply 220V transformer is 12V, 24 V. 36V, and the current density depends on the sewage quality.
  • Cell size length 4800mm, width 1800mm height: 1800mm (10 tons of electroplating wastewater per hour)" electrode plate size; length] 200nim, width 1100mm, thickness (L5 mm to 8 mm).
  • the electroplating wastewater with a daily processing capacity of 2,000 tons in an electroplating plant was subjected to wastewater treatment according to the process of Example 5, and after being treated for 60 minutes by the EFT inert electrolysis apparatus of Example 6 of the present invention, the water quality can be reused to achieve the new emission of the national 2008. standard.
  • the electrode wiring method is multi-pole wiring method (10 0 0 0 0 0 0 0 0 0 0 0 ⁇ ).
  • the external power supply 220V transformer is 12V, 24V, 36V, and the current density depends on the sewage quality.
  • Cell size 4800mm long, i500mm wide, 1800mm high (10 tons of electroplating wastewater per hour). Plate size: long ⁇ ⁇ , width 1100mm, thickness (1.5 ⁇ to 10 ⁇ ).
  • Starting current 420A 10 minutes 386A, 45 minutes 295 A, 60 minutes 265 A.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

EFT惰性复合电极的过渡板及其制备方法, 包含该过渡板的电解设备 技术领域
本发明涉及一种环境友好技术(EFT, Environment Friendly Technology ) 的惰性复合 电极的电极板, 尤其是惰性复合电极的过渡板, 该电极板的制备方法及其应用。 背景技术
电化学法水处理技术被称为 "环境友好"技术 (EFT,Emdr0mnent Friendly Technology 。
EFT电化学技术的要点是; 电絮凝 /电气浮 /共沉淀技术,是应用电化学氧化还原的反应原 理、 控制污染的电化学法。 在电解槽中通入一定电压的直流电, 让废水通过电解槽, 使 废水中的电解质的阴离子移向阳极, 并在阳极失去电子而被氧化, 阳离子移向阴极, 并 在阴极得到电子而被还原。 利用这种反应使污染成分生成不溶于水的沉淀物, 并生成气 体.从水中逸出, 使废水净化。 电化学法处理污水是一般化学法, 物理法等方法运行成本的 1/3, 而且工艺简单, 操 作方便, 基础建设占地面积少, 处理污水能够长期稳定达标排放。 电化学方法治理污水, 具有无需添加氧化剂、 絮凝剂等化学药品, 设备体积小, 占地面积少, 操作简便灵活等 优点。 但电化学方法一直存在着能耗大 (使用电能设备运行 ^间长, 一般 3个多小时) 、 成本高 (电极板消耗快, 主要问题是钝化, 活性金属电极板) 等缺点, 从而大大限制了 电化学方法在处理废水领域中的应用。
在外加电压的作用下, 利用可溶性的阳极, 产生大量的阳离子 (如 Fe2+、 Al3+等) , 对废水进行凝聚沉淀, 这种方法称为电凝聚。 电凝聚往往伴随着气浮, 在阴极有氢气被 还原, 故也有称为电凝聚浮上法的。 电极反应如下- 阳极: Fe ― 2e→ Fe2+ 或 Ai — 3e→ Ai
阴极: 2H" "十 2e .→¾† 或()x 十 Tie→ Re 在几种电化学处理废水类型中, 电凝聚与电气浮的运用比较成熟。 与化学凝聚相比, 电凝聚方法无需投资加药设施, 且材料消耗要少许多。 其缺陷在于能耗问题。 铁离子或 铝离子与氢氧根结合起到凝聚作用。 同时, 在阴极发生还原反应, 逸出的氢气形成极小 的气泡, 将废水中的凝聚物浮上电解槽的液体表面。 电凝聚作为废水处理的一种有效手 段, 很早就得到了应用, 但由于其在实际应用中单位铝、 铁耗材过大, 使电凝聚法的发 展及应用受到了限制。
目前废水的处理方法一般采用物化法分流-一-综合两段处理。 前段处理多分 Ξ:类水; 铬水、 氰水和综合水 (铜镍锌水) 。 络水 ]¾还原剂使之变价还原, 氰水 ]¾两级氧化破氰, 铜镍锌水直接与前两股水汇合而成为综合水。 后段处理综合水, 基本上是用碱 (烧碱或 石灰) 、 聚合氯化铝 (PAC) 和有机絮凝剂 (ΡΑΜ ) , 具体操作是: 把综合水的 ρΗ值 调整到】0-43, 碱浓度大而迫使碱与重金属的反应向生成氢氧化物的方向进行。 ώ于 ρΗ 值: >9,排放口又需要使用酸进行中和从而使 ρΗ值降到 9以下。 这属于传统的处理工艺, 存在诸多不足。 例如前处理三支污水的划分, 不符合生产实际, 铬水以铬为主、 氰水以 氰为主、 铜镍锌三合水以 3元素居多。 这些实际情况, 是在废水处理的实践中发现的, 几乎所有企业的废水都是如此。 ffl于第二段处理的污水中各种污染物都存在, 用简单的 药剂化学方法很难使终端水达标排放。 前段处理不可能达到反渗透膜的处理要求, 处理 运行成本高, 又不能达标排放。 后段处理成了各家污水处理企业追求的方向和目标。
同时, 电化学法处理污水过程中, 电解一段时间后, 阳极会发生钝化现象, 阴极会 发生结垢问题, 钝化时电极表面對着一层氧化物保护膜, 表现为阳极溶出停止, 处理的 污水不能达标排放, 而且电极村料、 电能源消耗大, 污水处理运行成本高等。 这些问题 一直困扰着电化学法在污水处理生产化中的应用。
