WO2012028042A1 - 集风立式风力发电系统 - Google Patents

集风立式风力发电系统 Download PDF

Info

Publication number
WO2012028042A1
WO2012028042A1 PCT/CN2011/077293 CN2011077293W WO2012028042A1 WO 2012028042 A1 WO2012028042 A1 WO 2012028042A1 CN 2011077293 W CN2011077293 W CN 2011077293W WO 2012028042 A1 WO2012028042 A1 WO 2012028042A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
wind
blade
wind power
vertical
Prior art date
Application number
PCT/CN2011/077293
Other languages
English (en)
French (fr)
Inventor
李树广
Original Assignee
哈尔滨大功率立式风电装备工程技术研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨大功率立式风电装备工程技术研究中心 filed Critical 哈尔滨大功率立式风电装备工程技术研究中心
Publication of WO2012028042A1 publication Critical patent/WO2012028042A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/10Assembly of wind motors; Arrangements for erecting wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0276Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling rotor speed, e.g. variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the invention relates to a vertical wind power generation system in the field of wind power generation technology. Specifically, it relates to a new type of high efficiency wind collecting vertical wind power generation system.
  • the wind turbine developed in the past partially overcomes the shortcomings of the traditional wind turbine, it still has defects such as small wind volume, high wind starting torque, starting dead angle and large dead angle.
  • the existing airfoil blades have a small wind receiving area, low wind utilization rate, large wind resistance on the front airfoil, large commutation angle, low wind utilization, and difficulty in capacity expansion.
  • the wind turbine of the wind turbine involved in the invention patent application No. 200410023530.4 adopts the NACA0009 airfoil, the wind blade has a small wind receiving area, low wind utilization rate, and there is a front airfoil wind resistance surface, which is rotating. There is a reversing dead angle in the movement, which is difficult to increase the capacity.
  • the object of the present invention is to provide a wind collecting vertical wind power generation system, which has stable structure, stable running performance, high wind utilization rate, convenient assembly and maintenance, and easy transportation, thereby overcoming the deficiencies in the prior art.
  • the wind collecting vertical wind power generation system of the present invention comprises a wind power system, a speed increaser system, a vertical generator system, and an excitation grid-connected control system.
  • the wind power system adopts a box frame structure, including a fan blade system and a wind collecting and protecting system; the speed increasing system adopts a vertical speed increasing device, which is an eccentric pendulum double planetary gear structure; the generator system A pole-changing vertical asynchronous generator is used; the vertical generator system and the speed increaser system are installed on the ground.
  • the wind power system employs a box frame structure including a fan blade shaft, a blade system, and a wind collecting and protecting system and a driving system thereof.
  • the box frame structure may be selected from the group consisting of a triangular frame system, a quadrangular frame system, a pentagonal frame system, a hexagonal frame system, an octagonal frame system, and an N-angle frame system or a circular frame system.
  • the box frame structure the bellows frame structure
  • the overall structure of the wind power generation system of the present invention is easy to assemble, repair and transport, the total height is reduced by 2/3, the raw material is saved by 60%, and the land, the mountain and the sea are convenient.
  • Installation and operation among which small models are easy to install and operate on fishing boats and roofs; large models are easy to install and operate on land; large units are easy to install and operate on land, large wind farms on mountains and seas.
  • the box frame structure is also provided with upper and lower slabs, by which the upper and lower slabs can reduce wind and sand and rain and snow, and reduce damage to the wind power generation system, especially the blades.
  • the frame frame structure can also be used with a frame stabilization system, which adopts a fixed pier fixed to the ground by a steel cable at four corners above the frame, and the fixed pier is on a diagonal extension line of the four vertical sill bases.
  • the distance can be 1/3 of the height of the frame 1/1.
  • the system has large anti-overturning torque and good stability performance, and can resist the storm blowing force.
  • the wind turbine has a large capacity and a large number of blades, so the required fan blade shaft is long.
  • the present invention adopts a large multi-section combined shaft, which is divided into several segments by a long wind turbine shaft. And according to the actual needs by increasing or decreasing the middle section of the shaft assembly.
  • the blade shaft includes a lower shaft end and an upper shaft end, a lower shaft tube and an upper shaft tube, a lower shaft connecting plate and an upper shaft connecting plate, an upper blade fixing flange, a middle blade fixing flange and Lower blade fixing flange, shaft positioning pin and fixing bolt and nut.
  • the upper shaft end, the upper shaft tube, the upper shaft connecting plate, the middle blade fixing flange and the shaft positioning pin constitute an upper shaft, a lower shaft connecting plate, a lower shaft tube, a lower shaft end, and a lower blade fixing flange
  • the disc and the fixing bolts form the lower shaft.
  • the lower shaft end and the lower shaft tube and the upper shaft end and the upper shaft tube are all welded by a strong fit, and the lower shaft tube and the upper shaft tube pass through the lower shaft connecting disc, the middle blade fixing flange, the upper shaft connecting plate and The screws are fixedly connected, and the shaft of the fan blade is positioned centrally by the shaft positioning pin.
  • the middle shaft may be composed of a middle shaft lower connecting plate, a middle shaft tube, and a middle shaft connecting plate.
  • the connection structure between the middle shaft and the middle shaft and the upper and lower shafts is similar to the connection structure of the upper and lower shafts.
  • the blade is connected and fixed by the blade fixing flange and the blade shaft, so that the blade angle can be changed arbitrarily, the blade dead angle can be eliminated, the continuity of the wind torque can be maintained, and the deformation of the crankshaft can be reduced. With vibration.
  • the fan blade shafting system of the invention replaces the original solid shaft structure with a hollow structure, is light in weight, is easy to process, saves a large amount of steel, increases the strength and rotational torque of the crankshaft, and is convenient for assembly and transportation.
  • the invention adopts a vertical horizontal rotary blade system, which comprises a blade frame, a blade body, a refractive deflector, a fixing bracket and a blade and a shaft connecting member.
  • the wind blade frame and the steel mesh inside the wind blade body are welded together to form an integral fan blade.
  • the refractive deflector is fixed at an angle of 60 degrees to the blade frame.
  • the lower end of the refractive deflector is fixed on the blade frame, and the middle portion of the refractive deflector is fixedly connected with the fixing bracket.
  • the blade is fixed to the blade fixing flange of the blade shaft through the blade and the shaft connecting member.
  • the refracting wind deflector and the vane are connected by a fixed bracket for assembly, maintenance and transportation.
  • the wind blade frame is made of an angle steel and is made of a steel structural member to increase the strength of the blade.
  • the blade body has a foliate mesh skeleton made of a steel strip (or a steel wire) in the leaf surface, and a polyester resin (glass reinforced plastic) is attached to the surface, and the surface is smooth and the wind resistance is small.
  • the main function of the blades is to receive wind, and the wind blows onto the blades to produce the maximum rotational moment.
  • the cross section of the wind blade is a streamlined curve of the wing, the wind front area of the wind blade is large, and the wind resistance behind the wind blade is small.
  • the longitudinal section is a convex arch curve.
  • the wind deflecting guide plate is composed of a wind deflecting plate frame, a steel mesh inside, and a polyester resin (glass fiber reinforced plastic) on the surface, the surface is smooth, and the wind resistance is small.
  • the fixing bracket is made of long flat steel and has fixing holes at both ends.
  • the vane and the shaft connecting member have fixing holes at the two ends and the middle portion.
  • the shaft and the blade connection are the most critical bearing points, which bear the weight of the blade and the rotational torque generated by the blade. At the joint of the blade and the shaft connecting flange, the bearing force is maximum, and the connection is strong.
  • the cross section of the piece is the largest, the end endurance is small, and the cross section is small.
  • the wind blade structure of the invention adopts the principle of wind collecting and wind guiding, the wind blade is an involute streamlined curved surface, and the wind blade and the refractive guiding plate are opposite to each other, and the cutting surface of the wind surface of the wind blade is always at right angles with the wind line.
  • the wind ray passes through the refracting guide plate, and can be refracted to the wind blade surface at the maximum torque end at any angle.
  • the flow path of the wind line is linear, no eddy current is generated, and the combined moment of the wind line is directed to the maximum perpendicular to the wind blade surface.
  • the wind is refracted to the maximum point of rotational moment, and the maximum driving torque is generated, so that the blade rotates in the horizontal direction.
  • the blade system has good dynamic balance characteristics, high rotation speed, good stability, and large wind receiving area.
  • the wind utilization rate is more than 8 times higher than that of the propeller wind power machine, up to 75%, and the starting wind speed can be as low as 3 m/s, the rated working wind speed is up to 10 m/s, and the working wind zone can be between 3 and 43 m/s.
  • the system is easy to install and debug, and can be used as a driving power machine for high-power generators.
  • the three blades of the present invention are each offset by 120 degrees, and the three blades are complementary, generating a balanced rotational moment, no starting dead angle and a reversing dead angle, resulting in optimal dynamic balance characteristics and stable rotation.
