WO2012026542A1 - Method for producing carbon-material-containing metal oxide agglomerates - Google Patents

Method for producing carbon-material-containing metal oxide agglomerates Download PDF

Info

Publication number
WO2012026542A1
WO2012026542A1 PCT/JP2011/069214 JP2011069214W WO2012026542A1 WO 2012026542 A1 WO2012026542 A1 WO 2012026542A1 JP 2011069214 W JP2011069214 W JP 2011069214W WO 2012026542 A1 WO2012026542 A1 WO 2012026542A1
Authority
WO
WIPO (PCT)
Prior art keywords
starch
raw
metal oxide
mass
agglomerate
Prior art date
Application number
PCT/JP2011/069214
Other languages
French (fr)
Japanese (ja)
Inventor
小林 勲
原田 孝夫
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2012026542A1 publication Critical patent/WO2012026542A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic

Definitions

  • the present invention relates to a method for producing a carbonaceous material-containing metal oxide agglomerate that is reduced in a rotary hearth furnace or the like.
  • the reduced iron production method using a shaft reduction furnace represented by the MIDREX method and the HyL method produces reduced iron from iron ore and iron oxide pellets using natural gas.
  • the present method has a problem that the location condition of the plant is limited to the area where the natural gas is produced because the high-cost natural gas is reformed into the reducing gas.
  • the method for producing the granular metallic iron has the advantage that the slag component can be removed from the product in advance and the carbon content in the product can be further increased as compared with the method for producing the reduced iron. Yes.
  • Patent Document 4 Prior art 1
  • This prior art 1 is characterized in that an organic binder such as starch and an inorganic flocculant such as bentonite are used in combination as a binder. Carbonaceous iron-incorporated iron oxide pellets granulated using such a binder have the advantage of excellent strength after drying and a small amount of inorganic material remaining as impurities after reduction.
  • the applicant of the present application has also studied a means for producing a metal oxide agglomerate using a metal refining dust containing a high concentration of an alkali metal element as a raw material, and in Patent Document 5, an acidic substance such as lignin is used as a binder. It was also disclosed that a metal oxide agglomerate having excellent strength after drying can be produced by using a starch-containing substance such as wheat flour (Prior Art 2).
  • Patent Document 6 also discloses that pregelatinized starch is used as an agglomeration binder in order to agglomerate steelmaking dust and reuse it as a converter raw material (prior art 3).
  • An object of the present invention is to provide a method for producing a carbonaceous material-containing metal oxide agglomerate that can be realized.
  • the present inventors first granulated raw pellets containing carbonaceous materials using only various starch-containing substances as binders, and variously changed the drying conditions of the raw pellets to produce carbonaceous materials.
  • a test for producing interior iron oxide pellets was conducted, and the effects of the properties of the starch-containing substance and the drying conditions on the strength of the carbonaceous interior iron oxide pellets after drying were investigated.
  • the protein content and gelatinization temperature of the starch-containing substance and the drying conditions were found to be closely related to the strength expression of the carbonaceous iron oxide pellets after drying. It came to complete.
  • the metal oxide and the carbonaceous material are bonded to a powdery raw material containing a metal oxide as a main component and a carbonaceous material in an amount sufficient to reduce the metal oxide.
  • a sufficient amount of binder and water are added to form a mixed raw material, and the raw agglomerate obtained by agglomerating the mixed raw material is dried with a dryer to form a carbonaceous metal oxide mass.
  • the starch-containing material containing 2 to 13% by mass of protein is used as the binder as it is, and the temperature of the raw agglomerate in the dryer reaches the gelatinization temperature of the starch-containing material.
  • the carbonaceous material-incorporated metal oxide agglomerate is characterized by drying so that moisture remains in the raw agglomerate in an amount of 6% by mass or more.
  • the invention according to claim 2 is the method for producing a carbonaceous material-incorporated metal oxide agglomerate according to claim 1, wherein a heat pattern in the dryer is set in accordance with a gelatinization temperature of the starch-containing substance.
  • Invention of Claim 3 selects the thing which has the gelatinization temperature suitable for the heat pattern in the said dryer as said starch containing substance, The manufacturing method of the carbonaceous material interior metal oxide agglomerate of Claim 1 It is.
  • the invention described in claim 4 is the method according to any one of claims 1 to 3, wherein the addition amount of the starch-containing substance is increased by 0.075 mass% or more per 0.1 mass% increase in the ash content in the starch-containing substance. It is a manufacturing method of the carbonaceous material interior metal oxide agglomerate of 1 item
  • a starch-containing substance containing 2 to 13% by mass of protein is used as the binder, and when the temperature of the raw agglomerate in the dryer reaches the gelatinization temperature of the starch-containing substance, By allowing 6% by mass or more of moisture to remain in the raw agglomerated material, it has become possible to ensure the strength of the agglomerated material after drying without increasing the cost of the binder.
  • FIG. 1 is a flowchart for explaining an outline of a method for producing a carbonaceous material-containing metal oxide agglomerate according to an embodiment of the present invention.
  • reference numeral 1 indicates that the metal oxide A and the carbonaceous material B are added to the powdery raw material C containing the metal oxide A as the main component and the carbonaceous material B in an amount sufficient to reduce the metal oxide A.
  • a mixer for adding and mixing a sufficient amount of binder D and water E for caking, 2 is an agglomeration means for agglomerating the mixed raw material F mixed in the mixer 1.
  • reference numeral 21 denotes a pelletizer that granulates the mixed raw material F to produce raw pellets G 1
  • 22 denotes a briquette machine that press-molds the mixed raw material F to produce raw briquettes G 2
  • reference numeral 3 Is a dryer for drying raw pellets G 1 or raw briquettes G 2 (generically referred to as raw agglomerates G) to produce dry pellets H 1 or dry briquettes H 2 (generically referred to as dry agglomerates H).
  • iron oxide A not only iron oxide but also non-ferrous metal oxides such as Ni, Cr and Mn can be used.
  • iron oxide sources powdered iron ore, mill scale, iron making dust (blast furnace dust, converter dust, sintered dust, electric furnace dust, mill sludge, pickling sludge, etc.), non-ferrous metal oxides
  • dust containing non-ferrous metal oxides such as powdered non-ferrous metal ore, alloyed iron production, non-ferrous metal refining, and the like can be used.
  • a mixture of two or more types can also be used.
  • carbonaceous substance B for example, coal, coke powder, petroleum coke, char, charcoal, pitch, and the like can be used, and these can be used alone or in combination of two or more.
  • the mixing ratio of the carbonaceous material B to the metal oxide A may be an amount sufficient for the metal oxide A to be reduced to metallize by the carbonaceous material B.
  • the actual blending ratio varies depending on the quality of the target reduced metal or granular metal, such as the quality of the metal oxide A, the amount of fixed carbon in the carbonaceous material B, the metallization rate after reduction, and the amount of residual carbon.
  • binder D and water E are added to the powdery raw material C containing the metal oxide A and the carbonaceous material B, and the metal oxide A and the carbonaceous material B are caking together, and mixed. Mix in the vessel 1 to obtain a mixed raw material F.
  • binder D a starch-containing substance containing 2 to 13% by mass of protein is used.
  • the reason why the protein content of the starch-containing substance is in the range of 2 to 13% by mass is as follows. That is, when the protein content is less than 2% by mass, the amount of protein that becomes an aggregate after cooling is insufficient even when the raw agglomerate G is heated in the dryer 2 and the starch-containing material as a binder is gelatinized. This is because the strength of the dry agglomerated product H cannot be obtained sufficiently.
  • the protein content exceeds 13% by mass the starch-containing substance becomes too viscous when mixed with water in the mixer 1 or when the mixed raw material F is granulated with the pelletizer 21, and the protein content becomes uniform. This is because mixing becomes impossible or granulation becomes difficult.
  • a more preferable range of the protein content is 3 to 12% by mass.
  • starch-containing substances containing 2 to 13% by mass (more preferably 3 to 12% by mass) of protein wheat flour and rye flour can be used.
  • Tapioca and corn starch (corn flour) have a protein content of 2 Since it is less than mass%, it cannot be used for the present invention (see Example 1 below).
  • the addition amount of the binder D may be an amount sufficient for caking the metal oxide A and the carbonaceous material B, and is usually 1 to 2% by mass with respect to the powdery raw material C in consideration of economy. It is a suitable range. Further, the amount of water E added is adjusted so that the water content of the raw agglomerate G is 11 to 14% by mass from the viewpoint of easy agglomeration of the raw agglomerate G and prevention of flattening. preferable.
  • the mixed material F at pelletizer 21 which is a means of agglomeration means 2 and granulated, and green pellets G 1.
  • pelletizer 21 a known disk-type pelletizer or drum-type pelletizer can be used.
  • a part of the water E added to the powdery raw material C may be added here.
  • the diameter of the green pellets G 1 is preferably in the range of 6 ⁇ 30 mm in consideration of the surface of the reduction rate in terms of handling and reducing furnace, and more preferably in the range of 9 ⁇ 19 mm.
  • pressure molding in briquette machine 22 is a mixed raw material F is another means of agglomerating means 2 may be a raw briquette G 2.
  • a briquette machine 22 for example, a known twin-roll briquette machine with excellent productivity is recommended, but an extruder, a cylinder brace, or the like may be used.
  • the size of the raw briquettes G 2 is, or equal to that of the raw pellets G 1 equivalent of about volume.
  • the raw agglomerate G (raw pellet G 1 or raw briquette G 2 ) agglomerated in this way has a moisture content of 1% by mass using a dryer 3 such as a known moving great dryer.
  • Dry agglomerate H (dry pellet H 1 or dry briquette H 2 ) is obtained by drying to the following.
  • This dry agglomerated material H corresponds to the “carbon material-containing metal oxide agglomerated material” in the present invention.
  • the moisture content in the raw agglomerate G is 6% by mass. It is important to dry so that it remains.
  • the reason why the moisture remaining in the raw agglomerate G is 6% by mass or more is as follows.
  • FIG. 2 shows the heat gelatinization curves (amylogram) of various starches published (Nippon Chemical Co., Ltd. homepage, [July 30, 2010 search], Internet ⁇ URL: http: //www.nicidene. com / kkh / b / b-1.htm>).
  • the temperature at which the viscosity starts to increase is called the gelatinization temperature.
  • the gelatinization temperature is distributed in the range of 60 to 90 ° C., and the temperature varies depending on the kind of starch, which is 67 ° C. for tapioca, 85 ° C. for corn, and 90 ° C. for wheat flour.
  • the present inventors have determined that the temperature of the raw agglomerate G is the glue of the starch-containing substance D during drying in the dryer 3. It was considered that a predetermined amount of moisture needs to remain in the raw agglomerate G in order for gelatinization of the starch-containing substance D to proceed sufficiently when reaching the crystallization temperature.
  • a drying test simulating the drying behavior of raw pellets by a moving great dryer was performed. Specifically, hematite ore as a metal oxide ( ⁇ 44 ⁇ m, 60% by mass or more) and bituminous coal ( ⁇ 80 ⁇ m, 80% by mass or more) as a carbonaceous material in a mass ratio of 81.7: 18.3. 1% by weight of flour as a binder (protein content: 3.1% by mass) was added thereto, and raw pellets having a diameter of 18 mm and a water content of about 13% by mass were granulated.
  • hematite ore as a metal oxide ( ⁇ 44 ⁇ m, 60% by mass or more) and bituminous coal ( ⁇ 80 ⁇ m, 80% by mass or more) as a carbonaceous material in a mass ratio of 81.7: 18.3.
  • 1% by weight of flour as a binder protein content: 3.1% by mass
  • the measurement results are shown in FIG. 3 in relation to the raw pellet temperature and the water content in the raw pellet.
  • 180 (L) in the figure means a temperature measurement result by a thermocouple installed on the “left” side in the raw pellet packed bed in a drying test with heated air of “180 ° C.”
  • 130 (R) means a temperature measurement result by a thermocouple installed on the “right” side in the raw pellet packed bed in the drying test with heated air of “130 ° C.”.
  • the raw pellet temperature reaches 90 ° C., which is the gelatinization temperature of the flour added as a binder
  • the residual moisture content in the raw pellet is about when dried with heated air at 180 ° C.
  • it is about 3.0 to 5.5% by mass.
  • the moisture in the raw agglomerate G is 6% by mass or more ( More preferably 7 mass% or more).
  • a starch-containing material containing 2 to 13% by mass (more preferably 3 to 12% by mass) of protein is used as the binder, and the agglomerates are formed during drying in the dryer 3.
  • the temperature of the product G reaches the gelatinization temperature of the starch-containing material D, which is a binder, drying is performed so that moisture remains in the raw agglomerate G by 6 mass% or more (more preferably 7 mass% or more).
  • a dry agglomerated material (carbon material-containing metal oxide agglomerated material) H having excellent strength after drying at low cost (see Examples 1 and 2 below).
  • the starch-containing substance D is gelatinized. What is necessary is just to set the heat pattern in the dryer 3 according to temperature.
  • the starch-containing material used as the binder D has a gelatinization temperature suitable for the heat pattern in the dryer 3. Just choose one.
  • starch-containing substances that can be used as binder D there are various types of bread-making, feed-use, and industrial-use, but it is desirable that they can be obtained at low cost and in large quantities for industrial use as in the present invention. It is. Generally, the lower the degree of purification (ie, the purity) of starch-containing materials, that is, the higher the ash content, the lower the price and the greater the availability of starch-containing materials.
  • the addition of the starch-containing material per 0.1% by mass increase in the ash content in the starch-containing material may be increased by 0.075% by mass or more (see Example 3 below).
  • Example 1 Effect of protein content of starch-containing substance First, the influence of the protein content of starch-containing substance on the granulation property of raw pellets and the drop strength of dried pellets was investigated.
  • hematite ore 44 ⁇ m, 60% by mass or more
  • a metal oxide and bituminous coal ⁇ 80 ⁇ m, 80% by mass or more
  • 1.0% by mass of various starch-containing substances as a binder was added thereto, and raw pellets having a diameter of 18 mm and a water content of about 13% by mass were granulated.
  • 30 kg of the raw pellets are filled in a pot grate having an inner diameter of 300 mm, and a drying test is performed by passing heated air at 180 ° C.
  • the drop strength of the pellet was measured. The drop strength was defined as the number of drops until breakage when the sample was repeatedly dropped from a height of 45 cm. In the test of this specification, measurement was performed with 15 dry pellets, and the average value was displayed.
  • the results of this granulation / drying test are shown in Table 1 below.
  • the gelatinization temperature shown in the table is a value estimated using the amylogram of FIG. 2 without performing direct measurement.
  • wheat flour thin flour in Table 1 and strong flour is also a kind of wheat flour
  • 90 ° C. obtained from the amylogram of wheat in FIG. 2 contains starch. Since the maximum value of the gelatinization temperature of the substance is assumed, all of them were set to “90 ° C. or less”.
  • the residual moisture content when the gelatinization temperature is reached shown in the table is a value obtained from the drying curve of the heated air temperature of 180 ° C. in FIG.
  • the granulation properties shown in the table are ⁇ when granulation is easy, and granulation is possible even when irregularly shaped small particles are formed during granulation or raw pellets slip and rolling becomes unstable. Cases were marked with ⁇ and cases where granulation was difficult and granulation could not be made with x, respectively. Moreover, the fall strength of the dry pellet made the pass 15 times or more. And the case where granulation property is (double-circle) or (circle), and drop strength is a pass was made into the invention example, and it was set as the comparative example in the case other than that.
  • the protein content of the starch-containing substance added as a binder is in the range of 2 to 13% by mass, and the temperature of the raw pellet is When the gelatinization temperature of the starch-containing substance is reached, the residual moisture content in the raw pellet is 6% by mass or more, which satisfies the requirements of the present invention, and is excellent in granulation properties and dry pellet drop strength. .
  • Test Nos. 2 and 3 which are comparative examples, show that when the temperature of the raw pellet reaches the gelatinization temperature of the starch-containing substance, the residual moisture content in the raw pellet becomes 6% by mass or more. Since the protein content of the starch-containing substance added as a binder is too low, the requirements of the present invention are not satisfied, and although the granulation property is excellent, the falling strength of the dried pellets is inferior.
  • test number 6 which is a comparative example was added as a binder although the amount of residual moisture in the raw pellet was 6% by mass or more when the temperature of the raw pellet reached the gelatinization temperature of the starch-containing substance. Since the protein content of the starch-containing substance is too high, it does not satisfy the requirements of the present invention, and the granulation property and the drop strength of the dried pellet are inferior.
  • Example 2 Influence of heating air temperature
  • the carbonaceous material was lignite (-74 ⁇ m, 80 mass). %)
  • the binder addition amount was increased to 1.5 mass%, and a test in which the heating air temperature was changed to 105 ° C. was added (test number 7).
  • the drying time was 1 hour, the same as in Example 1 above. The results of this test are shown in Table 2 below together with the test number 4 in Table 1 above.
  • Example 3 Effect of ash content of starch-containing material Furthermore, in order to investigate the effect of ash content of starch-containing material on the drop strength of dry pellets, two types of rye flour with high ash content were used as binders. A granulation / drying test was carried out using various amounts of these additives. The test conditions were the same as in Example 1 except for the binder type and amount added.