而且目前国内外广泛采用的可溶性电极多为铁板、 铝板, 作为处理污水的蘩凝剂, 但是电极板材料消耗太高, 容易积垢, 易老化, 使用寿命短 GO天左右) , 增加了废水 处理成本。 发明内容
本发明人在经过大量实验研究的基础上, 成功研究了用作惰性复合电极的电极板。 根据本发明的技术方案, 其通过如下方式实现:
( 1 ) 一种电极板, 其至少包括四层结构, 包括石墨层、 中间层、 石墨层以及外层 的四层结构。
(2) 根据 U ) 所述的电极板, 其中所述的中间层及外层分别为活性金属层或不 锈钢层。
(3 ) 根据 (2) 所述的电极板, 其中的活性金属层为铁层或铝层。 (4) 根据前述任一项的电极板, 其中在中间层或外层的外表面进行冲刺处理。
(5 ) 根据前述任一项所述的电极板, 其中在该多层结构一侧的石墨层外侧还包括 层活性金属层, 以及任选的石墨层。
(6) 根据 5 ) 所述的电极板, 其中在外层的外侧还包括一层活性金属层, 以及 任选的石墨层。
(7) 根据前述任一项所述的电极板, 其中在该多层结构一侧的石墨层外侧, 由 ή 向夕卜依次由绝缘材料层、 石墨层、 活性金属层、 石墨层、 任选地绝缘材料层、 及任选地石墨层组成。
( 8 ) 根据 (7) 所述的电极板, 其中所述的绝缘材料层为玻璃钢层。
(9) 根据前述任 ·项的电极板, 其中所述的石墨层为膨胀石墨层。
( 10) 根据前述任一项所述的电极板, 其特征在于该电极板用作过渡板。
( 11 ) 一种电解设备, 其特征在于包含前述任一项的电极板。
( 12) 根据 (11 ) 的电解设备, 其特征在于还包括阳极板和阴极板。
( 13 ) 根据 (U ) 或 (12) 的电解设备, 其特征在于该电解设备至少包括一块 ( 1 ) - ( 10)任一项的阴极板、 一个阳极板、 以及位于阴极板和阳极板之间的至 少两块, 优选:三块过渡板。
根据上述技术方案, 本发明的优选技术方案如下:
根据本发明的优选方案, 所述电极板由至少 4层结构组成, 依次包括石墨层、 活性 金属层、 石墨层、 活性金属层, 优选对活性金属层进行冲剌处理。 优选该 4层结构依次 包括石墨层、 活性金属层、 石墨层、 冲刺后的活性金属层; 或者依次包括石墨层、 冲刺 后的活性金属层、 石墨层、 活性金属层。 其中所述的活性金属层也可以被碳钢层或者不 锈钢层替代。
根据本发明的优选方案, 所述电极板由至少 4层结构组成, 依次包括石墨层、 碳钢 板层、 石墨层、 铝层。
根据本发明的另一优选方案, 所述电极板由至少 5层结构组成, 依次包括石墨层、 活性金属层、 石墨层、 活性金属层及石墨层。 优选该 5层结构依次包括石墨层、 冲剠后 的活性金属层、 石墨层、 活性金属层及石墨层, 或者优选该 5层结构依次包括石墨层、 活性金属层、 石墨层、 冲刺后的活性金属层及石墨层。 其中所述的活性金属层&可以被 碳钢层或者不锈钢层替代。
优选在本发明的过渡板中增加惰性材料层, 优选玻璃钢, 以加大与活性金属层的粘 合力。 增加惰性材料的多层组合可以为石墨层、 惰性 料层、 石墨层、 活性金属层、 石 墨层、 惰性材料层、 石墨层、 活性金属层、 石墨层、 惰性 料层、 石墨层, 其中所述的 活性金属层可以为冲刺后的活性金属层, 优选为冲刺后的铁层或铝层, 更优选为冲剠后 的铁层。 其中所述的活性金属层也可以被碳钢层或者不锈钢层替代。
根据本发明的优选实施方案, 优选的电极板由至少 9层结构组成, 依次包括石墨层、 活性金属层、 石墨层、 玻璃钢层、 石墨层、 活性金属层、 石墨层、 玻璃钢层、 石墨层。 优选该 9层结构依次包括石墨层、 冲剠后的活性金属层、 石墨层、 玻璃钢层、 石墨层、 活性金属层、 石墨层、 玻璃钢层、 石墨层; 或者该 9层结构依次包括石墨层、 活性金属 层、 石墨层、 玻璃钢层、 石墨层、 冲刺后的活性金属层、 石墨层、 玻璃钢层、 石墨层。 其中所述的活性金属层也可以被碳钢层或者不锈钢层替代。
根据本发明的优选实施方案, 优选的电极板由至少 9层结构组成, 依次包括石墨层、 碳钢板层、 石墨层、 玻璃钢层、 石墨层、 铝层、 石墨层、 玻璃钢层、 石墨层的 9层结构。
根据本发明的技术方案, 最优选本发明的电极板由如下结构组成- 由石墨层、 冲刺后的铁层、 石墨层、 玻璃钢层、 石墨层、 铝层、 石墨层、 玻璃钢层、 石墨层依次组成的 9层结构;
由石墨层、 冲剠后的铁层、 石墨层、 铝层依次组成的 4层结构;
由石墨层、 冲刺后的铁层、 石墨层、 铝层及石墨层依次组成的 5层结构;
由石墨层、 碳钢板层、 石墨层、 玻璃钢层、 石墨层、 铝层、 石墨层、 玻璃钢层、 石 墨层的 9层结构组成;
由石墨层、 碳钢板层、 石墨层、 铝层依次组成的 4层结构。
本发明的电极板优选作为过渡板, 其作用是能够降低电流和增强废水处理能力。 当 阳极板和阴极板组成的电解槽中无过渡板时, 同样水质下, 单极接线法电流会大于 1000 A, 但当存在过渡板时, 则同一水质的多极接线法电流不超过 800 A, 优选不超过 600 A, 更优选不超过 500 A, 最优选不超过 400 A。
当采用直流电源时, 当在阴极板和阳极板中间使用过渡板时, 优选至少 2块过渡板, 更优选至少 3块过渡板。 如果采用高压脉冲和高频脉冲电源时, 过渡板可以无限制, f 如可以为 1块或 2块以上的过渡板。
尽管本发明的过渡板并不直接与夕卜加电源连接, 但在电解槽中, 本发明的过渡板本 身实际上相当于同时兼具阳极板和阴极板的特性。
根据本发明的电解槽, 其包括上述过渡板, 还包括阳极板和阴极板。
根据本发明的电解设备, 其包括上述过渡板, 还包括阳极板和阴极板。
在本发明中, 使用的阳极板可以为常规的阳极板, 但优选使用本申请人于同日提交 的、 发明名称为 "EFT惰性复合电极的阳极板及其制备方法, 包含该阳极板的电解设备" 的专利申请, 其全文引入本文作为参考。
根据本发明的优选实施方案, 所述阳极板包括多层结构, 至少由内层的活性金属层, 以及在所述活性金属两侧的石墨层的 3层结构组成。 优选在该多层结构的一侧, 在所述 活性金属和石墨层之间还依次设有绝缘材料层和石墨层, 该侧多层结构由夕卜向内依次为 石墨层、 绝缘材料层、 石墨层和活性金属层。
根据前述的阳极板, 其中在另一侧的活性金属和石墨层之间同时依次设有绝缘材料 层和石墨层, 即该另一侧多层结构由外向内依次为石墨层、 绝缘材料层、 石墨层和活性 金属层。