  • the fan blade system of the above-mentioned one-layer blade structure is suitable for the case where the fan capacity is small, and when the fan capacity is large, the fan blade system can adopt the two-layer fan blade structure. Further, When the fan is of large capacity, the fan blade system can also adopt a multi-layered blade structure. Specifically, when a two-layer wind blade structure is used, the upper wind blade and the lower wind blade are 60 degrees out of phase, and when the three-layer wind blade structure is used, each blade has a phase error of 40 degrees, and when the N-layer wind blade structure is used, Each layer of blades has a phase error of 120 degrees/N. This structure makes the blades rotate smoothly and the balance is better.
  • the blade radius and the fan height of the present invention are only one-sixth of the height of the propeller-type blade and the height of the fan.
  • One quarter, high rotation speed, high wind utilization, good balance, no need for towers, hubs and deflection mechanisms, no noise, can be used as a driving power machine for high-powered power machinery and wind turbines, can be installed on the ground And the mountains, can also be placed on high-rise buildings and buildings, easy to connect with the grid, or as a building for independent heating, lighting and other electricity, but also in areas without electricity, such as remote areas, islands and other power supply.
  • a wind collecting and protection system is further provided, and the wind collecting and protecting system comprises a plurality of collecting plates, and by adjusting the angle of each collecting plate, the wind receiving capacity of the wind power machine can be controlled, and the generator is adjusted.
  • the wind and protection system can be driven by an electric motor or a hydraulic drive system.
  • wind collecting plate and the box frame and the upper and lower slabs together form a wind tunnel type box wind collecting body (in the form of a bellows or a wind tunnel) to reduce wind leakage.
  • the wind power utilization rate is high, the wind power machine has good balance, the rotation speed is high, the wind speed of the wind power machine is 2 m/s, and the maximum working wind speed is 36 m/s, when the wind speed exceeds 36 m/ s, by adjusting the wind deflector to change the wind power of the wind power machine, the generator can be operated to a maximum wind speed of 42 m / s; when the wind speed exceeds 42 m / s, the wind deflector is completely closed, and 1/4 of the air inlet is left
  • the wind turbine can still work normally.
  • the invention can be operated all the time at wind speeds above 2.5 m/s.
  • the speed increaser system adopts a vertical speed increaser, which is an eccentric pendulum type double planetary gear structure, which has a large speed increase ratio, a large number of gear teeth and a ring gear, a large occlusion area, a large transmission torque and a high transmission efficiency. Suitable for speed-increasing drive systems above 5 MW.
  • the generator system of the invention adopts a multi-winding variable pole vertical asynchronous generator, which comprises a rotor, a stator and a heat dissipating cooling device.
  • the energy generated by the rotor is transmitted to the stator through magnetic transmission, and the stator is converted into voltage and current to the grid, and the utility model is omitted.
  • the generator rotor brush and slip ring eliminate the rotor inverter of the doubly-fed generator.
  • the rotor structure adopts a squirrel cage structure, and the rotor shaft comprises two parts: a crankshaft and a shaft drum, the crankshaft and the shaft drum are fixed together, the shaft drum adopts a hollow manner, and the shaft drum is provided with ventilation holes at both ends, and the rotor magnetic pole is fixed at On the shaft drum.
  • the stator is a multi-winding variable pole stator structure, and the wiring mode is a 2-winding asynchronous pole-changing mode, a 3-winding asynchronous pole-changing mode and a multi-winding asynchronous pole-changing mode, and the pole pair of the stator is changed by changing the wiring mode of the winding coil.
  • the pole pair can work in 4 poles, 6 poles, 8 poles, 12 poles, 16 poles, 18 poles, 20 poles, 24 pairs Pole, 32 poles, 36 poles, 48 poles, 64 poles, 72 poles, 80 poles, 84 poles, 96 poles, 100 poles and 120 poles, of which 120 pairs of extreme direct drive generator sets ), can adapt to the operating characteristics of each wind speed zone, and solve the problems of large size and transportation difficulties of high-power multi-pole generators.
  • the heat dissipation cooling device adopts a shaft drum type rotor cooling heat dissipation method.
  • the invention can adapt to the characteristics of the natural environment of the wind and meet the requirements of the power grid.
  • the wind power system may adopt a structure in which a plurality of box frames are superimposed and combined, and the capacity of the generator and the wind speed of the wind field determine the number of combinations of the frame frames, such as a single layer.
  • the 500KW two-piece box frame is superimposed with 1MW (1MW) generator set.
  • the four sets of 500KW box frame stack can be matched with the 2MW generator set, and so on.
  • the 5 sets of 1MW box frame stack can be combined.
  • a spare bellows can also be added (the electromagnetic clutch is activated when the wind speed is low). Due to the convenience of installation and maintenance, the cost is low, and the small-capacity model 10KW ⁇ 100KW can be widely promoted on the roof of the city. Large-scale units can be installed on land, on the mountain and at sea.
  • the present invention also provides a connecting member of a large wind turbine shaft, that is, a chain coupling, the chain coupling has a large transmission torque, and can solve a case with a large difference in heart, and has a larger
  • the freedom of the shaft is connected, easy to process, easy to assemble and transport, and produces maximum transmission torque and rotational torque.
  • the chain coupling includes an upper sprocket, a lower sprocket, a chain shaft, an upper sprocket, a lower sprocket, and a key
  • the upper sprocket is coupled to the upper shaft and sleeved at the end of the upper shaft by the key Fixed, the same, the connection of the lower sprocket to the lower shaft, and the end of the lower shaft,
  • the connection between the upper sprocket and the lower sprocket is fixed and fixed by a connecting chain
  • the connecting chain is composed of a chain shaft, an upper chain piece and a lower chain piece.
  • the present invention adopts an excitation grid-connected control system, whereby the excitation grid-connected control system can control the speed of the wind turbine, that is, on one hand, the wind collecting plate is controlled to adjust the wind blade.
  • the air volume is used to adjust the speed of the generator; on the other hand, the excitation system of the generator set is controlled so that the voltage and current waveform output by the wind turbine does not change with the wind speed, so that the output voltage frequency and phase of the generator set are constant and can be controlled. It can also control the wind turbine to be connected to the grid at the same phase to reduce the impact of the generator on the grid at the moment of grid connection.
  • the working wind power range of the wind power generation system of the invention has a minimum wind speed of 3 m/s and a maximum wind speed of 42 m/s.
  • the system successfully solves the technical problems that the traditional propeller wind turbine equipment cannot be enlarged and industrialized.
  • large-scale blades are difficult to install at high altitude; the control system relies on imports, and the generator outputs small current to the grid; Machine spindle bearing import is difficult; transportation installation and maintenance is difficult; safe and stable operation is difficult; high cost.
  • the wind collecting vertical wind power generation system of the present invention has at least the following advantages:
  • the wind turbine adopts the horizontal rotation automatic control wind collecting system. Compared with the traditional three-blade wind power generation system, the wind utilization rate is increased by more than 6 times. 2. Compared with the same power wind power generation system, the volume is reduced by more than 50%. 3. Power generation quality and grid-connected performance have been greatly improved; 4. Compared with the traditional three-blade wind power system, the total cost of construction is reduced by more than 40%; 5. The wind farm land utilization rate is increased by more than 3 times; Installation and maintenance costs are reduced by 60%, 80% and 50% respectively; 7. The fan blade system is horizontally rotating, with good balance stability, and can be installed on the roof of urban and rural buildings, with important promotion value; 8. The whole wind The power generation system can be operated on the grid or separately from the network; 9.
  • the system adopts the building block structure, which can realize multi-layer combination, so it can form a high-power 2-5 MW wind turbine system; 10.
  • the generator is installed at On the ground, the four-pillar tower supports the bellows, the height is only 30% of the traditional three-blade fan, the manufacturing cost is reduced by 50%, and the structure is suitable for manufacturing and installing ultra-large 2 to 5 MW wind power.
  • the motor unit has the ability to resist strong typhoon and blizzard; 11.
  • the system adopts intelligent control mode to achieve zero-cutting into the grid and no impact on the grid.
  • FIG. 1 is a schematic structural view of a wind collecting vertical wind power generation system according to an embodiment of the present invention
  • Figure 2 is a schematic structural view of the large combined machine shaft shown in Figure 1
  • Figure 3a is a schematic structural view of the air vane system shown in Figure 1
  • Figure 3b is a front side view of the air vane system shown in Figure 3a
  • Figure 3c is a side view of the fan blade system shown in Figure 3a
  • Figure 4 is a schematic view of the assembly structure of the blade system and the crankshaft shown in Figure 1
  • Figure 5 is a schematic view of the structure of the wind collecting and protection system shown in Figure 1.
  • FIG. 6a is a schematic diagram of the operating state of the wind collecting and protection system shown in Figure 5;
  • Figure 6b is the second schematic diagram of the operating state of the collecting and protecting system shown in Figure 5;
  • Figure 7 is the coupling system shown in Figure 1.
  • Figure 8 is a plan view of the coupling system shown in Figure 7;
  • Figure 9 is a schematic view of the frame four-corner cable fixing system shown in Figure 1;
  • the structure of the high-efficiency wind-collecting vertical wind power generation system is shown in Figure 1.
  • the system consists of a wind power system, a wind collecting and protection system, a speed increaser system, a generator system, a grid-connected transformer system, and a monitoring control system.
