WO2012026364A1 - Method for producing optical film, optical film, polarization plate, liquid crystal display device - Google Patents

Method for producing optical film, optical film, polarization plate, liquid crystal display device Download PDF

Info

Publication number
WO2012026364A1
WO2012026364A1 PCT/JP2011/068558 JP2011068558W WO2012026364A1 WO 2012026364 A1 WO2012026364 A1 WO 2012026364A1 JP 2011068558 W JP2011068558 W JP 2011068558W WO 2012026364 A1 WO2012026364 A1 WO 2012026364A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
casting
optical film
vibration
acid
Prior art date
Application number
PCT/JP2011/068558
Other languages
French (fr)
Japanese (ja)
Inventor
直矢 岩上
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2012026364A1 publication Critical patent/WO2012026364A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/28Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on an endless belt
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent

Definitions

  • the present invention relates to an optical film manufacturing method, an optical film manufactured by the manufacturing method, a polarizing plate using the optical film as a transparent protective film, and a liquid crystal display device including the polarizing plate.
  • liquid crystal display devices Conventionally, the demand for liquid crystal display devices (LCDs) has been expanded for applications such as liquid crystal televisions and personal computer liquid crystal displays. In recent years, as liquid crystal display devices have become larger, they can be used as large displays installed in streets and stores, and as displays for advertising in public places using display devices called digital signage. Is becoming more diverse.
  • the liquid crystal display device includes a liquid crystal cell having a configuration in which a transparent electrode, a liquid crystal layer, a color filter, and the like are sandwiched between glass plates, and two polarizing plates disposed on both sides of the liquid crystal cell so as to sandwich the liquid crystal cell.
  • the polarizing plate includes a polarizer (also referred to as a polarizing film or a polarizing film) and two transparent protective films disposed on both sides of the polarizer so as to sandwich the polarizer.
  • a polarizer also referred to as a polarizing film or a polarizing film
  • the transparent protective film an optical film, usually an optical film made of a cellulose ester resin film such as cellulose triacetate is used.
  • a solution casting film forming method is known as an optical film manufacturing method.
  • a resin solution (dope) in which a resin is dissolved in a solvent is generally discharged from a die to form a casting ribbon, and this casting ribbon is attached to a support such as an endless belt or a drum.
  • Casting process for forming a cast film (web) on the support peeling process for peeling the formed cast film from the support, longitudinal direction and / or width direction of the peeled cast film (resin film)
  • a stretching process for stretching the resin film a heat treatment process for heat-treating the stretched resin film, a winding process for winding the heat-treated resin film as an optical film, and the like.
  • Patent Document 1 it has been proposed to cancel the vibration of the casting ribbon to reduce the film thickness unevenness by giving the casting ribbon vibration in the phase opposite to that of the casting ribbon. Yes.
  • the present invention provides a method for producing an optical film by a solution casting film-forming method, which easily and reliably suppresses the occurrence of horizontal steps on the surface of the optical film, and the film thickness of the optical film changes periodically in the longitudinal direction. It is an object to reduce film thickness unevenness.
  • One aspect of the present invention is an optical device having a casting process in which a resin solution is discharged from a die to form a casting ribbon, and the casting ribbon is attached to a support to form a casting film on the support.
  • a method for producing a film wherein the casting step has a vibrator that vibrates the casting ribbon, and the vibrator is higher than a peak frequency of the natural vibration of the casting ribbon between the die and the support.
  • a method for producing an optical film characterized by applying a vibration of a frequency to a casting ribbon.
  • the occurrence of horizontal steps on the surface of the optical film is suppressed easily and reliably, and the film thickness unevenness in which the film thickness of the optical film periodically changes in the longitudinal direction is reduced.
  • the casting ribbon is fixed at one end by a die, but the other end is only fixed to the support and is not fixed, so one side is a free end system. Therefore, if vibration of a frequency different from the peak frequency of the natural vibration of the casting ribbon is applied to the casting ribbon, the state of the system changes, the attachment position of the casting ribbon to the support changes, and the die and the support The length of the casting ribbon in between changes. As a result, the applied vibration is not added to the natural vibration of the casting ribbon, but the natural vibration of the casting ribbon itself changes, and the low frequency that remains as a horizontal step on the surface of the manufactured optical film. The vibration of the vibration is attenuated or extinguished. Instead, the casting ribbon begins to vibrate at the applied frequency of vibration.
  • the difference between the pressure of the resin solution at the wave crest and the pressure of the resin solution at the wave trough increases, the force (leveling force) for smoothing the wave increases, and the wave is easily smoothed. It becomes a trend. As a result, the occurrence of lateral steps on the surface of the manufactured optical film is reliably suppressed, and the film thickness unevenness in which the film thickness of the optical film periodically changes in the longitudinal direction is reliably reduced.
  • the manufacturing method of the present invention during the casting process, only giving the casting ribbon a vibration having a frequency higher than the peak frequency of the natural vibration of the casting ribbon, the peak frequency is measured in advance, The frequency of vibration to be applied can be determined in advance. Therefore, it is not necessary to always detect the peak frequency of the natural vibration of the casting ribbon or perform precise control during the production of the film, and it is possible to easily suppress the occurrence of horizontal steps on the surface of the optical film, Film thickness unevenness in which the thickness periodically changes in the longitudinal direction can be reduced.
  • the natural vibration of the casting ribbon refers to the displacement of the contact point between the support and the casting ribbon.
  • the natural vibration is measured by arranging two cameras in the vicinity of both end portions in the width direction of the discharge port of the die, and separately shooting the casting ribbon separately with the two cameras. From this, the vibration (frequency, amplitude) of the casting ribbon is detected, and the average value of the two vibrations (frequency, amplitude) obtained can be calculated.
  • Peak frequency means the data of the displacement (natural vibration) of the casting ribbon with respect to the time axis by frequency analysis using, for example, FFT (Fast Fourier Transform), etc. The frequency at which the peak value of vibration intensity appears when data is obtained.
  • FFT Fast Fourier Transform
  • the frequency of vibration applied to the casting ribbon is preferably 1 kHz to 100 kHz. Since the peak frequency of the natural vibration of the casting ribbon is usually about 700 Hz or less, it is higher than the peak frequency of the natural vibration of the casting ribbon by giving the casting ribbon a vibration having a frequency of 1 kHz or more. Is reliably applied to the casting ribbon. In addition, by applying vibration with a frequency of 100 kHz or less to the casting ribbon, heating of the casting ribbon is suppressed, and generation of a film on the surface of the casting ribbon is suppressed (the film is formed on the surface of the casting ribbon). When produced, the inside of the cast film becomes difficult to dry).
  • the amplitude of vibration applied to the casting ribbon is preferably 10 ⁇ m to 2000 ⁇ m.
  • the leveling force becomes sufficiently large, and it is possible to suppress the horizontal step due to the applied vibration from remaining.
  • the casting ribbon is prevented from adhering to the lip portion of the die (the portion of the die that defines the discharge port), and the resin adheres to the lip portion. It is suppressed that it remains (if resin adhesion remains on the lip portion, a die line is generated on the casting ribbon and thus on the manufactured optical film).
  • the casting ribbon it is preferable to vibrate the casting ribbon by vibrating the air around the casting ribbon with a vibrator. By vibrating the air around the casting ribbon, the casting ribbon is reliably vibrated.
  • Another aspect of the present invention is an optical film manufactured by the above-described manufacturing method.
  • This optical film is capable of satisfactorily meeting the demand for thin optical films by suppressing the occurrence of horizontal steps on the surface and reducing film thickness unevenness in which the film thickness periodically changes in the longitudinal direction.
  • Yet another aspect of the present invention is a polarizing plate comprising a polarizer and two transparent protective films disposed on both sides of the polarizer so as to sandwich the polarizer, the two transparent protective films At least one of the polarizing plates is an optical film produced by the method for producing an optical film of the present invention.
  • this polarizing plate the occurrence of lateral steps on the surface of the transparent protective film is suppressed, the unevenness of the film thickness of the transparent protective film is reduced, and it is possible to satisfactorily meet the demand for thinning the polarizing plate.
  • Still another aspect of the present invention is a liquid crystal display device including a liquid crystal cell and two polarizing plates disposed on both sides of the liquid crystal cell so as to sandwich the liquid crystal cell, and the two polarizing plates At least one of the liquid crystal display devices is a polarizing plate using the optical film of the present invention.
  • this liquid crystal display device the occurrence of lateral steps on the surface of the transparent protective film in the polarizing plate is suppressed, and the film thickness unevenness in which the film thickness of the transparent protective film periodically changes in the longitudinal direction is reduced. It can cope with thinning well.
  • film thickness unevenness in which the occurrence of lateral steps on the surface of the optical film is suppressed easily and reliably without performing precise control or the like, and the film thickness of the optical film periodically changes in the longitudinal direction. was able to be reduced.
  • FIG. 1 It is a schematic block diagram of the manufacturing apparatus of the belt-type optical film which concerns on embodiment of this invention. It is an enlarged view of the periphery of the casting ribbon between the die
  • FIG. 1 is a schematic configuration diagram of an optical film manufacturing apparatus (belt type) 1 according to an embodiment of the present invention.
  • the optical film manufacturing apparatus 1 a is for manufacturing an optical film by a solution casting film forming method, and includes a casting apparatus 10, a stretching apparatus 20, a heat treatment apparatus 30, and a winding apparatus 40.
  • the casting apparatus 10 includes a die (casting die) 11, an endless belt 12, and a peeling roller 13.
  • the die 11 forms a casting ribbon 51 by discharging a resin solution (hereinafter also referred to as a dope) in which a resin is dissolved in a solvent, and the casting ribbon 51 is attached to an endless belt 12 as a support to endlessly.
  • a cast film (web) 52 is formed on the belt 12.
  • the endless belt 12 is wound around the support roll 12a and the support roll 12b and travels to convey the formed cast film 52 in the direction of the arrow in the figure.
  • the peeling roller 13 peels the casting film 52 from the endless belt 12 and sends the peeled unstretched film 52 a to the stretching device 20.
  • the stretching device 20 transports the resin film 53 in the longitudinal direction (transport direction (machine direction: MD direction)) and / or the width direction (direction orthogonal to the transport direction) using a clip tenter, pin tenter, or the like while transporting the unstretched film 52a. (Transverse Direction: TD direction)).
  • the heat treatment apparatus 30 heats and heats (heats) the stretched film 53 to a predetermined temperature while conveying the stretched film 53.
  • Winding device 40 winds heat-treated stretched film 53 as an optical film in a roll shape.
  • an optical film that is, a cellulose triacetate film or a cellulose ester film
  • a cellulose ester resin such as cellulose triacetate (hereinafter sometimes simply referred to as cellulose ester) is produced as an optical film.
  • the optical film containing an acrylic resin and a cellulose-ester resin may be manufactured, for example.
  • the dope discharged from the die 11 is prepared, for example, by dissolving a cellulose ester resin such as cellulose triacetate in a solvent containing a good solvent for the cellulose ester resin using a dissolution vessel.
  • the content of the cellulose ester resin in the resin solution is preferably 15% by mass to 30% by mass, for example.
  • a method carried out at normal pressure a method carried out below the boiling point of the solvent, a method carried out under pressure above the boiling point of the solvent, JP-A-9-95544, JP-A-9-95557, or Various dissolution methods such as a method using a cooling dissolution method as described in Kaihei 9-95538 and a method using a high pressure as described in Japanese Patent Application Laid-Open No. 11-21379 can be used.
  • the method of pressurizing at a temperature equal to or higher than the boiling point of the solvent is preferable.
  • the dope is filtered with a filter medium and defoamed.
  • a filter medium having a collected particle diameter of 0.5 ⁇ m to 5 ⁇ m and a drainage time of 10 sec / 100 ml to 25 sec / 100 ml.
  • the dope is sent to the die 11 by a liquid feed pump such as a pressurized metering gear pump.
  • the die 11 is preferably capable of adjusting the shape of the discharge port.
  • a pressure die that can easily make the film thickness of the casting ribbon 51 uniform is preferable. Examples of the pressure die include a coat hanger die and a T die, and any of them is preferably used. In order to increase the film forming speed, two or more pressure dies may be arranged side by side, and the resin solution may be divided and discharged.
  • the discharge speed (moving speed of the casting ribbon 51) for discharging the resin solution from the die 11 is, for example, 20 m / min to 200 m in consideration of the balance with the transport speed of the casting film 52 by the endless belt 12 and productivity. / Min is preferable.
  • the endless belt 12 is a metal belt having a mirror-finished surface.
  • the endless belt 12 is preferably made of stainless steel, for example, from the viewpoint of peelability of the cast film 52. From the viewpoint of effectively utilizing the width of the endless belt 12, the width of the casting film 52 in which the cast discharged from the die 11 is formed on the endless belt support is from 80% to the width of the endless belt 12. 99% is preferred.
  • the endless belt 12 travels to dry the casting film 52 while transporting the casting film 52 formed on the surface thereof.
  • This drying is performed, for example, by a method of heating the back surface of the endless belt 12 by blowing a heater or heating air, a method of heating the casting film 52 on the endless belt 12 by blowing a heater or heating air, and the like. It is possible to select as appropriate.
  • the temperature of the casting film 52 at the time of drying is preferably ⁇ 5 ° C. to 70 ° C., more preferably 0 ° C. to 60 ° C. in consideration of the time required for evaporation of the solvent, the conveyance speed, productivity, and the like. If the temperature of the casting film 52 is too high, the casting film 52 tends to foam or the flatness of the casting film 52 tends to deteriorate.
  • the wind pressure of the heated air is preferably 50 Pa to 5000 Pa in consideration of the uniformity of solvent evaporation and the like.
  • the temperature of the heating air may be dried at a constant temperature, or may be sprayed in several steps in the traveling direction of the endless belt 12.
  • the time until the casting film 52 is peeled from the endless belt 12 varies depending on the film thickness of the optical film to be produced and the solvent used, but the endless belt 12. In view of the peelability from the film, it is preferably in the range of 0.5 minutes to 5 minutes.
  • the conveyance speed of the casting film 52 by the endless belt 12 is preferably about 50 m / min to 200 m / min, for example.
  • the ratio (draft ratio) of the transport speed of the casting film 52 to the travel speed of the endless belt 12 is preferably about 0.8 to 1.2.
  • the draft ratio is within this range, the casting film 52 can be stably formed.
  • the draft ratio is too large, there is a tendency to cause a phenomenon called neck-in in which the casting film 52 is reduced in the width direction, and if so, a wide film cannot be formed.
  • the peeling roller 13 is in contact with the surface of the endless belt 12 in a pressurized state, and peels the dried casting film 52 from the endless belt 12.
  • the peeling tension at the time of peeling is preferably in the range of 50 N / m to 400 N / m.
  • the residual solvent ratio of the cast film 52 at the time of peeling is 30% to 200% by weight in consideration of peelability from the endless belt 12, transportability after peeling, physical properties of the optical film to be manufactured, and the like. It is preferable that
  • the residual solvent ratio is defined by the following equation.
  • Residual solvent ratio (%) ⁇ (mass before heat treatment of cast film ⁇ mass after heat treatment of cast film) / mass after heat treatment of cast film ⁇ ⁇ 100 Note that the heat treatment for measuring the residual solvent ratio is a heat treatment at 115 ° C. for 1 hour.
  • the stretching device 20 grips both side edges in the width direction of the resin film 53 which is the unstretched film 52a peeled from the endless belt 12 with a clip tenter, a pin tenter or the like, and holds the unstretched film 52a in the longitudinal direction (MD direction) and / Or extends in the width direction (TD direction).
  • the stretch ratio in the TD direction of the unstretched film 52a is preferably about 15% to 30%.
  • the optical value of the optical film tends to be nonuniform.
  • the stretch ratio in the TD direction of the unstretched film 52a is 15% to 30%, the optical value of the optical film can be suppressed from becoming non-uniform. Therefore, an optical film having a uniform optical value and a wide width can be obtained.
  • variety of an optical film is wide, it is preferable also from the point of use to a large sized liquid crystal display device, the use efficiency of the film at the time of polarizing plate processing, and production efficiency.
  • the stretching ratio in the TD direction is defined by the following equation.
  • Stretch ratio (%) in TD direction ⁇ (length in the width direction after stretching at a predetermined position of the film ⁇ length in the width direction before stretching at a predetermined position of the film) / width direction before stretching at a predetermined position of the film Length ⁇ ⁇ 100
  • the length in the width direction of the film is a value measured with a C-type JIS grade 1 steel scale.
  • the stretching ratio in the MD direction is defined by the following formula.
  • Stretching rate in MD direction (%) ⁇ (Conveying speed of film after stretching ⁇ Conveying speed of film before stretching) / Conveying speed of film before stretching ⁇ ⁇ 100 [Heat treatment equipment]
  • the heat treatment apparatus 30 includes a plurality of transport rollers, and dries the stretched film 53 while transporting the resin film 53 between the rollers. In that case, you may dry using heating air, infrared rays, etc. independently, and you may dry using heating air and infrared rays together. It is preferable to use heated air from the viewpoint of simplicity.
  • the drying temperature varies depending on the residual solvent ratio of the stretched film 53, but is appropriately selected depending on the residual solvent ratio in the range of 30 ° C to 180 ° C in consideration of drying time, shrinkage unevenness, stability of the amount of expansion and contraction, etc. And decide. Moreover, it may be dried at a constant temperature, or may be divided into two to four stages of temperature and divided into several stages of temperature.
  • the winding device 40 winds the stretched film 53 stretched by the stretching device 20 and dried by the heat treatment device 30 to a necessary amount of length on a winding core.
  • the temperature at the time of winding is preferably cooled to room temperature in order to prevent scratches and loosening due to shrinkage after winding.
  • the winder to be used can be used without any particular limitation, and may be a commonly used one, such as a constant tension method, a constant torque method, a taper tension method, or a program tension control method with a constant internal stress. Can be wound up.
  • the width of the optical film to be wound is preferably 1000 mm to 3000 mm.
  • the film thickness of the optical film is preferably 30 ⁇ m to 90 ⁇ m from the viewpoints of thinning the liquid crystal display device and stabilizing the production of the optical film.
  • the film thickness is an average film thickness.
  • a film thickness measuring instrument DH-150 manufactured by Tokyo Seimitsu Co., Ltd., a contact-type film thickness meter manufactured by Mitutoyo Co., Ltd., or the like is used. It is the value which measured the film thickness from 20 places to 200 places in the length direction and the width direction, and showed the average value of the measured value as a film thickness.
  • FIG. 2 is an enlarged view around the casting ribbon 51 between the die 11 and the endless belt 12 of the manufacturing apparatus 1 shown in FIG.
  • 11a is the lip portion of the die 11 (the portion of the die that defines the discharge port)
  • 14 is the vibrator
  • 16 is the diaphragm
  • L is the length of the casting ribbon 51.
  • the distance between the discharge port of the die 11 and the surface of the endless belt 12 is appropriately adjusted within a range of about several tens of ⁇ m to several cm.
  • a vibrator 14 is attached to the outer wall of the die 11. For this reason, when the vibrator 14 vibrates the die 11, vibration is given to the casting ribbon 51 discharged from the discharge port defined by the lip portion 11a.
  • the vibrator 14 is disposed in the vicinity of the discharge port of the die 11. For this reason, the vibration generated by the vibrator 14 is efficiently transmitted to the casting ribbon 51.
  • the vibrator 14 generates vibration so that the casting ribbon 51 undulates in the longitudinal direction (discharge direction).
  • the vibrator 14 can be used without any particular limitation, but preferably has a variable frequency (frequency) and / or amplitude.
  • a variable frequency (frequency) and / or amplitude For example, an ultrasonic oscillator using an ultrasonic oscillator, a piezoelectric element, etc., a drive motor drive shaft with a half-moon eccentric weight attached, a drive motor drive shaft connected to the vibrator via a cam, etc.
  • Those that generate vibration by moving the vibrator in a piston motion can be particularly preferably used from the viewpoint of versatility and installation.
  • the vibrator 14 discharges the dope from the die 11 to form a casting ribbon 51, and the casting ribbon 51 is attached to the endless belt 12 to form a casting film 52 on the endless belt 12.
  • the casting ribbon 51 between the die 11 and the endless belt 12 is operated so as to vibrate.
  • the vibrator 14 is operated so as to give the casting ribbon 51 a vibration having a frequency higher than the peak frequency of the natural vibration of the casting ribbon 51.
  • the peak frequency of the natural vibration of the casting ribbon 51 is usually about 700 Hz or less. Therefore, it is preferable to apply vibration with a frequency of, for example, 1 kHz or more to the casting ribbon 51.
  • the moving speed of the casting ribbon 51 (resin solution discharge speed from the die 11) is 100 m / min (1666 mm / sec). If it is, the pitch of the wave produced in the casting ribbon 51 will become relatively long with about 8 mm.
  • the casting ribbon 51 vibrates at such a low frequency, as illustrated by a chain line in FIG. 3A, the curvature radius of the wave peak of the casting film 52 becomes large, and the wave tends to be smoothed.
  • the force decreases and the waves tend not to be smoothed.
  • the horizontal stage resulting from vibration remains on the surface of the stretched film 53, and the film thickness unevenness of the optical film increases.
  • the casting ribbon 51 is vibrated at a high frequency of 20 kHz, for example, the following phenomenon occurs.
  • the casting ribbon 51 is fixed at one end by the die 11, but the other end is only fixed to the endless belt 12 and is not fixed.
  • One side is a free end system. Therefore, when vibration of a frequency (20 kHz) different from the peak frequency (200 Hz) of the natural vibration of the casting ribbon 51 is applied to the casting ribbon 51, the state of the system changes, and the casting ribbon 51 is attached to the endless belt 12.
  • the contact position changes, and the length L of the casting ribbon 51 between the die 11 and the endless belt 12 changes.
  • the applied vibration (high frequency vibration of 20 kHz) is not added to the natural vibration of the casting ribbon 51 (low frequency vibration of 200 Hz), and the natural vibration of the casting ribbon 51 itself changes. Low frequency vibrations that remain as horizontal steps on the surface of the stretched film 53 are damped or extinguished. Instead, the casting ribbon 51 begins to vibrate at a high frequency of 20 kHz.
  • the wave generated in the casting ribbon 51 Is as short as about 0.08 mm.
  • the casting ribbon 51 vibrates at such a high frequency, as illustrated by a chain line in FIG. 3B, the radius of curvature of the wave peak of the casting film 52 becomes small, and the wave is to be smoothed.
  • the force increases and the wave tends to be smoothed. As a result, it is suppressed that the horizontal stage resulting from a vibration remains on the surface of the stretched film 53, and the film thickness nonuniformity of an optical film is reduced.
  • the vibration exciter 14 is operated during the casting process and vibrations having a frequency higher than the peak frequency of the natural vibration of the casting ribbon 51 are only given to the casting ribbon 51.
  • the frequency of the displacement data using, for example, FFT (Fast Fourier Transform) or the like, the peak frequency can be measured in advance, and the frequency of vibration to be applied can be determined in advance. Therefore, it is not necessary to always detect the peak frequency of the natural vibration of the casting ribbon 51 or perform precise control during the production of the film, and it is possible to easily and reliably suppress the occurrence of horizontal steps on the surface of the optical film, It becomes possible to reduce film thickness unevenness that periodically changes in the longitudinal direction of the film.
  • FFT Fast Fourier Transform
  • the frequency of vibration applied to the casting ribbon 51 (the frequency of vibration generated by the vibrator 14) is not particularly limited as long as it is higher than the peak frequency of the natural vibration of the casting ribbon 51.
  • 1 kHz to 100 kHz Is preferable and 2 kHz to 20 kHz is more preferable.
  • the casting ribbon 51 is reliably given a vibration having a frequency higher than the peak frequency of the natural vibration of the casting ribbon 51 (usually about 700 Hz or less). Can do.
  • the amplitude of vibration applied to the casting ribbon 51 (the amplitude of vibration generated by the vibrator 14) is not particularly limited, but is preferably 10 ⁇ m to 2000 ⁇ m, and more preferably 100 ⁇ m to 1000 ⁇ m, for example.
  • vibration having an amplitude of 10 ⁇ m or more to the casting ribbon 51, the leveling force for smoothing the wave becomes sufficiently large, and it is suppressed that the horizontal stage due to the applied vibration remains.
  • vibration having an amplitude of 2000 ⁇ m or less to the casting ribbon 51 is suppressed from adhering to the lip portion 11a of the die 11, and the resin adhesion to the lip portion 11a is suppressed from remaining. . Therefore, the problem that resin adhesion remains on the lip portion 11a and a die line is generated in the casting ribbon 51 and thus the manufactured optical film is avoided.
  • the vibrator 14 is provided on the die 11 side. That is, the die 11 is used as a vibration source. As a result, the die 11 is vibrated by the vibrator 14, so that the casting ribbon 51 whose one end is in contact with the die 11 is reliably vibrated.
  • the vibrators 14 may be provided at both ends of the shaft core (not shown) of the support roll 12B. That is, the endless belt 12 may be a vibration source. Also by this, the endless belt 12 vibrates by vibrating the support roll 12 ⁇ / b> B with the vibrator 14, and vibration is reliably applied to the casting ribbon 51 whose other end is in contact with the endless belt 12.
  • the diaphragm 16 is disposed on the back side of the casting ribbon 51 (upstream side of the endless belt 12), and the vibrator 14 is attached to the diaphragm 16.
  • the casting ribbon 51 may be vibrated by vibrating the air around the casting ribbon 51 with the diaphragm 16. That is, the diaphragm 16 is used as a vibration source. This also vibrates the casting ribbon 51 reliably by vibrating the air around the casting ribbon 51.
  • the diaphragm 16 is disposed on the back side of the casting ribbon 51, but may be disposed on the front side of the casting ribbon 51 (downstream of the travel of the endless belt 12) depending on the situation. .
  • a speaker can also be used as a set of the diaphragm 16 and the vibrator 14.
  • the diaphragm 16 When the diaphragm 16 is disposed on the back side of the casting ribbon 51, the diaphragm 16 may be incorporated in a negative pressure chamber (not shown).
  • the negative pressure chamber is provided on the back side of the casting ribbon 51 in order to suppress the impact of the air accompanying the endless belt 12 (entrained wind) hitting the back surface of the casting ribbon 51 as the endless belt 12 travels. It is a device that generates a negative pressure on the back side of the ribbon 51.
  • a vibration exciter is disposed on the die, a vibration exciter is disposed near the end of the casting ribbon 51 of the endless belt, and a vibration exciter is provided on the back side of the casting ribbon 51.
  • a vibration exciter is disposed on the die, a vibration exciter is disposed near the end of the casting ribbon 51 of the endless belt, and a vibration exciter is provided on the back side of the casting ribbon 51.
  • using the die 11 and the endless belt 12 as the vibration source provides better results than using the diaphragm 16 as the vibration source. It is considered that high frequency vibration is more efficiently transmitted to the casting ribbon 51 when the die 11 and the endless belt 12 are used as the vibration source.
  • the support is the endless belt 12
  • better results can be obtained by using the die 11 as a vibration source than using the endless belt 12 as a vibration source. This is probably because the high frequency vibration is more efficiently transmitted to the casting ribbon 51 when the die 11 is used as the vibration source.
  • the support is a drum
  • better results can be obtained when the drum is used as the vibration source than when the die 11 is used as the vibration source. It is considered that high frequency vibration is more efficiently transmitted to the casting ribbon 51 when the drum is used as the vibration source.
  • FIG. 4 is a schematic configuration diagram of an optical film manufacturing apparatus (drum type) according to the optical film manufacturing method of the present invention.
  • FIG. 5 is an enlarged view of the periphery of the casting ribbon between the die and the drum of the manufacturing apparatus (drum type) shown in FIG.
  • reference numeral 18 denotes a drum support cylinder.
  • the optical film manufacturing apparatus 1b also manufactures an optical film by a solution casting film forming method.
  • the only difference from the manufacturing apparatus 1a shown in FIGS. 1 and 2 is that the endless belt is changed to a drum, and the others are the same. Only parts different from the manufacturing apparatus shown in FIGS. 1 and 2 will be described.
  • the casting apparatus 10 includes a drum 17 instead of the endless belt 12 as a support.
  • the drum 17 rotates to convey the formed cast film 52 in the direction of the arrow in the figure.
  • the drum 17 is a metal drum having a mirror-finished surface.
  • the drum 17 is preferably made of, for example, stainless steel from the viewpoint of peelability of the cast film 52.
  • Other symbols are the same as those in FIGS.
  • the vibrator 14 is provided at both ends of the shaft core (illustrated) of the drum 17. That is, the drum 17 is used as a vibration source. For this reason, the high frequency vibration generated by the vibrator 14 is efficiently transmitted to the casting ribbon 51. The vibrator 14 generates vibration so that the casting ribbon 51 undulates in the longitudinal direction (discharge direction).
  • the casting solution 51 is formed by discharging the resin solution from the die 11.
  • the endless pelt 12 or the drum 17 to form the casting film 52 on the endless pelt 12 or the drum 17.
  • a method of manufacturing an optical film capable of giving the casting ribbon 51 a vibration having a frequency higher than the peak frequency of the natural vibration of the casting ribbon 51 between the endless pelt 12 and the drum 17 can be implemented.
  • the optical film manufactured by such a manufacturing method suppresses the occurrence of a horizontal step on the surface, reduces the film thickness unevenness that periodically changes in the longitudinal direction, and meets the demand for thinning the optical film. It can respond.
  • optical film In the production apparatus shown in FIGS. 1 to 5, as a representative example, an optical film containing a cellulose ester resin such as cellulose triacetate is produced.
  • thermoplastic resin composed of cellulose ester resin or the like is dissolved in a mixed solvent of a good solvent and a poor solvent using a dissolution vessel, and a plasticizer or an ultraviolet absorber is added thereto.
  • the dope is prepared by adding such additives.
  • the dope adjusted by the melting pot is fed to the casting die 11 by a conduit through, for example, a pressurized metering gear pump, and is transported infinitely, for example, an endless belt 12 made of, for example, rotationally driven stainless steel, or a support comprising a drum 17
  • the dope is cast from the casting die 11 at a casting position on the body.
  • the solid content concentration in the dope is preferably 15% by mass to 30% by mass. If the solid content concentration of the dope is less than 15% by mass, sufficient drying cannot be performed on the endless belt 12 or the drum 17, and a part of the dope film remains on the endless belt 12 or the drum 17 at the time of peeling, This is not preferable because it leads to endless belt contamination or drum contamination.
  • the solid content concentration exceeds 30% by mass, the dope viscosity increases, the filter clogging becomes faster in the dope adjustment process, or the pressure increases when cast onto the endless belt 12 or the drum 17 and cannot be extruded. Therefore, it is not preferable.
  • various resins can be used as the film material, and among them, cellulose ester is preferable.
  • Cellulose ester is a cellulose ester in which a hydroxyl group derived from cellulose is substituted with an acyl group or the like.
  • examples thereof include cellulose acylates such as cellulose acetate, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate and cellulose acetate propionate butyrate, and cellulose acetate having an aliphatic polyester graft side chain.
  • cellulose acetate, cellulose acetate propionate, and cellulose acetate having an aliphatic polyester graft side chain are preferable.
  • Other substituents may be included as long as the effects of the present invention are not impaired.
  • the substitution degree of acetyl group is preferably 2.0 or more and 3.0 or less. By setting the degree of substitution within this range, good moldability can be obtained, and desired in-plane direction retardation (Ro) and thickness direction retardation (Rt) can be obtained. If the substitution degree of the acetyl group is lower than this range, the heat resistance as a retardation film, particularly the dimensional stability under wet heat may be inferior, and if the substitution degree is too large, the necessary retardation characteristics will not be exhibited. There is a case.
  • the cellulose used as a raw material of the cellulose ester used in the present invention is not particularly limited, and examples thereof include cotton linter, wood pulp, and kenaf. Moreover, the cellulose ester obtained from them can be mixed and used in arbitrary ratios, respectively.
  • the number average molecular weight of the cellulose ester used in the present invention is preferably in the range of 60,000 to 300,000, and the resulting optical film is preferably strong in mechanical strength. Furthermore, 70,000 to 200,000 are preferable.
  • a dope composition containing a cellulose ester and an additive for reducing the thickness direction retardation (Rt) can be used.
  • retardation of a cellulose ester film appears as the sum of retardation derived from a cellulose ester and retardation derived from an additive. Therefore, an additive for reducing the retardation of the cellulose ester is an additive that disturbs the orientation of the cellulose ester and is difficult to orient itself and / or has a small polarizability anisotropy. It is a compound that effectively reduces it. Therefore, as an additive for disturbing the orientation of the cellulose ester, an aliphatic compound is preferable to an aromatic compound.
  • specific retardation reducing agents include, for example, polyesters represented by the following general formula (1) or (2).
  • B2- (GA-) nG-B2 B1- (GA-) mG-B1
  • B1 represents a monocarboxylic acid component
  • B2 represents a monoalcohol component
  • G represents a divalent alcohol component
  • A represents a dibasic acid component, and these are synthesized.
  • B1, B2, G, and A are all characterized by not containing an aromatic ring.
  • m and n represent the number of repetitions.
  • the monocarboxylic acid component represented by B1 is not particularly limited, and known aliphatic monocarboxylic acids, alicyclic monocarboxylic acids, and the like can be used.
  • Examples of preferred monocarboxylic acids include the following, but the present invention is not limited thereto.
  • aliphatic monocarboxylic acid a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. More preferably, it has 1 to 20 carbon atoms, and particularly preferably 1 to 12 carbon atoms.
  • acetic acid is contained, the compatibility with the cellulose ester is increased, and it is also preferable to use a mixture of acetic acid and another monocarboxylic acid.
  • Preferred monocarboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid, tridecylic acid , Saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid, undecinic acid, Examples thereof include unsaturated fatty acids such as oleic acid, sorbic acid, linoleic acid, linolenic acid and arachidonic acid.
  • the monoalcohol component represented by B2 is not particularly limited, and known alcohols can be used.
  • an aliphatic saturated alcohol or aliphatic unsaturated alcohol having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. More preferably, it has 1 to 20 carbon atoms, and particularly preferably 1 to 12 carbon atoms.
  • Examples of the divalent alcohol component represented by G include the following, but the present invention is not limited thereto.
  • ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,5-pentanediol, 1,6- Examples include hexanediol, 1,5-pentylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol.
  • ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1 , 2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,6-hexanediol, diethylene glycol and triethylene glycol are preferred, and 1,3-propylene glycol and 1,4-butylene glycol are also preferred.
  • Lumpur, 1,6-hexanediol, diethylene glycol is preferably used.
  • the dibasic acid (dicarboxylic acid) component represented by A is preferably an aliphatic dibasic acid or an alicyclic dibasic acid.
  • the aliphatic dibasic acid include malonic acid, succinic acid, glutaric acid, and adipic acid. , Pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, etc.
  • aliphatic carboxylic acid those having 4 to 12 carbon atoms, at least one selected from these are used. To do. That is, two or more dibasic acids may be used in combination.
  • the number of repetitions m and n in the general formula (1) or (2) is preferably 1 or more and 170 or less.
  • the weight average molecular weight of the polyester is preferably 20000 or less, and more preferably 10,000 or less.
  • a polyester having a weight average molecular weight of 500 to 10,000 has good compatibility with a cellulose ester, and neither evaporation nor volatilization occurs in film formation.
  • Polyester polycondensation is performed by conventional methods. For example, a direct reaction of the dibasic acid and glycol, a hot melt condensation method by the polyesterification reaction or transesterification reaction of the dibasic acid or alkyl esters thereof, for example, a methyl ester of dibasic acid and glycols, or Although it can be easily synthesized by any method of dehydrohalogenation reaction between acid chloride of these acids and glycol, it is preferable that polyester having a weight average molecular weight not so large is by direct reaction. Polyester having a high distribution on the low molecular weight side has a very good compatibility with the cellulose ester, and after forming the film, a moisture permeability is small, and a cellulose ester film rich in transparency can be obtained.
  • a direct reaction of the dibasic acid and glycol a hot melt condensation method by the polyesterification reaction or transesterification reaction of the dibasic acid or alkyl esters thereof, for example, a methyl ester of dibasic acid and glyco
  • the molecular weight adjustment method is not particularly limited, and a conventional method can be used.
  • the amount of these monovalent compounds can be controlled by a method of blocking the molecular ends with a monovalent acid or monovalent alcohol.
  • a monovalent acid is preferable from the viewpoint of polymer stability.
  • acetic acid, propionic acid, butyric acid, etc. can be mentioned, but during the polycondensation reaction, it is not distilled out of the system, but is stopped and such monovalent acid is removed from the reaction system. The one that is easy to accumulate is selected. These may be used in combination.
  • the weight average molecular weight can also be adjusted by measuring the timing of stopping the reaction by the amount of water distilled off during the reaction. In addition, it can be adjusted by biasing the number of moles of glycol or dibasic acid to be charged, or can be adjusted by controlling the reaction temperature.
  • the polyester represented by the general formula (1) or (2) is preferably contained in an amount of 1 to 40% by mass with respect to the cellulose ester.
  • the content is preferably 5 to 15% by mass.
  • additives that reduce the thickness direction retardation (Rt) include the following.
  • a polymerization method In order to synthesize a polymer as an additive for reducing the thickness direction retardation (Rt), it is difficult to control the molecular weight in normal polymerization, and it is desirable to use a method that can align the molecular weight as much as possible without increasing the molecular weight.
  • Examples of such a polymerization method include a method using a peroxide polymerization initiator such as cumene peroxide and t-butyl hydroperoxide, a method using a polymerization initiator in a larger amount than usual polymerization, and a mercapto compound in addition to the polymerization initiator.
  • a method using a chain transfer agent such as carbon tetrachloride a method using a polymerization terminator such as benzoquinone and dinitrobenzene in addition to the polymerization initiator, and JP-A No. 2000-128911 or JP-A No. 2000-344823.
  • Examples include a method of bulk polymerization using a compound having one thiol group and a secondary hydroxyl group as described in the publication, or a polymerization catalyst in which the compound and an organometallic compound are used in combination.
  • the method described in the publication is particularly preferable.
  • the monomer as a monomer unit which comprises the polymer as an additive which reduces useful thickness direction retardation (Rt) is mentioned below, it is not limited to this.
  • the ethylenically unsaturated monomer unit constituting the polymer as an additive for reducing the thickness direction retardation (Rt) obtained by polymerizing an ethylenically unsaturated monomer first, as a vinyl ester, for example, vinyl acetate, propionic acid, etc.
  • a vinyl ester for example, vinyl acetate, propionic acid, etc.