根据前述的阳极板, 其中在该多层结构的一侧, 在所述石墨层和活性金属之间还设 有活性金属层和绝缘材料层, 该侧多层结构由夕卜向内依次为石墨层、 活性金属层、 绝缘 材料层和活性金属层。
根据前述的阳极板, 其中在该多层结构的另一侧, 在所述石墨层和活性金属之间还 设有活性金属层和绝缘材料层, 该侧多层结构由外向内依次为石墨层、 活性金属层、 绝 缘材料层和活性金属层。
根据前述的阳极板, 其特征在于该一侧的石墨外层, 还设有一层活性金属层。
根据前述所述的阳极板, 其中所述的绝缘材料层为玻璃钢层。
优选的阳极板由如下 7层结构依次组成: 石墨层、 玻璃钢层、 石墨层、 活性金属层、 石墨层、 玻璃钢层和石墨层。
在本发明中, 使用的阴极板可以为常规的阴极板, 但优选使用本申请人于同日提交 的、 发明名称为 "EFT惰性复合电极的阴极板及其制备方法, 包含该阴极板的电解设备" 的专利申请, 其全文引入本文作为参考。
根据本发明的技术方案, 所述的阴极板包括多层结构, 其至少由内层的中间层、 以 及在所述中间层两侧的石墨层的 3层结构组成。 所述中间层为活性金属层、 不锈钢层或 碳钢层, 其中的活性金属层为铁层或铝层。
根据前述的阴极板, 其中在该多层结构的一侧的石墨层外侧, 由內向夕卜还依次设有 活性金属层和石墨层。
根据前述的阴极板, 其中在该多层结构的另一侧的石墨外层, 由内向外还设有活性 金属层和石墨层。
根据前述的阴极板, 其中在该多层结构的一侧或两侧, 在所述石墨层外侧, 由内向 外还设有绝缘材料层、 石墨层、 活性金属层和石墨层。 根据前述的阴极板, 其特征在于在一侧或两侧的石墨层和中间层之间还设有绝缘 料层。
根据本发明的优选实施方案, 所述的绝缘材料层为玻璃钢层。 更优选所述的玻璃钢 层为环氧树脂和玻璃纤维的复合材料层。
根据本发明更优选的技术方案, 其通过如下方式实现- 一种阴极板, 其特征在于, 该电极板由至少 3层结构组成, 其依次包括石墨层, 活 性金属层和石墨层, 所述的活性金属为铁或铝。
根据本发明, 所述阴极板由至少 3层结构组成, 其依次 ffl石墨层、 碳钢板层、 石墨 层组成。
根据本发明, 优选的阴极板由至少 7层结构组成, 其依次包括石墨层、 活性金属层、 石墨层、 玻璃钢层、 石墨层、 活性金属层和石墨层。
根据本发明, 优选的阴极板由至少 7层结构组成, 其依次包括石墨层、 碳钢板层、 石墨层、 玻璃钢层、 石墨层、 碳钢板层和石墨层。
根据本发明的另一优选实施方案, 所述阴极板 ffl至少 5层结构组成, 其依次包括石 墨层、 活性金属层、 石墨层、 活性金属层和石墨层。
在电极板中使用石墨的原因在于, 石墨不易脱落, 不易被侵蚀, 因此增加石墨后, 在电极的表层不会产生钝化, 从而能够有效地保护电极板的使用寿命; 同时也保证了阳 极和阴极设定距离间电解槽电流密度的稳定分布, 处理后的废水能达标棑放且能长期稳 定。
由于石墨为惰性村料, 其本身具有独特的耐酸、 耐碱、 耐高温和优越的导电性能, 通过合理的科技工艺和玻璃钢、 活性金属粘合, 加工复合成 EFT惰性复合电极后, 解决 了电化学技术处理废水过程中, 电极板易沾污、 易结垢、 易腐烛、 易钝化、 使用寿命短、 运行成本高等问题; 并能控制电极板阳极板在设定范 i簡内有序释放, 负极板能长期使用, 并且重金属可以回收。 污水处理效果长期稳定。
石墨层可以选用各种不同原料的石墨, 优选膨胀石墨, 更优选含量为 99,8%以上的 优质膨胀石墨。
出于对水处理的经济性考虑, 电极板优选使用铁或铝板。
为了使得进行电解反应的电极板与相邻层之间的粘合力更强, 优选对该电解反应的 电极板进行冲刺处理。 如果包含多层该电极板, 可以选择对部分电极板进行冲剠处理。 冲刺处理的电极板中无需增加其他的粘合剂。
为了使得废水处理更完全, -可以对阳极板和过渡板迸行穿孔, 孔的形状可以为槽状、 圆形、 椭圆形、 方形等, 优选楠圆形和圆形, 更优选椭圆形。 优选含有 10—40个孔, 优 选 15— 30个孔, 更优选 20— 24个孔。 孔径大小以处理废水需释放的絮凝量要求而定。
本发明的 EFT复合电极污水电解设备优选的技术方案是包括本发明的至少两块, 优 选至少 3块顺序放置的过渡板, 以及至少一块阳极板和一块阴极板。
根据本发明, 所述过渡板的制备工艺包括导电胶压合歩骤。 具体包括如下步骤- a.石墨层的制备
选用各种不同原料的石墨, 优选含量为 99.8%以上的优质膨胀石墨蠕虫压成
0.4- 2mm, 优选 0.6- 1.5mm, 更优选 0.8- 1.2 mm, 最优选(19-】mm厚度的复合平板。
平板的厚度并无特别要求, 考虑到成本等原因, 故设置成如上范围。
b.任选地惰性材料层的制备
选用优质的环氧树脂加玻璃纤维压成 0,3-3mm、 优选 0.5-2誦, 更优选 0,6-1.5 mm, 更优选 0.8-1 mm厚度的复合平板。
c.活性金属、 碳钢或不锈钢层的制备
选用(),2- 5mm、优选 0.4- 3 mm,更优选 0,6- 2 mm,还更优选 0,8-】,5 mm,最优选 0,9- 1mm 厚的活性金属、 碳钢或不锈钢村料, 任选地进行冲剠处理, 优选对作为阴极面的部分进 行冲刺处理。
d.过渡板的制备
将所制备得到石墨层、 任选冲刺的活性金属、 碳钢或不锈钢层以及惰性材料层, 根 据过渡板的多层结构, 顺序排放用导电胶粘合压平后, 任选用尼龙螺栓固定平整, 获得 本发明的过渡板。
优选, 在歩骤 d中, 根据活性金属、 碳钢或不锈钢层数的数量, 分别制成包含活性 金属、碳钢或不锈钢层的第一复合材料或者第二复合材料, 然后再根据多层结构的要求, 顺序排放制得所需电极板。
根据本发明, 上述歩骤&、 b、 c的顺序没有特别要求, 可以是 b、 c、 a或者 c、 b、 a 等顺序。
根据本发明, 上述各层的原料均可以商业上获得, 或者通过本领域常规的工艺制得 厚度、 长度、 宽度不一的板层。
根据本发明, 所述 EFT惰性复合电极的电解设备的制备工艺通过下述方式实现: 利用 EFT惰性复合电极组成 20 40个, 优选 24— 36个, 更优选 26-30个间距为