  • the frame of the wind power generator may be a triangular frame, a quadrangular frame, a pentagonal frame, a hexagonal frame, an octagonal frame or a circular frame.
  • the system uses a quadrangular frame as an example. Introduce the structure of this system.
  • 2 is a multi-stage combined blade machine shaft; 3 is a fan blade, 13 blade refracting plate, 3 blades are a group, respectively, and are distributed at an angle of 120 degrees; 4 is a wind collecting plate, and each of the four sides of the frame is a collecting plate.
  • wind collecting and protection system 5 is the wind collecting plate supporting the driving arm
  • 6 is the hydraulic driving device
  • 7 is the chain coupling
  • 8 is the speed increasing device
  • 9 is the multi-winding variable pole asynchronous generating set
  • 10 is the control System
  • 11 is the frame four-corner cable fixing pier
  • 12 is the frame four-corner fixed cable
  • 13 wind blade refractive plate, 14 and 15 are the upper and lower slabs of the wind collecting box
  • 16 is the collecting plate slide
  • 17 is the collecting plate Pulley
  • 18 is the upper and lower shaft bearing housing
  • 19 is the foundation base of the wind power generation system.
  • FIG. 2 shows.
  • the large combined machine shaft is to disassemble an ultra-long machine shaft into several sections for processing, transportation and assembly, which is convenient for processing and transportation, and can complete processing of large super-long shafts by using a small processing machine.
  • the invention is applicable not only to large wind turbine combination shafts, but also to other types of shafts, or other long cylindrical types, and large frame-shaped combined connection structures and processes.
  • the crankshaft structure of the multi-stage combined wind power generator used in the embodiment decomposes the crankshaft of a long wind power generator into several sections, and adopts a combined structure, which can change the angle of the wind blade in any combination to eliminate the dead angle of the wind blade. Maintaining the continuity of the rotor's rotational torque reduces the deformation and vibration of the crankshaft wind; and changes the solid shaft structure to a hollow structure, which is easy to process, saves a lot of steel, and increases the strength and rotational torque of the crankshaft. It is easy to assemble and transport and increase the rotational torque. After a large number of simulation experiments and a large number of calculations, the system is adapted to 10KW ⁇ The need for wind power systems above 10 MW.
  • the middle shaft can be 1 or more. as shown in picture 2.
  • the large-scale wind turbine combined machine shaft includes a shaft end at both ends, a shaft tube at the upper and lower sides, a fixed shaft plate and a flange fixing flange.
  • This embodiment is applicable to a wind turbine generator having a large capacity, a plurality of blades, and a long shaft.
  • the middle shaft can be one section or multiple sections, and the middle shaft can adopt the same structure.
  • the two-stage (multi-section) axle system comprises four parts: the upper shaft includes: an upper shaft tube 2, an upper shaft end 24, an upper shaft connecting plate 25, an intermediate blade fixing flange 22, and a center positioning pin 26.
  • the lower stage shaft includes a lower shaft tube 20, a lower blade fixing flange 23, a lower shaft connecting plate 27, a lower shaft end 28, and a fixing bolt 29.
  • the middle shaft includes: the middle shaft lower connecting plate, the middle shaft tube, and the middle shaft connecting plate.
  • the blade connecting flange includes: an upper blade flange 21, a middle blade fixing flange 22, and a lower blade flange 23 connected to the blade.
  • the upper and lower blade fixing flanges are shown in Fig. 5 as triangular steel plates or circular flanges, and there are three rows of blade fixing holes which are mutually 120 degrees.
  • the intermediate vane flange 22 is of a circular shape, and has six rows of fixing holes that can fix six vanes at a 60-degree angle.
  • the added intermediate vane flanges are identical to the vane flanges 22.
  • the lower shaft and the middle shaft are combined and connected as shown in FIG. 2, the lower shaft connecting plate 27 is assembled with the blade flange 22 and the connecting plate 25 of the upper shaft tube, and the intermediate shaft portion is positioned by the shaft positioning shaft pin 26, so that The lower and middle shafts and the middle blade flange 22 are accurately positioned on the center line, and the shaft connecting plate is fixed to the fan flange and the shaft connecting plate by fixing bolts.
  • the whole machine shaft is positioned and fixed under the axis positioning pin, and the high-precision coaxial core is realized to form an integral machine shaft.
  • the combined fan blade system comprises three parts: a fan blade, a folding plate and a folding plate strut.
  • the fan blade is fixed on the flange of the crankshaft and fixed on the flange of the crankshaft by bolts. .
  • 3 is a wind blade
  • 13 is a folding plate
  • 30 is a wind plate bracket.
  • the front side view is parabolic and the side view is streamlined.
  • the parabola has a small rotational resistance, and the wind-blown linear rotating wind line is linear.
  • the invention is based on a new principle of wind dynamics and wind guiding.
  • the wind blade is an involute streamlined curved surface, and a wind deflector is mounted on the wind blade, and the wind is blown onto the refractive plate to refract the wind to the maximum torque gathering point.
  • the wind surface of the wind power fan blade always has a right angle with the wind line, so that the wind force directs the blade to rotate in the horizontal direction, the wind blade receives the driving force to the maximum, the wind drives the blade to rotate, and the wind line flow path is linear. Does not generate eddy currents.
  • Figure 3a shows the structure of the blade.
  • the fan blade system consists of a fan blade, a wind deflector, a connecting plate and a connecting reinforcing plate.
  • the wind of the system directly pushes the wind blade to rotate in the horizontal direction, has good dynamic balance characteristics, large wind receiving area, high wind utilization rate, and the wind ray passes through the refracting guide plate, so that it can refract the wind blade surface at the maximum torque end at any angle.
  • the wind ray is perpendicular to the outer surface of the wind blade surface, generating maximum thrust and maximum rotational torque, pushing the blade to rotate in the horizontal direction.
  • the blades rotate in the horizontal direction with good balance characteristics, high speed and good stability, which is easy to install and debug.
  • the angle between the blade and the refractive guide is preferably 60 degrees.
  • Rotating the blades to any position and angle enables the wind to be guided through the refracting plate, so that the combined moment of the wind line is concentrated at the focal point of the largest plane perpendicular to the blade surface, so that the wind is refracted to the maximum point of rotational moment. .
  • the three blades of the invention are each offset by 120 degrees, and the three blades are complementary, generating a balanced rotational moment, no starting dead angle and a reversing dead angle, resulting in optimal dynamic balance characteristics and stable rotation.
  • Figure 2 shows the 2-layer wind blade structure.
  • the wind collecting and protection system is shown in Figure 5.
  • the wind collecting and protection system is supported by the wind collecting plate 4, the wind collecting plate supporting the driving arm 5, the hydraulic driving system 6, the collecting plate slide 16, and the collecting plate pulley 17.
  • the wind collecting system increases the air volume when the wind is opened, as shown in Figures 6a to 6b, adjusts and controls the wind collecting system and automatically adjusts the air collecting amount to adjust the number of revolutions of the generator; in the violent wind, the wind collecting system can be closed. Protect the unit. In the violent wind, the air intake system can be closed after the wind collecting system is closed, as shown in Figure 7, which solves the problem that the wind power generator can safely run power generation and protection in strong storms, and still maintain normal operation. .
  • the drive for the wind and protection system can be either a hydraulic drive system or a motor drive system. This system uses the hydraulic drive system as an example to illustrate the drive structure and principle of the wind and protection system.
  • the connecting parts of the large-scale wind turbine shaft and the chain coupling have large transmission torque, which can solve the connection of the machine shaft with large degree of freedom under the condition of large difference of heart, easy to process and easy to assemble and transport. Produces maximum transmission torque and rotational torque.
  • the chain coupling is shown in Figures 7-8.
  • 31 is the upper connecting wheel
  • 32 is the lower connecting wheel
  • 33 is the chain shaft
  • 34 is the upper and lower chain pieces
  • 35 is the upper key
  • 36 is the lower key.
  • the upper connecting wheel 31 is connected to the upper shaft, and the upper connecting wheel 31 is sleeved at the lower end of the blade shaft, and is fixed by the key 35.
  • the lower coupling wheel 32 is coupled to the transmission shaft, and the lower coupling wheel 32 is sleeved to the transmission shaft portion and is fixed by a key 36.
  • the connection of the upper connecting wheel 31 and the lower connecting wheel 32 is connected to the link 34 by a connecting link shaft.
  • the connecting chain is composed of a chain shaft 33 and an upper chain piece 34.
  • the upper coupling wheel 31 and the lower coupling wheel 32 and the connecting chain are subjected to transmission of the entire crankshaft rotational torque.
  • the sprocket coupling is light in weight, has large deformation resistance and large torsional torque, allows different degrees of freedom and freedom, and is easy to process. After being tested and verified in a large wind turbine, it has excellent effects. After a large number of simulation calculations and practical application experiments, it is easy to assemble and transport. It can be applied to various types of wind turbine systems below 10MW, and can be applied to various types of power mechanical transmission systems.
  • the frame stabilization system is shown in Figure 9.
  • the fixed pier 11 is fixed to the ground by the cable 12 at the four corners above the frame.
  • the fixed pier is on the diagonal extension of the four vertical pedestals.
  • the distance can be 1/ of the frame height. 3 ⁇ 1/1.
  • the upper and lower slats 14, 15 of the frame together with the plenum 4 form a bellows type or a duct form to reduce wind leakage.
  • the upper slab reduces wind and sand and rain and snow, and reduces damage to the wind turbine blades caused by freezing.