Abstract

In the present invention: water and a sufficient quantity of a binder (D) for caking a metal oxide (A), which is the main component, and a carbonaceous material (B), are added to a powdered raw material (C) containing the metal oxide (A) and a sufficient quanity of the carbonaceous material (B) to reduce the metal oxide (A), and a mixed raw material (F) is formed using a mixer (1); and when carbon-material-containing metal oxide agglomerates (H) are produced by agglomerating the mixed raw material (F) using an agglomerating means, and drying the raw agglomerates (G) that are obtained in a drier (3), a starch-containing substance containing 2 to 13 mass % of protein is used as the binder (D), and when the temperature of the raw agglomerates (G) in the drier (3) has reached the gelatinization temperature of the starch-containing substance, the raw agglomerates (G) are dried in such a manner that the moisture in the raw agglomerates (G) remains at not less than 6 mass %, thereby producing the carbon-material-containing metal oxide agglomerates. Consequently, when using the starch-containing substance as a binder, the strength of the agglomerates after drying can be ensured and cost reductions can be achieved without using organic substances, and without carrying out pre-treatment.

Description

炭材内装酸化金属塊成物の製造方法Method for manufacturing carbon oxide-incorporated metal oxide agglomerates
 本発明は、回転炉床炉等で還元される炭材内装酸化金属塊成物の製造方法に関するものである。 The present invention relates to a method for producing a carbonaceous material-containing metal oxide agglomerate that is reduced in a rotary hearth furnace or the like.
 MIDREX法やHyL法に代表されるシャフト還元炉を用いる還元鉄製造法は、天然ガスを使用して鉄鉱石や酸化鉄ペレットから還元鉄を製造する。しかし、本法はコストの高い天然ガスを改質して還元ガスとするために、プラントの立地条件が天然ガスを産出する地域に限られるという問題があった。 The reduced iron production method using a shaft reduction furnace represented by the MIDREX method and the HyL method produces reduced iron from iron ore and iron oxide pellets using natural gas. However, the present method has a problem that the location condition of the plant is limited to the area where the natural gas is produced because the high-cost natural gas is reformed into the reducing gas.
 そこで近年では、天然ガスに代わる還元剤として石炭等の炭材を使用して還元鉄を製造する方法が注目されており、例えば、粉状鉄鉱石と石炭との混合原料を生ペレットまたは生ブリケット(生塊成物と総称)に塊成化し、この生塊成物を乾燥して炭材内装酸化鉄塊成物とした後、この炭材内装酸化鉄塊成物を回転炉床上に載置して炉内を移動させつつ加熱還元して還元鉄を製造する方法が開発されている(例えば特許文献1)。 Therefore, in recent years, a method of producing reduced iron using a coal material such as coal as a reducing agent in place of natural gas has attracted attention. For example, a mixed raw material of powdered iron ore and coal is used as raw pellets or raw briquettes. After agglomerating into a (general agglomerate) and drying this raw agglomerate into a carbonaceous iron-incorporated iron oxide agglomerate, this carbon-internalized iron oxide agglomerate is placed on the rotary hearth Thus, a method of producing reduced iron by heating and reducing while moving in the furnace has been developed (for example, Patent Document 1).
 また、乾燥した炭材内装酸化鉄塊成物を回転炉床上に載置して炉内を移動させつつ加熱してこの炭材内装酸化鉄塊成物中の酸化鉄を固体還元した後、生成する金属鉄をさらに加熱して溶融させるとともに、スラグ成分と分離させながら凝集させることにより、高純度の粒状金属鉄を製造する方法も開発されている(例えば、特許文献2、3参照)。 Also, after the dried carbonaceous material-incorporated iron oxide agglomerate is placed on the rotary hearth and heated while moving in the furnace, the iron oxide in this carbonaceous material-incorporated iron oxide agglomerate is solid-reduced and then produced. A method for producing high-purity granular metallic iron by further heating and melting the metallic iron to be melted and aggregating while separating from the slag component has been developed (for example, see Patent Documents 2 and 3).
 これらの方法は、石炭を還元剤として用いることができる他、粉状の鉄鉱石を直接使用できること、還元が高速であること、製品中の炭素含有量を調整できること等の利点を有している。特に、上記粒状金属鉄を製造する方法は、上記還元鉄を製造する方法に比較して、製品からスラグ成分をあらかじめ除去できるとともに、製品中の炭素含有量をさらに高くできる利点をも有している。 These methods have advantages such that coal can be used as a reducing agent, powdered iron ore can be used directly, reduction is fast, and the carbon content in the product can be adjusted. . In particular, the method for producing the granular metallic iron has the advantage that the slag component can be removed from the product in advance and the carbon content in the product can be further increased as compared with the method for producing the reduced iron. Yes.
 しかし、石炭などの炭材は、表面が撥水性であるため塊成物の粒間を互いに結合する作用がほとんどないことから、炭材を内装した酸化鉄塊成物(炭材内装酸化鉄塊成物)の強度は、炭材を含まない塊成物に比較して低くなる。特に、乾燥後の酸化鉄塊成物の強度が低いと、還元炉に装入する際に破壊されて粉化し、還元鉄の歩留りの低下や品質低下につながることに加え、粉が炉床に付着し操業トラブルを招くことにもなる。 However, since carbon materials such as coal have a water-repellent surface, there is almost no effect of bonding the agglomerate grains to each other. The strength of the product is lower than that of the agglomerate not containing carbonaceous material. In particular, if the strength of the iron oxide agglomerates after drying is low, the iron oxide is destroyed and pulverized when charged into the reduction furnace, leading to a reduction in the yield and quality of the reduced iron, and in addition, the powder enters the hearth. Adhering may cause operational troubles.
 そこで本願出願人は、炭材内装酸化鉄塊成物の一種である炭材内装酸化鉄ペレットの乾燥後の強度を改善する手段について鋭意研究開発を進め、特許文献4に開示した発明を完成させた(先行技術1)。この先行技術1は、バインダとして澱粉等の有機質粘結剤と、ベントナイト等の無機質凝集剤とを併用することを特徴とするものである。このようなバインダを用いて造粒された炭材内装酸化鉄ペレットは乾燥後の強度に優れ、かつ還元後に不純物として残留する無機質の量が少ないという利点を有する。 Therefore, the applicant of the present application has advanced earnestly research and development on means for improving the strength after drying of the carbonaceous iron-incorporated iron oxide pellets which are a kind of carbonaceous iron-incorporated iron oxide agglomerates, and completed the invention disclosed in Patent Document 4. (Prior art 1). This prior art 1 is characterized in that an organic binder such as starch and an inorganic flocculant such as bentonite are used in combination as a binder. Carbonaceous iron-incorporated iron oxide pellets granulated using such a binder have the advantage of excellent strength after drying and a small amount of inorganic material remaining as impurities after reduction.
 また、本願出願人は、アルカリ金属元素を高濃度に含有する金属精錬ダストを原料として酸化金属塊成物を製造する手段についても検討を進め、特許文献5に、バインダとしてリグニン等の酸性物質と小麦粉等の澱粉含有物質とを併用することで、乾燥後の強度に優れた酸化金属塊成物が製造できることも開示した(先行技術2)。 In addition, the applicant of the present application has also studied a means for producing a metal oxide agglomerate using a metal refining dust containing a high concentration of an alkali metal element as a raw material, and in Patent Document 5, an acidic substance such as lignin is used as a binder. It was also disclosed that a metal oxide agglomerate having excellent strength after drying can be produced by using a starch-containing substance such as wheat flour (Prior Art 2).
 また、特許文献6には、製鋼ダストを塊成化して転炉原料として再利用するために、塊成化のバインダとして、アルファ化した澱粉を用いることも開示されている(先行技術3)。 Patent Document 6 also discloses that pregelatinized starch is used as an agglomeration binder in order to agglomerate steelmaking dust and reuse it as a converter raw material (prior art 3).
 上記先行技術1~3は、いずれも、澱粉含有物質をバインダとして用いるものであるが、他の物質と併用するか、事前に澱粉をアルファ化処理をする必要があり、バインダのコストが高くなる問題が残っている。さらに、先行技術1では、添加量が少ないといえどもベントナイト等の無機質物質を併用するため、回転炉床炉で還元鉄を製造する場合は、得られた還元鉄中に無機質物質がスラグ成分として残存し、還元鉄を原料として溶銑や溶鋼を製造するプロセスでの溶解エネルギが増加し、回転炉床炉で粒状金属鉄を製造する場合は、粒状金属鉄から分離されたスラグの量が増加し、回転炉床炉のエネルギ原単位が増加する問題もある。 In all of the above prior arts 1 to 3, a starch-containing substance is used as a binder, but it is necessary to use it together with other substances or to pre-gelatinize starch, which increases the cost of the binder. The problem remains. Furthermore, in prior art 1, even if the addition amount is small, an inorganic substance such as bentonite is used together. Therefore, when producing reduced iron in a rotary hearth furnace, the inorganic substance is contained in the obtained reduced iron as a slag component. The residual energy increases in the process of producing hot metal and molten steel using reduced iron as a raw material, and when granular metal iron is produced in a rotary hearth furnace, the amount of slag separated from the granular metal iron increases. There is also a problem that the energy intensity of the rotary hearth furnace increases.
 以上のように、バインダとして澱粉含有物質を用いるに際し、有機質物質等を併用することなく、かつ、事前処理を行うことなく、乾燥後の塊成物の強度を確保しつつ、さらなる低コスト化を実現し得る炭材内装酸化金属塊成物の製造方法の開発が要請されていた。 As described above, when using a starch-containing substance as a binder, further reducing the cost while ensuring the strength of the agglomerate after drying without using an organic substance or the like and without pretreatment. There has been a demand for the development of a method for producing an agglomerated carbon oxide agglomerate that can be realized.
米国特許第3,443,931号明細書US Pat. No. 3,443,931 日本国特開2002-339009号公報Japanese Laid-Open Patent Publication No. 2002-339909 日本国特開2003-73722号公報Japanese Unexamined Patent Publication No. 2003-73722 日本国特許第3040978号公報Japanese Patent No. 3040978 日本国特許第3944378号公報Japanese Patent No. 3944378 日本国特開2001-214222号公報Japanese Unexamined Patent Publication No. 2001-214222