  • vinyl crotonate, vinyl sorbate, vinyl benzoate, and vinyl cinnamate examples include vinyl crotonate, vinyl sorbate, vinyl benzoate, and vinyl cinnamate.
  • acrylate esters for example, methyl acrylate, ethyl acrylate, propyl acrylate (i-, n-), butyl acrylate (n-, i-, s-, t-), pentyl acrylate ( n-, i-, s-), hexyl acrylate (n-, i-), heptyl acrylate (n-, i-), octyl acrylate (n-, i-), nonyl acrylate (n-, i-), myristyl acrylate (n-, i-), cyclohexyl acrylate, acrylic acid (2-ethylhexyl), benzyl acrylate, phenethyl acrylate, acrylic acid ( ⁇ -caprolactone), acrylic acid (2-hydroxyethyl) ), Acrylic acid (2-hydroxypropyl), acrylic acid (3-hydroxypropyl), acrylic acid (4-hydroxybutyl), acrylic acid
  • examples of the unsaturated acid include acrylic acid, methacrylic acid, maleic anhydride, crotonic acid, itaconic acid and the like.
  • the polymer composed of the above monomers may be a copolymer or a homopolymer, and is preferably a vinyl ester homopolymer, a vinyl ester copolymer, or a copolymer of vinyl ester and acrylic acid or methacrylic acid ester.
  • the acrylic polymer refers to a homopolymer or a copolymer of acrylic acid or methacrylic acid alkyl ester having no monomer unit having an aromatic ring or a cyclohexyl group.
  • acrylate monomer having no aromatic ring and cyclohexyl group examples include, for example, methyl acrylate, ethyl acrylate, propyl acrylate (i-, n-), butyl acrylate (n-, i-, s-, t-), pentyl acrylate (n-, i-, s-), hexyl acrylate (n-, i-), heptyl acrylate (n-, i-), octyl acrylate (n-, i-) ,
  • the acrylic polymer is a homopolymer or copolymer of the above-mentioned monomers, but it is preferable that the acrylic acid methyl ester monomer unit has 30% by mass or more, and the methacrylic acid methyl ester monomer unit has 40% by mass or more. It is preferable. In particular, a homopolymer of methyl acrylate or methyl methacrylate is preferred.
  • Polymers obtained by polymerizing the above ethylenically unsaturated monomers and acrylic polymers are both highly compatible with cellulose ester, excellent in productivity without evaporation and volatilization, and retainability as a protective film for polarizing plates
  • the moisture permeability is small, and the dimensional stability is excellent.
  • an acrylic acid or methacrylic acid ester monomer having a hydroxyl group is not a homopolymer but a constituent unit of a copolymer.
  • the acrylic acid or methacrylic acid ester monomer unit having a hydroxyl group is contained in an acrylic polymer in an amount of 2% by mass to 20% by mass.
  • the dope composition contains a cellulose ester and an acrylic polymer having a weight average molecular weight of 500 or more and 3000 or less as an additive for reducing the thickness direction retardation (Rt). Is preferred.
  • the dope composition contains a cellulose ester and an acrylic polymer having a weight average molecular weight of 5000 or more and 30000 or less as an additive for reducing the thickness direction retardation (Rt). It is preferable.
  • the weight average molecular weight of the polymer as an additive for reducing the thickness direction retardation (Rt) is 500 or more and 3000 or less, or if the polymer has a weight average molecular weight of 5000 or more and 30000 or less, the cellulose ester Is compatible with the material, and neither evaporation nor volatilization occurs during film formation. Moreover, the transparency of the cellulose ester film after film formation is excellent, the moisture permeability is extremely low, and it exhibits excellent performance as a protective film for polarizing plates.
  • a polymer having a hydroxyl group in the side chain can also be preferably used as an additive for reducing the thickness direction retardation (Rt).
  • the monomer unit having a hydroxyl group is the same as the monomer described above, but acrylic acid or methacrylic acid ester is preferable.
  • Examples include those substituted with methacrylic acid, preferably 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate.
  • the acrylic acid ester or methacrylic acid ester monomer unit having a hydroxyl group in the polymer is preferably contained in the polymer in an amount of 2% by mass to 20% by mass, more preferably 2% by mass to 10% by mass.
  • a polymer containing 2 to 20% by mass of the above-mentioned hydroxyl group-containing monomer unit is, of course, excellent in compatibility with cellulose ester, retention property and dimensional stability, and has low moisture permeability.
  • it has excellent adhesiveness with a polarizer as a protective film for a polarizing plate, and has an effect of improving the durability of the polarizing plate.
  • At least one terminal of the main chain of the polymer has a hydroxyl group.
  • the method of having a hydroxyl group at the end of the main chain is not particularly limited as long as it has a hydroxyl group at the end of the main chain, but radical polymerization having a hydroxyl group such as azobis (2-hydroxyethylbutyrate) is possible.
  • the polymer produced by the method related to the description in this publication is commercially available as Act Flow Series manufactured by Soken Chemical Co., Ltd., and can be preferably used.
  • the polymer having a hydroxyl group at the terminal and / or a polymer having a hydroxyl group in the side chain has an advantage of significantly improving the compatibility and transparency of the polymer with respect to the cellulose ester in the present invention.
  • useful additives for reducing the thickness direction retardation include, in addition to the above, for example, ester compounds of diglycerin polyhydric alcohols and fatty acids described in JP-A No. 2000-63560, An ester or ether compound of a hexose sugar alcohol described in JP-A-2001-247717, a trialiphatic alcohol phosphate compound described in JP-A-2004-315613, and a general formula (1) described in JP-A-2005-41911 A phosphoric acid ester compound described in JP-A-2004-315605, a styrene oligomer described in JP-A-2005-105139, and a polymer of a styrene monomer described in JP-A-2005-105140. .
  • the content of the additive for reducing the thickness direction retardation (Rt) described above is preferably 5% by mass to 25% by mass with respect to the cellulose ester resin. If the content of the additive for reducing the thickness direction retardation (Rt) is less than 5% by mass, the effect of reducing the thickness direction retardation (Rt) of the film is not manifested. On the other hand, if the content of the additive for reducing the thickness direction retardation (Rt) exceeds 25% by mass, so-called bleed-out occurs and the stability in the film decreases, which is not preferable.
  • an organic solvent having good solubility for the cellulose derivative is referred to as a good solvent.
  • Examples of good solvents include ketones such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethers such as tetrahydrofuran (THF), 1,4-dioxane, 1,3-dioxolane, 1,2-dimethoxyethane, formic acid Esters such as methyl, ethyl formate, methyl acetate, ethyl acetate, amyl acetate, ⁇ -butyrolactone, methyl cellosolve, dimethylimidazolinone, dimethylformamide, dimethylacetamide, acetonitrile, dimethylsulfoxide, sulfolane, nitroethane, methylene chloride And 1,3-dioxolane, THF, methyl ethyl ketone, acetone, methyl acetate and methylene chloride are preferable.
  • ketones such as acetone, methyl eth
  • the dope preferably contains 1% to 40% by weight of an alcohol having 1 to 4 carbon atoms.
  • an alcohol having 1 to 4 carbon atoms are gels that, after casting the dope onto the support, the solvent begins to evaporate and the proportion of alcohol increases, making the web gel, making the web strong and easy to peel off from the support
  • it also has a role of promoting the dissolution of a cellulose derivative of a non-chlorine organic solvent.
  • Examples of the alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol, and propylene glycol monomethyl ether.
  • ethanol is preferred because it has excellent dope stability, has a relatively low boiling point, good drying properties, and no toxicity.
  • These organic solvents alone are not soluble in cellulose derivatives and are called poor solvents.
  • the most preferable solvent for dissolving a cellulose derivative, which is a preferable polymer compound satisfying such conditions, at a high concentration is a mixed solvent having a methylene chloride: ethyl alcohol ratio of 95: 5 to 80:20.
  • a mixed solvent of methyl acetate: ethyl alcohol 60:40 to 95: 5 is also preferably used.
  • the optical film of the present invention includes a plasticizer that imparts processability, flexibility, and moisture resistance to the optical film, a fine particle (matting agent) that imparts slipperiness to the optical film, an ultraviolet absorber that imparts an ultraviolet absorption function, optical You may contain the antioxidant etc. which prevent deterioration of a film.
  • the plasticizer used in the present invention is not particularly limited, but a cellulose derivative or a reactive metal compound capable of hydrolytic polycondensation so as not to generate haze, bleed out or volatilize from the optical film. It preferably has a functional group capable of interacting with the polycondensate of the above by a hydrogen bond or the like.
  • Examples of such functional groups include hydroxyl groups, ether groups, carbonyl groups, ester groups, carboxylic acid residues, amino groups, imino groups, amide groups, imide groups, cyano groups, nitro groups, sulfonyl groups, sulfonic acid residues, Examples thereof include a phosphonyl group and a phosphonic acid residue, and a carbonyl group, an ester group and a phosphonyl group are preferred.
  • plasticizers examples include phosphate ester plasticizers, phthalate ester plasticizers, trimellitic acid ester plasticizers, pyromellitic acid plasticizers, polyhydric alcohol ester plasticizers, glycolate plasticizers. Agents, citric acid ester plasticizers, fatty acid ester plasticizers, carboxylic acid ester plasticizers, polyester plasticizers, etc. can be preferably used, but polyhydric alcohol ester plasticizers, glycolate plasticizers are particularly preferred. And non-phosphate ester plasticizers such as polycarboxylic acid ester plasticizers.
  • the polyhydric alcohol ester is composed of an ester of a dihydric or higher aliphatic polyhydric alcohol and a monocarboxylic acid, and preferably has an aromatic ring or a cycloalkyl ring in the molecule.
  • the polyhydric alcohol used in the present embodiment is represented by the following general formula (3).
  • R 1 represents an n-valent organic group, and n represents a positive integer of 2 or more.
  • Examples of preferred polyhydric alcohols include the following, but the present invention is not limited to these.
  • Examples of preferred polyhydric alcohols include adonitol, arabitol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, 1,3-propanediol, dipropylene glycol, tripropylene glycol, 1, 2-butanediol, 1,3-butanediol, 1,4-butanediol, dibutylene glycol, 1,2,4-butanetriol, 1,5-pentanediol, 1,6-hexanediol, hexanetriol, gallium
  • Examples include lactitol, mannitol, 3-methylpentane-1,3,5-triol, pinacol, sorbitol, trimethylolpropane, trimethylolethane, and xylitol.
  • the monocarboxylic acid used in the polyhydric alcohol ester used in the present invention is not particularly limited, and known aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, aromatic monocarboxylic acid and the like can be used. Use of an alicyclic monocarboxylic acid or aromatic monocarboxylic acid is preferred in terms of improving moisture permeability and retention.
  • Examples of preferred monocarboxylic acids include the following, but the present invention is not limited thereto.
  • aliphatic monocarboxylic acid a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used.
  • the number of carbon atoms is more preferably 1 to 20, and particularly preferably 1 to 10.
  • acetic acid is contained, the compatibility with the cellulose derivative is increased, and it is also preferable to use a mixture of acetic acid and another monocarboxylic acid.
  • Examples of preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid, Tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, mellicic acid, laccellic acid, etc., undecylen Examples thereof include unsaturated fatty acids such as acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid.
  • Examples of preferable alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
  • aromatic monocarboxylic acids examples include those in which an alkyl group is introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, and two or more benzene rings such as biphenylcarboxylic acid, naphthalenecarboxylic acid, and tetralincarboxylic acid. Examples thereof include aromatic monocarboxylic acids and derivatives thereof, and benzoic acid is particularly preferable.
  • the molecular weight of the polyhydric alcohol ester is not particularly limited, but is preferably 300 to 1500, and more preferably 350 to 750. A higher molecular weight is preferred because it is less likely to volatilize, and a smaller one is preferred in terms of moisture permeability and compatibility with cellulose derivatives.
  • the carboxylic acid used in the polyhydric alcohol ester may be one kind or a mixture of two or more kinds. Moreover, all the OH groups in the polyhydric alcohol may be esterified, or a part of the OH groups may be left as they are.
  • the glycolate plasticizer is not particularly limited, but a glycolate plasticizer having an aromatic ring or a cycloalkyl ring in the molecule can be preferably used.
  • a glycolate plasticizer having an aromatic ring or a cycloalkyl ring in the molecule can be preferably used.
  • preferred glycolate plasticizers for example, butyl phthalyl butyl glycolate, ethyl phthalyl ethyl glycolate, methyl phthalyl ethyl glycolate and the like can be used.
  • phosphate plasticizers triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenylbiphenyl phosphate, trioctyl phosphate, tributyl phosphate, etc.
  • phthalate ester plasticizers diethyl phthalate, dimethoxy Ethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dicyclohexyl phthalate, and the like can be used. In this embodiment, it is preferable that a phosphate ester plasticizer is not substantially contained.
  • substantially does not contain means that the content of the phosphoric ester plasticizer is less than 1% by mass, preferably 0.1% by mass, and particularly preferably not added.
  • plasticizers can be used alone or in combination of two or more.
  • the amount of the plasticizer used is preferably 1% by mass to 20% by mass. 6 mass% to 16 mass% is further more preferable, and 8 mass% to 13 mass% is particularly preferable. If the amount of the plasticizer used is less than 1% by mass relative to the cellulose derivative, the effect of reducing the moisture permeability of the film is small, so this is not preferred. If it exceeds 20% by mass, the plasticizer bleeds out from the film, and the film Since the physical properties of the material deteriorate, it is not preferable.
  • fine particles such as a matting agent.
  • the fine particles include fine particles of an inorganic compound or fine particles of an organic compound.
  • inorganic compound fine particles include fine particles of silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, tin oxide, and the like. Of these, fine particles of a compound containing a silicon atom are preferred, and fine silicon dioxide particles are particularly preferred.
  • silicon dioxide fine particles include Aerosil 200, 200V, 300, R972, R972V, R974, R202, R812, R805, OX50, and TT600 manufactured by Aerosil Co., Ltd.
  • organic compound fine particles include fine particles of acrylic resin, silicone resin, fluorine compound resin, urethane resin, and the like.
  • the primary particle size of the fine particles is not particularly limited, but the average particle size in the film is preferably about 0.05 ⁇ m to 5.0 ⁇ m. More preferably, it is 0.1 ⁇ m to 1.0 ⁇ m.
  • the average particle diameter of the fine particles refers to the average value of the lengths of the particles in the major axis direction when the cellulose ester film is observed with an electron microscope or an optical microscope. As long as the particles are observed in the film, they may be primary particles or secondary particles in which the primary particles are aggregated, but most of the particles that are usually observed are secondary particles.
  • the primary particle size, the particle size after being dispersed in a solvent, and the particle size added to the film often change, and what is important is that the fine particles are finally combined with the cellulose ester in the film to aggregate. And controlling the particle size formed.
  • the average particle size of the fine particles exceeds 5 ⁇ m, haze deterioration or the like may be observed, or it may cause a failure in a wound state as a foreign matter. Moreover, when the average particle diameter of fine particles is less than 0.05 ⁇ m, it becomes difficult to impart slipperiness to the film.
  • Fine particles are used by adding 0.04% by mass to 0.5% by mass with respect to the cellulose ester. Preferably, 0.05% by mass to 0.3% by mass, and more preferably 0.05% by mass to 0.25% by mass is used.
  • the amount of fine particles added is 0.04% by mass or less, the film surface roughness becomes too smooth, and blocking occurs due to an increase in the friction coefficient. If the amount of fine particles added exceeds 0.5% by mass, the coefficient of friction on the film surface will be too low, causing winding misalignment during winding, and the transparency of the film will be low and haze will be high.
  • the above range is essential because it has no value as a film.
  • a high-pressure dispersion device is a device that creates special conditions such as high shear and high pressure by passing a composition in which fine particles and a solvent are mixed at high speed through a narrow tube.
  • the maximum pressure condition inside the apparatus is 980 N / cm 2 or more in a thin tube having a tube diameter of 1 ⁇ m to 2000 ⁇ m, for example, by processing with a high pressure dispersion apparatus. More preferably, the maximum pressure condition inside the apparatus is 1960 N / cm 2 or more. Further, at that time, those having a maximum reaching speed of 100 m / sec or more and those having a heat transfer speed of 100 kcal / hr or more are preferable.
  • the high-pressure dispersing device examples include an ultra-high pressure homogenizer (trade name, microfluidizer) manufactured by Microfluidics Corporation or a nanomizer manufactured by Nanomizer, and other examples include a Manton Gorin type high-pressure dispersing device such as a homogenizer manufactured by Izumi Food Machinery. Can be mentioned.
  • ultra-high pressure homogenizer trade name, microfluidizer
  • nanomizer manufactured by Nanomizer
  • Manton Gorin type high-pressure dispersing device such as a homogenizer manufactured by Izumi Food Machinery. Can be mentioned.
  • the fine particles are dispersed in a solvent containing 25% by mass to 100% by mass of a lower alcohol, and then mixed with a dope obtained by dissolving a cellulose ester (cellulose derivative) in a solvent, and the mixed solution is placed on a support.
  • a cellulose ester film characterized by being formed by drying.
  • the content ratio of the lower alcohol is preferably 50% by mass to 100% by mass, and more preferably 75% by mass to 100% by mass.
  • examples of lower alcohols preferably include methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol and the like.
  • the solvent other than the lower alcohol is not particularly limited, but it is preferable to use a solvent used in film formation of cellulose ester.
  • Fine particles are dispersed in a solvent at a concentration of 1% by mass to 30% by mass. Dispersing at a concentration higher than this is not preferable because the viscosity increases rapidly.
  • the concentration of the fine particles in the dispersion is preferably 5% by mass to 25% by mass, and more preferably 10% by mass to 20% by mass.
  • the ultraviolet absorbing function of the optical film is preferably imparted to various optical films such as a polarizing plate protective film, a retardation film, and an optical compensation film from the viewpoint of preventing deterioration of the liquid crystal.
  • a material that absorbs ultraviolet rays may be included in the cellulose derivative, and a layer having an ultraviolet absorbing function may be provided on the optical film made of the cellulose derivative.
  • ultraviolet absorbers examples include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, and the like. A benzotriazole-based compound with little coloring is preferred. Further, ultraviolet absorbers described in JP-A-10-182621 and JP-A-8-337574 and polymer ultraviolet absorbers described in JP-A-6-148430 are preferably used.
  • ultraviolet absorber those having excellent absorption ability of ultraviolet rays having a wavelength of 370 nm or less from the viewpoint of preventing deterioration of a polarizer or liquid crystal and those having little absorption of visible light having a wavelength of 400 nm or more from the viewpoint of liquid crystal display properties. preferable.
  • TINUVIN 109 TINUVIN 171
  • TINUVIN 326 all manufactured by BASF Japan
  • -Sulfobenzophenone, bis (2-methoxy-4-hydroxy-5-benzoylphenylmethane) and the like can be mentioned, but are not limited thereto.
  • the blending amount of these ultraviolet absorbers is preferably in the range of 0.01% by mass to 10% by mass and more preferably in the range of 0.1% by mass to 5% by mass with respect to the cellulose ester (cellulose derivative). . If the amount of the ultraviolet absorber used is too small, the ultraviolet absorbing effect may be insufficient. If the amount of the ultraviolet absorber is too large, the transparency of the film may be deteriorated.
  • the ultraviolet absorber is preferably one having high heat stability.
  • the polymeric ultraviolet absorber (or ultraviolet absorbing polymer) described in JP-A Nos. 6-148430 and 2002-47357 is preferably used. be able to. In particular, it is represented by the general formula (1) described in JP-A-6-148430, the general formula (2), or the general formulas (3), (6), and (7) described in JP-A-2002-47357.
  • a polymer ultraviolet absorber is preferably used.
  • the antioxidant is generally referred to as an anti-degradation agent, but is preferably contained in a cellulose ester film as an optical film. That is, when a liquid crystal image display device or the like is placed in a high humidity and high temperature state, the cellulose ester film as an optical film may be deteriorated.
  • the antioxidant has a role of delaying or preventing the film from being decomposed by, for example, halogen in the residual solvent in the film or phosphoric acid of the phosphoric acid plasticizer, so that it is preferably contained in the film. .
  • a hindered phenol compound is preferably used.
  • 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di- -T-butyl-4-hydroxyphenyl) propionate] triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3 -(3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino)- 1,3,5-triazine, 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], oct Decyl-3- (3,5-di-t-butyl-4-hydroxyphenyl
  • 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3 -(3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate] is preferred.
  • hydrazine-based metal deactivators such as N, N′-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine and tris (2,4-di-t
  • a phosphorus processing stabilizer such as -butylphenyl phosphite may be used in combination.
  • the amount of these compounds added is preferably 1 ppm to 1.0% by mass, more preferably 10 ppm to 1000 ppm, by mass ratio with respect to the cellulose derivative.
  • the cellulose ester film as the finally produced optical film has a moisture content of preferably 0.1% to 5%, more preferably 0.3% to 4%, and more preferably 0.5% to 2%. % Is more preferable.
  • the cellulose ester film as the finally produced optical film desirably has a transmittance of 90% or more, more preferably 92% or more, and further preferably 93% or more.
  • the optical film targeted by the present invention is a functional film used for various displays such as a liquid crystal display, a plasma display, and an organic EL display, particularly a liquid crystal display.
  • the optical film of the present invention can be particularly preferably used as a protective film for a polarizing plate for a large liquid crystal display device or a liquid crystal display device for outdoor use as long as the above physical properties are satisfied.
  • a polarizing plate When using the optical film of this invention as a protective film for polarizing plates, a polarizing plate can be produced by a general method. It is preferable that an adhesive layer is provided on the back side of the optical film of the present invention, and is bonded to at least one surface of a polarizer produced by immersion and stretching in an iodine solution.
  • the optical film of the present invention may be used, or another protective film for polarizing plate may be used.
  • a commercially available cellulose ester film for example, Konica Minoltack KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC8UE, KC4FR-4, KC4FR-3, KC4FR-3, KC4FR-4 -1, KC8UY-HA, KC8UX-RHA, manufactured by Konica Minolta Opto Co., Ltd.) and the like are preferably used.
  • a polarizer which is a main component of a polarizing plate, is an element that transmits only light having a plane of polarization in a certain direction.
  • a typical polarizing film known at present is a polyvinyl alcohol polarizing film, which is a polyvinyl alcohol. There are one in which iodine is dyed on a system film and one in which dichroic dye is dyed.
  • the polarizer is formed by forming a polyvinyl alcohol aqueous solution into a film and dyeing the film by uniaxial stretching or dyeing or uniaxially stretching, and then performing a durability treatment with a boron compound.
  • an adhesive used for the adhesive layer an adhesive having a storage elastic modulus at 25 ° C. in the range of 1.0 ⁇ 10 4 Pa to 1.0 ⁇ 10 9 Pa in at least a part of the adhesive layer is used.
  • a curable pressure-sensitive adhesive that forms a high molecular weight body or a crosslinked structure by various chemical reactions after the pressure-sensitive adhesive is applied and bonded is suitably used.
  • urethane adhesives examples include, for example, urethane adhesives, epoxy adhesives, aqueous polymer-isocyanate adhesives, curable adhesives such as thermosetting acrylic adhesives, moisture-curing urethane adhesives, polyether methacrylate types
  • curable adhesives such as thermosetting acrylic adhesives, moisture-curing urethane adhesives, polyether methacrylate types
  • anaerobic pressure-sensitive adhesives such as ester-based methacrylate type and oxidized polyether methacrylate, cyanoacrylate-based instantaneous pressure-sensitive adhesives, and acrylate-peroxide-based two-component instantaneous pressure-sensitive adhesives.
  • the pressure-sensitive adhesive may be a one-component type or a type in which two or more components are mixed before use.
  • the pressure-sensitive adhesive may be a solvent system using an organic solvent as a medium, or an aqueous system such as an emulsion type, a colloidal dispersion type, or an aqueous solution type that is a medium containing water as a main component. It may be a solvent type.
  • concentration of the pressure-sensitive adhesive liquid may be appropriately determined depending on the film thickness after adhesion, the coating method, the coating conditions, and the like, and is usually 0.1% by mass to 50% by mass.
  • the polarizing plate of the present invention includes a polarizer and a transparent protective film disposed on the surface of the polarizer, and the transparent protective film is the optical film of the present invention.
  • a polarizer is an optical element that emits incident light by converting it into polarized light.
  • the polarizing plate for example, a completely saponified polyvinyl alcohol aqueous solution is used on at least one surface of a polarizer produced by immersing and stretching a polyvinyl alcohol film in an iodine solution. What stuck the film is preferable.
  • the optical film of the present invention may be laminated on the other surface of the polarizer, or another transparent protective film for polarizing plate may be laminated.
  • KC8UX2M As another transparent protective film for polarizing plate, for example, as a commercially available cellulose ester film, KC8UX2M, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC8UY-HA, KC8UX-RHA (above, manufactured by Konica Minolta Opto Co., Ltd.) Etc. are preferably used.
  • resin films such as cyclic olefin resin other than a cellulose-ester film, an acrylic resin, polyester, a polycarbonate. In this case, since the saponification suitability is low, it is preferable to perform an adhesive process on the polarizing plate through an appropriate adhesive layer.
  • the polarizing plate uses the optical film of the present invention as a protective film laminated on at least one surface side of the polarizer.
  • the said optical film functions as a phase difference film, it is preferable to arrange
  • a polyvinyl alcohol polarizing film for example, a polyvinyl alcohol polarizing film can be mentioned.
  • Polyvinyl alcohol polarizing films include those obtained by dyeing iodine on polyvinyl alcohol films and those obtained by dyeing dichroic dyes.
  • a modified polyvinyl alcohol film modified with ethylene is preferably used as the polyvinyl alcohol film.
  • the polarizer is obtained as follows, for example. First, a film is formed using a polyvinyl alcohol aqueous solution. The obtained polyvinyl alcohol film is uniaxially stretched and then dyed or dyed and then uniaxially stretched. And preferably, a durability treatment is performed with a boron compound.
  • the film thickness of the polarizer is preferably 5 ⁇ m to 40 ⁇ m, more preferably 5 ⁇ m to 30 ⁇ m, and even more preferably 5 ⁇ m to 20 ⁇ m.
  • a cellulose ester resin film When laminating a cellulose ester resin film on the surface of a polarizer, it is preferable to bond the cellulose ester resin film with an aqueous adhesive mainly composed of completely saponified polyvinyl alcohol. Moreover, in the case of resin films other than a cellulose ester-type resin film, it is preferable to carry out the adhesive process to a polarizing plate through a suitable adhesion layer.
  • the polarizing plate as described above uses the optical film of the present invention as a transparent protective film, so that the deformation of the optical film is sufficiently suppressed.
  • the contrast Improvement of image quality of the liquid crystal display device such as improvement of the above can be realized.
  • the optical film of the present invention applied as a transparent protective film of a polarizing plate also suppresses dimensional changes due to changes in humidity, for example, when applied to a liquid crystal display device, so-called corner unevenness is also suppressed. it can.
  • the polarizing plate of the present invention is a polarizing plate comprising a polarizer and two transparent protective films disposed on both sides of the polarizer so as to sandwich the polarizer, and the two transparent protective films At least one of them is a polarizing plate characterized by being the optical film of the present invention.
  • this polarizing plate the occurrence of lateral steps on the surface of the transparent protective film is suppressed, and the unevenness of the film thickness that periodically changes in the longitudinal direction of the transparent protective film is reduced. To get.
  • a polarizing plate in which the optical film of the present invention is bonded as a protective film for a liquid crystal polarizing plate into a liquid crystal display device, various liquid crystal display devices having excellent visibility can be produced. It is preferably used for liquid crystal display devices for outdoor use such as devices and digital signage.
  • the polarizing plate according to the present embodiment is bonded to the liquid crystal cell via the adhesive layer or the like.
  • the polarizing plate of the present invention includes various types such as a reflective type, a transmissive type, a transflective type LCD, a TN type, an STN type, an OCB type, a HAN type, a VA type (PVA type, MVA type), and an IPS type (including an FFS type). It is preferably used in a drive type LCD. In particular, in a large-screen display device having a screen size of 30 or more, particularly 30 to 54, there is no white spot in the periphery of the screen and the effect is maintained for a long time.
  • the liquid crystal display device of the present invention includes a liquid crystal cell and two polarizing plates arranged so as to sandwich the liquid crystal cell, and at least one of the two polarizing plates is the polarizing plate.
  • the liquid crystal cell is a cell in which a liquid crystal substance is filled between a pair of electrodes, and by applying a voltage to the electrodes, the alignment state of the liquid crystal is changed and the amount of transmitted light is controlled.
  • the optical film of the present invention in which deformation is sufficiently suppressed is used as the transparent protective film for the polarizing plate by using the polarizing plate of the present invention, the contrast and the like are high. An improved high-quality liquid crystal display device is obtained.
  • the liquid crystal display device of the present invention is a liquid crystal display device including a liquid crystal cell and two polarizing plates arranged on both sides of the liquid crystal cell so as to sandwich the liquid crystal cell.
  • the liquid crystal display device at least one of the polarizing plates is the polarizing plate of the present invention.
  • the occurrence of horizontal steps on the surface of the transparent protective film in the polarizing plate is suppressed, and the film thickness unevenness that periodically changes in the longitudinal direction of the transparent protective film is reduced, thereby making the liquid crystal display device thinner. It can respond well.
  • Test 1 The prepared dope was cast uniformly on an endless belt made of stainless steel at 22 ° C. and a width of 2 m using an apparatus similar to the belt-type optical film manufacturing apparatus 1 shown in FIG. On the endless belt, the solvent was evaporated until the residual solvent ratio of the cast film reached 60% by mass, and the cast film was peeled from the endless belt with a peel tension of 100 N / m.
  • a small vibrator unit manufactured by Nippon Alex Co., Ltd. was used as the vibrator, and this was attached in the vicinity of the discharge port of the die. Then, the dope was discharged from the die to form a casting ribbon, and the vibrator was operated during the casting process in which the casting ribbon was attached to the endless belt to form a casting film on the endless belt.
  • the frequency of vibration generated by the vibrator was set to 1 kHz
  • the amplitude of vibration generated by the vibrator was set to 5 ⁇ m.
  • the moving speed of the casting ribbon discharge speed of the dope from the die
  • the distance between the die outlet and the surface of the endless belt was adjusted to 8 mm.
  • the peak frequency of the natural vibration of the casting ribbon was measured in advance, it was 200 Hz.
  • the natural vibration of the casting ribbon had an amplitude of 6 ⁇ m.
  • the natural vibration of the casting ribbon two cameras are installed in the vicinity of the widthwise ends of the discharge port of the die, and the image data obtained by continuously shooting the casting ribbon separately with the two cameras.
  • the value obtained from the average value of the two obtained amplitudes is shown.
  • the peak frequency of the natural vibration indicates a value obtained by performing frequency analysis on the data obtained when obtaining the natural vibration by FFT.
  • the peeled unstretched film is stretched 1.1 times (stretching ratio: 10%) in the longitudinal direction (MD direction) and 1.2 times (stretching ratio: 20%) in the width direction (TD direction) using a clip tenter. However, it was dried at 70 ° C. for 10 seconds.
  • An optical film (cellulose triacetate) that can be used as, for example, a protective film for a liquid crystal polarizing plate, is subjected to a knurling process of 5 ⁇ m and wound on a core having an initial tension of 220 N / m and a final tension of 110 N / m and an inner diameter of 15.24 cm. Film) was obtained.
  • the manufactured optical film had a residual solvent ratio of 0.01%, a film thickness of 40 ⁇ m, and a winding length of 4000 m.
  • Test 25 As shown in Table 1, an optical film was produced in the same manner as in Test 1 except that the casting ribbon was not vibrated with a vibrator during the casting process.
  • Test 26 to 32 An optical film was produced in the same manner as in Test 1 except that the frequency of vibration generated by the vibrator and the amplitude of vibration generated by the vibrator were changed to the values shown in Table 2.
  • Test 27 is the same as test 2.
  • Tests 33 to 39 As shown in Table 2, an optical film was produced in the same manner as in Tests 26 to 32 except that the vibrator was attached to the endless belt side (belt support plate). Test 34 is the same as test 10.
  • Tests 40 to 46 As shown in Table 2, an optical film was produced in the same manner as in Tests 26 to 32 except that the vibrator was attached to the diaphragm disposed on the back side of the casting ribbon.
  • the test 41 is the same as the test 18.
  • Tests 51 to 58 As shown in Table 3, an optical film was produced in the same manner as in Tests 1 to 8, except that an apparatus similar to the drum-type optical film production apparatus 1 shown in FIG. 4 was used. When the peak frequency of the natural vibration of the casting ribbon was measured in advance, it was 500 Hz.
  • Test 75 As shown in Table 3, an optical film was produced in the same manner as in Test 51 except that the casting ribbon was not vibrated with a vibrator during the casting process.
  • Test 76 to 82 An optical film was produced in the same manner as in Test 51 except that the frequency of vibration generated by the vibrator and the amplitude of vibration generated by the vibrator were changed to the values shown in Table 4. Test 77 is the same as test 52.
  • Tests 83 to 89 As shown in Table 4, optical films were produced in the same manner as in Tests 76 to 82 except that the vibrator was attached to the drum side (drum support cylinder). The test 84 is the same as the test 60.
  • Tests 90 to 96 As shown in Table 4, an optical film was produced in the same manner as in Tests 76 to 82 except that the vibrator was attached to the diaphragm disposed on the back side of the casting ribbon. Test 91 is the same as test 68.
  • the thickness of the optical film was continuously measured in the length direction, and the pitch of periodic thickness unevenness and the maximum value, minimum value, and average value (average film thickness) of thickness unevenness were read from the chart.
  • A film was not formed on the surface of the casting ribbon.
  • A sign of film formation was seen on the surface of the casting ribbon.
  • X A film was formed on the surface of the casting ribbon.
  • the optical film of Test 25 manufactured without giving vibration to the casting ribbon was inferior in the horizontal unevenness of 0.8% or more, which is the main evaluation.
  • Tests 1 to 8 using a die as a vibration source Tests 2 to 7 in which the amplitude of vibration applied to the casting ribbon was 10 ⁇ m to 2000 ⁇ m were more excellent with a horizontal step unevenness of less than 0.6%. It was. Furthermore, in Tests 4 and 5 in which the amplitude of vibration applied to the casting ribbon was 100 ⁇ m and 1000 ⁇ m, the horizontal unevenness was less than 0.4%, which was further excellent.
  • tests 11 to 14 in which the amplitude of the vibration applied to the casting ribbon was 50 ⁇ m to 1500 ⁇ m were more excellent with a horizontal unevenness of less than 0.6%. It was. Furthermore, in Tests 12 and 13, in which the amplitude of vibration applied to the casting ribbon was 100 ⁇ m and 1000 ⁇ m, the lateral unevenness was further excellent at less than 0.4%.
  • tests 17 to 24 using the diaphragm as a vibration source tests 20 and 21 in which the amplitude of vibration applied to the casting ribbon was 100 ⁇ m and 1000 ⁇ m were more excellent with a horizontal unevenness of less than 0.6%. It was.
  • tests 1 to 8 using a die as a vibration source and tests 9 to 16 using an endless belt as a vibration source are more than tests 17 to 24 using a diaphragm as a vibration source.
  • the main evaluation result was good.
  • tests 1 to 8 using a die as a vibration source performed better than the tests 9 to 16 using an endless belt as a vibration source.
  • Tests 1 to 7, 9 to 15, and 17 to 23 in which the amplitude of vibration applied to the casting ribbon was 2000 ⁇ m or less were excellent because the resin adhesion, which is a sub-evaluation, could not be confirmed.
  • Tests 8, 16, and 24, in which the amplitude of vibration applied to the casting ribbon was 2500 ⁇ m, were inferior because the resin adhesion as a sub-evaluation could be confirmed.
  • an endless belt is used as a support, and in the casting process, a vibration having a frequency of 0.1 kHz lower than the peak frequency 200 Hz of the natural vibration of the casting ribbon between the die and the endless belt is given to the casting ribbon.
  • the horizontal unevenness as the main evaluation was inferior to 0.8% or more.
  • tests 28 and 29 in which the frequency of vibration applied to the casting ribbon was 2 kHz and 20 kHz were more excellent in the result of horizontal unevenness.
  • tests 35 to 38 in which the frequency of vibration applied to the casting ribbon was 2 kHz to 100 kHz had a more excellent result of lateral unevenness.
  • the results of the horizontal unevenness was further excellent.
  • the vibration plate was used as the vibration source, the tests 42 and 43 in which the frequency of vibration applied to the casting ribbon was 2 kHz and 20 kHz were more excellent in the result of horizontal unevenness.
  • tests 27 to 32 using a die as a vibration source and tests 34 to 39 using an endless belt as a vibration source are more than tests 41 to 46 using a diaphragm as a vibration source.
  • the main evaluation result was good.
  • tests 27 to 32 using a die as a vibration source gave better main evaluation results than tests 34 to 39 using an endless belt as a vibration source.
  • Tests 27 to 31, 34 to 38, and 41 to 45 in which the frequency of vibration applied to the casting ribbon was 100 kHz or less, were excellent with no film formation as a secondary evaluation.
  • Tests 32, 39, and 46 in which the frequency of vibration applied to the casting ribbon was 150 kHz, were inferior due to the formation of a film as a sub-evaluation.
  • the optical film of Test 75 manufactured without giving vibration to the casting ribbon was inferior to 0.8% or more in the horizontal unevenness as the main evaluation.
  • tests 53 to 56 in which the amplitude of the vibration applied to the casting ribbon was 50 ⁇ m to 1500 ⁇ m were more excellent, with the horizontal step unevenness being less than 0.6%. It was. Furthermore, in Tests 54 and 55 in which the amplitude of vibration applied to the casting ribbon was 100 ⁇ m and 1000 ⁇ m, the horizontal step unevenness was even less than 0.4%.
  • the tests 60 to 65 in which the amplitude of the vibration applied to the casting ribbon was 10 ⁇ m to 2000 ⁇ m were more excellent with the horizontal unevenness being less than 0.6%. It was. Furthermore, in Tests 62 and 63 in which the amplitude of vibration applied to the casting ribbon was 100 ⁇ m and 1000 ⁇ m, the horizontal step unevenness was further excellent at less than 0.4%.
  • the tests 51 to 58 using the die as the vibration source and the tests 59 to 66 using the drum as the vibration source are generally more evaluated than the tests 67 to 74 using the vibration plate as the vibration source. The result was good.
  • the tests 59 to 66 using the drum as the vibration source performed better than the tests 51 to 58 using the die as the vibration source.
  • tests 51 to 57, 59 to 65, and 67 to 73 in which the amplitude of vibration applied to the casting ribbon was 2000 ⁇ m or less were excellent because the resin adhesion, which is a sub-evaluation, could not be confirmed.
  • tests 58, 66, and 74 in which the amplitude of vibration applied to the casting ribbon was 2500 ⁇ m were inferior because the resin adhesion, which is a sub-evaluation, was confirmed.
  • the casting ribbon was produced by applying a vibration at a frequency of 400 Hz lower than the peak frequency of 500 Hz of the natural vibration of the casting ribbon between the die and the drum.
  • the optical film Nos. 76, 83, and 90 were inferior in the horizontal unevenness as the main evaluation of 0.8% or more.
  • the test 78 to 81 in which the frequency of the vibration applied to the casting ribbon was 2 kHz to 100 kHz was superior in the result of the horizontal unevenness. Furthermore, in the tests 78 and 79 in which the frequency of vibration applied to the casting ribbon was 2 kHz and 20 kHz, the result of horizontal unevenness was further excellent.
  • tests 85 and 86, in which the frequency of vibration applied to the casting ribbon was 2 kHz and 20 kHz were more excellent in the results of lateral unevenness.
  • the vibration plate was used as the vibration source, the tests 92 and 93 in which the frequency of vibration applied to the casting ribbon was 2 kHz and 20 kHz were more excellent in the result of the horizontal unevenness.
  • the tests 77 to 82 using the die as the vibration source and the tests 84 to 89 using the drum as the vibration source are generally more evaluated than the tests 91 to 96 using the vibration plate as the vibration source. The result was good.
  • the tests 84 to 89 using the drum as the vibration source performed better than the tests 77 to 82 using the die as the vibration source.
  • Tests 77 to 81, 84 to 88, and 91 to 95 in which the frequency of vibration applied to the casting ribbon was 100 kHz or less, were excellent because there was no film formation as a secondary evaluation.
  • Tests 82, 89, and 96 in which the frequency of vibration applied to the casting ribbon was 150 kHz, were inferior due to the formation of a film, which was a secondary evaluation.