Description

集风立式风力发电系统 技术领域
本发明涉及风力发电技术领域的一种立式风力发电系统。具体地说,涉及的是一种新型高效率集风立式风力发电系统。
背景技术
随着世界能源危机的发生,利用风力动能发电作为新能源已经成为现代社会发展的热点。传统的三浆叶风力发电机的发电机组与增速器均安装在塔筒顶端的高空,长大沉重的风叶斜挂在侧面,并需要重大的配重体。考虑到风叶、增速器,发电机组、配重体再加上沉重的机仓具有几百吨的重量,若利用塔筒支持在高空,则风力吹动会产生巨大的翻倒力矩,无法抵抗狂风的吹毁与冰冻的损坏,同时,传统风力发电机体积大,运输与维修难度大,且风力利用率低。虽然后继发展出的风力发电机部分克服了传统风力发电机的不足,但其仍存在风叶受风量小,风力启动力矩大,启动死角与换向死角大等缺陷。例如,现有翼型风叶受风面积小,风力利用率低,存在前翼面风阻大,换向死角大,风力利用率低,难于大容量化。
经对现有技术的文献检索发现,专利号ZL200430067146.5与专利公开号W02007/140397A2中专利文献中记载的风力发电机中的风叶依然存在风力利用率低,在启动与旋转运动中存在启动死角与换向死角大的问题。
同样的,专利申请号200410023530.4的发明专利中所涉及的风力发电机的风叶系采用NACA0009翼型,该风叶受风面积小,风力利用率低,存在前翼面风阻面,在旋转运动中存在换向死角,难于大容量化。
技术问题
本发明的目的在于提供一种集风立式风力发电系统,其结构稳固、运行性能稳定,风力利用率高,便于组装维护,易于运输,从而克服了现有技术中的不足。
技术解决方案
为实现上述发明目的,本发明所述的集风立式风力发电系统包括风动力系统、增速器系统、立式发电机系统、励磁并网控制系统。
所述风动力系统采用箱体框架结构,包含风叶系统和集风与保护系统;所述增速器系统采用立式增速器,其为偏心摆式双行星轮结构;所述发电机系统采用变极式立式异步发电机;所述立式发电机系统与增速器系统安装在地面上。
以下对本发明各个部分进行详细说明:
1.风动力系统
所述风动力系统采用箱体框架结构,其包括风叶机轴、风叶系统和集风与保护系统及其驱动系统。
1.1箱体框架结构
所述箱体框架结构可选自三角形框架系统、四角形框架系统、五角形框架系统、六角形框架系统、八角形框架系统以及N角形框架系统或圆形框架系统。通过采用箱体框架结构(风箱式框架式结构),使得本发明的风力发电系统整体结构便于组装、维修与运输,总高度降低了2/3,节约原材料60%,便于陆地,山上与海上安装与运行,其中,小机型便于渔船、楼顶安装与运行;大机型便于陆地安装与运行;大型机组便于陆地,山上与海上大型风场安装与运行。
该箱体框架结构中还设置有上、下棚板,藉该上、下棚板可减少风沙与雨雪侵袭,减小冰冻对风力发电系统,尤其是风叶等的损坏。
优选的,该箱体框架结构上还可配套使用框架稳固系统,其采用在框架上方四角利用钢索固定到地面的固定墩,固定墩在四个立拄基座的对角延长线上。距离可为框架高度的1/3~ 1/1。本系统抗翻倒力矩大,稳固性能好,可以抗暴风吹毁力。
1.2风叶机轴
目前风力发电机容量较大,风叶较多,因此需要的风叶机轴较长,本发明采用大型多段组合式机轴,其系通过将一根长风力发电机的机轴分解为几段,并根据实际需要通过增减中段机轴组合成型。具体而言,该风叶机轴包括下轴端与上轴端,下轴管与上轴管,下轴连接盘与上轴连接盘,上风叶固定法兰盘、中风叶固定法兰盘与下风叶固定法兰盘,轴心定位销与固定螺栓与螺帽。其中,上轴端、上轴管、上轴连接盘,中风叶固定法兰盘和轴心定位销等组成上段机轴,下轴连接盘、下轴管,下轴端、下风叶固定法兰盘和固定螺栓等组成下段机轴。所述的下轴端与下轴管以及上轴端与上轴管均采用强配合焊接连接,下轴管和上轴管通过下轴连接盘、中风叶固定法兰盘、上轴连接盘和螺丝固定连接,且风叶机轴整体采用轴定位销中心定位。若有需要,还可增加一至多段中段机轴,所述中段机轴可由中段轴下连接盘、中段轴管和中段轴上连接盘等组成。中段机轴之间,以及中段机轴与上、下段机轴的连接结构与上述上、下段机轴的连接结构相似。
本发明中将风叶通过风叶固定法兰盘与风叶机轴进行连接固定,从而可以任意组合改变风叶角度,消除风叶死角,保持风力力矩的连续性,减小了机轴的形变与振动。同时,本发明的风叶机轴系采用空心式结构替换原有实心轴结构,重量轻,便于加工,节约大量的钢材,增加机轴的强度与旋转扭力矩,并便于组装与运输。
1.3风叶系统
本发明采用立式水平旋转式风叶系统,其包括风叶框、风叶叶体、折射导风板、固定支架以及风叶与轴连接件。其中,风叶框与风叶叶体内部的钢网焊接在一起构成整体风叶。折射导风板与风叶框成60度角固定。折射导风板下端部固定在风叶框上,折射导风板中部与固定支架固定连接。风叶通过风叶与轴连接件连接固定在风叶机轴的风叶固定法兰盘上。折射导风板与风叶通过固定支架进行连接,便于组装,维修与运输。
所述风叶框由角钢做成长方体,材料采用钢结构件,以增加风叶强度。所述风叶体,其叶面内由钢带(或钢丝)制成叶面网状骨架,表面附有聚酯树脂(玻璃钢),表面光滑,风阻小。风叶主要作用是受风,风吹到风叶上产生最大的旋转力矩。风叶横截面呈机翼流线型曲线,风叶正面受风面积大,风叶后面风阻小。纵截面呈突起拱型曲线,当风力推动风叶转动,风力线运动轨迹呈直线状,不产生涡流,风力射线运动轨迹呈最佳状态。所述风叶有三个,三个风叶各相错120度角。 所述导风折射导向板由导风板框架,内部有钢网,表面附有聚酯树脂(玻璃钢),表面光滑,风阻小。 所述固定支架由长扁钢制成,两端有固定孔。 所述风叶与轴连接件两端的与中部有固定孔。所述轴与风叶连接件是最关键的承受力点,既承受风叶重量,又要承受风叶所产生的旋转力矩,在风叶与轴连接法兰盘的连接处,承受力最大,连接件的横截面为最大,端部承受力小,横截面也小。
本发明的风叶结构采用集风与风力导向原理,风叶呈渐开线式流线形曲面,风叶与折射导向板相向结合,风叶的受风力面的切面始终与风力线成为直角,令风力射线经过折射导向板,在任何角度都能折射到最大力矩端的风叶面,风力线流动轨迹呈直线形,不产生涡流,风力线的合力矩集中指向最大的与风叶面相垂直切平面的焦点处,使风力折射到最大的旋转力矩点,产生最大的推动力矩,使风叶沿水平方向旋转,因此风叶系统动平衡特性好,转速高,稳定性好,受风面积大,风力利用率较之螺旋桨式风力动力机提高8倍以上,可高达75%,且启动风速可低至3米/秒,额定工作风速达10米/秒,工作风区可在3~43米/秒的风速区,同时,系统便于安装与调试,可作为大功率发电机的驱动动力机械。
此外,本发明的三个风叶各相错120度角,三个风叶互补,产生平衡的旋转力矩,无启动死角与换向死角,产生最佳的动平衡特性,旋转平稳。
需要说明的是,上述一层风叶结构的风叶系统适于应用在风机容量较小的情况,而当风机容量较大时,则风叶系统可以采用二层风叶结构方式,进一步的,当风机为大容量时,风叶系统还可采用多层风叶结构方式。具体而言,当采用2层风叶结构时,上层风叶与下层风叶相错60度,采用3层风叶结构时,每层风叶相错40度,采用N层风叶结构时,每层风叶相错120度/N,这样的结构方式使得风叶旋转平稳,平衡性更好。