80- 240mm, 优选 100- 200mm, 更优选 120- 160 mm的电解槽, 电极接线方式为多极接线 法, 优选(+ 0 0 — 0 0 十 0 0 — ) , 即阳极板、 过渡板、 过渡板、 阴极板、 过渡板、 过渡板, 重复依次排列接线, 或者优选 (+ 0 0 0— 0 0 0 + 0 0 0 一 ) , 即阳极板、 过渡板、 过渡板、 过渡板、 阴极板、 过渡板、 过渡板、 过渡板, 重复 夕卜加电源 220V, 变压为 :I 2V、 24 V, 36V, 电流密度视污水水质而定。 电解槽尺寸: 长 4000- 6000mm, 优选 4200- 5600mm, 更优选 4500-4800 mm; 宽 800— 2000mm, 优选
1000- 1500mm; 高 1000- 2400 mm, 优选 1200- 1800mm 。每小时可处理 8- 10吨电镀废水。
极板尺寸:长 800-2000 mm,优选 1000- i 100mm;宽 800-2000 mm,优选 1000- i l00mm、 厚 1 ,5 mm全 10 mm, 优选 2- 8mm, 更优选 4- 6mm。
采用本发明的电解设备, 其优选技术方案中, 起始电流为 260— 420A, 优选为 275—
360 A, 更优选 285-400 A: 10分钟后的电流为 240— 386A, 优选 256-300A, 更优选 275-
276 A; 45分钟后的电流为 180- 320A, 更优选 206— 295A, 更优选 262-270A; 60分钟后 的电流为 150- 300A, 优选 175— 265 A, 更优选 230— 250A。
根据优选实施方案, 起始电流 275 A 10分钟 256A、 45分钟 206 A、 60分钟 175 A。 根据另一实施方案, 起始电流 385A、 10分钟 275A、 45分钟 262 A、 60分钟' 230A。 根据另一实施方案, 起始电流 360A、 10分钟 276 A、 45分钟 270 A、 60分钟 265 A。 根据另一实施方案, 起始电流 420A、 〗0分钟 386A、 45分钟 295A、 60分钟 265A。 本发明的废水处理工艺流程是, 将污水, 如电镀污水通入到含有本发明电极板的污 水处理设备 (EFT) 中, 然后通过 EFT— pH自动调节机进行调节, 随后将经调节后的污 水分别通入多个并排的泥水分离箱中, 经分离后的清水直接通入清水收集池中, 并将杂 质部分通入淤泥收集池中。 如需进一步处理, 还将清水收集池中获得的清水通入碳砂过 滤塔进行二次处理, 然后将处理后的废水回用或排放到清水池中待用。
在外加电压的作用下, 使用本发明经过加工复合成的 EFT惰性复合电极, 在废水处 理中诈为正负电极材料后, 处理的废水能长期稳定, 能达标排放, 运行成本非常低; 解 决了电化学技术处理废水领域中电极板易老化、 耗能高等问题。 为治理生活污水、 工业 污水开创了新的材料技术革命。 此 料革命性的成功将给电化学技术在污水治理中发挥 积极的作用, 同 将为节约水资源和保护环境做出贡献。
使用本发明的电极板, 经加工复合成的 EFT惰性复合电极后, 每天处理 150吨电镀 废水使 ffl寿命 400天以上, 大大降低了废水处理成本。
采 本发明的 EFT惰性复合电极, 可以在污水处理中回收有价值的物质。 不仅可以 处理单一的含 Cr ( VI )的废水,其铁氧体诈用和共沉淀作用还可以处理含 Or ( VI ) 、 Cr3+
Cu2\ Ni2\ Zn2 \ Cd2 \ Pb2+等多种重金属离子的综合性电镀废水, 无需分流, 一次处 理达标, 大大地筒化了处理流程, 且处理后的水质稳定。 由于电絮凝工艺后端还有加石 灰乳混凝沉淀单元, 这进一步保障了重金属离子的去除效果。 如处理电镀、 电解废水时, 可以同时回收铬或铜等 30多种贵金属; 在垃圾渗滤液处理中, 可以去除重金属、 除盐、 杀菌, 并保留其中的氮、 磷、 钾及有机质, 使其成为有机无机复合液肥等; 使用 EFT惰 性复合电极技术处理污水时对诸如 COD、 BOD , NH4-N 大肠杆菌、 悬浮物、 重金属 等的除去率高达 99%。 所以 EFT惰性复合电极技术出现, 让污水处理资源化成为现实, 使传统的污水处理观念有了一个新的发展。
该 EFT惰性复合电极制成电解槽以及设备后, 通过对电镀废水的处理, 30多种金属 离子可从水溶液中电沉积到阴极 EFT惰性复合电极上, 包括贵金属和重金属。 重金属处 理率儿乎百分之百, 同时非金属的处理率也达到了 96.5%。
本发明的 EFT惰性复合电极制成电解槽以及设备, 可广泛应用于处理各种电镀、 染 料、 颜料、 涂料、 农药、 医药、 兽药、 炸药等生产废水; 炼油废水、 油田废水和其他精 细化工废水, 具有除浊脱色, 降低 COD BOD, 尤其对脱色及去除重金属效果更加显著; 特别是汽车洗车场应用该设备后,更能有效地去除洗车废水中的悬浮物、 各类胶体、 各类 细菌、 分散油、 乳化油、 去除水中臭味, 废水处理水质达到生活杂用水水质标准。 附图说明
爾图 1 : 本发明一种过渡板示意图结构
對图 2: 本发明另一种过渡板示意图结构
图 3: 根据本发明方法制备的过渡板结构
^图 4: EFT污水处理电解槽剖面示意图
ϋ图 5: EFT污水处理电化学工艺流程图 具体实施方式
以下结合实施例对本发明做进一步描述, 需要说明的是, 下述实施例不能作为对本 发明保护范围的限制, 任何在本发明基础上作出的改进都在本发明的保护范围之内。
实施例 1. 过渡板, 由石墨层、 冲刺后的铁层、 石墨层、 玻璃钢层、 石墨层、 铝层、 石墨层、 玻璃钢层、 石墨层依次组成的 9层结构
第一步: 石墨层的制备
选用含量为 99.8%以上的优质膨胀石墨蠕虫压成 0.5 mm厚度的复合平板各 5块。 第二步: 玻璃钢层的制备 选用优质的环氧树脂加玻璃纤维压成 0.5mm厚度的复合平板 2块。
第 .≡步: 活性金属层的制备
选用】,0 mm以上厚度的铝板, 并选用 0,1 mm厚度的活性金属铁材料进行冲刺处理。 第四步: 过渡板的制备
将 0.5mm的石墨层、 0.1 mm厚度的冲刺后的活性金属铁层以及 0.5 mm的石墨层依 次 ^胶粘合压平后, 获得第一复合村料; 再将 0.5mm的石墨层、 1 mm厚度以上的活性 金属铝以及 0.5 mm的石墨层依次用胶粘合压平后, 获得第二复合材料。
然后将该第一和第二复合材料分别放置在玻璃钢层的两侧, 然后用胶粘合压平; 再 在第二复合材料的石墨外层,依次放置第二步制备的玻璃钢层以及第一步制备的石墨层, 用导电胶粘合压平后, 再用尼龙螺栓固定平整, 从而获得本发明的过渡板。 实施倒 2. 过渡板, 由石墨层、 冲刺后的铁层、 石墨层、 铝层依次组成的 4层结构 第一步: 石墨层的制备
选用含量为 99 8%以上的优质膨胀石墨蠕虫压成 0.8mm厚度的复合平板 2块。