 そこで、本発明は、バインダとして澱粉含有物質を用いるに際し、有機質物質を併用することなく、かつ、事前処理を行うことなく、乾燥後の塊成物の強度を確保しつつ、さらなる低コスト化を実現し得る炭材内装酸化金属塊成物の製造方法を提供することを目的とする。 Therefore, the present invention, when using a starch-containing substance as a binder, without using an organic substance together and without performing pretreatment, while further ensuring the strength of the agglomerate after drying, further cost reduction An object of the present invention is to provide a method for producing a carbonaceous material-containing metal oxide agglomerate that can be realized.
 本発明者らは、上記課題を解決すべく、まず、種々の澱粉含有物質のみをバインダとして炭材を内装した生ペレットを造粒し、それらの生ペレットの乾燥条件を種々変更して炭材内装酸化鉄ペレットを製造する試験を実施し、乾燥後の炭材内装酸化鉄ペレットの強度に及ぼす澱粉含有物質の性状および乾燥条件の影響を調査した。 In order to solve the above problems, the present inventors first granulated raw pellets containing carbonaceous materials using only various starch-containing substances as binders, and variously changed the drying conditions of the raw pellets to produce carbonaceous materials. A test for producing interior iron oxide pellets was conducted, and the effects of the properties of the starch-containing substance and the drying conditions on the strength of the carbonaceous interior iron oxide pellets after drying were investigated.
 その結果、澱粉含有物質のタンパク質含有量および糊化温度と、乾燥条件とが、乾燥後の炭材内装酸化鉄ペレットの強度発現に密接に関係することを見出し、この知見に基づき、以下の発明を完成させるに至った。 As a result, the protein content and gelatinization temperature of the starch-containing substance and the drying conditions were found to be closely related to the strength expression of the carbonaceous iron oxide pellets after drying. It came to complete.
 請求項1に記載の発明は、主成分たる酸化金属と、この酸化金属を還元するのに十分な量の炭素質物質とを含む粉状原料に、前記酸化金属と前記炭素質物質とを粘結するのに十分な量のバインダと水とを添加して混合原料となし、この混合原料を塊成化して得た生塊成物を、乾燥機で乾燥することによって炭材内装酸化金属塊成物を製造するに当たり、前記バインダとして、蛋白質を2~13質量%含有する澱粉含有物質のみをそのまま用いるとともに、前記乾燥機内における生塊成物の温度が前記澱粉含有物質の糊化温度に到達したときに、その生塊成物中に水分が6質量%以上残留するように乾燥することを特徴とする炭材内装酸化金属塊成物の製造方法である。 According to the first aspect of the present invention, the metal oxide and the carbonaceous material are bonded to a powdery raw material containing a metal oxide as a main component and a carbonaceous material in an amount sufficient to reduce the metal oxide. A sufficient amount of binder and water are added to form a mixed raw material, and the raw agglomerate obtained by agglomerating the mixed raw material is dried with a dryer to form a carbonaceous metal oxide mass. In manufacturing the composition, only the starch-containing material containing 2 to 13% by mass of protein is used as the binder as it is, and the temperature of the raw agglomerate in the dryer reaches the gelatinization temperature of the starch-containing material. The carbonaceous material-incorporated metal oxide agglomerate is characterized by drying so that moisture remains in the raw agglomerate in an amount of 6% by mass or more.
 請求項2に記載の発明は、前記澱粉含有物質の糊化温度に合わせて、前記乾燥機内のヒートパターンを設定する請求項1に記載の炭材内装酸化金属塊成物の製造方法である。  The invention according to claim 2 is the method for producing a carbonaceous material-incorporated metal oxide agglomerate according to claim 1, wherein a heat pattern in the dryer is set in accordance with a gelatinization temperature of the starch-containing substance.
 請求項3に記載の発明は、前記澱粉含有物質として、前記乾燥機内のヒートパターンに適合する糊化温度を有するものを選択する請求項1に記載の炭材内装酸化金属塊成物の製造方法である。  Invention of Claim 3 selects the thing which has the gelatinization temperature suitable for the heat pattern in the said dryer as said starch containing substance, The manufacturing method of the carbonaceous material interior metal oxide agglomerate of Claim 1 It is.
 請求項4に記載の発明は、前記澱粉含有物質中の灰分含有量0.1質量%増加当たり、その澱粉含有物質の添加量を0.075質量%以上増加させる請求項1~3のいずれか1項に記載の炭材内装酸化金属塊成物の製造方法である。 The invention described in claim 4 is the method according to any one of claims 1 to 3, wherein the addition amount of the starch-containing substance is increased by 0.075 mass% or more per 0.1 mass% increase in the ash content in the starch-containing substance. It is a manufacturing method of the carbonaceous material interior metal oxide agglomerate of 1 item | term.
 本発明によれば、バインダとして、蛋白質を2~13質量%含有する澱粉含有物質を用いるとともに、乾燥機内における生塊成物の温度が前記澱粉含有物質の糊化温度に到達したときに、その生塊成物中に水分が6質量%以上残留するようにしたことで、バインダのコストを上昇させることなく、乾燥後の塊成物の強度を確保することが実現できるようになった。 According to the present invention, a starch-containing substance containing 2 to 13% by mass of protein is used as the binder, and when the temperature of the raw agglomerate in the dryer reaches the gelatinization temperature of the starch-containing substance, By allowing 6% by mass or more of moisture to remain in the raw agglomerated material, it has become possible to ensure the strength of the agglomerated material after drying without increasing the cost of the binder.
本発明の実施に係る炭材内装酸化金属塊成物の製造方法の概要を説明するフロー図である。It is a flowchart explaining the outline | summary of the manufacturing method of the carbonaceous material interior metal oxide agglomerate which concerns on implementation of this invention. 各種澱粉の加熱糊化曲線(アミログラム)を示すグラフ図である。It is a graph which shows the heat gelatinization curve (amylogram) of various starch. ポットグレート炉による生ペレットの乾燥試験における、ペレット温度とペレット内残留水分との関係を示すグラフ図である。It is a graph which shows the relationship between pellet temperature and the residual moisture in a pellet in the drying test of the raw pellet by a pot great furnace.
 以下、本発明の実施の形態について、図を参照しながらさらに詳細に説明する。  Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.
 図1は、本発明の実施に係る炭材内装酸化金属塊成物の製造方法の概要を説明するフロー図である。ここに、符号1は主成分たる酸化金属Aと、この酸化金属Aを還元するのに十分な量の炭素質物質Bとを含む粉状原料Cに、酸化金属Aと炭素質物質Bとを粘結するのに十分な量のバインダDと水Eとを添加して混合する混合器、符号2は混合器1で混合された混合原料Fを塊成化する塊成化手段で、塊成化手段2の例示として、符号21は混合原料Fを造粒して生ペレットGを製造するペレタイザ、22は混合原料Fを加圧成形して生ブリケットGを製造するブリケットマシン、符号3は生ペレットGまたは生ブリケットG(生塊成物Gと総称)を乾燥して乾燥ペレットHまたは乾燥ブリケットH(乾燥塊成物Hと総称)を製造する乾燥機である。 FIG. 1 is a flowchart for explaining an outline of a method for producing a carbonaceous material-containing metal oxide agglomerate according to an embodiment of the present invention. Here, reference numeral 1 indicates that the metal oxide A and the carbonaceous material B are added to the powdery raw material C containing the metal oxide A as the main component and the carbonaceous material B in an amount sufficient to reduce the metal oxide A. A mixer for adding and mixing a sufficient amount of binder D and water E for caking, 2 is an agglomeration means for agglomerating the mixed raw material F mixed in the mixer 1. As an example of the converting means 2, reference numeral 21 denotes a pelletizer that granulates the mixed raw material F to produce raw pellets G 1 , 22 denotes a briquette machine that press-molds the mixed raw material F to produce raw briquettes G 2 , reference numeral 3 Is a dryer for drying raw pellets G 1 or raw briquettes G 2 (generically referred to as raw agglomerates G) to produce dry pellets H 1 or dry briquettes H 2 (generically referred to as dry agglomerates H).
 酸化金属Aとしては、酸化鉄はもとより、Ni、Cr、Mnなどの非鉄金属の酸化物も用いることできる。具体的には、酸化鉄源として、粉状鉄鉱石、ミルスケール、製鉄ダスト(高炉ダスト、転炉ダスト、焼結ダスト、電気炉ダスト、ミルスラッジ、酸洗スラッジ等)を、非鉄金属の酸化物源として、粉状非鉄金属鉱石、合金鉄製造や非鉄金属精錬などで発生するNi、Cr、Mnなどの非鉄金属の酸化物を含有するダストを、それぞれ用いることができ、これらを単独であるいは2種類以上混合して用いることもできる。 As the metal oxide A, not only iron oxide but also non-ferrous metal oxides such as Ni, Cr and Mn can be used. Specifically, as iron oxide sources, powdered iron ore, mill scale, iron making dust (blast furnace dust, converter dust, sintered dust, electric furnace dust, mill sludge, pickling sludge, etc.), non-ferrous metal oxides As a source, dust containing non-ferrous metal oxides such as powdered non-ferrous metal ore, alloyed iron production, non-ferrous metal refining, and the like can be used. A mixture of two or more types can also be used.
 また、炭素質物質Bとしては、例えば、石炭、コークス粉、石油コークス、チャー、木炭、ピッチ等などを用いることができ、これらを単独であるいは2種類以上混合して用いることもできる。 Further, as the carbonaceous substance B, for example, coal, coke powder, petroleum coke, char, charcoal, pitch, and the like can be used, and these can be used alone or in combination of two or more.
 酸化金属Aへの炭素質物質Bの配合割合は、酸化金属Aが炭素質物質Bで還元されて金属化するのに十分な量であればよい。実際の配合割合は、酸化金属Aの品位、炭素質物質B中の固定炭素量、還元後の金属化率や残留炭素量など、目標とする還元金属あるいは粒状金属の品質によって変化する。 The mixing ratio of the carbonaceous material B to the metal oxide A may be an amount sufficient for the metal oxide A to be reduced to metallize by the carbonaceous material B. The actual blending ratio varies depending on the quality of the target reduced metal or granular metal, such as the quality of the metal oxide A, the amount of fixed carbon in the carbonaceous material B, the metallization rate after reduction, and the amount of residual carbon.
 そして、酸化金属Aと炭素質物質Bとを配合した粉状原料Cに、酸化金属Aと炭素質物質Bとを粘結するのに十分な量のバインダDと水Eとを添加し、混合器1で混合して混合原料Fとする。 Then, a sufficient amount of binder D and water E are added to the powdery raw material C containing the metal oxide A and the carbonaceous material B, and the metal oxide A and the carbonaceous material B are caking together, and mixed. Mix in the vessel 1 to obtain a mixed raw material F.
 バインダDとしては、蛋白質を2~13質量%含有する澱粉含有物質を用いる。 As the binder D, a starch-containing substance containing 2 to 13% by mass of protein is used.
