WO2009101929A1 - Optical film, process and apparatus for producing the same, polarizer employing optical film, and display - Google Patents

Optical film, process and apparatus for producing the same, polarizer employing optical film, and display Download PDF

Info

Publication number
WO2009101929A1
WO2009101929A1 PCT/JP2009/052202 JP2009052202W WO2009101929A1 WO 2009101929 A1 WO2009101929 A1 WO 2009101929A1 JP 2009052202 W JP2009052202 W JP 2009052202W WO 2009101929 A1 WO2009101929 A1 WO 2009101929A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
web
optical film
acid
support
Prior art date
Application number
PCT/JP2009/052202
Other languages
French (fr)
Japanese (ja)
Inventor
Seiichi Iida
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Priority to JP2009553417A priority Critical patent/JPWO2009101929A1/en
Publication of WO2009101929A1 publication Critical patent/WO2009101929A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/28Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on an endless belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/26Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on a rotating drum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/14Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0034Polarising
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present invention can be used for various functional films such as a protective film for a polarizing plate used for a liquid crystal display (LCD), a retardation film, a viewing angle widening film, and an antireflection film used for a plasma display.
  • the present invention relates to a film, a manufacturing method and manufacturing apparatus thereof, a polarizing plate using an optical film, and a display device.
  • a liquid crystal display device can be directly connected to an IC circuit with low voltage and low power consumption, and can be thinned, so that it is widely used as a display device for a word processor, a personal computer or the like.
  • the basic structure of this LCD is one in which polarizing plates are provided on both sides of the liquid crystal cell. Since the polarizing plate allows only light with a polarization plane in a certain direction to pass, it plays an important role in visualizing changes in the orientation of the liquid crystal due to the electric field in the LCD, and the performance of the polarizing plate greatly depends on the performance of the polarizing plate.
  • the A polarizing plate consists of a polarizer and a protective film laminated on both sides of the polarizer. And as a protective film of such a polarizing plate, the cellulose-ester film (henceforth only a film) is widely used.
  • an optical film such as a retardation film, a viewing angle widening film, an antireflection film, or the like for a liquid crystal display device.
  • Optical films are used.
  • materials for the optical film materials other than cellulose ester are also known.
  • optical films have been produced exclusively by the solution casting film forming method.
  • a solution casting film forming apparatus there are roughly two dope casting methods.
  • One is a belt casting method in which an endless belt as a support is wound between a pair of drums, and the other is a drum casting method in which the rotating drum itself is a support.
  • the present invention relates to an optical film manufacturing method using both the belt casting method and the drum casting method.
  • the web contains a large amount of solvent, so it is very soft and is damaged by the web roll immediately after peeling due to some cause (pressed failure) ) And transfer of dirt on the roll to the film (transfer failure) is more susceptible to melt film formation. It has been found that the optical film in which these failures occur becomes a serious defect when converted into a polarizing plate.
  • patent documents relating to cleaning of the transport roll after the web is peeled from the support in the conventional solution casting method include the following.
  • Patent Documents 1 to 4 make it difficult for a plasticizer or the like to adhere to a roll.
  • a solution casting film is formed over a long period of time, precipitation of the plasticizer and the like can be suppressed.
  • a roll dirt removing operation has a problem that the working efficiency is poor and the productivity of the optical film is greatly reduced.
  • Patent Documents 5 to 8 relate to the melt casting film forming method, not the solution casting film forming method.
  • the roll surface is attached by irradiating the roll with plasma or excimer UV. The kimono is to be removed.
  • the object of the present invention is to solve the above-mentioned problems of the prior art and increase the production speed of an optical film such as a cellulose ester film.
  • the optical film can reduce the occurrence of failure of the optical film due to foreign matter on the surface of the web transport roll, and can increase the productivity (increase the production amount) of high-quality optical films. It is in trying to provide a manufacturing method.
  • the invention according to claim 1 is characterized in that the casting of a thermoplastic resin dope is cast from an endless support on which an endless transition of a thermoplastic resin dope is carried out by a solution casting film forming method.
  • a method for producing an optical film comprising: evaporating a solvent on a body to form a web; then peeling the web from a support; transporting and drying the peeled web; and winding the resulting film.
  • the amount of residual solvent of the web when peeling the web from the support is 60 to 160% by mass, and the surface of the web transport roll after peeling the web from the support is irradiated with plasma or excimer UV for high energy.
  • a surface treatment is performed, and a surface treatment film is formed on the surface of the transport roll.
  • This plasma is preferably irradiated under normal pressure. This is because a normal modification of the manufacturing process is not necessary at normal pressure.
  • the invention according to claim 2 is the method for producing an optical film according to claim 1, wherein the plasma treatment or the excimer UV treatment is performed in the presence of at least the solvent vapor, and the surface treatment is performed. It is a process for forming a film.
  • a third aspect of the invention is a method for producing an optical film according to the first or second aspect of the invention, in which the plasma treatment or excimer UV treatment comprises the vapor of the solvent, and the plasma treatment or excimer. It is characterized in that the irradiation is performed in the presence of both gases used for UV treatment to form a surface treatment film.
  • the invention of claim 4 is the method for producing an optical film according to any one of claims 1 to 3, wherein the solvent is 1,3-dioxolane, tetrahydrofuran, methyl ethyl ketone. And at least one of acetone, methyl acetate and methylene chloride.
  • the invention of claim 5 is the method for producing an optical film according to any one of claims 1 to 4, wherein the distance between the web transport roll and the high energy wave irradiation device. Is characterized by being 0.5 to 20 mm.
  • the invention of claim 6 is an apparatus for producing an optical film, in which a dope of a thermoplastic resin is cast from a casting die onto an endless support that moves infinitely, and the solvent is evaporated on the support. After the web is formed, the web is peeled from the support, the peeled web is transported and dried, and the resulting film is wound up.
  • the optical film manufacturing apparatus peels the web from the support.
  • the residual solvent amount of the web during the process is 60 to 160% by mass, and the surface of the web transport roll after the web is peeled off from the support is irradiated with plasma to perform high energy surface treatment, or the same It is characterized by having an excimer UV irradiation device that irradiates the surface with excimer UV and performs high energy surface treatment.
  • the invention of the optical film according to claim 7 is characterized by being manufactured by the method of manufacturing an optical film according to any one of claims 1 to 5.
  • the invention of the polarizing plate according to claim 8 is characterized in that the optical film according to claim 7 is used as a protective film for a polarizing plate on at least one surface of both surfaces of the polarizing film. It is said.
  • the invention of the display device according to claim 9 is characterized by using the polarizing plate according to claim 8.
  • the invention of claim 1 is a method for producing an optical film by a solution casting film forming method, wherein the amount of residual solvent of the web when peeling the web from the support is 60 to 160% by mass,
  • the surface of the web transport roll after peeling off the support is subjected to high-energy surface treatment by irradiating with plasma or excimer UV, and a solvent evaporated from the web is used as a material (that is, generated by a decomposition product of the solvent).
  • a surface treatment film is formed on the surface of the transport roll. According to the first aspect of the invention, not only can the foreign matter adhered to the roll surface be removed, but also the formation of a surface treatment film on the roll surface can reduce adhesion of the film plasticizer and the like to the roll surface. Can do.
  • the invention according to claim 2 is the method for producing an optical film according to claim 1, wherein the plasma treatment or the excimer UV treatment is performed in the presence of at least a solvent vapor, and the surface treatment film
  • the plasma or excimer UV is irradiated in the presence of solvent vapor, the peelability of the film is improved (the peel strength is reduced). did.
  • the web with a high residual solvent amount is soft, so it has adhesiveness itself, and stress due to adhesive force is applied when it comes off in contact with the transport roll, so optical properties such as retardation
  • the adhesive force to the web conveyance roll was reduced, and the peeling force of the casting film was reduced. It is considered that the peeling stress applied to the film could be reduced even when the optical thin film was transported at high speed.
  • the surface roughness Ra is scanned before and after irradiating plasma or excimer UV onto a plate with a super mirror polished surface such as SUS304 or SUS316. It is unlikely that the surface of the metal body is rough or, on the contrary, the metal body is smoothed and the peelability of the film has changed due to the fact that it has not changed by measurement with a scanning atomic force microscope (hereinafter referred to as AFM). It is considered a thing.
  • AFM scanning atomic force microscope
  • a third aspect of the invention is a method for producing an optical film according to the first or second aspect of the invention, wherein the plasma treatment or excimer UV treatment comprises solvent vapor, and plasma treatment or excimer UV. Irradiation in the presence of both of the gases used for the treatment is a treatment for forming a surface treatment film.
  • the peeling force of the casting film is reduced, As a result, even when the optical thin film is transported at a high speed, the peeling stress applied to the film can be reduced.
  • the invention of claim 4 is the process for producing an optical film according to any one of claims 1 to 3, wherein the solvent is 1,3-dioxolane, tetrahydrofuran, methyl ethyl ketone, It contains at least one of acetone, methyl acetate, and methylene chloride.
  • the surface treatment film can be effectively formed by plasma treatment or excimer UV treatment. The peeling force of the stretched film is reduced, so that the peeling stress applied to the film can be reduced even when the optical thin film is conveyed at high speed.
  • the invention of claim 5 is the method for producing an optical film according to any one of claims 1 to 4, wherein the distance between the web transport roll and the high energy wave irradiation device is According to the invention of claim 5, there is no risk that the web transport roll and the high energy wave irradiation device are in contact with each other and the surface of the web transport roll is damaged. Since the effect of modifying the surface of the transport roll is not weakened too much, it is possible to meet the demand for higher quality of the optical film and to achieve continuous and high productivity.
  • the invention of claim 6 is an apparatus for producing an optical film, in which a dope of a thermoplastic resin is cast from a casting die onto an endless support that moves infinitely, and the solvent is evaporated on the support. After the web is formed, the web is peeled from the support, the peeled web is transported and dried, and the resulting film is wound up.
  • the optical film manufacturing apparatus peels the web from the support.
  • the residual solvent amount of the web during the process is 60 to 160% by mass, and the surface of the web transport roll after the web is peeled off from the support is irradiated with plasma to perform high energy surface treatment, or the same
  • An excimer UV irradiating device for irradiating the surface with excimer UV to perform high-energy surface treatment.
  • an optical film such as a cellulose ester film Even if the production speed is increased, the adhesion of foreign matter on the surface of the web transport roll after peeling, the transfer failure of the optical film due to this, and the occurrence of a pressing failure of the optical film due to foreign matter on the surface of the web transport roll As a result, it is possible to reduce the amount of the optical film, and it is possible to increase the productivity (increase the production amount) of the optical film with good quality.
  • the surface treatment film is formed on the surface of the web conveyance roll by plasma treatment or excimer UV treatment, thereby peeling from the web conveyance roll.
  • the surface of the web transport roll is subjected to plasma treatment or excimer UV treatment to form a surface treatment film, and the surface treatment film reduces foreign matter adhesion on the surface of the web transport roll, thereby providing an optical film.
  • the surface treatment film reduces foreign matter adhesion on the surface of the web transport roll, thereby providing an optical film.
  • Reduces the occurrence of pressing failure heats the roll surface by high energy irradiation with plasma or excimer UV irradiation, and raises the surface temperature, thereby preventing condensation due to plasticizer or water containing impurities, optical film
  • the transfer failure can be reduced, thereby satisfying the demand for higher quality of the optical film and continuous and stable higher productivity.
  • the invention according to claim 7 is manufactured by the method for manufacturing an optical film according to any one of claims 1 to 5. According to the optical film of the seventh aspect, there is no transfer failure or pressing failure, and there is an effect that the optical film has excellent optical characteristics.
  • the invention of the polarizing plate according to claim 8 is characterized in that the optical film according to claim 7 is used as a protective film for a polarizing plate on at least one surface of both surfaces of the polarizing film.
  • an optical film excellent in transparency and flatness is used as a polarizing plate protective film on at least one surface of the polarizing film. Therefore, when this polarizing plate is incorporated in a liquid crystal panel, the liquid crystal panel does not cause a decrease in contrast or uneven density, and has an effect of excellent visibility.
  • the invention of the display device according to claim 9 uses the polarizing plate including the optical film having the excellent optical characteristics according to claim 8, and therefore the claim 9. According to the display device of the present invention, there is an effect that the liquid crystal panel is excellent in visibility without causing a decrease in contrast or unevenness in density.
  • the method for producing an optical film according to the present invention is obtained by casting a dope of a thermoplastic resin from a casting die onto an endless support that moves infinitely by a solution casting film forming method, evaporating a solvent on the support, After the web is formed, the web is peeled off from the support, the peeled web is transported and dried, and the resulting film is wound up.
  • the residual solvent amount of the web is 60 to 160% by mass, and the surface of the web transport roll after the web is peeled off from the support is subjected to high energy surface treatment by irradiating with plasma or excimer UV. A surface treatment film is formed on the surface.
  • the residual solvent amount of the web when peeling the web from the support is less than 60% by mass, a part of the web may be peeled off in the middle, and the residual solvent amount exceeds 160% by mass. In such a case, a peeling failure occurs and the web may be broken.
  • the method for producing an optical film of the present invention reduces contamination and condensation on the surface of the web conveyance roll by forming a surface treatment film on the surface of the web conveyance roll used for the production of the optical film by plasma treatment or excimer UV treatment.
  • the distance between the energy wave irradiation device (plasma irradiation device or excimer UV irradiation device) and the surface of the web transport roll as the object to be cleaned is 0.5 to 20 mm, preferably 1.0. ⁇ 15 mm. If it is too close, there is a risk of damage to the surface of the transport roll due to contact, and if it is too far away, the effect of modifying the surface of the transport roll is weakened.
  • various gases can be used, but a mixed gas of nitrogen and a small amount of oxygen is preferable from the viewpoint of environment, exhaust aftertreatment, and running cost.
  • the gas flow rate is desirably 20 to 5000 L / min per 1 m of the effective width of plasma irradiation. Furthermore, 40 to 1000 L / min is more preferable.
  • the atmosphere for cleaning the surface of the web transport roll by irradiating with ultraviolet rays is preferably a clean oxygen atmosphere in which dust and the like are not suspended.
  • An exhaust device is attached to the enclosure between the roll and the ultraviolet lamp, and fresh air is always supplied. It is more preferable to supply.
  • a surface treatment film can be formed on the surface of the web transport roll to prevent adhesion and accumulation of dirt. Heating by high energy irradiation can prevent condensation of water and plasticizer containing impurities on the roll surface, and drastically reduce the number of times film formation is interrupted to clean dirt adhered to the web transfer roll surface. In addition, the productivity of the optical film can be improved.
  • the irradiation shape is preferably a long axis with respect to the roll width direction. That is, by taking the irradiation diameter long in the roll width direction, it is advantageous because the entire irradiation area can be gained by rotating the roll.
  • the organic deposit is mainly derived from a plasticizer and produces various organic compounds generated in the process. Furthermore, sublimates, oils and fats, dust, etc. contained in the air are also included.
  • the inorganic deposit is mainly derived from a stainless steel support, and produces various inorganic compounds generated in the process. In addition, sublimates and dust contained in the air are also included.
  • thermoplastic resin used in the present invention If necessary, an ultraviolet absorber, an antioxidant, an antistatic agent, a lubricant, a nucleating agent, a release agent, and the like are added to the thermoplastic resin used in the present invention as long as the object of the present invention is not impaired. Can do.
  • the manufacturing method of the optical film of the present invention even if the production rate of the optical film such as a cellulose ester film is increased, the adhesion of the foreign matter on the surface of the web transport roll, and the transfer failure of the optical film due to this, Occurrence of a pressing failure of the optical film due to foreign matter on the surface of the web conveying roll can be greatly reduced, and high-quality optical film with high quality (increase in production volume) can be achieved.
  • the surface of the web transport roll is formed by plasma treatment or excimer UV treatment to increase the peelability of the surface of the web transport roll.
  • the film can be formed in a so-called high residual solvent amount region of the web while suppressing the haze of the film, and the production conditions of the optical film are expanded, so that the productivity of the optical film is improved.
  • the surface of the web transport roll is subjected to plasma treatment or excimer UV treatment to form a surface treatment film, and the surface treatment film reduces adhesion of foreign matter on the surface of the web transport roll after peeling, thereby pressing the optical film.
  • Reduces the occurrence of failure heats the roll surface by high energy irradiation with plasma or excimer UV irradiation, raises the surface temperature, prevents condensation due to plasticizer or water containing impurities, transfer failure of optical film As a result, it is possible to meet the demand for high quality optical films and to achieve continuous and stable high productivity.
  • the method for producing an optical film of the present invention it is preferable to perform high energy surface treatment with a plasma apparatus or an excimer UV apparatus in the presence of a reaction gas used for the plasma apparatus or a purge gas used for the excimer UV apparatus.
  • the method for producing an optical film of the present invention it is possible to eliminate a defect in peeling that is observed when a residual solvent in a web at the time of peeling is in a certain range, which is seen in a solution casting film forming method. Enables film formation in the residual solvent amount area, reduces the restrictions on film production conditions so far, greatly expands the selection range of film production conditions, and releases the film from the surface of the web transport roll (peelability) ) Is improved, and a very smooth peelability can be obtained in the entire residual peel zone.
  • FIG. 1 is a flow sheet showing a specific example of an apparatus for carrying out the method for producing an optical film of the present invention by a solution casting film forming method. Note that the implementation of the present invention is not limited to the process of the drawings shown below.
  • a dissolving pot (1) for example, a cellulose ester resin is dissolved in a mixed solvent of a good solvent and a poor solvent, and an additive such as a plasticizer or an ultraviolet absorber is added to the resin solution. (Dope) is prepared.
  • the dope casting by the casting die (3) includes a doctor blade method in which the film thickness of the cast web is adjusted with a blade, or a reverse roll coater method in which the web is adjusted with a reverse rotating roll.
  • a method using a pressure die that can adjust the slit shape of the part and easily make the film thickness uniform is preferable. Examples of the pressure die include a coat hanger die and a T die, and any of them is preferably used.
  • the casting die (3) a pressure die that can adjust the slit shape of the die part and easily make the film thickness uniform is preferable.
  • the casting die (3) is usually provided with a decompression chamber (4).
  • the solid content concentration of the cellulose ester solution (dope) is preferably 15 to 30% by mass. If the solid content concentration of the cellulose ester solution (dope) is less than 15% by mass, sufficient drying cannot be performed on the support (7), and a part of the dope film remains on the support (7) during peeling. This is not preferable because it leads to belt contamination. Moreover, when the solid content concentration exceeds 30%, the dope viscosity is increased, filter clogging is accelerated in the dope adjustment process, or pressure is increased during casting on the support (7), and it is not preferable to extrude. Absent.
  • the belt support (7) is held by a pair of front and rear drums (5) and (5) and a plurality of intermediate rolls (not shown). Has been.
  • One or both of the drums (5) and (5) at both ends of the rotary drive endless belt support (7) are provided with a drive device for applying tension (not shown) to the belt support (7).
  • the belt support (7) is used in a tensioned state.
  • the width of the metal support (7) is preferably 1700 to 2400 mm
  • the casting width of the cellulose ester solution is preferably 1600 to 2500 mm
  • the width of the film after winding is preferably 1400 to 2500 mm.
  • the belt temperature during film formation is a general temperature range of 0 ° C. to a temperature lower than the boiling point of the solvent, and a mixed solvent having a temperature lower than the boiling point of the lowest boiling solvent. Further, the range of 5 ° C. to the boiling point of the solvent ⁇ 5 ° C. is more preferable. At this time, it is necessary to control the ambient atmospheric humidity above the dew point.
  • the peripheral speed of the support (7) is preferably 40 to 200 m / min.
  • the dope cast on the surface of the support (7) also increases the strength of the gel film (film strength) by promoting the drying until peeling.
  • the web temperature when peeling the web (10) from the metal support (7) is preferably 0 to 30 ° C. Further, immediately after the web (10) is peeled off from the metal support (7), the temperature once drops rapidly due to the solvent evaporation from the metal support (7) contact surface side, and water vapor or solvent vapor in the atmosphere.
  • the web temperature at the time of peeling is more preferably 5 to 30 ° C. because volatile components such as these are easily condensed.
  • the residual solvent amount can be expressed by the following equation.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100
  • M is a mass at an arbitrary point of the web
  • N is a mass when a mass M is dried at a temperature of 110 ° C. for 3 hours.
  • the web (10) formed by the dope cast on the support (7) is heated on the support (7), and the solvent is evaporated until the web can be peeled from the support (7).
  • FIG. 1 shows a plasma irradiation apparatus (19) for performing high-energy surface treatment by irradiating plasma on the surface of the web transport rolls (8) and (9), and a reaction gas supply pipe for supplying a reaction gas thereto. (18) is shown.
  • the web (10) is dried and solidified on the support (7) until it has a peelable film strength, the web (10) is peeled off from the support (7), and then a tenter (11 ).
  • FIG. 2 is a flow sheet showing another specific example of an apparatus for carrying out the method for producing an optical film of the present invention by a solution casting film forming method.
  • a support for example, stainless steel whose surface is subjected to hard chrome plating treatment. The case where the steel rotational drive drum (6) is used is illustrated.
  • the apparatus for producing an optical film of the present invention is cast from a casting die (3) on an endless support composed of a rotating endless belt (7) or a rotating drum (6) that allows infinite transition of a thermoplastic resin dope, After evaporating the solvent on the supports (6) and (7) to form the web (10), the web (10) is peeled from the support (7), and the peeled web (10) is removed with a transport roll.
  • the residual solvent of the web when the web (10) is peeled off from the support (6) (7) which is constituted by a solution casting film forming apparatus for transporting and further drying the web (10) to produce an optical film.
  • High energy surface treatment is performed by irradiating the surface of the web transport roll (8) (9) after the web (10) is peeled from the support (6) (7) with plasma. Applying plasma irradiation device, or the same surface By irradiating excimer UV those comprising an excimer UV irradiation apparatus for applying a high energy surface treatment.
  • a high frequency power is applied between the electrodes facing each other so as to sandwich the substrate to be processed, and the supply gas is converted into plasma, and the reaction gas is converted into plasma through the electrodes to which the high frequency voltage is applied.
  • the latter downstream method is preferably used for the high energy surface treatment of the cast film surface.
  • FIG. 3 is an explanatory diagram for explaining the principle of the plasma apparatus.
  • (a) and (b) are the counter electrodes of the reactor,
  • (g) is the reactive gas,
  • (d) is the gap from the plasma spray slit to the surface of the web transfer roll (8) (9),
  • (i) Is the air curtain wind, and
  • (e) is the exhaust.
  • the plasma apparatus introduces a reactive gas (g) between the counter electrodes (a) and (b) to which a high-frequency voltage is applied, passes it into plasma, and forms plasma on the surface of the web transport rolls (8) and (9).
  • a surface treatment layer is formed on the surface of the web transport rolls (8) and (9) by injecting and supplying a chemical gas and performing high energy treatment.
  • FIG. 4 is an explanatory diagram for explaining the principle of the excimer UV apparatus.
  • (u) is an excimer UV lamp
  • (r) is a reflector
  • (p) is a purge gas
  • (i) is an air curtain / lamp device cooling air
  • (d) is a web transport from the excimer UV lamp (u).
  • the gap to the roll (8) (9) surface, (e) is the exhaust.
  • the surface of the web transport roll (8) (9) is mainly irradiated with ultraviolet rays having a wavelength of 172 nm with a light quantity of 1 to 3,000 mJ / cm 2. In addition, irradiation is performed.
  • oxygen contained in the purge gas (p) generates active oxygen and ozone and contributes to the modification of the surface of the web transport rolls (8) (9).
  • a raw material gas for generating a surface treatment film such as an organic solvent vapor such as methylene chloride or alcohol, or a monomer gas such as acetylene may be mixed with the purge gas (p) and introduced.
  • these raw material gases may be entrained on the surface of the casting film and sent under the excimer UV device to perform reaction and surface treatment layer formation.
  • Measures to maintain cleanliness are an issue when bringing these high-energy surface treatment devices into film-forming lines for optical applications.
  • a resin solution (dope) containing a resin such as cellulose ester resin as a main material is added with a plasticizer, a retardation adjusting agent, and an ultraviolet absorber. , At least one of fine particles, and low molecular weight substances, and a solvent.
  • various resins can be used, and among them, cellulose ester is preferable.
  • Cellulose ester is a cellulose ester in which a hydroxyl group derived from cellulose is substituted with an acyl group or the like.
  • examples thereof include cellulose acylates such as cellulose acetate, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate, and cellulose acetate propionate butyrate, and cellulose acetate having an aliphatic polyester graft side chain.
  • cellulose acetate, cellulose acetate propionate, and cellulose acetate having an aliphatic polyester graft side chain are preferable.
  • Other substituents may be included as long as the effects of the present invention are not impaired.
  • the substitution degree of acetyl group is preferably 2.0 or more and 3.0 or less. By setting the degree of substitution within this range, good moldability can be obtained, and desired in-plane direction retardation (Ro) and thickness direction retardation (Rt) can be obtained. If the substitution degree of the acetyl group is lower than this range, the heat resistance as a retardation film, particularly the dimensional stability under wet heat may be inferior, and if the substitution degree is too large, the necessary retardation characteristics will not be exhibited. There is a case.
  • the cellulose used as a raw material of the cellulose ester used in the present invention is not particularly limited, and examples thereof include cotton linter, wood pulp, and kenaf. Moreover, the cellulose ester obtained from them can be mixed and used in arbitrary ratios, respectively.
  • the number average molecular weight of the cellulose ester is preferably in the range of 60,000 to 300,000, since the mechanical strength of the resulting film is strong. Furthermore, 70,000 to 200,000 are preferable.
  • reducing the thickness direction retardation (Rt) of the cellulose ester film is important in terms of increasing the viewing angle of the liquid crystal display device operating in the IPS mode.
  • thickness direction retardation is used. The following are mentioned as an additive which reduces (Rt).
  • retardation of a cellulose ester film appears as the sum of retardation derived from a cellulose ester and retardation derived from an additive. Therefore, an additive for reducing the retardation of the cellulose ester is an additive that disturbs the orientation of the cellulose ester and is difficult to orient itself and / or has a small polarizability anisotropy. It is a compound that effectively reduces it. Therefore, as an additive for disturbing the orientation of the cellulose ester, an aliphatic compound is preferable to an aromatic compound.
  • specific retardation reducing agents include, for example, polyesters represented by the following general formula (1) or (2).
  • B2- (GA-) nG-B2 B1- (GA-) mG-B1
  • B1 represents a monocarboxylic acid component
  • B2 represents a monoalcohol component
  • G represents a divalent alcohol component
  • A represents a dibasic acid component, and these are synthesized.
  • B1, B2, G, and A are all characterized by not containing an aromatic ring.
  • m and n represent the number of repetitions.
  • the monocarboxylic acid component represented by B1 is not particularly limited, and known aliphatic monocarboxylic acids, alicyclic monocarboxylic acids, and the like can be used.
  • Examples of preferred monocarboxylic acids include the following, but the present invention is not limited thereto.
  • aliphatic monocarboxylic acid a straight-chain or side-chain fatty acid having 1 to 32 carbon atoms can be preferably used. More preferably, it has 1-20 carbon atoms, and particularly preferably has 1-12 carbon atoms.
  • acetic acid is contained, the compatibility with the cellulose ester is increased, and it is also preferable to use a mixture of acetic acid and another monocarboxylic acid.
  • Preferred monocarboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid, tridecylic acid , Saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid, undecinic acid, Examples thereof include unsaturated fatty acids such as oleic acid, sorbic acid, linoleic acid, linolenic acid and arachidonic acid.
  • the monoalcohol component represented by B2 is not particularly limited, and known alcohols can be used.
  • an aliphatic saturated alcohol or aliphatic unsaturated alcohol having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. More preferably, it has 1-20 carbon atoms, and particularly preferably has 1-12 carbon atoms.
  • Examples of the divalent alcohol component represented by G include the following, but the present invention is not limited thereto.
  • ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,5-pentanediol, 1,6- Examples include hexanediol, 1,5-pentylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol.
  • ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1 , 2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,6-hexanediol, diethylene glycol and triethylene glycol are preferred, and 1,3-propylene glycol and 1,4-butylene glycol are also preferred.
  • Lumpur, 1,6-hexanediol, diethylene glycol is preferably used.
  • the dibasic acid (dicarboxylic acid) component represented by A is preferably an aliphatic dibasic acid or an alicyclic dibasic acid.
  • the aliphatic dibasic acid include malonic acid, succinic acid, glutaric acid, and adipic acid.
  • Pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid and the like in particular, aliphatic carboxylic acids having at least one selected from those having 4 to 12 carbon atoms are used. To do. That is, two or more dibasic acids may be used in combination.
  • the number of repetitions m and n in the general formula (1) or (2) is preferably 1 or more and 170 or less.
  • the weight average molecular weight of the polyester is preferably 20000 or less, and more preferably 10,000 or less.
  • polyesters having a weight average molecular weight of 500 to 10,000 have good compatibility with cellulose esters, and neither evaporation nor volatilization occurs during film formation.
  • Polyester polycondensation is performed by conventional methods. For example, a direct reaction of the dibasic acid and glycol, a hot melt condensation method by the polyesterification reaction or transesterification reaction of the dibasic acid or alkyl esters thereof, for example, a methyl ester of dibasic acid and glycols, or Although it can be easily synthesized by any method of dehydrohalogenation reaction between acid chloride of these acids and glycol, it is preferable that polyester having a weight average molecular weight not so large is by direct reaction. Polyester having a high distribution on the low molecular weight side has a very good compatibility with the cellulose ester, and after forming the film, a moisture permeability is small, and a cellulose ester film rich in transparency can be obtained.
  • a direct reaction of the dibasic acid and glycol a hot melt condensation method by the polyesterification reaction or transesterification reaction of the dibasic acid or alkyl esters thereof, for example, a methyl ester of dibasic acid and glyco
  • the molecular weight adjustment method is not particularly limited, and a conventional method can be used.
  • the amount of these monovalent compounds can be controlled by a method of blocking the molecular ends with a monovalent acid or monovalent alcohol.
  • a monovalent acid is preferable from the viewpoint of polymer stability.
  • acetic acid, propionic acid, butyric acid, etc. can be mentioned, but during the polycondensation reaction, it is not distilled out of the system, but is stopped and such monovalent acid is removed from the reaction system. The one that is easy to accumulate is selected. These may be used in combination.
  • the weight average molecular weight can also be adjusted by measuring the timing of stopping the reaction by the amount of water distilled off during the reaction. In addition, it can be adjusted by biasing the number of moles of glycol or dibasic acid to be charged, or can be adjusted by controlling the reaction temperature.
  • the polyester represented by the general formula (1) or (2) is preferably contained in an amount of 1 to 40% by mass with respect to the cellulose ester.
  • the content is preferably 5 to 15% by mass.
  • examples of the additive for reducing the thickness direction retardation (Rt) include a polymer obtained by polymerizing an ethylenically unsaturated monomer and an acrylic polymer.
  • a polymerization method In order to synthesize a polymer as an additive for reducing the thickness direction retardation (Rt), it is difficult to control the molecular weight in normal polymerization, and it is desirable to use a method that can align the molecular weight as much as possible without increasing the molecular weight.
  • Examples of such a polymerization method include a method using a peroxide polymerization initiator such as cumene peroxide and t-butyl hydroperoxide, a method using a polymerization initiator in a larger amount than usual polymerization, and a mercapto compound in addition to the polymerization initiator.
  • a method using a chain transfer agent such as carbon tetrachloride a method using a polymerization terminator such as benzoquinone and dinitrobenzene in addition to the polymerization initiator, and JP-A No. 2000-128911 or JP-A No. 2000-344823.
  • Examples include a compound having a single thiol group and a secondary hydroxyl group as described in the publication, or a bulk polymerization method using a polymerization catalyst in which the compound and an organometallic compound are used in combination. In particular, the method described in the publication is preferred.
  • the monomer as a monomer unit which comprises the polymer as an additive which reduces useful thickness direction retardation (Rt) is mentioned below, this invention is not limited to this.
  • the ethylenically unsaturated monomer unit constituting the polymer as an additive for reducing the thickness direction retardation (Rt) obtained by polymerizing an ethylenically unsaturated monomer first, as a vinyl ester, for example, vinyl acetate, propionic acid, etc.
  • a vinyl ester for example, vinyl acetate, propionic acid, etc.
  • vinyl crotonate, vinyl sorbate, vinyl benzoate, and vinyl cinnamate examples include vinyl crotonate, vinyl sorbate, vinyl benzoate, and vinyl cinnamate.
  • acrylate esters for example, methyl acrylate, ethyl acrylate, propyl acrylate (i-, n-), butyl acrylate (n-, i-, s-, t-), pentyl acrylate ( n-, i-, s-), hexyl acrylate (n-, i-), heptyl acrylate (n-, i-), octyl acrylate (n-, i-), nonyl acrylate (n-, i-), myristyl acrylate (n-, i-), cyclohexyl acrylate, acrylic acid (2-ethylhexyl), benzyl acrylate, phenethyl acrylate, acrylic acid ( ⁇ -caprolactone), acrylic acid (2-hydroxyethyl) ), Acrylic acid (2-hydroxypropyl), acrylic acid (3-hydroxypropyl), acrylic acid (4-hydroxybutyl), acrylic acid
  • examples of the unsaturated acid include acrylic acid, methacrylic acid, maleic anhydride, crotonic acid, itaconic acid and the like.
  • the polymer composed of the above monomers may be a copolymer or a homopolymer, and is preferably a vinyl ester homopolymer, a vinyl ester copolymer, or a copolymer of vinyl ester and acrylic acid or methacrylic acid ester.
  • an acrylic polymer refers to a homopolymer or copolymer of acrylic acid or methacrylic acid alkyl ester having no monomer unit having an aromatic ring or a cyclohexyl group.
  • acrylate monomer having no aromatic ring and cyclohexyl group examples include, for example, methyl acrylate, ethyl acrylate, propyl acrylate (i-, n-), butyl acrylate (n-, i-, s-, t-), pentyl acrylate (n-, i-, s-), hexyl acrylate (n-, i-), heptyl acrylate (n-, i-), octyl acrylate (n-, i-) ,
  • the acrylic polymer is a homopolymer or copolymer of the above-mentioned monomers, but it is preferable that the acrylic acid methyl ester monomer unit has 30% by mass or more, and the methacrylic acid methyl ester monomer unit has 40% by mass or more. It is preferable. In particular, a homopolymer of methyl acrylate or methyl methacrylate is preferred.
  • Polymers obtained by polymerizing the above ethylenically unsaturated monomers and acrylic polymers are both highly compatible with cellulose ester, excellent in productivity without evaporation and volatilization, and retainability as a protective film for polarizing plates
  • the moisture permeability is small, and the dimensional stability is excellent.
  • an acrylic acid or methacrylic acid ester monomer having a hydroxyl group is not a homopolymer but a constituent unit of a copolymer.
  • the acrylic acid or methacrylic acid ester monomer unit having a hydroxyl group is preferably contained in the acrylic polymer in an amount of 2 to 20% by mass.
  • the dope composition contains a cellulose ester and an acrylic polymer having a weight average molecular weight of 500 or more and 3000 or less as an additive for reducing the thickness direction retardation (Rt). Is preferred.
  • the dope composition contains a cellulose ester and an acrylic polymer having a weight average molecular weight of 5000 or more and 30000 or less as an additive for reducing the thickness direction retardation (Rt). It is preferable.
  • the weight average molecular weight of the polymer as an additive for reducing the thickness direction retardation (Rt) is 500 or more and 3000 or less, or if the polymer has a weight average molecular weight of 5000 or more and 30000 or less, the cellulose ester Is compatible with the material, and neither evaporation nor volatilization occurs during film formation. Moreover, the transparency of the cellulose ester film after film formation is excellent, the moisture permeability is extremely low, and it exhibits excellent performance as a protective film for polarizing plates.
  • a polymer having a hydroxyl group in the side chain can also be preferably used as an additive for reducing the thickness direction retardation (Rt).
  • the monomer unit having a hydroxyl group is the same as the monomer described above, but acrylic acid or methacrylic acid ester is preferable.
  • Examples include those substituted with methacrylic acid, preferably 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate.
  • the acrylic acid ester or methacrylic acid ester monomer unit having a hydroxyl group in the polymer is preferably contained in the polymer in an amount of 2 to 20% by mass, more preferably 2 to 10% by mass.
  • a polymer containing 2 to 20% by mass of the above-mentioned monomer unit having a hydroxyl group has excellent compatibility with cellulose ester, retention, dimensional stability, and low moisture permeability. It is particularly excellent in adhesion with a polarizer as a protective film for a polarizing plate, and has an effect of improving the durability of the polarizing plate.
  • At least one terminal of the main chain of the polymer has a hydroxyl group.
  • the method of having a hydroxyl group at the end of the main chain is not particularly limited as long as it has a hydroxyl group at the end of the main chain, but radical polymerization having a hydroxyl group such as azobis (2-hydroxyethylbutyrate) is possible.
  • the polymer produced by the method related to the description in this publication is commercially available as Act Flow Series manufactured by Soken Chemical Co., Ltd., and can be preferably used.
  • the polymer having a hydroxyl group at the terminal and / or a polymer having a hydroxyl group in the side chain has an advantage of significantly improving the compatibility and transparency of the polymer with respect to the cellulose ester in the present invention.
  • useful additives for reducing the thickness direction retardation include, in addition to the above, for example, ester compounds of diglycerin polyhydric alcohols and fatty acids described in JP-A No. 2000-63560, An ester or ether compound of a hexose sugar alcohol described in JP-A-2001-247717, a trialiphatic alcohol phosphate compound described in JP-A-2004-315613, and a general formula (1) described in JP-A-2005-41911 A phosphoric acid ester compound described in JP-A-2004-315605, a styrene oligomer described in JP-A-2005-105139, and a polymer of a styrene monomer described in JP-A-2005-105140. .
  • the content of the additive for reducing the thickness direction retardation (Rt) described above is preferably 5 to 25% by mass relative to the cellulose ester resin. If the content of the additive for reducing the thickness direction retardation (Rt) is less than 5% by mass, the effect of reducing the thickness direction retardation (Rt) of the film is not manifested. On the other hand, if the content of the additive for reducing the thickness direction retardation (Rt) exceeds 25% by mass, so-called bleed-out occurs and the stability in the film decreases, which is not preferable.
  • an organic solvent having good solubility with respect to the cellulose derivative is referred to as a good solvent, and has a main effect on dissolution.
  • Organic) solvent or main (organic) solvent is referred to as a good solvent, and has a main effect on dissolution.
  • Examples of good solvents include ketones such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethers such as tetrahydrofuran (THF), 1,4-dioxane, 1,3-dioxolane, 1,2-dimethoxyethane, formic acid Esters such as methyl, ethyl formate, methyl acetate, ethyl acetate, amyl acetate, ⁇ -butyrolactone, methyl cellosolve, dimethylimidazolinone, dimethylformamide, dimethylacetamide, acetonitrile, dimethylsulfoxide, sulfolane, nitroethane, methylene chloride And 1,3-dioxolane, THF, methyl ethyl ketone, acetone, methyl acetate and methylene chloride are preferable.
  • ketones such as acetone, methyl eth
  • the dope preferably contains 1 to 40% by mass of an alcohol having 1 to 4 carbon atoms in addition to the organic solvent.
  • These are gels that, after casting the dope onto the support, the solvent begins to evaporate and the proportion of alcohol increases, making the web gel, making the web strong and easy to peel off from the support When used as a solvating solvent, or when the proportion of these is small, it also has a role of promoting the dissolution of a cellulose derivative of a non-chlorine organic solvent.
  • Examples of the alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol, and propylene glycol monomethyl ether.
  • ethanol is preferred because it has excellent dope stability, has a relatively low boiling point, good drying properties, and no toxicity.
  • These organic solvents alone are not soluble in cellulose derivatives and are called poor solvents.
  • the most preferable solvent for dissolving a cellulose derivative, which is a preferable polymer compound satisfying such conditions, at a high concentration is a mixed solvent having a ratio of methylene chloride: ethyl alcohol of 95: 5 to 80:20.
  • a mixed solvent of methyl acetate: ethyl alcohol 60:40 to 95: 5 is also preferably used.
  • the film according to the present invention includes a plasticizer that imparts processability, flexibility, and moisture resistance to the film, fine particles that impart slipperiness to the film (matting agent), an ultraviolet absorber that imparts an ultraviolet absorbing function, and deterioration of the film. You may contain the antioxidant etc. which prevent.
  • the plasticizer used in the present invention is not particularly limited. However, a cellulose derivative or a reactive metal compound capable of hydrolytic polycondensation can be used so as not to cause haze, bleed out or volatilize from the film. It preferably has a functional group capable of interacting with the condensate by hydrogen bonding or the like.
  • Examples of such functional groups include hydroxyl groups, ether groups, carbonyl groups, ester groups, carboxylic acid residues, amino groups, imino groups, amide groups, imide groups, cyano groups, nitro groups, sulfonyl groups, sulfonic acid residues, Examples thereof include a phosphonyl group and a phosphonic acid residue, and a carbonyl group, an ester group and a phosphonyl group are preferred.
  • plasticizers examples include phosphate ester plasticizers, phthalate ester plasticizers, trimellitic acid ester plasticizers, pyromellitic acid plasticizers, polyhydric alcohol ester plasticizers, glycolate plasticizers. Agents, citric acid ester plasticizers, fatty acid ester plasticizers, carboxylic acid ester plasticizers, polyester plasticizers, etc. can be preferably used, but polyhydric alcohol ester plasticizers, glycolate plasticizers are particularly preferred. And non-phosphate ester plasticizers such as polycarboxylic acid ester plasticizers.
  • the polyhydric alcohol ester is composed of an ester of a dihydric or higher aliphatic polyhydric alcohol and a monocarboxylic acid, and preferably has an aromatic ring or a cycloalkyl ring in the molecule.
  • the polyhydric alcohol used in the present invention is represented by the following general formula (3).
  • R 1 represents an n-valent organic group, and n represents a positive integer of 2 or more.
  • Examples of preferred polyhydric alcohols include the following, but the present invention is not limited to these.
  • Examples of preferred polyhydric alcohols include adonitol, arabitol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, 1,3-propanediol, dipropylene glycol, tripropylene glycol, 1, 2-butanediol, 1,3-butanediol, 1,4-butanediol, dibutylene glycol, 1,2,4-butanetriol, 1,5-pentanediol, 1,6-hexanediol, hexanetriol, gallium
  • Examples include lactitol, mannitol, 3-methylpentane-1,3,5-triol, pinacol, sorbitol, trimethylolpropane, trimethylolethane, and xylitol.
  • the monocarboxylic acid used in the polyhydric alcohol ester of the present invention is not particularly limited, and known aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, aromatic monocarboxylic acid and the like can be used. Use of an alicyclic monocarboxylic acid or aromatic monocarboxylic acid is preferred in terms of improving moisture permeability and retention.
  • Examples of preferred monocarboxylic acids include the following, but the present invention is not limited thereto.
  • aliphatic monocarboxylic acid a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used.
  • the number of carbon atoms is more preferably 1-20, and particularly preferably 1-10.
  • acetic acid is contained, the compatibility with the cellulose derivative is increased, and it is also preferable to use a mixture of acetic acid and another monocarboxylic acid.
  • Examples of preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid, Tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, mellicic acid, laccellic acid, etc., undecylen Examples thereof include unsaturated fatty acids such as acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid.
  • Examples of preferable alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
  • aromatic monocarboxylic acids examples include those in which an alkyl group is introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, and two or more benzene rings such as biphenylcarboxylic acid, naphthalenecarboxylic acid, and tetralincarboxylic acid. Examples thereof include aromatic monocarboxylic acids and derivatives thereof, and benzoic acid is particularly preferable.
  • the molecular weight of the polyhydric alcohol ester is not particularly limited, but is preferably 300 to 1500, and more preferably 350 to 750. A higher molecular weight is preferred because it is less likely to volatilize, and a smaller one is preferred in terms of moisture permeability and compatibility with cellulose derivatives.
  • the carboxylic acid used in the polyhydric alcohol ester may be one kind or a mixture of two or more kinds. Moreover, all the OH groups in the polyhydric alcohol may be esterified, or a part of the OH groups may be left as they are.
  • the glycolate plasticizer is not particularly limited, but a glycolate plasticizer having an aromatic ring or a cycloalkyl ring in the molecule can be preferably used.
  • a glycolate plasticizer having an aromatic ring or a cycloalkyl ring in the molecule can be preferably used.
  • preferred glycolate plasticizers for example, butyl phthalyl butyl glycolate, ethyl phthalyl ethyl glycolate, methyl phthalyl ethyl glycolate and the like can be used.
  • phosphate plasticizers triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenylbiphenyl phosphate, trioctyl phosphate, tributyl phosphate, etc.
  • phthalate ester plasticizers diethyl phthalate, dimethoxy Ethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dicyclohexyl phthalate, and the like can be used, but in the present invention, it is preferable that substantially no phosphate ester plasticizer is contained.
  • substantially does not contain means that the content of the phosphoric ester plasticizer is less than 1% by mass, preferably 0.1% by mass, and particularly preferably not added.
  • plasticizers can be used alone or in combination of two or more.
  • the amount of plasticizer used is preferably 1 to 20% by mass. It is more preferably 6 to 16% by mass, particularly preferably 8 to 13% by mass. If the amount of the plasticizer used is less than 1% by mass relative to the cellulose derivative, the effect of reducing the moisture permeability of the film is small, so this is not preferred. If it exceeds 20% by mass, the plasticizer bleeds out from the film, and the film Since the physical properties of the material deteriorate, it is not preferable.
  • fine particles such as a matting agent
  • examples of the fine particles include fine particles of an inorganic compound or fine particles of an organic compound.
  • inorganic compound fine particles include fine particles of silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, tin oxide, and the like. Of these, fine particles of a compound containing a silicon atom are preferred, and fine silicon dioxide particles are particularly preferred.
  • silicon dioxide fine particles include Aerosil 200, 200V, 300, R972, R972V, R974, R202, R812, R805, OX50, and TT600 manufactured by Aerosil Co., Ltd.
  • organic compound fine particles include fine particles of acrylic resin, silicone resin, fluorine compound resin, urethane resin, and the like.
  • the primary particle size of the fine particles is not particularly limited, but the average particle size in the film is preferably about 0.05 to 5.0 ⁇ m. More preferably, it is 0.1 to 1.0 ⁇ m.
  • the average particle diameter of the fine particles refers to the average value of the lengths of the particles in the major axis direction when the cellulose ester film is observed with an electron microscope or an optical microscope. As long as the particles are observed in the film, they may be primary particles or secondary particles in which the primary particles are aggregated, but most of the particles that are usually observed are secondary particles.
  • the primary particle size, the particle size after being dispersed in a solvent, and the particle size added to the film often change, and what is important is that the fine particles are finally combined with the cellulose ester in the film to aggregate. And controlling the particle size formed.
  • the average particle size of the fine particles exceeds 5 ⁇ m, haze deterioration or the like may be observed, or it may cause a failure in a wound state as a foreign matter. Moreover, when the average particle diameter of fine particles is less than 0.05 ⁇ m, it becomes difficult to impart slipperiness to the film.
  • the above fine particles are used by adding 0.04 to 0.5 mass% with respect to the cellulose ester. Preferably, 0.05 to 0.3% by mass, more preferably 0.05 to 0.25% by mass is added.
  • the amount of fine particles added is 0.04% by mass or less, the film surface roughness becomes too smooth, and blocking occurs due to an increase in the friction coefficient. If the amount of fine particles added exceeds 0.5% by mass, the coefficient of friction on the film surface will be too low, causing winding misalignment during winding, and the transparency of the film will be low and haze will be high.
  • the above range is essential because it has no value as a film.
  • the high-pressure dispersion apparatus used in the present invention is an apparatus that creates special conditions such as high shear and high pressure by passing a composition in which fine particles and a solvent are mixed at high speed through a narrow tube.
  • the maximum pressure condition inside the apparatus is 980 N / cm 2 or more in a thin tube having a tube diameter of 1 to 2000 ⁇ m, for example, by processing with a high-pressure dispersion apparatus. More preferably, the maximum pressure condition inside the apparatus is 1960 N / cm 2 or more. Further, at that time, those having a maximum reaching speed of 100 m / sec or more and those having a heat transfer speed of 100 kcal / hr or more are preferable.
  • Examples of the high-pressure dispersing device as described above include an ultra-high pressure homogenizer (trade name, Microfluidizer) manufactured by Microfluidics Corporation, or a nanomizer manufactured by Nanomizer, and other manton gorin type high-pressure dispersing devices such as Izumi Food Machinery. Examples thereof include a homogenizer.
  • the fine particles are dispersed in a solvent containing 25 to 100% by mass of a lower alcohol, and then mixed with a dope in which a cellulose ester (cellulose derivative) is dissolved in a solvent, and the mixed solution is allowed to flow on a support.
  • a cellulose ester film is obtained which is formed by stretching and drying.
  • the content ratio of the lower alcohol is preferably 50 to 100% by mass, and more preferably 75 to 100% by mass.
  • examples of lower alcohols preferably include methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol and the like.
  • the solvent other than the lower alcohol is not particularly limited, but it is preferable to use a solvent used at the time of forming a cellulose ester film.
  • Fine particles are dispersed in a solvent at a concentration of 1 to 30% by mass. Dispersing at a concentration higher than this is not preferable because the viscosity increases rapidly.
  • the concentration of the fine particles in the dispersion is preferably 5 to 25% by mass, more preferably 10 to 20% by mass.
  • the ultraviolet absorbing function of the film is preferably imparted to various optical films such as a polarizing plate protective film, a retardation film, and an optical compensation film from the viewpoint of preventing deterioration of the liquid crystal.
  • a material that absorbs ultraviolet rays may be included in the cellulose derivative, and a layer having an ultraviolet absorbing function may be provided on a film made of the cellulose derivative.
  • ultraviolet absorbers examples include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, and the like. A benzotriazole-based compound with little coloring is preferable. Further, ultraviolet absorbers described in JP-A-10-182621 and JP-A-8-337574 and polymer ultraviolet absorbers described in JP-A-6-148430 are preferably used.
  • ultraviolet absorber those having excellent absorption ability of ultraviolet rays having a wavelength of 370 nm or less from the viewpoint of preventing deterioration of a polarizer or liquid crystal and those having little absorption of visible light having a wavelength of 400 nm or more from the viewpoint of liquid crystal display properties. preferable.
  • UV absorbers useful in the present invention include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert- Butylphenyl) benzotriazole, 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) ) -5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′-(3 ′′, 4 ′′, 5 ′′, 6 ′′ -tetrahydrophthalimidomethyl) -5′-methylphenyl) benzotriazole, 2,2- Methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol, 2- (2'-hydroxy) -3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotri
  • TINUVIN 109 TINUVIN 171
  • TINUVIN 326 all manufactured by Ciba Specialty Chemicals
  • the blending amount of these ultraviolet absorbers is preferably in the range of 0.01 to 10% by mass, more preferably 0.1 to 5% by mass with respect to the cellulose ester (cellulose derivative). If the amount of the ultraviolet absorber used is too small, the ultraviolet absorbing effect may be insufficient. If the amount of the ultraviolet absorber is too large, the transparency of the film may be deteriorated.
  • the ultraviolet absorber is preferably one having high heat stability.
  • the polymeric ultraviolet absorber (or ultraviolet absorbing polymer) described in JP-A Nos. 6-148430 and 2002-47357 is preferably used. be able to. In particular, it is represented by the general formula (1) described in JP-A-6-148430, the general formula (2), or the general formulas (3), (6), and (7) described in JP-A-2002-47357.
  • a polymer ultraviolet absorber is preferably used.
  • the antioxidant is generally referred to as an anti-degradation agent, but is preferably contained in a cellulose ester film as an optical film. That is, when a liquid crystal image display device or the like is placed in a high humidity and high temperature state, the cellulose ester film as an optical film may be deteriorated.
  • the antioxidant has a role of delaying or preventing the film from being decomposed by, for example, halogen in the residual solvent in the film or phosphoric acid of the phosphoric acid plasticizer, so that it is preferably contained in the film. .
  • a hindered phenol compound is preferably used.
  • 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di- -T-butyl-4-hydroxyphenyl) propionate] triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3 -(3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino)- 1,3,5-triazine, 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], oct Decyl-3- (3,5-di-t-butyl-4-hydroxyphenyl
  • 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3 -(3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate] is preferred.
  • hydrazine-based metal deactivators such as N, N′-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine and tris (2,4-di-t
  • a phosphorus processing stabilizer such as -butylphenyl phosphite may be used in combination.
  • the amount of these compounds added is preferably 1 ppm to 1.0% by mass, more preferably 10 to 1000 ppm by mass relative to the cellulose derivative.
  • the stretching step is a clip or the like on both side edges of the web (or film) (10).
  • a tenter method in which the film is fixed and stretched is preferable in order to improve the flatness and dimensional stability of the film.
  • the residual solvent amount of the web (film) (10) immediately before entering the tenter (11) in the stretching step is preferably 10 to 35% by mass.
  • the stretch ratio of the web in the tenter (11) in the stretching process is 3 to 100%, preferably 5 to 80%, and more preferably 5 to 60%.
  • the temperature of the hot air blown from the hot air blowing slit port in the tenter (11) is 100 to 200 ° C., preferably 110 to 190 ° C., more preferably 115 to 185 ° C.
  • the web (10) is meandered by a plurality of conveying rolls arranged in a staggered manner as viewed from the side, and the web (10) is dried in the meantime.
  • the film transport tension in the drying apparatus (10) is affected by the physical properties of the dope, the amount of residual solvent in the peeling and film transport process, the drying temperature, etc.
  • the film transport tension during drying is 30 to 300 N. / M width, and 40 to 270 N / m width is more preferable.
  • the means for drying the web (film) (10) is not particularly limited, and is generally performed with hot air, infrared rays, a heating roll, microwaves, or the like. It is preferable to dry with hot air from the viewpoint of simplicity. For example, it is dried by the drying air (14) blown from the hot air inlet at the front portion of the bottom of the drying device (12), and is dried on the ceiling of the drying device (12). It is dried by exhaust air being discharged from the outlet of the rear portion.
  • the temperature of the drying air (14) is preferably 40 to 160 ° C., more preferably 50 to 160 ° C. in order to improve the flatness and dimensional stability.
  • These steps from casting to post-drying may be performed in an air atmosphere or in an inert gas atmosphere such as nitrogen gas.
  • an inert gas atmosphere such as nitrogen gas.
  • a cellulose ester film that has finished the transport drying process is generally processed to form an emboss on the film by an embossing apparatus before the introduction to the winding process.
  • the height h ( ⁇ m) of the emboss is set in the range of 0.05 to 0.3 times the film thickness T, and the width W is set in the range of 0.005 to 0.02 times the film width L. .
  • Embossing may be formed on both sides of the film.
  • the height h1 + h2 ( ⁇ m) of the emboss is set in the range of 0.05 to 0.3 times the film thickness T, and the width W is set in the range of 0.005 to 0.02 times the film width L.
  • the emboss height h 1 + h 2 ( ⁇ m) is set to 2 to 12 ⁇ m.
  • the emboss width is set to 5-30mm.
  • the film after drying is wound up by a winding device (13) to obtain the original roll of the optical film.
  • a film having good dimensional stability can be obtained by setting the residual solvent amount of the film to be dried to 0.5% by mass or less, preferably 0.1% by mass or less.
  • the winding method of the film may be a generally used winder, and there are methods for controlling the tension such as a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, etc. You can use it properly.
  • the film may be joined to the winding core (winding core) by either a double-sided adhesive tape or a single-sided adhesive tape.
  • the optical film according to the present invention preferably has a width of 1200 to 2500 mm after winding.
  • the thickness of the cellulose ester film after drying is preferably in the range of 20 to 150 ⁇ m as the finished film from the viewpoint of thinning the liquid crystal display device.
  • the film thickness after drying refers to a film in which the amount of residual solvent in the film is 0.5% by mass or less.
  • the film thickness of the cellulose ester film after winding is too thin, for example, the required strength as a protective film for a polarizing plate may not be obtained. If the film thickness is too thick, the advantage of thinning the film becomes less than the conventional cellulose ester film.
  • the dope concentration, the pumping amount, the slit gap of the die of the casting die, the extrusion pressure of the casting die, the speed of the support, etc. are controlled so as to obtain the desired thickness. Is good. Further, as a means for making the film thickness uniform, it is preferable to use a film thickness detection means to feed back and adjust the programmed feedback information to each of the above devices.
  • the atmosphere in the drying apparatus may be air, but may be performed in an inert gas atmosphere such as nitrogen gas or carbon dioxide gas. .
  • an inert gas atmosphere such as nitrogen gas or carbon dioxide gas.
  • the cellulose ester film preferably has a moisture content of 0.1 to 5%, more preferably 0.3 to 4%, and even more preferably 0.5 to 2%.
  • the cellulose ester film desirably has a transmittance of 90% or more, more preferably 92% or more, and still more preferably 93% or more.
  • the optical film produced by the method of the present invention has a haze of 0.3 to 2.0 when three sheets are stacked.
  • the haze of the film is very high. It is low and has optical characteristics excellent in transparency and flatness.
  • the haze of the optical film may be measured, for example, using a haze meter (1001DP type, manufactured by Nippon Denshoku Industries Co., Ltd.) according to the method defined in JIS K6714.
  • the tensile modulus in the machine direction (MD direction) of the cellulose ester film produced by the method for producing an optical film according to the present invention is 1500 MPa to 3500 MPa, and the tensile modulus in the direction perpendicular to the machine direction (TD direction) is It is preferably 3000 MPa to 4500 MPa, and the ratio of the elastic modulus in the TD direction / the elastic modulus in the MD direction of the film is preferably 1.40 to 1.90.
  • the ratio of the elastic modulus in the TD direction / the elastic modulus in the MD direction of the optical film is less than 1.40, the sag of the central portion becomes large in winding a film having a width exceeding 1650 mm, and Since sticking increases, it is not preferable. Further, when the ratio of the elastic modulus in the TD direction / the elastic modulus in the MD direction exceeds 1.90, warpage after overheating in the polarizing plate occurs, or the backlight is heated by the heat of the backlight when incorporated in a liquid crystal panel. Since the dimensional change behavior of the polarizing plate on the side and the surface side is greatly different, unevenness occurs at the corner, which is not preferable.
  • the in-plane direction retardation (Ro) defined by the following formula is 30 to 300 nm under the conditions of a temperature of 23 ° C. and a humidity of 55% RH, and the thickness direction retardation (Rt) is a temperature of 23 ° C. It is preferably 70 to 400 nm under the condition of a humidity of 55% RH.
  • Ro (nx ⁇ ny) ⁇ d
  • Rt ⁇ (nx + ny) / 2 ⁇ nz ⁇ ⁇ d
  • Ro is the retardation value in the film plane
  • Rt is the retardation value in the film thickness direction
  • nx is the refractive index in the slow axis direction in the film plane
  • ny is the refractive index in the fast axis direction in the film plane
  • nz is the film. (Refractive index is measured at a wavelength of 590 nm)
  • d represents the thickness (nm) of the film.
  • the retardation values Ro and Rt can be measured using an automatic birefringence meter.
  • the wavelength can be determined at 590 nm in an environment of a temperature of 23 ° C. and a humidity of 55% RH.
  • the optical film targeted by the present invention is a functional film used for various displays such as a liquid crystal display, a plasma display, and an organic EL display, particularly a liquid crystal display.
  • the optical film according to the present invention is preferably used for a liquid crystal display member, specifically a protective film for a polarizing plate.
  • a protective film for a polarizing plate that has strict requirements for both moisture permeability and dimensional stability
  • the optical film produced by the method of the present invention is preferably used.
  • the protective film for polarizing plate made of the optical film of the present invention it is possible to provide a polarizing plate that is excellent in durability, dimensional stability, and optical isotropy, as well as being thinned.
  • the polarizing film is a film that has been conventionally stretched, for example, a film that can be stretched and oriented, such as a polyvinyl alcohol film, treated with a dichroic dye such as iodine. Since the polarizing film itself does not have sufficient strength and durability, a polarizing plate is generally obtained by adhering a cellulose ester film having no anisotropy as a protective film to both surfaces thereof.
  • the polarizing plate may be prepared by laminating the optical film produced by the method of the present invention as a retardation film, and the optical film produced by the method of the present invention is a retardation film and a protective film. Alternatively, it may be produced by directly bonding to a polarizing film.
  • the method of bonding is not particularly limited, but can be performed with an adhesive composed of an aqueous solution of a water-soluble polymer.
  • the water-soluble polymer adhesive is preferably a completely saponified polyvinyl alcohol aqueous solution.
  • a long polarizing plate can be obtained by laminating a long polarizing film stretched in the longitudinal direction and treated with a dichroic dye and a long retardation film produced by the method of the present invention.
  • a polarizing plate is a sticking type in which a peelable sheet is laminated on one or both sides thereof via a pressure sensitive adhesive layer (for example, an acrylic pressure sensitive adhesive layer). Or the like can be easily attached).
  • the polarizing plate thus obtained can be used for various display devices.
  • a liquid crystal display device using a VA mode liquid crystal molecule in which liquid crystal molecules are substantially vertically aligned when no voltage is applied, or a TN mode liquid crystal cell in which liquid crystal molecules are substantially horizontal and twisted when no voltage is applied. is preferred.
  • the polarizing plate can be produced by a general method.
  • a method in which an optical film or a cellulose ester film is subjected to alkali saponification treatment, and a polyvinyl alcohol film is immersed and stretched in an iodine solution and bonded to both surfaces of a polarizing film using a completely saponified polyvinyl alcohol aqueous solution. is there.
  • the alkali saponification treatment refers to a treatment of immersing the cellulose ester film in a high-temperature strong alkaline solution in order to improve the wetness of the water-based adhesive and improve the adhesiveness.
  • the optical film produced by the method of the present invention includes a hard coat layer, an antiglare layer, an antireflection layer, an antifouling layer, an antistatic layer, a conductive layer, an optical anisotropic layer, a liquid crystal layer, an alignment layer, an adhesive layer, Various functional layers such as an adhesive layer and an undercoat layer can be provided. These functional layers can be provided by a method such as coating or vapor deposition, sputtering, plasma CVD, or plasma treatment.
  • the polarizing plate thus obtained is provided on one side or both sides of the liquid crystal cell, and a liquid crystal display device is obtained using this.
  • the liquid crystal display device includes a liquid crystal cell in which rod-like liquid crystal molecules are sandwiched between a pair of glass substrates, a polarizing film disposed so as to sandwich the liquid crystal cell, and two polarizing plates each including a transparent protective layer disposed on both sides thereof. It is what you have.
  • a protective film for a polarizing plate comprising an optical film produced by the method of the present invention, it is possible to provide a polarizing plate excellent in durability, dimensional stability, and optical isotropy as well as in a thin film. Furthermore, a liquid crystal display device using this polarizing plate or retardation film can maintain stable display performance over a long period of time.
  • optical film produced by the method of the present invention can also be used as a base material for an antireflection film or an optical compensation film.
  • Example 1 preparation of dope
  • silicone dioxide fine particles (Aerosil R972V) were added after being dispersed in ethanol.
  • the filtered dope is uniformly flown from a casting die (3) made of a coat hanger die on a support (7) made of SUS316 endless belt at a temperature of 20 ° C. at a dope temperature of 35 ° C.
  • the cast film (web) (10) was formed.
  • the drying air temperature on the support (7) was kept constant at 30 ° C., and the drying speed of the web (10) on the support (7) was changed to 60 seconds by changing the conveying speed of the support (7). Until 120 seconds, the amount of residual solvent of the web (10) at the time of peeling was changed.
  • the web (10) After peeling the web (10) from the support (7), it is dried while being transported by transport rolls (8) and (9) in an atmosphere at a temperature of 90 ° C.
  • the web (10) was stretched 1.06 times in the width direction in an atmosphere at a temperature of 100 ° C., then the width was released, and drying was terminated in the drying zone (12) at a temperature of 125 ° C. while being conveyed by rolls. Both ends of the film were knurled with a width of 10 mm and a height of 8 ⁇ m to prepare a cellulose triacetate film having a thickness of 40 ⁇ m.
  • the film width was 1300 mm, and the winding length was 1500 m.
  • reaction gas used was 1 m 3 per 1 m of irradiation width.
  • the composition of the mixed gas (reactive gas) used for the plasma treatment is described below.
  • the atmospheric pressure was 1.0 atm.
  • the solvent gas concentration around the plasma device was 4000 ppm of methylene chloride and 2000 ppm of ethanol in the vicinity of the surface of the peeling roll (8) before entering the plasma device.
  • the residual solvent amount of the web (10) when the web (10) was peeled from the support (7) was set to 68% by mass.
  • Example 2 Although it carries out similarly to the case of the said Example 1, the point different from the case of the said Example 1 differs in the amount of residual solvents of the web (10) at the time of peeling a web (10) from a support body (7) being 140 masses. %. Examples 3 and 4 This is carried out in the same manner as in the first and second embodiments. However, the difference from the first and second embodiments is that an excimer UV apparatus shown in FIG. 4 is used instead of the plasma apparatus shown in FIG. It is in the point which performed UV processing.
  • Examples 1 to 4 and Comparative Examples 1 to 4 described above a cellulose triacetate film was continuously formed for 2 weeks under the above-mentioned conditions, and a film prepared 1 day after the start of film formation and 2 weeks later In order to evaluate the difference between the two films, the film was pressed and observed for failure / foreign matter / dirt and evaluated. Moreover, the surface state of the web conveyance rolls (8) and (9) after 1 day of film formation and after 2 weeks of film formation was visually observed and evaluated. The obtained evaluation results are shown in Table 1 below.
  • AA Pushed failure / foreign matter / dirt was almost free.
  • A Pushing failure / foreign matter / dirt with a size of 50 ⁇ m or more was not. 0 to 10 specimens were observed with a size of less than 50 ⁇ m.
  • B There was no pressed failure, foreign matter, or dirt with a size of 50 ⁇ m or more. 11 to 30 specimens with a size of less than 50 ⁇ m were observed.
  • C 1 to 10 pressed faults / foreign particles / stains with a size of 50 ⁇ m or more were observed, and 31 to 50 specimens with a diameter of 50 ⁇ m or less were observed.
  • a 120 ⁇ m thick polyvinyl alcohol film was immersed in 100 parts by mass of an aqueous solution containing 1 part by mass of iodine and 4 parts by mass of boric acid, and stretched 4 times at a temperature of 50 ° C. to produce a polarizing film. .
  • the polarizing plate protective films were bonded to both sides of the polarizing film by using a completely saponified polyvinyl alcohol 5% aqueous solution as an adhesive, respectively, to prepare various polarizing plates.
  • these polarizing plate samples were cut out to a size of 25 cm ⁇ 25 cm, and five samples were prepared for each sample, and two polarizing plates for shining spot observation (not shown) having a size of 30 cm ⁇ 30 cm were placed in a crossed Nicols state.
  • the polarizing plate sample is inserted between the polarizing plates for shining spot observation, and the number of shining spots appearing on the dark surface due to foreign matter etc. of the polarizing plate sample is observed. Based on the value of The obtained results are shown in Table 1 below.
  • the surface of the web transport rolls (8) and (9) is subjected to high energy surface treatment, so that the surface of the web transport rolls (8) and (9) is less likely to be whitish.
  • the effect of slowing the soiling speed of the web transport rolls (8) and (9) was also obtained.
  • the cleaning cycle of the surfaces of the web transport rolls (8) and (9) can be lengthened, and the film productivity can be improved.
  • Comparative Examples 2 and 4 since the amount of residual solvent is too high, it is not possible to prevent the adhesion of dirt to the web transport roll, and it is pushed by a large number of cellulose triacetate films. Foreign matter and dirt were observed, and the number of bright spots on the polarizing plate was observed, which could not be used as an optical film such as a protective film for a polarizing plate. Furthermore, according to Comparative Examples 2 and 4, the cleaning of the surface of the web transport roll was required after one week. On the other hand, in Comparative Examples 1 and 3, good results were obtained with respect to the pressed failure / foreign matter / dirt. However, since the residual solvent amount was too low, a part of the web was removed from the support (7) on the way. Troubles that peel off frequently occur, and not only the web transportability is very inferior, but also the web breaks and the productivity is sometimes lowered.