第二步: 活性金属层的制备
选用〗 mm厚度的铝板, 并选用 0.1 mm厚度的活性金属铁材料进行冲刺处理。
第三步: 过渡板的制备
将 0.8mm的石墨层、 0.1 mm厚度的冲刺后的铁层以及 0.8 mm的石墨层依次用导电 胶粘合压平后, 获得第一复合 料; 再将该复合 料与 l mm厚度的活性金属铝层再用 导电胶粘合压平后, 再用尼龙螺栓固定平整, 从而获得本发明的过渡板。 实施例 3. 过渡板, 由石墨层、 冲刺后的铁层、 石墨层、 铝层及石墨层依次组成的 5 层结构
第一步: 石墨层的制备
选用含量为 99.8%以上的优质膨账石墨蠕虫压成 : mm厚度的复合平板 3块。
第二步: 活性金属层的制备
选用 i mm厚度的铝板, 并选 ^ 0,3 mm厚度的铁板进行冲刺处理, 分别制得两块活 性金属层。
第 Ξ!步: 过渡板的制备
将石墨层、冲刺后的 0.3 mm的铁板层以及石墨层依次 ^导电胶粘合压平后, 获得第 一复合材料; 再将石墨层、 〗 mm厚的铝板层依次用导电胶粘合压平后, 获得第二复合材 料。
然后将该第一复合材料的石墨层与第二复合材料的铝层放置在一起, 然后用导电胶 粘合压平后, 再用尼龙螺栓固定平整, A认而获得本发明的过渡板。 实施倒 4. 过渡板, 由石墨层、 碳钢板层、 石墨层、 玻璃钢层、 石墨层、 铝层、 石墨 层、 玻璃钢层、 石墨层的 9层结构组成
第一步: 石墨层的制备
选用含量为 99.8%以上的优质膨胀石墨蠕虫压成 0.5 mm厚度的复合平板 5块。 第二步: 玻璃钢层的制备
选用优质的环氧树脂加玻璃纤维压成 0.5mm厚度的复合平板 2块。
第三步: 活性金属层的制备
选用 2 mm厚度的铝板, 并分别选用 0,2 mm和 0.5mm厚度的碳钢板层, 共 3块活性 金属层待用。
第四步: 过渡板的制备
将石墨层 0.5mm、 碳钢板层 0.2nim、 石墨层 0,5mm依次用导电胶粘合压平后, 获得 第一复合材料; 再将石墨 0.5mm、 铝层 2mm、 石墨层 0.5mm依次用导电胶粘合压平后, 获得第二复合材料。
然后将该第一复合材料的石墨层、 玻璃钢层 0.5mm与第二复合材料的石墨层、 玻璃 钢层 0.5mm、 石墨 0.5mm依次放置在一起, 然后用导电胶粘合压平后, 再用尼龙螺栓固 定平整, 从而获得本发明的过渡板。 实施倒 5. 过渡板, 由石墨层、 碳钢板层、 石墨层、 铝层依次组成的 4层结构 第一步: 石墨层的制备
选用含量为 99,8%以上的优质膨胀石墨蠕虫压成〗mm厚度的复合平板 2块。
第二步; 活性金属层的制备
选用 3 mm厚度的铝板, 并选 ]¾ 0.5 mm厚的碳钢板层各一块待 ]¾。
第 Ξ!步: 过渡板的制备
将 1mm的石墨层、 0.5 mm厚的碳钢板层以及 1 mm的石墨层依次用导电胶粘合压平 后, 获得第一复合材料; 再将该复合材料与 3 mm厚度的铝板再用导电胶粘合压平后, 再用尼龙螺栓固定平整, A认而获得本发明的过渡板。 实施例 6. EFT污水处理设备
EFT污水处理设备一
如附图所示, 本发明的污水处理设备内部由阳极板、 两块过渡板、 阴极板、 两块过 渡板交替依次排列, 总计 31块板。
所述阳极板由石墨层、 玻璃钢层、 石墨层、 铝层、 石墨层、 玻璃钢层、 石墨层 7层 结构组成; 其中各石墨层的厚度为 0.5mm以上; 铝层的厚度为 1mm以上; 玻璃钢层的 厚度为 0.5mm以上, 制备工艺与本发明过渡板的工艺相同, 采用胶粘合压平后, 获得阳 极板。
所述阴极板 ώ石墨层、 冲刺后的活性金属层、 石墨层、 玻璃钢层、 石墨层、 冲刺后 的活性金属层及石墨层依次组成的 7层结构组成; 其中各石墨层的厚度为 0.5mm以上、 刺后的铁层厚为 0.3 mm以上 , 玻璃钢层厚度为 0,5 mm以上, 制备工艺与本发明过渡 板的工艺相同, 采用胶粘合压平后, 获得阴极板。
所述过渡板由实施例 3 , 即由石墨层、冲剠后的活性金属层、石墨层、 活性金属层及 石墨层依次组成的 5层结构组成, 其中石墨层的厚度为〗 mm, —块铝层为 Imm厚以上, 冲刺的铁板层厚 0.3 mm以上。
EFT污水处理设备二
如附图所示, 本发明的污水处理设备内部 阳极板、 两块过渡板、 阴极板、 两块过 渡板交替依次排列, 总计 31块板。
所述阳极板由石墨层、 玻璃钢层、 石墨层、 铝板层、 石墨层、 玻璃钢层、 石墨层 7 层结构组成; 其中各石墨层的厚度为 0.8mm; 铝板层的厚度为 1 mm以上; 玻璃钢层的 厚度为 0.8 mm, 制备工艺与本发明过渡板的工艺相同, 采 ^胶粘合压平后, 获得阳极板。
所述阴极板由石墨层、 铝板层、 石墨层、 活性金属层、 石墨层依次组成的 5层结构 组成; 其中各石墨层的厚度为 0.8mni、 铝层厚】 mni以上, 制备工艺与本发明过渡板的 工艺相同, 采用胶粘合压平后, 获得阴极板。
所述过渡板由实施例】, 即由石墨层、冲剠后的铁板层、石墨层、玻璃钢层、石墨层、 铝板层、 石墨层、 玻璃钢层、 石墨层依次组成的 9层结构组成, 其中石墨层的厚度为 0.5 mm, —块铝层为 i mm厚, 冲剠的铁板层厚 0。3 mm以上, 玻璃钢层厚为 0.5 mm。
EFT污水处理设备三 如附图所示, 本发明的污水处理设备内部由阳极板、 两块过渡板、 阴极板、 两块过 渡板交替依次排列, 总计 31块板。
所述阳极板由石墨层、 玻璃钢层、 石墨层、 铝层、 石墨层、 玻璃钢层、 石墨层 7层 结构组成; 其中各石墨层的厚度为 0.6mm; 铝层的厚度为 1.2 mm; 玻璃钢层的厚度为 0.8 mm, 刺备工艺与本发明过渡板的工艺相同, 采用胶粘合压平后, 获得阳极板。
所述阴极板由石墨层、 铝层、 石墨层依次组成的 3层结构组成; 其中各石墨层的厚 度为 0.6 mm、 铝层厚 0.1 mm以上, 制备工艺与本发明过渡板的工艺相同, 采用胶粘合 压平后, 获得阴极板。
所述过渡板 ώ实施例 2, 由石墨层、 冲剠后的铁层、 石墨层、 铝层依次组成的 4 层结构其中石墨层的厚度为 0.8 mm, 铝层为 1 mm厚, 冲刺的铁板层厚 0.1mm以上。
EFT污水处理设备四
如附图所示, 本发明的污水处理设备内部 阳极板、 两块过渡板、 阴极板、 两块过 渡板交替依次排列, 总计 31块板。
所述阳极板由石墨层】 mm、 玻璃钢层 0.5mm、 石墨层 0.5mm、 铝层 3 mm、 石墨层 0.5 mm、 玻璃钢层 0.5 ram, 石墨层 1mm的 7层结构组成, 刺备工艺与本发明过渡板的 工艺相同, 采用胶粘合压平后, 获得阳极板。