 ここで、澱粉含有物質の蛋白質含有量を2~13質量%の範囲としたのは、以下の理由による。すなわち、蛋白質含有量が2質量%未満では、乾燥機2内で生塊成物Gが加熱されてバインダとしての澱粉含有物質が糊化しても冷却後に骨材となる蛋白質の量が不足し、乾燥塊成化物Hの強度が十分に得られないためである。一方、蛋白質含有量が13質量%を超えると、混合器1内で水と混合する際や、ペレタイザ21で混合原料Fを造粒する際に、澱粉含有物質が粘くなりすぎて、均一に混合できなくなったり、造粒が困難になったりするためである。蛋白質含有量のより好ましい範囲は、3~12質量%である。 Here, the reason why the protein content of the starch-containing substance is in the range of 2 to 13% by mass is as follows. That is, when the protein content is less than 2% by mass, the amount of protein that becomes an aggregate after cooling is insufficient even when the raw agglomerate G is heated in the dryer 2 and the starch-containing material as a binder is gelatinized. This is because the strength of the dry agglomerated product H cannot be obtained sufficiently. On the other hand, when the protein content exceeds 13% by mass, the starch-containing substance becomes too viscous when mixed with water in the mixer 1 or when the mixed raw material F is granulated with the pelletizer 21, and the protein content becomes uniform. This is because mixing becomes impossible or granulation becomes difficult. A more preferable range of the protein content is 3 to 12% by mass.
 蛋白質を2~13質量%(より好ましくは3~12質量%)含有する澱粉含有物質として、小麦粉、ライ麦粉などを用いることができるが、タピオカやコーンスターチ(トウモロコシ粉)は、蛋白質含有量が2質量%に満たないため、本発明の用には供し得ない(後記実施例1参照)。 As starch-containing substances containing 2 to 13% by mass (more preferably 3 to 12% by mass) of protein, wheat flour and rye flour can be used. Tapioca and corn starch (corn flour) have a protein content of 2 Since it is less than mass%, it cannot be used for the present invention (see Example 1 below).
 バインダDの添加量は、酸化金属Aと炭素質物質Bとを粘結するのに十分な量であればよく、経済性を考慮すれば粉状原料Cに対して通常1~2質量%が好適範囲である。また、水Eの添加量は、生塊成物Gの塊成化の容易さと偏平化防止の観点から生塊成物Gの水分含有量が11~14質量%になるように調整するのが好ましい。 The addition amount of the binder D may be an amount sufficient for caking the metal oxide A and the carbonaceous material B, and is usually 1 to 2% by mass with respect to the powdery raw material C in consideration of economy. It is a suitable range. Further, the amount of water E added is adjusted so that the water content of the raw agglomerate G is 11 to 14% by mass from the viewpoint of easy agglomeration of the raw agglomerate G and prevention of flattening. preferable.
 混合原料Fを塊成化手段2の一手段であるペレタイザ21で造粒して、生ペレットGとする。ペレタイザ21としては、公知のディスク型ペレタイザやドラム型ペレタイザを用いることができる。造粒に際し、粉状原料Cに添加する水Eの一部をここで添加してもよい。生ペレットGの直径はハンドリングの面と還元炉での還元速度の面を考慮して6~30mmの範囲とすることが好ましく、9~19mmの範囲とすることがより好ましい。 The mixed material F at pelletizer 21 which is a means of agglomeration means 2 and granulated, and green pellets G 1. As the pelletizer 21, a known disk-type pelletizer or drum-type pelletizer can be used. During granulation, a part of the water E added to the powdery raw material C may be added here. The diameter of the green pellets G 1 is preferably in the range of 6 ~ 30 mm in consideration of the surface of the reduction rate in terms of handling and reducing furnace, and more preferably in the range of 9 ~ 19 mm.
 あるいは、混合原料Fを塊成化手段2の別手段であるブリケットマシン22で加圧成形して、生ブリケットGとしてもよい。ブリケットマシン22としては、例えば生産性に優れる公知の双ロール型ブリケットマシンを用いることが推奨されるが、エクストルーダーやシリンダーブレスなどを用いてもよい。生ブリケットGのサイズは、上記生ペレットGと同等程度の体積のものとするとよい。 Alternatively, pressure molding in briquette machine 22 is a mixed raw material F is another means of agglomerating means 2 may be a raw briquette G 2. As the briquette machine 22, for example, a known twin-roll briquette machine with excellent productivity is recommended, but an extruder, a cylinder brace, or the like may be used. The size of the raw briquettes G 2 is, or equal to that of the raw pellets G 1 equivalent of about volume.
 このようにして塊成化された生塊成物G(生ペレットGまたは生ブリケットG)を、例えば公知の移動グレート式ドライヤなどの乾燥機3を用いて、水分含有量が1質量%以下になるまで乾燥することにより乾燥塊成化物H(乾燥ペレットHまたは乾燥ブリケットH)が得られる。この乾燥塊成化物Hが、本発明でいう「炭材内装酸化金属塊成物」に相当する。 The raw agglomerate G (raw pellet G 1 or raw briquette G 2 ) agglomerated in this way has a moisture content of 1% by mass using a dryer 3 such as a known moving great dryer. Dry agglomerate H (dry pellet H 1 or dry briquette H 2 ) is obtained by drying to the following. This dry agglomerated material H corresponds to the “carbon material-containing metal oxide agglomerated material” in the present invention.
 ここで、上記乾燥機3内での乾燥に当たり、生塊成物Gの温度がバインダである澱粉含有物質Dの糊化温度に到達したときに、生塊成物G中に水分が6質量%以上残留するように乾燥することが重要である。 Here, in drying in the dryer 3, when the temperature of the raw agglomerate G reaches the gelatinization temperature of the starch-containing substance D as a binder, the moisture content in the raw agglomerate G is 6% by mass. It is important to dry so that it remains.
 生塊成物Gの温度が澱粉含有物質Dの糊化温度に到達したときに、生塊成物G中に水分が6質量%以上残留させることとしたのは以下の理由による。 When the temperature of the raw agglomerate G reaches the gelatinization temperature of the starch-containing substance D, the reason why the moisture remaining in the raw agglomerate G is 6% by mass or more is as follows.
 すなわち、澱粉は、水分を添加してある温度以上まで加熱すると糊化が始まり、粘度が上昇する現象が見られる。図2に公表されている各種澱粉の加熱糊化曲線(アミログラム)を示す(日澱化学株式会社ホームページ、[平成22年7月30日検索]、インターネット<URL:http://www.nichidene.com/kkh/b/b-1.htm>)。ここで、粘度(Viscosity)が上昇し始める温度を糊化温度と呼ぶ。同図に示すように、糊化温度は60~90℃の範囲に分布しており、その温度は澱粉の種類によって異なり、タピオカは67℃、トウモロコシは85℃、小麦粉は90℃である。 That is, when starch is heated to a temperature higher than a certain temperature with water added, gelatinization starts and the viscosity increases. FIG. 2 shows the heat gelatinization curves (amylogram) of various starches published (Nippon Chemical Co., Ltd. homepage, [July 30, 2010 search], Internet <URL: http: //www.nicidene. com / kkh / b / b-1.htm>). Here, the temperature at which the viscosity starts to increase is called the gelatinization temperature. As shown in the figure, the gelatinization temperature is distributed in the range of 60 to 90 ° C., and the temperature varies depending on the kind of starch, which is 67 ° C. for tapioca, 85 ° C. for corn, and 90 ° C. for wheat flour.
 上述のとおり、澱粉の糊化は水分の存在下で起こる現象であることから、本発明者らは、乾燥機3内での乾燥に当たり、生塊成物Gの温度が澱粉含有物質Dの糊化温度に到達したときに、澱粉含有物質Dの糊化が十分に進行するためには生塊成物G中に所定量の水分が残存している必要があると考えた。 As described above, since gelatinization of starch is a phenomenon that occurs in the presence of moisture, the present inventors have determined that the temperature of the raw agglomerate G is the glue of the starch-containing substance D during drying in the dryer 3. It was considered that a predetermined amount of moisture needs to remain in the raw agglomerate G in order for gelatinization of the starch-containing substance D to proceed sufficiently when reaching the crystallization temperature.
 そこで、乾燥機3内での生塊成物Gの乾燥挙動を把握するため、移動グレート式ドライヤによる生ペレットの乾燥挙動を模擬した乾燥試験を実施した。具体的には、酸化金属としてのヘマタイト系鉱石(-44μm、60質量%以上)と、炭素質物質としての瀝青炭(-80μm、80質量%以上)とを質量比で81.7:18.3の割合で配合し、これにバインダとしての小麦粉(蛋白質含有量3.1質量%)を1質量%添加し、直径:18mm、水分含有量:約13質量%の生ペレットを造粒した。この生ペレット30kgを内径300mmのポットグレートに充填し、130℃または180℃の加熱空気を300Nm/hの流量で生ペレット充填層内を通過させて乾燥試験を実施した。そして、生ペレット充填層内の左右2箇所に熱電対を設置して乾燥試験中の生ペレット温度を測定するとともに、乾燥時間を順次変更して生ペレット中の残留水分量を測定した。 Therefore, in order to grasp the drying behavior of the green agglomerate G in the dryer 3, a drying test simulating the drying behavior of raw pellets by a moving great dryer was performed. Specifically, hematite ore as a metal oxide (−44 μm, 60% by mass or more) and bituminous coal (−80 μm, 80% by mass or more) as a carbonaceous material in a mass ratio of 81.7: 18.3. 1% by weight of flour as a binder (protein content: 3.1% by mass) was added thereto, and raw pellets having a diameter of 18 mm and a water content of about 13% by mass were granulated. 30 kg of this raw pellet was filled in a pot grate having an inner diameter of 300 mm, and a drying test was conducted by passing heated air at 130 ° C. or 180 ° C. through the raw pellet packed bed at a flow rate of 300 Nm 3 / h. Then, thermocouples were installed at two locations on the left and right sides in the raw pellet packed layer to measure the raw pellet temperature during the drying test, and the drying time was sequentially changed to measure the residual moisture content in the raw pellet.
 測定結果を図3に生ペレット温度と生ペレット中の水分含有量との関係で示す。なお、図中の例えば「180(L)」は、「180℃」の加熱空気での乾燥試験における、生ペレット充填層内の「左」側に設置した熱電対による測温結果を意味し、「130(R)」は、「130℃」の加熱空気での乾燥試験における、生ペレット充填層内の「右」側に設置した熱電対による測温結果を意味する。 The measurement results are shown in FIG. 3 in relation to the raw pellet temperature and the water content in the raw pellet. For example, “180 (L)” in the figure means a temperature measurement result by a thermocouple installed on the “left” side in the raw pellet packed bed in a drying test with heated air of “180 ° C.” “130 (R)” means a temperature measurement result by a thermocouple installed on the “right” side in the raw pellet packed bed in the drying test with heated air of “130 ° C.”.
 同図に示すように、生ペレット温度の上昇とともに生ペレット中の水分含有量(残留水分量)は減少していくが、加熱空気の温度が低いほう(130℃)が、同じ生ペレット温度で比較すると、残留水分量が少ないことがわかる。 As shown in the figure, as the raw pellet temperature rises, the moisture content (residual moisture amount) in the raw pellet decreases, but the lower the heated air temperature (130 ° C), the same raw pellet temperature. By comparison, it can be seen that the amount of residual moisture is small.