Abstract

Disclosed is a method for producing an optical film by a solution casting film-forming method, wherein, in order to easily and reliably suppress the generation of a lateral step on the surface of the optical film, and reduce uneven film thickness in the longitudinal direction of the optical film, the method comprising a casting step wherein a resin solution is discharged from a die to form a casting ribbon, and the casting ribbon is attached onto a support to form a cast film on the support. In the casting step, a vibrator for applying vibration to the casting ribbon located between the die and the support is provided, and the vibration has a higher frequency than the peak frequency of the natural vibration of the casting ribbon.

Description

光学フィルムの製造方法、光学フィルム、偏光板及び液晶表示装置Optical film manufacturing method, optical film, polarizing plate, and liquid crystal display device
 本発明は、光学フィルムの製造方法、この製造方法によって製造された光学フィルム、この光学フィルムを透明保護フィルムとして用いた偏光板、及びこの偏光板を備えた液晶表示装置に関する。 The present invention relates to an optical film manufacturing method, an optical film manufactured by the manufacturing method, a polarizing plate using the optical film as a transparent protective film, and a liquid crystal display device including the polarizing plate.
 従来、液晶表示装置(LCD)は、液晶テレビやパソコンの液晶ディスプレイ等の用途で需要が拡大してきた。近年では、液晶表示装置の大型化に伴い、街頭や店頭に設置される大型ディスプレイとしての利用や、デジタルサイネージと称される表示機器を用いた公共の場における広告用ディスプレイとしての利用等、用途がさらに多様化している。 Conventionally, the demand for liquid crystal display devices (LCDs) has been expanded for applications such as liquid crystal televisions and personal computer liquid crystal displays. In recent years, as liquid crystal display devices have become larger, they can be used as large displays installed in streets and stores, and as displays for advertising in public places using display devices called digital signage. Is becoming more diverse.
 液晶表示装置は、透明電極、液晶層、カラーフィルター等をガラス板で挟み込んだ構成の液晶セルと、この液晶セルを挟むように液晶セルの両側に配置された2枚の偏光板とを備えている。偏光板は、偏光子(偏光膜、偏光フィルムともいう)と、この偏光子を挟むように偏光子の両側に配置された2枚の透明保護フィルムとを備えている。透明保護フィルムとしては光学フィルム、通常、例えばセルローストリアセテート等のセルロースエステル樹脂のフィルムでなる光学フィルムが用いられる。 The liquid crystal display device includes a liquid crystal cell having a configuration in which a transparent electrode, a liquid crystal layer, a color filter, and the like are sandwiched between glass plates, and two polarizing plates disposed on both sides of the liquid crystal cell so as to sandwich the liquid crystal cell. Yes. The polarizing plate includes a polarizer (also referred to as a polarizing film or a polarizing film) and two transparent protective films disposed on both sides of the polarizer so as to sandwich the polarizer. As the transparent protective film, an optical film, usually an optical film made of a cellulose ester resin film such as cellulose triacetate is used.
 光学フィルムの製造方法として、溶液流延製膜法が知られている。溶液流延製膜法は、一般に、樹脂を溶媒に溶解した樹脂溶液(ドープ)をダイから吐出して流延リボンを形成し、この流延リボンを無端ベルトやドラム等の支持体に着接させて支持体上に流延膜(ウェブ)を形成する流延工程、形成した流延膜を支持体から剥離する剥離工程、剥離した流延膜(樹脂フィルム)を長手方向及び/又は幅方向に延伸する延伸工程、延伸した樹脂フィルムを熱処理する熱処理工程、熱処理した樹脂フィルムを光学フィルムとして巻き取る巻取工程等を有する。 A solution casting film forming method is known as an optical film manufacturing method. In the solution casting film forming method, a resin solution (dope) in which a resin is dissolved in a solvent is generally discharged from a die to form a casting ribbon, and this casting ribbon is attached to a support such as an endless belt or a drum. Casting process for forming a cast film (web) on the support, peeling process for peeling the formed cast film from the support, longitudinal direction and / or width direction of the peeled cast film (resin film) A stretching process for stretching the resin film, a heat treatment process for heat-treating the stretched resin film, a winding process for winding the heat-treated resin film as an optical film, and the like.
 ところで、近年の液晶表示装置の薄型化に伴い、偏光板ないし透明保護フィルムの薄膜化が要求されている。そのため、流延工程において流延リボンの薄膜化が進み、流延リボンが振動に敏感となり、波打ち現象が起り易くなる。その結果、製造された光学フィルムの表面に幅方向に延びる筋状の横段が残り、光学フィルムの膜厚が長手方向に周期的に変化する膜厚ムラが生じ易くなる。 By the way, with the recent thinning of liquid crystal display devices, it is required to reduce the thickness of polarizing plates or transparent protective films. For this reason, the casting ribbon becomes thinner in the casting process, the casting ribbon becomes sensitive to vibration, and the undulation phenomenon is likely to occur. As a result, streaky horizontal steps extending in the width direction remain on the surface of the manufactured optical film, and film thickness unevenness in which the film thickness of the optical film periodically changes in the longitudinal direction is likely to occur.
 この問題に対処するため、例えば、支持体の振動を抑制して流延リボンの振動を低減することが提案されている。しかし、支持体は流延膜を搬送するものであるため、支持体の振動の抑制には限界がある。 In order to cope with this problem, for example, it has been proposed to suppress the vibration of the casting ribbon by suppressing the vibration of the support. However, since the support transports the casting film, there is a limit to the suppression of the vibration of the support.
 また、特許文献1に開示されるように、流延リボンの振動と逆位相の振動を流延リボンに与えることにより、流延リボンの振動を打ち消して膜厚ムラを低減することが提案されている。しかし、この技術によれば、フィルムの製造中は、流延リボンの振動の位相を検出する検出装置を常時稼働させておく必要があり、フィルムの製造装置が大掛かりなものとなる。また、応答遅れのない緻密な制御が要求される。 Further, as disclosed in Patent Document 1, it has been proposed to cancel the vibration of the casting ribbon to reduce the film thickness unevenness by giving the casting ribbon vibration in the phase opposite to that of the casting ribbon. Yes. However, according to this technique, it is necessary to always operate a detection device for detecting the phase of vibration of the casting ribbon during the production of the film, which makes the film production apparatus large. Also, precise control without response delay is required.
特開2008-279757号公報JP 2008-279757 A
 本発明は、溶液流延製膜法による光学フィルムの製造方法において、簡単かつ確実に、光学フィルムの表面の横段の発生を抑制し、光学フィルムの膜厚が長手方向に周期的に変化する膜厚ムラを低減することを課題とする。 The present invention provides a method for producing an optical film by a solution casting film-forming method, which easily and reliably suppresses the occurrence of horizontal steps on the surface of the optical film, and the film thickness of the optical film changes periodically in the longitudinal direction. It is an object to reduce film thickness unevenness.
 本発明の一局面は、樹脂溶液をダイから吐出して流延リボンを形成し、この流延リボンを支持体に着接させて支持体上に流延膜を形成する流延工程を有する光学フィルムの製造方法であって、流延工程は流延リボンに振動を与える加振器を有し、加振器はダイと支持体との間の流延リボンの固有振動のピーク周波数よりも高い周波数の振動を流延リボンに与えることを特徴とする光学フィルムの製造方法である。 One aspect of the present invention is an optical device having a casting process in which a resin solution is discharged from a die to form a casting ribbon, and the casting ribbon is attached to a support to form a casting film on the support. A method for producing a film, wherein the casting step has a vibrator that vibrates the casting ribbon, and the vibrator is higher than a peak frequency of the natural vibration of the casting ribbon between the die and the support. A method for producing an optical film, characterized by applying a vibration of a frequency to a casting ribbon.
 この光学フィルムの製造方法によれば、簡単かつ確実に、光学フィルムの表面の横段の発生が抑制され、光学フィルムの膜厚が長手方向に周期的に変化する膜厚ムラが低減される。 According to this method for producing an optical film, the occurrence of horizontal steps on the surface of the optical film is suppressed easily and reliably, and the film thickness unevenness in which the film thickness of the optical film periodically changes in the longitudinal direction is reduced.
 その理由はおよそ次のようなことと考察される。まず、流延リボンは、一端の位置はダイにより固定しているが、他端の位置は支持体に着接しているだけで固定していないので、片側が自由端の系である。そのため、流延リボンの固有振動のピーク周波数と異なる周波数の振動を流延リボンに与えると、系の状態が変化し、流延リボンの支持体への着接位置が変わり、ダイと支持体との間の流延リボンの長さが変化する。その結果、流延リボンの固有振動に、与えた振動が足し合わされることにはならず、流延リボンの固有振動そのものが変わり、製造された光学フィルムの表面に横段として残るような低い周波数の振動が減衰又は消滅する。代わりに、与えた振動の周波数で流延リボンが振動し始める。 The reason is considered as follows. First, the casting ribbon is fixed at one end by a die, but the other end is only fixed to the support and is not fixed, so one side is a free end system. Therefore, if vibration of a frequency different from the peak frequency of the natural vibration of the casting ribbon is applied to the casting ribbon, the state of the system changes, the attachment position of the casting ribbon to the support changes, and the die and the support The length of the casting ribbon in between changes. As a result, the applied vibration is not added to the natural vibration of the casting ribbon, but the natural vibration of the casting ribbon itself changes, and the low frequency that remains as a horizontal step on the surface of the manufactured optical film. The vibration of the vibration is attenuated or extinguished. Instead, the casting ribbon begins to vibrate at the applied frequency of vibration.
 その場合に、流延リボンの固有振動のピーク周波数よりも高い周波数の振動を流延リボンに与えるので、流延リボンの波打ちのピッチが短くなり、波の山の曲率半径が小さくなって、波が平滑化(レベリング)され易い傾向となる。すなわち、ラプラス力によるレベリングを考えると、「P=P0+(σ/2R)」(P:樹脂溶液の圧力、P0:大気圧(一定)、σ:樹脂溶液の表面張力(一定)、R:曲率半径)であるから、周波数が高いほど、ピッチが短くなり、波の山の曲率半径Rが小さくなって、波の山における樹脂溶液の圧力Pが高くなる。そのため、波の山における樹脂溶液の圧力と、波の谷における樹脂溶液の圧力との差が大きくなって、波を平滑化しようとする力(レベリング力)が増大し、波が平滑化され易い傾向となる。その結果、製造された光学フィルムの表面の横段の発生が確実に抑制され、光学フィルムの膜厚が長手方向に周期的に変化する膜厚ムラが確実に低減されることとなる。 In that case, since a vibration with a frequency higher than the peak frequency of the natural vibration of the casting ribbon is given to the casting ribbon, the pitch of the undulation of the casting ribbon is shortened, the radius of curvature of the wave peak is reduced, and the wave Tends to be smoothed (leveled). That is, considering leveling by Laplace force, “P = P0 + (σ / 2R)” (P: pressure of resin solution, P0: atmospheric pressure (constant), σ: surface tension (constant) of resin solution, R: curvature. Therefore, the higher the frequency, the shorter the pitch, the smaller the radius of curvature R of the wave crest, and the higher the pressure P of the resin solution at the wave crest. Therefore, the difference between the pressure of the resin solution at the wave crest and the pressure of the resin solution at the wave trough increases, the force (leveling force) for smoothing the wave increases, and the wave is easily smoothed. It becomes a trend. As a result, the occurrence of lateral steps on the surface of the manufactured optical film is reliably suppressed, and the film thickness unevenness in which the film thickness of the optical film periodically changes in the longitudinal direction is reliably reduced.
 そして、本発明の製造方法によれば、流延工程中は、流延リボンの固有振動のピーク周波数よりも高い周波数の振動を流延リボンに与えるだけなので、ピーク周波数を予め測定しておき、与える振動の周波数を予め決めておくことができる。よって、フィルムの製造中に流延リボンの固有振動のピーク周波数を常時検出したり緻密な制御を行う必要がなく、簡単に、光学フィルムの表面の横段の発生を抑制し、光学フィルムの膜厚が長手方向に周期的に変化する膜厚ムラを低減することができる。尚、流延リボンの固有振動とは支持体と流延リボンの接点の変位を言う。 And, according to the manufacturing method of the present invention, during the casting process, only giving the casting ribbon a vibration having a frequency higher than the peak frequency of the natural vibration of the casting ribbon, the peak frequency is measured in advance, The frequency of vibration to be applied can be determined in advance. Therefore, it is not necessary to always detect the peak frequency of the natural vibration of the casting ribbon or perform precise control during the production of the film, and it is possible to easily suppress the occurrence of horizontal steps on the surface of the optical film, Film thickness unevenness in which the thickness periodically changes in the longitudinal direction can be reduced. The natural vibration of the casting ribbon refers to the displacement of the contact point between the support and the casting ribbon.
 固有振動の測定は例えば、ダイの吐出口の幅方向両端部の近傍に2台のカメラを配設し、2台のカメラで別々に流延リボンを連続的に撮影し、得られた画像データーから流延リボンの振動(周波数、振幅)を検出し、得られた2つの振動(周波数、振幅)の平均値を算出することで求めることが出来る。 For example, the natural vibration is measured by arranging two cameras in the vicinity of both end portions in the width direction of the discharge port of the die, and separately shooting the casting ribbon separately with the two cameras. From this, the vibration (frequency, amplitude) of the casting ribbon is detected, and the average value of the two vibrations (frequency, amplitude) obtained can be calculated.
 なお、「ピーク周波数」とは、時間軸に関する流延リボンの変位(固有振動)のデータを、例えばFFT(高速フーリエ変換:Fast Fourier Transform)等を用いて周波数解析し、周波数軸に関する振動強度のデータを得たときに、振動強度のピーク値が現れる周波数をいう。 “Peak frequency” means the data of the displacement (natural vibration) of the casting ribbon with respect to the time axis by frequency analysis using, for example, FFT (Fast Fourier Transform), etc. The frequency at which the peak value of vibration intensity appears when data is obtained.
 本発明の製造方法においては、流延リボンに与える振動の周波数が1kHzから100kHzであることが好ましい。流延リボンの固有振動のピーク周波数は、通常、700Hz程度あるいはそれ以下であるから、周波数が1kHz以上の振動を流延リボンに与えることによって、流延リボンの固有振動のピーク周波数よりも高い周波数の振動が確実に流延リボンに与えられる。また、周波数が100kHz以下の振動を流延リボンに与えることによって、流延リボンの加熱が抑制され、流延リボンの表面に皮膜が生成することが抑制される(流延リボンの表面に皮膜が生成すると、流延膜の内部が乾燥し難くなる)。 In the production method of the present invention, the frequency of vibration applied to the casting ribbon is preferably 1 kHz to 100 kHz. Since the peak frequency of the natural vibration of the casting ribbon is usually about 700 Hz or less, it is higher than the peak frequency of the natural vibration of the casting ribbon by giving the casting ribbon a vibration having a frequency of 1 kHz or more. Is reliably applied to the casting ribbon. In addition, by applying vibration with a frequency of 100 kHz or less to the casting ribbon, heating of the casting ribbon is suppressed, and generation of a film on the surface of the casting ribbon is suppressed (the film is formed on the surface of the casting ribbon). When produced, the inside of the cast film becomes difficult to dry).
 本発明の製造方法においては、流延リボンに与える振動の振幅が10μmから2000μmであることが好ましい。振幅が10μm以上の振動を流延リボンに与えることによって、レベリング力が十分大きくなり、与えた振動に起因する横段が残ることが抑制される。また、振幅が2000μm以下の振動を流延リボンに与えることによって、流延リボンがダイのリップ部(吐出口を画成するダイの部分)に付着することが抑制され、リップ部に樹脂付着が残ることが抑制される(リップ部に樹脂付着が残ると、流延リボンひいては製造された光学フィルムにダイラインが発生する)。 In the production method of the present invention, the amplitude of vibration applied to the casting ribbon is preferably 10 μm to 2000 μm. By applying vibration having an amplitude of 10 μm or more to the casting ribbon, the leveling force becomes sufficiently large, and it is possible to suppress the horizontal step due to the applied vibration from remaining. Further, by giving vibrations having an amplitude of 2000 μm or less to the casting ribbon, the casting ribbon is prevented from adhering to the lip portion of the die (the portion of the die that defines the discharge port), and the resin adheres to the lip portion. It is suppressed that it remains (if resin adhesion remains on the lip portion, a die line is generated on the casting ribbon and thus on the manufactured optical film).
 本発明の製造方法においては、加振器によりダイを振動させることで流延リボンに振動を与えることが好ましい。ダイを振動させることによって、一端がダイに接している流延リボンに確実に振動が与えられる。 In the production method of the present invention, it is preferable to vibrate the casting ribbon by vibrating the die with a vibrator. By vibrating the die, vibration is reliably applied to the casting ribbon whose one end is in contact with the die.
 本発明の製造方法においては、加振器により支持体を振動させることで流延リボンに振動を与えることが好ましい。支持体を振動させることによって、他端が支持体に接している流延リボンに確実に振動が与えられる。 In the production method of the present invention, it is preferable to vibrate the casting ribbon by vibrating the support with a vibrator. By vibrating the support, vibration is reliably applied to the casting ribbon whose other end is in contact with the support.
 本発明の製造方法においては、加振器により流延リボンの周囲の空気を振動させることで流延リボンに振動を与えることが好ましい。流延リボンの周囲の空気を振動させることによって、流延リボンに確実に振動が与えられる。 In the production method of the present invention, it is preferable to vibrate the casting ribbon by vibrating the air around the casting ribbon with a vibrator. By vibrating the air around the casting ribbon, the casting ribbon is reliably vibrated.
 本発明の他の一局面は、前述の製造方法によって製造されたことを特徴とする光学フィルムである。この光学フィルムは、表面の横段の発生が抑制され、膜厚が長手方向に周期的に変化する膜厚ムラが低減されて、光学フィルムの薄膜化要求に良好に対応し得るものである。 Another aspect of the present invention is an optical film manufactured by the above-described manufacturing method. This optical film is capable of satisfactorily meeting the demand for thin optical films by suppressing the occurrence of horizontal steps on the surface and reducing film thickness unevenness in which the film thickness periodically changes in the longitudinal direction.
 本発明のさらに他の一局面は、偏光子と、偏光子を挟むように偏光子の両側に配置された2枚の透明保護フィルムとを備える偏光板であって、前記2枚の透明保護フィルムのうちの少なくとも一方が、本発明の光学フィルムの製造方法により製造された光学フィルムであることを特徴とする偏光板である。この偏光板は、透明保護フィルムの表面の横段の発生が抑制され、透明保護フィルムの膜厚ムラが低減されて、偏光板の薄膜化要求に良好に対応し得るものである。 Yet another aspect of the present invention is a polarizing plate comprising a polarizer and two transparent protective films disposed on both sides of the polarizer so as to sandwich the polarizer, the two transparent protective films At least one of the polarizing plates is an optical film produced by the method for producing an optical film of the present invention. In this polarizing plate, the occurrence of lateral steps on the surface of the transparent protective film is suppressed, the unevenness of the film thickness of the transparent protective film is reduced, and it is possible to satisfactorily meet the demand for thinning the polarizing plate.
 本発明のさらに他の一局面は、液晶セルと、液晶セルを挟むように液晶セルの両側に配置された2枚の偏光板とを備える液晶表示装置であって、2枚の偏光板のうちの少なくとも一方が、本発明の光学フィルムを用いた偏光板であることを特徴とする液晶表示装置である。この液晶表示装置は、偏光板における透明保護フィルムの表面の横段の発生が抑制され、透明保護フィルムの膜厚が長手方向に周期的に変化する膜厚ムラが低減されて、液晶表示装置の薄型化に良好に対応し得るものである。 Still another aspect of the present invention is a liquid crystal display device including a liquid crystal cell and two polarizing plates disposed on both sides of the liquid crystal cell so as to sandwich the liquid crystal cell, and the two polarizing plates At least one of the liquid crystal display devices is a polarizing plate using the optical film of the present invention. In this liquid crystal display device, the occurrence of lateral steps on the surface of the transparent protective film in the polarizing plate is suppressed, and the film thickness unevenness in which the film thickness of the transparent protective film periodically changes in the longitudinal direction is reduced. It can cope with thinning well.
 本発明によれば、緻密な制御等を行うことなく、簡単かつ確実に、光学フィルムの表面の横段の発生を抑制し、光学フィルムの膜厚が長手方向に周期的に変化する膜厚ムラを低減することができた。 According to the present invention, film thickness unevenness in which the occurrence of lateral steps on the surface of the optical film is suppressed easily and reliably without performing precise control or the like, and the film thickness of the optical film periodically changes in the longitudinal direction. Was able to be reduced.
本発明の実施形態に係るベルト式の光学フィルムの製造装置の概略構成図である。It is a schematic block diagram of the manufacturing apparatus of the belt-type optical film which concerns on embodiment of this invention. 図1のベルト式光学フィルム製造装置のダイと支持体(無端ベルト)との間の流延リボンの周辺の拡大図である。It is an enlarged view of the periphery of the casting ribbon between the die | dye and support body (endless belt) of the belt-type optical film manufacturing apparatus of FIG. (A)は流延リボンが低周波数で振動した場合に得られる樹脂フィルムないし光学フィルムの拡大断面図、(B)は流延リボンが高周波数で振動した場合に得られる樹脂フィルムないし光学フィルムの拡大断面図である。(A) is an enlarged sectional view of a resin film or optical film obtained when the casting ribbon vibrates at a low frequency, and (B) is a resin film or optical film obtained when the casting ribbon vibrates at a high frequency. It is an expanded sectional view. 本発明の他の実施形態に係るドラム式の光学フィルムの製造装置の概略構成図である。It is a schematic block diagram of the manufacturing apparatus of the drum type optical film which concerns on other embodiment of this invention. 図4のドラム式光学フィルム製造装置のダイと支持体(ドラム)との間の流延リボンの周辺の拡大図である。It is an enlarged view of the periphery of the casting ribbon between the die | dye and support body (drum) of the drum type optical film manufacturing apparatus of FIG.
 以下、本発明の実施形態を説明するが、本発明はこれらの実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
 <光学フィルムの製造装置>
 図1は、本発明の実施形態に係る光学フィルムの製造装置(ベルト式)1の概略構成図である。この光学フィルムの製造装置1aは、溶液流延製膜法により光学フィルムを製造するものであって、流延装置10、延伸装置20、熱処理装置30、及び巻取装置40を有する。
<Optical film manufacturing equipment>
FIG. 1 is a schematic configuration diagram of an optical film manufacturing apparatus (belt type) 1 according to an embodiment of the present invention. The optical film manufacturing apparatus 1 a is for manufacturing an optical film by a solution casting film forming method, and includes a casting apparatus 10, a stretching apparatus 20, a heat treatment apparatus 30, and a winding apparatus 40.
 流延装置10は、ダイ(流延ダイ)11、無端ベルト12、及び剥離ローラ13を備える。ダイ11は、樹脂を溶媒に溶解した樹脂溶液(以下、ドープとも言う)を吐出して流延リボン51を形成し、この流延リボン51を支持体である無端ベルト12に着接させて無端ベルト12上に流延膜(ウェブ)52を形成する。無端ベルト12は、支持ロール12aと、支持ロール12bとに巻回され走行することにより、形成された流延膜52を図中の矢印方向に搬送する。剥離ローラ13は、流延膜52を無端ベルト12から剥離し、剥離した未延伸フィルム52aを延伸装置20に送る。 The casting apparatus 10 includes a die (casting die) 11, an endless belt 12, and a peeling roller 13. The die 11 forms a casting ribbon 51 by discharging a resin solution (hereinafter also referred to as a dope) in which a resin is dissolved in a solvent, and the casting ribbon 51 is attached to an endless belt 12 as a support to endlessly. A cast film (web) 52 is formed on the belt 12. The endless belt 12 is wound around the support roll 12a and the support roll 12b and travels to convey the formed cast film 52 in the direction of the arrow in the figure. The peeling roller 13 peels the casting film 52 from the endless belt 12 and sends the peeled unstretched film 52 a to the stretching device 20.
 延伸装置20は、未延伸フィルム52aを搬送しながらクリップテンターやピンテンター等を用いて樹脂フィルム53を長手方向(搬送方向(Machine Direction:MD方向))及び/又は幅方向(搬送方向と直交する方向(Transverse Direction:TD方向))に延伸する。 The stretching device 20 transports the resin film 53 in the longitudinal direction (transport direction (machine direction: MD direction)) and / or the width direction (direction orthogonal to the transport direction) using a clip tenter, pin tenter, or the like while transporting the unstretched film 52a. (Transverse Direction: TD direction)).
 熱処理装置30は、延伸された延伸フィルム53を搬送しながら所定温度に加熱して熱処理する(乾燥させる)。 The heat treatment apparatus 30 heats and heats (heats) the stretched film 53 to a predetermined temperature while conveying the stretched film 53.
 巻取装置40は、熱処理された延伸フィルム53を光学フィルムとしてロール状に巻き取る。 Winding device 40 winds heat-treated stretched film 53 as an optical film in a roll shape.
 なお、本発明では実施形態では、光学フィルムとして、セルローストリアセテート等のセルロースエステル樹脂(以下、単に、セルロースエステルという場合がある)を含む光学フィルム(すなわちセルローストリアセテートフィルム又はセルロースエステルフィルム)が製造される。もっとも、これに限らず、例えば、アクリル樹脂とセルロースエステル樹脂とを含む光学フィルムが製造されてもよい。 In the present invention, in the embodiment, an optical film (that is, a cellulose triacetate film or a cellulose ester film) containing a cellulose ester resin such as cellulose triacetate (hereinafter sometimes simply referred to as cellulose ester) is produced as an optical film. . But not only this but the optical film containing an acrylic resin and a cellulose-ester resin may be manufactured, for example.
 [ダイ]
 ダイ11から吐出されるドープは、例えば、セルローストリアセテート等のセルロースエステル樹脂を、該セルロースエステル樹脂の良溶媒を含む溶媒に、溶解釜を用いて溶解することにより調製される。樹脂溶液中のセルロースエステル樹脂の含有量は、例えば15質量%から30質量%であることが好ましい。
[Die]
The dope discharged from the die 11 is prepared, for example, by dissolving a cellulose ester resin such as cellulose triacetate in a solvent containing a good solvent for the cellulose ester resin using a dissolution vessel. The content of the cellulose ester resin in the resin solution is preferably 15% by mass to 30% by mass, for example.
 セルロースエステル樹脂の溶解には、常圧で行う方法、溶媒の沸点以下で行う方法、溶媒の沸点以上で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報又は特開平9-95538号公報に記載されるように、冷却溶解法で行う方法、特開平11-21379号公報に記載されるように高圧で行う方法等、種々の溶解方法を用いることができる。これらのうちでは、溶媒の沸点以上で加圧して行う方法が好ましい。 For dissolving the cellulose ester resin, a method carried out at normal pressure, a method carried out below the boiling point of the solvent, a method carried out under pressure above the boiling point of the solvent, JP-A-9-95544, JP-A-9-95557, or Various dissolution methods such as a method using a cooling dissolution method as described in Kaihei 9-95538 and a method using a high pressure as described in Japanese Patent Application Laid-Open No. 11-21379 can be used. Among these, the method of pressurizing at a temperature equal to or higher than the boiling point of the solvent is preferable.
 樹脂が溶媒に溶解された後、ドープは、濾材で濾過され、かつ脱泡される。濾過は、捕集粒子径が0.5μmから5μmで、濾水時間が10sec/100mlから25sec/100mlの濾材を用いることが好ましい。 After the resin is dissolved in the solvent, the dope is filtered with a filter medium and defoamed. For the filtration, it is preferable to use a filter medium having a collected particle diameter of 0.5 μm to 5 μm and a drainage time of 10 sec / 100 ml to 25 sec / 100 ml.
 ドープは、例えば加圧型定量ギヤポンプ等の送液ポンプによりダイ11に送られる。ダイ11は、吐出口の形状が調整可能なものが好ましい。また、流延リボン51の膜厚を均一にし易い加圧ダイが好ましい。加圧ダイとしては、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。製膜速度を上げるために、加圧ダイを2基以上並べて配設し、樹脂溶液を分割して吐出してもよい。 The dope is sent to the die 11 by a liquid feed pump such as a pressurized metering gear pump. The die 11 is preferably capable of adjusting the shape of the discharge port. Further, a pressure die that can easily make the film thickness of the casting ribbon 51 uniform is preferable. Examples of the pressure die include a coat hanger die and a T die, and any of them is preferably used. In order to increase the film forming speed, two or more pressure dies may be arranged side by side, and the resin solution may be divided and discharged.
 ダイ11から樹脂溶液を吐出する吐出速度(流延リボン51の移動速度)は、無端ベルト12による流延膜52の搬送速度との兼ね合いや生産性等を考慮して、例えば、20m/分から200m/分程度であることが好ましい。 The discharge speed (moving speed of the casting ribbon 51) for discharging the resin solution from the die 11 is, for example, 20 m / min to 200 m in consideration of the balance with the transport speed of the casting film 52 by the endless belt 12 and productivity. / Min is preferable.
 [無端ベルト]
 無端ベルト12は、表面が鏡面仕上げされた金属製のベルトである。無端ベルト12は、流延膜52の剥離性の観点から、例えばステンレス鋼製が好ましい。ダイ11から吐出された流延が無端ベルト支持体上に形成された流延膜52の幅は、無端ベルト12の幅を有効活用する観点から、無端ベルト12の幅に対して、80%から99%が好ましい。
[Endless belt]
The endless belt 12 is a metal belt having a mirror-finished surface. The endless belt 12 is preferably made of stainless steel, for example, from the viewpoint of peelability of the cast film 52. From the viewpoint of effectively utilizing the width of the endless belt 12, the width of the casting film 52 in which the cast discharged from the die 11 is formed on the endless belt support is from 80% to the width of the endless belt 12. 99% is preferred.
 無端ベルト12は、走行することにより、その表面上に形成された流延膜52を搬送しながら流延膜52を乾燥させる。この乾燥は、例えば、無端ベルト12の裏面をヒータや加熱風の吹き付けで加熱する方法、無端ベルト12上の流延膜52をヒータや加熱風の吹き付けで加熱する方法等によって行われ、必要に応じて適宜選択することが可能である。乾燥の際の流延膜52の温度は、溶媒の蒸発に要する時間や搬送速度や生産性等を考慮して、-5℃から70℃が好ましく、0℃から60℃がより好ましい。流延膜52の温度が高すぎると、流延膜52が発泡したり、流延膜52の平面性が劣化する傾向がある。 The endless belt 12 travels to dry the casting film 52 while transporting the casting film 52 formed on the surface thereof. This drying is performed, for example, by a method of heating the back surface of the endless belt 12 by blowing a heater or heating air, a method of heating the casting film 52 on the endless belt 12 by blowing a heater or heating air, and the like. It is possible to select as appropriate. The temperature of the casting film 52 at the time of drying is preferably −5 ° C. to 70 ° C., more preferably 0 ° C. to 60 ° C. in consideration of the time required for evaporation of the solvent, the conveyance speed, productivity, and the like. If the temperature of the casting film 52 is too high, the casting film 52 tends to foam or the flatness of the casting film 52 tends to deteriorate.
 加熱風を吹き付ける場合、その加熱風の風圧は、溶媒蒸発の均一性等を考慮して、50Paから5000Paであることが好ましい。加熱風の温度は、一定の温度で乾燥してもよいし、無端ベルト12の走行方向に数段階の温度に分けて吹き付けてもよい。 When the heated air is blown, the wind pressure of the heated air is preferably 50 Pa to 5000 Pa in consideration of the uniformity of solvent evaporation and the like. The temperature of the heating air may be dried at a constant temperature, or may be sprayed in several steps in the traveling direction of the endless belt 12.
 無端ベルト12の上に流延膜52を形成した後、無端ベルト12から流延膜52を剥離するまでの時間は、作製する光学フィルムの膜厚、使用する溶媒によっても異なるが、無端ベルト12からの剥離性を考慮して、0.5分間から5分間の範囲であることが好ましい。 After the casting film 52 is formed on the endless belt 12, the time until the casting film 52 is peeled from the endless belt 12 varies depending on the film thickness of the optical film to be produced and the solvent used, but the endless belt 12. In view of the peelability from the film, it is preferably in the range of 0.5 minutes to 5 minutes.
 無端ベルト12による流延膜52の搬送速度は、例えば、50m/分から200m/分程度であることが好ましい。また、無端ベルト12の走行速度に対する、流延膜52の搬送速度の比(ドラフト比)は、0.8から1.2程度であることが好ましい。ドラフト比がこの範囲内であると、安定して流延膜52を形成させることができる。例えばドラフト比が大きすぎると、流延膜52が幅方向に縮小されるネックインという現象を発生させる傾向があり、そうなると、広幅のフィルムを形成できなくなる。 The conveyance speed of the casting film 52 by the endless belt 12 is preferably about 50 m / min to 200 m / min, for example. The ratio (draft ratio) of the transport speed of the casting film 52 to the travel speed of the endless belt 12 is preferably about 0.8 to 1.2. When the draft ratio is within this range, the casting film 52 can be stably formed. For example, if the draft ratio is too large, there is a tendency to cause a phenomenon called neck-in in which the casting film 52 is reduced in the width direction, and if so, a wide film cannot be formed.
 [剥離ローラ]
 剥離ローラ13は、無端ベルト12の表面に加圧された状態で接しており、乾燥された流延膜52を無端ベルト12から剥離する。この剥離時の剥離張力は、50N/mから400N/mの範囲が好ましい。また、剥離時における流延膜52の残留溶媒率は、無端ベルト12からの剥離性、剥離後の搬送性、製造される光学フィルムの物理特性等を考慮して、30質量%から200質量%であることが好ましい。
[Peeling roller]
The peeling roller 13 is in contact with the surface of the endless belt 12 in a pressurized state, and peels the dried casting film 52 from the endless belt 12. The peeling tension at the time of peeling is preferably in the range of 50 N / m to 400 N / m. The residual solvent ratio of the cast film 52 at the time of peeling is 30% to 200% by weight in consideration of peelability from the endless belt 12, transportability after peeling, physical properties of the optical film to be manufactured, and the like. It is preferable that
 ここで、残留溶媒率は、次式で定義される。 Here, the residual solvent ratio is defined by the following equation.
 残留溶媒率(%)={(流延膜の加熱処理前の質量-流延膜の加熱処理後の質量)/流延膜の加熱処理後の質量}×100
 なお、残留溶媒率を測定する際の加熱処理とは、115℃で1時間の加熱処理である。
Residual solvent ratio (%) = {(mass before heat treatment of cast film−mass after heat treatment of cast film) / mass after heat treatment of cast film} × 100
Note that the heat treatment for measuring the residual solvent ratio is a heat treatment at 115 ° C. for 1 hour.
 [延伸装置]
 延伸装置20は、無端ベルト12から剥離された未延伸フィルム52aである樹脂フィルム53の幅方向の両側縁部をクリップテンターやピンテンター等で把持して未延伸フィルム52aを長手方向(MD方向)及び/又は幅方向(TD方向)に延伸する。
[Stretching device]
The stretching device 20 grips both side edges in the width direction of the resin film 53 which is the unstretched film 52a peeled from the endless belt 12 with a clip tenter, a pin tenter or the like, and holds the unstretched film 52a in the longitudinal direction (MD direction) and / Or extends in the width direction (TD direction).