所述阴极板由石墨层 0.5mm、 碳钢板层 0.3mm、 石墨层 0,5mm、 玻璃钢层 lmm、 石 墨层 0 5mm、碳钢板层 0.5mm、石墨层 0.5mm的 7层结构组成; 制备工艺与本发明过渡 板的工艺相同, 采用胶粘合压平后, 获得阴极板。
所述过渡板由实施例 4, 即石墨层 0.5mm、 碳钢板层 0.2mm、 石墨层 0.5mm、 玻璃 钢层 0.5mm、 石墨 0.5mm、 铝层 2mm、 石墨层 0.5mm、 玻璃钢层 0.5mm、 石墨 0.5mm 的 9层结构组成。
EFT污水处理设备五
如附图所示, 本发明的污水处理设备内部 阳极板、 两块过渡板、 阴极板、 两块过 渡板交替依次排列, 总计 31块板。
所述阳极板由石墨层 lmm、 玻璃钢层 0,5mm、 石墨层 0.5mm、 铝层 3 mmu 石墨层 0.5 mm、 玻璃钢层 0.5 ram, 石墨层 1mm的 7层结构组成, 刺备工艺与本发明过渡板的 工艺相同, 采用胶粘合压平后, 获得阳极板。 所述阴极板由石墨层 imm、 碳钢板层 0.5mm、 石墨层 1mm的 3层结构组成; 制备 工艺与本发明过渡板的工艺相同, 采用胶粘合压平后, 获得阴极板。
所述过渡极板由实施例 5 ,即石墨层 lmm、碳钢板层(I5mm、石墨层】mm、铝层 3mm 的 4层结构组成。 实施例 7. EFT废水处理工艺流程
如附图所示, 本发明的废水处理工艺流程是, 将污水, 如电镀污水通入到含有本发 明电极板的污水处理设备 (EFT) 中, 然后通过 EFT— pH自动调 机进行调节, 然后将 经调节后的污水分别通入多个并排的泥水分离箱中, 经分离后的清水直接通入清水收集 池中, 并将杂质部分通入淤泥收集池中。 如需进 ·步处理, 还将清水收集池中获得的清 水通入碳砂过滤塔进行二次处理, 然后将处理后的废水回用或排放到清水池中待用。 实施例 8. 复合电极的应用
实例一: 利用 EFT惰性复合电极 ^理污水
利用 EFT惰性复合电极处理污水时的实例 1
针对某电镀厂日处理量 150吨的电镀废水按实施例 5的工艺进行废水处理,利用本发 明实施例 6的 EFT惰性处理设备一处理 60分钟后, 水质可用于回 、 达到国家 2008特 别排放标准。
利用 EFT惰性复合电极组成 30个间距为 160 mm的电解槽。 电极接线方式为多极接 线法 (十 0 0 ― 0 0 + 0 0 -- ) , 夕卜加电源 220V变压为 i2V、 24 V. 36V, 电流密度示污水水质而定。 电解槽尺寸: 长 4800mm、 宽 1500mm、 高 1800mm (每小 时处理 10吨电镀废水)
电极板尺寸: 长 l】00 mm、 宽 1 100 腿1、 厚 ( 1 ,5 mm至 5.5 mm)
起始电流 360A, 10分钟 276 A、 45分钟 270 A, 60分钟 265 A
处理 60分钟的污水有当地环保监测站监测, 数据结果为:
Figure imgf000016_0001
Figure imgf000016_0002
Figure imgf000017_0001
利用 EFT惰性复合电极 ^理污水时的实例 2
针对某电子电路有限公司日处理量 )00吨的镀铜废水按实施例 5的工艺进行废水处 理, 利 ^本发明实施例 6的 EFT惰性电解设备二处理 60分钟后, 水质可用于回 、 达
Figure imgf000017_0002
利用 EFT惰性复合电极组成 30个间距为 160mm的电解槽。 电极接线方式为多极接 线法(+ 0 0 -- 0 0 + 0 0 -- - )夕卜加电源 220V变压为 i2V、 24V、 36V, 电 流密度示污水水质而定。 电解槽尺寸: 长 4800 mm、 宽 1400 mm、 高 1800 mm (每小时 处理 10吨电镀废水) 。 电极板尺寸; 长 1000mm、 宽 900 mm、 厚 ( 1 ,5 mm至 6.5 mm) 。 起始电流 275A、 10分钟 256A、 45分钟 206 A、 60分钟 175 A
处理 60分钟的污水有当地环保监测站监测, 数据结果如表二所示:
Figure imgf000017_0003
Figure imgf000017_0004
利用 EFT惰性复合电极 ^理污水时的实例 3
针对某电镀厂日处理量 300吨的电镀废水按实施例 5的工艺进行废水处理,利用本发 明实施例 6的 EFT惰性电解设备四处理 60分钟后, 水质可用于回 ]¾、 达到国家 2008新 建排放标准。
利用 EFT惰性复合电极组成 24个间距为 160 mm的电解槽。 电极接线方式为多极接 线法 (+ 0 0 — 0 0 + 0 0 — ) 。 外加电源 220V变压为 12V、 24 V. 36V, 电流密度示污水水质而定。 电解槽尺寸: 长 4800mm、 宽 1800mm 高: 1800mm (每小 时处理 10吨电镀废水)》 电极板尺寸; 长】200nim、宽 1100mm、厚(L5 mm至 8 mm) 。 起始电流 385A、 i0分钟 275A、 45分钟 262 A、 60分钟 230A
处理 60分钟的污水有当地环保监测站监测, 数据结果如表≡所示: 污染物 总鎳 总铜 COD PH值 进水浓度 /mg/L 18.4 15.3 451 1.7
73,3
出水浓度 /mg/L 0.037 0.1 0.060 63 7.2 利用 EFT惰性复合电极; ¾理污水时的实例 4
针对某电镀厂日处理量 2000吨的电镀废水按实施例 5的工艺进行废水处理, 利用本 发明实施例 6的 EFT惰性电解设备五处理 60分钟后, 水质可用于回用、 达到国家 2008 新建排放标准。
利用 EFT惰性复合电极组成 30个间距为 180mm的电解槽。 电极接线方式为多极接 线法(十 0 0 0— 0 0 0 十 0 0 0 ― )。外加电源 220V变压为 12V、 24V、 36V, 电流密度示污水水质而定。电解槽尺寸: 长 4800mm、宽 i500mm、高 1800mm (每 小时处理 10吨电镀废水)。极板尺寸:长 Ϊ励匪、宽 1100mm、厚(1.5誦至 10誦) 。 起始电流 420A、 10分钟 386A、 45分钟 295 A、 60分钟 265 A。
处理 60分钟的污水有当地环保监测站监测, 数据结果如下表四所示:
Figure imgf000018_0001
Figure imgf000018_0002