本发明风叶半径与风机高度仅是螺旋桨式风叶半径与风机高度的六分之一~ 四分之一,旋转速度高,风力利用率高,平衡性好,不需塔架、轮毂和偏转机构,无噪音,可作为大功率动力机械与风力发电机的驱动动力机械,可安装在平地与山上,也可安放在高层建筑与楼房上,便于与电网并网,或作为楼房的独立取暖,照明等用电,也可在无电地区运行,如偏远地区,岛屿等的供电。
1.4集风与保护系统
本发明的风力发电系统中还增加设置了集风与保护系统,所述集风与保护系统包括若干集风板,通过调节各集风板的角度,可以控制风力动力机的受风量,调节发电机的转速,且当风速过大或刮台风时,通过闭合集风板,可起到保护发电机系统的作用。集风与保护系统可以采用电动机驱动,也可以采用液压驱动系统。
进一步的,上述集风板与箱体式框架和上、下棚板共同构成风洞式的箱式集风体(风箱形式或称为风道形式),减少风力泄漏。
本发明的风力发电系统在增加集风与保护系统后,风力利用率高,风力动力机平衡性好,转速高,风力动力机启动风速为2m/s,最大工作风速36m/s,当风速超过36m/s时,通过调节集风板来改变风力动力机的受风量,可以使发电机工作到最大风速42m/s;当风速超过42m/s时,集风板完全闭合,且留1/4的进风口,风力发电机仍可正常工作。本发明可完全在2.5m/s以上的风速全天候运行。
2.增速器系统
本发明中增速器系统采用立式增速器,其为偏心摆式双行星轮结构,增速比大,齿轮与齿圈咬合齿数多,咬合面积大,传动力矩大,传动效率高,可适用于5兆瓦以上的增速驱动系统。
3.立式发电机系统
本发明中发电机系统采用多绕组变极立式异步发电机,其包括转子、定子和散热冷却装置,转子产生的能量通过磁传输给定子,由定子转换为电压与电流传输到电网,省去了发电机转子电刷和滑环,省去了双馈发电机的转子逆变器。所述转子结构采用鼠笼式结构,其转子轴包括机轴与轴鼓两部分,机轴与轴鼓固定在一起,轴鼓采用中空方式,轴鼓两端设有通风孔,转子磁极固定在轴鼓上。所述定子为多绕组变极式定子结构,其接线方式为2绕组异步变极方式、3绕组异步变极方式及多绕组异步变极方式,通过改变绕组线圈的接线方式来改变定子的极对数(如,在发电机直径不变的情况下,极对数可工作在4对极、6对极、8对极、12对极、16对极、18对极、20对极、24对极、32对极、36对极、48对极、64对极、72对极、80对极、84对极、96对极、100对极和120对极,其中120对极为直驱发电机组),可适应各风速区的运行特性,解决了大功率多极发电机体积过大和运输困难得难题等问题。所述散热冷却装置采用轴鼓式转子冷却散热方式。本发明能适应风力自然环境特点与满足电网要求。
为与所述立式发电机系统配合,上述风动力系统可采用多个箱体框架叠加组合的结构方式,发电机的容量和风场的风速决定了箱体框架组合的个数,如单层为500KW的两组箱体框架叠加为1MW(1兆瓦)的发电机组相配套,同样,4组500KW箱体框架叠加可以与2MW发电机组相配套,以此类推,5组1MW箱体框架叠加可以与5MW(5兆瓦)发电机组相配套。在此基础上还可以加备用风箱(当风速低的时候电磁离合器启动)。由于安装和维修方便,成本低,小容量机型10KW~100KW可广泛在城市的楼房顶上推广,大型机组可以安装在陆地,山上与海上。
此外,本发明还提供了一种大型风力发电机机轴的连接件,即链式联轴器,此链式联轴器传动力矩大,可以解决具有较大不同心度情况下,具有较大自由度机轴的连接,加工方便,便于组装与运输,产生最大的传动扭矩与旋转扭矩。
具体而言,该链式联轴器包括上链轮、下链轮、链轴、上链片、下链片和键,上链轮与上轴连接,并套在上轴端部,由键固定,同样的,下链轮与下轴的连接,并套在下轴端部, 由键固定,上链轮与下链轮的连接由连接链连接与固定,该连接链由链轴、上链片、下链片构成。
4.励磁并网控制系统
目前,传统的风力发电机,如的螺旋桨式风力动力机与其他类型的风力动力机的转数随风力与风速的变化而变化,因此发电机的输出电压,频率和输出功率都相错极大。
本发明为了适应风力发电系统的工作特点,采用了励磁并网控制系统,藉此励磁并网控制系统可对风力发电机的转速进行控制,即,一方面控制集风板来调节风叶的受风量,以达到调节发电机的转速;另一方面控制发电机组的励磁系统,使风力发电机输出的电压电流波形不随风速变化,使发电机组输出电压频率、相位恒定并可调受控,并可控制风力发电机在同相位时并网,以减少发电机在并网瞬间对电网的冲击。本发明风力发电系统的工作风力范围最低风速3m/s,最高风速42m/s的全天气运行。
有益效果
概言之,本系统成功地解决了传统螺旋桨式风力发电机组设备不能大型化和产业化的技术难题,如:大型叶片高空安装难度大;控制系统依赖进口,发电机向电网输出电流小;发电机主轴轴承进口难;运输安装维修难;安全稳定运行难;成本高等。且与现有技术相比,本发明的集风立式风力发电系统还至少具有如下优势:
1、风机采用水平旋转自动控制的集风系统,与传统的三桨叶式风力发电系统相比,风力利用率提高6倍以上;2、与同功率风力发电系统相比,体积缩小50%以上;3、发电质量和并网性能具有大幅度的提高;4、与传统的三桨叶式风电系统相比总造价成本降低40%以上;5、风场土地利用率提高3倍以上;6、安装维修和运输成本分别降低60%、80%和50%以上;7、风叶系统呈水平旋转式,平衡稳定性好,可以安装在城乡楼顶上,具有重要的推广价值;8、整个风力发电系统可以并网运行,也可以离网单独运行;9、系统采用积木式结构,可实现多层组合,因此可构成大功率2~5兆瓦级风力发电机组系统;10、发电机安装在地面,采用四支柱塔架支撑风箱,高度仅是传统三桨叶风机的30%,制造成本降低50%,机型结构适合于制造和安装超大型2~5兆瓦以上风力发电机组,具有抗强台风和暴风雪能力;11、系统采用智能控制模式,做到并网零切入,对电网无冲击。
附图说明
图1为本发明具体实施方式中一种集风式立式风力发电系统的结构示意图; 图2为图1中所示大型组合机轴的结构示意图; 图3a为图1中所示风叶系统的结构示意图; 图3b为图3a中所示风叶系统的前侧视图; 图3c为图3a中所示风叶系统的侧视图; 图4为图1中所示风叶系统与机轴的组装结构示意图; 图5为图1中所示集风与保护系统的结构示意图; 图6a为图5所示集风与保护系统的运行状态示意图之一; 图6b为图5所示集风与保护系统的运行状态示意图之二; 图7为图1中所示联轴器系统的剖面结构示意图; 图8为图7中所示联轴器系统的俯视图; 图9为图1中所示框架四角缆绳固定系统示意图; 上述图中,各附图标记所指示之元件分别为:1为系统框架;2为风叶机轴;3为系统风叶,分别成120度角分布;4为集风板;5为集风板支持驱动臂,6集风系统液压装置;7为链式联轴器;8为双行星式升速器;9立式多绕组变极异步发电机;10控制系统;11为框架四角缆绳固定墩;12为框架四角固定缆绳;14、15为集风箱体的上下棚板;16为集风板滑道,17为集风板滑轮,18为风叶机轴的轴承固定座,19为风力发电系统的地基机座。
本发明的实施方式
以下结合附图和实施例对本发明的技术方案作进一步的解释,但是以下的内容不用于限定本发明的保护范围。
总体结构
高效率集风立式风力发电系统结构如图1所示,本系统由风动力系统,集风与保护系统,增速器系统,发电机系统,并网变压器系统,监测控制系统。