 ここでの未延伸フィルム52aのTD方向の延伸率は、15%から30%程度であることが好ましい。一般に、延伸率を高くすると、光学フィルムの光学値が不均一になり易い。しかし、ここでの未延伸フィルム52aのTD方向の延伸率を15%から30%とすると、光学フィルムの光学値が不均一になることを抑制できる。したがって、光学値が均一で、かつ広幅の光学フィルムを得ることができる。また、光学フィルムの幅が広いと、大型の液晶表示装置への使用、偏光板加工時のフィルムの使用効率、生産効率の点からも好ましい。 Here, the stretch ratio in the TD direction of the unstretched film 52a is preferably about 15% to 30%. In general, when the stretching ratio is increased, the optical value of the optical film tends to be nonuniform. However, when the stretch ratio in the TD direction of the unstretched film 52a is 15% to 30%, the optical value of the optical film can be suppressed from becoming non-uniform. Therefore, an optical film having a uniform optical value and a wide width can be obtained. Moreover, when the width | variety of an optical film is wide, it is preferable also from the point of use to a large sized liquid crystal display device, the use efficiency of the film at the time of polarizing plate processing, and production efficiency.
 ここで、TD方向の延伸率は、次式で定義される。 Here, the stretching ratio in the TD direction is defined by the following equation.
 TD方向の延伸率(%)={(フィルムの所定位置における延伸後の幅方向の長さ-フィルムの所定位置における延伸前の幅方向の長さ)/フィルムの所定位置における延伸前の幅方向の長さ}×100
 なお、フィルムの幅方向の長さは、C型JIS1級の鋼製スケールで測定した値である。
Stretch ratio (%) in TD direction = {(length in the width direction after stretching at a predetermined position of the film−length in the width direction before stretching at a predetermined position of the film) / width direction before stretching at a predetermined position of the film Length} × 100
The length in the width direction of the film is a value measured with a C-type JIS grade 1 steel scale.
 また、MD方向の延伸率は、次式で定義される。 Also, the stretching ratio in the MD direction is defined by the following formula.
 MD方向の延伸率(%)={(延伸後のフィルムの搬送速度-延伸前のフィルムの搬送速度)/延伸前のフィルムの搬送速度}×100
 [熱処理装置]
 熱処理装置30は、複数の搬送ローラを備え、そのローラ間を樹脂フィルム53を搬送させる間に延伸フィルム53を乾燥させる。その際、加熱空気、赤外線等を単独で用いて乾燥してもよいし、加熱空気と赤外線とを併用して乾燥してもよい。簡便さの点から加熱空気を用いることが好ましい。乾燥温度としては、延伸フィルム53の残留溶媒率により、好適温度が異なるが、乾燥時間、収縮ムラ、伸縮量の安定性等を考慮し、30℃から180℃の範囲で残留溶媒率により適宜選択して決めればよい。また、一定の温度で乾燥してもよいし、2段階から4段階の温度に分けて、数段階の温度に分けて乾燥してもよい。
Stretching rate in MD direction (%) = {(Conveying speed of film after stretching−Conveying speed of film before stretching) / Conveying speed of film before stretching} × 100
[Heat treatment equipment]
The heat treatment apparatus 30 includes a plurality of transport rollers, and dries the stretched film 53 while transporting the resin film 53 between the rollers. In that case, you may dry using heating air, infrared rays, etc. independently, and you may dry using heating air and infrared rays together. It is preferable to use heated air from the viewpoint of simplicity. The drying temperature varies depending on the residual solvent ratio of the stretched film 53, but is appropriately selected depending on the residual solvent ratio in the range of 30 ° C to 180 ° C in consideration of drying time, shrinkage unevenness, stability of the amount of expansion and contraction, etc. And decide. Moreover, it may be dried at a constant temperature, or may be divided into two to four stages of temperature and divided into several stages of temperature.
 [巻取装置]
 巻取装置40は、延伸装置20で延伸させ、熱処理装置30で乾燥させた延伸フィルム53を必要量の長さに巻き芯に巻き取る。なお、巻き取る際の温度は、巻き取り後の収縮によるスリキズ、巻き緩み等を防止するために室温まで冷却することが好ましい。使用する巻き取り機は、特に限定なく使用でき、一般的に使用されているものでよく、定テンション法、定トルク法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等の巻き取り方法で巻き取ることができる。
[Winding device]
The winding device 40 winds the stretched film 53 stretched by the stretching device 20 and dried by the heat treatment device 30 to a necessary amount of length on a winding core. The temperature at the time of winding is preferably cooled to room temperature in order to prevent scratches and loosening due to shrinkage after winding. The winder to be used can be used without any particular limitation, and may be a commonly used one, such as a constant tension method, a constant torque method, a taper tension method, or a program tension control method with a constant internal stress. Can be wound up.
 ここで巻き取る光学フィルムの幅は、1000mmから3000mmであることが好ましい。このような広幅の光学フィルムは、大型の液晶表示装置への使用、偏光板加工時の光学フィルムの使用効率、生産効率の点から好ましい。また、光学フィルムの膜厚は、液晶表示装置の薄型化、光学フィルムの生産安定化の観点等の点から、30μmから90μmであることが好ましい。ここで膜厚とは、平均膜厚のことであり、例えば、東京精密株式会社製の膜厚測定器DH-150や、株式会社ミツトヨ製の接触式膜厚計等を用いて、光学フィルムの長さ方向及び幅方向に20箇所から200箇所、膜厚を測定し、その測定値の平均値を膜厚として示した値である。 Here, the width of the optical film to be wound is preferably 1000 mm to 3000 mm. Such a wide optical film is preferable from the viewpoints of use in a large-sized liquid crystal display device, use efficiency of the optical film during polarizing plate processing, and production efficiency. The film thickness of the optical film is preferably 30 μm to 90 μm from the viewpoints of thinning the liquid crystal display device and stabilizing the production of the optical film. Here, the film thickness is an average film thickness. For example, a film thickness measuring instrument DH-150 manufactured by Tokyo Seimitsu Co., Ltd., a contact-type film thickness meter manufactured by Mitutoyo Co., Ltd., or the like is used. It is the value which measured the film thickness from 20 places to 200 places in the length direction and the width direction, and showed the average value of the measured value as a film thickness.
 図2は、図1に示す製造装置1のダイ11と無端ベルト12との間の流延リボン51の周辺の拡大図である。図中、11aはダイ11のリップ部(吐出口を画成するダイの部分)、14は加振器、16は振動板、Lは流延リボン51の長さを示す。ダイ11の吐出口と無端ベルト12の表面との間の距離は、およそ数十μmから数cmの範囲内で適宜調整される。 FIG. 2 is an enlarged view around the casting ribbon 51 between the die 11 and the endless belt 12 of the manufacturing apparatus 1 shown in FIG. In the figure, 11a is the lip portion of the die 11 (the portion of the die that defines the discharge port), 14 is the vibrator, 16 is the diaphragm, and L is the length of the casting ribbon 51. The distance between the discharge port of the die 11 and the surface of the endless belt 12 is appropriately adjusted within a range of about several tens of μm to several cm.
 図2に示すように、本発明では、ダイ11の外壁に加振器14が取り付けられている。このため、加振器14がダイ11を振動させることにより、リップ部11aで画成された吐出口から吐出される流延リボン51に振動が与えられる。加振器14は、ダイ11の吐出口の近傍に配置されている。このため、加振器14で発生した振動が流延リボン51に効率よく伝達される。加振器14は、流延リボン51が長手方向(吐出方向)に波打つように振動を発生する。 As shown in FIG. 2, in the present invention, a vibrator 14 is attached to the outer wall of the die 11. For this reason, when the vibrator 14 vibrates the die 11, vibration is given to the casting ribbon 51 discharged from the discharge port defined by the lip portion 11a. The vibrator 14 is disposed in the vicinity of the discharge port of the die 11. For this reason, the vibration generated by the vibrator 14 is efficiently transmitted to the casting ribbon 51. The vibrator 14 generates vibration so that the casting ribbon 51 undulates in the longitudinal direction (discharge direction).
 加振器14としては特に限定なく用いられ得るが、周波数(振動数)及び/又は振幅が可変なものが好ましい。例えば、超音波発振機、ピエゾ圧電素子等による超音波振動子、駆動モータの駆動軸に半月状の偏心重りを取り付けたもの、駆動モータの駆動軸にカム等を介して振動子を連結し、振動子をピストン運動させることにより振動を発生するもの等が、汎用性・設置性の観点から特に好ましく用いられ得る。 The vibrator 14 can be used without any particular limitation, but preferably has a variable frequency (frequency) and / or amplitude. For example, an ultrasonic oscillator using an ultrasonic oscillator, a piezoelectric element, etc., a drive motor drive shaft with a half-moon eccentric weight attached, a drive motor drive shaft connected to the vibrator via a cam, etc. Those that generate vibration by moving the vibrator in a piston motion can be particularly preferably used from the viewpoint of versatility and installation.
 加振器14は、ダイ11からドープを吐出して流延リボン51を形成し、この流延リボン51を無端ベルト12に着接させて無端ベルト12上に流延膜52を形成する流延工程において、ダイ11と無端ベルト12との間の流延リボン51に振動を与えるように稼働される。 The vibrator 14 discharges the dope from the die 11 to form a casting ribbon 51, and the casting ribbon 51 is attached to the endless belt 12 to form a casting film 52 on the endless belt 12. In the process, the casting ribbon 51 between the die 11 and the endless belt 12 is operated so as to vibrate.
 その場合、加振器14は、流延リボン51の固有振動のピーク周波数よりも高い周波数の振動を流延リボン51に与えるように稼働される。流延リボン51の固有振動のピーク周波数は、通常、700Hz程度あるいはそれ以下である。したがって、周波数が、例えば1kHz以上の振動を流延リボン51に与えることが好ましい。 In that case, the vibrator 14 is operated so as to give the casting ribbon 51 a vibration having a frequency higher than the peak frequency of the natural vibration of the casting ribbon 51. The peak frequency of the natural vibration of the casting ribbon 51 is usually about 700 Hz or less. Therefore, it is preferable to apply vibration with a frequency of, for example, 1 kHz or more to the casting ribbon 51.
 流延リボン51の固有振動のピーク周波数が、例えば200Hzと相対的に低周波数の場合、流延リボン51の移動速度(ダイ11からの樹脂溶液の吐出速度)が100m/分(1666mm/秒)であるとすると、流延リボン51に生じる波のピッチは約8mmと相対的に長くなる。流延リボン51がこのような低周波数で振動すると、図3(A)に鎖線で例示するように、流延膜52の波の山の曲率半径が大きくなって、波を平滑化しようとする力(レベリング力)が減少し、波が平滑化され難い傾向となる。その結果、延伸フィルム53の表面に振動に起因する横段が残り、光学フィルムの膜厚ムラが大きくなる。 When the peak frequency of the natural vibration of the casting ribbon 51 is relatively low, for example, 200 Hz, the moving speed of the casting ribbon 51 (resin solution discharge speed from the die 11) is 100 m / min (1666 mm / sec). If it is, the pitch of the wave produced in the casting ribbon 51 will become relatively long with about 8 mm. When the casting ribbon 51 vibrates at such a low frequency, as illustrated by a chain line in FIG. 3A, the curvature radius of the wave peak of the casting film 52 becomes large, and the wave tends to be smoothed. The force (leveling force) decreases and the waves tend not to be smoothed. As a result, the horizontal stage resulting from vibration remains on the surface of the stretched film 53, and the film thickness unevenness of the optical film increases.
 これに対し、流延リボン51に、例えば20kHzの高周波数の振動を与えると、次のような現象が起きる。まず、流延リボン51は、図2に示したように、一端の位置はダイ11により固定しているが、他端の位置は無端ベルト12に着接しているだけで固定していないので、片側が自由端の系である。そのため、流延リボン51の固有振動のピーク周波数(200Hz)と異なる周波数(20kHz)の振動を流延リボン51に与えると、系の状態が変化し、流延リボン51の無端ベルト12への着接位置が変わり、ダイ11と無端ベルト12との間の流延リボン51の長さLが変化する。その結果、流延リボン51の固有振動(200Hzの低周波数振動)に、与えた振動(20kHzの高周波数振動)が足し合わされることにはならず、流延リボン51の固有振動そのものが変わり、延伸フィルム53の表面に横段として残るような低周波数振動が減衰又は消滅する。代わりに、20kHzの高周波数で流延リボン51が振動し始める。 In contrast, when the casting ribbon 51 is vibrated at a high frequency of 20 kHz, for example, the following phenomenon occurs. First, as shown in FIG. 2, the casting ribbon 51 is fixed at one end by the die 11, but the other end is only fixed to the endless belt 12 and is not fixed. One side is a free end system. Therefore, when vibration of a frequency (20 kHz) different from the peak frequency (200 Hz) of the natural vibration of the casting ribbon 51 is applied to the casting ribbon 51, the state of the system changes, and the casting ribbon 51 is attached to the endless belt 12. The contact position changes, and the length L of the casting ribbon 51 between the die 11 and the endless belt 12 changes. As a result, the applied vibration (high frequency vibration of 20 kHz) is not added to the natural vibration of the casting ribbon 51 (low frequency vibration of 200 Hz), and the natural vibration of the casting ribbon 51 itself changes. Low frequency vibrations that remain as horizontal steps on the surface of the stretched film 53 are damped or extinguished. Instead, the casting ribbon 51 begins to vibrate at a high frequency of 20 kHz.
 流延リボン51が20kHzで振動した場合、流延リボン51の移動速度(ダイ11からの樹脂溶液の吐出速度)が100m/分(1666mm/秒)であるとすると、流延リボン51に生じる波のピッチは約0.08mmと短くなる。流延リボン51がこのような高周波数で振動すると、図3(B)に鎖線で例示するように、流延膜52の波の山の曲率半径が小さくなって、波を平滑化しようとする力(レベリング力)が増大し、波が平滑化され易い傾向となる。その結果、延伸フィルム53の表面に振動に起因する横段が残ることが抑制され、光学フィルムの膜厚ムラが低減される。 When the casting ribbon 51 vibrates at 20 kHz, if the moving speed of the casting ribbon 51 (the discharge speed of the resin solution from the die 11) is 100 m / min (1666 mm / sec), the wave generated in the casting ribbon 51 Is as short as about 0.08 mm. When the casting ribbon 51 vibrates at such a high frequency, as illustrated by a chain line in FIG. 3B, the radius of curvature of the wave peak of the casting film 52 becomes small, and the wave is to be smoothed. The force (leveling force) increases and the wave tends to be smoothed. As a result, it is suppressed that the horizontal stage resulting from a vibration remains on the surface of the stretched film 53, and the film thickness nonuniformity of an optical film is reduced.
 しかも、流延工程中に加振器14を稼働させて、流延リボン51の固有振動のピーク周波数よりも高い周波数の振動を流延リボン51に与えるだけなので、時間軸に関する流延リボン51の変位のデータを、例えばFFT(高速フーリエ変換:Fast Fourier Transform)等を用いて周波数解析することにより、ピーク周波数を予め測定しておき、与える振動の周波数を予め決めておくことができる。よって、フィルムの製造中に流延リボン51の固有振動のピーク周波数を常時検出したり緻密な制御を行う必要がなく、簡単かつ確実に、光学フィルムの表面の横段の発生を抑制し、光学フィルムの長手方向に周期的に変化する膜厚ムラを低減することが可能となる。 Moreover, since the vibration exciter 14 is operated during the casting process and vibrations having a frequency higher than the peak frequency of the natural vibration of the casting ribbon 51 are only given to the casting ribbon 51, the By analyzing the frequency of the displacement data using, for example, FFT (Fast Fourier Transform) or the like, the peak frequency can be measured in advance, and the frequency of vibration to be applied can be determined in advance. Therefore, it is not necessary to always detect the peak frequency of the natural vibration of the casting ribbon 51 or perform precise control during the production of the film, and it is possible to easily and reliably suppress the occurrence of horizontal steps on the surface of the optical film, It becomes possible to reduce film thickness unevenness that periodically changes in the longitudinal direction of the film.
 なお、流延リボン51に与える振動の周波数(加振器14が発生する振動の周波数)は、流延リボン51の固有振動のピーク周波数よりも高ければよく、特に限定されないが、例えば1kHzから100kHzが好ましく、2kHzから20kHzがより好ましい。周波数が1kHz以上の振動を流延リボン51に与えることによって、流延リボン51の固有振動のピーク周波数(通常700Hz程度あるいはそれ以下)よりも高い周波数の振動を確実に流延リボン51に与えることができる。一方、周波数が100kHz以下の振動を流延リボン51に与えることによって、流延リボン51の加熱を抑制し、流延リボン51の表面に皮膜が生成することを抑制できる。そのため、流延リボン51の表面に皮膜が生成すると、流延膜52の内部が乾燥し難くなるという不具合が回避される。 The frequency of vibration applied to the casting ribbon 51 (the frequency of vibration generated by the vibrator 14) is not particularly limited as long as it is higher than the peak frequency of the natural vibration of the casting ribbon 51. For example, 1 kHz to 100 kHz Is preferable, and 2 kHz to 20 kHz is more preferable. By giving the casting ribbon 51 a vibration having a frequency of 1 kHz or more, the casting ribbon 51 is reliably given a vibration having a frequency higher than the peak frequency of the natural vibration of the casting ribbon 51 (usually about 700 Hz or less). Can do. On the other hand, by applying vibration having a frequency of 100 kHz or less to the casting ribbon 51, heating of the casting ribbon 51 can be suppressed, and generation of a film on the surface of the casting ribbon 51 can be suppressed. Therefore, when a film | membrane produces | generates on the surface of the casting ribbon 51, the malfunction that the inside of the casting film 52 becomes difficult to dry is avoided.
 また、流延リボン51に与える振動の振幅(加振器14が発生する振動の振幅)は、特に限定されないが、例えば10μmから2000μmが好ましく、100μmから1000μmがより好ましい。振幅が10μm以上の振動を流延リボン51に与えることによって、波を平滑化しようとするレベリング力が十分大きくなり、与えた振動に起因する横段が残ることが抑制される。一方、振幅が2000μm以下の振動を流延リボン51に与えることによって、流延リボン51がダイ11のリップ部11aに付着することが抑制され、リップ部11aに樹脂付着が残ることが抑制される。そのため、リップ部11aに樹脂付着が残って、流延リボン51ひいては製造された光学フィルムにダイラインが発生するという不具合が回避される。 Further, the amplitude of vibration applied to the casting ribbon 51 (the amplitude of vibration generated by the vibrator 14) is not particularly limited, but is preferably 10 μm to 2000 μm, and more preferably 100 μm to 1000 μm, for example. By applying vibration having an amplitude of 10 μm or more to the casting ribbon 51, the leveling force for smoothing the wave becomes sufficiently large, and it is suppressed that the horizontal stage due to the applied vibration remains. On the other hand, by giving vibration having an amplitude of 2000 μm or less to the casting ribbon 51, the casting ribbon 51 is suppressed from adhering to the lip portion 11a of the die 11, and the resin adhesion to the lip portion 11a is suppressed from remaining. . Therefore, the problem that resin adhesion remains on the lip portion 11a and a die line is generated in the casting ribbon 51 and thus the manufactured optical film is avoided.
 また、本発明では、図2に示したように、加振器14はダイ11の側に設けられている。つまり、ダイ11を振動源としている。これにより、ダイ11を加振器14で振動させることにより、一端がダイ11に接している流延リボン51に確実に振動が与えられる。 In the present invention, as shown in FIG. 2, the vibrator 14 is provided on the die 11 side. That is, the die 11 is used as a vibration source. As a result, the die 11 is vibrated by the vibrator 14, so that the casting ribbon 51 whose one end is in contact with the die 11 is reliably vibrated.
 なお、図2に点線で示したように、加振器14を支持ロール12Bの軸芯(不図示)の両端に設けてもよい。つまり、無端ベルト12を振動源としてもよい。これによっても、支持ロール12Bを加振器14で振動させることにより、無端ベルト12が振動し、他端が無端ベルト12に接している流延リボン51に確実に振動が与えられる。 Note that, as indicated by a dotted line in FIG. 2, the vibrators 14 may be provided at both ends of the shaft core (not shown) of the support roll 12B. That is, the endless belt 12 may be a vibration source. Also by this, the endless belt 12 vibrates by vibrating the support roll 12 </ b> B with the vibrator 14, and vibration is reliably applied to the casting ribbon 51 whose other end is in contact with the endless belt 12.
 また、同じく図2に点線で示したように、流延リボン51の背面側(無端ベルト12の走行の上流側)に振動板16を配設し、この振動板16に加振器14を取り付けて、流延リボン51の周囲の空気を振動板16で振動させることにより流延リボン51に振動を与えるようにしてもよい。つまり、振動板16を振動源としている。これによっても、流延リボン51の周囲の空気を振動させることにより、流延リボン51に確実に振動が与えられる。図例では、振動板16を流延リボン51の背面側に配設したが、状況に応じて、流延リボン51の正面側(無端ベルト12の走行の下流側)に配設してもよい。また、振動板16と加振器14のセットとしてスピーカーを用いることもできる。 Similarly, as shown by a dotted line in FIG. 2, the diaphragm 16 is disposed on the back side of the casting ribbon 51 (upstream side of the endless belt 12), and the vibrator 14 is attached to the diaphragm 16. Thus, the casting ribbon 51 may be vibrated by vibrating the air around the casting ribbon 51 with the diaphragm 16. That is, the diaphragm 16 is used as a vibration source. This also vibrates the casting ribbon 51 reliably by vibrating the air around the casting ribbon 51. In the illustrated example, the diaphragm 16 is disposed on the back side of the casting ribbon 51, but may be disposed on the front side of the casting ribbon 51 (downstream of the travel of the endless belt 12) depending on the situation. . A speaker can also be used as a set of the diaphragm 16 and the vibrator 14.
 振動板16を流延リボン51の背面側に配設する場合、振動板16を負圧チャンバー(図示せず)の中に組み込んでもよい。負圧チャンバーは、無端ベルト12の走行に伴い無端ベルト12に同伴する空気(同伴風)が流延リボン51の背面に当たる衝撃を抑制するために、流延リボン51の背面側に備えられて流延リボン51の背面側に負圧を生成する装置である。 When the diaphragm 16 is disposed on the back side of the casting ribbon 51, the diaphragm 16 may be incorporated in a negative pressure chamber (not shown). The negative pressure chamber is provided on the back side of the casting ribbon 51 in order to suppress the impact of the air accompanying the endless belt 12 (entrained wind) hitting the back surface of the casting ribbon 51 as the endless belt 12 travels. It is a device that generates a negative pressure on the back side of the ribbon 51.
 流延リボン51に振動を与える手段として、ダイに加振器を配設、無端ベルトの流延リボン51の着接近傍に加振器を配設、流延リボン51の背面側に加振器を配設するが挙げられ、これらのうちの1つ又は2つ以上を組み合わせて用いることもできる。 As means for applying vibration to the casting ribbon 51, a vibration exciter is disposed on the die, a vibration exciter is disposed near the end of the casting ribbon 51 of the endless belt, and a vibration exciter is provided on the back side of the casting ribbon 51. One of these or a combination of two or more thereof can be used.
 これらのうち、ダイ11や無端ベルト12を振動源とするほうが、振動板16を振動源とするよりも、良好な結果が得られる。ダイ11や無端ベルト12を振動源とするほうが、高周波数振動が流延リボン51に効率よく伝達されるからと考えられる。 Of these, using the die 11 and the endless belt 12 as the vibration source provides better results than using the diaphragm 16 as the vibration source. It is considered that high frequency vibration is more efficiently transmitted to the casting ribbon 51 when the die 11 and the endless belt 12 are used as the vibration source.
 また、支持体が無端ベルト12の場合は、ダイ11を振動源とするほうが、無端ベルト12を振動源とするよりも、良好な結果が得られる。ダイ11を振動源とするほうが、高周波数振動が流延リボン51に効率よく伝達されるからと考えられる。逆に、支持体がドラムの場合は、ドラムを振動源とするほうが、ダイ11を振動源とするよりも、良好な結果が得られる。ドラムを振動源とするほうが、高周波数振動が流延リボン51に効率よく伝達されるからと考えられる。 In the case where the support is the endless belt 12, better results can be obtained by using the die 11 as a vibration source than using the endless belt 12 as a vibration source. This is probably because the high frequency vibration is more efficiently transmitted to the casting ribbon 51 when the die 11 is used as the vibration source. Conversely, when the support is a drum, better results can be obtained when the drum is used as the vibration source than when the die 11 is used as the vibration source. It is considered that high frequency vibration is more efficiently transmitted to the casting ribbon 51 when the drum is used as the vibration source.
 <他の実施形態>
 図4は、本発明の光学フィルムの製造方法に係る光学フィルムの製造装置(ドラム式)の概略構成図である。図5は、図4に示す製造装置(ドラム式)のダイとドラムとの間の流延リボンの周辺の拡大図である。図中、符号18はドラム支持筒を示す。この光学フィルムの製造装置1bもまた、溶液流延製膜法により光学フィルムを製造するものである。図1、図2に示す製造装置1aとの違いは無端ベルトがドラムに変わったのみで、その他は同じである。図1、図2に示す製造装置と異なる部分のみ説明する。
<Other embodiments>
FIG. 4 is a schematic configuration diagram of an optical film manufacturing apparatus (drum type) according to the optical film manufacturing method of the present invention. FIG. 5 is an enlarged view of the periphery of the casting ribbon between the die and the drum of the manufacturing apparatus (drum type) shown in FIG. In the figure, reference numeral 18 denotes a drum support cylinder. The optical film manufacturing apparatus 1b also manufactures an optical film by a solution casting film forming method. The only difference from the manufacturing apparatus 1a shown in FIGS. 1 and 2 is that the endless belt is changed to a drum, and the others are the same. Only parts different from the manufacturing apparatus shown in FIGS. 1 and 2 will be described.
 本図では、流延装置10は、支持体として、無端ベルト12に代えてドラム17を備える。ドラム17は、回動することにより、形成された流延膜52を図中の矢印方向に搬送する。ドラム17は、表面が鏡面仕上げされた金属製のドラムである。ドラム17は、流延膜52の剥離性の観点から、例えばステンレス鋼製が好ましい。他の符号は図1、図2と同義である。 In this figure, the casting apparatus 10 includes a drum 17 instead of the endless belt 12 as a support. The drum 17 rotates to convey the formed cast film 52 in the direction of the arrow in the figure. The drum 17 is a metal drum having a mirror-finished surface. The drum 17 is preferably made of, for example, stainless steel from the viewpoint of peelability of the cast film 52. Other symbols are the same as those in FIGS.
 本図に示す光学フィルムの製造装置1bでは、加振器14はドラム17の軸芯(付図示)の両端に設けられている。つまり、ドラム17を振動源としている。このため、加振器14で発生した高周波数振動が流延リボン51に効率よく伝達される。加振器14は、流延リボン51が長手方向(吐出方向)に波打つように振動を発生する。 In the optical film manufacturing apparatus 1b shown in this figure, the vibrator 14 is provided at both ends of the shaft core (illustrated) of the drum 17. That is, the drum 17 is used as a vibration source. For this reason, the high frequency vibration generated by the vibrator 14 is efficiently transmitted to the casting ribbon 51. The vibrator 14 generates vibration so that the casting ribbon 51 undulates in the longitudinal direction (discharge direction).
 <光学フィルムの製造方法>
 図1に示す構成の光学フィルムの製造装置1a、図4に示す光学フィルムの製造装置1bを用いることにより、樹脂溶液をダイ11から吐出して流延リボン51を形成し、この流延リボン51を無端ペルト12、又はドラム17に着接させて無端ペルト12、又はドラム17上に流延膜52を形成する流延工程を有する光学フィルムの製造方法であって、流延工程において、ダイ11と無端ペルト12、又はドラム17との間の流延リボン51の固有振動のピーク周波数よりも高い周波数の振動を流延リボン51に与えることが可能な光学フィルムの製造方法が実施され得る。
<Method for producing optical film>
By using the optical film manufacturing apparatus 1 a having the configuration shown in FIG. 1 and the optical film manufacturing apparatus 1 b shown in FIG. 4, the casting solution 51 is formed by discharging the resin solution from the die 11. In the endless pelt 12 or the drum 17 to form the casting film 52 on the endless pelt 12 or the drum 17. A method of manufacturing an optical film capable of giving the casting ribbon 51 a vibration having a frequency higher than the peak frequency of the natural vibration of the casting ribbon 51 between the endless pelt 12 and the drum 17 can be implemented.
 そして、そのような製造方法によって製造された光学フィルムは、表面の横段の発生が抑制され、長手方向に周期的に変化する膜厚ムラが低減されて、光学フィルムの薄膜化要求に良好に対応し得るものである。 And the optical film manufactured by such a manufacturing method suppresses the occurrence of a horizontal step on the surface, reduces the film thickness unevenness that periodically changes in the longitudinal direction, and meets the demand for thinning the optical film. It can respond.
 <光学フィルム>
 図1から図5に示される製造装置では、代表例として、セルローストリアセテート等のセルロースエステル樹脂を含む光学フィルムが製造される。
<Optical film>
In the production apparatus shown in FIGS. 1 to 5, as a representative example, an optical film containing a cellulose ester resin such as cellulose triacetate is produced.
 図1から図5に示される製造装置では、例えば溶解釜を用いて、セルロースエステル樹脂等からなる熱可塑性樹脂を、良溶媒及び貧溶媒の混合溶媒に溶解し、これに可塑剤や紫外線吸収剤等の添加剤を添加してドープを調製する。 In the production apparatus shown in FIG. 1 to FIG. 5, for example, a thermoplastic resin composed of cellulose ester resin or the like is dissolved in a mixed solvent of a good solvent and a poor solvent using a dissolution vessel, and a plasticizer or an ultraviolet absorber is added thereto. The dope is prepared by adding such additives.
 ついで、溶解釜で調整されたドープを、例えば加圧型定量ギヤポンプを通して、導管によって流延ダイ11に送液し、無限に移送する例えば回転駆動ステンレス鋼製の無端ベルト12、又はドラム17よりなる支持体上の流延位置に、流延ダイ11からドープを流延する。 Next, the dope adjusted by the melting pot is fed to the casting die 11 by a conduit through, for example, a pressurized metering gear pump, and is transported infinitely, for example, an endless belt 12 made of, for example, rotationally driven stainless steel, or a support comprising a drum 17 The dope is cast from the casting die 11 at a casting position on the body.
 ドープとして、例えばセルロースエステルを溶媒に溶解した熱可塑性樹脂溶液を用いる場合、ドープ中の固形分濃度は、15質量%から30質量%であるのが、好ましい。ドープの固形分濃度が、15質量%未満であれば、無端ベルト12、又はドラム17上で充分な乾燥ができず、剥離時にドープ膜の一部が無端ベルト12、又はドラム17上に残り、無端ベルト汚染、又はドラム汚染につながるため、好ましくない。また固形分濃度が30質量%を超えると、ドープ粘度が高くなり、ドープ調整工程でフィルター詰まりが早くなったり、無端ベルト12、又はドラム17上への流延時に圧力が高くなり、押し出せなくなるため、好ましくない。 For example, when a thermoplastic resin solution in which cellulose ester is dissolved in a solvent is used as the dope, the solid content concentration in the dope is preferably 15% by mass to 30% by mass. If the solid content concentration of the dope is less than 15% by mass, sufficient drying cannot be performed on the endless belt 12 or the drum 17, and a part of the dope film remains on the endless belt 12 or the drum 17 at the time of peeling, This is not preferable because it leads to endless belt contamination or drum contamination. When the solid content concentration exceeds 30% by mass, the dope viscosity increases, the filter clogging becomes faster in the dope adjustment process, or the pressure increases when cast onto the endless belt 12 or the drum 17 and cannot be extruded. Therefore, it is not preferable.
 本実施形態の溶液流延製膜法による光学フィルムの製造方法においては、フィルム材料として、種々の樹脂を用いることができるが、中でもセルロースエステルが好ましい。 In the method for producing an optical film by the solution casting film forming method of the present embodiment, various resins can be used as the film material, and among them, cellulose ester is preferable.
 セルロースエステルは、セルロース由来の水酸基がアシル基などで置換されたセルロースエステルである。例えば、セルロースアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートプロピオネートブチレートなどのセルロースアシレートや、脂肪族ポリエステルグラフト側鎖を有するセルロースアセテートなどが挙げられる。中でも、セルロースアセテート、セルロースアセテートプロピオネート、脂肪族ポリエステルグラフト側鎖を有するセルロースアセテートが好ましい。本発明の効果を阻害しない範囲であれば、その他の置換基が含まれていてもよい。 Cellulose ester is a cellulose ester in which a hydroxyl group derived from cellulose is substituted with an acyl group or the like. Examples thereof include cellulose acylates such as cellulose acetate, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate and cellulose acetate propionate butyrate, and cellulose acetate having an aliphatic polyester graft side chain. Among these, cellulose acetate, cellulose acetate propionate, and cellulose acetate having an aliphatic polyester graft side chain are preferable. Other substituents may be included as long as the effects of the present invention are not impaired.
 セルローストリアセテートの例としては、アセチル基の置換度が2.0以上、3.0以下であることが好ましい。置換度をこの範囲にすることで、良好な成形性が得られ、かつ所望の面内方向リタデーション(Ro)、及び厚み方向リタデーション(Rt)を得ることができるのである。アセチル基の置換度が、この範囲より低いと、位相差フィルムとしての耐湿熱性、特に湿熱下での寸法安定性に劣る場合があり、置換度が大きすぎると、必要なリタデーション特性が発現しなくなる場合がある。 As an example of cellulose triacetate, the substitution degree of acetyl group is preferably 2.0 or more and 3.0 or less. By setting the degree of substitution within this range, good moldability can be obtained, and desired in-plane direction retardation (Ro) and thickness direction retardation (Rt) can be obtained. If the substitution degree of the acetyl group is lower than this range, the heat resistance as a retardation film, particularly the dimensional stability under wet heat may be inferior, and if the substitution degree is too large, the necessary retardation characteristics will not be exhibited. There is a case.
 本発明に用いられるセルロースエステルの原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプ、ケナフなどを挙げることができる。また、それらから得られたセルロースエステルは、それぞれ任意の割合で混合使用することができる。 The cellulose used as a raw material of the cellulose ester used in the present invention is not particularly limited, and examples thereof include cotton linter, wood pulp, and kenaf. Moreover, the cellulose ester obtained from them can be mixed and used in arbitrary ratios, respectively.
 本発明に用いられる、セルロースエステルの数平均分子量は、60000から300000の範囲が、得られる光学フィルムの機械的強度が強く好ましい。さらに70000から200000が好ましい。 The number average molecular weight of the cellulose ester used in the present invention is preferably in the range of 60,000 to 300,000, and the resulting optical film is preferably strong in mechanical strength. Furthermore, 70,000 to 200,000 are preferable.
 本発明に用いられる、セルロースエステルには、種々の添加剤を配合することができる。 Various additives can be blended with the cellulose ester used in the present invention.
 本発明の光学フィルムの製造方法では、セルロースエステルと厚み方向リタデーション(Rt)を低減する添加剤とを含有するドープ組成物を用いることができる。 In the method for producing an optical film of the present invention, a dope composition containing a cellulose ester and an additive for reducing the thickness direction retardation (Rt) can be used.
 セルロースエステルフィルムをIPSモードで動作する液晶表示装置の視野角拡大に用いる場合には、厚み方向リタデーション(Rt)を低減することが重要であるが、このような厚み方向リタデーション(Rt)を低減する添加剤としては、下記のものが挙げられる。 When the cellulose ester film is used for widening the viewing angle of a liquid crystal display device operating in the IPS mode, it is important to reduce the thickness direction retardation (Rt), but such thickness direction retardation (Rt) is reduced. The following are mentioned as an additive.
 一般に、セルロースエステルフィルムのリタデーションは、セルロースエステル由来のリタデーションと、添加剤由来のリタデーションの和として現れる。従って、セルロースエステルのリタデーションを低減させるための添加剤とは、セルロースエステルの配向を乱し、かつ自身が配向しにくいおよび/または分極率異方性が小さい添加剤が厚み方向リタデーション(Rt)を効果的に低下させる化合物である。従って、セルロースエステルの配向を乱すための添加剤としては、芳香族系化合物より、脂肪族系化合物が好ましい。 Generally, retardation of a cellulose ester film appears as the sum of retardation derived from a cellulose ester and retardation derived from an additive. Therefore, an additive for reducing the retardation of the cellulose ester is an additive that disturbs the orientation of the cellulose ester and is difficult to orient itself and / or has a small polarizability anisotropy. It is a compound that effectively reduces it. Therefore, as an additive for disturbing the orientation of the cellulose ester, an aliphatic compound is preferable to an aromatic compound.
 ここで、具体的なリタデーション低減剤として、例えば、つぎの一般式(1)または(2)で表わされるポリエステルが挙げられる。 Here, specific retardation reducing agents include, for example, polyesters represented by the following general formula (1) or (2).
 一般式(1):B1-(G-A-)mG-B1
 一般式(2):B2-(G-A-)nG-B2
 上記式中、B1はモノカルボン酸成分を表わし、B2はモノアルコール成分を表わし、Gは2価のアルコール成分を表わし、Aは2塩基酸成分を表わし、これらによって合成されたことを表わす。B1、B2、G、およびAは、いずれも芳香環を含まないことが特徴である。m、nは、繰り返し数を表わす。
Formula (1): B1- (GA-) mG-B1
Formula (2): B2- (GA-) nG-B2