 すなわち、加熱空気の温度が低くなると、同じ生ペレット温度に到達するまでにより長い時間を要し、この間に水分の蒸発がより進行したことを意味する。速度論的に考察すれば、より高温で加熱するほど、生ペレット内の伝熱が先行して生ペレット温度は上昇するが、蒸発は遅れ気味になることを意味する。極端な例でいえば、加熱空気の温度を90℃にすると、小麦粉は糊化せずに乾燥だけが進行することになる。したがって、生ペレットがバースティング(水分の急激な蒸発による爆裂)しない範囲でできるだけ高温の加熱空気で乾燥し、生ペレット内に水分を多く残して小麦粉の糊化を促進し、その後に乾燥を進めるほうが良いことになる。 That is, when the temperature of the heated air is lowered, it takes a longer time to reach the same raw pellet temperature, which means that the evaporation of moisture has progressed during this time. Considering kinetics, it means that the higher the temperature is heated, the higher the temperature of the raw pellets is, which is preceded by the heat transfer in the raw pellets, but the evaporation is delayed. In an extreme example, when the temperature of the heated air is set to 90 ° C., the flour does not gelatinize and only drying proceeds. Therefore, the raw pellets are dried with hot air as high as possible without causing bursting (explosion due to rapid evaporation of moisture), leaving much moisture in the raw pellets to promote gelatinization of the flour and then proceeding with drying Is better.
 図3に示すように、生ペレット温度が、バインダとして添加した小麦粉の糊化温度である90℃に到達したときの生ペレット中の残留水分量は、180℃の加熱空気で乾燥した場合は約7.0質量%、130℃の加熱空気で乾燥した場合は3.0~5.5質量%程度となっている。 As shown in FIG. 3, when the raw pellet temperature reaches 90 ° C., which is the gelatinization temperature of the flour added as a binder, the residual moisture content in the raw pellet is about when dried with heated air at 180 ° C. When dried with heated air at 7.0 ° C. and 130 ° C., it is about 3.0 to 5.5% by mass.
 一方、上記乾燥試験により、残留水分量が1.0質量%以下まで乾燥した乾燥ペレットの落下強度を測定したところ、180℃の加熱空気で乾燥した場合は、目標の15回を確保できたが、130℃の加熱空気で乾燥した場合は、目標の15回を確保できなかった。 On the other hand, when the drop strength of the dried pellets dried to a residual moisture content of 1.0% by mass or less was measured by the above drying test, the target 15 times was secured when dried with heated air at 180 ° C. When dried with heated air at 130 ° C., the target of 15 times could not be secured.
 これらのことから、180℃の加熱空気で乾燥した場合には、生ペレット温度が小麦粉の糊化温度である90℃に達したときに、生ペレット中に十分な量の水分が残留し、小麦粉の糊化が進行して乾燥後のペレットに十分な強度が発現したのに対し、130℃の加熱空気で乾燥した場合には、生ペレット温度が小麦粉の糊化温度である90℃に達したときに、生ペレット中の残留水分が不足し、小麦粉の糊化が十分に進行せず乾燥後のペレットに十分な強度が発現しなかったものと想定される。 Therefore, when dried with heated air at 180 ° C., when the raw pellet temperature reaches 90 ° C., which is the gelatinization temperature of flour, a sufficient amount of moisture remains in the raw pellet, and the flour As the gelatinization progressed, sufficient strength was developed in the dried pellets, but when dried with heated air at 130 ° C, the raw pellet temperature reached 90 ° C, the gelatinization temperature of flour. Sometimes, it is assumed that residual moisture in the raw pellets is insufficient, and gelatinization of the flour does not proceed sufficiently, so that the dried pellets do not have sufficient strength.
 以上の結果および考察に基づき、乾燥後のペレットに十分な強度を発現させるためには、生ペレット温度が小麦粉の糊化温度である90℃に達したときに、生ペレット中に少なくとも6質量%(より好ましくは7質量%)の水分が残留している必要があるとした。 Based on the above results and considerations, in order to develop sufficient strength in the dried pellets, when the raw pellet temperature reaches 90 ° C., which is the gelatinization temperature of wheat flour, at least 6% by mass in the raw pellets It is assumed that water (more preferably 7% by mass) needs to remain.
 なお、上記乾燥試験では、バインダとして糊化温度が90℃の小麦粉を用いた場合のみを例示したが、小麦粉以外の澱粉含有物質を用いた場合でも、生ペレット温度がその澱粉含有物質の糊化温度に達したときに、生ペレット中に6質量%以上(より好ましくは7質量%以上)の水分が残留していれば、当然にその澱粉含有物質が糊化すると想定される。 In the above drying test, only the case where wheat flour having a gelatinization temperature of 90 ° C. was used as a binder is illustrated, but even when a starch-containing substance other than wheat flour is used, the raw pellet temperature is gelatinized of the starch-containing substance. When 6% by mass or more (more preferably 7% by mass or more) of water remains in the raw pellet when the temperature is reached, it is naturally assumed that the starch-containing substance is gelatinized.
 以上のことから、乾燥機3内での乾燥に当たり、生塊成物Gの温度が澱粉含有物質Dの糊化温度に到達したときに、生塊成物G中に水分を6質量%以上(より好ましくは7質量%以上)残留させるようにした。 From the above, when drying in the dryer 3, when the temperature of the raw agglomerate G reaches the gelatinization temperature of the starch-containing substance D, the moisture in the raw agglomerate G is 6% by mass or more ( More preferably 7 mass% or more).
 以上のことから明らかなように、バインダとして、蛋白質を2~13質量%(より好ましくは3~12質量%)含有する澱粉含有物質を用いるとともに、乾燥機3内での乾燥に当たり、生塊成物Gの温度がバインダである澱粉含有物質Dの糊化温度に到達したときに、生塊成物G中に水分が6質量%以上(より好ましくは7質量%以上)残留するように乾燥することにより、乾燥後の強度に優れた乾燥塊成化物(炭材内装酸化金属塊成物)Hを低コストで製造することが実現できる(後記実施例1、2参照)。 As is clear from the above, a starch-containing material containing 2 to 13% by mass (more preferably 3 to 12% by mass) of protein is used as the binder, and the agglomerates are formed during drying in the dryer 3. When the temperature of the product G reaches the gelatinization temperature of the starch-containing material D, which is a binder, drying is performed so that moisture remains in the raw agglomerate G by 6 mass% or more (more preferably 7 mass% or more). Thus, it is possible to produce a dry agglomerated material (carbon material-containing metal oxide agglomerated material) H having excellent strength after drying at low cost (see Examples 1 and 2 below).
 上記のような、澱粉含有物質Dの糊化温度に見合った乾燥挙動を実現するには、バインダDとして用いる澱粉含有物質に選択の余地がないような場合には、その澱粉含有物質の糊化温度に合わせて、乾燥機3内のヒートパターンを設定すればよい。乾燥機3内のヒートパターンは、例えば、加熱空気の温度および/または流量、乾燥時間(=生塊成物Gの乾燥機3内における滞留時間)などを変更することにより、容易に調整することができる。 In order to realize the drying behavior commensurate with the gelatinization temperature of the starch-containing substance D as described above, when there is no choice in the starch-containing substance used as the binder D, the starch-containing substance is gelatinized. What is necessary is just to set the heat pattern in the dryer 3 according to temperature. The heat pattern in the dryer 3 can be easily adjusted, for example, by changing the temperature and / or flow rate of the heated air, the drying time (= the residence time of the raw agglomerate G in the dryer 3), etc. Can do.
 一方、生産性の制約などにより乾燥機3内のヒートパターンの変更が難しいような場合には、バインダDとして用いる澱粉含有物質として、その乾燥機3内のヒートパターンに適合する糊化温度を有するものを選択すればよい。 On the other hand, when it is difficult to change the heat pattern in the dryer 3 due to productivity restrictions, etc., the starch-containing material used as the binder D has a gelatinization temperature suitable for the heat pattern in the dryer 3. Just choose one.
 バインダDとして用いることができる澱粉含有物質としては、食パン製造用、飼料用、工業用と多彩であるが、本発明のように工業的に使用するためにはより安価で多量に入手できることが望まれる。澱粉含有物質は、その精製度(すなわち純度)が低くなるほど、つまり灰分含有量が多くなるほど、一般的に、価格が低下するとともに多量に入手できるようになる。 As starch-containing substances that can be used as binder D, there are various types of bread-making, feed-use, and industrial-use, but it is desirable that they can be obtained at low cost and in large quantities for industrial use as in the present invention. It is. Generally, the lower the degree of purification (ie, the purity) of starch-containing materials, that is, the higher the ash content, the lower the price and the greater the availability of starch-containing materials.
 しかしながら、澱粉含有物質中の灰分含有量が多くなると、澱粉含有物質中の正味の澱粉含有量が減少するので、同じ量だけ添加してもバインダとしての能力が低下する。 However, if the ash content in the starch-containing material increases, the net starch content in the starch-containing material decreases, so even if the same amount is added, the ability as a binder decreases.
 したがって、より安価で大量入手が可能ではあるものの、純度の低い澱粉含有物質を使用するような場合には、澱粉含有物質中の灰分含有量0.1質量%増加当たり、その澱粉含有物質の添加量を0.075質量%以上増加させるとよい(後記実施例3参照)。 Therefore, although it is cheaper and can be obtained in large quantities, when a starch-containing material with low purity is used, the addition of the starch-containing material per 0.1% by mass increase in the ash content in the starch-containing material The amount may be increased by 0.075% by mass or more (see Example 3 below).
 本発明の効果を確認するため、以下の造粒・乾燥試験を実施した。 In order to confirm the effect of the present invention, the following granulation / drying tests were conducted.
〔実施例1〕澱粉含有物質の蛋白質含有量の影響
 まず、生ペレットの造粒性および乾燥ペレットの落下強度に及ぼす澱粉含有物質の蛋白質含有量の影響を調査した。
[Example 1] Effect of protein content of starch-containing substance First, the influence of the protein content of starch-containing substance on the granulation property of raw pellets and the drop strength of dried pellets was investigated.
 上述の乾燥挙動把握のための乾燥試験と同じく、酸化金属としてヘマタイト系鉱石(44μm、60質量%以上)、炭素質物質として瀝青炭(-80μm、80質量%以上)を質量比で81.7:18.3の割合で配合した。そして、これにバインダとして種々の澱粉含有物質を1.0質量%添加し、直径:18mm、水分含有量:約13質量%の生ペレットを造粒した。そして、この生ペレット30kgを内径300mmのポットグレートに充填し、180℃の加熱空気を300Nm/hの流量で1時間だけ生ペレット充填層内を通過させて乾燥試験を実施し、乾燥後のペレット(乾燥ペレット)の落下強度を測定した。なお、落下強度は、試料を45cmの高さから繰り返し落下させた場合における破壊までの落下回数で定義し、本明細書の試験では15個の乾燥ペレットで測定し、その平均値で表示した。 Similar to the above-described drying test for grasping the drying behavior, hematite ore (44 μm, 60% by mass or more) as a metal oxide and bituminous coal (−80 μm, 80% by mass or more) as a carbonaceous substance in a mass ratio of 81.7: It mix | blended in the ratio of 18.3. Then, 1.0% by mass of various starch-containing substances as a binder was added thereto, and raw pellets having a diameter of 18 mm and a water content of about 13% by mass were granulated. Then, 30 kg of the raw pellets are filled in a pot grate having an inner diameter of 300 mm, and a drying test is performed by passing heated air at 180 ° C. through the raw pellet packed bed for 1 hour at a flow rate of 300 Nm 3 / h. The drop strength of the pellet (dry pellet) was measured. The drop strength was defined as the number of drops until breakage when the sample was repeatedly dropped from a height of 45 cm. In the test of this specification, measurement was performed with 15 dry pellets, and the average value was displayed.