Abstract

The failure in optical films which is caused by pressing is diminished, and the condensation caused by a plasticizer or impurity-containing water is prevented. Transfer failures in optical films are diminished. The desire for higher quality in optical films is met. An optical film is provided which can be produced continuously and stably with high productivity. Also provided are a process and apparatus for producing the optical film, a polarizer, and a display. The process for producing optical film is based on the solution casting film formation method. At the time when a web is separated from a support, the web has a residual solvent content regulated to 60-160 mass%. The surfaces of rolls (8) and (9) conveying the web (10) which has been separated from the support (7) are irradiated with a plasma or excimer UV to conduct a high-energy surface treatment. A treated surface film is thus formed on the surfaces of the conveyor rolls (8) and (9) to remove adherent substances such as a plasticizer or to prevent the condensation caused by a plasticizer or impurity-containing water.

Description

光学フィルム、その製造方法及び製造装置、光学フィルムを用いた偏光板、並びに表示装置Optical film, manufacturing method and manufacturing apparatus thereof, polarizing plate using optical film, and display device
 本発明は、液晶表示装置(LCD)に用いられる偏光板用保護フィルム、位相差フィルム、視野角拡大フィルム、プラズマディスプレイに用いられる反射防止フィルムなどの各種機能フィルム等にも利用することができる光学フィルム、その製造方法及び製造装置、光学フィルムを用いた偏光板、並びに表示装置に関するものである。 The present invention can be used for various functional films such as a protective film for a polarizing plate used for a liquid crystal display (LCD), a retardation film, a viewing angle widening film, and an antireflection film used for a plasma display. The present invention relates to a film, a manufacturing method and manufacturing apparatus thereof, a polarizing plate using an optical film, and a display device.
 従来、液晶表示装置(LCD)は、低電圧かつ低消費電力でIC回路への直結が可能であり、しかも薄型化が可能であるから、ワードプロセッサーやパーソナルコンピュータ等の表示装置として広く使用されている。 Conventionally, a liquid crystal display device (LCD) can be directly connected to an IC circuit with low voltage and low power consumption, and can be thinned, so that it is widely used as a display device for a word processor, a personal computer or the like. .
 ところで、このLCDの基本的な構成は、液晶セルの両側に偏光板を設けたものである。偏光板は、一定方向の偏波面の光だけを通すので、LCDにおいては、電界による液晶の配向の変化を可視化させる重要な役割を担っており、偏光板の性能によってLCDの性能が大きく左右される。偏光板は偏光子と、偏光子の両面に積層された保護フィルムとよりなる。そして、このような偏光板の保護フィルムとして、セルロースエステルフィルム(以下、単にフィルムともいう)が広く用いられている。液晶表示装置には、偏光板保護フィルムのほかにも、位相差フィルムや視野角拡大フィルム、反射防止フィルムなどの光学フィルムを用いることが知られているし、液晶表示装置以外の表示装置にも光学フィルムは用いられている。その光学フィルムの材料としては、セルロースエステル以外の材料も知られている。 By the way, the basic structure of this LCD is one in which polarizing plates are provided on both sides of the liquid crystal cell. Since the polarizing plate allows only light with a polarization plane in a certain direction to pass, it plays an important role in visualizing changes in the orientation of the liquid crystal due to the electric field in the LCD, and the performance of the polarizing plate greatly depends on the performance of the polarizing plate. The A polarizing plate consists of a polarizer and a protective film laminated on both sides of the polarizer. And as a protective film of such a polarizing plate, the cellulose-ester film (henceforth only a film) is widely used. In addition to the polarizing plate protective film, it is known to use an optical film such as a retardation film, a viewing angle widening film, an antireflection film, or the like for a liquid crystal display device. Optical films are used. As materials for the optical film, materials other than cellulose ester are also known.
 これらの光学フィルムは、専ら溶液流延製膜法によって製造されてきた。光学フィルムを溶液流延製膜装置により製造する場合、大別して2つのドープ流延方式がある。その1つは、一対のドラム間に支持体としてのエンドレスベルトを巻き掛けた構造のベルト流延方式であり、もう1つは回転ドラム自身を支持体とするドラム流延方式である。 These optical films have been produced exclusively by the solution casting film forming method. When manufacturing an optical film with a solution casting film forming apparatus, there are roughly two dope casting methods. One is a belt casting method in which an endless belt as a support is wound between a pair of drums, and the other is a drum casting method in which the rotating drum itself is a support.
 本発明は、上記のベルト流延方式とドラム流延方式の両方式による光学フィルムの製造方法に関わるものである。 The present invention relates to an optical film manufacturing method using both the belt casting method and the drum casting method.
 最近の大画面化に伴って、フィルム幅が広く、長い巻長のフィルム原反が要望されている。従来から溶液流延製膜法による光学フィルムの製造方法においては、ウェブに多量の溶媒が含有されているために非常に軟らかく、何らかの原因物による剥離直後のウェブのロールから受けるダメージ(押され故障)や、ロールの汚れのフィルムへの転写(転写故障)が溶融製膜などより受けやすいことが問題となっていた。これらの故障が発生した光学フィルムを偏光板化すると、重大な欠陥になることが判っている。 With the recent increase in screen size, there is a demand for a film with a wide film width and a long roll length. Conventionally, in the optical film manufacturing method by the solution casting film forming method, the web contains a large amount of solvent, so it is very soft and is damaged by the web roll immediately after peeling due to some cause (pressed failure) ) And transfer of dirt on the roll to the film (transfer failure) is more susceptible to melt film formation. It has been found that the optical film in which these failures occur becomes a serious defect when converted into a polarizing plate.
 一方、溶液流延製膜法において、流延時の皮膜、可塑剤飛散等による剥離近傍ロールの異物付着が発生することがある。従来からこの原因物除去の努力がなされてきたが、未だ充分ではない状況であり、その対策にいろいろな試みが従来からなされていた。 On the other hand, in the solution casting film forming method, adhesion of foreign matter on the roll near the peeling due to a film during casting, scattering of plasticizer, or the like may occur. Efforts have been made to remove the causal agent, but the situation is still not sufficient, and various attempts have been made to deal with it.
 ここで、従来の溶液流延製膜法におけるウェブを支持体から剥離した後の搬送ロールの清掃関連の特許文献には、つぎのようなものがある。
特開2002-292658号公報 特開2006-256184号公報 特開2002-86474号公報 特開2005-225031号公報 特開2001-62911号公報 特開2001-139709号公報 特開2001-341196号公報 特開2003-89142号公報
Here, patent documents relating to cleaning of the transport roll after the web is peeled from the support in the conventional solution casting method include the following.
JP 2002-292658 A JP 2006-256184 A JP 2002-86474 A JP 2005-225031 A JP 2001-62911 A JP 2001-139709 A JP 2001-341196 A JP 2003-89142 A
 上記特許文献1~4に記載の従来法は、可塑剤等をロールに付着しにくくするものであるが、長期間にわたり溶液流延製膜を行なっていると、可塑剤等の析出を抑えきれずに、剥離近傍ロールの表面に若干の汚れが残ってしまい、光学フィルムの品質が低下するという問題があった。そこで、堆積した有機物や無機物で汚れたロールを清掃するために、一旦、製膜ラインを止めてロールの汚れを拭き取り、付着物の除去を行なってきた。しかし、このようなロール汚れの除去作業では、作業効率が悪く、光学フィルムの生産性の大幅な低減につながるという問題があった。 The conventional methods described in Patent Documents 1 to 4 make it difficult for a plasticizer or the like to adhere to a roll. However, if a solution casting film is formed over a long period of time, precipitation of the plasticizer and the like can be suppressed. However, there is a problem that some dirt remains on the surface of the roll near the peeling, and the quality of the optical film is deteriorated. Therefore, in order to clean a roll soiled with accumulated organic or inorganic substances, the film-forming line is temporarily stopped to wipe away the dirt on the roll, and the deposits have been removed. However, such a roll dirt removing operation has a problem that the working efficiency is poor and the productivity of the optical film is greatly reduced.
 また、特許文献5~8記載の方法は、溶液流延製膜法ではなくて、溶融流延製膜法に関するものであるが、ロールにプラズマやエキシマUVを照射することにより、ロール表面の付着物を除去しようとするものである。 Further, the methods described in Patent Documents 5 to 8 relate to the melt casting film forming method, not the solution casting film forming method. However, the roll surface is attached by irradiating the roll with plasma or excimer UV. The kimono is to be removed.
 しかしながら、ロールに異物や可塑剤等の添加剤が、ウェブの搬送ロールに一度付着してしまうと、プラズマやエキシマUVを照射しても、分解して除去するのに、非常に長い時間を要するため、同じく生産性の大幅な低減につながるという問題があった。 However, once an additive such as a foreign substance or a plasticizer adheres to the roll of the web, it takes a very long time to decompose and remove it even when irradiated with plasma or excimer UV. For this reason, there is a problem that the productivity is also greatly reduced.
 本発明の目的は、上記の従来技術の問題を解決し、セルロースエステルフィルム等の光学フィルムの生産速度を大きくしても、ウェブ搬送ロール表面の異物付着、及びこれに起因した光学フィルムの転写故障や、ウェブ搬送ロール表面上の異物による光学フィルムの押され故障の発生を非常に少なくすることができて、品質の良い光学フィルムの高生産性化(生産量増大)が可能である、光学フィルムの製造方法を提供しようとすることにある。 The object of the present invention is to solve the above-mentioned problems of the prior art and increase the production speed of an optical film such as a cellulose ester film. The optical film can reduce the occurrence of failure of the optical film due to foreign matter on the surface of the web transport roll, and can increase the productivity (increase the production amount) of high-quality optical films. It is in trying to provide a manufacturing method.
 上記の目的を達成するために、請求の範囲第1項の発明は、溶液流延製膜法により熱可塑性樹脂のドープを無限移行する無端の支持体上に流延ダイから流延し、支持体上で溶媒を蒸発させて、ウェブを形成した後、ウェブを支持体から剥離し、剥離後のウェブを搬送して乾燥させ、得られたフィルムを巻き取る、光学フィルムの製造方法であって、ウェブを支持体から剥離する際のウェブの残留溶媒量を60~160質量%となし、ウェブを支持体から剥離した後のウェブ搬送ロールの表面に、プラズマまたはエキシマUVを照射して高エネルギー表面処理を施し、該搬送ロールの表面に、表面処理膜を形成することを特徴としている。 In order to achieve the above-mentioned object, the invention according to claim 1 is characterized in that the casting of a thermoplastic resin dope is cast from an endless support on which an endless transition of a thermoplastic resin dope is carried out by a solution casting film forming method. A method for producing an optical film comprising: evaporating a solvent on a body to form a web; then peeling the web from a support; transporting and drying the peeled web; and winding the resulting film. The amount of residual solvent of the web when peeling the web from the support is 60 to 160% by mass, and the surface of the web transport roll after peeling the web from the support is irradiated with plasma or excimer UV for high energy. A surface treatment is performed, and a surface treatment film is formed on the surface of the transport roll.
 このプラズマは、常圧下で照射することが好ましい。常圧であれば、製造工程の大幅な改造が不要であるからである。 This plasma is preferably irradiated under normal pressure. This is because a normal modification of the manufacturing process is not necessary at normal pressure.
 請求の範囲第2項の発明は、請求の範囲第1項に記載の光学フィルムの製造方法であって、プラズマ処理またはエキシマUV処理は、少なくとも前記溶媒の蒸気の存在下で照射し、表面処理膜を形成する処理であることを特徴としている。 The invention according to claim 2 is the method for producing an optical film according to claim 1, wherein the plasma treatment or the excimer UV treatment is performed in the presence of at least the solvent vapor, and the surface treatment is performed. It is a process for forming a film.
 請求の範囲第3項の発明は、請求の範囲第1項または第2項に記載の光学フィルムの製造方法であって、プラズマ処理またはエキシマUV処理は、前記溶媒の蒸気、およびプラズマ処理またはエキシマUV処理に用いるガスの両方の存在下で照射し、表面処理膜を形成する処理であることを特徴としている。 A third aspect of the invention is a method for producing an optical film according to the first or second aspect of the invention, in which the plasma treatment or excimer UV treatment comprises the vapor of the solvent, and the plasma treatment or excimer. It is characterized in that the irradiation is performed in the presence of both gases used for UV treatment to form a surface treatment film.
 請求の範囲第4項の発明は、請求の範囲第1項から第3項のいずれか一項に記載の光学フィルムの製造方法であって、前記溶媒は、1,3-ジオキソラン、テトラヒドロフラン、メチルエチルケトン、アセトン、酢酸メチル及び塩化メチレンの中の少なくとも一種を含むことを特徴としている。 The invention of claim 4 is the method for producing an optical film according to any one of claims 1 to 3, wherein the solvent is 1,3-dioxolane, tetrahydrofuran, methyl ethyl ketone. And at least one of acetone, methyl acetate and methylene chloride.
 請求の範囲第5項の発明は、請求の範囲第1項から第4項のいずれか一項に記載の光学フィルムの製造方法であって、前記ウェブ搬送ロールと高エネルギー波照射装置との距離は、0.5~20mmであることを特徴としている。 The invention of claim 5 is the method for producing an optical film according to any one of claims 1 to 4, wherein the distance between the web transport roll and the high energy wave irradiation device. Is characterized by being 0.5 to 20 mm.
 請求の範囲第6項の発明は、光学フィルムの製造装置であって、熱可塑性樹脂のドープを無限移行する無端の支持体上に流延ダイから流延し、支持体上で溶媒を蒸発させて、ウェブを形成した後、ウェブを支持体から剥離し、剥離後のウェブを搬送して乾燥させ、得られたフィルムを巻き取る、光学フィルムの製造装置であって、ウェブを支持体から剥離する際のウェブの残留溶媒量を60~160質量%となし、ウェブを支持体から剥離した後のウェブ搬送ロールの表面に、プラズマを照射して高エネルギー表面処理を施すプラズマ照射装置、または同表面にエキシマUVを照射して高エネルギー表面処理を施すエキシマUV照射装置を具備することを特徴としている。 The invention of claim 6 is an apparatus for producing an optical film, in which a dope of a thermoplastic resin is cast from a casting die onto an endless support that moves infinitely, and the solvent is evaporated on the support. After the web is formed, the web is peeled from the support, the peeled web is transported and dried, and the resulting film is wound up. The optical film manufacturing apparatus peels the web from the support. The residual solvent amount of the web during the process is 60 to 160% by mass, and the surface of the web transport roll after the web is peeled off from the support is irradiated with plasma to perform high energy surface treatment, or the same It is characterized by having an excimer UV irradiation device that irradiates the surface with excimer UV and performs high energy surface treatment.
 請求の範囲第7項の光学フィルムの発明は、請求の範囲第1項から第5項のうちのいずれか一項に記載の光学フィルムの製造方法により製造されたことを特徴としている。 The invention of the optical film according to claim 7 is characterized by being manufactured by the method of manufacturing an optical film according to any one of claims 1 to 5.
 請求の範囲第8項の偏光板の発明は、請求の範囲第7項に記載の光学フィルムを偏光板用保護フィルムとして、偏光膜の両面のうちのいずれか少なくとも一方の面に有することを特徴としている。 The invention of the polarizing plate according to claim 8 is characterized in that the optical film according to claim 7 is used as a protective film for a polarizing plate on at least one surface of both surfaces of the polarizing film. It is said.
 請求の範囲第9項の表示装置の発明は、請求の範囲第8項に記載の偏光板を用いることを特徴としている。 The invention of the display device according to claim 9 is characterized by using the polarizing plate according to claim 8.
 請求の範囲第1項の発明は、溶液流延製膜法による光学フィルムの製造方法であって、ウェブを支持体から剥離する際のウェブの残留溶媒量を60~160質量%となし、ウェブを支持体から剥離した後のウェブ搬送ロールの表面に、プラズマまたはエキシマUVを照射して高エネルギー表面処理を施し、ウェブから蒸発した溶媒等を材料とする(すなわち溶媒等の分解物によって生じる)表面処理膜を該搬送ロールの表面に形成するものである。請求の範囲第1項の発明によれば、ロール表面に付着した異物を除去できるだけでなく、ロール表面に表面処理膜を形成することよって、ロール表面への皮膜可塑剤等の付着を軽減することができる。また、可塑剤あるいは不純物を含む水によるコンデンスを防止することができ、セルロースエステルフィルム等の光学フィルムの生産速度を大きくしても、ウェブ搬送ロール表面の異物付着、及びこれに起因した光学フィルムの転写故障や、ウェブ搬送ロール表面上の異物による光学フィルムの押され故障の発生を非常に少なくすることができて、品質の良い光学フィルムの高生産性化(生産量増大)が可能であるという効果を奏する。 The invention of claim 1 is a method for producing an optical film by a solution casting film forming method, wherein the amount of residual solvent of the web when peeling the web from the support is 60 to 160% by mass, The surface of the web transport roll after peeling off the support is subjected to high-energy surface treatment by irradiating with plasma or excimer UV, and a solvent evaporated from the web is used as a material (that is, generated by a decomposition product of the solvent). A surface treatment film is formed on the surface of the transport roll. According to the first aspect of the invention, not only can the foreign matter adhered to the roll surface be removed, but also the formation of a surface treatment film on the roll surface can reduce adhesion of the film plasticizer and the like to the roll surface. Can do. In addition, it is possible to prevent condensation due to water containing a plasticizer or impurities, and even if the production speed of an optical film such as a cellulose ester film is increased, the adhesion of foreign matter on the surface of the web transport roll, and the optical film resulting therefrom It is possible to greatly reduce the occurrence of transfer failure and optical film pressing failure due to foreign matter on the surface of the web conveyance roll, and it is possible to increase the productivity (increase the production amount) of high-quality optical films. There is an effect.
 請求の範囲第2項の発明は、請求の範囲第1項に記載の光学フィルムの製造方法であって、プラズマ処理またはエキシマUV処理は、少なくとも溶媒の蒸気の存在下で照射し、表面処理膜を形成する処理であるもので、請求の範囲第2項の発明によれば、プラズマ、エキシマUVを、溶媒蒸気の存在下で照射させたとき、フィルムの剥離性が向上(剥離力が低下)した。また、処理後の金属支持体表面には、処理前と比較して、XPS(X線光電子分光計)にて炭素原子の増加が見られたことから、溶媒蒸気を原料とする純水接触角が小さくなるアモルファス炭化水素のようなモノレイヤーの処理膜が形成されることで、搬送ロール表面への異物等の付着力を低減させることができた、と考えられる。また、副次的な効果として、残留溶媒量が高いウェブは軟らかいため、それ自身に粘着性を有し、搬送ロールに接触して剥れるときに粘着力による応力がかかるため、リタデーションなど光学特性のばらつきを大きくなり、それは高速搬送によってさらに増加傾向にある問題があったが、本方式により、ウェブの搬送ロールに対する粘着力が小さくなり、流延膜の剥離力を低減させ、そのことにより、光学用薄膜フィルムを高速で搬送するときも、フィルムにかかる剥離応力を小さくすることができたと、考えられる。 The invention according to claim 2 is the method for producing an optical film according to claim 1, wherein the plasma treatment or the excimer UV treatment is performed in the presence of at least a solvent vapor, and the surface treatment film According to the second aspect of the invention, when the plasma or excimer UV is irradiated in the presence of solvent vapor, the peelability of the film is improved (the peel strength is reduced). did. Moreover, since the increase in carbon atoms was observed on the surface of the metal support after the treatment by XPS (X-ray photoelectron spectrometer) as compared with that before the treatment, the pure water contact angle using the solvent vapor as a raw material By forming a monolayer treatment film such as an amorphous hydrocarbon that reduces the adhesion, it is considered that the adhesion force of foreign matter or the like to the surface of the transport roll could be reduced. Also, as a secondary effect, the web with a high residual solvent amount is soft, so it has adhesiveness itself, and stress due to adhesive force is applied when it comes off in contact with the transport roll, so optical properties such as retardation There was a problem that the fluctuation of the increase was increased due to high-speed conveyance, but with this method, the adhesive force to the web conveyance roll was reduced, and the peeling force of the casting film was reduced. It is considered that the peeling stress applied to the film could be reduced even when the optical thin film was transported at high speed.
 なお、このような溶媒蒸気の存在下で、プラズマ装置、エキシマUV装置による表面処理膜の形成については、現時点では、そのメカニズムは十分解明されていないが、非晶質炭化水素の非常に薄い膜が形成されているものと考えられる。 In addition, regarding the formation of the surface treatment film by the plasma apparatus and the excimer UV apparatus in the presence of such solvent vapor, the mechanism is not sufficiently elucidated at present, but the film is very thin of amorphous hydrocarbon. It is thought that is formed.
 金属支持体表面の物理的な形状が変化した可能性については、SUS304やSUS316製等の、表面を超鏡面研磨加工した板に、プラズマ、エキシマUVを照射した前後で、表面粗さRaが走査型原子間力顕微鏡(以下、AFMと言う)による測定で変化していないことから、金属体の表面が荒れたり、反対に金属体の平滑化して、フィルムの剥離性が変化した可能性は低いものと考えられる。 As for the possibility that the physical shape of the metal support surface has changed, the surface roughness Ra is scanned before and after irradiating plasma or excimer UV onto a plate with a super mirror polished surface such as SUS304 or SUS316. It is unlikely that the surface of the metal body is rough or, on the contrary, the metal body is smoothed and the peelability of the film has changed due to the fact that it has not changed by measurement with a scanning atomic force microscope (hereinafter referred to as AFM). It is considered a thing.
 請求の範囲第3項の発明は、請求の範囲第1項または第2項に記載の光学フィルムの製造方法であって、プラズマ処理またはエキシマUV処理は、溶媒の蒸気、およびプラズマ処理またはエキシマUV処理に用いるガスの両方の存在下で照射し、表面処理膜を形成する処理であるもので、請求の範囲第3項の発明によれば、同様に、流延膜の剥離力を低減させ、そのことにより、光学用薄膜フィルムを高速で搬送するときも、フィルムにかかる剥離応力を小さくすることができるという効果を奏する。 A third aspect of the invention is a method for producing an optical film according to the first or second aspect of the invention, wherein the plasma treatment or excimer UV treatment comprises solvent vapor, and plasma treatment or excimer UV. Irradiation in the presence of both of the gases used for the treatment is a treatment for forming a surface treatment film. According to the invention of claim 3, similarly, the peeling force of the casting film is reduced, As a result, even when the optical thin film is transported at a high speed, the peeling stress applied to the film can be reduced.
 請求の範囲第4項の発明は、請求の範囲第1項から第3項のいずれか一項に記載の光学フィルムの製造方法であって、溶媒は、1,3-ジオキソラン、テトラヒドロフラン、メチルエチルケトン、アセトン、酢酸メチル及び塩化メチレンの中の少なくとも一種を含むもので、請求の範囲第4項の発明によれば、プラズマ処理またはエキシマUV処理により効果的に表面処理膜を形成することができ、流延膜の剥離力を低減させ、そのことにより、光学用薄膜フィルムを高速で搬送するときも、フィルムにかかる剥離応力を小さくすることができるという効果を奏する。 The invention of claim 4 is the process for producing an optical film according to any one of claims 1 to 3, wherein the solvent is 1,3-dioxolane, tetrahydrofuran, methyl ethyl ketone, It contains at least one of acetone, methyl acetate, and methylene chloride. According to the invention of claim 4, the surface treatment film can be effectively formed by plasma treatment or excimer UV treatment. The peeling force of the stretched film is reduced, so that the peeling stress applied to the film can be reduced even when the optical thin film is conveyed at high speed.
 請求の範囲第5項の発明は、請求の範囲第1項から第4項のいずれか一項に記載の光学フィルムの製造方法であって、ウェブ搬送ロールと高エネルギー波照射装置との距離は、0.5~20mmであるもので、請求の範囲第5項の発明によれば、ウェブ搬送ロールと高エネルギー波照射装置とが接触しウェブ搬送ロール表面が損傷する危険が無く、また、離しすぎて搬送ロール表面の改質の効果が弱まることもないので、光学フィルムの高品質化の要求に応えることができるとともに、連続かつ安定な高生産性化が可能となるという効果を奏する。 The invention of claim 5 is the method for producing an optical film according to any one of claims 1 to 4, wherein the distance between the web transport roll and the high energy wave irradiation device is According to the invention of claim 5, there is no risk that the web transport roll and the high energy wave irradiation device are in contact with each other and the surface of the web transport roll is damaged. Since the effect of modifying the surface of the transport roll is not weakened too much, it is possible to meet the demand for higher quality of the optical film and to achieve continuous and high productivity.
 請求の範囲第6項の発明は、光学フィルムの製造装置であって、熱可塑性樹脂のドープを無限移行する無端の支持体上に流延ダイから流延し、支持体上で溶媒を蒸発させて、ウェブを形成した後、ウェブを支持体から剥離し、剥離後のウェブを搬送して乾燥させ、得られたフィルムを巻き取る、光学フィルムの製造装置であって、ウェブを支持体から剥離する際のウェブの残留溶媒量を60~160質量%となし、ウェブを支持体から剥離した後のウェブ搬送ロールの表面に、プラズマを照射して高エネルギー表面処理を施すプラズマ照射装置、または同表面にエキシマUVを照射して高エネルギー表面処理を施すエキシマUV照射装置を具備するもので、請求の範囲第6項の発明によれば、セルロースエステルフィルム等の光学フィルムの生産速度を大きくしても、剥離後のウェブ搬送ロール表面の異物付着、及びこれに起因した光学フィルムの転写故障や、ウェブ搬送ロール表面上の異物による光学フィルムの押され故障の発生を非常に少なくすることができて、品質の良い光学フィルムの高生産性化(生産量増大)が可能であるという効果を奏する。 The invention of claim 6 is an apparatus for producing an optical film, in which a dope of a thermoplastic resin is cast from a casting die onto an endless support that moves infinitely, and the solvent is evaporated on the support. After the web is formed, the web is peeled from the support, the peeled web is transported and dried, and the resulting film is wound up. The optical film manufacturing apparatus peels the web from the support. The residual solvent amount of the web during the process is 60 to 160% by mass, and the surface of the web transport roll after the web is peeled off from the support is irradiated with plasma to perform high energy surface treatment, or the same An excimer UV irradiating device for irradiating the surface with excimer UV to perform high-energy surface treatment. According to the invention of claim 6, an optical film such as a cellulose ester film Even if the production speed is increased, the adhesion of foreign matter on the surface of the web transport roll after peeling, the transfer failure of the optical film due to this, and the occurrence of a pressing failure of the optical film due to foreign matter on the surface of the web transport roll As a result, it is possible to reduce the amount of the optical film, and it is possible to increase the productivity (increase the production amount) of the optical film with good quality.
 また、本発明によれば、溶液流延製膜法による光学フィルムの連続生産において、ウェブ搬送ロール表面に、プラズマ処理またはエキシマUV処理により表面処理膜を形成することにより、ウェブ搬送ロールからの剥離性を上げ、光学フィルムのヘイズを抑えたまま、ウェブのいわゆる高残留溶媒量領域での製膜を可能にして、光学フィルムの生産条件が広がることにより、光学フィルムの生産性が向上するという効果を奏する。 Further, according to the present invention, in the continuous production of an optical film by the solution casting film forming method, the surface treatment film is formed on the surface of the web conveyance roll by plasma treatment or excimer UV treatment, thereby peeling from the web conveyance roll. The effect of improving the productivity of the optical film by increasing the production conditions of the optical film by enabling the film formation in the so-called high residual solvent amount region of the web while suppressing the haze of the optical film. Play.
 さらに、本発明によれば、ウェブ搬送ロール表面に、プラズマ処理またはエキシマUV処理を施して表面処理膜を形成し、該表面処理膜によりウェブ搬送ロール表面の異物付着を軽減することによって、光学フィルムの押され故障の発生を少なくし、プラズマまたはエキシマUV照射による高エネルギー照射によりロール表面を加熱し、表面温度を上げることによって、可塑剤による、あるいはまた不純物を含む水によるコンデンスを防ぎ、光学フィルムの転写故障を少なくすることができて、これより、光学フィルムの高品質化の要求に応えることができるとともに、連続かつ安定な高生産性化が可能となるという効果を奏する。 Furthermore, according to the present invention, the surface of the web transport roll is subjected to plasma treatment or excimer UV treatment to form a surface treatment film, and the surface treatment film reduces foreign matter adhesion on the surface of the web transport roll, thereby providing an optical film. Reduces the occurrence of pressing failure, heats the roll surface by high energy irradiation with plasma or excimer UV irradiation, and raises the surface temperature, thereby preventing condensation due to plasticizer or water containing impurities, optical film The transfer failure can be reduced, thereby satisfying the demand for higher quality of the optical film and continuous and stable higher productivity.
 請求の範囲第7項の発明は、請求の範囲第1項から第5項のうちのいずれか一項に記載の光学フィルムの製造方法により製造されたことを特徴とするもので、請求の範囲第7項の光学フィルムの発明によれば、転写故障や押され故障の発生がなく、優れた光学特性を有するものであるという効果を奏する。 The invention according to claim 7 is manufactured by the method for manufacturing an optical film according to any one of claims 1 to 5. According to the optical film of the seventh aspect, there is no transfer failure or pressing failure, and there is an effect that the optical film has excellent optical characteristics.
 請求の範囲第8項の偏光板の発明は、請求の範囲第7項に記載の光学フィルムを偏光板用保護フィルムとして、偏光膜の両面のうちのいずれか少なくとも一方の面に有することを特徴とするもので、請求の範囲第8項の偏光板の発明によれば、透明性、平面性に優れた光学フィルムを偏光板保護フィルムとして、偏光膜の両面のうちの少なくとも一方の面に有するものであるから、この偏光板を液晶パネルに組み込んだ際、液晶パネルのコントラスト低下や濃淡ムラを生じることがなく、視認性に優れているという効果を奏する。 The invention of the polarizing plate according to claim 8 is characterized in that the optical film according to claim 7 is used as a protective film for a polarizing plate on at least one surface of both surfaces of the polarizing film. According to the polarizing plate of the eighth aspect of the invention, an optical film excellent in transparency and flatness is used as a polarizing plate protective film on at least one surface of the polarizing film. Therefore, when this polarizing plate is incorporated in a liquid crystal panel, the liquid crystal panel does not cause a decrease in contrast or uneven density, and has an effect of excellent visibility.
 請求の範囲第9項の表示装置の発明は、請求の範囲第8項に記載の優れた光学特性を有する光学フィルムを具備する偏光板を用いているものであるから、請求の範囲第9項の表示装置の発明によれば、液晶パネルのコントラスト低下や濃淡ムラを生じることがなく、視認性に優れているという効果を奏する。 The invention of the display device according to claim 9 uses the polarizing plate including the optical film having the excellent optical characteristics according to claim 8, and therefore the claim 9. According to the display device of the present invention, there is an effect that the liquid crystal panel is excellent in visibility without causing a decrease in contrast or unevenness in density.
本発明の光学フィルムの製造方法を実施する装置の実施形態を示すフローシートである。It is a flow sheet which shows embodiment of the apparatus which enforces the manufacturing method of the optical film of this invention. 図1の装置の変形例を示すフローシートである。It is a flow sheet which shows the modification of the apparatus of FIG. 本発明の光学フィルムの製造方法において使用するプラズマ装置の原理を説明するための説明図である。It is explanatory drawing for demonstrating the principle of the plasma apparatus used in the manufacturing method of the optical film of this invention. 本発明の光学フィルムの製造方法において使用するエキシマUV装置の原理を説明するための説明図である。It is explanatory drawing for demonstrating the principle of the excimer UV apparatus used in the manufacturing method of the optical film of this invention.
符号の説明Explanation of symbols
 1:溶解釜
 2:ポンプ
 3:流延ダイ
 4:減圧チャンバ
 5:前後巻回ドラム
 6:回転駆動ドラム(支持体)
 7:エンドレスベルト(支持体)
 8:ウェブ搬送ロール
 9:ウェブ搬送ロール
 10:ウェブ
 11:テンター
 12:ロール搬送乾燥装置
 13:巻取り機
 14:温風(乾燥風)
 18:反応ガス供給管
 19:プラズマ照射装置
 a:電極
 b:電極
 g:反応ガス
 d:プラズマ憤射スリットからウェブ搬送ロール表面までの間隙
 e:排気
 u:エキシマUV装置のエキシマUVランプ
 r:反射板
 p:パージガス
 i:エアーカーテン兼ランプ装置冷却風
 q:石英ガラス
1: Melting pot 2: Pump 3: Casting die 4: Depressurization chamber 5: Front and rear winding drum 6: Rotation drive drum (support)
7: Endless belt (support)
8: Web conveyance roll 9: Web conveyance roll 10: Web 11: Tenter 12: Roll conveyance drying device 13: Winder 14: Hot air (drying air)
18: Reaction gas supply pipe 19: Plasma irradiation device a: Electrode b: Electrode g: Reaction gas d: Gap from plasma spray slit to web conveyance roll surface e: Exhaust u: Excimer UV lamp of excimer UV device r: Reflection Plate p: Purge gas i: Air curtain / lamp device cooling air q: Quartz glass
 つぎに、本発明の実施の形態を、図面を参照して説明するが、本発明はこれらに限定されるものではない。 Next, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
 本発明による光学フィルムの製造方法は、溶液流延製膜法により熱可塑性樹脂のドープを無限移行する無端の支持体上に流延ダイから流延し、支持体上で溶媒を蒸発させて、ウェブを形成した後、ウェブを支持体から剥離し、剥離後のウェブを搬送して乾燥させ、得られたフィルムを巻き取る、光学フィルムの製造方法であって、ウェブを支持体から剥離する際のウェブの残留溶媒量を60~160質量%となし、ウェブを支持体から剥離した後のウェブ搬送ロールの表面に、プラズマまたはエキシマUVを照射して高エネルギー表面処理を施し、該搬送ロールの表面に、表面処理膜を形成するもので、剥離後のウェブを搬送ロール表面に、表面処理膜を形成することによって、ロール表面への可塑剤等の付着を軽減、もしくは可塑剤による、あるいはまた不純物を含む水によるコンデンスを防止するものである。 The method for producing an optical film according to the present invention is obtained by casting a dope of a thermoplastic resin from a casting die onto an endless support that moves infinitely by a solution casting film forming method, evaporating a solvent on the support, After the web is formed, the web is peeled off from the support, the peeled web is transported and dried, and the resulting film is wound up. When the web is peeled off from the support The residual solvent amount of the web is 60 to 160% by mass, and the surface of the web transport roll after the web is peeled off from the support is subjected to high energy surface treatment by irradiating with plasma or excimer UV. A surface treatment film is formed on the surface. By forming a surface treatment film on the surface of the transport roll with the peeled web, adhesion of a plasticizer or the like to the roll surface is reduced, or a plasticizer is used. Or also it is intended to prevent condensed by water containing impurities.
 ここで、ウェブを支持体から剥離する際のウェブの残留溶媒量が60質量%未満であると、途中でウェブの一部が剥がれたりすることがあり、また残留溶媒量が160質量%を超えると、剥離不良が発生し、ウェブの破断の恐れがあるので、好ましくない。 Here, when the residual solvent amount of the web when peeling the web from the support is less than 60% by mass, a part of the web may be peeled off in the middle, and the residual solvent amount exceeds 160% by mass. In such a case, a peeling failure occurs and the web may be broken.
 本発明の光学フィルムの製造方法は、光学フィルムの製造に用いられるウェブ搬送ロール表面に、プラズマ処理またはエキシマUV処理により表面処理膜を形成することにより、ウェブ搬送ロール表面の汚れやコンデンスを低減させながら光学フィルムを製造する方法もので、エネルギー波照射装置(プラズマ照射装置あるいはエキシマUV照射装置)と被清掃物であるウェブ搬送ロール表面との距離は、0.5~20mm、好ましくは1.0~15mmである。近づけ過ぎると、接触による搬送ロール表面の損傷の危険があり、離しすぎると、搬送ロール表面の改質の効果が弱くなる。 The method for producing an optical film of the present invention reduces contamination and condensation on the surface of the web conveyance roll by forming a surface treatment film on the surface of the web conveyance roll used for the production of the optical film by plasma treatment or excimer UV treatment. However, the distance between the energy wave irradiation device (plasma irradiation device or excimer UV irradiation device) and the surface of the web transport roll as the object to be cleaned is 0.5 to 20 mm, preferably 1.0. ~ 15 mm. If it is too close, there is a risk of damage to the surface of the transport roll due to contact, and if it is too far away, the effect of modifying the surface of the transport roll is weakened.
 高エネルギー表面処理の具体的な方法として、エキシマUVやプラズマのダウンストリームあるいはジェットタイプと呼ばれるものが有効である。 As a specific method of high energy surface treatment, what is called an excimer UV or plasma downstream or jet type is effective.
 プラズマの場合、様々なガスでの利用が可能であるが、環境面、排気の後処理、ランニングコスト面から、窒素と微量の酸素の混合ガスが好ましい。また、ガス風量は、プラズマ照射の有効幅1m当たり、20~5000L/minが望ましい。さらには、40~1000L/minがより好ましい。 In the case of plasma, various gases can be used, but a mixed gas of nitrogen and a small amount of oxygen is preferable from the viewpoint of environment, exhaust aftertreatment, and running cost. The gas flow rate is desirably 20 to 5000 L / min per 1 m of the effective width of plasma irradiation. Furthermore, 40 to 1000 L / min is more preferable.
 また、エキシマUVや酸素ガスを用いるプラズマのようにオゾンが発生する条件では、吸引排気ダクトも本体周囲に併せて設置することが望ましい。 Also, under conditions where ozone is generated, such as plasma using excimer UV or oxygen gas, it is desirable to install a suction exhaust duct around the body.
 紫外線を照射してウェブ搬送ロール表面を清掃する雰囲気としては、塵埃などが浮遊していないクリーンな酸素雰囲気中が好ましく、該ロールと紫外線ランプの囲いに排気装置を取り付けておき、常にフレッシュエアーを供給することがより好ましい。 The atmosphere for cleaning the surface of the web transport roll by irradiating with ultraviolet rays is preferably a clean oxygen atmosphere in which dust and the like are not suspended. An exhaust device is attached to the enclosure between the roll and the ultraviolet lamp, and fresh air is always supplied. It is more preferable to supply.
 製膜中にフィルムが搬送されているウェブ搬送ロール表面に紫外線やプラズマ波を照射することにより、ウェブ搬送ロール表面に表面処理膜を形成し汚れの付着・蓄積を防ぐことができまたロール表面を高エネルギー照射により加熱することができるので、不純物を含む水や可塑剤のロール表面でのコンデンスを防ぐことができ、ウェブ搬送ロール表面に付着した汚れ清掃のために製膜を中断する回数が激減し、光学フィルムの生産性を向上させることができる。 By irradiating the surface of the web transport roll where the film is transported during film formation with ultraviolet rays or plasma waves, a surface treatment film can be formed on the surface of the web transport roll to prevent adhesion and accumulation of dirt. Heating by high energy irradiation can prevent condensation of water and plasticizer containing impurities on the roll surface, and drastically reduce the number of times film formation is interrupted to clean dirt adhered to the web transfer roll surface. In addition, the productivity of the optical film can be improved.
 本発明の照射は、照射形状をロール幅方向に対して、長軸にすることが好ましい。つまり、照射径をロール幅方向に長く採ることにより、ロールの回転で、全体的な照射面積を稼ぐことができるため有利である。 In the irradiation of the present invention, the irradiation shape is preferably a long axis with respect to the roll width direction. That is, by taking the irradiation diameter long in the roll width direction, it is advantageous because the entire irradiation area can be gained by rotating the roll.
 本発明において、有機付着物とは、主として可塑剤に由来するもので、工程で発生する種々の有機化合物を生成するものである。さらに空気中に含まれる昇華物や油脂、塵芥などもこれに含まれる。 In the present invention, the organic deposit is mainly derived from a plasticizer and produces various organic compounds generated in the process. Furthermore, sublimates, oils and fats, dust, etc. contained in the air are also included.
 本発明において、無機付着物とは、主としてステンレス製の支持体に由来するもので、工程で発生する種々の無機化合物を生成するものである。さらに空気中に含まれる昇華物や塵芥などもこれに含まれる。 In the present invention, the inorganic deposit is mainly derived from a stainless steel support, and produces various inorganic compounds generated in the process. In addition, sublimates and dust contained in the air are also included.
 本発明において用いる熱可塑性樹脂には必要に応じて、紫外線吸収剤、酸化防止剤、帯電防止剤、滑剤、核剤、離型剤などを、本発明の目的を損わない範囲で添加することができる。 If necessary, an ultraviolet absorber, an antioxidant, an antistatic agent, a lubricant, a nucleating agent, a release agent, and the like are added to the thermoplastic resin used in the present invention as long as the object of the present invention is not impaired. Can do.
 溶液流延製膜法によって光学フィルムを製造することにより、経時でウェブ搬送ロール表面に有機付着物が堆積し、光学フィルムの押され故障が発生したり、ロール表面に不純物を含む水や可塑剤のコンデンスが生じ光学フィルムの転写故障となるが、本発明の方法によってウェブ搬送ロール表面にプラズマ処理またはエキシマUV処理を施すことにより、ウェブ搬送ロール表面に表面処理膜を形成し、汚れの付着・蓄積を防ぐことができ、また高エネルギー照射によってウェブ搬送ロール表面を加熱させ不純物を含む水や可塑剤のコンデンスを防ぐことによって、ウェブ搬送ロール表面をクリーンに保つことができるものである。 By producing an optical film by the solution casting film forming method, organic deposits accumulate on the surface of the web transport roll over time, causing the optical film to be pushed and broken, or water or plasticizer containing impurities on the roll surface. Condensation of the optical film occurs, resulting in a transfer failure of the optical film. By performing plasma treatment or excimer UV treatment on the surface of the web transport roll by the method of the present invention, a surface treatment film is formed on the surface of the web transport roll, and adhesion of dirt Accumulation can be prevented, and the surface of the web transport roll can be kept clean by heating the surface of the web transport roll by high energy irradiation to prevent condensation of water and plasticizers containing impurities.
 上述した本発明の製造方法を用いて、押され故障や転写故障の無い高品質なセルロースエステルフィルムを生産性よく製造することができる。 Using the above-described production method of the present invention, a high-quality cellulose ester film free from pressing failure and transfer failure can be produced with high productivity.
 上記の本発明の光学フィルムの製造方法によれば、セルロースエステルフィルム等の光学フィルムの生産速度を大きくしても、ウェブ搬送ロール表面の異物付着、及びこれに起因した光学フィルムの転写故障や、ウェブ搬送ロール表面上の異物による光学フィルムの押され故障の発生を非常に少なくすることができて、品質の良い光学フィルムの高生産性化(生産量増大)が可能である。 According to the manufacturing method of the optical film of the present invention, even if the production rate of the optical film such as a cellulose ester film is increased, the adhesion of the foreign matter on the surface of the web transport roll, and the transfer failure of the optical film due to this, Occurrence of a pressing failure of the optical film due to foreign matter on the surface of the web conveying roll can be greatly reduced, and high-quality optical film with high quality (increase in production volume) can be achieved.
 また、溶液流延製膜法による光学フィルムの連続生産において、ウェブ搬送ロール表面に、プラズマ処理またはエキシマUV処理により表面処理膜を形成することにより、ウェブ搬送ロール表面の剥離性を上げ、光学フィルムのヘイズを抑えたまま、ウェブのいわゆる高残留溶媒量領域での製膜を可能にして、光学フィルムの生産条件が広がることにより、光学フィルムの生産性が向上する。 In continuous production of optical films by the solution casting method, the surface of the web transport roll is formed by plasma treatment or excimer UV treatment to increase the peelability of the surface of the web transport roll. The film can be formed in a so-called high residual solvent amount region of the web while suppressing the haze of the film, and the production conditions of the optical film are expanded, so that the productivity of the optical film is improved.
 さらに、ウェブ搬送ロール表面に、プラズマ処理またはエキシマUV処理を施して表面処理膜を形成し、該表面処理膜により剥離後のウェブ搬送ロール表面の異物付着を軽減することによって、光学フィルムの押され故障の発生を少なくし、プラズマまたはエキシマUV照射による高エネルギー照射によりロール表面を加熱し、表面温度を上げることによって、可塑剤による、あるいはまた不純物を含む水によるコンデンスを防ぎ、光学フィルムの転写故障を少なくすることができて、これより、光学フィルムの高品質化の要求に応えることができるとともに、連続かつ安定な高生産性化が可能となる。 Furthermore, the surface of the web transport roll is subjected to plasma treatment or excimer UV treatment to form a surface treatment film, and the surface treatment film reduces adhesion of foreign matter on the surface of the web transport roll after peeling, thereby pressing the optical film. Reduces the occurrence of failure, heats the roll surface by high energy irradiation with plasma or excimer UV irradiation, raises the surface temperature, prevents condensation due to plasticizer or water containing impurities, transfer failure of optical film As a result, it is possible to meet the demand for high quality optical films and to achieve continuous and stable high productivity.
 さらに、本発明の光学フィルムの製造方法においては、プラズマ装置、またはエキシマUV装置による高エネルギー表面処理を、プラズマ装置に用いる反応ガス、またはエキシマUV装置に用いるパージガスの存在下で行なうことが好ましい。 Furthermore, in the method for producing an optical film of the present invention, it is preferable to perform high energy surface treatment with a plasma apparatus or an excimer UV apparatus in the presence of a reaction gas used for the plasma apparatus or a purge gas used for the excimer UV apparatus.
 本発明の光学フィルムの製造方法によれば、溶液流延製膜法で見られる、剥離時のウェブ中の残留溶媒がある特定の範囲にあるときに見られる、剥離不良が解消し、いわゆる高残留溶媒量領域での製膜を可能にして、これまでのフィルム生産条件の制約が減り、フィルム生産条件の選択範囲が大幅に広がるとともに、ウェブ搬送ロール表面からのフィルムの離型性(剥離性)が向上し、全剥離残溶域で、非常に滑らかな剥離性が得られるものである。 According to the method for producing an optical film of the present invention, it is possible to eliminate a defect in peeling that is observed when a residual solvent in a web at the time of peeling is in a certain range, which is seen in a solution casting film forming method. Enables film formation in the residual solvent amount area, reduces the restrictions on film production conditions so far, greatly expands the selection range of film production conditions, and releases the film from the surface of the web transport roll (peelability) ) Is improved, and a very smooth peelability can be obtained in the entire residual peel zone.
 図1は、溶液流延製膜法による本発明の光学フィルムの製造方法を実施する装置の具体例を示すフローシートである。なお、本発明の実施にあたっては、以下に示す図面のプロセスに限定されるものではない。 FIG. 1 is a flow sheet showing a specific example of an apparatus for carrying out the method for producing an optical film of the present invention by a solution casting film forming method. Note that the implementation of the present invention is not limited to the process of the drawings shown below.
 同図において、まず、溶解釜(1)で、例えばセルロースエステル系樹脂を、良溶媒及び貧溶媒の混合溶媒に溶解し、これに可塑剤や紫外線吸収剤等の添加剤を添加して樹脂溶液(ドープ)を調製する。 In the figure, first, in a dissolving pot (1), for example, a cellulose ester resin is dissolved in a mixed solvent of a good solvent and a poor solvent, and an additive such as a plasticizer or an ultraviolet absorber is added to the resin solution. (Dope) is prepared.
 ついで、溶解釜で調整されたドープを、例えば加圧型定量ギヤポンプ(2)を通して、導管によって流延ダイ(3)に送液し、無限に移送する例えば回転駆動ステンレス鋼製エンドレスベルトよりなる支持体(7)上の流延位置に、流延ダイ(3)からドープを流延する。 Next, a support made of, for example, a rotationally driven stainless steel endless belt, in which the dope adjusted in the melting pot is fed to the casting die (3) by a conduit through, for example, a pressurized metering gear pump (2) and transferred infinitely. (7) The dope is cast from the casting die (3) to the upper casting position.
 流延ダイ(3)によるドープの流延には、流延されたウェブをブレードで膜厚を調節するドクターブレード法、あるいは逆回転するロールで調節するリバースロールコーターによる方法等があるが、口金部分のスリット形状を調製でき、膜厚を均一にしやすい加圧ダイを用いる方法が好ましい。加圧ダイには、コートハンガーダイやTダイ等があるが、いずれも好ましく用いられる。 The dope casting by the casting die (3) includes a doctor blade method in which the film thickness of the cast web is adjusted with a blade, or a reverse roll coater method in which the web is adjusted with a reverse rotating roll. A method using a pressure die that can adjust the slit shape of the part and easily make the film thickness uniform is preferable. Examples of the pressure die include a coat hanger die and a T die, and any of them is preferably used.
 なお、流延ダイ(3)としては、口金部分のスリット形状を調製でき、膜厚を均一にしやすい加圧ダイが好ましい。また、流延ダイ(3)には、通常、減圧チャンバ(4)が付設されている。 In addition, as the casting die (3), a pressure die that can adjust the slit shape of the die part and easily make the film thickness uniform is preferable. The casting die (3) is usually provided with a decompression chamber (4).
 ここで、セルロースエステル溶液(ドープ)の固形分濃度が、15~30質量%であるのが、好ましい。セルロースエステル溶液(ドープ)の固形分濃度が、15質量%未満であれば、支持体(7)上で充分な乾燥ができず、剥離時にドープ膜の一部が支持体(7)上に残り、ベルト汚染につながるため、好ましくない。また固形分濃度が30%を超えると、ドープ粘度が高くなり、ドープ調整工程でフィルター詰まりが早くなったり、支持体(7)上への流延時に圧力が高くなり、押し出せなくなるため、好ましくない。 Here, the solid content concentration of the cellulose ester solution (dope) is preferably 15 to 30% by mass. If the solid content concentration of the cellulose ester solution (dope) is less than 15% by mass, sufficient drying cannot be performed on the support (7), and a part of the dope film remains on the support (7) during peeling. This is not preferable because it leads to belt contamination. Moreover, when the solid content concentration exceeds 30%, the dope viscosity is increased, filter clogging is accelerated in the dope adjustment process, or pressure is increased during casting on the support (7), and it is not preferable to extrude. Absent.
 支持体(7)として回転駆動エンドレスベルトを具備する図示の製膜装置では、ベルト支持体(7)は、前後一対のドラム(5)(5)および中間の複数のロール(図示略)より保持されている。 In the illustrated film forming apparatus having a rotationally driven endless belt as the support (7), the belt support (7) is held by a pair of front and rear drums (5) and (5) and a plurality of intermediate rolls (not shown). Has been.
 回転駆動エンドレスベルト支持体(7)の両端巻回部のドラム(5)(5)の一方、もしくは両方に、ベルト支持体(7)には図示しない張力を付与する駆動装置が設けられ、これによってベルト支持体(7)は張力が掛けられて張った状態で使用される。 One or both of the drums (5) and (5) at both ends of the rotary drive endless belt support (7) are provided with a drive device for applying tension (not shown) to the belt support (7). Thus, the belt support (7) is used in a tensioned state.
 金属支持体(7)の幅は1700~2400mm、セルロースエステル溶液の流延幅は1600~2500mm、巻き取り後のフィルムの幅は1400~2500mmであるのが好ましい。これにより、金属支持体方式によって幅の広い液晶表示装置用光学フィルムを製造することができる。 The width of the metal support (7) is preferably 1700 to 2400 mm, the casting width of the cellulose ester solution is preferably 1600 to 2500 mm, and the width of the film after winding is preferably 1400 to 2500 mm. Thereby, the wide optical film for liquid crystal display devices can be manufactured by a metal support body system.
 支持体(7)としてエンドレスベルトを用いる場合には、製膜時のベルト温度は、一般的な温度範囲0℃~溶媒の沸点未満の温度、混合溶媒では最も沸点の低い溶媒の沸点未満の温度で流延することができ、さらには5℃~溶媒沸点-5℃の範囲が、より好ましい。このとき、周囲の雰囲気湿度は露点以上に制御する必要がある。なお、支持体(7)の周速度が40~200m/minであるのが、好ましい。 When an endless belt is used as the support (7), the belt temperature during film formation is a general temperature range of 0 ° C. to a temperature lower than the boiling point of the solvent, and a mixed solvent having a temperature lower than the boiling point of the lowest boiling solvent. Further, the range of 5 ° C. to the boiling point of the solvent −5 ° C. is more preferable. At this time, it is necessary to control the ambient atmospheric humidity above the dew point. The peripheral speed of the support (7) is preferably 40 to 200 m / min.
 上記のようにして支持体(7)表面に流延されたドープは、剥ぎ取りまでの間で乾燥が促進されることによってもゲル膜の強度(フィルム強度)が増加する。 As described above, the dope cast on the surface of the support (7) also increases the strength of the gel film (film strength) by promoting the drying until peeling.
 金属製支持体(7)としてエンドレスベルトを用いる方式においては、金属製支持体(7)上では、ウェブ(10)が金属製支持体(7)から剥離ロール(8)によって剥離可能な膜強度となるまで乾燥固化させるため、ウェブ(10)中の残留溶媒量が60~160質量%まで乾燥させるのが好ましく、80~130質量%が、より好ましい。また、金属製支持体(7)からウェブ(10)を剥離するときのウェブ温度は、0~30℃が好ましい。また、ウェブ(10)は、金属製支持体(7)からの剥離直後に、金属製支持体(7)密着面側からの溶媒蒸発で温度が一旦急速に下がり、雰囲気中の水蒸気や溶媒蒸気など揮発性成分がコンデンスしやすいため、剥離時のウェブ温度は5~30℃がさらに好ましい。 In the system using an endless belt as the metal support (7), the film strength on which the web (10) can be peeled from the metal support (7) by the peeling roll (8) on the metal support (7). Therefore, the amount of residual solvent in the web (10) is preferably dried to 60 to 160% by mass, more preferably 80 to 130% by mass. The web temperature when peeling the web (10) from the metal support (7) is preferably 0 to 30 ° C. Further, immediately after the web (10) is peeled off from the metal support (7), the temperature once drops rapidly due to the solvent evaporation from the metal support (7) contact surface side, and water vapor or solvent vapor in the atmosphere. The web temperature at the time of peeling is more preferably 5 to 30 ° C. because volatile components such as these are easily condensed.
 ここで、残留溶媒量は、下記の式で表わせる。 Here, the residual solvent amount can be expressed by the following equation.
   残留溶媒量(質量%)={(M-N)/N}×100
 式中、Mはウェブの任意時点での質量、Nは質量Mのものを温度110℃で、3時間乾燥させたときの質量である。
Residual solvent amount (% by mass) = {(MN) / N} × 100
In the formula, M is a mass at an arbitrary point of the web, and N is a mass when a mass M is dried at a temperature of 110 ° C. for 3 hours.
 支持体(7)上に流延されたドープにより形成されたウェブ(10)を、支持体(7)上で加熱し、支持体(7)からウェブが剥離可能になるまで溶媒を蒸発させる。 The web (10) formed by the dope cast on the support (7) is heated on the support (7), and the solvent is evaporated until the web can be peeled from the support (7).
 溶媒を蒸発させるには、ウェブ側から風を吹かせる方法や、支持体(7)の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があり、適宜、単独であるいは組み合わせて用いればよい。 To evaporate the solvent, there are a method of blowing air from the web side, a method of transferring heat from the back surface of the support (7) with a liquid, a method of transferring heat from the front and back by radiant heat, and the like. Can be used.
 なお、図1には、ウェブ搬送ロール(8)(9)表面に対してプラズマを照射して高エネルギー表面処理を施すプラズマ照射装置(19)、およびこれに反応ガスを供給する反応ガス供給管(18)が示されている。 FIG. 1 shows a plasma irradiation apparatus (19) for performing high-energy surface treatment by irradiating plasma on the surface of the web transport rolls (8) and (9), and a reaction gas supply pipe for supplying a reaction gas thereto. (18) is shown.
 支持体(7)上でウェブ(10)が剥離可能な膜強度となるまで乾燥固化された後に、ウェブ(10)が支持体(7)から剥離され、ついで、後述する延伸工程のテンター(11)において延伸される。 After the web (10) is dried and solidified on the support (7) until it has a peelable film strength, the web (10) is peeled off from the support (7), and then a tenter (11 ).
 図2は、溶液流延製膜法による本発明の光学フィルムの製造方法を実施する装置のいま1つの具体例を示すフローシートで、支持体として、例えば表面にハードクロムメッキ処理を施したステンレス鋼製の回転駆動ドラム(6)を用いた場合を例示するものである。 FIG. 2 is a flow sheet showing another specific example of an apparatus for carrying out the method for producing an optical film of the present invention by a solution casting film forming method. As a support, for example, stainless steel whose surface is subjected to hard chrome plating treatment. The case where the steel rotational drive drum (6) is used is illustrated.
 なお、図2の光学フィルム製造装置のその他の点は、上記図1の光学フィルム製造装置の場合と同様であるので、図面において同一のものには、同一の符号を付した。 The other points of the optical film manufacturing apparatus in FIG. 2 are the same as those of the optical film manufacturing apparatus in FIG.
 本発明の光学フィルムの製造装置は、熱可塑性樹脂のドープを無限移行する回転エンドレスベルト(7)または回転ドラム(6)よりなる無端の支持体上に流延ダイ(3)から流延し、支持体(6)(7)上で溶媒を蒸発させて、ウェブ(10)を形成した後、ウェブ(10)を支持体(7)から剥離し、剥離後のウェブ(10)を搬送ロールで搬送し、さらにウェブ(10)を乾燥させて、光学フィルムを製造する溶液流延製膜装置により構成され、ウェブ(10)を支持体(6)(7)から剥離する際のウェブの残留溶媒量を60~160質量%となし、ウェブ(10)を支持体(6)(7)から剥離した後のウェブ搬送ロール(8)(9)の表面に、プラズマを照射して高エネルギー表面処理を施すプラズマ照射装置、または同表面にエキシマUVを照射して高エネルギー表面処理を施すエキシマUV照射装置を具備するものである。 The apparatus for producing an optical film of the present invention is cast from a casting die (3) on an endless support composed of a rotating endless belt (7) or a rotating drum (6) that allows infinite transition of a thermoplastic resin dope, After evaporating the solvent on the supports (6) and (7) to form the web (10), the web (10) is peeled from the support (7), and the peeled web (10) is removed with a transport roll. The residual solvent of the web when the web (10) is peeled off from the support (6) (7), which is constituted by a solution casting film forming apparatus for transporting and further drying the web (10) to produce an optical film. High energy surface treatment is performed by irradiating the surface of the web transport roll (8) (9) after the web (10) is peeled from the support (6) (7) with plasma. Applying plasma irradiation device, or the same surface By irradiating excimer UV those comprising an excimer UV irradiation apparatus for applying a high energy surface treatment.
 プラズマ装置には、被処理基盤を挟むように対向配置された電極間に高周波電力を加えて、供給ガスをプラズマ化するプラナー方式と、反応ガスを高周波電圧が加えられた電極の間を通してプラズマ化したガスを吹き付けるダウンストリーム方式があるが、本発明の光学フィルムの製造方法では、流延膜表面の高エネルギー表面処理には、後者のダウンストリーム式を用いるのが好ましい。 In the plasma device, a high frequency power is applied between the electrodes facing each other so as to sandwich the substrate to be processed, and the supply gas is converted into plasma, and the reaction gas is converted into plasma through the electrodes to which the high frequency voltage is applied. In the method for producing an optical film of the present invention, the latter downstream method is preferably used for the high energy surface treatment of the cast film surface.
 図3は、プラズマ装置の原理を説明するための説明図である。同図において、(a)と(b)はリアクタの対向電極、(g)は反応ガス、(d)はプラズマ憤射スリットからウェブ搬送ロール(8)(9)表面までの間隙、(i)はエアーカーテン用風、(e)は排気である。 FIG. 3 is an explanatory diagram for explaining the principle of the plasma apparatus. In the figure, (a) and (b) are the counter electrodes of the reactor, (g) is the reactive gas, (d) is the gap from the plasma spray slit to the surface of the web transfer roll (8) (9), (i) Is the air curtain wind, and (e) is the exhaust.
 プラズマ装置は、高周波電圧が加えられた対向電極(a)、(b)間に、反応性ガス(g)を導入し、通過させてプラズマ化し、ウェブ搬送ロール(8)(9)表面にプラズマ化ガスを噴射供給し、高エネルギー処理により、ウェブ搬送ロール(8)(9)表面に表面処理層を形成するものである。 The plasma apparatus introduces a reactive gas (g) between the counter electrodes (a) and (b) to which a high-frequency voltage is applied, passes it into plasma, and forms plasma on the surface of the web transport rolls (8) and (9). A surface treatment layer is formed on the surface of the web transport rolls (8) and (9) by injecting and supplying a chemical gas and performing high energy treatment.
 つぎに、本発明の光学フィルムの製造方法において使用することができるエキシマUV装置について説明する。 Next, an excimer UV apparatus that can be used in the method for producing an optical film of the present invention will be described.
 図4は、エキシマUV装置の原理を説明するための説明図である。同図において、(u)はエキシマUVランプ、(r)は反射板、(p)はパージガス、(i)はエアーカーテン兼ランプ装置冷却風、(d)はエキシマUVランプ(u)からウェブ搬送ロール(8)(9)表面までの間隙、(e)は排気である。 FIG. 4 is an explanatory diagram for explaining the principle of the excimer UV apparatus. In the figure, (u) is an excimer UV lamp, (r) is a reflector, (p) is a purge gas, (i) is an air curtain / lamp device cooling air, (d) is a web transport from the excimer UV lamp (u). The gap to the roll (8) (9) surface, (e) is the exhaust.
 本実施の形態においては、図4に示すエキシマUVランプ(u)を用いて、主として波長が172nmの紫外線を1~3,000mJ/cm の光量で、ウェブ搬送ロール(8)(9)表面に、照射するものである。 In this embodiment, using the excimer UV lamp (u) shown in FIG. 4, the surface of the web transport roll (8) (9) is mainly irradiated with ultraviolet rays having a wavelength of 172 nm with a light quantity of 1 to 3,000 mJ / cm 2. In addition, irradiation is performed.
 このような紫外線照射下では、パージガス(p)に含まれる酸素は活性酸素やオゾンを生成し、ウェブ搬送ロール(8)(9)の表面の改質に寄与する。さらにメチレンクロライドやアルコールなどの有機溶媒蒸気やアセチレンなどモノマーガス等の表面処理膜生成のための原料ガスを、パージガス(p)に混合させて導入してもよい。これらの原料ガスをパージガス(p)に混合しない場合は、流延膜表面にこれらの原料ガスを同伴させてエキシマUV装置の下まで送り込み、反応、表面処理層形成を行なわせても良い。 Under such ultraviolet irradiation, oxygen contained in the purge gas (p) generates active oxygen and ozone and contributes to the modification of the surface of the web transport rolls (8) (9). Further, a raw material gas for generating a surface treatment film such as an organic solvent vapor such as methylene chloride or alcohol, or a monomer gas such as acetylene may be mixed with the purge gas (p) and introduced. When these raw material gases are not mixed with the purge gas (p), these raw material gases may be entrained on the surface of the casting film and sent under the excimer UV device to perform reaction and surface treatment layer formation.
 これらの高エネルギー表面処理装置を、光学用途のフィルム製膜ラインに持ち込む場合には、クリーン度維持の対策が課題となる。特に、構造上、発塵したものをライン内に吐き出す構造のプラズマ装置では、クリーン度維持の対策が重要である。 Measures to maintain cleanliness are an issue when bringing these high-energy surface treatment devices into film-forming lines for optical applications. In particular, it is important to take measures for maintaining the cleanliness in a plasma apparatus having a structure in which dust generated is discharged into the line.
 つぎに、本実施形態の溶液流延製膜法による光学フィルムの製造方法においては、主材としてセルロースエステル樹脂等の樹脂を含む樹脂溶液(ドープ)に、可塑剤、リタデーション調整剤、紫外線吸収剤、微粒子、及び低分子量物質のうちの少なくとも1種以上の物質、及び溶媒が含まれている。以下、これらについて説明する。 Next, in the method for producing an optical film by the solution casting film forming method of the present embodiment, a resin solution (dope) containing a resin such as cellulose ester resin as a main material is added with a plasticizer, a retardation adjusting agent, and an ultraviolet absorber. , At least one of fine particles, and low molecular weight substances, and a solvent. Hereinafter, these will be described.
 フィルム材料としては、種々の樹脂を用いることができるが、中でもセルロースエステルが好ましい。 As the film material, various resins can be used, and among them, cellulose ester is preferable.
 セルロースエステルは、セルロース由来の水酸基がアシル基などで置換されたセルロースエステルである。例えば、セルロースアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートプロピオネートブチレートなどのセルロースアシレートや、脂肪族ポリエステルグラフト側鎖を有するセルロースアセテートなどが挙げられる。中でも、セルロースアセテート、セルロースアセテートプロピオネート、脂肪族ポリエステルグラフト側鎖を有するセルロースアセテートが好ましい。本発明の効果を阻害しない範囲であれば、その他の置換基が含まれていてもよい。 Cellulose ester is a cellulose ester in which a hydroxyl group derived from cellulose is substituted with an acyl group or the like. Examples thereof include cellulose acylates such as cellulose acetate, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate, and cellulose acetate propionate butyrate, and cellulose acetate having an aliphatic polyester graft side chain. Among these, cellulose acetate, cellulose acetate propionate, and cellulose acetate having an aliphatic polyester graft side chain are preferable. Other substituents may be included as long as the effects of the present invention are not impaired.
 セルローストリアセテートの例としては、アセチル基の置換度が2.0以上、3.0以下であることが好ましい。置換度をこの範囲にすることで、良好な成形性が得られ、かつ所望の面内方向リタデーション(Ro)、及び厚み方向リタデーション(Rt)を得ることができるのである。アセチル基の置換度が、この範囲より低いと、位相差フィルムとしての耐湿熱性、特に湿熱下での寸法安定性に劣る場合があり、置換度が大きすぎると、必要なリタデーション特性が発現しなくなる場合がある。 As an example of cellulose triacetate, the substitution degree of acetyl group is preferably 2.0 or more and 3.0 or less. By setting the degree of substitution within this range, good moldability can be obtained, and desired in-plane direction retardation (Ro) and thickness direction retardation (Rt) can be obtained. If the substitution degree of the acetyl group is lower than this range, the heat resistance as a retardation film, particularly the dimensional stability under wet heat may be inferior, and if the substitution degree is too large, the necessary retardation characteristics will not be exhibited. There is a case.
 本発明に用いられるセルロースエステルの原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプ、ケナフなどを挙げることができる。また、それらから得られたセルロースエステルは、それぞれ任意の割合で混合使用することができる。 The cellulose used as a raw material of the cellulose ester used in the present invention is not particularly limited, and examples thereof include cotton linter, wood pulp, and kenaf. Moreover, the cellulose ester obtained from them can be mixed and used in arbitrary ratios, respectively.
 本発明において、セルロースエステルの数平均分子量は、60000~300000の範囲が、得られるフィルムの機械的強度が強く好ましい。さらに70000~200000が好ましい。 In the present invention, the number average molecular weight of the cellulose ester is preferably in the range of 60,000 to 300,000, since the mechanical strength of the resulting film is strong. Furthermore, 70,000 to 200,000 are preferable.
 本発明による光学フィルムの製造方法では、セルロースエステルと厚み方向リタデーション(Rt)を低減する添加剤とを含有するドープ組成物を用いるのが、好ましい。 In the method for producing an optical film according to the present invention, it is preferable to use a dope composition containing a cellulose ester and an additive for reducing the thickness direction retardation (Rt).
 本発明において、セルロースエステルフィルムの厚み方向リタデーション(Rt)を低減することが、IPSモードで動作する液晶表示装置の視野角拡大の意味において重要であるが、本発明において、このような厚み方向リタデーション(Rt)を低減する添加剤としては、下記のものが挙げられる。 In the present invention, reducing the thickness direction retardation (Rt) of the cellulose ester film is important in terms of increasing the viewing angle of the liquid crystal display device operating in the IPS mode. In the present invention, such thickness direction retardation is used. The following are mentioned as an additive which reduces (Rt).
 一般に、セルロースエステルフィルムのリタデーションは、セルロースエステル由来のリタデーションと、添加剤由来のリタデーションの和として現れる。従って、セルロースエステルのリタデーションを低減させるための添加剤とは、セルロースエステルの配向を乱し、かつ自身が配向しにくいおよび/または分極率異方性が小さい添加剤が厚み方向リタデーション(Rt)を効果的に低下させる化合物である。従って、セルロースエステルの配向を乱すための添加剤としては、芳香族系化合物より、脂肪族系化合物が好ましい。 Generally, retardation of a cellulose ester film appears as the sum of retardation derived from a cellulose ester and retardation derived from an additive. Therefore, an additive for reducing the retardation of the cellulose ester is an additive that disturbs the orientation of the cellulose ester and is difficult to orient itself and / or has a small polarizability anisotropy. It is a compound that effectively reduces it. Therefore, as an additive for disturbing the orientation of the cellulose ester, an aliphatic compound is preferable to an aromatic compound.
 ここで、具体的なリタデーション低減剤として、例えば、つぎの一般式(1)または(2)で表わされるポリエステルが挙げられる。 Here, specific retardation reducing agents include, for example, polyesters represented by the following general formula (1) or (2).
 一般式(1)  B1-(G-A-)mG-B1
 一般式(2)  B2-(G-A-)nG-B2
 上記式中、B1はモノカルボン酸成分を表わし、B2はモノアルコール成分を表わし、Gは2価のアルコール成分を表わし、Aは2塩基酸成分を表わし、これらによって合成されたことを表わす。B1、B2、G、およびAは、いずれも芳香環を含まないことが特徴である。m、nは、繰り返し数を表わす。
Formula (1) B1- (GA-) mG-B1
Formula (2) B2- (GA-) nG-B2
In the above formula, B1 represents a monocarboxylic acid component, B2 represents a monoalcohol component, G represents a divalent alcohol component, A represents a dibasic acid component, and these are synthesized. B1, B2, G, and A are all characterized by not containing an aromatic ring. m and n represent the number of repetitions.
 B1で表わされるモノカルボン酸成分としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸等を用いることができる。 The monocarboxylic acid component represented by B1 is not particularly limited, and known aliphatic monocarboxylic acids, alicyclic monocarboxylic acids, and the like can be used.
 好ましいモノカルボン酸の例としては、以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。 Examples of preferred monocarboxylic acids include the following, but the present invention is not limited thereto.
 肪族モノカルボン酸としては、炭素数1~32の直鎖または側鎖を持った脂肪酸を好ましく用いることができる。炭素数1~20であることがさらに好ましく、炭素数1~12であることが特に好ましい。酢酸を含有させると、セルロースエステルとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。 As the aliphatic monocarboxylic acid, a straight-chain or side-chain fatty acid having 1 to 32 carbon atoms can be preferably used. More preferably, it has 1-20 carbon atoms, and particularly preferably has 1-12 carbon atoms. When acetic acid is contained, the compatibility with the cellulose ester is increased, and it is also preferable to use a mixture of acetic acid and another monocarboxylic acid.
 好ましいモノカルボン酸としては、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を挙げることができる。 Preferred monocarboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid, tridecylic acid , Saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid, undecinic acid, Examples thereof include unsaturated fatty acids such as oleic acid, sorbic acid, linoleic acid, linolenic acid and arachidonic acid.
 B2で表わされるモノアルコール成分としては、特に制限はなく、公知のアルコール類を用いることができる。例えば炭素数1~32の直鎖または側鎖を持った脂肪族飽和アルコールまたは脂肪族不飽和アルコールを好ましく用いることができる。炭素数1~20であることがさらに好ましく、炭素数1~12であることが特に好ましい。 The monoalcohol component represented by B2 is not particularly limited, and known alcohols can be used. For example, an aliphatic saturated alcohol or aliphatic unsaturated alcohol having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. More preferably, it has 1-20 carbon atoms, and particularly preferably has 1-12 carbon atoms.
 Gで表わされる2価のアルコール成分としては、以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。例えばエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,5-ペンチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等を挙げることができるが、これらのうち、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコールが好ましく、さらに、1,3-プロピレングリコール、1,4-ブチレングリコール、1,6-ヘキサンジオール、ジエチレングリコールが好ましく用いられる。 Examples of the divalent alcohol component represented by G include the following, but the present invention is not limited thereto. For example, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,5-pentanediol, 1,6- Examples include hexanediol, 1,5-pentylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol. Among these, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1 , 2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,6-hexanediol, diethylene glycol and triethylene glycol are preferred, and 1,3-propylene glycol and 1,4-butylene glycol are also preferred. Lumpur, 1,6-hexanediol, diethylene glycol is preferably used.
 Aで表わされる2塩基酸(ジカルボン酸)成分としては、脂肪族2塩基酸、脂環式2塩基酸が好ましく、例えば脂肪族2塩基酸としては、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸等、特に、脂肪族カルボン酸としては、炭素数4~12を有するもの、これらから選ばれる少なくとも1つのものを使用する。つまり、2種以上の2塩基酸を組み合わせて使用してよい。 The dibasic acid (dicarboxylic acid) component represented by A is preferably an aliphatic dibasic acid or an alicyclic dibasic acid. Examples of the aliphatic dibasic acid include malonic acid, succinic acid, glutaric acid, and adipic acid. , Pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid and the like, in particular, aliphatic carboxylic acids having at least one selected from those having 4 to 12 carbon atoms are used. To do. That is, two or more dibasic acids may be used in combination.
 上記の一般式(1)または(2)における繰り返し数m、nは、1以上で170以下が好ましい。 The number of repetitions m and n in the general formula (1) or (2) is preferably 1 or more and 170 or less.
 ポリエステルの重量平均分子量は、20000以下が好ましく、10000以下であることがさらに好ましい。特に重量平均分子量が500~10000のポリエステルは、セルロースエステルとの相溶性が良好で、製膜において蒸発も揮発も起こらない。 The weight average molecular weight of the polyester is preferably 20000 or less, and more preferably 10,000 or less. In particular, polyesters having a weight average molecular weight of 500 to 10,000 have good compatibility with cellulose esters, and neither evaporation nor volatilization occurs during film formation.
 ポリエステルの重縮合は常法によって行なわれる。例えば上記2塩基酸とグリコールの直接反応、上記の2塩基酸またはこれらのアルキルエステル類、例えば2塩基酸のメチルエステルとグリコール類とのポリエステル化反応またはエステル交換反応により熱溶融縮合法か、あるいはこれらの酸の酸クロライドとグリコールとの脱ハロゲン化水素反応のいずれかの方法により用意に合成し得るが、重量平均分子量がさほど大きくないポリエステルは直接反応によるのが、好ましい。低分子量側に分布が高くあるポリエステルは、セルロースエステルとの相溶性が非常によく、フィルム形成後、透湿度も小さく、しかも透明性に富んだセルロースエステルフィルムを得ることができる。 Polyester polycondensation is performed by conventional methods. For example, a direct reaction of the dibasic acid and glycol, a hot melt condensation method by the polyesterification reaction or transesterification reaction of the dibasic acid or alkyl esters thereof, for example, a methyl ester of dibasic acid and glycols, or Although it can be easily synthesized by any method of dehydrohalogenation reaction between acid chloride of these acids and glycol, it is preferable that polyester having a weight average molecular weight not so large is by direct reaction. Polyester having a high distribution on the low molecular weight side has a very good compatibility with the cellulose ester, and after forming the film, a moisture permeability is small, and a cellulose ester film rich in transparency can be obtained.
 分子量の調節方法は、特に制限がなく、従来の方法を使用できる。例えば、重合条件にもよるが、1価の酸または1価のアルコールで分子末端を封鎖する方法により、これらの1価のものの添加する量によりコントロールできる。この場合、1価の酸がポリマーの安定性から好ましい。例えば、酢酸、プロピオン酸、酪酸等を挙げることができるが、重縮合反応中には系外に溜去せず、停止して、このような1価の酸を反応系外に除去するときに溜去しやすいものが選ばれる。これらを混合使用しても良い。また、直接反応の場合には、反応中に溜去してくる水の量により反応を停止するタイミングを計ることよっても重量平均分子量を調節できる。その他、仕込むグリコールまたは2塩基酸のモル数を偏らせることよってもできるし、反応温度をコントロールしても調節できる。 The molecular weight adjustment method is not particularly limited, and a conventional method can be used. For example, although depending on the polymerization conditions, the amount of these monovalent compounds can be controlled by a method of blocking the molecular ends with a monovalent acid or monovalent alcohol. In this case, a monovalent acid is preferable from the viewpoint of polymer stability. For example, acetic acid, propionic acid, butyric acid, etc. can be mentioned, but during the polycondensation reaction, it is not distilled out of the system, but is stopped and such monovalent acid is removed from the reaction system. The one that is easy to accumulate is selected. These may be used in combination. In the case of direct reaction, the weight average molecular weight can also be adjusted by measuring the timing of stopping the reaction by the amount of water distilled off during the reaction. In addition, it can be adjusted by biasing the number of moles of glycol or dibasic acid to be charged, or can be adjusted by controlling the reaction temperature.
 上記一般式(1)または(2)で表わされるポリエステルは、セルロースエステルに対し、1~40質量%含有することが好ましい。特に5~15質量%含有することが好ましい。 The polyester represented by the general formula (1) or (2) is preferably contained in an amount of 1 to 40% by mass with respect to the cellulose ester. In particular, the content is preferably 5 to 15% by mass.
 本発明において、厚み方向リタデーション(Rt)を低減する添加剤としては、エチレン性不飽和モノマーを重合して得られるポリマー、アクリル系ポリマーが挙げられる。 In the present invention, examples of the additive for reducing the thickness direction retardation (Rt) include a polymer obtained by polymerizing an ethylenically unsaturated monomer and an acrylic polymer.
 厚み方向リタデーション(Rt)を低減する添加剤としてのポリマーを合成するには、通常の重合では分子量のコントロールが難しく、分子量をあまり大きくしない方法でできるだけ分子量を揃えることのできる方法を用いることが望ましい。かかる重合方法としては、クメンペルオキシドやt-ブチルヒドロペルオキシドのような過酸化物重合開始剤を使用する方法、重合開始剤を通常の重合より多量に使用する方法、重合開始剤の他にメルカプト化合物や四塩化炭素等の連鎖移動剤を使用する方法、重合開始剤の他にベンゾキノンやジニトロベンゼンのような重合停止剤を使用する方法、さらに特開2000-128911号公報または特開2000-344823号公報にあるような一つのチオール基と2級の水酸基とを有する化合物、あるいは、該化合物と有機金属化合物を併用した重合触媒を用いて塊状重合する方法等を挙げることができ、いずれも本発明において好ましく用いられるが、特に、該公報に記載の方法が好ましい。 In order to synthesize a polymer as an additive for reducing the thickness direction retardation (Rt), it is difficult to control the molecular weight in normal polymerization, and it is desirable to use a method that can align the molecular weight as much as possible without increasing the molecular weight. . Examples of such a polymerization method include a method using a peroxide polymerization initiator such as cumene peroxide and t-butyl hydroperoxide, a method using a polymerization initiator in a larger amount than usual polymerization, and a mercapto compound in addition to the polymerization initiator. And a method using a chain transfer agent such as carbon tetrachloride, a method using a polymerization terminator such as benzoquinone and dinitrobenzene in addition to the polymerization initiator, and JP-A No. 2000-128911 or JP-A No. 2000-344823. Examples include a compound having a single thiol group and a secondary hydroxyl group as described in the publication, or a bulk polymerization method using a polymerization catalyst in which the compound and an organometallic compound are used in combination. In particular, the method described in the publication is preferred.
 有用な厚み方向リタデーション(Rt)を低減する添加剤としてのポリマーを構成するモノマー単位としてのモノマーを下記に挙げるが、本発明はこれに限定されない。 Although the monomer as a monomer unit which comprises the polymer as an additive which reduces useful thickness direction retardation (Rt) is mentioned below, this invention is not limited to this.
 エチレン性不飽和モノマーを重合して得られる厚み方向リタデーション(Rt)を低減する添加剤としてのポリマーを構成するエチレン性不飽和モノマー単位としては、まず、ビニルエステルとして、例えば、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、吉草酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、シクロヘキサンカルボン酸ビニル、オクチル酸ビニル、メタクリル酸ビニル、クロトン酸ビニル、ソルビン酸ビニル、安息香酸ビニル、桂皮酸ビニル等が挙げられる。 As the ethylenically unsaturated monomer unit constituting the polymer as an additive for reducing the thickness direction retardation (Rt) obtained by polymerizing an ethylenically unsaturated monomer, first, as a vinyl ester, for example, vinyl acetate, propionic acid, etc. Vinyl, vinyl butyrate, vinyl valerate, vinyl pivalate, vinyl caproate, vinyl caprate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, vinyl cyclohexanecarboxylate, vinyl octylate, vinyl methacrylate, Examples include vinyl crotonate, vinyl sorbate, vinyl benzoate, and vinyl cinnamate.
 つぎに、アクリル酸エステルとして、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル(i-、n-)、アクリル酸ブチル(n-、i-、s-、t-)、アクリル酸ペンチル(n-、i-、s-)、アクリル酸ヘキシル(n-、i-)、アクリル酸ヘプチル(n-、i-)、アクリル酸オクチル(n-、i-)、アクリル酸ノニル(n-、i-)、アクリル酸ミリスチル(n-、i-)、アクリル酸シクロヘキシル、アクリル酸(2-エチルヘキシル)、アクリル酸ベンジル、アクリル酸フェネチル、アクリル酸(ε-カプロラクトン)、アクリル酸(2-ヒドロキシエチル)、アクリル酸(2-ヒドロキシプロピル)、アクリル酸(3-ヒドロキシプロピル)、アクリル酸(4-ヒドロキシブチル)、アクリル酸(2-ヒドロキシブチル)、アクリル酸-p-ヒドロキシメチルフェニル、アクリル酸-p-(2-ヒドロキシエチル)フェニル等;メタクリル酸エステルとして、上記アクリル酸エステルをメタクリル酸エステルに変えたものが挙げられる。 Next, as acrylate esters, for example, methyl acrylate, ethyl acrylate, propyl acrylate (i-, n-), butyl acrylate (n-, i-, s-, t-), pentyl acrylate ( n-, i-, s-), hexyl acrylate (n-, i-), heptyl acrylate (n-, i-), octyl acrylate (n-, i-), nonyl acrylate (n-, i-), myristyl acrylate (n-, i-), cyclohexyl acrylate, acrylic acid (2-ethylhexyl), benzyl acrylate, phenethyl acrylate, acrylic acid (ε-caprolactone), acrylic acid (2-hydroxyethyl) ), Acrylic acid (2-hydroxypropyl), acrylic acid (3-hydroxypropyl), acrylic acid (4-hydroxybutyl), acrylic acid (2 Hydroxybutyl) acrylate-p-hydroxymethylphenyl,-p-acrylic acid (2-hydroxyethyl) phenyl and the like; as methacrylic acid ester, the acrylic acid ester include those changed to methacrylic acid esters.
 さらに、不飽和酸として、例えば、アクリル酸、メタクリル酸、無水マレイン酸、クロトン酸、イタコン酸等を挙げることができる。 Furthermore, examples of the unsaturated acid include acrylic acid, methacrylic acid, maleic anhydride, crotonic acid, itaconic acid and the like.
 上記モノマーで構成されるポリマーはコポリマーでもホモポリマーでもよく、ビニルエステルのホモポリマー、ビニルエステルのコポリマー、ビニルエステルとアクリル酸またはメタクリル酸エステルとのコポリマーが好ましい。 The polymer composed of the above monomers may be a copolymer or a homopolymer, and is preferably a vinyl ester homopolymer, a vinyl ester copolymer, or a copolymer of vinyl ester and acrylic acid or methacrylic acid ester.
 本発明において、アクリル系ポリマーという(単にアクリル系ポリマーという)のは、芳香環あるいはシクロヘキシル基を有するモノマー単位を有しないアクリル酸またはメタクリル酸アルキルエステルのホモポリマーまたはコポリマーを指す。 In the present invention, an acrylic polymer (simply referred to as an acrylic polymer) refers to a homopolymer or copolymer of acrylic acid or methacrylic acid alkyl ester having no monomer unit having an aromatic ring or a cyclohexyl group.
 芳香環及びシクロヘキシル基を有さないアクリル酸エステルモノマーとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル(i-、n-)、アクリル酸ブチル(n-、i-、s-、t-)、アクリル酸ペンチル(n-、i-、s-)、アクリル酸ヘキシル(n-、i-)、アクリル酸ヘプチル(n-、i-)、アクリル酸オクチル(n-、i-)、アクリル酸ノニル(n-、i-)、アクリル酸ミリスチル(n-、i-)、アクリル酸(2-エチルヘキシル)、アクリル酸(ε-カプロラクトン)、アクリル酸(2-ヒドロキシエチル)、アクリル酸(2-ヒドロキシプロピル)、アクリル酸(3-ヒドロキシプロピル)、アクリル酸(4-ヒドロキシブチル)、アクリル酸(2-ヒドロキシブチル)、アクリル酸(2-メトキシエチル)、アクリル酸(2-エトキシエチル)等、または上記アクリル酸エステルをメタクリル酸エステルに変えたものを挙げることができる。 Examples of the acrylate monomer having no aromatic ring and cyclohexyl group include, for example, methyl acrylate, ethyl acrylate, propyl acrylate (i-, n-), butyl acrylate (n-, i-, s-, t-), pentyl acrylate (n-, i-, s-), hexyl acrylate (n-, i-), heptyl acrylate (n-, i-), octyl acrylate (n-, i-) , Nonyl acrylate (n-, i-), myristyl acrylate (n-, i-), acrylic acid (2-ethylhexyl), acrylic acid (ε-caprolactone), acrylic acid (2-hydroxyethyl), acrylic acid (2-hydroxypropyl), acrylic acid (3-hydroxypropyl), acrylic acid (4-hydroxybutyl), acrylic acid (2-hydroxybutyl), acrylic (2-methoxyethyl), acrylic acid (2-ethoxyethyl), or the acrylic acid ester may include those obtained by changing the methacrylic acid ester.
 アクリル系ポリマーは、上記モノマーのホモポリマーまたはコポリマーであるが、アクリル酸メチルエステルモノマー単位が30質量%以上を有していることが好ましく、また、メタクリル酸メチルエステルモノマー単位が40質量%以上有することが好ましい。特にアクリル酸メチルまたはメタクリル酸メチルのホモポリマーが好ましい。 The acrylic polymer is a homopolymer or copolymer of the above-mentioned monomers, but it is preferable that the acrylic acid methyl ester monomer unit has 30% by mass or more, and the methacrylic acid methyl ester monomer unit has 40% by mass or more. It is preferable. In particular, a homopolymer of methyl acrylate or methyl methacrylate is preferred.
 上述のエチレン性不飽和モノマーを重合して得られるポリマー、アクリル系ポリマーは、いずれもセルロースエステルとの相溶性に優れ、蒸発や揮発もなく生産性に優れ、偏光板用保護フィルムとしての保留性がよく、透湿度が小さく、寸法安定性に優れている。 Polymers obtained by polymerizing the above ethylenically unsaturated monomers and acrylic polymers are both highly compatible with cellulose ester, excellent in productivity without evaporation and volatilization, and retainability as a protective film for polarizing plates The moisture permeability is small, and the dimensional stability is excellent.
 本発明において、水酸基を有するアクリル酸またはメタクリル酸エステルモノマーの場合はホモポリマーではなく、コポリマーの構成単位である。この場合、好ましくは、水酸基を有するアクリル酸またはメタクリル酸エステルモノマー単位がアクリル系ポリマー中2~20質量%含有することが好ましい。 In the present invention, an acrylic acid or methacrylic acid ester monomer having a hydroxyl group is not a homopolymer but a constituent unit of a copolymer. In this case, the acrylic acid or methacrylic acid ester monomer unit having a hydroxyl group is preferably contained in the acrylic polymer in an amount of 2 to 20% by mass.
 本発明の光学フィルムの製造方法においては、ドープ組成物が、セルロースエステルと、厚み方向リタデーション(Rt)を低減する添加剤としての重量平均分子量500以上、3000以下のアクリル系ポリマーとを含有することが好ましい。 In the method for producing an optical film of the present invention, the dope composition contains a cellulose ester and an acrylic polymer having a weight average molecular weight of 500 or more and 3000 or less as an additive for reducing the thickness direction retardation (Rt). Is preferred.
 また、本発明の光学フィルムの製造方法においては、ドープ組成物が、セルロースエステルと、厚み方向リタデーション(Rt)を低減する添加剤としての重量平均分子量5000以上、30000以下のアクリル系ポリマーとを含有するが好ましい。 In the method for producing an optical film of the present invention, the dope composition contains a cellulose ester and an acrylic polymer having a weight average molecular weight of 5000 or more and 30000 or less as an additive for reducing the thickness direction retardation (Rt). It is preferable.
 本発明において、厚み方向リタデーション(Rt)を低減する添加剤としてのポリマーの重量平均分子量が500以上、3000以下、あるいはまたポリマーの重量平均分子量が5000以上、30000以下のものであれば、セルロースエステルとの相溶性が良好で、製膜中において蒸発も揮発も起こらない。また、製膜後のセルロースエステルフィルムの透明性が優れ、透湿度も極めて低く、偏光板用保護フィルムとして優れた性能を示す。 In the present invention, if the weight average molecular weight of the polymer as an additive for reducing the thickness direction retardation (Rt) is 500 or more and 3000 or less, or if the polymer has a weight average molecular weight of 5000 or more and 30000 or less, the cellulose ester Is compatible with the material, and neither evaporation nor volatilization occurs during film formation. Moreover, the transparency of the cellulose ester film after film formation is excellent, the moisture permeability is extremely low, and it exhibits excellent performance as a protective film for polarizing plates.
 本発明において、厚み方向リタデーション(Rt)を低減する添加剤として、側鎖に水酸基を有するポリマーも好ましく用いることができる。水酸基を有するモノマー単位としては、前記したモノマーと同様であるが、アクリル酸またはメタクリル酸エステルが好ましく、例えば、アクリル酸(2-ヒドロキシエチル)、アクリル酸(2-ヒドロキシプロピル)、アクリル酸(3-ヒドロキシプロピル)、アクリル酸(4-ヒドロキシブチル)、アクリル酸(2-ヒドロキシブチル)、アクリル酸-p-ヒドロキシメチルフェニル、アクリル酸-p-(2-ヒドロキシエチル)フェニル、またはこれらアクリル酸をメタクリル酸に置き換えたものを挙げることができ、好ましくは、アクリル酸-2-ヒドロキシエチル及びメタクリル酸-2-ヒドロキシエチルである。ポリマー中に水酸基を有するアクリル酸エステルまたはメタクリル酸エステルモノマー単位はポリマー中2~20質量%含有することが好ましく、より好ましくは2~10質量%である。 In the present invention, as an additive for reducing the thickness direction retardation (Rt), a polymer having a hydroxyl group in the side chain can also be preferably used. The monomer unit having a hydroxyl group is the same as the monomer described above, but acrylic acid or methacrylic acid ester is preferable. For example, acrylic acid (2-hydroxyethyl), acrylic acid (2-hydroxypropyl), acrylic acid (3 -Hydroxypropyl), acrylic acid (4-hydroxybutyl), acrylic acid (2-hydroxybutyl), acrylic acid-p-hydroxymethylphenyl, acrylic acid-p- (2-hydroxyethyl) phenyl, or these acrylic acids. Examples include those substituted with methacrylic acid, preferably 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate. The acrylic acid ester or methacrylic acid ester monomer unit having a hydroxyl group in the polymer is preferably contained in the polymer in an amount of 2 to 20% by mass, more preferably 2 to 10% by mass.
 前記のようなポリマーが上記の水酸基を有するモノマー単位を2~20質量%含有したものは、勿論、セルロースエステルとの相溶性、保留性、寸法安定性が優れ、透湿度が小さいばかりでなく、偏光板用保護フィルムとしての偏光子との接着性に特に優れ、偏光板の耐久性が向上する効果を有している。 A polymer containing 2 to 20% by mass of the above-mentioned monomer unit having a hydroxyl group, of course, has excellent compatibility with cellulose ester, retention, dimensional stability, and low moisture permeability. It is particularly excellent in adhesion with a polarizer as a protective film for a polarizing plate, and has an effect of improving the durability of the polarizing plate.
 また、本発明においては、上記ポリマーの主鎖の少なくとも一方の末端に水酸基を有することが好ましい。主鎖末端に水酸基を有するようにする方法は、特に主鎖の末端に水酸基を有するようにする方法であれば限定ないが、アゾビス(2-ヒドロキシエチルブチレート)のような水酸基を有するラジカル重合開始剤を使用する方法、2-メルカプトエタノールのような水酸基を有する連鎖移動剤を使用する方法、水酸基を有する重合停止剤を使用する方法、リビングイオン重合により水酸基を末端に有するようにする方法、特開2000-128911号公報または特開2000-344823号公報にあるような一つのチオール基と2級の水酸基とを有する化合物、あるいは、該化合物と有機金属化合物を併用した重合触媒を用いて塊状重合する方法等により得ることができ、特に該公報に記載の方法が好ましい。この公報記載に関連する方法で作られたポリマーは、綜研化学社製のアクトフロー・シリーズとして市販されており、好ましく用いることができる。 In the present invention, it is preferable that at least one terminal of the main chain of the polymer has a hydroxyl group. The method of having a hydroxyl group at the end of the main chain is not particularly limited as long as it has a hydroxyl group at the end of the main chain, but radical polymerization having a hydroxyl group such as azobis (2-hydroxyethylbutyrate) is possible. A method of using an initiator, a method of using a chain transfer agent having a hydroxyl group such as 2-mercaptoethanol, a method of using a polymerization stopper having a hydroxyl group, a method of having a hydroxyl group at the terminal by living ion polymerization, Using a compound having one thiol group and a secondary hydroxyl group as described in JP-A No. 2000-128911 or JP-A No. 2000-344823, or a polymerization catalyst using the compound in combination with an organometallic compound, It can be obtained by a polymerization method or the like, and the method described in the publication is particularly preferable. The polymer produced by the method related to the description in this publication is commercially available as Act Flow Series manufactured by Soken Chemical Co., Ltd., and can be preferably used.
 上記の末端に水酸基を有するポリマー及び/または側鎖に水酸基を有するポリマーは、本発明において、セルロースエステルに対するポリマーの相溶性、透明性を著しく向上する利点を有する。 The polymer having a hydroxyl group at the terminal and / or a polymer having a hydroxyl group in the side chain has an advantage of significantly improving the compatibility and transparency of the polymer with respect to the cellulose ester in the present invention.
 本発明において、有用な厚み方向リタデーション(Rt)を低減する添加剤としては、上記のほかにも、例えば特開2000-63560号公報記載のジグリセリン系多価アルコールと脂肪酸とのエステル化合物、特開2001-247717号公報記載のヘキソースの糖アルコールのエステルまたはエーテル化合物、特開2004-315613号公報記載のリン酸トリ脂肪族アルコールエステル化合物、特開2005-41911号公報記載の一般式(1)で表わされる化合物、特開2004-315605号公報記載のリン酸エステル化合物、特開2005-105139号公報記載のスチレンオリゴマー、および特開2005-105140号公報記載のスチレン系モノマーの重合体が挙げられる。 In the present invention, useful additives for reducing the thickness direction retardation (Rt) include, in addition to the above, for example, ester compounds of diglycerin polyhydric alcohols and fatty acids described in JP-A No. 2000-63560, An ester or ether compound of a hexose sugar alcohol described in JP-A-2001-247717, a trialiphatic alcohol phosphate compound described in JP-A-2004-315613, and a general formula (1) described in JP-A-2005-41911 A phosphoric acid ester compound described in JP-A-2004-315605, a styrene oligomer described in JP-A-2005-105139, and a polymer of a styrene monomer described in JP-A-2005-105140. .
 上述した厚み方向リタデーション(Rt)を低減する添加剤の含有量は、セルロースエステル系樹脂に対して5~25質量%含有させることが好ましい。厚み方向リタデーション(Rt)を低減する添加剤の含有量が5質量%未満であれば、フィルムの厚み方向リタデーション(Rt)を低減する効果が発現しないので、好ましくない。また厚み方向リタデーション(Rt)を低減する添加剤の含有量が25質量%を超えると、いわゆるブリードアウトが生じるなど、フィルム中の安定性が低下するので、好ましくない。 The content of the additive for reducing the thickness direction retardation (Rt) described above is preferably 5 to 25% by mass relative to the cellulose ester resin. If the content of the additive for reducing the thickness direction retardation (Rt) is less than 5% by mass, the effect of reducing the thickness direction retardation (Rt) of the film is not manifested. On the other hand, if the content of the additive for reducing the thickness direction retardation (Rt) exceeds 25% by mass, so-called bleed-out occurs and the stability in the film decreases, which is not preferable.
 本発明による光学フィルムの製造方法において、上記セルロース誘導体に対して良好な溶解性を有する有機溶媒を良溶媒といい、また溶解に主たる効果を示し、その中で大量に使用する有機溶媒を主(有機)溶媒または主たる(有機)溶媒という。 In the method for producing an optical film according to the present invention, an organic solvent having good solubility with respect to the cellulose derivative is referred to as a good solvent, and has a main effect on dissolution. Organic) solvent or main (organic) solvent.
 良溶媒の例としては、アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノンなどのケトン類、テトラヒドロフラン(THF)、1,4-ジオキサン、1,3-ジオキソラン、1,2-ジメトキシエタンなどのエーテル類、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸アミル、γ-ブチロラクトン等のエステル類の他、メチルセロソルブ、ジメチルイミダゾリノン、ジメチルホルムアミド、ジメチルアセトアミド、アセトニトリル、ジメチルスルフォキシド、スルホラン、ニトロエタン、塩化メチレン、アセト酢酸メチルなどが挙げられるが、1,3-ジオキソラン、THF、メチルエチルケトン、アセトン、酢酸メチル及び塩化メチレンが好ましい。 Examples of good solvents include ketones such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethers such as tetrahydrofuran (THF), 1,4-dioxane, 1,3-dioxolane, 1,2-dimethoxyethane, formic acid Esters such as methyl, ethyl formate, methyl acetate, ethyl acetate, amyl acetate, γ-butyrolactone, methyl cellosolve, dimethylimidazolinone, dimethylformamide, dimethylacetamide, acetonitrile, dimethylsulfoxide, sulfolane, nitroethane, methylene chloride And 1,3-dioxolane, THF, methyl ethyl ketone, acetone, methyl acetate and methylene chloride are preferable.
 ドープには、上記有機溶媒の他に、1~40質量%の炭素原子数1~4のアルコールを含有させることが好ましい。これらは、ドープを支持体に流延した後、溶媒が蒸発し始めてアルコールの比率が多くなることで、ウェブをゲル化させ、ウェブを丈夫にして、支持体から剥離することを容易にするゲル化溶媒として用いられたり、これらの割合が少ない時は非塩素系有機溶媒のセルロース誘導体の溶解を促進したりする役割もある。 The dope preferably contains 1 to 40% by mass of an alcohol having 1 to 4 carbon atoms in addition to the organic solvent. These are gels that, after casting the dope onto the support, the solvent begins to evaporate and the proportion of alcohol increases, making the web gel, making the web strong and easy to peel off from the support When used as a solvating solvent, or when the proportion of these is small, it also has a role of promoting the dissolution of a cellulose derivative of a non-chlorine organic solvent.
 炭素原子数1~4のアルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノール、プロピレングリコールモノメチルエーテルを挙げることができる。これらのうち、ドープの安定性に優れ、沸点も比較的低く、乾燥性も良く、かつ毒性がないことなどからエタノールが好ましい。これらの有機溶媒は、単独ではセルロース誘導体に対して溶解性を有しておらず、貧溶媒という。 Examples of the alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol, and propylene glycol monomethyl ether. Of these, ethanol is preferred because it has excellent dope stability, has a relatively low boiling point, good drying properties, and no toxicity. These organic solvents alone are not soluble in cellulose derivatives and are called poor solvents.
 このような条件を満たす好ましい高分子化合物であるセルロース誘導体を高濃度に溶解する溶媒として最も好ましい溶媒は塩化メチレン:エチルアルコールの比が95:5~80:20の混合溶媒である。あるいは、酢酸メチル:エチルアルコール60:40~95:5の混合溶媒も好ましく用いられる。 The most preferable solvent for dissolving a cellulose derivative, which is a preferable polymer compound satisfying such conditions, at a high concentration is a mixed solvent having a ratio of methylene chloride: ethyl alcohol of 95: 5 to 80:20. Alternatively, a mixed solvent of methyl acetate: ethyl alcohol 60:40 to 95: 5 is also preferably used.
 本発明におけるフィルムには、フィルムに加工性・柔軟性・防湿性を付与する可塑剤、フィルムに滑り性を付与する微粒子(マット剤)、紫外線吸収機能を付与する紫外線吸収剤、フィルムの劣化を防止する酸化防止剤等を含有させても良い。 The film according to the present invention includes a plasticizer that imparts processability, flexibility, and moisture resistance to the film, fine particles that impart slipperiness to the film (matting agent), an ultraviolet absorber that imparts an ultraviolet absorbing function, and deterioration of the film. You may contain the antioxidant etc. which prevent.
 本発明において使用する可塑剤としては、特に限定はないが、フィルムにヘイズを発生させたり、フィルムからブリードアウトあるいは揮発しないように、セルロース誘導体や加水分解重縮合が可能な反応性金属化合物の重縮合物と、水素結合などによって相互作用可能である官能基を有していることが好ましい。 The plasticizer used in the present invention is not particularly limited. However, a cellulose derivative or a reactive metal compound capable of hydrolytic polycondensation can be used so as not to cause haze, bleed out or volatilize from the film. It preferably has a functional group capable of interacting with the condensate by hydrogen bonding or the like.
 このような官能基としては、水酸基、エーテル基、カルボニル基、エステル基、カルボン酸残基、アミノ基、イミノ基、アミド基、イミド基、シアノ基、ニトロ基、スルホニル基、スルホン酸残基、ホスホニル基、ホスホン酸残基等が挙げられるが、好ましくはカルボニル基、エステル基、ホスホニル基である。 Examples of such functional groups include hydroxyl groups, ether groups, carbonyl groups, ester groups, carboxylic acid residues, amino groups, imino groups, amide groups, imide groups, cyano groups, nitro groups, sulfonyl groups, sulfonic acid residues, Examples thereof include a phosphonyl group and a phosphonic acid residue, and a carbonyl group, an ester group and a phosphonyl group are preferred.
 このような可塑剤の例として、リン酸エステル系可塑剤、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、多価アルコールエステル系可塑剤、グリコレート系可塑剤、クエン酸エステル系可塑剤、脂肪酸エステル系可塑剤、カルボン酸エステル系可塑剤、ポリエステル系可塑剤などを好ましく用いることができるが、特に好ましくは多価アルコールエステル系可塑剤、グリコレート系可塑剤、多価カルボン酸エステル系可塑剤等の非リン酸エステル系可塑剤である。 Examples of such plasticizers include phosphate ester plasticizers, phthalate ester plasticizers, trimellitic acid ester plasticizers, pyromellitic acid plasticizers, polyhydric alcohol ester plasticizers, glycolate plasticizers. Agents, citric acid ester plasticizers, fatty acid ester plasticizers, carboxylic acid ester plasticizers, polyester plasticizers, etc. can be preferably used, but polyhydric alcohol ester plasticizers, glycolate plasticizers are particularly preferred. And non-phosphate ester plasticizers such as polycarboxylic acid ester plasticizers.
 多価アルコールエステルは、2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなり、分子内に芳香環またはシクロアルキル環を有することが好ましい。 The polyhydric alcohol ester is composed of an ester of a dihydric or higher aliphatic polyhydric alcohol and a monocarboxylic acid, and preferably has an aromatic ring or a cycloalkyl ring in the molecule.
 本発明に用いられる多価アルコールは、つぎの一般式(3)で表される。 The polyhydric alcohol used in the present invention is represented by the following general formula (3).
 一般式(3)   R-(OH)n
 式中、Rはn価の有機基、nは2以上の正の整数を表わす。
Formula (3) R 1- (OH) n
In the formula, R 1 represents an n-valent organic group, and n represents a positive integer of 2 or more.
 好ましい多価アルコールの例としては、例えば以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。 Examples of preferred polyhydric alcohols include the following, but the present invention is not limited to these.
 好ましい多価アルコールの例としては、アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ジブチレングリコール、1,2,4-ブタントリオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3-メチルペンタン-1,3,5-トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることができる。特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。 Examples of preferred polyhydric alcohols include adonitol, arabitol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, 1,3-propanediol, dipropylene glycol, tripropylene glycol, 1, 2-butanediol, 1,3-butanediol, 1,4-butanediol, dibutylene glycol, 1,2,4-butanetriol, 1,5-pentanediol, 1,6-hexanediol, hexanetriol, gallium Examples include lactitol, mannitol, 3-methylpentane-1,3,5-triol, pinacol, sorbitol, trimethylolpropane, trimethylolethane, and xylitol. In particular, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, sorbitol, trimethylolpropane, and xylitol are preferable.
 本発明の多価アルコールエステルに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。脂環族モノカルボン酸、芳香族モノカルボン酸を用いると透湿性、保留性を向上させる点で好ましい。 The monocarboxylic acid used in the polyhydric alcohol ester of the present invention is not particularly limited, and known aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, aromatic monocarboxylic acid and the like can be used. Use of an alicyclic monocarboxylic acid or aromatic monocarboxylic acid is preferred in terms of improving moisture permeability and retention.
 好ましいモノカルボン酸の例としては、以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。 Examples of preferred monocarboxylic acids include the following, but the present invention is not limited thereto.
 脂肪族モノカルボン酸としては、炭素数1~32の直鎖または側鎖を有する脂肪酸を好ましく用いることができる。炭素数は1~20であることがさらに好ましく、1~10であることが特に好ましい。酢酸を含有させると、セルロース誘導体との相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。 As the aliphatic monocarboxylic acid, a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. The number of carbon atoms is more preferably 1-20, and particularly preferably 1-10. When acetic acid is contained, the compatibility with the cellulose derivative is increased, and it is also preferable to use a mixture of acetic acid and another monocarboxylic acid.
 好ましい脂肪族モノカルボン酸の例としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を挙げることができる。 Examples of preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid, Tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, mellicic acid, laccellic acid, etc., undecylen Examples thereof include unsaturated fatty acids such as acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid.
 好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることができる。 Examples of preferable alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
 好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、またはそれらの誘導体を挙げることができるが、特に安息香酸が好ましい。 Examples of preferred aromatic monocarboxylic acids include those in which an alkyl group is introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, and two or more benzene rings such as biphenylcarboxylic acid, naphthalenecarboxylic acid, and tetralincarboxylic acid. Examples thereof include aromatic monocarboxylic acids and derivatives thereof, and benzoic acid is particularly preferable.
 多価アルコールエステルの分子量は、特に制限はないが、300~1500であることが好ましく、350~750であることが、さらに好ましい。分子量が大きい方が揮発し難くなるため好ましく、透湿性、セルロース誘導体との相溶性の点では、小さい方が好ましい。 The molecular weight of the polyhydric alcohol ester is not particularly limited, but is preferably 300 to 1500, and more preferably 350 to 750. A higher molecular weight is preferred because it is less likely to volatilize, and a smaller one is preferred in terms of moisture permeability and compatibility with cellulose derivatives.
 多価アルコールエステルに用いられるカルボン酸は1種類でもよいし、2種以上の混合であってもよい。また、多価アルコール中のOH基は、全てエステル化してもよいし、一部をOH基のままで残してもよい。 The carboxylic acid used in the polyhydric alcohol ester may be one kind or a mixture of two or more kinds. Moreover, all the OH groups in the polyhydric alcohol may be esterified, or a part of the OH groups may be left as they are.
 グリコレート系可塑剤は、特に限定されないが、分子内に芳香環またはシクロアルキル環を有するグリコレート系可塑剤を、好ましく用いることができる。好ましいグリコレート系可塑剤としては、例えばブチルフタリルブチルグリコレート、エチルフタリルエチルグリコレート、メチルフタリルエチルグリコレート等を用いることができる。 The glycolate plasticizer is not particularly limited, but a glycolate plasticizer having an aromatic ring or a cycloalkyl ring in the molecule can be preferably used. As preferred glycolate plasticizers, for example, butyl phthalyl butyl glycolate, ethyl phthalyl ethyl glycolate, methyl phthalyl ethyl glycolate and the like can be used.
 リン酸エステル系可塑剤では、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等、フタル酸エステル系可塑剤では、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ-2-エチルヘキシルフタレート、ジシクロヘキシルフタレート等を用いることができるが、本発明では、リン酸エステル系可塑剤を実質的に含有しないことが好ましい。 For phosphate plasticizers, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenylbiphenyl phosphate, trioctyl phosphate, tributyl phosphate, etc. For phthalate ester plasticizers, diethyl phthalate, dimethoxy Ethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dicyclohexyl phthalate, and the like can be used, but in the present invention, it is preferable that substantially no phosphate ester plasticizer is contained.
 ここで、「実質的に含有しない」とは、リン酸エステル系可塑剤の含有量が1質量%未満、好ましくは0.1質量%であり、特に好ましいのは添加していないことである。 Here, “substantially does not contain” means that the content of the phosphoric ester plasticizer is less than 1% by mass, preferably 0.1% by mass, and particularly preferably not added.
 これらの可塑剤は、単独あるいは2種以上混合して用いることができる。 These plasticizers can be used alone or in combination of two or more.
 可塑剤の使用量は、1~20質量%が好ましい。6~16質量%がさらに好ましく、特に好ましくは8~13質量%である。可塑剤の使用量が、セルロース誘導体に対して1質量%未満では、フィルムの透湿度を低減させる効果が少ないため、好ましくなく、20質量%を越えると、フィルムから可塑剤がブリードアウトし、フィルムの物性が劣化するため、好ましくない。 The amount of plasticizer used is preferably 1 to 20% by mass. It is more preferably 6 to 16% by mass, particularly preferably 8 to 13% by mass. If the amount of the plasticizer used is less than 1% by mass relative to the cellulose derivative, the effect of reducing the moisture permeability of the film is small, so this is not preferred. If it exceeds 20% by mass, the plasticizer bleeds out from the film, and the film Since the physical properties of the material deteriorate, it is not preferable.
 本発明におけるセルロース誘導体には、滑り性を付与するために、マット剤等の微粒子を添加するのが好ましい。微粒子としては、無機化合物の微粒子または有機化合物の微粒子が挙げられる。 It is preferable to add fine particles such as a matting agent to the cellulose derivative in the present invention in order to impart slipperiness. Examples of the fine particles include fine particles of an inorganic compound or fine particles of an organic compound.
 無機化合物の微粒子の例としては、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化錫等の微粒子が挙げられる。この中では、ケイ素原子を含有する化合物の微粒子であることが好ましく、特に二酸化ケイ素微粒子が好ましい。二酸化ケイ素微粒子としては、例えばアエロジル株式会社製のAEROSIL 200、200V、300、R972、R972V、R974、R202、R812,R805、OX50、TT600などが挙げられる。 Examples of inorganic compound fine particles include fine particles of silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, tin oxide, and the like. Of these, fine particles of a compound containing a silicon atom are preferred, and fine silicon dioxide particles are particularly preferred. Examples of the silicon dioxide fine particles include Aerosil 200, 200V, 300, R972, R972V, R974, R202, R812, R805, OX50, and TT600 manufactured by Aerosil Co., Ltd.
 有機化合物の微粒子の例としては、アクリル樹脂、シリコーン樹脂、フッ素化合物樹脂、ウレタン樹脂等の微粒子が挙げられる。 Examples of organic compound fine particles include fine particles of acrylic resin, silicone resin, fluorine compound resin, urethane resin, and the like.
 微粒子の1次粒径は、特に限定されないが、最終的にフィルム中での平均粒径は、0.05~5.0μm程度が好ましい。さらに好ましくは、0.1~1.0μmである。 The primary particle size of the fine particles is not particularly limited, but the average particle size in the film is preferably about 0.05 to 5.0 μm. More preferably, it is 0.1 to 1.0 μm.
 微粒子の平均粒径は、セルロースエステルフィルムを電子顕微鏡や光学顕微鏡で観察した際に、フィルムの観察場所における、粒子の長軸方向の長さの平均値を指す。フィルム中で観察される粒子であれば、1次粒子であっても、1次粒子が凝集した2次粒子であってもよいが、通常観察される多くは2次粒子である。 The average particle diameter of the fine particles refers to the average value of the lengths of the particles in the major axis direction when the cellulose ester film is observed with an electron microscope or an optical microscope. As long as the particles are observed in the film, they may be primary particles or secondary particles in which the primary particles are aggregated, but most of the particles that are usually observed are secondary particles.
 測定方法の一例としては、1つのフィルムにつき、ランダムに10箇所の垂直断面写真を撮影し、各断面写真について、長軸長さが、0.05~5μmの範囲にある100μm2中の粒子個数をカウントする。このときカウントした粒子の長軸長さの平均値を求め、10箇所の平均値を平均した値を平均粒径とする。 As an example of the measurement method, 10 vertical cross-sectional photographs are taken at random for each film, and the number of particles in 100 μm 2 whose major axis length is in the range of 0.05 to 5 μm is taken for each cross-sectional photograph. Count. The average value of the major axis lengths of the particles counted at this time is obtained, and a value obtained by averaging the average values of 10 locations is defined as the average particle size.
 微粒子の場合は、1次粒径、溶媒に分散した後の粒径、フィルムに添加された粒径が変化する場合が多く、重要なのは、最終的にフィルム中で微粒子がセルロースエステルと複合し凝集して形成される粒径をコントロールすることである。 In the case of fine particles, the primary particle size, the particle size after being dispersed in a solvent, and the particle size added to the film often change, and what is important is that the fine particles are finally combined with the cellulose ester in the film to aggregate. And controlling the particle size formed.
 ここで、微粒子の平均粒径が、5μmを超えた場合は、ヘイズの劣化等が見られたり、異物として巻状態での故障を発生する原因にもなる。また、微粒子の平均粒径が、0.05μm未満の場合は、フィルムに滑り性を付与するのが難しくなる。 Here, if the average particle size of the fine particles exceeds 5 μm, haze deterioration or the like may be observed, or it may cause a failure in a wound state as a foreign matter. Moreover, when the average particle diameter of fine particles is less than 0.05 μm, it becomes difficult to impart slipperiness to the film.
 上記の微粒子は、セルロースエステルに対して、0.04~0.5質量%添加して使用される。好ましくは、0.05~0.3質量%、さらに好ましくは0.05~0.25質量%添加して使用される。微粒子の添加量が0.04質量%以下では、フィルム表面粗さが平滑になりすぎて、摩擦係数の上昇によりブロッキングを発生する。微粒子の添加量が0.5質量%を超えると、フィルム表面の摩擦係数が下がりすぎて、巻き取り時に巻きズレが発生したり、フィルムの透明度が低く、ヘイズが高くなるため、液晶表示装置用フィルムとしての価値を持たなくなるので、上記の範囲が必須である。 The above fine particles are used by adding 0.04 to 0.5 mass% with respect to the cellulose ester. Preferably, 0.05 to 0.3% by mass, more preferably 0.05 to 0.25% by mass is added. When the amount of fine particles added is 0.04% by mass or less, the film surface roughness becomes too smooth, and blocking occurs due to an increase in the friction coefficient. If the amount of fine particles added exceeds 0.5% by mass, the coefficient of friction on the film surface will be too low, causing winding misalignment during winding, and the transparency of the film will be low and haze will be high. The above range is essential because it has no value as a film.
 微粒子の分散は、微粒子と溶媒を混合した組成物を高圧分散装置で処理することが好ましい。本発明で用いる高圧分散装置は、微粒子と溶媒を混合した組成物を、細管中に高速通過させることで、高剪断や高圧状態など特殊な条件を作りだす装置である。 For dispersion of fine particles, it is preferable to treat a composition in which fine particles and a solvent are mixed with a high-pressure dispersion apparatus. The high-pressure dispersion apparatus used in the present invention is an apparatus that creates special conditions such as high shear and high pressure by passing a composition in which fine particles and a solvent are mixed at high speed through a narrow tube.
 高圧分散装置で処理することにより、例えば、管径1~2000μmの細管中で装置内部の最大圧力条件が980N/cm2以上であることが好ましい。さらに好ましくは、装置内部の最大圧力条件が1960N/cm2以上である。またその際、最高到達速度が100m/sec以上に達するもの、伝熱速度が100kcal/hr以上に達するものが、好ましい。 It is preferable that the maximum pressure condition inside the apparatus is 980 N / cm 2 or more in a thin tube having a tube diameter of 1 to 2000 μm, for example, by processing with a high-pressure dispersion apparatus. More preferably, the maximum pressure condition inside the apparatus is 1960 N / cm 2 or more. Further, at that time, those having a maximum reaching speed of 100 m / sec or more and those having a heat transfer speed of 100 kcal / hr or more are preferable.
 上記のような高圧分散装置としては、例えばMicrofluidics Corporation社製の超高圧ホモジナイザー(商品名、マイクロフルイダイザー)あるいはナノマイザー社製ナノマイザーが挙げられ、他にもマントンゴーリン型高圧分散装置、例えばイズミフードマシナリ製ホモゲナイザーなどが挙げられる。 Examples of the high-pressure dispersing device as described above include an ultra-high pressure homogenizer (trade name, Microfluidizer) manufactured by Microfluidics Corporation, or a nanomizer manufactured by Nanomizer, and other manton gorin type high-pressure dispersing devices such as Izumi Food Machinery. Examples thereof include a homogenizer.
 本発明において、微粒子は、低級アルコール類を25~100質量%含有する溶媒中で分散した後、セルロースエステル(セルロース誘導体)を溶媒に溶解したドープと混合し、該混合液を支持体上に流延し、乾燥して製膜することを特徴とするセルロースエステルフィルムを得る。 In the present invention, the fine particles are dispersed in a solvent containing 25 to 100% by mass of a lower alcohol, and then mixed with a dope in which a cellulose ester (cellulose derivative) is dissolved in a solvent, and the mixed solution is allowed to flow on a support. A cellulose ester film is obtained which is formed by stretching and drying.
 ここで、低級アルコールの含有比率としては、好ましくは50~100質量%、さらに好ましくは75~100質量%である。 Here, the content ratio of the lower alcohol is preferably 50 to 100% by mass, and more preferably 75 to 100% by mass.
 また、低級アルコール類の例としては、好ましくはメチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール等が挙げられる。 Also, examples of lower alcohols preferably include methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol and the like.
 低級アルコール以外の溶媒としては、特に限定されないが、セルロースエステルの製膜時に用いられる溶媒を用いることが好ましい。 The solvent other than the lower alcohol is not particularly limited, but it is preferable to use a solvent used at the time of forming a cellulose ester film.
 微粒子は、溶媒中で1~30質量%の濃度で分散される。これ以上の濃度で分散すると、粘度が急激に上昇し、好ましくない。分散液中の微粒子の濃度としては、好ましく、5~25質量%、さらに好ましくは、10~20質量%である。 Fine particles are dispersed in a solvent at a concentration of 1 to 30% by mass. Dispersing at a concentration higher than this is not preferable because the viscosity increases rapidly. The concentration of the fine particles in the dispersion is preferably 5 to 25% by mass, more preferably 10 to 20% by mass.
 フィルムの紫外線吸収機能は、液晶の劣化防止の観点から、偏光板保護フィルム、位相差フィルム、光学補償フィルムなどの各種光学フィルムに付与されていることが好ましい。このような紫外線吸収機能は、紫外線を吸収する材料をセルロース誘導体中に含ませても良く、セルロース誘導体からなるフィルム上に紫外線吸収機能のある層を設けてもよい。 The ultraviolet absorbing function of the film is preferably imparted to various optical films such as a polarizing plate protective film, a retardation film, and an optical compensation film from the viewpoint of preventing deterioration of the liquid crystal. For such an ultraviolet absorbing function, a material that absorbs ultraviolet rays may be included in the cellulose derivative, and a layer having an ultraviolet absorbing function may be provided on a film made of the cellulose derivative.
 本発明において、使用し得る紫外線吸収剤としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等を挙げることができるが、着色の少ないベンゾトリアゾール系化合物が好ましい。また、特開平10-182621号公報、特開平8-337574号公報に記載の紫外線吸収剤、特開平6-148430号公報に記載の高分子紫外線吸収剤も好ましく用いられる。 Examples of ultraviolet absorbers that can be used in the present invention include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, and the like. A benzotriazole-based compound with little coloring is preferable. Further, ultraviolet absorbers described in JP-A-10-182621 and JP-A-8-337574 and polymer ultraviolet absorbers described in JP-A-6-148430 are preferably used.
 紫外線吸収剤としては、偏光子や液晶の劣化防止の観点から、波長370nm以下の紫外線の吸収能に優れており、かつ液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましい。 As the ultraviolet absorber, those having excellent absorption ability of ultraviolet rays having a wavelength of 370 nm or less from the viewpoint of preventing deterioration of a polarizer or liquid crystal and those having little absorption of visible light having a wavelength of 400 nm or more from the viewpoint of liquid crystal display properties. preferable.
 本発明において、有用な紫外線吸収剤の具体例としては、2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-3′-(3″,4″,5″,6″-テトラヒドロフタルイミドメチル)-5′-メチルフェニル)ベンゾトリアゾール、2,2-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール、オクチル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートと2-エチルヘキシル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートの混合物等を挙げることができるが、これらに限定されない。 Specific examples of UV absorbers useful in the present invention include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert- Butylphenyl) benzotriazole, 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) ) -5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′-(3 ″, 4 ″, 5 ″, 6 ″ -tetrahydrophthalimidomethyl) -5′-methylphenyl) benzotriazole, 2,2- Methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol, 2- (2'-hydroxy) -3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2H-benzotriazol-2-yl) -6- (straight and side chain dodecyl) -4-methylphenol, Octyl-3- [3-tert-butyl-4-hydroxy-5- (chloro-2H-benzotriazol-2-yl) phenyl] propionate and 2-ethylhexyl-3- [3-tert-butyl-4-hydroxy- Examples include, but are not limited to, a mixture of 5- (5-chloro-2H-benzotriazol-2-yl) phenyl] propionate.
 また、紫外線吸収剤の市販品として、チヌビン(TINUVIN)109、チヌビン(TINUVIN)171、チヌビン(TINUVIN)326(いずれもチバ・スペシャリティ・ケミカルズ社製)を、好ましく使用できる。 Further, as commercially available ultraviolet absorbers, TINUVIN 109, TINUVIN 171, and TINUVIN 326 (all manufactured by Ciba Specialty Chemicals) can be preferably used.
 また、本発明において使用し得る紫外線吸収剤であるベンゾフェノン系化合物の具体例として、2,4-ジヒドロキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニルメタン)等を挙げることができるが、これらに限定されない。 In addition, specific examples of the benzophenone compounds that are ultraviolet absorbers that can be used in the present invention include 2,4-dihydroxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-5- Examples thereof include, but are not limited to, sulfobenzophenone and bis (2-methoxy-4-hydroxy-5-benzoylphenylmethane).
 本発明において、これらの紫外線吸収剤の配合量は、セルロースエステル(セルロース誘導体)に対して、0.01~10質量%の範囲が好ましく、さらに0.1~5質量%が好ましい。紫外線吸収剤の使用量が少なすぎると、紫外線吸収効果が不充分の場合があり、紫外線吸収剤の多すぎると、フィルムの透明性が劣化する場合があるので、好ましくない。紫外線吸収剤は熱安定性の高いものが好ましい。 In the present invention, the blending amount of these ultraviolet absorbers is preferably in the range of 0.01 to 10% by mass, more preferably 0.1 to 5% by mass with respect to the cellulose ester (cellulose derivative). If the amount of the ultraviolet absorber used is too small, the ultraviolet absorbing effect may be insufficient. If the amount of the ultraviolet absorber is too large, the transparency of the film may be deteriorated. The ultraviolet absorber is preferably one having high heat stability.
 また、本発明の光学フィルムに用いることのできる紫外線吸収剤は、特開平6-148430号公報及び特開2002-47357号公報に記載の高分子紫外線吸収剤(または紫外線吸収性ポリマー)を好ましく用いることができる。とりわけ特開平6-148430号公報に記載の一般式(1)、あるいは一般式(2)、あるいは特開2002-47357号公報に記載の一般式(3)(6)(7)で表される高分子紫外線吸収剤が、好ましく用いられる。 As the ultraviolet absorber that can be used in the optical film of the present invention, the polymeric ultraviolet absorber (or ultraviolet absorbing polymer) described in JP-A Nos. 6-148430 and 2002-47357 is preferably used. be able to. In particular, it is represented by the general formula (1) described in JP-A-6-148430, the general formula (2), or the general formulas (3), (6), and (7) described in JP-A-2002-47357. A polymer ultraviolet absorber is preferably used.
 酸化防止剤は、一般に、劣化防止剤ともいわれるが、光学フィルムとしてのセルロースエステルフィルム中に含有させるのが好ましい。すなわち、液晶画像表示装置などが高湿高温の状態に置かれた場合には、光学フィルムとしてのセルロースエステルフィルムの劣化が起こる場合がある。酸化防止剤は、例えばフィルム中の残留溶媒中のハロゲンやリン酸系可塑剤のリン酸などによりフィルムが分解するのを遅らせたり、防いだりする役割を有するので、フィルム中に含有させるのが好ましい。 The antioxidant is generally referred to as an anti-degradation agent, but is preferably contained in a cellulose ester film as an optical film. That is, when a liquid crystal image display device or the like is placed in a high humidity and high temperature state, the cellulose ester film as an optical film may be deteriorated. The antioxidant has a role of delaying or preventing the film from being decomposed by, for example, halogen in the residual solvent in the film or phosphoric acid of the phosphoric acid plasticizer, so that it is preferably contained in the film. .
 このような酸化防止剤としては、ヒンダードフェノール系の化合物が好ましく用いられ、例えば、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサンジオール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、2,2-チオ-ジエチレンビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N′-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト等を挙げることができる。特に、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕が好ましい。また例えば、N,N′-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル〕ヒドラジン等のヒドラジン系の金属不活性剤やトリス(2,4-ジ-t-ブチルフェニル)フォスファイト等のリン系加工安定剤を併用してもよい。 As such an antioxidant, a hindered phenol compound is preferably used. For example, 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di- -T-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3 -(3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino)- 1,3,5-triazine, 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], oct Decyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, N, N'-hexamethylenebis (3,5-di-t-butyl-4-hydroxy-hydrocinnamamide) 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, tris- (3,5-di-t-butyl-4-hydroxy Benzyl) -isocyanurate and the like. In particular, 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3 -(3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate] is preferred. Further, for example, hydrazine-based metal deactivators such as N, N′-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine and tris (2,4-di-t A phosphorus processing stabilizer such as -butylphenyl phosphite may be used in combination.
 これらの化合物の添加量は、セルロース誘導体に対して質量割合で1ppm~1.0質量%が好ましく、10~1000ppmがさらに好ましい。 The amount of these compounds added is preferably 1 ppm to 1.0% by mass, more preferably 10 to 1000 ppm by mass relative to the cellulose derivative.
 その他、図1と図2に示す本発明の光学フィルムの製造方法を実施する装置において、延伸工程は、液晶表示装置用フィルムとしては、ウェブ(またはフィルム)(10)の両側縁部をクリップ等で固定して延伸するテンター方式が、フィルムの平面性や寸法安定性を向上させるために好ましい。 In addition, in the apparatus which implements the manufacturing method of the optical film of the present invention shown in FIG. 1 and FIG. 2, as for the film for the liquid crystal display device, the stretching step is a clip or the like on both side edges of the web (or film) (10). A tenter method in which the film is fixed and stretched is preferable in order to improve the flatness and dimensional stability of the film.
 延伸工程のテンター(11)に入る直前のウェブ(フィルム)(10)の残留溶媒量が、10~35質量%であることが好ましい。 The residual solvent amount of the web (film) (10) immediately before entering the tenter (11) in the stretching step is preferably 10 to 35% by mass.
 、延伸工程のテンター(11)におけるウェブの延伸率が3~100%であり、5~80%であることが好ましく、さらに5~60%であることが望ましい。またテンター(11)における温風吹出しスリット口から吹き出す温風の温度が100~200℃であり、110~190℃であることが好ましく、さらに115~185℃であることが望ましい。 The stretch ratio of the web in the tenter (11) in the stretching process is 3 to 100%, preferably 5 to 80%, and more preferably 5 to 60%. The temperature of the hot air blown from the hot air blowing slit port in the tenter (11) is 100 to 200 ° C., preferably 110 to 190 ° C., more preferably 115 to 185 ° C.
 延伸工程のテンター(11)の後には、乾燥装置(12)を設けることが好ましい。乾燥装置(12)内では、側面から見て千鳥配置せられた複数の搬送ロールによってウェブ(10)が蛇行せられ、その間にウェブ(10)が乾燥せられるものである。また、乾燥装置(10)でのフィルム搬送張力は、ドープの物性、剥離時及びフィルム搬送工程での残留溶媒量、乾燥温度等に影響を受けるが、乾燥時のフィルム搬送張力は、30~300N/m幅であり、40~270N/m幅が、より好ましい。 It is preferable to provide a drying device (12) after the tenter (11) in the stretching step. In the drying device (12), the web (10) is meandered by a plurality of conveying rolls arranged in a staggered manner as viewed from the side, and the web (10) is dried in the meantime. The film transport tension in the drying apparatus (10) is affected by the physical properties of the dope, the amount of residual solvent in the peeling and film transport process, the drying temperature, etc. The film transport tension during drying is 30 to 300 N. / M width, and 40 to 270 N / m width is more preferable.
 なお、ウェブ(フィルム)(10)を乾燥させる手段は、特に制限はなく、一般的に熱風、赤外線、加熱ロール、マイクロ波等で行なう。簡便さの点から熱風で乾燥するのが好ましく、例えば乾燥装置(12)の底の前寄り部分の温風入口から吹込まれる乾燥風(14)によって乾燥され、乾燥装置(12)の天井の後寄り部分の出口から排気風が排出せられることによって乾燥される。乾燥風(14)の温度は40~160℃が好ましく、50~160℃が平面性、寸法安定性を良くするためさらに好ましい。 The means for drying the web (film) (10) is not particularly limited, and is generally performed with hot air, infrared rays, a heating roll, microwaves, or the like. It is preferable to dry with hot air from the viewpoint of simplicity. For example, it is dried by the drying air (14) blown from the hot air inlet at the front portion of the bottom of the drying device (12), and is dried on the ceiling of the drying device (12). It is dried by exhaust air being discharged from the outlet of the rear portion. The temperature of the drying air (14) is preferably 40 to 160 ° C., more preferably 50 to 160 ° C. in order to improve the flatness and dimensional stability.
 これら流延から後乾燥までの工程は、空気雰囲気下でもよいし、窒素ガスなどの不活性ガス雰囲気下でもよい。この場合、乾燥雰囲気を溶媒の爆発限界濃度を考慮して実施することは勿論のことである。 These steps from casting to post-drying may be performed in an air atmosphere or in an inert gas atmosphere such as nitrogen gas. In this case, it goes without saying that the dry atmosphere is carried out in consideration of the explosion limit concentration of the solvent.
 搬送乾燥工程を終えた例えばセルロースエステルフィルムに対し、巻取工程に導入する前段において、一般に、エンボス加工装置によりフィルムにエンボスを形成する加工が行なわれる。 For example, a cellulose ester film that has finished the transport drying process is generally processed to form an emboss on the film by an embossing apparatus before the introduction to the winding process.
 ここで、エンボスの高さh(μm)は、フィルム膜厚Tの0.05~0.3倍の範囲、幅Wは、フィルム幅Lの0.005~0.02倍の範囲に設定する。エンボスは、フィルムの両面に形成してもよい。この場合、エンボスの高さh1+h2(μm)は、フィルム膜厚Tの0.05~0.3倍の範囲、幅Wはフィルム幅Lの0.005~0.02倍の範囲に設定する。例えばフィルム膜厚40μmであるとき、エンボスの高さh1+h2(μm)は2~12μmに設定する。エンボス幅は5~30mmに設定する。 Here, the height h (μm) of the emboss is set in the range of 0.05 to 0.3 times the film thickness T, and the width W is set in the range of 0.005 to 0.02 times the film width L. . Embossing may be formed on both sides of the film. In this case, the height h1 + h2 (μm) of the emboss is set in the range of 0.05 to 0.3 times the film thickness T, and the width W is set in the range of 0.005 to 0.02 times the film width L. For example, when the film thickness is 40 μm, the emboss height h 1 + h 2 (μm) is set to 2 to 12 μm. The emboss width is set to 5-30mm.
 乾燥が終了したフィルムを巻取り装置(13)によって巻き取り、光学フィルムの元巻を得るものである。乾燥を終了するフィルムの残留溶媒量は、0.5質量%以下、好ましくは0.1質量%以下とすることにより寸法安定性の良好なフィルムを得ることができる。 The film after drying is wound up by a winding device (13) to obtain the original roll of the optical film. A film having good dimensional stability can be obtained by setting the residual solvent amount of the film to be dried to 0.5% by mass or less, preferably 0.1% by mass or less.
 フィルムの巻き取り方法は、一般に使用されているワインダーを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等の張力をコントロールする方法があり、それらを使い分ければよい。 The winding method of the film may be a generally used winder, and there are methods for controlling the tension such as a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, etc. You can use it properly.
 巻取りコア(巻芯)への、フィルムの接合は、両面接着テープでも、片面接着テープでもどちらでも良い。 The film may be joined to the winding core (winding core) by either a double-sided adhesive tape or a single-sided adhesive tape.
 本発明による光学フィルムは、巻き取り後のフィルムの幅が、1200~2500mmであることが好ましい。 The optical film according to the present invention preferably has a width of 1200 to 2500 mm after winding.
 本発明においては、セルロースエステルフィルムの乾燥後の膜厚は、液晶表示装置の薄型化の観点から、仕上がりフィルムとして、20~150μmの範囲が好ましい。ここで、乾燥後のフィルム膜厚とは、フィルム中の残留溶媒量が0.5質量%以下の状態のフィルムを言うものである。 In the present invention, the thickness of the cellulose ester film after drying is preferably in the range of 20 to 150 μm as the finished film from the viewpoint of thinning the liquid crystal display device. Here, the film thickness after drying refers to a film in which the amount of residual solvent in the film is 0.5% by mass or less.
 ここで、巻き取り後のセルロースエステルフィルムの膜厚が薄過ぎると、例えば偏光板用保護フィルムとしての必要な強度が得られない場合がある。フィルムの膜厚が厚過ぎると、従来のセルロースエステルフィルムに対して薄膜化の優位性がなくなる。膜厚の調節には、所望の厚さになるように、ドープ濃度、ポンプの送液量、流延ダイの口金のスリット間隙、流延ダイの押し出し圧力、支持体の速度等をコントロールするのがよい。また、膜厚を均一にする手段として、膜厚検出手段を用いて、プログラムされたフィードバック情報を上記各装置にフィードバックさせて調節するのが好ましい。 Here, when the film thickness of the cellulose ester film after winding is too thin, for example, the required strength as a protective film for a polarizing plate may not be obtained. If the film thickness is too thick, the advantage of thinning the film becomes less than the conventional cellulose ester film. In order to adjust the film thickness, the dope concentration, the pumping amount, the slit gap of the die of the casting die, the extrusion pressure of the casting die, the speed of the support, etc. are controlled so as to obtain the desired thickness. Is good. Further, as a means for making the film thickness uniform, it is preferable to use a film thickness detection means to feed back and adjust the programmed feedback information to each of the above devices.
 溶液流延製膜法を通しての流延直後からの乾燥までの工程において、乾燥装置内の雰囲気を、空気とするのもよいが、窒素ガスや炭酸ガス等の不活性ガス雰囲気で行なってもよい。ただ、乾燥雰囲気中の蒸発溶媒の爆発限界の危険性は常に考慮されなければならないことはもちろんである。 In the process from immediately after casting through the solution casting film-forming method to drying, the atmosphere in the drying apparatus may be air, but may be performed in an inert gas atmosphere such as nitrogen gas or carbon dioxide gas. . However, of course, the danger of the explosion limit of the evaporating solvent in the dry atmosphere must always be considered.
 本発明において、セルロースエステルフィルムは、含水率としては0.1~5%が好ましく、0.3~4%がより好ましく、0.5~2%であることがさらに好ましい。 In the present invention, the cellulose ester film preferably has a moisture content of 0.1 to 5%, more preferably 0.3 to 4%, and even more preferably 0.5 to 2%.
 本発明において、セルロースエステルフィルムは、透過率が90%以上であることが望ましく、さらに好ましくは92%以上であり、さらに好ましくは93%以上である。 In the present invention, the cellulose ester film desirably has a transmittance of 90% or more, more preferably 92% or more, and still more preferably 93% or more.
 また、本発明の方法により製造された光学フィルムは、3枚重ねた場合のヘイズが、0.3~2.0であるもので、本発明の光学フィルムによれば、フィルムのヘイズが非常に低いものであり、透明性、平面性に優れた光学特性を有するものである。 In addition, the optical film produced by the method of the present invention has a haze of 0.3 to 2.0 when three sheets are stacked. According to the optical film of the present invention, the haze of the film is very high. It is low and has optical characteristics excellent in transparency and flatness.
 ここで、光学フィルムのヘイズの測定は、例えば、JIS K6714に規定される方法に従って、ヘイズ・メーター(1001DP型、日本電色工業株式会社製)を用いて測定すれば、良い。 Here, the haze of the optical film may be measured, for example, using a haze meter (1001DP type, manufactured by Nippon Denshoku Industries Co., Ltd.) according to the method defined in JIS K6714.
 また、本発明による光学フィルムの製造方法で製造されたセルロースエステルフィルムの機械方向(MD方向)の引張弾性率が、1500MPa~3500MPa、機械方向に垂直な方向(TD方向)の引張弾性率が、3000MPa~4500MPaであるのが好ましく、フィルムのTD方向弾性率/MD方向弾性率の比が、1.40~1.90であるのが好ましい。 The tensile modulus in the machine direction (MD direction) of the cellulose ester film produced by the method for producing an optical film according to the present invention is 1500 MPa to 3500 MPa, and the tensile modulus in the direction perpendicular to the machine direction (TD direction) is It is preferably 3000 MPa to 4500 MPa, and the ratio of the elastic modulus in the TD direction / the elastic modulus in the MD direction of the film is preferably 1.40 to 1.90.
 ここで、光学フィルムのTD方向弾性率/MD方向弾性率の比が、1.40未満であれば、1650mmを超える幅のフィルムの巻取りでは中央部のたるみが大きくなり、巻き芯のフィルムの貼り付きが多くなるため、好ましくない。また、フィルムのTD方向弾性率/MD方向弾性率の比が、1.90を超えると、偏光板での過熱後のそりが生じたり、液晶パネルに組み込んだ際にバックライトの熱によりバックライト側と表面側の偏光板の寸法変化の挙動が大きく異なることにより、コーナーにムラが生じるので、好ましくない。 Here, if the ratio of the elastic modulus in the TD direction / the elastic modulus in the MD direction of the optical film is less than 1.40, the sag of the central portion becomes large in winding a film having a width exceeding 1650 mm, and Since sticking increases, it is not preferable. Further, when the ratio of the elastic modulus in the TD direction / the elastic modulus in the MD direction exceeds 1.90, warpage after overheating in the polarizing plate occurs, or the backlight is heated by the heat of the backlight when incorporated in a liquid crystal panel. Since the dimensional change behavior of the polarizing plate on the side and the surface side is greatly different, unevenness occurs at the corner, which is not preferable.
 フィルムのMD方向、及びTD方向の引張弾性率の具体的な測定方法としては、例えばJIS K7217の方法が挙げられる。 As a specific method for measuring the tensile modulus of elasticity in the MD direction and TD direction of the film, for example, the method of JIS K7217 can be mentioned.
 すなわち、引っ張り試験器(ミネベア社製、TG-2KN)を用い、チャッキング圧:0.25MPa、標線間距離:100±10mmで、サンプルをセットし、引っ張り速度:100±10mm/分の速度で引っ張る。その結果、得られた引張応力-歪み曲線から、弾性率算出開始点を10N、終了点を30Nとし、その間に引いた接線を外挿し、弾性率を算出するものである。 That is, using a tensile tester (TG-2KN, manufactured by Minebea), setting the sample at a chucking pressure: 0.25 MPa, a distance between marked lines: 100 ± 10 mm, and a pulling speed: 100 ± 10 mm / min Pull on. As a result, from the obtained tensile stress-strain curve, the elastic modulus calculation start point is 10N, the end point is 30N, and the tangent line drawn between them is extrapolated to calculate the elastic modulus.
 本発明の光学フィルムでは、下記式で定義される面内方向リタデーション(Ro)が、温度23℃、湿度55%RHの条件下で30~300nm、厚み方向リタデーション(Rt)が、温度23℃、湿度55%RHの条件下で70~400nmであることが好ましい。 In the optical film of the present invention, the in-plane direction retardation (Ro) defined by the following formula is 30 to 300 nm under the conditions of a temperature of 23 ° C. and a humidity of 55% RH, and the thickness direction retardation (Rt) is a temperature of 23 ° C. It is preferably 70 to 400 nm under the condition of a humidity of 55% RH.
 Ro=(nx-ny)×d
 Rt={(nx+ny)/2-nz}×d
 式中、Roはフィルム面内リタデーション値、Rtはフィルム厚み方向リタデーション値、nxはフィルム面内の遅相軸方向の屈折率、nyはフィルム面内の進相軸方向の屈折率、nzはフィルムの厚み方向の屈折率(屈折率は波長590nmで測定)、dはフィルムの厚さ(nm)を表わす。
Ro = (nx−ny) × d
Rt = {(nx + ny) / 2−nz} × d
In the formula, Ro is the retardation value in the film plane, Rt is the retardation value in the film thickness direction, nx is the refractive index in the slow axis direction in the film plane, ny is the refractive index in the fast axis direction in the film plane, and nz is the film. (Refractive index is measured at a wavelength of 590 nm), d represents the thickness (nm) of the film.
 なお、リタデーション値Ro、Rtは、自動複屈折率計を用いて測定することができる。例えば、KOBRA-21ADH(王子計測機器株式会社製)を用いて、温度23℃、湿度55%RHの環境下で、波長が590nmで求めることができる。 The retardation values Ro and Rt can be measured using an automatic birefringence meter. For example, using KOBRA-21ADH (manufactured by Oji Scientific Instruments Co., Ltd.), the wavelength can be determined at 590 nm in an environment of a temperature of 23 ° C. and a humidity of 55% RH.
 本発明が対象とする光学フィルムは、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ等の各種ディスプレイ、特に液晶ディスプレイに用いられる機能フィルムのことであり、偏光板保護フィルム、位相差フィルム、反射防止フィルム、輝度向上フィルム、視野角拡大等の光学補償フィルムを含むものである。 The optical film targeted by the present invention is a functional film used for various displays such as a liquid crystal display, a plasma display, and an organic EL display, particularly a liquid crystal display. A polarizing plate protective film, a retardation film, an antireflection film, It includes an optical compensation film such as a brightness enhancement film and a viewing angle expansion.
 本発明による光学フィルムは、液晶表示用部材、詳しくは偏光板用保護フィルムに用いられるのが好ましい。特に、透湿度と寸法安定性に対して共に厳しい要求のある偏光板用保護フィルムにおいて、本発明の方法により製造された光学フィルムは好ましく用いられる。 The optical film according to the present invention is preferably used for a liquid crystal display member, specifically a protective film for a polarizing plate. In particular, in a protective film for a polarizing plate that has strict requirements for both moisture permeability and dimensional stability, the optical film produced by the method of the present invention is preferably used.
 本発明の光学フィルムからなる偏光板用保護フィルムを用いることにより、薄膜化とともに、耐久性及び寸法安定性、光学的等方性に優れた偏光板を提供することができる。 By using the protective film for polarizing plate made of the optical film of the present invention, it is possible to provide a polarizing plate that is excellent in durability, dimensional stability, and optical isotropy, as well as being thinned.
 ところで、偏光フィルムは、従来から使用されている、例えば、ポリビニルアルコールフィルムのような延伸配向可能なフィルムを、沃素のような二色性染料で処理して縦延伸したものである。偏光フィルム自身では、十分な強度、耐久性がないので、一般的にはその両面に保護フィルムとしての異方性のないセルロースエステルフィルムを接着して偏光板としている。 By the way, the polarizing film is a film that has been conventionally stretched, for example, a film that can be stretched and oriented, such as a polyvinyl alcohol film, treated with a dichroic dye such as iodine. Since the polarizing film itself does not have sufficient strength and durability, a polarizing plate is generally obtained by adhering a cellulose ester film having no anisotropy as a protective film to both surfaces thereof.
 上記偏光板には、本発明の方法により製造された光学フィルムを位相差フィルムとして貼り合わせて作製してもよいし、また本発明の方法により製造された光学フィルムを位相差フィルムと保護フィルムとを兼ねて、直接偏光フィルムと貼り合わせて作製してもよい。貼り合わせる方法は、特に限定はないが、水溶性ポリマーの水溶液からなる接着剤により行なうことができる。この水溶性ポリマー接着剤は完全鹸化型のポリビニルアルコール水溶液が好ましく用いられる。さらに、長手方向に延伸し、二色性染料処理した長尺の偏光フィルムと長尺の本発明の方法により製造された位相差フィルムとを貼り合わせることによって長尺の偏光板を得ることができる。偏光板はその片面または両面に感圧性接着剤層(例えば、アクリル系感圧性接着剤層など)を介して剥離性シートを積層した貼着型のもの(剥離性シートを剥すことにより、液晶セルなどに容易に貼着することができる)としてもよい。 The polarizing plate may be prepared by laminating the optical film produced by the method of the present invention as a retardation film, and the optical film produced by the method of the present invention is a retardation film and a protective film. Alternatively, it may be produced by directly bonding to a polarizing film. The method of bonding is not particularly limited, but can be performed with an adhesive composed of an aqueous solution of a water-soluble polymer. The water-soluble polymer adhesive is preferably a completely saponified polyvinyl alcohol aqueous solution. Furthermore, a long polarizing plate can be obtained by laminating a long polarizing film stretched in the longitudinal direction and treated with a dichroic dye and a long retardation film produced by the method of the present invention. . A polarizing plate is a sticking type in which a peelable sheet is laminated on one or both sides thereof via a pressure sensitive adhesive layer (for example, an acrylic pressure sensitive adhesive layer). Or the like can be easily attached).
 このようにして得られた偏光板は、種々の表示装置に使用できる。特に電圧無印加時に液晶性分子が実質的に垂直配向しているVAモードや、電圧無印加時に液晶性分子が実質的に水平かつねじれ配向しているTNモードの液晶セルを用いた液晶表示装置が好ましい。 The polarizing plate thus obtained can be used for various display devices. In particular, a liquid crystal display device using a VA mode liquid crystal molecule in which liquid crystal molecules are substantially vertically aligned when no voltage is applied, or a TN mode liquid crystal cell in which liquid crystal molecules are substantially horizontal and twisted when no voltage is applied. Is preferred.
 ところで、偏光板は、一般的な方法で作製することができる。例えば、光学フィルムあるいはセルロースエステルフィルムをアルカリケン化処理し、ポリビニルアルコールフィルムをヨウ素溶液中に浸漬、延伸して作製した偏光膜の両面に、完全ケン化型ポリビニルアルコール水溶液を用いて貼り合わせる方法がある。アルカリケン化処理とは、水系接着剤の濡れを良くし、接着性を向上させるために、セルロースエステルフィルムを高温の強アルカリ液中に漬ける処理のことをいう。 Incidentally, the polarizing plate can be produced by a general method. For example, there is a method in which an optical film or a cellulose ester film is subjected to alkali saponification treatment, and a polyvinyl alcohol film is immersed and stretched in an iodine solution and bonded to both surfaces of a polarizing film using a completely saponified polyvinyl alcohol aqueous solution. is there. The alkali saponification treatment refers to a treatment of immersing the cellulose ester film in a high-temperature strong alkaline solution in order to improve the wetness of the water-based adhesive and improve the adhesiveness.
 本発明の方法により製造された光学フィルムには、ハードコート層、防眩層、反射防止層、防汚層、帯電防止層、導電層、光学異方層、液晶層、配向層、粘着層、接着層、下引き層等の各種機能層を付与することができる。これらの機能層は塗布あるいは蒸着、スパッタ、プラズマCVD、プラズマ処理等の方法で設けることができる。 The optical film produced by the method of the present invention includes a hard coat layer, an antiglare layer, an antireflection layer, an antifouling layer, an antistatic layer, a conductive layer, an optical anisotropic layer, a liquid crystal layer, an alignment layer, an adhesive layer, Various functional layers such as an adhesive layer and an undercoat layer can be provided. These functional layers can be provided by a method such as coating or vapor deposition, sputtering, plasma CVD, or plasma treatment.
 このようにして得られた偏光板が、液晶セルの片面または両面に設けられ、これを用いて、液晶表示装置が得られる。 The polarizing plate thus obtained is provided on one side or both sides of the liquid crystal cell, and a liquid crystal display device is obtained using this.
 液晶表示装置は、棒状の液晶分子が一対のガラス基板に挟持された液晶セルと、液晶セルを挾むように配置された偏光膜及びその両側に配置された透明保護層からなる2枚の偏光板を持つものである。 The liquid crystal display device includes a liquid crystal cell in which rod-like liquid crystal molecules are sandwiched between a pair of glass substrates, a polarizing film disposed so as to sandwich the liquid crystal cell, and two polarizing plates each including a transparent protective layer disposed on both sides thereof. It is what you have.
 本発明の方法により製造された光学フィルムからなる偏光板用保護フィルムを用いることにより、薄膜化とともに、耐久性及び寸法安定性、光学的等方性に優れた偏光板を提供することができる。さらに、この偏光板あるいは位相差フィルムを用いた液晶表示装置は、長期間に亘って安定した表示性能を維持することができる。 By using a protective film for a polarizing plate comprising an optical film produced by the method of the present invention, it is possible to provide a polarizing plate excellent in durability, dimensional stability, and optical isotropy as well as in a thin film. Furthermore, a liquid crystal display device using this polarizing plate or retardation film can maintain stable display performance over a long period of time.
 本発明の方法により製造された光学フィルムは、反射防止用フィルムあるいは光学補償フィルムの基材としても使用できる。 The optical film produced by the method of the present invention can also be used as a base material for an antireflection film or an optical compensation film.
 以下、本発明の実施例を説明するが、本発明はこれらに限定されるものではない。
実施例1
(ドープの調製)
 下記の素材を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解、濾過し、ドープを調製した。なお、二酸化珪素微粒子(アエロジルR972V)は、エタノールに分散した後、添加した。
(ドープ組成)
 セルローストリアセテート(アセチル置換度2.88)   100質量部
 トリフェニルホスフェート                  8質量部
 ビフェニルジフェニルホスフェート(液体の可塑剤)      4質量部
 5-クロロ-2-(3,5-ジ-sec-ブチル-2-ヒドロ
 キシフェニル)-2H-ベンゾトリアゾール(液体紫外線吸収剤)1質量部
 メチレンクロライド                   418質量部
 エタノール                        23質量部
 アエロジル R972V                 0.1質量部
 上記のドープを流延し支持体から剥離された後のウェブを搬送するロールは、いずれも表面にハードクロムメッキして、超鏡面に研磨したものを用いた。
(セルローストリアセテートフィルムの作製)
 上記のドープを用いて、以下のようにして、セルローストリアセテートフィルムを作製した。
Examples of the present invention will be described below, but the present invention is not limited thereto.
Example 1
(Preparation of dope)
The following materials were put into a closed container, heated, stirred and completely dissolved and filtered to prepare a dope. Silicon dioxide fine particles (Aerosil R972V) were added after being dispersed in ethanol.
(Dope composition)
Cellulose triacetate (acetyl substitution degree 2.88) 100 parts by weight Triphenyl phosphate 8 parts by weight Biphenyl diphenyl phosphate (liquid plasticizer) 4 parts by weight 5-chloro-2- (3,5-di-sec-butyl-2- Hydroxyphenyl) -2H-benzotriazole (liquid UV absorber) 1 part by weight Methylene chloride 418 parts by weight Ethanol 23 parts by weight Aerosil R972V 0.1 part by weight The web after the dope was cast and peeled from the support The rolls to be transported were hard chrome plated on the surface and polished to a super mirror surface.
(Production of cellulose triacetate film)
Using the above dope, a cellulose triacetate film was produced as follows.
 図1に示す製造装置を用いて製膜を行なった。同図を参照すると、濾過したドープを、ドープ温度35℃で、温度20℃のSUS316製のエンドレスベルトからなる支持体(7)上にコートハンガーダイよりなる流延ダイ(3)より均一に流延し、流延膜(ウェブ)(10)を形成した。支持体(7)上での乾燥風の温度は30℃で一定とし、支持体(7)の搬送速度を変えることで、支持体(7)上でのウェブ(10)の乾燥時間を60秒から120秒まで変え、剥離時のウェブ(10)の残留溶媒量を変化させた。 Film formation was performed using the manufacturing apparatus shown in FIG. Referring to the figure, the filtered dope is uniformly flown from a casting die (3) made of a coat hanger die on a support (7) made of SUS316 endless belt at a temperature of 20 ° C. at a dope temperature of 35 ° C. The cast film (web) (10) was formed. The drying air temperature on the support (7) was kept constant at 30 ° C., and the drying speed of the web (10) on the support (7) was changed to 60 seconds by changing the conveying speed of the support (7). Until 120 seconds, the amount of residual solvent of the web (10) at the time of peeling was changed.
 支持体(7)からウェブ(10)を剥離した後、温度90℃の雰囲気で、搬送ロール(8)(9)で搬送しながら乾燥させ、テンター(11)で、残留溶媒量10%のとき、温度100℃の雰囲気内で、ウェブ(10)を幅方向に1.06倍延伸した後、幅保持を解放して、ロール搬送しながら温度125℃の乾燥ゾーン(12)で乾燥を終了させ、フィルム両端に幅10mm、高さ8μmのナーリング加工を施して、膜厚40μmのセルローストリアセテートフィルムを作製した。フィルム幅は1300mm、巻き取り長は1500mとした。 After peeling the web (10) from the support (7), it is dried while being transported by transport rolls (8) and (9) in an atmosphere at a temperature of 90 ° C. When the residual solvent amount is 10% by the tenter (11) The web (10) was stretched 1.06 times in the width direction in an atmosphere at a temperature of 100 ° C., then the width was released, and drying was terminated in the drying zone (12) at a temperature of 125 ° C. while being conveyed by rolls. Both ends of the film were knurled with a width of 10 mm and a height of 8 μm to prepare a cellulose triacetate film having a thickness of 40 μm. The film width was 1300 mm, and the winding length was 1500 m.
 そして、この実施例においては、剥離後のウェブ搬送ロール(8)(9)にそれぞれプラズマ装置(19)により、下記のように、高エネルギー表面処理を実施することによって、ウェブ搬送ロール(8)(9)表面に、表面処理膜を形成させた。
(プラズマ処理)
 製膜時、プラズマ装置(19)のプラズマ噴射スリットからウェブ搬送ロール(8)(9)の表面までの間隙(d)を2mmとした条件にて、プラズマ照射処理をした。
And in this Example, by carrying out high energy surface treatment to the web conveyance roll (8) (9) after peeling with a plasma apparatus (19) as follows, the web conveyance roll (8) (9) A surface treatment film was formed on the surface.
(Plasma treatment)
During film formation, plasma irradiation treatment was performed under the condition that the gap (d) from the plasma injection slit of the plasma device (19) to the surface of the web transport rolls (8) and (9) was 2 mm.
 反応ガスの使用量は、照射幅1m当たり1mした。プラズマ処理に用いた混合ガス(反応ガス)の組成を以下に記す。気圧は1.0気圧とした。 The amount of reaction gas used was 1 m 3 per 1 m of irradiation width. The composition of the mixed gas (reactive gas) used for the plasma treatment is described below. The atmospheric pressure was 1.0 atm.
 窒素     99.0体積%
 酸素      1.0体積%
 混合ガス流量  2m/min
 なお、プラズマ装置の周囲の溶媒ガス濃度は、プラズマ装置に入る手前の剥離ロール(8)の表面付近で、メチレンクロライド4000ppm、エタノール2000ppmであった。
Nitrogen 99.0% by volume
Oxygen 1.0% by volume
Mixed gas flow rate 2m 3 / min
The solvent gas concentration around the plasma device was 4000 ppm of methylene chloride and 2000 ppm of ethanol in the vicinity of the surface of the peeling roll (8) before entering the plasma device.
 そして、この実施例においては、ウェブ(10)を支持体(7)から剥離する際のウェブ(10)の残留溶媒量を68質量%とした。 In this example, the residual solvent amount of the web (10) when the web (10) was peeled from the support (7) was set to 68% by mass.
 なお、セルローストリアセテートフィルムは、最終的な残留溶媒量が0.2質量%の状態で巻取り機に巻き取った。
実施例2
 上記実施例1の場合と同様に実施するが、上記実施例1の場合と異なる点は、ウェブ(10)を支持体(7)から剥離する際のウェブ(10)の残留溶媒量を140質量%とした点にある。
実施例3と4
 上記実施例1と2の場合と同様に実施するが、上記実施例1と2の場合と異なる点は、図3に示すプラズマ装置に代えて、図4に示すエキシマUV装置を使用し、エキシマUV処理を施した点にある。
The cellulose triacetate film was wound on a winder with a final residual solvent amount of 0.2% by mass.
Example 2
Although it carries out similarly to the case of the said Example 1, the point different from the case of the said Example 1 differs in the amount of residual solvents of the web (10) at the time of peeling a web (10) from a support body (7) being 140 masses. %.
Examples 3 and 4
This is carried out in the same manner as in the first and second embodiments. However, the difference from the first and second embodiments is that an excimer UV apparatus shown in FIG. 4 is used instead of the plasma apparatus shown in FIG. It is in the point which performed UV processing.
 すなわち、下記のエキシマUV処理を、ウェブ搬送ロール(8)(9)表面とに施した。
(エキシマUV処理)
 支持体の搬送方向の長さが約300mmの石英ガラス(q)の中に、放射照度40mW/cmの、Xe波長172nmエキシマUVランプが4本入った装置を、ランプの石英ガラス表面から、ウェブ搬送ロール(8)(9)表面までの間隙(d)を1mmとし、ウェブ搬送ロール(8)(9)の表面にエキシマUV光を照射した。
That is, the following excimer UV treatment was performed on the surfaces of the web transport rolls (8) and (9).
(Excimer UV treatment)
An apparatus in which four Xe 2 wavelength 172 nm excimer UV lamps having an irradiance of 40 mW / cm 2 in quartz glass (q) having a length of about 300 mm in the conveyance direction of the support is placed from the quartz glass surface of the lamp. The gap (d) to the surface of the web transport rolls (8) and (9) was 1 mm, and the surface of the web transport rolls (8) and (9) was irradiated with excimer UV light.
 なお、エキシマUV装置の周囲の溶媒蒸気濃度は、エキシマUV装置に入る手前の剥離ロール(8)の表面付近で、メチレンクロライド4000ppm、エタノール2000ppmであった。
比較例1~4
 上記実施例1~4の場合と同様に実施するが、上記実施例1~4の場合と異なる点は、ウェブ(10)を支持体(7)から剥離後のウェブ搬送ロール表面する際のウェブ(10)の残留溶媒量にある。
In addition, the solvent vapor | steam density | concentration of the circumference | surroundings of an excimer UV apparatus was methylene chloride 4000ppm and ethanol 2000ppm in the vicinity of the surface of the peeling roll (8) before entering an excimer UV apparatus.
Comparative Examples 1 to 4
This is carried out in the same manner as in Examples 1 to 4, but the difference from Examples 1 to 4 is that the web (10) is peeled off from the support (7) on the surface of the web transport roll. (10) Residual solvent amount.
 上述した実施例1~4、および比較例1~4において、それぞれ上記の条件でセルローストリアセテートフィルムの製膜を2週間連続して行ない、製膜開始1日後に作製したフィルムと、2週間後に作製したフィルムについて、両者の差異を評価するために、フィルムの押され故障・異物・汚れの観察と、評価を行なった。また、製膜1日後と、製膜2週間経過後におけるウェブ搬送ロール(8)(9)の表面状態を目視によって観察し、評価を実施した。得られた評価結果を、下記の表1に示した。
(押され故障・異物・汚れの観察と評価)
 本発明の実施例1~4、並びに比較例1~4で作製したセルローストリアセテートフィルム試料から全幅で長手方向に1mの長さに切り出し、このフィルム試料にシャーカステン上で光を透過させながら、ルーペで、押され故障・異物・汚れの有無及び大きさを観察し、下記の基準で評価した。
In Examples 1 to 4 and Comparative Examples 1 to 4 described above, a cellulose triacetate film was continuously formed for 2 weeks under the above-mentioned conditions, and a film prepared 1 day after the start of film formation and 2 weeks later In order to evaluate the difference between the two films, the film was pressed and observed for failure / foreign matter / dirt and evaluated. Moreover, the surface state of the web conveyance rolls (8) and (9) after 1 day of film formation and after 2 weeks of film formation was visually observed and evaluated. The obtained evaluation results are shown in Table 1 below.
(Observation and evaluation of pressed failure, foreign matter and dirt)
The cellulose triacetate film samples prepared in Examples 1 to 4 and Comparative Examples 1 to 4 of the present invention were cut out to a length of 1 m in the longitudinal direction with a full width, and this film sample was transmitted with light on the Schaukasten with a loupe. The presence and size of the pressed failure / foreign matter / dirt was observed and evaluated according to the following criteria.
 AA:押され故障・異物・汚れがほとんど無かった
 A:50μm以上の大きさの押され故障・異物・汚れは無く、
   50μm未満のものが、0~10個観察された
 B:50μm以上の大きさの押され故障・異物・汚れは無く、
   50μm未満のものが11~30個観察された
 C:50μm以上の大きさの押され故障・異物・汚れが
   1~10個観察され、50μm以下のものが31~50個観察された
 D:50μm以上の大きさの押され故障・異物・汚れが
   11~30個観察され、50μm以下のものが51個以上観察された
(ウェブ搬送ロールの表面状態の目視による観察と評価)
 A:ウェブ搬送ロールの表面が、きれい
 B:ウェブ搬送ロールの表面に、うっすらと白いもやが入る
 C:ウェブ搬送ロールの表面全体が白くなる
 D:腐食によるサビによりウェブ搬送ロール表面が緑青色になる
 つぎに、上述した実施例1~4、および比較例1~4において、製膜開始1日後に作製したセルローストリアセテートフィルムと、2週間後に作製したセルローストリアセテートフィルムを用いて、下記のように、それぞれ偏光板を作製し、各偏光板の輝きスポット数からフィルムの劣化レベルを判断した。得られた評価結果を、下記の表1にあわせて示した。
(偏光板の作製)
 本発明の実施例1~4、及び比較例1~4で得られたセルローストリアセテートフィルムを、温度60℃の2mol/l濃度の水酸化ナトリウム水溶液中に2分間浸し、水洗した後、温度100℃で10分間乾燥して、アルカリ鹸化処理した偏光板用保護フィルムを作製した。
AA: Pushed failure / foreign matter / dirt was almost free. A: Pushing failure / foreign matter / dirt with a size of 50 μm or more was not.
0 to 10 specimens were observed with a size of less than 50 μm. B: There was no pressed failure, foreign matter, or dirt with a size of 50 μm or more.
11 to 30 specimens with a size of less than 50 μm were observed. C: 1 to 10 pressed faults / foreign particles / stains with a size of 50 μm or more were observed, and 31 to 50 specimens with a diameter of 50 μm or less were observed. D: 50 μm 11-30 pressed faults / foreign matters / stains with the above size were observed, and 51 or more with 50 μm or less were observed (visual observation and evaluation of the surface state of the web transport roll)
A: The surface of the web transport roll is clean. B: White haze slightly enters the surface of the web transport roll. C: The entire surface of the web transport roll becomes white. D: The surface of the web transport roll is greenish blue due to rust caused by corrosion. Next, in Examples 1 to 4 and Comparative Examples 1 to 4 described above, a cellulose triacetate film produced 1 day after the start of film formation and a cellulose triacetate film produced 2 weeks later were used as follows. Each polarizing plate was produced, and the deterioration level of the film was judged from the number of bright spots of each polarizing plate. The obtained evaluation results are shown in Table 1 below.
(Preparation of polarizing plate)
The cellulose triacetate films obtained in Examples 1 to 4 and Comparative Examples 1 to 4 of the present invention were immersed in a 2 mol / l sodium hydroxide aqueous solution at a temperature of 60 ° C. for 2 minutes, washed with water, and then at a temperature of 100 ° C. Was dried for 10 minutes to prepare a protective film for a polarizing plate subjected to alkali saponification treatment.
 一方、これとは別に、厚さ120μmのポリビニルアルコールフィルムを沃素1質量部、ホウ酸4質量部を含む水溶液100質量部に浸し、温度50℃で4倍に延伸して、偏光膜を作製した。 On the other hand, a 120 μm thick polyvinyl alcohol film was immersed in 100 parts by mass of an aqueous solution containing 1 part by mass of iodine and 4 parts by mass of boric acid, and stretched 4 times at a temperature of 50 ° C. to produce a polarizing film. .
 ついで、この偏光膜の両面に、前記偏光板用保護フィルムをそれぞれ完全鹸化型ポリビニルアルコール5%水溶液を接着剤として用い、各々貼り合わせて、各種偏光板を作製した。
(偏光板の輝きスポット数の評価)
 ついで、これらの偏光板試料を25cm×25cmの大きさに切り出し、1試料につき5枚準備し、30cm×30cmの大きさの2枚の輝きスポット観察用偏光板(図示略)をクロスニコル状態に配置して、上記偏光板試料を輝きスポット観察用偏光板同士の間に挿入し、偏光板試料の異物等による暗黒面に現れる輝きスポット数を観察し、5枚の偏光板試料の輝きスポット数の値により、下記の基準で評価した。得られた結果を下記の表1にあわせて示した。
Next, the polarizing plate protective films were bonded to both sides of the polarizing film by using a completely saponified polyvinyl alcohol 5% aqueous solution as an adhesive, respectively, to prepare various polarizing plates.
(Evaluation of number of shine spots on polarizing plate)
Next, these polarizing plate samples were cut out to a size of 25 cm × 25 cm, and five samples were prepared for each sample, and two polarizing plates for shining spot observation (not shown) having a size of 30 cm × 30 cm were placed in a crossed Nicols state. The polarizing plate sample is inserted between the polarizing plates for shining spot observation, and the number of shining spots appearing on the dark surface due to foreign matter etc. of the polarizing plate sample is observed. Based on the value of The obtained results are shown in Table 1 below.
 A:全く輝きスポットが無かった
 B:小さな輝きスポットが1~5個観察された
 C:小さな輝きスポットが6~30個観察された
 D:輝きスポットが31~50個観察された
 E:輝きスポットが51個以上観察された
A: No shine spots were observed B: 1-5 small shine spots were observed C: 6-30 small shine spots were observed D: 31-50 shine spots were observed E: Shine spots More than 51 were observed
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1の結果から明らかなように、本発明の実施例1~4によれば、ウェブ搬送ロール(8)(9)表面に、本発明の特徴であるプラズマ波またはエキシマUV波の照射によってそれぞれ表面処理膜を形成させることにより、ウェブ搬送ロール(8)(9)表面への汚れの付着が少なく、ウェブ搬送ロール(8)(9)表面をクリーンに保つことができた。 As is clear from the results in Table 1 above, according to Examples 1 to 4 of the present invention, the surface of the web transport rolls (8) and (9) was irradiated with the plasma wave or the excimer UV wave that is the feature of the present invention. By forming the respective surface treatment films, there was little adhesion of dirt to the surface of the web transport rolls (8) and (9), and the surfaces of the web transport rolls (8) and (9) could be kept clean.
 そして、本発明の実施例1~4によれば、セルローストリアセテートフィルムに押され故障・異物・汚れがほとんど無く、表面平滑性の良い高品質なセルローストリアセテートフィルムを長期間にわたり安定に製造することができた。また、実施例1~4のセルローストリアセテートフィルムによれば、偏光板の輝きスポット数が非常に少なかった。 And according to Examples 1 to 4 of the present invention, it is possible to stably produce a high-quality cellulose triacetate film having a good surface smoothness with little failure, foreign matter, and dirt pushed by the cellulose triacetate film over a long period of time. did it. In addition, according to the cellulose triacetate films of Examples 1 to 4, the number of bright spots on the polarizing plate was very small.
 さらに、本発明による実施例1~4では、ウェブ搬送ロール(8)(9)の表面に、高エネルギー表面処理を施すことによって、ウェブ搬送ロール(8)(9)表面に白っぽい汚れが付きにくくなり、ウェブ搬送ロール(8)(9)の汚れ速度が遅くなる効果も得られた。これによって、ウェブ搬送ロール(8)(9)表面の清掃の周期を長くすることができ、フィルムの生産性向上に寄与することができた。 Further, in Examples 1 to 4 according to the present invention, the surface of the web transport rolls (8) and (9) is subjected to high energy surface treatment, so that the surface of the web transport rolls (8) and (9) is less likely to be whitish. Thus, the effect of slowing the soiling speed of the web transport rolls (8) and (9) was also obtained. As a result, the cleaning cycle of the surfaces of the web transport rolls (8) and (9) can be lengthened, and the film productivity can be improved.
 これに対し、比較例2と4によれば、残留溶媒量が高すぎるために、ウェブ搬送ロールへの汚れの付着を防ぎきることができず、非常に多くのセルローストリアセテートフィルムに押され故障・異物・汚れが観察され、また偏光板の輝きスポット数が多く観察され、偏光板用保護フィルム等の光学フィルムとして、使用することができないものであった。さらに、比較例2と4によれば、1週間後に、ウェブ搬送ロール表面の清掃を必要とした。一方、比較例1と3については、押され故障・異物・汚れについては良好な結果が得られたが、残留溶媒量が低すぎるために、途中でウェブの一部が支持体(7)から剥がれるトラブルが度々発生し、ウェブの搬送性が非常に劣るだけでなく、ウェブが破断し、生産性が落ちることがあった。 On the other hand, according to Comparative Examples 2 and 4, since the amount of residual solvent is too high, it is not possible to prevent the adhesion of dirt to the web transport roll, and it is pushed by a large number of cellulose triacetate films. Foreign matter and dirt were observed, and the number of bright spots on the polarizing plate was observed, which could not be used as an optical film such as a protective film for a polarizing plate. Furthermore, according to Comparative Examples 2 and 4, the cleaning of the surface of the web transport roll was required after one week. On the other hand, in Comparative Examples 1 and 3, good results were obtained with respect to the pressed failure / foreign matter / dirt. However, since the residual solvent amount was too low, a part of the web was removed from the support (7) on the way. Troubles that peel off frequently occur, and not only the web transportability is very inferior, but also the web breaks and the productivity is sometimes lowered.

Claims (9)

  1.  溶液流延製膜法により熱可塑性樹脂のドープを無限移行する無端の支持体上に流延ダイから流延し、支持体上で溶媒を蒸発させて、ウェブを形成した後、ウェブを支持体から剥離し、剥離後のウェブを搬送して乾燥させ、得られたフィルムを巻き取る、光学フィルムの製造方法であって、ウェブを支持体から剥離する際のウェブの残留溶媒量を60~160質量%となし、ウェブを支持体から剥離した後のウェブ搬送ロールの表面に、プラズマまたはエキシマUVを照射して高エネルギー表面処理を施し、該搬送ロールの表面に、表面処理膜を形成することを特徴とする、光学フィルムの製造方法。 A thermoplastic resin dope is cast from a casting die onto an endless support that infinitely transfers a thermoplastic resin dope by a solution casting film forming method, and a solvent is evaporated on the support to form a web. Is a method for producing an optical film, in which the peeled web is transported and dried, and the resulting film is wound up, wherein the residual solvent amount of the web when the web is peeled from the support is 60 to 160. The surface of the web transport roll after the web is peeled off from the support is subjected to high energy surface treatment by irradiating with plasma or excimer UV, and a surface treatment film is formed on the surface of the transport roll. A method for producing an optical film, comprising:
  2.  プラズマ処理またはエキシマUV処理は、少なくとも前記溶媒の蒸気の存在下で照射し、表面処理膜を形成する処理であることを特徴とする請求の範囲第1項に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 1, wherein the plasma treatment or excimer UV treatment is a treatment for forming a surface treatment film by irradiating at least in the presence of the vapor of the solvent.
  3.  プラズマ処理またはエキシマUV処理は、前記溶媒の蒸気、およびプラズマ処理またはエキシマUV処理に用いるガスの両方の存在下で照射し、搬送ロールの表面に表面処理膜を形成する処理であることを特徴とする、請求の範囲第1項または第2項に記載の光学フィルムの製造方法。 The plasma treatment or excimer UV treatment is a treatment for forming a surface treatment film on the surface of the transport roll by irradiation in the presence of both the vapor of the solvent and a gas used for the plasma treatment or excimer UV treatment. The method for producing an optical film according to claim 1 or claim 2.
  4.  前記溶媒は、1,3-ジオキソラン、テトラヒドロフラン、メチルエチルケトン、アセトン、酢酸メチル及び塩化メチレンの中の少なくとも一種を含むことを特徴とする、請求の範囲第1項から第3項のいずれか一項に記載の光学フィルムの製造方法。 The solvent according to any one of claims 1 to 3, wherein the solvent includes at least one of 1,3-dioxolane, tetrahydrofuran, methyl ethyl ketone, acetone, methyl acetate, and methylene chloride. The manufacturing method of the optical film of description.
  5.  前記ウェブ搬送ロールと高エネルギー波照射装置との距離は、0.5~20mmであることを特徴とする、請求の範囲第1項から第4項のいずれか一項に記載の光学フィルムの製造方法。 The optical film production according to any one of claims 1 to 4, wherein a distance between the web transport roll and the high energy wave irradiation device is 0.5 to 20 mm. Method.
  6.  熱可塑性樹脂のドープを無限移行する無端の支持体上に流延ダイから流延し、支持体上で溶媒を蒸発させて、ウェブを形成した後、ウェブを支持体から剥離し、剥離後のウェブを搬送して乾燥させ、得られたフィルムを巻き取る、光学フィルムの製造装置であって、ウェブを支持体から剥離する際のウェブの残留溶媒量を60~160質量%となし、ウェブを支持体から剥離した後のウェブ搬送ロールの表面に、プラズマを照射して高エネルギー表面処理を施すプラズマ照射装置、または同表面にエキシマUVを照射して高エネルギー表面処理を施すエキシマUV照射装置を具備することを特徴とする、光学フィルムの製造装置。 Casting the dope of the thermoplastic resin from the casting die onto an endless support that moves indefinitely, evaporating the solvent on the support to form a web, then peeling the web from the support, An apparatus for producing an optical film, which transports and dries a web and winds up the obtained film, wherein the amount of residual solvent of the web when peeling the web from the support is 60 to 160% by mass, A plasma irradiation apparatus for irradiating plasma on the surface of the web conveyance roll after peeling from the support to perform high energy surface treatment, or an excimer UV irradiation apparatus for irradiating the surface with excimer UV to perform high energy surface treatment. An apparatus for producing an optical film, comprising:
  7.  請求の範囲第1項から第5項のうちのいずれか一項に記載の光学フィルムの製造方法により製造されたことを特徴とする、光学フィルム。 An optical film manufactured by the method for manufacturing an optical film according to any one of claims 1 to 5.
  8.  請求の範囲第7項に記載の光学フィルムを偏光板用保護フィルムとして、偏光膜の両面のうちのいずれか少なくとも一方の面に有することを特徴とする、偏光板。 A polarizing plate comprising the optical film according to claim 7 as a protective film for a polarizing plate, on at least one of both surfaces of the polarizing film.
  9.  請求の範囲第8項に記載の偏光板を用いることを特徴とする、表示装置。 A display device using the polarizing plate according to claim 8.
PCT/JP2009/052202 2008-02-12 2009-02-10 Optical film, process and apparatus for producing the same, polarizer employing optical film, and display WO2009101929A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009553417A JPWO2009101929A1 (en) 2008-02-12 2009-02-10 Optical film, manufacturing method and manufacturing apparatus thereof, polarizing plate using optical film, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008030005 2008-02-12
JP2008-030005 2008-02-12

Publications (1)

Publication Number Publication Date
WO2009101929A1 true WO2009101929A1 (en) 2009-08-20

Family

ID=40956961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052202 WO2009101929A1 (en) 2008-02-12 2009-02-10 Optical film, process and apparatus for producing the same, polarizer employing optical film, and display

Country Status (2)

Country Link
JP (1) JPWO2009101929A1 (en)
WO (1) WO2009101929A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012056664A1 (en) * 2010-10-27 2012-05-03 コニカミノルタオプト株式会社 Method for producing optical film, optical film, polarizing plate using optical film, and display device
WO2012077317A1 (en) * 2010-12-10 2012-06-14 コニカミノルタオプト株式会社 Optical film production method, optical film, polarizing plate, and liquid crystal display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002086474A (en) * 2000-09-19 2002-03-26 Konica Corp Cellulose ester film, method and apparatus for manufacturing the same and polarizing plate
JP2002292658A (en) * 2001-03-29 2002-10-09 Konica Corp Method for manufacturing cellulose ester film
JP2007237661A (en) * 2006-03-10 2007-09-20 Fujifilm Corp Solution film forming method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002086474A (en) * 2000-09-19 2002-03-26 Konica Corp Cellulose ester film, method and apparatus for manufacturing the same and polarizing plate
JP2002292658A (en) * 2001-03-29 2002-10-09 Konica Corp Method for manufacturing cellulose ester film
JP2007237661A (en) * 2006-03-10 2007-09-20 Fujifilm Corp Solution film forming method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012056664A1 (en) * 2010-10-27 2012-05-03 コニカミノルタオプト株式会社 Method for producing optical film, optical film, polarizing plate using optical film, and display device
WO2012077317A1 (en) * 2010-12-10 2012-06-14 コニカミノルタオプト株式会社 Optical film production method, optical film, polarizing plate, and liquid crystal display device

Also Published As

Publication number Publication date
JPWO2009101929A1 (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP4982816B2 (en) Optical film manufacturing method, optical film, polarizing plate, and display device
JP5510459B2 (en) Manufacturing method of optical film
JP4849075B2 (en) Cellulose ester film, production method thereof, polarizing plate using cellulose ester film, and display device
JP5163222B2 (en) Manufacturing method of optical film
JP2010274615A (en) Method of manufacturing optical film, optical film, polarizing plate and liquid crystal display device
JP4957790B2 (en) Manufacturing method of optical film
JP2008254223A (en) Optical film, its manufacturing method, polarization plate using optical film and display device
JP2010253723A (en) Optical film and method for manufacturing the same
JP2008119868A (en) Manufacturing method of cellulose ester film
JP2007271942A (en) Optical film
JP2010069646A (en) Optical film, method for producing the same, polarizing plate and liquid crystal display using optical film
JP2009160796A (en) Optical film, its manufacturing method, and polarizing plate and display using the film
WO2009101929A1 (en) Optical film, process and apparatus for producing the same, polarizer employing optical film, and display
JP2010036556A (en) Optical film, method for forming the same, polarizing plate using optical film, and display device
JP5083020B2 (en) Manufacturing method of optical film
JP5838778B2 (en) Manufacturing method of optical film
JP2011115969A (en) Optical film manufacturing method, optical film, polarizing plate, and display
JP2009234028A (en) Optical film, manufacturing method for it, polarizer using optical film and display device
JP2008119866A (en) Manufacturing method of cellulose ester film
JP2008307821A (en) Optical film, manufacturing method and manufacturing apparatus for the same, polarizing plate using optical film, and display unit
JP5838779B2 (en) Manufacturing method of optical film
JP2009073106A (en) Optical film, method for producing optical film, polarizing plate using optical film, and display
JP5853901B2 (en) Manufacturing method of optical film
JP2017007262A (en) Method for producing optical film
WO2012056664A1 (en) Method for producing optical film, optical film, polarizing plate using optical film, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09711478

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009553417

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09711478

Country of ref document: EP

Kind code of ref document: A1