Claims

1.一种过渡板, 其特征在于, 至少包括四层结构, 包括石墨层、 中间层、 石墨层以 及外层的四层结构, 所述的中间层以及外层分别为活性金属层、 不锈钢层或碳钢层。
2.根据权利要求 1所述的过渡板, 其特征在于, 所述的活性金属层为铁层或铝层。
3.根据权利要求 1所述的过渡板, 其特征在于, 在所述中间层或夕卜层的外表面进行 冲刺处理。
4.根据权利要求 1 3任一项所述的过渡板, 其特征在于, 在所述的多层结构一侧的 石墨层外侧还包括活性金属层、 不锈钢层或碳钢层, 以及任选的石墨层。
5.根据权利要求 4所述的过渡板, 其特征在于, 在所述的外层外侧还包括石墨层。
6.根据权利要求 1-5任一项所述的过渡板, 其特征在于, 在所述的多层结构一侧的 石墨层外侧, 由内向外依次由绝缘材料层、 石墨层、 活性金属层或不锈钢层或碳钢层之 一、 石墨层、 任选地绝缘材料层、 及任选地石墨层组成。
7.根据权利要求 6所述的过渡板, 其特征在于, 所述的的绝缘村料层为玻璃钢层。
8 根据权利要求 1-- 7任一项所述的过渡板, 其特征在于, 所述的的石墨层为膨胀石 墨层。
9.根据权利要求 1-8任一项的过渡板, 其特征在于, 活性金属层为进行冲剠处理的 活性金属层。
10.根据权利要求 1 9任一项的过渡板, 其特征在于, 所述过渡板由至少 4层结构组 成, 依次为石墨层、 活性金属层、 石墨层、 活性金属层。
1 1.根据权利要求 1 10任一项的过渡板, 其特征在于, 所述过渡板由石墨层、 活性 金属层、 石墨层、 冲刺后的活性金属层组成, 其中所述的活性金属层也可以被碳钢层或 者不锈钢层替代。
12.根据权利要求 1的过渡板, 其特征在于, 所述过渡板由石墨层、 冲刺后的活性金 属层、 石墨层、 活性金属层组成, 其中所述的活性金属层也可以被碳钢层或者不锈钢层 替代。
13.根据权利要求 1的过渡板, 其特征在于, 所述过渡板依次由石墨层、 碳钢板层、 石墨层、 铝层组成。
14.根据权利要求 1的过渡板,其特征在于,所述过渡板依次由石墨层、活性金属层、 石墨层、 活性金属层及石墨层组成。 优选该 5层结构依次为石墨层、 冲刺后的活性金属 层、 石墨层、 活性金属层及石墨层, 或者优选该 5层结构依次包括石墨层、 活性金属层、 石墨层、 冲刺后的活性金属层及石墨层。 其中所述的活性金属层也可以被碳钢层或者不 锈钢层替代。
15.根据权利要求 1的过渡板,其特征在于,所述过渡板依次由石墨层、活性金属层、 石墨层、 玻璃钢层、 石墨层、 活性金属层、 石墨层、 玻璃钢层、 石墨层组成, 其中所述 的活性金属层也可以被碳钢层或者不锈钢层替代。
16.根据权利要求 1的过渡板, 其特征在于, 所述过渡板依次由石墨层、 冲刺后的活 性金属层、 石墨层、 玻璃钢层、 石墨层、 活性金属层、 石墨层、 玻璃钢层、 石墨层组成, 其中所述的活性金属层也可以被碳钢层或者不锈钢层替代。
17.根据权利要求 1的过渡板,其特征在于,所述过渡板依次由石墨层、活性金属层、 石墨层、 玻璃钢层、 石墨层、 冲剠后的活性金属层、 石墨层、 玻璃钢层、 石墨层组成, 其中所述的活性金属层也可以被碳钢层或者不锈钢层替代。
18.根据权利要求 1的过渡板, 其特征在于, 所述过渡板依次由石墨层、 碳钢板层、 石墨层、 玻璃钢层、 石墨层、 铝层、 石墨层、 玻璃钢层、 石墨层的 9层结构组成。
19.根据权利要求 1的过渡板, 其特征在于, 所述过渡板依次由石墨层、 冲剌后的铁 层、 石墨层、 玻璃钢层、 石墨层、 铝层、 石墨层、 玻璃钢层、 石墨层组成。
20.根据权利要求 1的过渡板, 其特征在于, 所述过渡板依次由石墨层、 冲刺后的铁 层、 石墨层、 铝层依次组成。
21.根据权利要求 1的过渡板, 其特征在于, 所述过渡板依次由由石墨层、 冲剠后的 铁层、 石墨层、 铝层及石墨层组成。
22.根据权利要求 1的过渡板, 其特征在于, 所述过渡板依次由石墨层、 碳钢板层、 石墨层、 玻璃钢层、 石墨层、 铝层、 石墨层、 玻璃钢层、 石墨层的 9层结构组成。
23.根据权利要求 1的过渡板, 其特征在于, 所述过渡板依次由石墨层、 碳钢板层、 石墨层、 铝层依次组成的 4层结构。
24.根据权利要求 1-23任一项的过渡板, 其特征在于, 所述过渡板中还包括惰性材 料层, 优选玻璃钢。
25.—种电解设备, 其特征在于, 包含权利要求 1-24任一项的过渡板。
26.根据权利要求 25所述的电解设备, 其特征在于, 还包括阳极板, 和阴极板。
27.根据权利要求 25或 26的电解设备, 其特征在于, 该电解设备至少包括一块阴 极板、 一块阳极板、 以及位于阴极板和阳极板之间的至少两块, 优选三块过渡板。
28.根据权利要求 27所述的电解设备, 其特征在于, 包括至少 3块过渡板。
29.根据权利要求 26 28任一项所述的电解设备, 其特征在于, 所述阴极板至少由 内层的中间层、 以及在所述中间层两侧的石墨层的三层结构组成, 其中所述中间层为活 性金属层、 不锈钢层或碳钢层, 其中所述活性金属层为铁层或铝层。
30.根据权利要求 26 28任一项所述的电解设备, 其特征在于, 所述阳极由石墨层、 玻璃钢层、 石墨层、 铝层、 石墨层、 玻璃钢层、 石墨层 7层结构组成。
3 L—种过渡板的制备工艺, 其特征在于, 包括导电胶粘合压平步骤。
32.根据权利要求 31所述的过渡板的制备工艺, 其特征在于,
a。 石墨层的制备
选用各种不同原料的石墨, 优选含量为 99. 8%以上的优质膨胀石墨蠕虫压成 0. 4-2imn 厚度的复合平板;
b. 任选地惰性材料层的制备
选用优质的环氧树脂加玻璃纤维压成 0. 3 --3imn厚度的复合平板;
c活性金属层、 碳钢或不锈钢层的制备
选用 0. 2- 5mni厚的活性金属材料, 碳钢或不锈钢材料, 任选地进行冲刺处理; 过渡板的制备
将所制备得到石墨层、 任选冲刺的活性金属、 碳钢或不锈钢层以及惰性村料层, 根 据过渡板的多层结构, 顺序排放用导电胶粘合压平后, 任选用尼龙螺栓固定平整, 获得 本发明的过渡板。
33.根据权利要求 32所述的过渡板的制造工艺, 其特征在于, 在步骤 d中, 根据活 性金属、 碳钢或不锈钢层数的数量, 分别制成包含活性金属、 碳钢或不锈钢层的第一复 合材料或者第二复合村料, 然后再根据多层结构的要求, 顺序排放制得所需电极板。
34.根据权利要求 32或 33所述的过渡板的制造工艺,所述步骤 a、 b、 c的顺序可变。
PCT/CN2011/078262 2010-08-30 2011-08-11 Eft惰性复合电极的过渡板及其制备方法,包含该过渡板的电解设备 WO2012028052A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102665529A CN101985757B (zh) 2010-08-30 2010-08-30 Eft惰性复合电极的过渡板及其制备方法,包含该过渡板的电解设备
CN201010266552.9 2010-08-30