In the above formula, B1 represents a monocarboxylic acid component, B2 represents a monoalcohol component, G represents a divalent alcohol component, A represents a dibasic acid component, and these are synthesized. B1, B2, G, and A are all characterized by not containing an aromatic ring. m and n represent the number of repetitions.
 B1で表わされるモノカルボン酸成分としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸等を用いることができる。 The monocarboxylic acid component represented by B1 is not particularly limited, and known aliphatic monocarboxylic acids, alicyclic monocarboxylic acids, and the like can be used.
 好ましいモノカルボン酸の例としては、以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。 Examples of preferred monocarboxylic acids include the following, but the present invention is not limited thereto.
 脂肪族モノカルボン酸としては、炭素数1から32の直鎖または側鎖を持った脂肪酸を好ましく用いることができる。炭素数1から20であることがさらに好ましく、炭素数1から12であることが特に好ましい。酢酸を含有させると、セルロースエステルとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。 As the aliphatic monocarboxylic acid, a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. More preferably, it has 1 to 20 carbon atoms, and particularly preferably 1 to 12 carbon atoms. When acetic acid is contained, the compatibility with the cellulose ester is increased, and it is also preferable to use a mixture of acetic acid and another monocarboxylic acid.
 好ましいモノカルボン酸としては、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を挙げることができる。 Preferred monocarboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid, tridecylic acid , Saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid, undecinic acid, Examples thereof include unsaturated fatty acids such as oleic acid, sorbic acid, linoleic acid, linolenic acid and arachidonic acid.
 B2で表わされるモノアルコール成分としては、特に制限はなく、公知のアルコール類を用いることができる。例えば炭素数1から32の直鎖または側鎖を持った脂肪族飽和アルコールまたは脂肪族不飽和アルコールを好ましく用いることができる。炭素数1から20であることがさらに好ましく、炭素数1から12であることが特に好ましい。 The monoalcohol component represented by B2 is not particularly limited, and known alcohols can be used. For example, an aliphatic saturated alcohol or aliphatic unsaturated alcohol having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. More preferably, it has 1 to 20 carbon atoms, and particularly preferably 1 to 12 carbon atoms.
 Gで表わされる2価のアルコール成分としては、以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。例えばエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,5-ペンチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等を挙げることができるが、これらのうち、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコールが好ましく、さらに、1,3-プロピレングリコール、1,4-ブチレングリコール、1,6-ヘキサンジオール、ジエチレングリコールが好ましく用いられる。 Examples of the divalent alcohol component represented by G include the following, but the present invention is not limited thereto. For example, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,5-pentanediol, 1,6- Examples include hexanediol, 1,5-pentylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol. Among these, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1 , 2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,6-hexanediol, diethylene glycol and triethylene glycol are preferred, and 1,3-propylene glycol and 1,4-butylene glycol are also preferred. Lumpur, 1,6-hexanediol, diethylene glycol is preferably used.
 Aで表わされる2塩基酸(ジカルボン酸)成分としては、脂肪族2塩基酸、脂環式2塩基酸が好ましく、例えば脂肪族2塩基酸としては、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸等、特に、脂肪族カルボン酸としては、炭素数4から12を有するもの、これらから選ばれる少なくとも1つのものを使用する。つまり、2種以上の2塩基酸を組み合わせて使用してよい。 The dibasic acid (dicarboxylic acid) component represented by A is preferably an aliphatic dibasic acid or an alicyclic dibasic acid. Examples of the aliphatic dibasic acid include malonic acid, succinic acid, glutaric acid, and adipic acid. , Pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, etc. In particular, as aliphatic carboxylic acid, those having 4 to 12 carbon atoms, at least one selected from these are used. To do. That is, two or more dibasic acids may be used in combination.
 上記の一般式(1)または(2)における繰り返し数m、nは、1以上で170以下が好ましい。 The number of repetitions m and n in the general formula (1) or (2) is preferably 1 or more and 170 or less.
 ポリエステルの重量平均分子量は、20000以下が好ましく、10000以下であることがさらに好ましい。特に重量平均分子量が500から10000のポリエステルは、セルロースエステルとの相溶性が良好で、製膜において蒸発も揮発も起こらない。 The weight average molecular weight of the polyester is preferably 20000 or less, and more preferably 10,000 or less. In particular, a polyester having a weight average molecular weight of 500 to 10,000 has good compatibility with a cellulose ester, and neither evaporation nor volatilization occurs in film formation.
 ポリエステルの重縮合は常法によって行なわれる。例えば上記2塩基酸とグリコールの直接反応、上記の2塩基酸またはこれらのアルキルエステル類、例えば2塩基酸のメチルエステルとグリコール類とのポリエステル化反応またはエステル交換反応により熱溶融縮合法か、あるいはこれらの酸の酸クロライドとグリコールとの脱ハロゲン化水素反応のいずれかの方法により用意に合成し得るが、重量平均分子量がさほど大きくないポリエステルは直接反応によるのが、好ましい。低分子量側に分布が高くあるポリエステルは、セルロースエステルとの相溶性が非常によく、フィルム形成後、透湿度も小さく、しかも透明性に富んだセルロースエステルフィルムを得ることができる。 Polyester polycondensation is performed by conventional methods. For example, a direct reaction of the dibasic acid and glycol, a hot melt condensation method by the polyesterification reaction or transesterification reaction of the dibasic acid or alkyl esters thereof, for example, a methyl ester of dibasic acid and glycols, or Although it can be easily synthesized by any method of dehydrohalogenation reaction between acid chloride of these acids and glycol, it is preferable that polyester having a weight average molecular weight not so large is by direct reaction. Polyester having a high distribution on the low molecular weight side has a very good compatibility with the cellulose ester, and after forming the film, a moisture permeability is small, and a cellulose ester film rich in transparency can be obtained.
 分子量の調節方法は、特に制限がなく、従来の方法を使用できる。例えば、重合条件にもよるが、1価の酸または1価のアルコールで分子末端を封鎖する方法により、これらの1価のものの添加する量によりコントロールできる。この場合、1価の酸がポリマーの安定性から好ましい。例えば、酢酸、プロピオン酸、酪酸等を挙げることができるが、重縮合反応中には系外に溜去せず、停止して、このような1価の酸を反応系外に除去するときに溜去しやすいものが選ばれる。これらを混合使用しても良い。また、直接反応の場合には、反応中に溜去してくる水の量により反応を停止するタイミングを計ることよっても重量平均分子量を調節できる。その他、仕込むグリコールまたは2塩基酸のモル数を偏らせることよってもできるし、反応温度をコントロールしても調節できる。 The molecular weight adjustment method is not particularly limited, and a conventional method can be used. For example, although depending on the polymerization conditions, the amount of these monovalent compounds can be controlled by a method of blocking the molecular ends with a monovalent acid or monovalent alcohol. In this case, a monovalent acid is preferable from the viewpoint of polymer stability. For example, acetic acid, propionic acid, butyric acid, etc. can be mentioned, but during the polycondensation reaction, it is not distilled out of the system, but is stopped and such monovalent acid is removed from the reaction system. The one that is easy to accumulate is selected. These may be used in combination. In the case of direct reaction, the weight average molecular weight can also be adjusted by measuring the timing of stopping the reaction by the amount of water distilled off during the reaction. In addition, it can be adjusted by biasing the number of moles of glycol or dibasic acid to be charged, or can be adjusted by controlling the reaction temperature.
 上記一般式(1)または(2)で表わされるポリエステルは、セルロースエステルに対し、1質量%から40質量%含有することが好ましい。特に5質量%から15質量%含有することが好ましい。 The polyester represented by the general formula (1) or (2) is preferably contained in an amount of 1 to 40% by mass with respect to the cellulose ester. In particular, the content is preferably 5 to 15% by mass.
 厚み方向リタデーション(Rt)を低減する添加剤としては、さらに下記のものが挙げられる。 Examples of additives that reduce the thickness direction retardation (Rt) include the following.
 厚み方向リタデーション(Rt)を低減する添加剤としてのポリマーを合成するには、通常の重合では分子量のコントロールが難しく、分子量をあまり大きくしない方法でできるだけ分子量を揃えることのできる方法を用いることが望ましい。かかる重合方法としては、クメンペルオキシドやt-ブチルヒドロペルオキシドのような過酸化物重合開始剤を使用する方法、重合開始剤を通常の重合より多量に使用する方法、重合開始剤の他にメルカプト化合物や四塩化炭素等の連鎖移動剤を使用する方法、重合開始剤の他にベンゾキノンやジニトロベンゼンのような重合停止剤を使用する方法、さらに特開2000-128911号公報または特開2000-344823号公報にあるような一つのチオール基と2級の水酸基とを有する化合物、あるいは、該化合物と有機金属化合物を併用した重合触媒を用いて塊状重合する方法等を挙げることができ、いずれも本実施形態において好ましく用いられるが、特に、該公報に記載の方法が好ましい。 In order to synthesize a polymer as an additive for reducing the thickness direction retardation (Rt), it is difficult to control the molecular weight in normal polymerization, and it is desirable to use a method that can align the molecular weight as much as possible without increasing the molecular weight. . Examples of such a polymerization method include a method using a peroxide polymerization initiator such as cumene peroxide and t-butyl hydroperoxide, a method using a polymerization initiator in a larger amount than usual polymerization, and a mercapto compound in addition to the polymerization initiator. And a method using a chain transfer agent such as carbon tetrachloride, a method using a polymerization terminator such as benzoquinone and dinitrobenzene in addition to the polymerization initiator, and JP-A No. 2000-128911 or JP-A No. 2000-344823. Examples include a method of bulk polymerization using a compound having one thiol group and a secondary hydroxyl group as described in the publication, or a polymerization catalyst in which the compound and an organometallic compound are used in combination. Although preferably used in the form, the method described in the publication is particularly preferable.
 有用な厚み方向リタデーション(Rt)を低減する添加剤としてのポリマーを構成するモノマー単位としてのモノマーを下記に挙げるがこれに限定されない。 Although the monomer as a monomer unit which comprises the polymer as an additive which reduces useful thickness direction retardation (Rt) is mentioned below, it is not limited to this.
 エチレン性不飽和モノマーを重合して得られる厚み方向リタデーション(Rt)を低減する添加剤としてのポリマーを構成するエチレン性不飽和モノマー単位としては、まず、ビニルエステルとして、例えば、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、吉草酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、シクロヘキサンカルボン酸ビニル、オクチル酸ビニル、メタクリル酸ビニル、クロトン酸ビニル、ソルビン酸ビニル、安息香酸ビニル、桂皮酸ビニル等が挙げられる。 As the ethylenically unsaturated monomer unit constituting the polymer as an additive for reducing the thickness direction retardation (Rt) obtained by polymerizing an ethylenically unsaturated monomer, first, as a vinyl ester, for example, vinyl acetate, propionic acid, etc. Vinyl, vinyl butyrate, vinyl valerate, vinyl pivalate, vinyl caproate, vinyl caprate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, vinyl cyclohexanecarboxylate, vinyl octylate, vinyl methacrylate, Examples include vinyl crotonate, vinyl sorbate, vinyl benzoate, and vinyl cinnamate.
 つぎに、アクリル酸エステルとして、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル(i-、n-)、アクリル酸ブチル(n-、i-、s-、t-)、アクリル酸ペンチル(n-、i-、s-)、アクリル酸ヘキシル(n-、i-)、アクリル酸ヘプチル(n-、i-)、アクリル酸オクチル(n-、i-)、アクリル酸ノニル(n-、i-)、アクリル酸ミリスチル(n-、i-)、アクリル酸シクロヘキシル、アクリル酸(2-エチルヘキシル)、アクリル酸ベンジル、アクリル酸フェネチル、アクリル酸(ε-カプロラクトン)、アクリル酸(2-ヒドロキシエチル)、アクリル酸(2-ヒドロキシプロピル)、アクリル酸(3-ヒドロキシプロピル)、アクリル酸(4-ヒドロキシブチル)、アクリル酸(2-ヒドロキシブチル)、アクリル酸-p-ヒドロキシメチルフェニル、アクリル酸-p-(2-ヒドロキシエチル)フェニル等;メタクリル酸エステルとして、上記アクリル酸エステルをメタクリル酸エステルに変えたものが挙げられる。 Next, as acrylate esters, for example, methyl acrylate, ethyl acrylate, propyl acrylate (i-, n-), butyl acrylate (n-, i-, s-, t-), pentyl acrylate ( n-, i-, s-), hexyl acrylate (n-, i-), heptyl acrylate (n-, i-), octyl acrylate (n-, i-), nonyl acrylate (n-, i-), myristyl acrylate (n-, i-), cyclohexyl acrylate, acrylic acid (2-ethylhexyl), benzyl acrylate, phenethyl acrylate, acrylic acid (ε-caprolactone), acrylic acid (2-hydroxyethyl) ), Acrylic acid (2-hydroxypropyl), acrylic acid (3-hydroxypropyl), acrylic acid (4-hydroxybutyl), acrylic acid (2 Hydroxybutyl) acrylate-p-hydroxymethylphenyl,-p-acrylic acid (2-hydroxyethyl) phenyl and the like; as methacrylic acid ester, the acrylic acid ester include those changed to methacrylic acid esters.
 さらに、不飽和酸として、例えば、アクリル酸、メタクリル酸、無水マレイン酸、クロトン酸、イタコン酸等を挙げることができる。 Furthermore, examples of the unsaturated acid include acrylic acid, methacrylic acid, maleic anhydride, crotonic acid, itaconic acid and the like.
 上記モノマーで構成されるポリマーはコポリマーでもホモポリマーでもよく、ビニルエステルのホモポリマー、ビニルエステルのコポリマー、ビニルエステルとアクリル酸またはメタクリル酸エステルとのコポリマーが好ましい。 The polymer composed of the above monomers may be a copolymer or a homopolymer, and is preferably a vinyl ester homopolymer, a vinyl ester copolymer, or a copolymer of vinyl ester and acrylic acid or methacrylic acid ester.
 本発明において、アクリル系ポリマーというのは、芳香環あるいはシクロヘキシル基を有するモノマー単位を有しないアクリル酸またはメタクリル酸アルキルエステルのホモポリマーまたはコポリマーを指す。 In the present invention, the acrylic polymer refers to a homopolymer or a copolymer of acrylic acid or methacrylic acid alkyl ester having no monomer unit having an aromatic ring or a cyclohexyl group.
 芳香環及びシクロヘキシル基を有さないアクリル酸エステルモノマーとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル(i-、n-)、アクリル酸ブチル(n-、i-、s-、t-)、アクリル酸ペンチル(n-、i-、s-)、アクリル酸ヘキシル(n-、i-)、アクリル酸ヘプチル(n-、i-)、アクリル酸オクチル(n-、i-)、アクリル酸ノニル(n-、i-)、アクリル酸ミリスチル(n-、i-)、アクリル酸(2-エチルヘキシル)、アクリル酸(ε-カプロラクトン)、アクリル酸(2-ヒドロキシエチル)、アクリル酸(2-ヒドロキシプロピル)、アクリル酸(3-ヒドロキシプロピル)、アクリル酸(4-ヒドロキシブチル)、アクリル酸(2-ヒドロキシブチル)、アクリル酸(2-メトキシエチル)、アクリル酸(2-エトキシエチル)等、または上記アクリル酸エステルをメタクリル酸エステルに変えたものを挙げることができる。 Examples of the acrylate monomer having no aromatic ring and cyclohexyl group include, for example, methyl acrylate, ethyl acrylate, propyl acrylate (i-, n-), butyl acrylate (n-, i-, s-, t-), pentyl acrylate (n-, i-, s-), hexyl acrylate (n-, i-), heptyl acrylate (n-, i-), octyl acrylate (n-, i-) , Nonyl acrylate (n-, i-), myristyl acrylate (n-, i-), acrylic acid (2-ethylhexyl), acrylic acid (ε-caprolactone), acrylic acid (2-hydroxyethyl), acrylic acid (2-hydroxypropyl), acrylic acid (3-hydroxypropyl), acrylic acid (4-hydroxybutyl), acrylic acid (2-hydroxybutyl), acrylic (2-methoxyethyl), acrylic acid (2-ethoxyethyl), or the acrylic acid ester may include those obtained by changing the methacrylic acid ester.
 アクリル系ポリマーは、上記モノマーのホモポリマーまたはコポリマーであるが、アクリル酸メチルエステルモノマー単位が30質量%以上を有していることが好ましく、また、メタクリル酸メチルエステルモノマー単位が40質量%以上有することが好ましい。特にアクリル酸メチルまたはメタクリル酸メチルのホモポリマーが好ましい。 The acrylic polymer is a homopolymer or copolymer of the above-mentioned monomers, but it is preferable that the acrylic acid methyl ester monomer unit has 30% by mass or more, and the methacrylic acid methyl ester monomer unit has 40% by mass or more. It is preferable. In particular, a homopolymer of methyl acrylate or methyl methacrylate is preferred.
 上述のエチレン性不飽和モノマーを重合して得られるポリマー、アクリル系ポリマーは、いずれもセルロースエステルとの相溶性に優れ、蒸発や揮発もなく生産性に優れ、偏光板用保護フィルムとしての保留性がよく、透湿度が小さく、寸法安定性に優れている。 Polymers obtained by polymerizing the above ethylenically unsaturated monomers and acrylic polymers are both highly compatible with cellulose ester, excellent in productivity without evaporation and volatilization, and retainability as a protective film for polarizing plates The moisture permeability is small, and the dimensional stability is excellent.
 本発明において、水酸基を有するアクリル酸またはメタクリル酸エステルモノマーの場合はホモポリマーではなく、コポリマーの構成単位である。この場合、好ましくは、水酸基を有するアクリル酸またはメタクリル酸エステルモノマー単位がアクリル系ポリマー中2質量%から20質量%含有することが好ましい。 In the present invention, an acrylic acid or methacrylic acid ester monomer having a hydroxyl group is not a homopolymer but a constituent unit of a copolymer. In this case, it is preferable that the acrylic acid or methacrylic acid ester monomer unit having a hydroxyl group is contained in an acrylic polymer in an amount of 2% by mass to 20% by mass.
 本発明の光学フィルムの製造方法においては、ドープ組成物が、セルロースエステルと、厚み方向リタデーション(Rt)を低減する添加剤としての重量平均分子量500以上、3000以下のアクリル系ポリマーとを含有することが好ましい。 In the method for producing an optical film of the present invention, the dope composition contains a cellulose ester and an acrylic polymer having a weight average molecular weight of 500 or more and 3000 or less as an additive for reducing the thickness direction retardation (Rt). Is preferred.
 また、本発明の光学フィルムの製造方法においては、ドープ組成物が、セルロースエステルと、厚み方向リタデーション(Rt)を低減する添加剤としての重量平均分子量5000以上、30000以下のアクリル系ポリマーとを含有するが好ましい。 In the method for producing an optical film of the present invention, the dope composition contains a cellulose ester and an acrylic polymer having a weight average molecular weight of 5000 or more and 30000 or less as an additive for reducing the thickness direction retardation (Rt). It is preferable.
 本発明において、厚み方向リタデーション(Rt)を低減する添加剤としてのポリマーの重量平均分子量が500以上、3000以下、あるいはまたポリマーの重量平均分子量が5000以上、30000以下のものであれば、セルロースエステルとの相溶性が良好で、製膜中において蒸発も揮発も起こらない。また、製膜後のセルロースエステルフィルムの透明性が優れ、透湿度も極めて低く、偏光板用保護フィルムとして優れた性能を示す。 In the present invention, if the weight average molecular weight of the polymer as an additive for reducing the thickness direction retardation (Rt) is 500 or more and 3000 or less, or if the polymer has a weight average molecular weight of 5000 or more and 30000 or less, the cellulose ester Is compatible with the material, and neither evaporation nor volatilization occurs during film formation. Moreover, the transparency of the cellulose ester film after film formation is excellent, the moisture permeability is extremely low, and it exhibits excellent performance as a protective film for polarizing plates.
 本発明において、厚み方向リタデーション(Rt)を低減する添加剤として、側鎖に水酸基を有するポリマーも好ましく用いることができる。水酸基を有するモノマー単位としては、前記したモノマーと同様であるが、アクリル酸またはメタクリル酸エステルが好ましく、例えば、アクリル酸(2-ヒドロキシエチル)、アクリル酸(2-ヒドロキシプロピル)、アクリル酸(3-ヒドロキシプロピル)、アクリル酸(4-ヒドロキシブチル)、アクリル酸(2-ヒドロキシブチル)、アクリル酸-p-ヒドロキシメチルフェニル、アクリル酸-p-(2-ヒドロキシエチル)フェニル、またはこれらアクリル酸をメタクリル酸に置き換えたものを挙げることができ、好ましくは、アクリル酸-2-ヒドロキシエチル及びメタクリル酸-2-ヒドロキシエチルである。ポリマー中に水酸基を有するアクリル酸エステルまたはメタクリル酸エステルモノマー単位はポリマー中2質量%から20質量%含有することが好ましく、より好ましくは2質量%から10質量%である。 In the present invention, as an additive for reducing the thickness direction retardation (Rt), a polymer having a hydroxyl group in the side chain can also be preferably used. The monomer unit having a hydroxyl group is the same as the monomer described above, but acrylic acid or methacrylic acid ester is preferable. For example, acrylic acid (2-hydroxyethyl), acrylic acid (2-hydroxypropyl), acrylic acid (3 -Hydroxypropyl), acrylic acid (4-hydroxybutyl), acrylic acid (2-hydroxybutyl), acrylic acid-p-hydroxymethylphenyl, acrylic acid-p- (2-hydroxyethyl) phenyl, or these acrylic acids. Examples include those substituted with methacrylic acid, preferably 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate. The acrylic acid ester or methacrylic acid ester monomer unit having a hydroxyl group in the polymer is preferably contained in the polymer in an amount of 2% by mass to 20% by mass, more preferably 2% by mass to 10% by mass.
 前記のようなポリマーが上記の水酸基を有するモノマー単位を2質量%から20質量%含有したものは、勿論、セルロースエステルとの相溶性、保留性、寸法安定性が優れ、透湿度が小さいばかりでなく、偏光板用保護フィルムとしての偏光子との接着性に特に優れ、偏光板の耐久性が向上する効果を有している。 A polymer containing 2 to 20% by mass of the above-mentioned hydroxyl group-containing monomer unit is, of course, excellent in compatibility with cellulose ester, retention property and dimensional stability, and has low moisture permeability. In particular, it has excellent adhesiveness with a polarizer as a protective film for a polarizing plate, and has an effect of improving the durability of the polarizing plate.
 また、本発明においては、上記ポリマーの主鎖の少なくとも一方の末端に水酸基を有することが好ましい。主鎖末端に水酸基を有するようにする方法は、特に主鎖の末端に水酸基を有するようにする方法であれば限定ないが、アゾビス(2-ヒドロキシエチルブチレート)のような水酸基を有するラジカル重合開始剤を使用する方法、2-メルカプトエタノールのような水酸基を有する連鎖移動剤を使用する方法、水酸基を有する重合停止剤を使用する方法、リビングイオン重合により水酸基を末端に有するようにする方法、特開2000-128911号公報または特開2000-344823号公報にあるような一つのチオール基と2級の水酸基とを有する化合物、あるいは、該化合物と有機金属化合物を併用した重合触媒を用いて塊状重合する方法等により得ることができ、特に該公報に記載の方法が好ましい。この公報記載に関連する方法で作られたポリマーは、綜研化学社製のアクトフロー・シリーズとして市販されており、好ましく用いることができる。 In the present invention, it is preferable that at least one terminal of the main chain of the polymer has a hydroxyl group. The method of having a hydroxyl group at the end of the main chain is not particularly limited as long as it has a hydroxyl group at the end of the main chain, but radical polymerization having a hydroxyl group such as azobis (2-hydroxyethylbutyrate) is possible. A method of using an initiator, a method of using a chain transfer agent having a hydroxyl group such as 2-mercaptoethanol, a method of using a polymerization stopper having a hydroxyl group, a method of having a hydroxyl group at the terminal by living ion polymerization, Using a compound having one thiol group and a secondary hydroxyl group as described in JP-A No. 2000-128911 or JP-A No. 2000-344823, or a polymerization catalyst using the compound and an organometallic compound in combination It can be obtained by a polymerization method or the like, and the method described in the publication is particularly preferable. The polymer produced by the method related to the description in this publication is commercially available as Act Flow Series manufactured by Soken Chemical Co., Ltd., and can be preferably used.
 上記の末端に水酸基を有するポリマー及び/または側鎖に水酸基を有するポリマーは、本発明において、セルロースエステルに対するポリマーの相溶性、透明性を著しく向上する利点を有する。 The polymer having a hydroxyl group at the terminal and / or a polymer having a hydroxyl group in the side chain has an advantage of significantly improving the compatibility and transparency of the polymer with respect to the cellulose ester in the present invention.
 本発明において、有用な厚み方向リタデーション(Rt)を低減する添加剤としては、上記のほかにも、例えば特開2000-63560号公報記載のジグリセリン系多価アルコールと脂肪酸とのエステル化合物、特開2001-247717号公報記載のヘキソースの糖アルコールのエステルまたはエーテル化合物、特開2004-315613号公報記載のリン酸トリ脂肪族アルコールエステル化合物、特開2005-41911号公報記載の一般式(1)で表わされる化合物、特開2004-315605号公報記載のリン酸エステル化合物、特開2005-105139号公報記載のスチレンオリゴマー、および特開2005-105140号公報記載のスチレン系モノマーの重合体が挙げられる。 In the present invention, useful additives for reducing the thickness direction retardation (Rt) include, in addition to the above, for example, ester compounds of diglycerin polyhydric alcohols and fatty acids described in JP-A No. 2000-63560, An ester or ether compound of a hexose sugar alcohol described in JP-A-2001-247717, a trialiphatic alcohol phosphate compound described in JP-A-2004-315613, and a general formula (1) described in JP-A-2005-41911 A phosphoric acid ester compound described in JP-A-2004-315605, a styrene oligomer described in JP-A-2005-105139, and a polymer of a styrene monomer described in JP-A-2005-105140. .
 上述した厚み方向リタデーション(Rt)を低減する添加剤の含有量は、セルロースエステル系樹脂に対して5質量%から25質量%含有させることが好ましい。厚み方向リタデーション(Rt)を低減する添加剤の含有量が5質量%未満であれば、フィルムの厚み方向リタデーション(Rt)を低減する効果が発現しないので、好ましくない。また厚み方向リタデーション(Rt)を低減する添加剤の含有量が25質量%を超えると、いわゆるブリードアウトが生じるなど、フィルム中の安定性が低下するので、好ましくない。 The content of the additive for reducing the thickness direction retardation (Rt) described above is preferably 5% by mass to 25% by mass with respect to the cellulose ester resin. If the content of the additive for reducing the thickness direction retardation (Rt) is less than 5% by mass, the effect of reducing the thickness direction retardation (Rt) of the film is not manifested. On the other hand, if the content of the additive for reducing the thickness direction retardation (Rt) exceeds 25% by mass, so-called bleed-out occurs and the stability in the film decreases, which is not preferable.
 本発明の光学フィルムの製造方法において、上記セルロース誘導体に対して良好な溶解性を有する有機溶媒を良溶媒という。 In the method for producing an optical film of the present invention, an organic solvent having good solubility for the cellulose derivative is referred to as a good solvent.
 良溶媒の例としては、アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノンなどのケトン類、テトラヒドロフラン(THF)、1,4-ジオキサン、1,3-ジオキソラン、1,2-ジメトキシエタンなどのエーテル類、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸アミル、γ-ブチロラクトン等のエステル類の他、メチルセロソルブ、ジメチルイミダゾリノン、ジメチルホルムアミド、ジメチルアセトアミド、アセトニトリル、ジメチルスルフォキシド、スルホラン、ニトロエタン、塩化メチレン、アセト酢酸メチルなどが挙げられるが、1,3-ジオキソラン、THF、メチルエチルケトン、アセトン、酢酸メチル及び塩化メチレンが好ましい。 Examples of good solvents include ketones such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethers such as tetrahydrofuran (THF), 1,4-dioxane, 1,3-dioxolane, 1,2-dimethoxyethane, formic acid Esters such as methyl, ethyl formate, methyl acetate, ethyl acetate, amyl acetate, γ-butyrolactone, methyl cellosolve, dimethylimidazolinone, dimethylformamide, dimethylacetamide, acetonitrile, dimethylsulfoxide, sulfolane, nitroethane, methylene chloride And 1,3-dioxolane, THF, methyl ethyl ketone, acetone, methyl acetate and methylene chloride are preferable.
 ドープには、上記有機溶媒の他に、1質量%から40質量%の炭素原子数1から4のアルコールを含有させることが好ましい。これらは、ドープを支持体に流延した後、溶媒が蒸発し始めてアルコールの比率が多くなることで、ウェブをゲル化させ、ウェブを丈夫にして、支持体から剥離することを容易にするゲル化溶媒として用いられたり、これらの割合が少ない時は非塩素系有機溶媒のセルロース誘導体の溶解を促進したりする役割もある。 In addition to the organic solvent, the dope preferably contains 1% to 40% by weight of an alcohol having 1 to 4 carbon atoms. These are gels that, after casting the dope onto the support, the solvent begins to evaporate and the proportion of alcohol increases, making the web gel, making the web strong and easy to peel off from the support When used as a solvating solvent, or when the proportion of these is small, it also has a role of promoting the dissolution of a cellulose derivative of a non-chlorine organic solvent.
 炭素原子数1から4のアルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノール、プロピレングリコールモノメチルエーテルを挙げることができる。これらのうち、ドープの安定性に優れ、沸点も比較的低く、乾燥性も良く、かつ毒性がないことなどからエタノールが好ましい。これらの有機溶媒は、単独ではセルロース誘導体に対して溶解性を有しておらず、貧溶媒という。 Examples of the alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol, and propylene glycol monomethyl ether. Of these, ethanol is preferred because it has excellent dope stability, has a relatively low boiling point, good drying properties, and no toxicity. These organic solvents alone are not soluble in cellulose derivatives and are called poor solvents.
 このような条件を満たす好ましい高分子化合物であるセルロース誘導体を高濃度に溶解する溶剤として最も好ましい溶剤は塩化メチレン:エチルアルコールの比が95:5から80:20の混合溶剤である。あるいは、酢酸メチル:エチルアルコール60:40から95:5の混合溶媒も好ましく用いられる。 The most preferable solvent for dissolving a cellulose derivative, which is a preferable polymer compound satisfying such conditions, at a high concentration is a mixed solvent having a methylene chloride: ethyl alcohol ratio of 95: 5 to 80:20. Alternatively, a mixed solvent of methyl acetate: ethyl alcohol 60:40 to 95: 5 is also preferably used.
 本発明の光学フィルムには、光学フィルムに加工性・柔軟性・防湿性を付与する可塑剤、光学フィルムに滑り性を付与する微粒子(マット剤)、紫外線吸収機能を付与する紫外線吸収剤、光学フィルムの劣化を防止する酸化防止剤等を含有させてもよい。 The optical film of the present invention includes a plasticizer that imparts processability, flexibility, and moisture resistance to the optical film, a fine particle (matting agent) that imparts slipperiness to the optical film, an ultraviolet absorber that imparts an ultraviolet absorption function, optical You may contain the antioxidant etc. which prevent deterioration of a film.
 本発明に使用する可塑剤としては、特に限定はないが、光学フィルムにヘイズを発生させたり、光学フィルムからブリードアウトあるいは揮発しないように、セルロース誘導体や加水分解重縮合が可能な反応性金属化合物の重縮合物と、水素結合などによって相互作用可能である官能基を有していることが好ましい。 The plasticizer used in the present invention is not particularly limited, but a cellulose derivative or a reactive metal compound capable of hydrolytic polycondensation so as not to generate haze, bleed out or volatilize from the optical film. It preferably has a functional group capable of interacting with the polycondensate of the above by a hydrogen bond or the like.
 このような官能基としては、水酸基、エーテル基、カルボニル基、エステル基、カルボン酸残基、アミノ基、イミノ基、アミド基、イミド基、シアノ基、ニトロ基、スルホニル基、スルホン酸残基、ホスホニル基、ホスホン酸残基等が挙げられるが、好ましくはカルボニル基、エステル基、ホスホニル基である。 Examples of such functional groups include hydroxyl groups, ether groups, carbonyl groups, ester groups, carboxylic acid residues, amino groups, imino groups, amide groups, imide groups, cyano groups, nitro groups, sulfonyl groups, sulfonic acid residues, Examples thereof include a phosphonyl group and a phosphonic acid residue, and a carbonyl group, an ester group and a phosphonyl group are preferred.
 このような可塑剤の例として、リン酸エステル系可塑剤、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、多価アルコールエステル系可塑剤、グリコレート系可塑剤、クエン酸エステル系可塑剤、脂肪酸エステル系可塑剤、カルボン酸エステル系可塑剤、ポリエステル系可塑剤などを好ましく用いることができるが、特に好ましくは多価アルコールエステル系可塑剤、グリコレート系可塑剤、多価カルボン酸エステル系可塑剤等の非リン酸エステル系可塑剤である。 Examples of such plasticizers include phosphate ester plasticizers, phthalate ester plasticizers, trimellitic acid ester plasticizers, pyromellitic acid plasticizers, polyhydric alcohol ester plasticizers, glycolate plasticizers. Agents, citric acid ester plasticizers, fatty acid ester plasticizers, carboxylic acid ester plasticizers, polyester plasticizers, etc. can be preferably used, but polyhydric alcohol ester plasticizers, glycolate plasticizers are particularly preferred. And non-phosphate ester plasticizers such as polycarboxylic acid ester plasticizers.
 多価アルコールエステルは、2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなり、分子内に芳香環またはシクロアルキル環を有することが好ましい。 The polyhydric alcohol ester is composed of an ester of a dihydric or higher aliphatic polyhydric alcohol and a monocarboxylic acid, and preferably has an aromatic ring or a cycloalkyl ring in the molecule.
 本実施形態に用いられる多価アルコールは、つぎの一般式(3)で表される。 The polyhydric alcohol used in the present embodiment is represented by the following general formula (3).
 一般式(3):R-(OH)n
 式中、Rはn価の有機基、nは2以上の正の整数を表わす。
Formula (3): R 1- (OH) n
In the formula, R 1 represents an n-valent organic group, and n represents a positive integer of 2 or more.
 好ましい多価アルコールの例としては、例えば以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。 Examples of preferred polyhydric alcohols include the following, but the present invention is not limited to these.
 好ましい多価アルコールの例としては、アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ジブチレングリコール、1,2,4-ブタントリオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3-メチルペンタン-1,3,5-トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることができる。特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。 Examples of preferred polyhydric alcohols include adonitol, arabitol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, 1,3-propanediol, dipropylene glycol, tripropylene glycol, 1, 2-butanediol, 1,3-butanediol, 1,4-butanediol, dibutylene glycol, 1,2,4-butanetriol, 1,5-pentanediol, 1,6-hexanediol, hexanetriol, gallium Examples include lactitol, mannitol, 3-methylpentane-1,3,5-triol, pinacol, sorbitol, trimethylolpropane, trimethylolethane, and xylitol. In particular, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, sorbitol, trimethylolpropane, and xylitol are preferable.
 本発明に使用する多価アルコールエステルに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。脂環族モノカルボン酸、芳香族モノカルボン酸を用いると透湿性、保留性を向上させる点で好ましい。 The monocarboxylic acid used in the polyhydric alcohol ester used in the present invention is not particularly limited, and known aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, aromatic monocarboxylic acid and the like can be used. Use of an alicyclic monocarboxylic acid or aromatic monocarboxylic acid is preferred in terms of improving moisture permeability and retention.
 好ましいモノカルボン酸の例としては、以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。 Examples of preferred monocarboxylic acids include the following, but the present invention is not limited thereto.
 脂肪族モノカルボン酸としては、炭素数1から32の直鎖または側鎖を有する脂肪酸を好ましく用いることができる。炭素数は1から20であることがさらに好ましく、1から10であることが特に好ましい。酢酸を含有させると、セルロース誘導体との相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。 As the aliphatic monocarboxylic acid, a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. The number of carbon atoms is more preferably 1 to 20, and particularly preferably 1 to 10. When acetic acid is contained, the compatibility with the cellulose derivative is increased, and it is also preferable to use a mixture of acetic acid and another monocarboxylic acid.
 好ましい脂肪族モノカルボン酸の例としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を挙げることができる。 Examples of preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid, Tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, mellicic acid, laccellic acid, etc., undecylen Examples thereof include unsaturated fatty acids such as acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid.
 好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることができる。 Examples of preferable alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