图1中所示1为系统框架;风力发电机的框架可是三角型框架,也可以是四角形框架,五角形框架,六角形框架,八角形框架或为圆形框架,本系统以四角形框架为例,介绍本系统的结构。2为多段组合型风叶机轴;3为风叶,13风叶折射板,3个风叶为一组,分别成120度角分布;4为集风板,框架四面各一个集风板,构成四面集风与保护系统;5为集风板支持驱动臂,6为液压驱动装置;7为链式联轴器;8为升速器;9为多绕组变极异步发电机组;10为控制系统;11为框架四角缆绳固定墩;12为框架四角固定缆绳;13风叶折射板、14与15为集风箱体的上下棚板;16为集风板滑道;17为为集风板滑轮;18为上下机轴轴承座;19为风力发电系统的地基机座。
大型组合机轴
图2所示。所述的大型组合机轴是把一个超长机轴分解为几段进行加工运输与组装,即方便了加工和运输,可以利用较小的加工机械,完成大型超长轴类的加工。此发明不仅适用于大型风力发电机组合机轴,也适用于其他类型的机轴类,或其他的长圆柱型类,及大型框架形组合连接结构与工艺。
本实施例采用的多段组合式风力发电机的机轴结构,把一根长风力发电机的机轴,分解为几段,采用组合式结构,可以任意组合改变风叶角度,消除风叶死角,保持风叶旋转力矩的连续性,减小了机轴风的形变与振动;并把实心轴结构改为空心式结构,便于加工,节约了大量的钢材,增加了机轴的强度与旋转扭力矩,便于组装与运输,增加旋转扭力矩。经过大量的模拟实验与大量的计算,本系统适应于10KW~ 10兆瓦以上风力发电系统的需要。
组合机轴实施例
当风力发电机容量较大,需要风叶多,需要机轴较长时,则可增加中段机轴,中段机轴可为1段,也可增至多段。如图2所示。
本实施例涉及的大型风力发电机组合机轴,包括两端轴端,上下段轴管,固定轴盘与风叶固定法兰盘。本实施例适用于风力发电机组容量大,风叶多,机轴长。中段机轴可为一段,也可增加为多段,中段机轴可采用相同的结构。两段(多段)轴体系统共包含四部分:上段机轴包括:上轴管2、上轴端24、上轴连接盘25,中间风叶固定法兰盘22,中心定位销26。 下段机轴包括:下轴管20,下风叶固定法兰盘23、下轴连接盘27、下轴端28、固定螺栓29。中段机轴包括:中段轴下连接盘、中段轴管、中段轴上连接盘。风叶连接法兰盘包括:上风叶法兰盘21、中风叶固定法兰盘22、下间的风叶法兰盘23与风叶连接。轴心定位轴销26,风叶法兰盘固定螺丝29。
上下风叶固定法兰盘如图5所示为三角形钢板或圆形法兰盘,上有互成120度的3排风叶固定孔。中间风叶法兰盘22为圆型,上有6排互成60度角的可固定6个风叶的固定孔。所增加的中间的风叶法兰盘均与风叶法兰盘22相同。
下段机轴与中段机轴组合连接如图2所示,下轴连接盘27与风叶法兰盘22及上段轴管的连接盘25连接组装,中间轴心部以轴心定位轴销26定位,使下段机轴与中段机轴及中间的风叶法兰盘22准确定位在中心线上,通过固定螺栓把轴连接盘与风叶法兰盘及轴连接盘固定在一起。使整体机轴在轴心定位轴销定位固定下,实现高精度的同轴心,构成一个整体机轴。
风叶系统
组合风叶系统如图3a~3c所示,包含风叶,折风板,折风板支杆三部分,风叶安装固定在机轴法兰盘上,利用螺栓固定在机轴法兰盘上。如图3所示,3为风叶,13为折风板,30折风板支架。前侧视图为抛物线形,侧视图为流线形。风叶抛物线形旋转阻力小,风吹流线形旋转体风力线呈直线形。
本发明基于新的风动力学与风力导向原理,风叶呈渐开线式流线形曲面,风叶上装一块导风板,风吹到折射板上,把风力折射到最大力矩汇聚点,使风动力机风叶的受风力面的切面始终与风力线成为直角,使风力为直射推动风叶沿水平方向旋转,风叶受到推动力为最大,风力推动风叶转动,风力线流动轨迹呈直线形,不产生涡流。图3a所示风叶结构图。
风叶系统由风叶,导风板,连接盘与连接加强板组成。本系统风力直接推动风叶沿水平方向旋转,动平衡特性好,受风面积大,风力利用率高,风力射线经过折射导向板,使其在任何角度都能折射到最大力矩端的风叶面,并使风力射线与风叶面的外切面垂直,产生最大的推力与最大的旋转力矩,推动风叶沿水平方向旋转。风叶沿水平方向旋转,平衡特性好,转速高,稳定性好,便于安装与调试。风叶与折射导的夹角为60度为最好。使风叶旋转到任何位置与角度,都能使风力通过折射板导向,使风力线的合力矩集中指向最大的与风叶面相垂直切平面的焦点处,使风力折射到最大的旋转力矩点。产生最大的推动力矩,使风叶沿水平方向旋转。本发明三个风叶各相错120度角,三个风叶互补,产生平衡的旋转力矩,无启动死角与换向死角,产生最佳的动平衡特性,旋转平稳。
风机容量较小时,风叶可以采用上述一层风叶结构方式,当风机容量较大时,风叶可以采用二层以上风叶结构方式。大容量时可采用多层风叶结构方式。2层风叶结构时,上层风叶与下层风叶相错60度,采用3层风叶结构时,每层风叶相错40度,采用N(N=1,2,3,4,5,…n,~ 多层)层风叶结构时,每层风叶相错120度/N,这样结构方式,使风叶旋转平稳,平衡性更好。图4所示2层风叶结构方式。
集风与保护系统
集风与保护系统如图5所示。集风与保护系统由集风板4,集风板支持驱动臂5,液压驱动系统6,集风板滑道16,集风板滑轮17。
集风系统在风小时张开增加风量,如图6a~6b所示,调节控制集风系统并可自动调节集风量,调节发电机的转数;在狂暴风时可关闭集风系统,起到保护机组作用。在狂暴风时可关闭集风系统后仍留有1/4的进风口,如图7所示,解决了风力发电机在强暴风中能安全运行发电及保护问题,并仍能保持正常工作运行。集风与保护系统的驱动可采用液压驱动系统,也可以采用电机驱动系统。本系统以采用液压驱动系统为例说明本集风与保护系统的驱动结构与原理。
链式联轴器
大型风力发电机机轴的连接件,暨链式联轴器,传动力矩大,可以解决具有较大不同心度情况下,具有较大自由度机轴的连接,加工方便,便于组装与运输,产生最大的传动扭矩与旋转扭矩。
链式联轴器如图7~8所示。图中:31为上联轮、32为下联轮、33为链轴、34为上下链片、35为上键,36为下键。上联轮31与上轴连接,上联轮31套在风叶机轴下端部,由键35固定。下联轮32与变速器轴连接,下联轮32套在变速器轴部,由键36固定。上联轮31与下联轮32的连接由连接链轴与链片34连接。连接链由链轴33与上链片34构成。
所述上联轮31与下联轮32和连接链承受传输整个机轴旋转扭矩。
这种链轮式联轴器重量轻,抗形变特性与扭力矩大,允许不同心度与自由度大,加工方便,经过在大型风力发电机的试用验证,得到优良的效果。经过大量模拟仿真计算与实际应用实验,便于组装与运输,可以应用于10MW以下各类型的风力发电机系统,并可以适用各类动力机械传动系统。
框架稳固系统
框架稳固系统如图9所示,采用在框架上方四角利用钢索12固定到地面的固定墩11,固定墩在四个立拄基座的对角延长线上,距离可为框架高度的1/3~ 1/1。如图7所示。
框架棚板
框架上、下棚板14、15与集风板4共同构成风箱式或称为风道形式,减少风力泄漏。同时上棚板减少风沙与雨雪侵袭,减小冰冻对风力发电机风叶的损坏。
以上实施例仅用于说明本发明的内容,除此之外,本发明还有其它实施方式。但是,凡采用等同替换或等效变形方式形成的技术方案均落在本发明的保护范围内。