 この造粒・乾燥試験の結果を下記表1に示す。なお、同表に示す糊化温度は、直接の測定は行わず、図2のアミログラムを用いて推定した値である。ここに、小麦粉(表1中の薄力粉、強力粉も小麦粉の一種である)は、その産地や種類によって糊化温度が変化すると考えられるが、図2の小麦のアミログラムから求めた90℃が澱粉含有物質の糊化温度の最高値と想定されるので、いずれのものも「90℃以下」とした。また、同表に示す糊化温度到達時の残留水分量は、図3の加熱空気温度180℃の乾燥曲線より求めた値である。また、同表に示す造粒性は、容易に造粒できた場合を◎、造粒時に異形小粒子ができたり生ペレットがスリップして転動が不調となったりするものの造粒が可能な場合を○、球形にするのが難しく造粒できない場合を×でそれぞれ表示して分類した。また、乾燥ペレットの落下強度は15回以上を合格とした。そして、造粒性が◎または○で、かつ、落下強度が合格の場合を発明例とし、それ以外の場合は比較例とした。 The results of this granulation / drying test are shown in Table 1 below. The gelatinization temperature shown in the table is a value estimated using the amylogram of FIG. 2 without performing direct measurement. Here, wheat flour (thin flour in Table 1 and strong flour is also a kind of wheat flour) is considered to change the gelatinization temperature depending on the production area and type, but 90 ° C. obtained from the amylogram of wheat in FIG. 2 contains starch. Since the maximum value of the gelatinization temperature of the substance is assumed, all of them were set to “90 ° C. or less”. Further, the residual moisture content when the gelatinization temperature is reached shown in the table is a value obtained from the drying curve of the heated air temperature of 180 ° C. in FIG. In addition, the granulation properties shown in the table are ◎ when granulation is easy, and granulation is possible even when irregularly shaped small particles are formed during granulation or raw pellets slip and rolling becomes unstable. Cases were marked with ◯ and cases where granulation was difficult and granulation could not be made with x, respectively. Moreover, the fall strength of the dry pellet made the pass 15 times or more. And the case where granulation property is (double-circle) or (circle), and drop strength is a pass was made into the invention example, and it was set as the comparative example in the case other than that.
 同表から明らかなように、発明例である試験番号1、4、5は、バインダとして添加した澱粉含有物質の蛋白質含有量が2~13質量%の範囲にあり、かつ、生ペレットの温度が澱粉含有物質の糊化温度に到達したときに、その生ペレット中の残留水分量が6質量%以上となり、本発明の要件を満たしており、造粒性、乾燥ペレットの落下強度とも優れている。 As is clear from the table, in Test Nos. 1, 4, and 5, which are invention examples, the protein content of the starch-containing substance added as a binder is in the range of 2 to 13% by mass, and the temperature of the raw pellet is When the gelatinization temperature of the starch-containing substance is reached, the residual moisture content in the raw pellet is 6% by mass or more, which satisfies the requirements of the present invention, and is excellent in granulation properties and dry pellet drop strength. .
 これに対して、比較例である試験番号2、3は、生ペレットの温度が澱粉含有物質の糊化温度に到達したときに、その生ペレット中の残留水分量が6質量%以上となるものの、バインダとして添加した澱粉含有物質の蛋白質含有量が低すぎるため、本発明の要件を満たさず、造粒性には優れているものの、乾燥ペレットの落下強度が劣っている。 In contrast, Test Nos. 2 and 3, which are comparative examples, show that when the temperature of the raw pellet reaches the gelatinization temperature of the starch-containing substance, the residual moisture content in the raw pellet becomes 6% by mass or more. Since the protein content of the starch-containing substance added as a binder is too low, the requirements of the present invention are not satisfied, and although the granulation property is excellent, the falling strength of the dried pellets is inferior.
 また、比較例である試験番号6は、生ペレットの温度が澱粉含有物質の糊化温度に到達したときに、その生ペレット中の残留水分量が6質量%以上となるものの、バインダとして添加した澱粉含有物質の蛋白質含有量が高すぎるため、本発明の要件を満たさず、造粒性、乾燥ペレットの落下強度とも劣っている。 Moreover, test number 6 which is a comparative example was added as a binder although the amount of residual moisture in the raw pellet was 6% by mass or more when the temperature of the raw pellet reached the gelatinization temperature of the starch-containing substance. Since the protein content of the starch-containing substance is too high, it does not satisfy the requirements of the present invention, and the granulation property and the drop strength of the dried pellet are inferior.
〔実施例2〕加熱空気温度の影響
 つぎに、乾燥ペレットの落下強度に及ぼす加熱空気温度の影響を調査するため、上記表1の試験番号4において、炭素質物質を褐炭(-74μm、80質量%以上)に変更し、バインダの添加量を1.5質量%に増加したうえで、加熱空気温度を105℃に変更した試験を追加した(試験番号7)。なお、乾燥時間は上記実施例1と同じ1時間とした。この試験の結果を、上記表1の試験番号4とともに下記表2に示す。
[Example 2] Influence of heating air temperature Next, in order to investigate the influence of the heating air temperature on the drop strength of the dried pellets, in the test number 4 in Table 1 above, the carbonaceous material was lignite (-74 μm, 80 mass). %) And the binder addition amount was increased to 1.5 mass%, and a test in which the heating air temperature was changed to 105 ° C. was added (test number 7). The drying time was 1 hour, the same as in Example 1 above. The results of this test are shown in Table 2 below together with the test number 4 in Table 1 above.
 同表に示すように、加熱空気温度を105℃に下げた試験番号7では、バインダの添加量を1.5質量%に増加したにも関わらず、乾燥ペレットの落下強度が大幅に低下した。これは、1時間の乾燥時間では生ペレット温度が小麦粉の糊化温度に達せず、十分に強度が発現しなかったためと推察される。なお、乾燥時間を延長したとしても、加熱空気温度が低すぎるので、生ペレット温度が小麦粉の糊化温度に到達したときには、生ペレット中の残留水分量は6質量%より大幅に少なくなると判断され、やはり強度は発現しないと推察される。 As shown in the table, in test No. 7 in which the heated air temperature was lowered to 105 ° C., the drop strength of the dried pellets was greatly reduced despite the increase in the binder addition amount to 1.5% by mass. This is presumably because the raw pellet temperature did not reach the gelatinization temperature of wheat flour during the drying time of 1 hour, and the strength was not sufficiently developed. Even if the drying time is extended, the heated air temperature is too low, so when the raw pellet temperature reaches the gelatinization temperature of the flour, it is determined that the residual moisture content in the raw pellet is significantly less than 6% by mass. It is presumed that strength is not developed.
〔実施例3〕澱粉含有物質の灰分含有量の影響
 さらに、乾燥ペレットの落下強度に及ぼす澱粉含有物質の灰分含有量の影響を調査するため、バインダとして、灰分含有量の高いライ麦粉2種類を用い、それらの添加量を種々変更して造粒・乾燥試験を実施した。なお、バインダの種類および添加量以外は、上記実施例1と同じ試験条件とした。
[Example 3] Effect of ash content of starch-containing material Furthermore, in order to investigate the effect of ash content of starch-containing material on the drop strength of dry pellets, two types of rye flour with high ash content were used as binders. A granulation / drying test was carried out using various amounts of these additives. The test conditions were the same as in Example 1 except for the binder type and amount added.
 試験結果を表3に示す。同表に示すように、食品用としては品位が低く、灰分含有量の高いライ麦粉をバインダとして用いた場合、バインダ添加量1.0質量%では目標落下強度の15回を確保することができなかったが、バインダ添加量を増加させるにつれて落下強度が上昇し、目標の15回以上を達成できることがわかった。そして、落下強度が目標の15回以上で、かつ、同程度のレベルにある、試験番号9と試験番号11とを対比することにより、バインダである澱粉含有物質の灰分含有量が0.4質量%(1.6-1.2=0.4)高くなると、落下強度を維持するためにはバインダ添加量を0.3質量%(1.5-1.2=0.3)増加させる必要があることがわかる。 Table 3 shows the test results. As shown in the table, when rye flour having a low grade for foods and a high ash content is used as a binder, a target drop strength of 15 times can be secured at a binder addition amount of 1.0% by mass. However, it was found that the drop strength increased as the binder addition amount was increased, and the target of 15 times or more could be achieved. And by comparing the test number 9 and the test number 11 that have a drop strength of 15 times or more and the same level, the ash content of the starch-containing substance as a binder is 0.4 mass. % (1.6-1.2 = 0.4) increases, it is necessary to increase the amount of binder added by 0.3 mass% (1.5-1.2 = 0.3) in order to maintain the drop strength. I understand that there is.
 したがって、澱粉含有物質中の灰分含有量0.1質量%増加当たり、その澱粉含有物質の添加量を0.075質量%増加させることで、バインダとして灰分含有量の高い澱粉含有物質を用いても、乾燥ペレットの落下強度を確実に目標の15回以上確保できることが明らかである。 Therefore, even if a starch-containing substance having a high ash content is used as a binder by increasing the added amount of the starch-containing substance by 0.075 mass% per 0.1 mass% increase in the ash content in the starch-containing substance. It is clear that the drop strength of the dried pellet can be reliably ensured 15 times or more.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 本出願は、2010年8月27日出願の日本特許出願(特願2010-190718)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on August 27, 2010 (Japanese Patent Application No. 2010-190718), the contents of which are incorporated herein by reference.
 本発明によれば、炭材内装酸化金属塊成物を製造するに当たり、バインダとして澱粉含有物質を用いる際に有機質物質を併用することがなく、事前処理を行うこともないため、低コスト化を実現できる。 According to the present invention, in producing a carbonaceous material-containing metal oxide agglomerate, when using a starch-containing substance as a binder, no organic substance is used in combination, and no pretreatment is performed, so that the cost can be reduced. realizable.
1…混合器
2…塊成化手段
21…ペレタイザ
22…ブリケットマシン
3…乾燥機
A…酸化金属
B…炭素質物質
C…粉状原料
D…バインダ
E…水
F…混合原料
G…生塊成物
…生ペレット
…生ブリケット
H…炭材内装酸化金属塊成物(乾燥塊成化物)
…乾燥ペレット
…乾燥ブリケット
DESCRIPTION OF SYMBOLS 1 ... Mixer 2 ... Agglomeration means 21 ... Pelletizer 22 ... Briquette machine 3 ... Dryer A ... Metal oxide B ... Carbonaceous material C ... Powdery raw material D ... Binder E ... Water F ... Mixed raw material G ... Raw agglomeration Product G 1 … Raw pellet G 2 … Raw briquette H… Carbonized metal oxide agglomerates (dried agglomerates)
H 1 ... dry pellet H 2 ... dry briquette