Publications (1)

Publication Number Publication Date
WO2012028052A1 true WO2012028052A1 (zh) 2012-03-08

Family

ID=43710150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078262 WO2012028052A1 (zh) 2010-08-30 2011-08-11 Eft惰性复合电极的过渡板及其制备方法,包含该过渡板的电解设备

Country Status (2)

Country Link
CN (1) CN101985757B (zh)
WO (1) WO2012028052A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985758B (zh) * 2010-08-30 2012-06-27 蒋亚熙 Eft惰性复合电极的电极板及其制备方法,包含该电极板的电解设备
CN101985757B (zh) * 2010-08-30 2012-06-27 蒋亚熙 Eft惰性复合电极的过渡板及其制备方法,包含该过渡板的电解设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4265727A (en) * 1979-10-22 1981-05-05 Hitco Composite electrodes
US6306270B1 (en) * 1999-02-25 2001-10-23 Csem Centre Suisse D'electronique Et De Microtechnique Sa Electrolytic cell with bipolar electrode including diamond
CN101085694A (zh) * 2007-03-15 2007-12-12 归建明 电解催化裂解污水处理装置
CN101409336A (zh) * 2007-10-11 2009-04-15 中国人民解放军63971部队 一种复合电极及其制备方法
CN101475243A (zh) * 2008-01-04 2009-07-08 上海爱启生态科技有限公司 一种新型双复合电极的电化学装置
CN101985757A (zh) * 2010-08-30 2011-03-16 蒋亚熙 Eft惰性复合电极的过渡板及其制备方法,包含该过渡板的电解设备
CN201915151U (zh) * 2010-08-30 2011-08-03 蒋亚熙 Eft惰性复合电极的过渡板及包含该过渡板的电解设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009455A (ja) * 1999-06-29 2001-01-16 Tsukuba Rika Seiki Kk 電気分解用多層電極板構造及び電気分解装置
CN2564548Y (zh) * 2002-07-29 2003-08-06 庄培领 一种印染废水电解净化设备
US20040129578A1 (en) * 2003-01-07 2004-07-08 Mclachlan David Electrostatic fluid treatment apparatus and method
CN100450937C (zh) * 2007-01-11 2009-01-14 常州爱思特净化设备有限公司 液体处理模块

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4265727A (en) * 1979-10-22 1981-05-05 Hitco Composite electrodes
US6306270B1 (en) * 1999-02-25 2001-10-23 Csem Centre Suisse D'electronique Et De Microtechnique Sa Electrolytic cell with bipolar electrode including diamond
CN101085694A (zh) * 2007-03-15 2007-12-12 归建明 电解催化裂解污水处理装置
CN101409336A (zh) * 2007-10-11 2009-04-15 中国人民解放军63971部队 一种复合电极及其制备方法
CN101475243A (zh) * 2008-01-04 2009-07-08 上海爱启生态科技有限公司 一种新型双复合电极的电化学装置
CN101985757A (zh) * 2010-08-30 2011-03-16 蒋亚熙 Eft惰性复合电极的过渡板及其制备方法,包含该过渡板的电解设备
CN201915151U (zh) * 2010-08-30 2011-08-03 蒋亚熙 Eft惰性复合电极的过渡板及包含该过渡板的电解设备

Also Published As

Publication number Publication date
CN101985757A (zh) 2011-03-16
CN101985757B (zh) 2012-06-27

Similar Documents

Publication Publication Date Title
CN102786183B (zh) 垃圾渗滤液的处理方法
EP2649014B1 (en) Carbon bed electrolyser for treatment of liquid effluents and a process thereof
CN101967017B (zh) 一种用于废水处理的电化学装置及使用所述装置处理废水的方法
CN101717162A (zh) 一种铝型材表面处理废水治理回用方法
CN102092821A (zh) 高性能活性碳纤维在电絮凝法处理工业废水中的应用方法
CN101985372B (zh) Eft污水处理电解设备
CN103641206A (zh) 一种复合电解槽及应用其处理含镉电镀废水的方法
CN103641210A (zh) 一种含铬电镀废水复合电解槽处理方法
WO2012028054A1 (zh) Eft惰性复合电极的电极板及其制备方法,包含该电极板的电解设备
CN201850161U (zh) Eft惰性复合电极的阴极板及包含该阴极板的电解设备
WO2012028052A1 (zh) Eft惰性复合电极的过渡板及其制备方法,包含该过渡板的电解设备
CN201850163U (zh) Eft污水处理电解设备
CN202610073U (zh) 垃圾渗滤液的处理装置
WO2012028055A1 (zh) Eft惰性复合电极的阴极板及其制备方法,包含该阴极板的电解设备
CN201915151U (zh) Eft惰性复合电极的过渡板及包含该过渡板的电解设备
Li Development in electrochemical technology for environmental wastewater treatment
CN201908136U (zh) Eft惰性复合电极的电极板,包含该电极板的电解设备
CN113371895A (zh) 油气田采出水资源化处理的工艺方法及系统
CN201850312U (zh) Eft惰性复合电极的阳极板及包含该阳极板的电解设备
CN102276094A (zh) 浓盐水处理方法
CN113003701A (zh) 电耦生物滤池深度净化铅锌矿尾矿库废水装置
CN201665596U (zh) 一种焦化废水回用的预处理装置及组合处理系统
CN201971666U (zh) Eft惰性复合电极的过渡板及包含该过渡板的电解设备
CN102557306A (zh) 钛阳极在高浓度工业废水处理中的应用
CN111908718A (zh) 一种垃圾渗透液的深度处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821078

Country of ref document: EP

Kind code of ref document: A1