Claims (10)

  1. 一种集风立式风力发电系统,其特征在于:所述风力发电系统包括风动力系统、增速器系统、立式发电机系统和励磁并网控制系统,所述风动力系统通过链式联轴器与增速器和立式发电机系统连接,所述立式发电机系统由励磁并网控制系统控制;其中:
    所述风动力系统采用箱体框架结构,包含风叶系统和集风与保护系统,所述箱体框架的上、下端分别设置上棚顶和下棚板,所述集风与保护系统包括分布在箱体框架四个侧面处的复数个集风板,上棚顶、下棚板和复数个集风板固定连接,形成风洞式的箱式集风体;
    所述增速器系统采用立式增速器,为偏心摆式双行星轮结构;
    所述发电机系统采用立式多绕组变极异步发电机;
    所述立式发电机系统与增速器系统安装在地面上。
  2. 如权利要求1所述的集风立式风力发电系统,其特征在于:所述集风与保护系统还包括能调节控制集风系统并自动调节风量,进而调节发电机转数的驱动装置,该驱动装置包括集风板的支撑驱动臂以及与之连接的液压驱动设备。
  3. 权利要求1所述的集风立式风力发电系统,其特征在于:所述风动力系统还包括风叶机轴,所述风叶系统包括风叶框、风叶叶体、折射导风板、固定支架以及风叶与轴连接件,风叶框与风叶叶体内部钢网焊接在一起构成风叶整体,折射导风板与风叶框成60度角固定,折射导风板下端部固定在风叶框上,折射导风板中部与固定支架端部固定连接;
    每三个彼此之间成120度角的风叶通过风叶与轴连接件连接固定在风叶机轴上的一风叶固定法兰上形成一风叶层,所述风叶机轴上沿轴向连接有N个风叶层,每个风叶层之间相错120/N度,其中N为大于或等于1的整数。
  4. 权利要求3所述的集风立式风力发电系统,其特征在于:所述风叶机轴采用大型多段组合式机轴,包括上段机轴和下段机轴,所述上段机轴包括上轴端、上轴管、上轴连接盘、中风叶固定法兰盘和轴心定位销,所述下段机轴包括下轴连接盘、下轴管,下轴端、下风叶固定法兰盘和固定螺栓,所述下轴端与下轴管以及所述上轴端与上轴管均采用强配合焊接连接,下轴管和上轴管通过下轴连接盘、中风叶固定法兰盘、上轴连接盘和螺丝固定连接,风叶机轴整体采用轴定位销中心定位。
  5. 权利要求4所述的集风立式风力发电系统,其特征在于:所述风叶机轴还包括至少一中段机轴,所述中段机轴包括中段轴下连接盘、中段轴管和中段轴上连接盘,中段轴管分别通过中段轴下连接盘和中段轴上连接盘与下段机轴和上段机轴连接。
  6. 如权利要求1所述的集风立式风力发电系统,其特征在于:所述增速器系统通过链式联轴器与风动力系统中的风叶机轴连接;所述链式联轴器包括上联轮、下联轮、链轴、上下链片、上键以及下键,其中:上联轮与上轴连接,上联轮套在风叶机轴下端部,由键固定,下联轮与变速器轴连接,下联轮套在变速器轴部,由键固定;上联轮与下联轮的连接由连接链轴与链片连接;所述连接链由链轴与上链片构成,所述上联轮与下联轮和连接链承受传输整个机轴旋转扭矩。
  7. 权利要求1所述的集风立式风力发电系统,其特征在于:所述立式发电机系统采用多绕组变极异步发电机组,其包括转子、定子和散热冷却装置,转子产生的能量通过磁传输给定子,由定子转换为电压与电流传输到电网;
    所述转子结构采用鼠笼式结构,其转子轴包括机轴与轴鼓两部分,机轴与轴鼓固定在一起,轴鼓采用中空方式,轴鼓两端设有通风孔,转子磁极固定在轴鼓上;
    所述定子为多绕组变极式定子结构,其接线方式为2绕组异步变极方式、3绕组异步变极方式及多绕组异步变极方式,通过调整绕组的组合来改变发电机极对数。
  8. 权利要求1所述的集风立式风力发电系统,其特征在于:所述励磁并网控制系统分别与集风与保护系统和立式发电机系统连接,以控制集风板角度、调节发电机转速和调节立式发电机系统输出电压波形频率与相位。
  9. 权利要求1所述的集风立式风力发电系统,其特征在于:所述箱体框架四角通过缆绳与地面固定。
  10. 如权利要求1所述的集风立式风力发电系统,其特征在于:所述风力发电系统安装在平地、山上或海上。
PCT/CN2011/077293 2010-09-02 2011-07-19 集风立式风力发电系统 WO2012028042A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010272913A CN101943127B (zh) 2010-09-02 2010-09-02 集风立式风力发电系统
CN201010272913.0 2010-09-02

Publications (1)

Publication Number Publication Date
WO2012028042A1 true WO2012028042A1 (zh) 2012-03-08