 好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、またはそれらの誘導体を挙げることができるが、特に安息香酸が好ましい。 Examples of preferred aromatic monocarboxylic acids include those in which an alkyl group is introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, and two or more benzene rings such as biphenylcarboxylic acid, naphthalenecarboxylic acid, and tetralincarboxylic acid. Examples thereof include aromatic monocarboxylic acids and derivatives thereof, and benzoic acid is particularly preferable.
 多価アルコールエステルの分子量は、特に制限はないが、300から1500であることが好ましく、350から750であることが、さらに好ましい。分子量が大きい方が揮発し難くなるため好ましく、透湿性、セルロース誘導体との相溶性の点では、小さい方が好ましい。 The molecular weight of the polyhydric alcohol ester is not particularly limited, but is preferably 300 to 1500, and more preferably 350 to 750. A higher molecular weight is preferred because it is less likely to volatilize, and a smaller one is preferred in terms of moisture permeability and compatibility with cellulose derivatives.
 多価アルコールエステルに用いられるカルボン酸は1種類でもよいし、2種以上の混合であってもよい。また、多価アルコール中のOH基は、全てエステル化してもよいし、一部をOH基のままで残してもよい。 The carboxylic acid used in the polyhydric alcohol ester may be one kind or a mixture of two or more kinds. Moreover, all the OH groups in the polyhydric alcohol may be esterified, or a part of the OH groups may be left as they are.
 グリコレート系可塑剤は、特に限定されないが、分子内に芳香環またはシクロアルキル環を有するグリコレート系可塑剤を、好ましく用いることができる。好ましいグリコレート系可塑剤としては、例えばブチルフタリルブチルグリコレート、エチルフタリルエチルグリコレート、メチルフタリルエチルグリコレート等を用いることができる。 The glycolate plasticizer is not particularly limited, but a glycolate plasticizer having an aromatic ring or a cycloalkyl ring in the molecule can be preferably used. As preferred glycolate plasticizers, for example, butyl phthalyl butyl glycolate, ethyl phthalyl ethyl glycolate, methyl phthalyl ethyl glycolate and the like can be used.
 リン酸エステル系可塑剤では、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等、フタル酸エステル系可塑剤では、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ-2-エチルヘキシルフタレート、ジシクロヘキシルフタレート等を用いることができるが、本実施形態では、リン酸エステル系可塑剤を実質的に含有しないことが好ましい。 For phosphate plasticizers, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenylbiphenyl phosphate, trioctyl phosphate, tributyl phosphate, etc. For phthalate ester plasticizers, diethyl phthalate, dimethoxy Ethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dicyclohexyl phthalate, and the like can be used. In this embodiment, it is preferable that a phosphate ester plasticizer is not substantially contained.
 ここで、「実質的に含有しない」とは、リン酸エステル系可塑剤の含有量が1質量%未満、好ましくは0.1質量%であり、特に好ましいのは添加していないことである。 Here, “substantially does not contain” means that the content of the phosphoric ester plasticizer is less than 1% by mass, preferably 0.1% by mass, and particularly preferably not added.
 これらの可塑剤は、単独あるいは2種以上混合して用いることができる。 These plasticizers can be used alone or in combination of two or more.
 可塑剤の使用量は、1質量%から20質量%が好ましい。6質量%から16質量%がさらに好ましく、特に好ましくは8質量%から13質量%である。可塑剤の使用量が、セルロース誘導体に対して1質量%未満では、フィルムの透湿度を低減させる効果が少ないため、好ましくなく、20質量%を越えると、フィルムから可塑剤がブリードアウトし、フィルムの物性が劣化するため、好ましくない。 The amount of the plasticizer used is preferably 1% by mass to 20% by mass. 6 mass% to 16 mass% is further more preferable, and 8 mass% to 13 mass% is particularly preferable. If the amount of the plasticizer used is less than 1% by mass relative to the cellulose derivative, the effect of reducing the moisture permeability of the film is small, so this is not preferred. If it exceeds 20% by mass, the plasticizer bleeds out from the film, and the film Since the physical properties of the material deteriorate, it is not preferable.
 本発明に使用するセルロース誘導体には、滑り性を付与するために、マット剤等の微粒子を添加するのが好ましい。微粒子としては、無機化合物の微粒子または有機化合物の微粒子が挙げられる。 In order to impart slipperiness to the cellulose derivative used in the present invention, it is preferable to add fine particles such as a matting agent. Examples of the fine particles include fine particles of an inorganic compound or fine particles of an organic compound.
 無機化合物の微粒子の例としては、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化錫等の微粒子が挙げられる。この中では、ケイ素原子を含有する化合物の微粒子であることが好ましく、特に二酸化ケイ素微粒子が好ましい。二酸化ケイ素微粒子としては、例えばアエロジル株式会社製のAEROSIL 200、200V、300、R972、R972V、R974、R202、R812,R805、OX50、TT600などが挙げられる。 Examples of inorganic compound fine particles include fine particles of silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, tin oxide, and the like. Of these, fine particles of a compound containing a silicon atom are preferred, and fine silicon dioxide particles are particularly preferred. Examples of the silicon dioxide fine particles include Aerosil 200, 200V, 300, R972, R972V, R974, R202, R812, R805, OX50, and TT600 manufactured by Aerosil Co., Ltd.
 有機化合物の微粒子の例としては、アクリル樹脂、シリコーン樹脂、フッ素化合物樹脂、ウレタン樹脂等の微粒子が挙げられる。 Examples of organic compound fine particles include fine particles of acrylic resin, silicone resin, fluorine compound resin, urethane resin, and the like.
 微粒子の1次粒径は、特に限定されないが、最終的にフィルム中での平均粒径は、0.05μmから5.0μm程度が好ましい。さらに好ましくは、0.1μmから1.0μmである。 The primary particle size of the fine particles is not particularly limited, but the average particle size in the film is preferably about 0.05 μm to 5.0 μm. More preferably, it is 0.1 μm to 1.0 μm.
 微粒子の平均粒径は、セルロースエステルフィルムを電子顕微鏡や光学顕微鏡で観察した際に、フィルムの観察場所における、粒子の長軸方向の長さの平均値を指す。フィルム中で観察される粒子であれば、1次粒子であっても、1次粒子が凝集した2次粒子であってもよいが、通常観察される多くは2次粒子である。 The average particle diameter of the fine particles refers to the average value of the lengths of the particles in the major axis direction when the cellulose ester film is observed with an electron microscope or an optical microscope. As long as the particles are observed in the film, they may be primary particles or secondary particles in which the primary particles are aggregated, but most of the particles that are usually observed are secondary particles.
 測定方法の一例としては、1つのフィルムにつき、ランダムに10箇所の垂直断面写真を撮影し、各断面写真について、長軸長さが、0.05μmから5μmの範囲にある100μm中の粒子個数をカウントする。このときカウントした粒子の長軸長さの平均値を求め、10箇所の平均値を平均した値を平均粒径とする。 As an example of the measurement method, 10 vertical cross-sectional photographs are taken at random for each film, and the number of particles in 100 μm 2 whose major axis length is in the range of 0.05 μm to 5 μm for each cross-sectional photograph. Count. The average value of the major axis lengths of the particles counted at this time is obtained, and a value obtained by averaging the average values of 10 locations is defined as the average particle size.
 微粒子の場合は、1次粒径、溶媒に分散した後の粒径、フィルムに添加された粒径が変化する場合が多く、重要なのは、最終的にフィルム中で微粒子がセルロースエステルと複合し凝集して形成される粒径をコントロールすることである。 In the case of fine particles, the primary particle size, the particle size after being dispersed in a solvent, and the particle size added to the film often change, and what is important is that the fine particles are finally combined with the cellulose ester in the film to aggregate. And controlling the particle size formed.
 ここで、微粒子の平均粒径が、5μmを超えた場合は、ヘイズの劣化等が見られたり、異物として巻状態での故障を発生する原因にもなる。また、微粒子の平均粒径が、0.05μm未満の場合は、フィルムに滑り性を付与するのが難しくなる。 Here, if the average particle size of the fine particles exceeds 5 μm, haze deterioration or the like may be observed, or it may cause a failure in a wound state as a foreign matter. Moreover, when the average particle diameter of fine particles is less than 0.05 μm, it becomes difficult to impart slipperiness to the film.
 微粒子は、セルロースエステルに対して、0.04質量%から0.5質量%添加して使用される。好ましくは、0.05質量%から0.3質量%、さらに好ましくは0.05質量%から0.25質量%添加して使用される。微粒子の添加量が0.04質量%以下では、フィルム表面粗さが平滑になりすぎて、摩擦係数の上昇によりブロッキングを発生する。微粒子の添加量が0.5質量%を超えると、フィルム表面の摩擦係数が下がりすぎて、巻き取り時に巻きズレが発生したり、フィルムの透明度が低く、ヘイズが高くなるため、液晶表示装置用フィルムとしての価値を持たなくなるので、上記の範囲が必須である。 Fine particles are used by adding 0.04% by mass to 0.5% by mass with respect to the cellulose ester. Preferably, 0.05% by mass to 0.3% by mass, and more preferably 0.05% by mass to 0.25% by mass is used. When the amount of fine particles added is 0.04% by mass or less, the film surface roughness becomes too smooth, and blocking occurs due to an increase in the friction coefficient. If the amount of fine particles added exceeds 0.5% by mass, the coefficient of friction on the film surface will be too low, causing winding misalignment during winding, and the transparency of the film will be low and haze will be high. The above range is essential because it has no value as a film.
 微粒子の分散は、微粒子と溶剤を混合した組成物を高圧分散装置で処理することが好ましい。高圧分散装置とは、微粒子と溶媒を混合した組成物を、細管中に高速通過させることで、高剪断や高圧状態など特殊な条件を作りだす装置である。 For dispersion of fine particles, it is preferable to treat a composition in which fine particles and a solvent are mixed with a high-pressure dispersion apparatus. A high-pressure dispersion device is a device that creates special conditions such as high shear and high pressure by passing a composition in which fine particles and a solvent are mixed at high speed through a narrow tube.
 高圧分散装置で処理することにより、例えば、管径1μmから2000μmの細管中で装置内部の最大圧力条件が980N/cm以上であることが好ましい。さらに好ましくは、装置内部の最大圧力条件が1960N/cm以上である。またその際、最高到達速度が100m/sec以上に達するもの、伝熱速度が100kcal/hr以上に達するものが、好ましい。 It is preferable that the maximum pressure condition inside the apparatus is 980 N / cm 2 or more in a thin tube having a tube diameter of 1 μm to 2000 μm, for example, by processing with a high pressure dispersion apparatus. More preferably, the maximum pressure condition inside the apparatus is 1960 N / cm 2 or more. Further, at that time, those having a maximum reaching speed of 100 m / sec or more and those having a heat transfer speed of 100 kcal / hr or more are preferable.
 高圧分散装置としては、例えばMicrofluidics Corporation社製の超高圧ホモジナイザー(商品名、マイクロフルイダイザー)あるいはナノマイザー社製ナノマイザーが挙げられ、他にもマントンゴーリン型高圧分散装置、例えばイズミフードマシナリ製ホモゲナイザーなどが挙げられる。 Examples of the high-pressure dispersing device include an ultra-high pressure homogenizer (trade name, microfluidizer) manufactured by Microfluidics Corporation or a nanomizer manufactured by Nanomizer, and other examples include a Manton Gorin type high-pressure dispersing device such as a homogenizer manufactured by Izumi Food Machinery. Can be mentioned.
 本発明において、微粒子は、低級アルコール類を25質量%から100質量%含有する溶剤中で分散した後、セルロースエステル(セルロース誘導体)を溶剤に溶解したドープと混合し、該混合液を支持体上に流延し、乾燥して製膜することを特徴とするセルロースエステルフィルムを得る。 In the present invention, the fine particles are dispersed in a solvent containing 25% by mass to 100% by mass of a lower alcohol, and then mixed with a dope obtained by dissolving a cellulose ester (cellulose derivative) in a solvent, and the mixed solution is placed on a support. To obtain a cellulose ester film characterized by being formed by drying.
 ここで、低級アルコールの含有比率としては、好ましくは50質量%から100質量%、さらに好ましくは75質量%から100質量%である。 Here, the content ratio of the lower alcohol is preferably 50% by mass to 100% by mass, and more preferably 75% by mass to 100% by mass.
 また、低級アルコール類の例としては、好ましくはメチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール等が挙げられる。 Also, examples of lower alcohols preferably include methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol and the like.
 低級アルコール以外の溶媒としては、特に限定されないが、セルロースエステルの製膜時に用いられる溶剤を用いることが好ましい。 The solvent other than the lower alcohol is not particularly limited, but it is preferable to use a solvent used in film formation of cellulose ester.
 微粒子は、溶媒中で1質量%から30質量%の濃度で分散される。これ以上の濃度で分散すると、粘度が急激に上昇し、好ましくない。分散液中の微粒子の濃度としては、好ましく、5質量%から25質量%、さらに好ましくは、10質量%から20質量%である。 Fine particles are dispersed in a solvent at a concentration of 1% by mass to 30% by mass. Dispersing at a concentration higher than this is not preferable because the viscosity increases rapidly. The concentration of the fine particles in the dispersion is preferably 5% by mass to 25% by mass, and more preferably 10% by mass to 20% by mass.
 光学フィルムの紫外線吸収機能は、液晶の劣化防止の観点から、偏光板保護フィルム、位相差フィルム、光学補償フィルムなどの各種光学フィルムに付与されていることが好ましい。このような紫外線吸収機能は、紫外線を吸収する材料をセルロース誘導体中に含ませても良く、セルロース誘導体からなる光学フィルム上に紫外線吸収機能のある層を設けてもよい。 The ultraviolet absorbing function of the optical film is preferably imparted to various optical films such as a polarizing plate protective film, a retardation film, and an optical compensation film from the viewpoint of preventing deterioration of the liquid crystal. For such an ultraviolet absorbing function, a material that absorbs ultraviolet rays may be included in the cellulose derivative, and a layer having an ultraviolet absorbing function may be provided on the optical film made of the cellulose derivative.
 本発明で使用し得る紫外線吸収剤としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等を挙げることができるが、着色の少ないベンゾトリアゾール系化合物が好ましい。また、特開平10-182621号公報、特開平8-337574号公報に記載の紫外線吸収剤、特開平6-148430号公報に記載の高分子紫外線吸収剤も好ましく用いられる。 Examples of ultraviolet absorbers that can be used in the present invention include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, and the like. A benzotriazole-based compound with little coloring is preferred. Further, ultraviolet absorbers described in JP-A-10-182621 and JP-A-8-337574 and polymer ultraviolet absorbers described in JP-A-6-148430 are preferably used.
 紫外線吸収剤としては、偏光子や液晶の劣化防止の観点から、波長370nm以下の紫外線の吸収能に優れており、かつ液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましい。 As the ultraviolet absorber, those having excellent absorption ability of ultraviolet rays having a wavelength of 370 nm or less from the viewpoint of preventing deterioration of a polarizer or liquid crystal and those having little absorption of visible light having a wavelength of 400 nm or more from the viewpoint of liquid crystal display properties. preferable.
 本発明で使用する有用な紫外線吸収剤の具体例としては、2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-3′-(3″,4″,5″,6″-テトラヒドロフタルイミドメチル)-5′-メチルフェニル)ベンゾトリアゾール、2,2-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール、オクチル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートと2-エチルヘキシル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートの混合物等を挙げることができるが、これらに限定されない。 Specific examples of useful UV absorbers for use in the present invention include 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert. -Butylphenyl) benzotriazole, 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butyl Phenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′-(3 ″, 4 ″, 5 ″, 6 ″ -tetrahydrophthalimidomethyl) -5′-methylphenyl) benzotriazole, 2,2 -Methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol, 2- (2'-hydroxy -3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2H-benzotriazol-2-yl) -6- (straight and side chain dodecyl) -4-methylphenol, Octyl-3- [3-tert-butyl-4-hydroxy-5- (chloro-2H-benzotriazol-2-yl) phenyl] propionate and 2-ethylhexyl-3- [3-tert-butyl-4-hydroxy- Examples include, but are not limited to, a mixture of 5- (5-chloro-2H-benzotriazol-2-yl) phenyl] propionate.
 また、紫外線吸収剤の市販品として、チヌビン(TINUVIN)109、チヌビン(TINUVIN)171、チヌビン(TINUVIN)326(いずれもBASFジャパン社製)を、好ましく使用できる。 Further, as commercially available products of ultraviolet absorbers, TINUVIN 109, TINUVIN 171 and TINUVIN 326 (all manufactured by BASF Japan) can be preferably used.
 また、本実施形態において使用し得る紫外線吸収剤であるベンゾフェノン系化合物の具体例として、2,4-ジヒドロキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニルメタン)等を挙げることができるが、これらに限定されない。 In addition, specific examples of the benzophenone compounds that are UV absorbers that can be used in the present embodiment include 2,4-dihydroxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, and 2-hydroxy-4-methoxy-5. -Sulfobenzophenone, bis (2-methoxy-4-hydroxy-5-benzoylphenylmethane) and the like can be mentioned, but are not limited thereto.
 本発明では、これらの紫外線吸収剤の配合量は、セルロースエステル(セルロース誘導体)に対して、0.01質量%から10質量%の範囲が好ましく、さらに0.1質量%から5質量%が好ましい。紫外線吸収剤の使用量が少なすぎると、紫外線吸収効果が不充分の場合があり、紫外線吸収剤の多すぎると、フィルムの透明性が劣化する場合があるので、好ましくない。紫外線吸収剤は熱安定性の高いものが好ましい。 In the present invention, the blending amount of these ultraviolet absorbers is preferably in the range of 0.01% by mass to 10% by mass and more preferably in the range of 0.1% by mass to 5% by mass with respect to the cellulose ester (cellulose derivative). . If the amount of the ultraviolet absorber used is too small, the ultraviolet absorbing effect may be insufficient. If the amount of the ultraviolet absorber is too large, the transparency of the film may be deteriorated. The ultraviolet absorber is preferably one having high heat stability.
 また、本発明の光学フィルムに用いることのできる紫外線吸収剤は、特開平6-148430号公報及び特開2002-47357号公報に記載の高分子紫外線吸収剤(または紫外線吸収性ポリマー)を好ましく用いることができる。とりわけ特開平6-148430号公報に記載の一般式(1)、あるいは一般式(2)、あるいは特開2002-47357号公報に記載の一般式(3)(6)(7)で表される高分子紫外線吸収剤が、好ましく用いられる。 As the ultraviolet absorber that can be used in the optical film of the present invention, the polymeric ultraviolet absorber (or ultraviolet absorbing polymer) described in JP-A Nos. 6-148430 and 2002-47357 is preferably used. be able to. In particular, it is represented by the general formula (1) described in JP-A-6-148430, the general formula (2), or the general formulas (3), (6), and (7) described in JP-A-2002-47357. A polymer ultraviolet absorber is preferably used.
 酸化防止剤は、一般に、劣化防止剤ともいわれるが、光学フィルムとしてのセルロースエステルフィルム中に含有させるのが好ましい。すなわち、液晶画像表示装置などが高湿高温の状態に置かれた場合には、光学フィルムとしてのセルロースエステルフィルムの劣化が起こる場合がある。酸化防止剤は、例えばフィルム中の残留溶媒中のハロゲンやリン酸系可塑剤のリン酸などによりフィルムが分解するのを遅らせたり、防いだりする役割を有するので、フィルム中に含有させるのが好ましい。 The antioxidant is generally referred to as an anti-degradation agent, but is preferably contained in a cellulose ester film as an optical film. That is, when a liquid crystal image display device or the like is placed in a high humidity and high temperature state, the cellulose ester film as an optical film may be deteriorated. The antioxidant has a role of delaying or preventing the film from being decomposed by, for example, halogen in the residual solvent in the film or phosphoric acid of the phosphoric acid plasticizer, so that it is preferably contained in the film. .
 このような酸化防止剤としては、ヒンダードフェノール系の化合物が好ましく用いられ、例えば、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサンジオール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、2,2-チオ-ジエチレンビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N′-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト等を挙げることができる。特に、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕が好ましい。また例えば、N,N′-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル〕ヒドラジン等のヒドラジン系の金属不活性剤やトリス(2,4-ジ-t-ブチルフェニル)フォスファイト等のリン系加工安定剤を併用してもよい。 As such an antioxidant, a hindered phenol compound is preferably used. For example, 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di- -T-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3 -(3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino)- 1,3,5-triazine, 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], oct Decyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, N, N'-hexamethylenebis (3,5-di-t-butyl-4-hydroxy-hydrocinnamamide) 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, tris- (3,5-di-t-butyl-4-hydroxy Benzyl) -isocyanurate and the like. In particular, 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3 -(3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate] is preferred. Further, for example, hydrazine-based metal deactivators such as N, N′-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine and tris (2,4-di-t A phosphorus processing stabilizer such as -butylphenyl phosphite may be used in combination.
 これらの化合物の添加量は、セルロース誘導体に対して質量割合で1ppmから1.0質量%が好ましく、10ppmから1000ppmがさらに好ましい。 The amount of these compounds added is preferably 1 ppm to 1.0% by mass, more preferably 10 ppm to 1000 ppm, by mass ratio with respect to the cellulose derivative.
 本発明では、最終的に製造された光学フィルムとしてのセルロースエステルフィルムは、含水率としては0.1%から5%が好ましく、0.3%から4%がより好ましく、0.5%から2%であることがさらに好ましい。 In the present invention, the cellulose ester film as the finally produced optical film has a moisture content of preferably 0.1% to 5%, more preferably 0.3% to 4%, and more preferably 0.5% to 2%. % Is more preferable.
 本発明では、最終的に製造された光学フィルムとしてのセルロースエステルフィルムは、透過率が90%以上であることが望ましく、さらに好ましくは92%以上であり、さらに好ましくは93%以上である。 In the present invention, the cellulose ester film as the finally produced optical film desirably has a transmittance of 90% or more, more preferably 92% or more, and further preferably 93% or more.
 本発明が対象とする光学フィルムは、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ等の各種ディスプレイ、特に液晶ディスプレイに用いられる機能フィルムのことであり、偏光板保護フィルム、位相差フィルム、反射防止フィルム、輝度向上フィルム、視野角拡大等の光学補償フィルムを含むものである。 The optical film targeted by the present invention is a functional film used for various displays such as a liquid crystal display, a plasma display, and an organic EL display, particularly a liquid crystal display. A polarizing plate protective film, a retardation film, an antireflection film, It includes an optical compensation film such as a brightness enhancement film and a viewing angle expansion.
 本発明の光学フィルムは、上記のような物性を満たしていれば、大型の液晶表示装置や屋外用途の液晶表示装置用の偏光板用保護フィルムとして特に好ましく用いることができる。 The optical film of the present invention can be particularly preferably used as a protective film for a polarizing plate for a large liquid crystal display device or a liquid crystal display device for outdoor use as long as the above physical properties are satisfied.
 <偏光板>
 本発明の光学フィルムを偏光板用保護フィルムとして用いる場合、偏光板は一般的な方法で作製することが出来る。本発明の光学フィルムの裏面側に粘着層を設け、沃素溶液中に浸漬延伸して作製した偏光子の少なくとも一方の面に、貼り合わせることが好ましい。
<Polarizing plate>
When using the optical film of this invention as a protective film for polarizing plates, a polarizing plate can be produced by a general method. It is preferable that an adhesive layer is provided on the back side of the optical film of the present invention, and is bonded to at least one surface of a polarizer produced by immersion and stretching in an iodine solution.
 もう一方の面には本発明の光学フィルムを用いても、別の偏光板用保護フィルムを用いてもよい。例えば、市販のセルロースエステルフィルム(例えば、コニカミノルタタック KC8UX、KC4UX、KC5UX、KC8UY、KC4UY、KC12UR、KC8UCR-3、KC8UCR-4、KC8UCR-5、KC8UE、KC4UE、KC4FR-3、KC4FR-4、KC4HR-1、KC8UY-HA、KC8UX-RHA、以上コニカミノルタオプト(株)製)等が好ましく用いられる。 On the other surface, the optical film of the present invention may be used, or another protective film for polarizing plate may be used. For example, a commercially available cellulose ester film (for example, Konica Minoltack KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC8UE, KC4FR-4, KC4FR-3, KC4FR-3, KC4FR-4 -1, KC8UY-HA, KC8UX-RHA, manufactured by Konica Minolta Opto Co., Ltd.) and the like are preferably used.
 偏光板の主たる構成要素である偏光子とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。 A polarizer, which is a main component of a polarizing plate, is an element that transmits only light having a plane of polarization in a certain direction. A typical polarizing film known at present is a polyvinyl alcohol polarizing film, which is a polyvinyl alcohol. There are one in which iodine is dyed on a system film and one in which dichroic dye is dyed.
 偏光子は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。 The polarizer is formed by forming a polyvinyl alcohol aqueous solution into a film and dyeing the film by uniaxial stretching or dyeing or uniaxially stretching, and then performing a durability treatment with a boron compound.
 粘着層に用いられる粘着剤としては、粘着層の少なくとも一部分において25℃での貯蔵弾性率が1.0×10Paから1.0×10Paの範囲である粘着剤が用いられていることが好ましく、粘着剤を塗布し、貼り合わせた後に種々の化学反応により高分子量体または架橋構造を形成する硬化型粘着剤が好適に用いられる。 As an adhesive used for the adhesive layer, an adhesive having a storage elastic modulus at 25 ° C. in the range of 1.0 × 10 4 Pa to 1.0 × 10 9 Pa in at least a part of the adhesive layer is used. Preferably, a curable pressure-sensitive adhesive that forms a high molecular weight body or a crosslinked structure by various chemical reactions after the pressure-sensitive adhesive is applied and bonded is suitably used.
 具体例としては、例えば、ウレタン系粘着剤、エポキシ系粘着剤、水性高分子-イソシアネート系粘着剤、熱硬化型アクリル粘着剤等の硬化型粘着剤、湿気硬化ウレタン粘着剤、ポリエーテルメタクリレート型、エステル系メタクリレート型、酸化型ポリエーテルメタクリレート等の嫌気性粘着剤、シアノアクリレート系の瞬間粘着剤、アクリレートとペルオキシド系の2液型瞬間粘着剤等が挙げられる。 Specific examples include, for example, urethane adhesives, epoxy adhesives, aqueous polymer-isocyanate adhesives, curable adhesives such as thermosetting acrylic adhesives, moisture-curing urethane adhesives, polyether methacrylate types, Examples include anaerobic pressure-sensitive adhesives such as ester-based methacrylate type and oxidized polyether methacrylate, cyanoacrylate-based instantaneous pressure-sensitive adhesives, and acrylate-peroxide-based two-component instantaneous pressure-sensitive adhesives.
 粘着剤としては1液型であっても良いし、使用前に2液以上を混合して使用する型であっても良い。 The pressure-sensitive adhesive may be a one-component type or a type in which two or more components are mixed before use.
 また、粘着剤は有機溶媒を媒体とする溶媒系であってもよいし、水を主成分とする媒体であるエマルジョン型、コロイド分散液型、水溶液型等の水系であってもよいし、無溶媒型であってもよい。上記粘着剤液の濃度は、粘着後の膜厚、塗布方法、塗布条件等により適宜決定されれば良く、通常は0.1質量%から50質量%である。 The pressure-sensitive adhesive may be a solvent system using an organic solvent as a medium, or an aqueous system such as an emulsion type, a colloidal dispersion type, or an aqueous solution type that is a medium containing water as a main component. It may be a solvent type. The concentration of the pressure-sensitive adhesive liquid may be appropriately determined depending on the film thickness after adhesion, the coating method, the coating conditions, and the like, and is usually 0.1% by mass to 50% by mass.
 本発明の偏光板は、偏光子と、偏光子の表面上に配置された透明保護フィルムとを備え、透明保護フィルムが、本発明の光学フィルムである。偏光子とは、入射光を偏光に変えて射出する光学素子である。 The polarizing plate of the present invention includes a polarizer and a transparent protective film disposed on the surface of the polarizer, and the transparent protective film is the optical film of the present invention. A polarizer is an optical element that emits incident light by converting it into polarized light.
 偏光板としては、例えば、ポリビニルアルコール系フィルムをヨウ素溶液中に浸漬して延伸することによって作製される偏光子の少なくとも一方の表面に、完全ケン化型ポリビニルアルコール水溶液を用いて、本発明の光学フィルムを貼り合わせたものが好ましい。また、偏光子のもう一方の表面にも、本発明の光学フィルムを積層させてもよいし、別の偏光板用透明保護フィルムを積層させてもよい。この別の偏光板用透明保護フィルムとしては、例えば、市販のセルロースエステルフィルムとして、KC8UX2M、KC4UX、KC5UX、KC4UY、KC8UY、KC12UR、KC8UY-HA、KC8UX-RHA(以上、コニカミノルタオプト株式会社製)等が好ましく用いられる。あるいは、セルロースエステルフィルム以外の環状オレフィン樹脂、アクリル樹脂、ポリエステル、ポリカーボネート等の樹脂フィルムを用いてもよい。この場合は、ケン化適性が低いため、適当な接着層を介して偏光板に接着加工することが好ましい。 As the polarizing plate, for example, a completely saponified polyvinyl alcohol aqueous solution is used on at least one surface of a polarizer produced by immersing and stretching a polyvinyl alcohol film in an iodine solution. What stuck the film is preferable. Further, the optical film of the present invention may be laminated on the other surface of the polarizer, or another transparent protective film for polarizing plate may be laminated. As another transparent protective film for polarizing plate, for example, as a commercially available cellulose ester film, KC8UX2M, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC8UY-HA, KC8UX-RHA (above, manufactured by Konica Minolta Opto Co., Ltd.) Etc. are preferably used. Or you may use resin films, such as cyclic olefin resin other than a cellulose-ester film, an acrylic resin, polyester, a polycarbonate. In this case, since the saponification suitability is low, it is preferable to perform an adhesive process on the polarizing plate through an appropriate adhesive layer.
 偏光板は、上述のように、偏光子の少なくとも一方の表面側に積層する保護フィルムとして、本発明の光学フィルムを使用したものである。その際、前記光学フィルムが位相差フィルムとして働く場合、本発明の光学フィルムの遅相軸が偏光子の吸収軸に実質的に平行または直交するように配置されていることが好ましい。 As described above, the polarizing plate uses the optical film of the present invention as a protective film laminated on at least one surface side of the polarizer. In that case, when the said optical film functions as a phase difference film, it is preferable to arrange | position so that the slow axis of the optical film of this invention may be substantially parallel or orthogonal to the absorption axis of a polarizer.
 また、偏光子の具体例としては、例えば、ポリビニルアルコール系偏光フィルムが挙げられる。ポリビニルアルコール系偏光フィルムは、ポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものとがある。ポリビニルアルコール系フィルムとしては、エチレンで変性された変性ポリビニルアルコール系フィルムが好ましく用いられる。 Further, as a specific example of the polarizer, for example, a polyvinyl alcohol polarizing film can be mentioned. Polyvinyl alcohol polarizing films include those obtained by dyeing iodine on polyvinyl alcohol films and those obtained by dyeing dichroic dyes. As the polyvinyl alcohol film, a modified polyvinyl alcohol film modified with ethylene is preferably used.
 偏光子は、例えば、以下のようにして得られる。まず、ポリビニルアルコール水溶液を用いて製膜する。得られたポリビニルアルコール系フィルムを一軸延伸させた後染色するか、染色した後一軸延伸する。そして、好ましくはホウ素化合物で耐久性処理を施す。 The polarizer is obtained as follows, for example. First, a film is formed using a polyvinyl alcohol aqueous solution. The obtained polyvinyl alcohol film is uniaxially stretched and then dyed or dyed and then uniaxially stretched. And preferably, a durability treatment is performed with a boron compound.
 偏光子の膜厚は、5μmから40μmであることが好ましく、5μmから30μmであることがより好ましく、5μmから20μmであることがより好ましい。 The film thickness of the polarizer is preferably 5 μm to 40 μm, more preferably 5 μm to 30 μm, and even more preferably 5 μm to 20 μm.
 偏光子の表面上に、セルロースエステル系樹脂フィルムを張り合わせる場合、完全ケン化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせることが好ましい。また、セルロースエステル系樹脂フィルム以外の樹脂フィルムの場合は、適当な粘着層を介して偏光板に接着加工することが好ましい。 When laminating a cellulose ester resin film on the surface of a polarizer, it is preferable to bond the cellulose ester resin film with an aqueous adhesive mainly composed of completely saponified polyvinyl alcohol. Moreover, in the case of resin films other than a cellulose ester-type resin film, it is preferable to carry out the adhesive process to a polarizing plate through a suitable adhesion layer.
 上述のような偏光板は、透明保護フィルムとして、本発明の光学フィルムを用いることによって、この光学フィルムは、変形が充分に抑制されているので、例えば、液晶表示装置に適用した際に、コントラストの向上等の、液晶表示装置の高画質化を実現できる。また、偏光板の透明保護フィルムとして適用された本発明の光学フィルムは、湿度変化による寸法変化も抑制されているので、例えば、液晶表示装置に適用した際に、いわゆる、コーナーむらの発生も抑制できる。 The polarizing plate as described above uses the optical film of the present invention as a transparent protective film, so that the deformation of the optical film is sufficiently suppressed. For example, when applied to a liquid crystal display device, the contrast Improvement of image quality of the liquid crystal display device such as improvement of the above can be realized. In addition, since the optical film of the present invention applied as a transparent protective film of a polarizing plate also suppresses dimensional changes due to changes in humidity, for example, when applied to a liquid crystal display device, so-called corner unevenness is also suppressed. it can.
 このように、本発明の偏光板は、偏光子と、偏光子を挟むように偏光子の両側に配置された2枚の透明保護フィルムとを備える偏光板であって、2枚の透明保護フィルムのうちの少なくとも一方が、本発明の光学フィルムであることを特徴とする偏光板である。この偏光板は、透明保護フィルムの表面の横段の発生が抑制され、透明保護フィルムの長手方向に周期的に変化する膜厚ムラが低減されて、偏光板の薄膜化要求に良好に対応し得るものである。 Thus, the polarizing plate of the present invention is a polarizing plate comprising a polarizer and two transparent protective films disposed on both sides of the polarizer so as to sandwich the polarizer, and the two transparent protective films At least one of them is a polarizing plate characterized by being the optical film of the present invention. In this polarizing plate, the occurrence of lateral steps on the surface of the transparent protective film is suppressed, and the unevenness of the film thickness that periodically changes in the longitudinal direction of the transparent protective film is reduced. To get.
 <液晶表示装置>
 本発明の光学フィルムを液晶偏光板用保護フィルムとして貼合した偏光板を液晶表示装置に組み込むことによって、種々の視認性に優れた液晶表示装置を作製することが出来るが、特に大型の液晶表示装置やデジタルサイネージ等の屋外用途の液晶表示装置に好ましく用いられる。本実施形態に係る偏光板は、前記粘着層等を介して液晶セルに貼合する。
<Liquid crystal display device>
By incorporating a polarizing plate in which the optical film of the present invention is bonded as a protective film for a liquid crystal polarizing plate into a liquid crystal display device, various liquid crystal display devices having excellent visibility can be produced. It is preferably used for liquid crystal display devices for outdoor use such as devices and digital signage. The polarizing plate according to the present embodiment is bonded to the liquid crystal cell via the adhesive layer or the like.