Claims (4)

  1.  主成分たる酸化金属と、この酸化金属を還元するのに十分な量の炭素質物質とを含む粉状原料に、前記酸化金属と前記炭素質物質とを粘結するのに十分な量のバインダと水とを添加して混合原料となし、この混合原料を塊成化して得た生塊成物を、乾燥機で乾燥することによって炭材内装酸化金属塊成物を製造するに当たり、
     前記バインダとして、蛋白質を2~13質量%含有する澱粉含有物質のみをそのまま用いるとともに、前記乾燥機内における生塊成物の温度が前記澱粉含有物質の糊化温度に到達したときに、その生塊成物中に水分が6質量%以上残留するように乾燥することを特徴とする炭材内装酸化金属塊成物の製造方法。
    A binder in an amount sufficient for caking the metal oxide and the carbonaceous material to a powdery raw material containing a metal oxide as a main component and a carbonaceous material in an amount sufficient to reduce the metal oxide. When the raw material agglomerate obtained by agglomerating the mixed raw material is dried with a dryer, a carbonaceous material-containing metal oxide agglomerate is produced.
    As the binder, only a starch-containing material containing 2 to 13% by mass of protein is used as it is, and when the temperature of the raw agglomerate in the dryer reaches the gelatinization temperature of the starch-containing material, the raw agglomerate is used. A method for producing a carbonaceous metal-incorporated metal oxide agglomerate, characterized in that drying is performed so that water remains in an amount of 6% by mass or more.
  2.  前記澱粉含有物質の糊化温度に合わせて、前記乾燥機内のヒートパターンを設定する請求項1に記載の炭材内装酸化金属塊成物の製造方法。 The method for producing a carbonaceous material-containing metal oxide agglomerate according to claim 1, wherein a heat pattern in the dryer is set in accordance with a gelatinization temperature of the starch-containing substance.
  3.  前記澱粉含有物質として、前記乾燥機内のヒートパターンに適合する糊化温度を有するものを選択する請求項1に記載の炭材内装酸化金属塊成物の製造方法。 The method for producing a carbonaceous metal-incorporated metal oxide agglomerate according to claim 1, wherein a material having a gelatinization temperature that matches a heat pattern in the dryer is selected as the starch-containing substance.
  4.  前記澱粉含有物質中の灰分含有量0.1質量%増加当たり、その澱粉含有物質の添加量を0.075質量%以上増加させる請求項1~3のいずれか1項に記載の炭材内装酸化金属塊成物の製造方法。
     
    The carbonaceous material internal oxidation according to any one of claims 1 to 3, wherein the addition amount of the starch-containing material is increased by 0.075 mass% or more per ash content increase of 0.1 mass% in the starch-containing material. A method for producing metal agglomerates.
PCT/JP2011/069214 2010-08-27 2011-08-25 Method for producing carbon-material-containing metal oxide agglomerates WO2012026542A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010190718A JP5476257B2 (en) 2010-08-27 2010-08-27 Method for manufacturing carbon oxide-incorporated metal oxide agglomerates
JP2010-190718 2010-08-27

Publications (1)

Publication Number Publication Date
WO2012026542A1 true WO2012026542A1 (en) 2012-03-01

Family

ID=45723533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069214 WO2012026542A1 (en) 2010-08-27 2011-08-25 Method for producing carbon-material-containing metal oxide agglomerates

Country Status (2)

Country Link
JP (1) JP5476257B2 (en)
WO (1) WO2012026542A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6056492B2 (en) * 2013-01-16 2017-01-11 新日鐵住金株式会社 Method for producing unfired carbon-containing agglomerated blast furnace

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193423A (en) * 1997-10-30 1999-07-21 Kobe Steel Ltd Iron oxide pellet and its manufacture, and reduced iron pellet and its manufacture
JP2001214222A (en) * 2000-01-31 2001-08-07 Oji Cornstarch Co Ltd Steel-making dust agglomerate and its manufacturing method
JP2002256350A (en) * 2001-03-01 2002-09-11 Aica Kogyo Co Ltd Binder utilizing industrial waste product and method for materializing shapeless raw material using the binder
JP2009024190A (en) * 2007-07-17 2009-02-05 Jfe Steel Kk Method for producing molded raw material to be sintered
JP2010100888A (en) * 2008-10-23 2010-05-06 Jfe Steel Corp Method for producing granulation sintering raw material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193423A (en) * 1997-10-30 1999-07-21 Kobe Steel Ltd Iron oxide pellet and its manufacture, and reduced iron pellet and its manufacture
JP2001214222A (en) * 2000-01-31 2001-08-07 Oji Cornstarch Co Ltd Steel-making dust agglomerate and its manufacturing method
JP2002256350A (en) * 2001-03-01 2002-09-11 Aica Kogyo Co Ltd Binder utilizing industrial waste product and method for materializing shapeless raw material using the binder
JP2009024190A (en) * 2007-07-17 2009-02-05 Jfe Steel Kk Method for producing molded raw material to be sintered
JP2010100888A (en) * 2008-10-23 2010-05-06 Jfe Steel Corp Method for producing granulation sintering raw material

Also Published As

Publication number Publication date
JP5476257B2 (en) 2014-04-23
JP2012046799A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP5729582B2 (en) Production of iron using environmentally friendly renewable reducing agents or regenerative reducing agents
US7438730B2 (en) Method of producing iron oxide pellets
JP5547879B2 (en) Carbonaceous material-incorporated iron oxide agglomerate, method for producing the same, and method for producing reduced iron or metallic iron
WO2009125814A1 (en) Agglomerate, containing titanium oxide, for manufacturing granular metallic iron
JP5078985B2 (en) Production method of agglomerates
KR100551608B1 (en) Method for using coal fines in a melt-down gasifier
JP2010229525A (en) Method for producing ferronickel and ferrovanadium
JP5411615B2 (en) Manufacturing method of carbonized material agglomerates
Deqing et al. Sintering behaviours of chromite fines and the consolidation mechanism
JPH11193423A (en) Iron oxide pellet and its manufacture, and reduced iron pellet and its manufacture
JP5423645B2 (en) Method for producing reduced iron
TWI776268B (en) Iron ore powder agglomerate production method and agglomerate product
JP5512205B2 (en) Strength improvement method of raw material for agglomerated blast furnace
JP5476257B2 (en) Method for manufacturing carbon oxide-incorporated metal oxide agglomerates
JP6014009B2 (en) Method for producing reduced iron
JP2009270193A (en) Method for producing granular metallic iron
JP2013221187A (en) Method for producing agglomerate
JP4490735B2 (en) Manufacturing method of carbonized material agglomerates
JP2005053982A (en) Method for producing ferrocoke for blast furnace
JP6887717B2 (en) Charcoal interior granulated particles for sinter production and sinter production method using them
JP2013199701A (en) Method for producing agglomerate
AU2011203011B2 (en) Granulated metallic iron superior in rust resistance and method for producing the same
CA3182004A1 (en) Lower temperature pelletizing process of iron ore fines
CA3182009A1 (en) Low temperature briquette of fines bearing iron and other metals
KR970010798B1 (en) Agglomeration method of fine powder using non-coking coal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11820005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11820005

Country of ref document: EP

Kind code of ref document: A1