Family

ID=43435288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077293 WO2012028042A1 (zh) 2010-09-02 2011-07-19 集风立式风力发电系统

Country Status (2)

Country Link
CN (1) CN101943127B (zh)
WO (1) WO2012028042A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2564052A1 (es) * 2016-01-08 2016-03-17 Dumitru BICA Módulo energético autónomo
CN107655136A (zh) * 2017-11-02 2018-02-02 四川省建筑科学研究院 通风廊道系统及通风建筑物
CN110863951A (zh) * 2019-12-20 2020-03-06 湖北科技学院 一种小型风力发电机的转速控制系统
CN111786435A (zh) * 2020-07-14 2020-10-16 厦门聚财钱网络科技有限公司 户外风能自发电充电柜

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101943127B (zh) * 2010-09-02 2012-10-24 哈尔滨大功率立式风电装备工程技术研究中心有限公司 集风立式风力发电系统
CN102128138A (zh) * 2010-11-29 2011-07-20 李树广 多层叠加组合立式风力发电系统
DE202011003456U1 (de) * 2011-03-02 2011-06-27 G&S World Bridge Trading Ag Anlage zur Nutzung von Windkraft
CN102297088B (zh) * 2011-06-01 2013-04-10 哈尔滨大功率立式风电装备工程技术研究中心 地基平台与框架钢缆联合稳固的立式多层风力发电系统
CN102251918B (zh) * 2011-06-22 2013-01-02 哈尔滨大功率立式风电装备工程技术研究中心 集风与全封闭式保护立式多层风力发电系统
CN102269122A (zh) * 2011-08-16 2011-12-07 李树广 立式风力发电机的滑道式风叶系统
CN102691627B (zh) * 2012-05-21 2014-03-05 李树广 多层钢筋混凝土框架与对接组合风叶立式风力发电系统
CN102840108B (zh) * 2012-07-31 2015-06-24 李树广 高空塔架嵌入式立式风力发电系统
CN102943745A (zh) * 2012-12-07 2013-02-27 桂林理工大学 一种立轴栅帘式小型风力发电机
CN103362747B (zh) * 2013-06-14 2015-12-23 丁德全 一种小型风力发电装置
CN103511186B (zh) * 2013-09-11 2016-03-23 李树广 装有对偶风叶及多层钢筋混凝土框架的立式风力发电系统
CN103758692B (zh) * 2014-01-22 2016-04-06 张英华 立式风力发电机的风叶
CN106438204B (zh) * 2016-07-19 2019-01-04 李树广 集风增压式磁浮立式风力发电系统
CN106788136A (zh) * 2016-11-21 2017-05-31 洛阳文森科技有限公司 一种以新能源为主动力的中央新风系统
CN107902879B (zh) * 2017-09-29 2020-11-03 芜湖东旭光电科技有限公司 牵引辊轴承箱及牵引辊总成
CN110513244A (zh) * 2019-09-25 2019-11-29 陈征 一种用于风力发电的全方向可调的风轮装置
CN111256749B (zh) * 2020-02-28 2021-11-26 杭州鲁尔物联科技有限公司 一种桥梁故障方位检测装置
CN112796936B (zh) * 2020-12-31 2022-05-03 合肥博斯维尔能源科技有限公司 一种进风量自动调节式风力发电机构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2103217U (zh) * 1991-04-03 1992-04-29 大连铁道学院 宽速比四速异步电动机
CN101446265A (zh) * 2008-12-18 2009-06-03 上海交通大学 折射导风式风叶系统
CN101509467A (zh) * 2009-03-19 2009-08-19 上海交通大学 大型风力发电机组合机轴
CN101560948A (zh) * 2009-05-19 2009-10-21 四川腾中重工机械有限公司 立式风能发电集风导向系统
KR100952684B1 (ko) * 2009-05-14 2010-04-13 오영록 공기압축을 이용한 수직축 터보 풍력발전 시스템
CN201461245U (zh) * 2009-05-19 2010-05-12 四川腾中重工机械有限公司 垂直立轴多级重叠高效风能发电机组
CN101943127A (zh) * 2010-09-02 2011-01-12 李树广 集风立式风力发电系统
CN102128138A (zh) * 2010-11-29 2011-07-20 李树广 多层叠加组合立式风力发电系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120501A (ja) * 2001-10-04 2003-04-23 Kudo Kensetsu Kk クロスフロー風車および風力発電装置
CN101358582B (zh) * 2008-08-07 2011-12-07 沈豪杰 导风塔式风力发电机
CN101514686B (zh) * 2009-02-19 2011-01-19 上海交通大学 风力发电机集风与保护系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2103217U (zh) * 1991-04-03 1992-04-29 大连铁道学院 宽速比四速异步电动机
CN101446265A (zh) * 2008-12-18 2009-06-03 上海交通大学 折射导风式风叶系统
CN101509467A (zh) * 2009-03-19 2009-08-19 上海交通大学 大型风力发电机组合机轴
KR100952684B1 (ko) * 2009-05-14 2010-04-13 오영록 공기압축을 이용한 수직축 터보 풍력발전 시스템
CN101560948A (zh) * 2009-05-19 2009-10-21 四川腾中重工机械有限公司 立式风能发电集风导向系统
CN201461245U (zh) * 2009-05-19 2010-05-12 四川腾中重工机械有限公司 垂直立轴多级重叠高效风能发电机组
CN101943127A (zh) * 2010-09-02 2011-01-12 李树广 集风立式风力发电系统
CN102128138A (zh) * 2010-11-29 2011-07-20 李树广 多层叠加组合立式风力发电系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2564052A1 (es) * 2016-01-08 2016-03-17 Dumitru BICA Módulo energético autónomo
WO2017118773A1 (es) * 2016-01-08 2017-07-13 Bica Dumitru Modulo energetico autonomo
CN107655136A (zh) * 2017-11-02 2018-02-02 四川省建筑科学研究院 通风廊道系统及通风建筑物
CN110863951A (zh) * 2019-12-20 2020-03-06 湖北科技学院 一种小型风力发电机的转速控制系统
CN110863951B (zh) * 2019-12-20 2023-12-22 湖北科技学院 一种小型风力发电机的转速控制系统
CN111786435A (zh) * 2020-07-14 2020-10-16 厦门聚财钱网络科技有限公司 户外风能自发电充电柜

Also Published As

Publication number Publication date
CN101943127A (zh) 2011-01-12
CN101943127B (zh) 2012-10-24

Similar Documents

Publication Publication Date Title
WO2012028042A1 (zh) 集风立式风力发电系统
WO2012072007A1 (zh) 多层叠加组合立式风力发电系统
US8546972B2 (en) Vertical wind power generator
AU774072B2 (en) Multiaxis turbine
US20100032954A1 (en) Wind turbine
CN201730751U (zh) 一种可调攻角兆瓦级垂直轴风力发电机
CN113279901A (zh) 一种机舱带有辅助支撑结构的双风轮风电机组
CN202348583U (zh) 多绕组变极变速风叶立式风力发电系统
WO2011106919A1 (zh) 风力发电装置
CN202250597U (zh) 垂直轴风力发电机用窗扇形叶片组合式风轮
CN101539108A (zh) 一种双电机聚压式风力发电装置
WO2002014688A1 (fr) Eolienne a ossature combinee
CN101749179B (zh) 一种用于垂直轴风力发电机的整流增速塔
CN102410145B (zh) 多绕组变极变速风叶立式风力发电系统
CN101004167A (zh) 花瓣状风叶垂直轴高效风力发电机
CN206942930U (zh) 叶片自保护型风能发电装置
CN101922416B (zh) 开启风帆式垂直短轴大型风力发电机
KR20200047805A (ko) 돛 장치
CN201401285Y (zh) 一种双电机风力发电装置
Clark et al. Wind turbines for irrigation pumping
CN109763941A (zh) 垂直轴风力发电设备及发电方法
CN219159103U (zh) 一种垂直轴风力发电机的支撑结构
CN104153944B (zh) 一种大型海上垂直轴风力发电机组
CN217152182U (zh) 防风林发电墙
CN219549022U (zh) 风力涡轮机以及风力发电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 11821068

Country of ref document: EP

Kind code of ref document: A1