 本発明の偏光板は反射型、透過型、半透過型LCDまたはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型(FFS方式も含む)等の各種駆動方式のLCDで好ましく用いられる。特に画面が30型以上、特に30型から54型の大画面の表示装置では、画面周辺部での白抜け等もなく、その効果が長期間維持される。 The polarizing plate of the present invention includes various types such as a reflective type, a transmissive type, a transflective type LCD, a TN type, an STN type, an OCB type, a HAN type, a VA type (PVA type, MVA type), and an IPS type (including an FFS type). It is preferably used in a drive type LCD. In particular, in a large-screen display device having a screen size of 30 or more, particularly 30 to 54, there is no white spot in the periphery of the screen and the effect is maintained for a long time.
 また、色ムラ、ギラツキや波打ちムラが少なく、長時間の鑑賞でも目が疲れないという効果があった。 In addition, there was little color unevenness, glare and wavy unevenness, and the eyes were not tired even after long hours of viewing.
 本発明の液晶表示装置は、液晶セルと、前記液晶セルを挟むように配置された2枚の偏光板とを備え、前記2枚の偏光板のうち少なくとも一方が、前記偏光板である。なお、液晶セルとは、一対の電極間に液晶物質が充填されたものであり、この電極に電圧を印加することで、液晶の配向状態が変化され、透過光量が制御される。このような液晶表示装置は、本発明の偏光板を用いることによって、偏光板用の透明保護フィルムとして、変形が充分に抑制されている本発明の光学フィルムが用いられているので、コントラスト等が向上された、高画質な液晶表示装置となる。また、偏光板に、湿度変化による寸法変化が抑制された本発明の光学フィルムを透明保護フィルムとして備えたものを用いているので、いわゆる、コーナーむらの発生も抑制できる。 The liquid crystal display device of the present invention includes a liquid crystal cell and two polarizing plates arranged so as to sandwich the liquid crystal cell, and at least one of the two polarizing plates is the polarizing plate. Note that the liquid crystal cell is a cell in which a liquid crystal substance is filled between a pair of electrodes, and by applying a voltage to the electrodes, the alignment state of the liquid crystal is changed and the amount of transmitted light is controlled. In such a liquid crystal display device, since the optical film of the present invention in which deformation is sufficiently suppressed is used as the transparent protective film for the polarizing plate by using the polarizing plate of the present invention, the contrast and the like are high. An improved high-quality liquid crystal display device is obtained. Moreover, since what used the optical film of this invention by which the dimensional change by the humidity change was suppressed was used for the polarizing plate as a transparent protective film, generation | occurrence | production of what is called a corner nonuniformity can also be suppressed.
 このように、本発明の液晶表示装置は、液晶セルと、前記液晶セルを挟むように液晶セルの両側に配置された2枚の偏光板とを備える液晶表示装置であって、前記2枚の偏光板のうちの少なくとも一方が、本発明の偏光板であることを特徴とする液晶表示装置である。この液晶表示装置は、偏光板における透明保護フィルムの表面の横段の発生が抑制され、透明保護フィルムの長手方向に周期的に変化する膜厚ムラが低減されて、液晶表示装置の薄型化に良好に対応し得るものである。 As described above, the liquid crystal display device of the present invention is a liquid crystal display device including a liquid crystal cell and two polarizing plates arranged on both sides of the liquid crystal cell so as to sandwich the liquid crystal cell. In the liquid crystal display device, at least one of the polarizing plates is the polarizing plate of the present invention. In this liquid crystal display device, the occurrence of horizontal steps on the surface of the transparent protective film in the polarizing plate is suppressed, and the film thickness unevenness that periodically changes in the longitudinal direction of the transparent protective film is reduced, thereby making the liquid crystal display device thinner. It can respond well.
 以下、実施例を通して、本発明をさらに詳しく説明するが、本発明はこの実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail through examples, but the present invention is not limited to these examples.
 <光学フィルムの製造試験>
 [ドープの調製]
 下記の素材を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解、濾過し、ドープを調製した。なお、二酸化珪素微粒子(アエロジルR972V)は、エタノールに分散した後、添加した。
<Optical film production test>
[Preparation of dope]
The following materials were put into a closed container, heated, stirred and completely dissolved and filtered to prepare a dope. Silicon dioxide fine particles (Aerosil R972V) were added after being dispersed in ethanol.
 [ドープ組成]
 セルローストリアセテート(アセチル置換度2.88) 100質量部
 トリフェニルホスフェート                8質量部
 ビフェニルジフェニルホスフェート(液体の可塑剤)    4質量部
 5-クロロ-2-(3,5-ジ-sec-ブチル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール(液体紫外線吸収剤)    1質量部
 メチレンクロライド                 418質量部
 エタノール                      23質量部
 二酸化珪素微粒子(アエロジルR972V)      0.1質量部
 そして、上記のドープを用いて、以下のようにして、光学フィルム(セルローストリアセテートフィルム)を作製した。
[Dope composition]
Cellulose triacetate (acetyl substitution degree 2.88) 100 parts by weight Triphenyl phosphate 8 parts by weight Biphenyl diphenyl phosphate (liquid plasticizer) 4 parts by weight 5-chloro-2- (3,5-di-sec-butyl-2- Hydroxyphenyl) -2H-benzotriazole (liquid UV absorber) 1 part by weight Methylene chloride 418 parts by weight Ethanol 23 parts by weight Silicon dioxide fine particles (Aerosil R972V) 0.1 part by weight And, using the above dope, Thus, an optical film (cellulose triacetate film) was produced.
 [試験1]
 上記調製したドープを、図1に示したベルト式の光学フィルムの製造装置1に類似の装置を用いて、22℃、2m幅でステンレス鋼製の無端ベルト上に均一に流延した。無端ベルト上で、流延膜の残留溶媒率が60質量%になるまで溶媒を蒸発させ、剥離張力100N/mで流延膜を無端ベルトから剥離した。
[Test 1]
The prepared dope was cast uniformly on an endless belt made of stainless steel at 22 ° C. and a width of 2 m using an apparatus similar to the belt-type optical film manufacturing apparatus 1 shown in FIG. On the endless belt, the solvent was evaporated until the residual solvent ratio of the cast film reached 60% by mass, and the cast film was peeled from the endless belt with a peel tension of 100 N / m.
 ここで、加振器として、日本アレックス株式会社製の小型振動子ユニットを用い、これをダイの吐出口の近傍に取り付けた。そして、ダイからドープを吐出して流延リボンを形成し、この流延リボンを無端ベルトに着接させて無端ベルト上に流延膜を形成する流延工程中、加振器を稼働した。表1に示すように、加振器が発生する振動の周波数を1kHzに設定し、加振器が発生する振動の振幅を5μmに設定した。流延リボンの移動速度(ダイからのドープの吐出速度)は100m/分(1666mm/秒)とした(流延リボンに生じる波のピッチ:1.666mm)。ダイの吐出口と無端ベルトの表面との間の距離は8mmに調整した。流延リボンの固有振動のピーク周波数を予め測定したところ、200Hzであった。流延リボンの固有振動は振幅は6μmであった。 Here, a small vibrator unit manufactured by Nippon Alex Co., Ltd. was used as the vibrator, and this was attached in the vicinity of the discharge port of the die. Then, the dope was discharged from the die to form a casting ribbon, and the vibrator was operated during the casting process in which the casting ribbon was attached to the endless belt to form a casting film on the endless belt. As shown in Table 1, the frequency of vibration generated by the vibrator was set to 1 kHz, and the amplitude of vibration generated by the vibrator was set to 5 μm. The moving speed of the casting ribbon (discharge speed of the dope from the die) was set to 100 m / min (1666 mm / sec) (the pitch of waves generated on the casting ribbon: 1.666 mm). The distance between the die outlet and the surface of the endless belt was adjusted to 8 mm. When the peak frequency of the natural vibration of the casting ribbon was measured in advance, it was 200 Hz. The natural vibration of the casting ribbon had an amplitude of 6 μm.
 流延リボンの固有振動はダイの吐出口の幅方向両端部の近傍に2台のカメラを配設し、2台のカメラで別々に流延リボンを連続的に撮影し、得られた画像データーから流延リボンの振幅を検出し、得られた2つの振幅の平均値から求めた値を示す。又、固有振動のピーク周波数は固有振動を求める時に得られたデーターをFFTで周波数解析することで求めた値を示す。 As for the natural vibration of the casting ribbon, two cameras are installed in the vicinity of the widthwise ends of the discharge port of the die, and the image data obtained by continuously shooting the casting ribbon separately with the two cameras. The value obtained from the average value of the two obtained amplitudes is shown. The peak frequency of the natural vibration indicates a value obtained by performing frequency analysis on the data obtained when obtaining the natural vibration by FFT.
 剥離した未延伸フィルムをクリップテンターを用いて長手方向(MD方向)に1.1倍(延伸率:10%)、幅方向(TD方向)に1.2倍(延伸率:20%)に延伸しながら、70℃で、10秒間、乾燥させた。 The peeled unstretched film is stretched 1.1 times (stretching ratio: 10%) in the longitudinal direction (MD direction) and 1.2 times (stretching ratio: 20%) in the width direction (TD direction) using a clip tenter. However, it was dried at 70 ° C. for 10 seconds.
 延伸後、130℃で5分間緩和を行った後、120℃、140℃の熱処理装置を複数のローラで搬送させながら乾燥を終了させ、1.5m幅にスリットし、延伸フィルム両端に幅10mm高さ5μmのナーリング加工を施し、初期張力220N/m、終張力110N/mで内径15.24cmのコアに巻取ることで、例えば、液晶偏光板用保護フィルム等として用いられ得る光学フィルム(セルローストリアセテートフィルム)のロールを得た。 After stretching, relaxation was performed at 130 ° C. for 5 minutes, and then drying was completed while conveying a heat treatment apparatus at 120 ° C. and 140 ° C. with a plurality of rollers, slitting to 1.5 m width, and 10 mm width at both ends of the stretched film. An optical film (cellulose triacetate) that can be used as, for example, a protective film for a liquid crystal polarizing plate, is subjected to a knurling process of 5 μm and wound on a core having an initial tension of 220 N / m and a final tension of 110 N / m and an inner diameter of 15.24 cm. Film) was obtained.
 製造された光学フィルムの残留溶媒率は0.01%であり、膜厚は40μm、巻長は4000mであった。 The manufactured optical film had a residual solvent ratio of 0.01%, a film thickness of 40 μm, and a winding length of 4000 m.
 [試験2から8]
 加振器が発生する振動の振幅を表1に示す値に変更した他は、試験1と同様にして光学フィルムを製造した。
[Tests 2 to 8]
An optical film was produced in the same manner as in Test 1 except that the amplitude of vibration generated by the vibrator was changed to the values shown in Table 1.
 [試験9から16]
 表1に示すように、加振器を無端ベルト側(ベルト支持板)に取り付けた他は、試験1から8と同様にして光学フィルムを製造した。
[Tests 9 to 16]
As shown in Table 1, an optical film was produced in the same manner as in Tests 1 to 8, except that the vibrator was attached to the endless belt side (belt support plate).
 [試験17から24]
 表1に示すように、加振器を流延リボンの背面側に配設した振動板に取り付けた他は、試験1から8と同様にして光学フィルムを製造した。
[Tests 17 to 24]
As shown in Table 1, optical films were produced in the same manner as in Tests 1 to 8, except that the vibrator was attached to the diaphragm disposed on the back side of the casting ribbon.
 [試験25]
 表1に示すように、流延工程中、加振器で流延リボンに振動を与えなかった他は、試験1と同様にして光学フィルムを製造した。
[Test 25]
As shown in Table 1, an optical film was produced in the same manner as in Test 1 except that the casting ribbon was not vibrated with a vibrator during the casting process.
 [試験26から32]
 加振器が発生する振動の周波数及び加振器が発生する振動の振幅を表2に示す値に変更した他は、試験1と同様にして光学フィルムを製造した。なお、試験27は試験2に同じである。
[Tests 26 to 32]
An optical film was produced in the same manner as in Test 1 except that the frequency of vibration generated by the vibrator and the amplitude of vibration generated by the vibrator were changed to the values shown in Table 2. Test 27 is the same as test 2.
 [試験33から39]
 表2に示すように、加振器を無端ベルト側(ベルト支持板)に取り付けた他は、試験26から32と同様にして光学フィルムを製造した。なお、試験34は試験10に同じである。
[Tests 33 to 39]
As shown in Table 2, an optical film was produced in the same manner as in Tests 26 to 32 except that the vibrator was attached to the endless belt side (belt support plate). Test 34 is the same as test 10.
 [試験40から46]
 表2に示すように、加振器を流延リボンの背面側に配設した振動板に取り付けた他は、試験26から32と同様にして光学フィルムを製造した。なお、試験41は試験18に同じである。
[Tests 40 to 46]
As shown in Table 2, an optical film was produced in the same manner as in Tests 26 to 32 except that the vibrator was attached to the diaphragm disposed on the back side of the casting ribbon. The test 41 is the same as the test 18.
 [試験51から58]
 図4に示したドラム式の光学フィルムの製造装置1に類似の装置を用いた他は、表3に示すように、試験1から8と同様にして光学フィルムを製造した。流延リボンの固有振動のピーク周波数を予め測定したところ、500HZであった。
[Tests 51 to 58]
As shown in Table 3, an optical film was produced in the same manner as in Tests 1 to 8, except that an apparatus similar to the drum-type optical film production apparatus 1 shown in FIG. 4 was used. When the peak frequency of the natural vibration of the casting ribbon was measured in advance, it was 500 Hz.
 [試験59から66]
 表3に示すように、加振器をドラム側(ドラム支持筒)に取り付けた他は、試験51から58と同様にして光学フィルムを製造した。
[Tests 59 to 66]
As shown in Table 3, optical films were produced in the same manner as in Tests 51 to 58 except that the vibrator was attached to the drum side (drum support cylinder).
 [試験67から74]
 表3に示すように、加振器を流延リボンの背面側に配設した振動板に取り付けた他は、試験51から58と同様にして光学フィルムを製造した。
[Tests 67 to 74]
As shown in Table 3, an optical film was produced in the same manner as in Tests 51 to 58 except that the vibrator was attached to the diaphragm disposed on the back side of the casting ribbon.
 [試験75]
 表3に示すように、流延工程中、加振器で流延リボンに振動を与えなかった他は、試験51と同様にして光学フィルムを製造した。
[Test 75]
As shown in Table 3, an optical film was produced in the same manner as in Test 51 except that the casting ribbon was not vibrated with a vibrator during the casting process.
 [試験76から82]
 加振器が発生する振動の周波数及び加振器が発生する振動の振幅を表4に示す値に変更した他は、試験51と同様にして光学フィルムを製造した。なお、試験77は試験52に同じである。
[Tests 76 to 82]
An optical film was produced in the same manner as in Test 51 except that the frequency of vibration generated by the vibrator and the amplitude of vibration generated by the vibrator were changed to the values shown in Table 4. Test 77 is the same as test 52.
 [試験83から89]
 表4に示すように、加振器をドラム側(ドラム支持筒)に取り付けた他は、試験76から82と同様にして光学フィルムを製造した。なお、試験84は試験60に同じである。
[Tests 83 to 89]
As shown in Table 4, optical films were produced in the same manner as in Tests 76 to 82 except that the vibrator was attached to the drum side (drum support cylinder). The test 84 is the same as the test 60.
 [試験90から96]
 表4に示すように、加振器を流延リボンの背面側に配設した振動板に取り付けた他は、試験76から82と同様にして光学フィルムを製造した。なお、試験91は試験68に同じである。
[Tests 90 to 96]
As shown in Table 4, an optical film was produced in the same manner as in Tests 76 to 82 except that the vibrator was attached to the diaphragm disposed on the back side of the casting ribbon. Test 91 is the same as test 68.
 <評価方法>
 各試験1から46,51から96で製造された光学フィルムについて次の評価を実施した。結果を表1から表4に示す。
<Evaluation method>
The following evaluation was implemented about the optical film manufactured by each test 1-46 and 51-96. The results are shown in Tables 1 to 4.
 [主評価:横段ムラ]
 製造された光学フィルムの厚みを膜厚計(東京精密株式会社製の膜厚測定器DH-150)で測定し、「横段ムラ(%)=(厚みムラの凹凸の最大値と最小値との差/平均膜厚)×100」の値を求め、下記基準で評価した。すなわち、横段ムラ(%)は、光学フィルムの厚みムラの凹凸の最大値と最小値との差を光学フィルムの平均膜厚で割った値である。光学フィルムの厚みを長さ方向に連続測定し、そのチャートから周期的な厚みムラのピッチと厚みムラの最大値、最小値及び平均値(平均膜厚)を読み取った。
[Main evaluation: Horizontal unevenness]
The thickness of the manufactured optical film was measured with a film thickness meter (film thickness measuring instrument DH-150, manufactured by Tokyo Seimitsu Co., Ltd.), and “horizontal unevenness (%) = (maximum value and minimum value of unevenness of thickness unevenness and Of difference / average film thickness) × 100 ”was evaluated and evaluated according to the following criteria. That is, the horizontal unevenness (%) is a value obtained by dividing the difference between the maximum value and the minimum value of the unevenness of the thickness unevenness of the optical film by the average film thickness of the optical film. The thickness of the optical film was continuously measured in the length direction, and the pitch of periodic thickness unevenness and the maximum value, minimum value, and average value (average film thickness) of thickness unevenness were read from the chart.
 ◎:0.4%未満
 ○:0.4%以上0.6%未満
 △:0.6%以上0.8%未満
 ×:0.8%以上
 試験1から24,51から74で製造された光学フィルムについて次の評価を実施した。結果を表1、表3に示す。
◎: Less than 0.4% ○: 0.4% or more and less than 0.6% △: 0.6% or more and less than 0.8% ×: 0.8% or more Manufactured in tests 1 to 24, 51 to 74 The following evaluation was implemented about the optical film. The results are shown in Tables 1 and 3.
 [副評価:樹脂付着]
 フィルム製造後にダイのリップ部を目視で観察し、リップ部に流延リボンが付着して樹脂付着が残っているか否かを下記基準で評価した。
[Sub-evaluation: Resin adhesion]
The lip part of the die was visually observed after film production, and whether or not the casting ribbon adhered to the lip part and the resin adhesion remained was evaluated according to the following criteria.
 ○:樹脂付着が目視で確認できなかった
 ×:樹脂付着が目視で確認できた
 試験27から32,34から39,41から46,77から82,84から89,91から96で製造された光学フィルムについて次の評価を実施した。結果を表2、表4に示す。
○: Resin adhesion could not be confirmed visually ×: Resin adhesion could be confirmed visually Test 27 to 32, 34 to 39, 41 to 46, 77 to 82, 84 to 89, 91 to 96 The following evaluation was performed on the film. The results are shown in Tables 2 and 4.
 [副評価:皮膜生成]
 フィルム製造中に流延リボンをカメラで撮像し、流延リボンの表面に皮膜が生成しているか否かを下記基準で評価した。
[Sub-evaluation: film formation]
The cast ribbon was imaged with a camera during film production, and whether or not a film was formed on the surface of the cast ribbon was evaluated according to the following criteria.
 ○:流延リボンの表面に皮膜が生成していなかった
 △:流延リボンの表面に皮膜生成の予兆が見える
 ×:流延リボンの表面に皮膜が生成していた
○: A film was not formed on the surface of the casting ribbon. △: A sign of film formation was seen on the surface of the casting ribbon. X: A film was formed on the surface of the casting ribbon.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 <結果考察>
 [表1]
 表1から明らかなように、支持体として無端ベルトを用い、流延工程において、ダイと無端ベルトとの間の流延リボンの固有振動のピーク周波数200Hzよりも高い周波数1kHzの振動を流延リボンに与えて製造した試験1から24の光学フィルムは、主評価である横段ムラが0.8%未満と優れていた。
<Consideration of results>
[Table 1]
As is apparent from Table 1, an endless belt is used as a support, and in the casting process, a vibration having a frequency of 1 kHz higher than the peak frequency 200 Hz of the natural vibration of the casting ribbon between the die and the endless belt is cast. The optical films of Tests 1 to 24 produced by the above were excellent in the horizontal unevenness as the main evaluation of less than 0.8%.
 これに対し、流延工程において、流延リボンに振動を与えずに製造した試験25の光学フィルムは、主評価である横段ムラが0.8%以上と劣っていた。 On the other hand, in the casting process, the optical film of Test 25 manufactured without giving vibration to the casting ribbon was inferior in the horizontal unevenness of 0.8% or more, which is the main evaluation.
 また、ダイを振動源とした試験1から8のうち、流延リボンに与えた振動の振幅が10μmから2000μmであった試験2から7は、横段ムラが0.6%未満とより優れていた。さらに、流延リボンに与えた振動の振幅が100μm、1000μmであった試験4、5は、横段ムラが0.4%未満とさらに優れていた。 Of Tests 1 to 8 using a die as a vibration source, Tests 2 to 7 in which the amplitude of vibration applied to the casting ribbon was 10 μm to 2000 μm were more excellent with a horizontal step unevenness of less than 0.6%. It was. Furthermore, in Tests 4 and 5 in which the amplitude of vibration applied to the casting ribbon was 100 μm and 1000 μm, the horizontal unevenness was less than 0.4%, which was further excellent.
 一方、無端ベルトを振動源とした試験9から16のうち、流延リボンに与えた振動の振幅が50μmから1500μmであった試験11から14は、横段ムラが0.6%未満とより優れていた。さらに、流延リボンに与えた振動の振幅が100μm、1000μmであった試験12、13は、横段ムラが0.4%未満とさらに優れていた。 On the other hand, among tests 9 to 16 using an endless belt as a vibration source, tests 11 to 14 in which the amplitude of the vibration applied to the casting ribbon was 50 μm to 1500 μm were more excellent with a horizontal unevenness of less than 0.6%. It was. Furthermore, in Tests 12 and 13, in which the amplitude of vibration applied to the casting ribbon was 100 μm and 1000 μm, the lateral unevenness was further excellent at less than 0.4%.
 さらに、振動板を振動源とした試験17から24のうち、流延リボンに与えた振動の振幅が100μm、1000μmであた試験20、21は、横段ムラが0.6%未満とより優れていた。 Furthermore, among tests 17 to 24 using the diaphragm as a vibration source, tests 20 and 21 in which the amplitude of vibration applied to the casting ribbon was 100 μm and 1000 μm were more excellent with a horizontal unevenness of less than 0.6%. It was.
 支持体として無端ベルトを用いた場合、総じて、ダイを振動源とした試験1から8及び無端ベルトを振動源とした試験9から16は、振動板を振動源とした試験17から24よりも、主評価の結果が良好であった。また、総じて、ダイを振動源とした試験1から8は、無端ベルトを振動源とした試験9から16よりも、主評価の結果が良好であった。 When an endless belt is used as a support, generally, tests 1 to 8 using a die as a vibration source and tests 9 to 16 using an endless belt as a vibration source are more than tests 17 to 24 using a diaphragm as a vibration source. The main evaluation result was good. In general, tests 1 to 8 using a die as a vibration source performed better than the tests 9 to 16 using an endless belt as a vibration source.
 さらに、流延リボンに与えた振動の振幅が2000μm以下であった試験1から7、9から15、17から23は、副評価である樹脂付着が確認できず優れていた。これに対し、流延リボンに与えた振動の振幅が2500μmであった試験8、16、24は、副評価である樹脂付着が確認でき劣っていた。 Furthermore, Tests 1 to 7, 9 to 15, and 17 to 23 in which the amplitude of vibration applied to the casting ribbon was 2000 μm or less were excellent because the resin adhesion, which is a sub-evaluation, could not be confirmed. On the other hand, Tests 8, 16, and 24, in which the amplitude of vibration applied to the casting ribbon was 2500 μm, were inferior because the resin adhesion as a sub-evaluation could be confirmed.
 [表2]
 表2から明らかなように、支持体として無端ベルトを用い、流延工程において、ダイと無端ベルトとの間の流延リボンの固有振動のピーク周波数200Hzよりも高い周波数1kHzから150kHzの振動を流延リボンに与えて製造した試験27から32、34から39、41から46の光学フィルムは、主評価である横段ムラが0.8%未満と優れていた。
[Table 2]
As is apparent from Table 2, an endless belt is used as the support, and in the casting process, a vibration having a frequency of 1 kHz to 150 kHz higher than the peak frequency 200 Hz of the natural vibration of the casting ribbon between the die and the endless belt is passed. The optical films of Tests 27 to 32, 34 to 39, and 41 to 46, which were produced by giving to the ribbon, were excellent with the horizontal unevenness as the main evaluation being less than 0.8%.
 これに対し、支持体として無端ベルトを用い、流延工程において、ダイと無端ベルトとの間の流延リボンの固有振動のピーク周波数200Hzよりも低い周波数0.1kHzの振動を流延リボンに与えて製造した試験26、33、40の光学フィルムは、主評価である横段ムラが0.8%以上と劣っていた。 On the other hand, an endless belt is used as a support, and in the casting process, a vibration having a frequency of 0.1 kHz lower than the peak frequency 200 Hz of the natural vibration of the casting ribbon between the die and the endless belt is given to the casting ribbon. In the optical films of Tests 26, 33, and 40 manufactured in this manner, the horizontal unevenness as the main evaluation was inferior to 0.8% or more.
 また、ダイを振動源とした場合は、流延リボンに与えた振動の周波数が2kHz、20kHzであった試験28、29は、横段ムラの結果がさらに優れていた。無端ベルトを振動源とした場合は、流延リボンに与えた振動の周波数が2kHzから100kHzであった試験35から38は、横段ムラの結果がより優れていた。さらに、流延リボンに与えた振動の周波数が2kHz、20kHzであった試験35、36は、横段ムラの結果がさらに優れていた。振動板を振動源とした場合は、流延リボンに与えた振動の周波数が2kHz、20kHzであった試験42、43は、横段ムラの結果がさらに優れていた。 Further, when the die was used as the vibration source, tests 28 and 29 in which the frequency of vibration applied to the casting ribbon was 2 kHz and 20 kHz were more excellent in the result of horizontal unevenness. When an endless belt was used as the vibration source, tests 35 to 38 in which the frequency of vibration applied to the casting ribbon was 2 kHz to 100 kHz had a more excellent result of lateral unevenness. Furthermore, in the tests 35 and 36 in which the frequency of vibration applied to the casting ribbon was 2 kHz and 20 kHz, the result of the horizontal unevenness was further excellent. When the vibration plate was used as the vibration source, the tests 42 and 43 in which the frequency of vibration applied to the casting ribbon was 2 kHz and 20 kHz were more excellent in the result of horizontal unevenness.
 支持体として無端ベルトを用いた場合、総じて、ダイを振動源とした試験27から32及び無端ベルトを振動源とした試験34から39は、振動板を振動源とした試験41から46よりも、主評価の結果が良好であった。また、総じて、ダイを振動源とした試験27から32は、無端ベルトを振動源とした試験34から39よりも、主評価の結果が良好であった。 When an endless belt is used as a support, generally, tests 27 to 32 using a die as a vibration source and tests 34 to 39 using an endless belt as a vibration source are more than tests 41 to 46 using a diaphragm as a vibration source. The main evaluation result was good. In general, tests 27 to 32 using a die as a vibration source gave better main evaluation results than tests 34 to 39 using an endless belt as a vibration source.
 さらに、流延リボンに与えた振動の周波数が100kHz以下であった試験27から31、34から38、41から45は、副評価である皮膜生成がなく優れていた。これに対し、流延リボンに与えた振動の周波数が150kHzであった試験32、39、46は、副評価である皮膜生成があり劣っていた。 Furthermore, Tests 27 to 31, 34 to 38, and 41 to 45, in which the frequency of vibration applied to the casting ribbon was 100 kHz or less, were excellent with no film formation as a secondary evaluation. On the other hand, Tests 32, 39, and 46, in which the frequency of vibration applied to the casting ribbon was 150 kHz, were inferior due to the formation of a film as a sub-evaluation.
 [表3]
 表3から明らかなように、支持体としてドラムを用い、流延工程において、ダイとドラムとの間の流延リボンの固有振動のピーク周波数500Hzよりも高い周波数1kHzの振動を流延リボンに与えて製造した試験51から74の光学フィルムは、主評価である横段ムラが0.8%未満と優れていた。
[Table 3]
As is apparent from Table 3, a drum is used as the support, and in the casting process, the casting ribbon is given a vibration having a frequency of 1 kHz, which is higher than the peak frequency 500 Hz of the natural vibration of the casting ribbon between the die and the drum. The optical films of Tests 51 to 74 manufactured as described above were excellent with the horizontal unevenness as the main evaluation being less than 0.8%.
 これに対し、流延工程において、流延リボンに振動を与えずに製造した試験75の光学フィルムは、主評価である横段ムラが0.8%以上と劣っていた。 On the other hand, in the casting process, the optical film of Test 75 manufactured without giving vibration to the casting ribbon was inferior to 0.8% or more in the horizontal unevenness as the main evaluation.
 また、ダイを振動源とした試験51から58のうち、流延リボンに与えた振動の振幅が50μmから1500μmであった試験53から56は、横段ムラが0.6%未満とより優れていた。さらに、流延リボンに与えた振動の振幅が100μm、1000μmであった試験54、55は、横段ムラが0.4%未満とさらに優れていた。 Of tests 51 to 58 using a die as a vibration source, tests 53 to 56 in which the amplitude of the vibration applied to the casting ribbon was 50 μm to 1500 μm were more excellent, with the horizontal step unevenness being less than 0.6%. It was. Furthermore, in Tests 54 and 55 in which the amplitude of vibration applied to the casting ribbon was 100 μm and 1000 μm, the horizontal step unevenness was even less than 0.4%.
 一方、ドラムを振動源とした試験59から66のうち、流延リボンに与えた振動の振幅が10μmから2000μmであった試験60~65は、横段ムラが0.6%未満とより優れていた。さらに、流延リボンに与えた振動の振幅が100μm、1000μmであった試験62、63は、横段ムラが0.4%未満とさらに優れていた。 On the other hand, among the tests 59 to 66 using the drum as the vibration source, the tests 60 to 65 in which the amplitude of the vibration applied to the casting ribbon was 10 μm to 2000 μm were more excellent with the horizontal unevenness being less than 0.6%. It was. Furthermore, in Tests 62 and 63 in which the amplitude of vibration applied to the casting ribbon was 100 μm and 1000 μm, the horizontal step unevenness was further excellent at less than 0.4%.
 さらに、振動板を振動源とした試験67から74のうち、流延リボンに与えた振動の振幅が100μm、1000μmであった試験70、71は、横段ムラが0.6%未満とより優れていた。 Furthermore, among the tests 67 to 74 using the diaphragm as a vibration source, the tests 70 and 71 in which the amplitude of the vibration applied to the casting ribbon was 100 μm and 1000 μm were more excellent with the horizontal unevenness being less than 0.6%. It was.
 支持体としてドラムを用いた場合、総じて、ダイを振動源とした試験51から58及びドラムを振動源とした試験59から66は、振動板を振動源とした試験67から74よりも、主評価の結果が良好であった。また、総じて、ドラムを振動源とした試験59から66は、ダイを振動源とした試験51から58よりも、主評価の結果が良好であった。 When the drum is used as the support, the tests 51 to 58 using the die as the vibration source and the tests 59 to 66 using the drum as the vibration source are generally more evaluated than the tests 67 to 74 using the vibration plate as the vibration source. The result was good. In general, the tests 59 to 66 using the drum as the vibration source performed better than the tests 51 to 58 using the die as the vibration source.
 さらに、流延リボンに与えた振動の振幅が2000μm以下であった試験51から57、59から65、67から73は、副評価である樹脂付着が確認できず優れていた。これに対し、流延リボンに与えた振動の振幅が2500μmであった試験58、66、74は、副評価である樹脂付着が確認でき劣っていた。 Furthermore, the tests 51 to 57, 59 to 65, and 67 to 73 in which the amplitude of vibration applied to the casting ribbon was 2000 μm or less were excellent because the resin adhesion, which is a sub-evaluation, could not be confirmed. On the other hand, tests 58, 66, and 74 in which the amplitude of vibration applied to the casting ribbon was 2500 μm were inferior because the resin adhesion, which is a sub-evaluation, was confirmed.
 [表4]
 表4から明らかなように、支持体としてドラムを用い、流延工程において、ダイとドラムとの間の流延リボンの固有振動のピーク周波数500Hzよりも高い周波数1kHzから150kHzの振動を流延リボンに与えて製造した試験77から82、84から89、91から96の光学フィルムは、主評価である横段ムラが0.8%未満と優れていた。
[Table 4]
As is apparent from Table 4, a drum is used as the support, and in the casting process, vibrations having a frequency of 1 kHz to 150 kHz higher than the peak frequency 500 Hz of the natural vibration of the casting ribbon between the die and the drum are cast. The optical films of Tests 77 to 82, 84 to 89, and 91 to 96 produced by the above-described method were excellent in the horizontal unevenness as the main evaluation of less than 0.8%.
 これに対し、支持体としてドラムを用い、流延工程において、ダイとドラムとの間の流延リボンの固有振動のピーク周波数500Hzよりも低い周波数400Hzの振動を流延リボンに与えて製造した試験76、83、90の光学フィルムは、主評価である横段ムラが0.8%以上と劣っていた。 On the other hand, using a drum as a support, in the casting process, the casting ribbon was produced by applying a vibration at a frequency of 400 Hz lower than the peak frequency of 500 Hz of the natural vibration of the casting ribbon between the die and the drum. The optical film Nos. 76, 83, and 90 were inferior in the horizontal unevenness as the main evaluation of 0.8% or more.
 また、ダイを振動源とした場合は、流延リボンに与えた振動の周波数が2kHzから100kHzであった試験78から81は、横段ムラの結果がより優れていた。さらに、流延リボンに与えた振動の周波数が2kHz、20kHzであった試験78、79は、横段ムラの結果がさらに優れていた。ドラムを振動源とした場合は、流延リボンに与えた振動の周波数が2kHz、20kHzであった試験85、86は、横段ムラの結果がさらに優れていた。振動板を振動源とした場合は、流延リボンに与えた振動の周波数が2kHz、20kHzであった試験92、93は、横段ムラの結果がさらに優れていた。 Further, when the die was used as the vibration source, the test 78 to 81 in which the frequency of the vibration applied to the casting ribbon was 2 kHz to 100 kHz was superior in the result of the horizontal unevenness. Furthermore, in the tests 78 and 79 in which the frequency of vibration applied to the casting ribbon was 2 kHz and 20 kHz, the result of horizontal unevenness was further excellent. When the drum was used as the vibration source, tests 85 and 86, in which the frequency of vibration applied to the casting ribbon was 2 kHz and 20 kHz, were more excellent in the results of lateral unevenness. When the vibration plate was used as the vibration source, the tests 92 and 93 in which the frequency of vibration applied to the casting ribbon was 2 kHz and 20 kHz were more excellent in the result of the horizontal unevenness.
 支持体としてドラムを用いた場合、総じて、ダイを振動源とした試験77から82及びドラムを振動源とした試験84から89は、振動板を振動源とした試験91から96よりも、主評価の結果が良好であった。また、総じて、ドラムを振動源とした試験84から89は、ダイを振動源とした試験77から82よりも、主評価の結果が良好であった。 In the case where a drum is used as the support, the tests 77 to 82 using the die as the vibration source and the tests 84 to 89 using the drum as the vibration source are generally more evaluated than the tests 91 to 96 using the vibration plate as the vibration source. The result was good. In general, the tests 84 to 89 using the drum as the vibration source performed better than the tests 77 to 82 using the die as the vibration source.
 さらに、流延リボンに与えた振動の周波数が100kHz以下であった試験77から81、84から88、91から95は、副評価である皮膜生成がなく優れていた。これに対し、流延リボンに与えた振動の周波数が150kHzであった試験82、89、96は、副評価である皮膜生成があり劣っていた。 Furthermore, Tests 77 to 81, 84 to 88, and 91 to 95, in which the frequency of vibration applied to the casting ribbon was 100 kHz or less, were excellent because there was no film formation as a secondary evaluation. On the other hand, Tests 82, 89, and 96, in which the frequency of vibration applied to the casting ribbon was 150 kHz, were inferior due to the formation of a film, which was a secondary evaluation.
 1 光学フィルムの製造装置
 10 流延装置
 11 ダイ
 11a リップ部
 12 支持体(無端ベルト)
 13 剥離ローラ
 14 加振器
 16 振動板
 17 支持体(ドラム)
 18 ドラム支持筒
 20 延伸装置
 30 熱処理装置
 40 巻取装置
 51 流延リボン
 52 流延膜(ウェブ)
 53 樹脂フィルム
 L リボン長
DESCRIPTION OF SYMBOLS 1 Optical film manufacturing apparatus 10 Casting apparatus 11 Die 11a Lip part 12 Support body (endless belt)
13 Peeling roller 14 Exciter 16 Diaphragm 17 Support (drum)
18 Drum support cylinder 20 Stretching device 30 Heat treatment device 40 Winding device 51 Casting ribbon 52 Casting membrane (web)
53 Resin film L Ribbon length

Claims (9)

  1.  樹脂溶液をダイから吐出して流延リボンを形成し、前記流延リボンを支持体に着接させて支持体上に流延膜を形成する流延工程を有する光学フィルムの製造方法であって、
    前記流延工程は、前記ダイと前記支持体との間の流延リボンに振動を与える加振器を有し、
    前記振動は、前記流延リボンの固有振動のピーク周波数よりも高い周波数であることを特徴とする光学フィルムの製造方法。
    An optical film manufacturing method comprising a casting step of discharging a resin solution from a die to form a casting ribbon, and contacting the casting ribbon to a support to form a casting film on the support. ,
    The casting step includes a vibrator that vibrates a casting ribbon between the die and the support,
    The said vibration is a frequency higher than the peak frequency of the natural vibration of the said casting ribbon, The manufacturing method of the optical film characterized by the above-mentioned.
  2.  前記周波数が1kHzから100kHzであることを特徴とする請求項1に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 1, wherein the frequency is 1 kHz to 100 kHz.
  3.  前記振動の振幅が10μmから2000μmであることを特徴とする請求項1又は2に記載の光学フィルムの製造方法。 3. The method for producing an optical film according to claim 1, wherein the amplitude of the vibration is 10 μm to 2000 μm.
  4.  前記加振器が前記ダイを振動させることにより前記流延リボンに振動を与えることを特徴とする請求項1から3のいずれか1項に記載の光学フィルムの製造方法。 The method for producing an optical film according to any one of claims 1 to 3, wherein the vibrator vibrates the casting ribbon by vibrating the die.
  5.  前記加振器が前記支持体を振動させることにより前記流延リボンに振動を与えることを特徴とする請求項1から4のいずれか1項に記載の光学フィルムの製造方法。 The method for producing an optical film according to any one of claims 1 to 4, wherein the vibrator vibrates the casting ribbon by vibrating the support.
  6.  前記加振器が前記流延リボンの周囲の空気を振動させることにより前記流延リボンに振動を与えることを特徴とする請求項1から5のいずれか1項に記載の光学フィルムの製造方法。 The method for producing an optical film according to any one of claims 1 to 5, wherein the vibrator vibrates the casting ribbon by vibrating the air around the casting ribbon.
  7.  請求項1から6のいずれか1項に記載の製造方法によって製造されたことを特徴とする光学フィルム。 An optical film manufactured by the manufacturing method according to any one of claims 1 to 6.
  8.  偏光子と、前記偏光子を挟むように偏光子の両側に配置された2枚の透明保護フィルムとを備える偏光板であって、
     前記2枚の透明保護フィルムのうちの少なくとも一方が、請求項7に記載の光学フィルムであることを特徴とする偏光板。
    A polarizing plate comprising a polarizer and two transparent protective films disposed on both sides of the polarizer so as to sandwich the polarizer,
    The polarizing plate, wherein at least one of the two transparent protective films is the optical film according to claim 7.
  9.  液晶セルと、前記液晶セルを挟むように液晶セルの両側に配置された2枚の偏光板とを備える液晶表示装置であって、
     前記2枚の偏光板のうちの少なくとも一方が、請求項8に記載の偏光板であることを特徴とする液晶表示装置。
    A liquid crystal display device comprising a liquid crystal cell and two polarizing plates arranged on both sides of the liquid crystal cell so as to sandwich the liquid crystal cell,
    A liquid crystal display device, wherein at least one of the two polarizing plates is the polarizing plate according to claim 8.
PCT/JP2011/068558 2010-08-23 2011-08-16 Method for producing optical film, optical film, polarization plate, liquid crystal display device WO2012026364A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-186580 2010-08-23
JP2010186580 2010-08-23

Publications (1)

Publication Number Publication Date
WO2012026364A1 true WO2012026364A1 (en) 2012-03-01

Family

ID=45723366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068558 WO2012026364A1 (en) 2010-08-23 2011-08-16 Method for producing optical film, optical film, polarization plate, liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2012026364A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293431A (en) * 1992-04-21 1993-11-09 Fuji Photo Film Co Ltd Coating method
JP2000290388A (en) * 1999-04-02 2000-10-17 Fuji Photo Film Co Ltd Solution film-forming method and vacuum chamber
JP2005104148A (en) * 2003-09-11 2005-04-21 Fuji Photo Film Co Ltd Cellulose acylate film and solution film forming method
JP2006069184A (en) * 2003-09-24 2006-03-16 Fuji Photo Film Co Ltd Manufacturing method and manufacturing device of polymer film
JP2009078441A (en) * 2007-09-26 2009-04-16 Fujifilm Corp Device and method for solution film forming

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293431A (en) * 1992-04-21 1993-11-09 Fuji Photo Film Co Ltd Coating method
JP2000290388A (en) * 1999-04-02 2000-10-17 Fuji Photo Film Co Ltd Solution film-forming method and vacuum chamber
JP2005104148A (en) * 2003-09-11 2005-04-21 Fuji Photo Film Co Ltd Cellulose acylate film and solution film forming method
JP2006069184A (en) * 2003-09-24 2006-03-16 Fuji Photo Film Co Ltd Manufacturing method and manufacturing device of polymer film
JP2009078441A (en) * 2007-09-26 2009-04-16 Fujifilm Corp Device and method for solution film forming

Similar Documents

Publication Publication Date Title
JP5510459B2 (en) Manufacturing method of optical film
JP4982816B2 (en) Optical film manufacturing method, optical film, polarizing plate, and display device
JP2010274615A (en) Method of manufacturing optical film, optical film, polarizing plate and liquid crystal display device
JP5163222B2 (en) Manufacturing method of optical film
JP2007065184A (en) Optical film, its manufacturing method, polarizing plate using optical film, and liquid crystal display device using polarizing plate
JP4957790B2 (en) Manufacturing method of optical film
JP2009208358A (en) Optical film
JP2007271942A (en) Optical film
JP5849736B2 (en) Manufacturing method of optical film
JP2010253723A (en) Optical film and method for manufacturing the same
JP2010069646A (en) Optical film, method for producing the same, polarizing plate and liquid crystal display using optical film
WO2012026364A1 (en) Method for producing optical film, optical film, polarization plate, liquid crystal display device
WO2009101929A1 (en) Optical film, process and apparatus for producing the same, polarizer employing optical film, and display
JP2011115969A (en) Optical film manufacturing method, optical film, polarizing plate, and display
JP5838778B2 (en) Manufacturing method of optical film
JP5609714B2 (en) Manufacturing method and manufacturing apparatus for optical film, optical film, polarizing plate and liquid crystal display device
JP2012111602A (en) Manufacturing device and method of optical film, optical film, polarizing plate, and liquid crystal display device
JP5853901B2 (en) Manufacturing method of optical film
JP2009083343A (en) Optical film and its manufacturing process, protective film for polarizing plate, polarizing plate using it, and liquid crystal display unit
JP6015552B2 (en) Manufacturing method of optical film
JP2009234028A (en) Optical film, manufacturing method for it, polarizer using optical film and display device
JP2012171177A (en) Method and device for producing optical film, optical film, polarizing plate and liquid crystal display
JP2009073106A (en) Optical film, method for producing optical film, polarizing plate using optical film, and display
JP5838779B2 (en) Manufacturing method of optical film
JP2014223758A (en) Production method of optical film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP