WO2012026359A1 - レーザー誘起表面層を有する3次元構造体及びその製造方法 - Google Patents

レーザー誘起表面層を有する3次元構造体及びその製造方法 Download PDF

Info

Publication number
WO2012026359A1
WO2012026359A1 PCT/JP2011/068552 JP2011068552W WO2012026359A1 WO 2012026359 A1 WO2012026359 A1 WO 2012026359A1 JP 2011068552 W JP2011068552 W JP 2011068552W WO 2012026359 A1 WO2012026359 A1 WO 2012026359A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
dimensional structure
surface layer
substrate
induced surface
Prior art date
Application number
PCT/JP2011/068552
Other languages
English (en)
French (fr)
Inventor
隆彦 加藤
Original Assignee
株式会社日立製作所
国立大学法人北海道大学
渡辺 精一
吉田 裕
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所, 国立大学法人北海道大学, 渡辺 精一, 吉田 裕 filed Critical 株式会社日立製作所
Publication of WO2012026359A1 publication Critical patent/WO2012026359A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00031Regular or irregular arrays of nanoscale structures, e.g. etch mask layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods

Definitions

  • the present invention relates to a three-dimensional structure having a laser induced surface layer and a method of manufacturing the same.
  • quantum dots are lasers, optical amplifiers, single photon generating devices, etc. in the electronics field, quantum cryptography communication in the information communication field, quantum computers in the quantum computer, etc., solar cells etc. in the environment and energy fields, biosensors in the life sciences field, Application to fluorescent markers and the like is expected, and some are put to practical use.
  • the wavelength of light is the minimum size, and a micrometer or so is the limit value of the minimum processing size.
  • Patent Document 1 in order to form a silicon thin film having a crystallinity close to that of a single crystal and having a uniform particle diameter in a large area with high throughput in manufacturing of a semiconductor device, the pulse laser intensity is spatially
  • a method of manufacturing a semiconductor thin film having means for periodically intensity-modulating in the long axis direction of the line beam and collectively forming a polycrystalline film made of crystal grown in a fixed direction over the entire irradiation area of the line beam for each shot. It is disclosed.
  • Patent Document 2 discloses a microfabrication method for forming a fine structure of a size smaller than the wavelength of a pulse laser by irradiating a solid material surface with polarization control with a low fluence and using an ultrashort pulse laser (femtosecond laser). It is done.
  • Patent Document 3 discloses a method of arbitrarily drawing metal wiring on a substrate by laser direct drawing technology. This relates to a method in which a raw material W (CO) 6 gas is adsorbed onto the substrate surface at a portion irradiated with a laser (Ar laser light), and a W (tungsten) line is drawn along a laser irradiation beam. In this case, the W line is uniformly deposited on the laser irradiation portion.
  • a raw material W (CO) 6 gas is adsorbed onto the substrate surface at a portion irradiated with a laser (Ar laser light), and a W (tungsten) line is drawn along a laser irradiation beam.
  • the W line is uniformly deposited on the laser irradiation portion.
  • a processing technique by laser irradiation a method based on a top-down method of narrowing down a laser beam with a lens or the like and scraping an irradiated part is known as a normal method.
  • Non-Patent Document 1 describes for the first time that this processing technology has succeeded in developing a structure in which stripe-shaped undulations called ripple patterns are periodically arranged for Ge, Si, Al and brass. There is.
  • the object of the present invention is to form nanometer-order convex portions usable as quantum dots or quantum wires on the surface of a substrate (base material), and to use a nanometer different from the elements constituting the substrate.
  • the present invention is to form a convex portion on the order of several tens of nanometers.
  • the method for producing a three-dimensional structure having a laser-induced surface layer supplies a convex portion-forming substance containing a second element to the surface of a first element-containing substrate and applies a laser to the surface of the substrate
  • a convex portion-forming substance containing a second element to the surface of a first element-containing substrate and applies a laser to the surface of the substrate
  • a three-dimensional structure having a laser-induced surface layer according to the present invention has a three-dimensional structure including a substrate containing a first element, and a plurality of convex portions formed by irradiating the surface of the substrate with a laser.
  • the projection is a main component of the second element or contains the first element and the second element, and the second element is the first element
  • the distance between the apexes of the plurality of convex portions is equal to or less than the wavelength of the laser.
  • the present invention it is possible to simultaneously exhibit both the patterning (top-down method) utilizing the coherence of the laser beam and the self-organization (bottom-up) of surface atoms under laser beam irradiation. .
  • the present invention uses a laser irradiation to have on the surface of a substrate (base material) an element different from or the same element as that constituting the substrate, with a plurality of independent convex portions separated by an interval of the wavelength or less.
  • the three-dimensional laminate also referred to as a three-dimensional structure having a laser induced surface layer
  • the three-dimensional laminate is nano-aligned in the two-dimensional direction (the surface of the three-dimensional laminate).
  • the present invention relates to a functional material having on its surface a three-dimensional laminated structure such as an electronic / electromagnetic device, a quantum dot device, an optoelectronic device, a solar cell material, a catalyst material, or a nanobiomaterial manufactured using this method.
  • nanobiomaterials are materials that emit fluorescence when exposed to light such as ultraviolet light in a state of being bound to genes, proteins, cancer cells, etc., and enable imaging of genes, proteins, cancer cells etc. It is a material.
  • a quantum dot of CdSe (cadmium selenium) which is a semiconductor is coated with ZnS (zinc sulfide), and an organic substance having a carboxyl group or an amino group as an end group is bonded to the surface to bind an antibody to the carboxyl group or the amino group.
  • And lectins, etc. are materials that selectively bind to specific genes, proteins, cancer cells, etc.
  • the nanobiomaterial in the present invention is a three-dimensional structure arranged on the surface of a substrate, and is a material capable of selectively binding to a specific gene, a protein, a cancer cell or the like, and the specific gene or protein , A material that makes it possible to fix and image or detect cancer cells and the like.
  • the nanobiomaterial in the present invention can cause a chemical change in a specific gene, protein or the like immobilized on the surface of the substrate using the fluorescence emitted by the application of light such as ultraviolet light, thereby causing degradation. It is a material.
  • the nanobiomaterial in the present invention has a function of killing specific cancer cells and the like fixed on the surface of a substrate using fluorescence emitted by exposure to light such as ultraviolet light, and cancer cells and the like It is also possible to use it as an element which measures the intensity to ultraviolet light etc. or fluorescence.
  • a plurality of projections are provided on the surface of the substrate at different unspecified positions having random spacing or different elements or elements identical to the elements constituting the substrate using laser irradiation.
  • the present invention relates to a method of simultaneously forming a three-dimensional laminated body in a laser irradiation area and arranging the three-dimensional laminated body randomly in a two-dimensional direction, an electronic / electromagnetic device manufactured using the method, a quantum dot device,
  • the present invention relates to a functional material having on its surface a three-dimensional laminated structure such as an optoelectronic device, a solar cell material, a catalyst material, and a nanobiomaterial.
  • the quantum dot refers to a structure such as a semiconductor in which electrons are confined in a three-dimensional narrow region having a size of several nanometers to several tens of nanometers.
  • microdots convex portions having a size of several nanometers to several tens of nanometers formed on a solid surface corresponding to such a structure are referred to as quantum dots.
  • the freedom of electron transfer can be determined by the structure of the quantum dot, and a bulk, two-dimensional limited quantum well, one-dimensional limited quantum in which the electron can move freely in three dimensions There is a thin line.
  • quantum dots can create a system (0-dimensional electron system) that confines electrons in a narrow region.
  • the three-dimensional structure having the laser induced surface layer of the present invention is a structure in which quantum dots, quantum wires and the like are formed on the surface of the substrate.
  • quantum dots can control a single electron spin, and exhibit light emission characteristics and electrical characteristics that are higher in efficiency than semiconductors.
  • a method of producing a quantum dot As a method of producing a quantum dot, a self-organized growth method, a droplet epitaxy method and the like can be mentioned.
  • SK mode method which is one of self-organized growth methods, is in the mainstream.
  • quantum dots are formed utilizing strain energy due to lattice mismatch when growing crystals having different lattice constants on a certain substrate.
  • low melting point molecules are irradiated to the surface of the substrate in a vacuum environment in a beam shape. At this time, a large number of fine droplets of uniform size are produced, and the droplets become quantum dots.
  • II-IV compound semiconductors such as InAs and GaAs are often used, but in the future, quantum semiconductors using materials such as Si and organic compounds will be used in various industrial fields. Research on the production of dots is in progress.
  • the three-dimensional structure having the laser-induced surface layer of the present invention has a structure (regular arrangement structure) in which quantum dots are aligned with the surface of the substrate by selecting the irradiation condition of the laser, and The structure (random array structure) distributed at a relatively uniform density at random jump positions.
  • an electronic / electromagnetic device a quantum dot device, an optoelectronic device, a solar cell material, a catalyst material, a nanobiomaterial using a nanostructured structure such as a three-dimensional structure having the laser induced surface layer of the present invention.
  • functional materials such as
  • the present invention does not use the conventional laser processing method for drawing the above-mentioned convex portions one by one, but (1) a plurality of the above-mentioned structures within the irradiation range only by irradiating the laser. (2) to find materials and devices having surface functions that express phenomena such as catalysis, light characteristics, and new substance creation using the methods; The point is the problem. Therefore, the plurality of convex portions may be quantum dots, or may be a laminated body having another function having a size equal to or larger than that of the quantum dots. These are the subject of the present invention.
  • Quantum dots can improve the monochromaticity and intensity of light emission by making the size uniform. For example, since it becomes possible to improve the performance of a quantum dot laser etc., homogenization of quantum dots is an important issue.
  • PL half width is used as an index of the uniformity of the quantum dot size, and the narrower the PL half width, the more uniform.
  • Increasing the surface density of quantum dots and refining the structure are very important issues because they increase carriers and improve the performance of lasers, optical amplifiers, and the like.
  • quantum dots In order to apply quantum dots in various industrial fields, it is necessary to develop new materials such as GaN-based compound semiconductors, Si, C and organic compounds in addition to InAs and GaAs currently used. In addition, since materials used for quantum dots include harmful substances such as Cd, Hg, As, etc., development of quantum dots using materials that do not contain them is also required.
  • Stranski-Krastanow crystal growth method which is one of the self-organized growth methods, is the main method for producing quantum dots, but the size control and alignment control of quantum dots Is inadequate. For this reason, it is an issue to develop a simple manufacturing method that enables size control and sequence control. In addition, it is also necessary to develop a completely new manufacturing method aiming at mass production at low cost in the future.
  • the present invention provides a two-dimensional pattern arrangement of periodic formation of a plurality of quantum dots by laser irradiation and periodic structure of quantum dots, which could not be achieved in the world.
  • the first object of the present invention is to provide a method for manufacturing a surface periodic structure three-dimensionally stacked on the surface of a substance (substrate) having a chemical composition different from that of the quantum dots.
  • the second object is to provide various quantum devices, functional devices, electronic / information devices, energy devices, nanobiodevices and the like having surface quantum dot structures in which these dot shape periodic structures are simultaneously applied by a laser. .
  • the period of the ripple structure (striped (lined) convex portion on the surface of the substrate) consisting of one or two or more kinds of constituent elements by laser irradiation, which could not be realized before. Formation and two-dimensional pattern arrangement of this periodic structure, and three-dimensionally on the surface of a base material formed of elements different from the elements constituting these ripple structures. It was an object of the present invention to provide a method for producing a surface periodic structure laminated on Furthermore, it made it a subject to provide various functional devices, energy elements, biodevices, etc. which have a surface structure which gave these ripple shape periodic structures simultaneously by laser.
  • the present invention is to form a structure in which a plurality of convex portions consisting of one or more kinds of constituent elements by laser irradiation are randomly arranged at the same time, which has not been able to be realized in the world before.
  • the present invention provides a method for producing a surface structure in which these convex portions are two-dimensionally randomly arranged, and three-dimensionally stacked on the surface of a base formed of an element different from the element constituting the convex portions.
  • a base formed of an element different from the element constituting the convex portions was an issue.
  • it made it a subject to provide various functional devices, energy elements, biodevices, etc. using these structures.
  • a substance different from the substance constituting the substrate is supplied to the surface of the substrate, and a substance different from the substance constituting the substrate and the substance supplied onto the surface of the substrate is formed as a convex portion having a layered structure such as dot or ripple. Let it form.
  • a nanosecond pulse laser is mainly used, and the laser irradiation condition is 2.0 ⁇ 10 3 to 4.0 ⁇ 10 3 mJ / m 2 / pulse, 2 to 20 Hz, and the pulse number is 200 pulses to 20000 pulses. Is appropriate.
  • supply means sending in a gaseous state above the surface of the substrate, adsorbing to the surface of the substrate, forming a solid or liquid film on the surface of the substrate (deposited as a film), It is a term that includes depositing (particulately attaching) as solid or liquid particles on the surface of a substrate.
  • substances different from the substances constituting the substrate can be three-dimensionally arranged on the surface of the substrate while having random two-dimensional arrangement. It is also possible to produce a three-dimensional structure with a laser induced surface layer laminated to
  • inorganic materials such as insulators, semiconductors, metals, alloys, or ceramics can be mainly used.
  • the substance formed on the surface of the substrate may be the same substance as the substance supplied to the surface of the substrate, and further, the substance constituting the substrate and the surface of the substrate It may be a mixture with the substance supplied to The substance to be formed on the surface of the substrate can be controlled by appropriately selecting the combination of substances to be used, the laser irradiation condition, and the like.
  • the above-mentioned convex portion can be patterned by the following method.
  • the substance c described in the above 1) and 2) may be a mixture of the substance b and the substance a.
  • the substance b described in the above 1) and 3) may contain two or more elements.
  • the substance c which is a mixture of the substance b and the substance a described in the above 3) and 4) may be formed of an alloy consisting of a single phase or a plurality of phases. That is, the substance c may be a substance having a mixed structure including eutectic structure and eutectoid structure.
  • the substance c described in the above 5) may be a substance consisting of one or more kinds of crystals, a substance consisting of one or more kinds of amorphous, or a substance in which one or more kinds of crystals and amorphous coexist. That is, the substance c contains at least one of crystalline and amorphous.
  • the projections formed on the surface of the substrate described in 1) to 6) may be random arrangement, aligned grooves, or an independent body (dot) having a two-dimensional arrangement.
  • the supply of the substance b described in the above 1) to 7) may be finished before the laser irradiation, and the substance b may coat the substance a in the form of powder or film.
  • the method for supplying the substance b in the above 8) is vapor deposition, sputtering, aerosol deposition (hereinafter referred to as AD), coating, chemical vapor deposition (hereinafter referred to as CVD).
  • the substance a may be coated by a method such as
  • the supply of the substance b described in the above 1) to 7) may be performed only before laser irradiation, before laser irradiation and during laser irradiation, or only during laser irradiation.
  • the method of supplying substance b described in the above 10) may be a method of coating substance a by vapor deposition, sputtering, AD method, coating method, CVD method or the like which can be performed simultaneously with laser irradiation.
  • the body may be formed by performing a heat treatment in an arbitrary atmosphere in a state of laser irradiation or after laser irradiation.
  • the quantum dots may be conical or hemispherical.
  • the shape of the quantum dot can also be controlled such that the diameter of the apex portion of the quantum dot is larger (that is, in the shape of a neck) than the diameter of the bottom of the quantum dot (contact point with the substrate).
  • the surface substrate (substrate) to be irradiated with a laser has a quantum dot shape composed of a material different from the substrate, which could not be achieved conventionally by laser irradiation.
  • the manufacturing method of the quantum dot formation surface which carries out periodic arrangement of a three-dimensional lamination structure (three-dimensional structure which has a laser induction surface layer) can be provided.
  • substances different from the substrate are randomly formed on the surface of the substrate in linear ripple two-dimensional patterns or three-dimensional laminates. It is possible to provide a method of manufacturing a structured surface having a three-dimensionally arranged configuration.
  • the diameter of the quantum dot has a size of about 1 to 100 nm, and the height of the quantum dot can be freely from nanometer to micrometer by changing the irradiation amount. It is controllable.
  • the quantum property (wave property and particle property) of the laser, the particle property of the light beam causing the surface sputtering and the property as a wave are controlled to form the substance on the surface of the substrate composed of the substance a.
  • Substances b different from a can be three-dimensionally stacked, and patterns can be arranged at intervals below the wavelength.
  • the laser is directly irradiated to the sample without focusing the laser with high intensity by the lens as in normal use for laser processing (without using the lens), and the laser oscillator integrated optical system board and sample fixing board
  • the laser oscillator integrated optical system board and sample fixing board By making everything from the laser to the sample identical, it was made to synchronize the vibration of all the optical instruments from the vibration of the position of the laser to the position of the sample.
  • the laser-induced surface nano-alignment of the independent laminate becomes possible by controlling and irradiating the intensity and the irradiation amount of the linearly polarized laser.
  • tissue control by laser wavelength
  • tissue control by polarization direction
  • tissue control by irradiation angle
  • (4) by target type We found that the surface texture can be controlled in four ways: tissue control.
  • a nanosecond pulse laser is irradiated in the atmosphere under irradiation conditions of 2.0 ⁇ 10 3 to 4.0 ⁇ 10 3 mJ / m 2 / pulse, 2 to 20 Hz and a pulse number of 200 to 20000 pulses
  • a plurality (multiple or more) of quantum dots made of a material different from the material constituting the substrate, convex portions of a ripple structure, or convex portions of a three-dimensional structure having a shape larger than the quantum dots are simultaneously formed on the surface of the substrate It could be manufactured three-dimensionally stacked on the surface of the substrate while having a two-dimensional periodic pattern arrangement or a random two-dimensional arrangement.
  • Quantum dots consisting of substances different from the substance periodically arranged on the surface of the substrate have a height of 10 to 100 nm and a size (diameter) of 5 nm to 50 nm as a typical size, and the spacing between the arrays (distance between vertices) is The wavelength and the wavelength were approximately 1/9 to 1/4 (60 to 130 nm).
  • ripple patterns concave and convex
  • the appearance of ripple patterns consisting of substances different from the substance constituting the substrate is arranged at wavelength intervals and perpendicular to the polarization plane, but the stripe lines of the ripple pattern are aligned. It can be composed of an array (each stripe is composed of an array of quantum dots).
  • the laser polarization direction can be controlled or the polarization direction can be inclined to change the arrangement direction of the dots made of a material different from the material constituting the substrate.
  • Two-dimensional array patterning of surface dots consisting of substances different from the substance constituting the substrate becomes possible, and it has characteristic photoluminescence peaks and surface photoelectronic characteristics, and optical / electronic devices, quantum dot lasers, semiconductor integration It turned out that it is effective as a preparation method of a device, a patterning catalyst device, a nano bio device etc.
  • a quantum dot-formed surface comprising a substance different from the substance constituting the substrate of the present invention
  • laser irradiation is performed on the surface of the substrate, and a plurality of quantum dot structures having a quantum dot shape are irradiated on the surface by one batch irradiation. And simultaneously forming the quantum dot structures.
  • a plurality of quantum dot structures are simultaneously formed on the surface by irradiation of one batch, and periodic arrangement of the quantum dot structures
  • the periodic arrangement of the quantum dot structure is two-dimensionally patterned by changing the polarization of the batch and combining the plurality of steps and sequentially irradiating the same place.
  • the manufacturing method of the quantum dot formation surface which consists of a substance different from the substance which constitutes the substrate of the present invention is characterized in that the step of changing the polarization of the batch and combining a plurality of them and irradiating them to the same place is superimposing irradiation simultaneously. .
  • the manufacturing method of the quantum dot formation surface which consists of a substance different from the substance which constitutes the substrate of the present invention is characterized in that the structure of a quantum dot constitutes a two-dimensional pattern in which linear or curvilinear shape continues.
  • the method for producing a quantum dot two-dimensional periodic pattern array forming surface comprising a substance different from the substance constituting the substrate of the present invention is the method for producing a quantum dot two-dimensional periodic pattern array forming surface using the above method for producing a quantum dot forming surface
  • the laser irradiation does not use a condenser lens, but uses periodical pulse laser irradiation in vacuum or in the atmosphere to form periodic structure by the wave property of the laser and self-organization of surface atoms. It is characterized in that both surface dot alignment of short periodic structure below wavelength by the bottom-up method using a function is performed simultaneously.
  • the laser beam is a nanosecond pulse laser
  • the laser irradiation condition is 2.0 ⁇ 10 3 It is characterized in that it is ⁇ 4.0 ⁇ 10 3 mJ / m 2 / pulse, 2 ⁇ 20 Hz and the number of pulses is 200 ⁇ 20000 pulses.
  • the diameter of the quantum dot is 1 to 100 nanometers and the height of the quantum dot It is characterized in that it can be freely controlled to a micrometer by changing.
  • the surface structure of the quantum dot two-dimensional periodic pattern arrangement formation surface which is different from the substrate material of the present invention is the quantum dot two-dimensional periodic pattern arrangement formation surface structure manufactured by the method of manufacturing the quantum dot two-dimensional periodic pattern arrangement formation surface described above
  • a linear array of dots having an interval (a distance between apexes) within an error range of 10% with respect to the wavelength of the linear polarization by laser irradiation of the linear polarization, and an interval of dots in the line (apex And an ordered array of 1/9 to 1/4 of the wavelength.
  • the apex of a quantum dot which is a kind of convex portion, refers to the position most distant from the surface of the substrate in one quantum dot, and the distance between the position and the surface of the substrate is called the height of the quantum dot. It should be. Therefore, the distance between quantum dots means the distance between the apexes of adjacent quantum dots, and this is called the distance between the apexes of adjacent quantum dots.
  • the distance between the apexes of adjacent columns is one of the quantum dots constituting the column and the adjacent column. It is defined as the distance between vertices with the shortest distance among the constituent quantum dots. In this case, it can be said that the distance between vertices of adjacent rows is equal to the distance between vertices of other adjacent rows.
  • the distance between apexes of linear convex portions arranged substantially in parallel fixes the apex of one convex portion among the distance between the apexes of adjacent convex portions, and the other convex portion It is defined as the distance which makes the vertex of the shortest.
  • the distance between the convex portions can be made approximately the same as the wavelength of the laser, and the error of the distance between convex portions (distance between apexes) It can be said that it can be 10% or less with respect to the wavelength.
  • the stripe-shaped undulating crystal composed of a series of quantum dots is from the surface of the substrate It is characterized in that epitaxial growth or crystal growth having a correlation with the specific crystal orientation of a substance different from the substance constituting the substrate and the specific crystal orientation of the substrate is performed.
  • the quantum dot two-dimensional periodic pattern array formation surface structure which is composed of a substance different from the substance constituting the substrate of the present invention is formed by the above-mentioned quantum dot two-dimensional periodic pattern array formation surface It is a surface structure, and crystals of a striped undulation composed of a series of quantum dots are epitaxially grown from the surface of the substrate which is a base, or a specific crystal orientation of a substance different from the substance constituting the substrate And crystal growth correlated with the specific crystal orientation of the substrate.
  • the method for producing a quantum dot-formed surface comprising a substance different from the substance constituting the substrate of the present invention is characterized in that two-dimensional patterning of quantum dots is carried out using sequential irradiation or superposition irradiation of a quantum beam.
  • the method for producing a quantum dot two-dimensional periodic pattern array formation surface comprising a substance different from the substance constituting the substrate of the present invention comprises performing two-dimensional patterning of quantum dots using sequential irradiation or superposition irradiation of quantum beams. It features.
  • the method for producing a quantum dot formed surface comprising a substance different from the substance constituting the substrate of the present invention is characterized in that the quantum beam irradiation is carried out while observing the quantum dot pattern production process in situ in a laser attached electron microscope. Do.
  • the method for producing a quantum dot-formed surface comprising a substance different from the substance constituting the substrate of the present invention comprises performing irradiation of a quantum beam in the atmosphere using a laser oscillator integrated optical system board and sample fixing board. It features.
  • the method of manufacturing the surface forming a quantum dot two-dimensional periodic pattern array which is composed of a substance different from the substance constituting the substrate of the present invention, irradiates the quantum beam to the atmosphere using the laser oscillator integrated optical system board and sample fixing board. To carry out.
  • the electronic / electromagnetic device of the present invention is characterized in that it is manufactured using the method of manufacturing a surface on which a quantum dot is formed or the method of manufacturing a surface on which a two-dimensional periodic pattern array is formed.
  • the quantum dot device of the present invention is characterized in that it is manufactured using the method of manufacturing a surface on which a quantum dot is formed or the method of manufacturing a surface on which a two-dimensional periodic pattern array is formed.
  • the optoelectronic device of the present invention is characterized in that it is manufactured using the method of manufacturing a surface on which a quantum dot is formed or the method of manufacturing a surface on which a two-dimensional periodic pattern array is formed.
  • the solar cell of the present invention is characterized in that it is manufactured using the method for manufacturing a surface on which a quantum dot is formed or the method for manufacturing a surface on which a two-dimensional periodic pattern array is formed.
  • the patterned catalyst material of the present invention is characterized in that it is produced using the method for producing a surface on which a quantum dot is formed or the method for producing a surface on which a two-dimensional periodic pattern arrangement on quantum dots is formed.
  • the functional device of the present invention is characterized in that it is manufactured using the method of manufacturing a surface on which a quantum dot is formed or the method of manufacturing a surface on which a two-dimensional periodic pattern array is formed.
  • the functional material for pattern media of the present invention is characterized in that it is manufactured using the above-described method for producing a quantum dot-formed surface or the above-described method for producing a quantum dot two-dimensional periodic pattern array-forming surface.
  • the quantum dot laser of the present invention is characterized in that it is manufactured using the method for manufacturing a surface on which a quantum dot is formed or the method for manufacturing a surface on which a two-dimensional periodic pattern array is formed.
  • the optical amplifier according to the present invention is characterized in that it is manufactured using the above-described method for producing a quantum dot-formed surface or the above-described method for producing a quantum dot two-dimensional periodic pattern array-formed surface.
  • the element for quantum cryptography communication / quantum computer of the present invention is characterized in that it is manufactured using the above-described method for producing a quantum dot-formed surface or the above-mentioned method for producing a quantum dot two-dimensional periodic pattern array-formed surface.
  • the biodevice of the present invention is characterized by being manufactured using the above-described method for producing a quantum dot-formed surface or the above-described method for producing a quantum dot two-dimensional periodic pattern array-formed surface.
  • the optoelectronic device of the present invention is characterized by having a photoluminescence peak near 600 nm.
  • the quantum dot device of the present invention is characterized by having a photoluminescence peak in the vicinity of 600 nm.
  • the patterned catalytic material of the present invention has surface optoelectronic properties with an additional energy of at least about 5.6 eV work energy and at least 0.6 to 1.2 eV relative to other sites (4.4-5 eV) It is characterized by
  • the functional device of the present invention has surface photoelectronic properties having an additional energy of about work function of about 5.6 eV or more and an energy of 0.6 to 1.2 eV or more in comparison with other sites (4.4-5 eV). It is characterized by
  • the quantum dot formation surface structure which consists of a substance different from the substance which constitutes the substrate of the present invention is characterized in that a plurality of quantum dots are simultaneously produced by laser irradiation, and the plurality of quantum dot structures are patterned on the surface. .
  • the quantum device of the present invention is characterized in that quantum dots made of different substances from a plurality of substrate substances are simultaneously produced by laser irradiation, and a plurality of quantum dot structures are patterned on the surface.
  • a plurality of quantum dots made of materials different from the substrate material are simultaneously produced by laser irradiation, and a uniform material obtained by epitaxially growing crystals of the plurality of quantum dots from the underlying crystals. , And a plurality of quantum dot structures are patterned on the surface.
  • a plurality of quantum dots consisting of substances different from the substance constituting the substrate are simultaneously produced by laser irradiation, and the plurality of quantum dots
  • a plurality of quantum dot structures made of materials different from the material constituting the substrate are patterned on the surface, including that the crystal of the crystal may grow with an epitaxial orientation relationship with the underlying crystal. It is characterized by
  • FIGS. 1A to 1E are schematic cross-sectional views showing steps of producing a three-dimensional structure having a laser induced surface layer of Examples.
  • FIG. 1A shows a state in which a film 12 of a convex portion forming material is formed on the surface of a substrate 11 (base material).
  • the formation of the film 12 was performed by sputtering or vapor deposition.
  • the thickness of the film 12 was about 10 nm.
  • FIG. 1B shows a state in which the laser beam 13 is irradiated from above the substrate 11 on which the film 12 is formed.
  • the laser light 13 was irradiated using a pulse laser with a wavelength of 532 nm under the conditions of 2.0 ⁇ 10 3 to 4.0 ⁇ 10 3 mJ / m 2 / pulse, 2 to 20 Hz, and 200 to 20000 pulses of pulses.
  • FIG. 1C shows a process in which the convex portion 14 is formed at the jump position on the surface of the substrate 11.
  • the thickness of the film 12 decreases (the film 12 gradually decreases), and dot-like or ripple-like convex portions 14 grow.
  • FIG. 1D shows a state in which the convex portion 14 is almost completed on the surface of the substrate 11.
  • the convex portion forming material which has constituted the film 12 is in a state of being taken into the convex portion 14 and disappearing.
  • FIG. 1E shows a state in which the projection 14 is completed and the irradiation of the laser light 13 is stopped.
  • the convex portions 14 are in a row at an interval substantially equal to the wavelength 532 nm of the laser light 13.
  • FIGS. 2A to 2C show a three-dimensional structure having a laser induced surface layer having dot-like convex portions 14 formed on the surface of the substrate 11 through the manufacturing steps shown in FIGS. 1A to 1E.
  • FIG. 2A is a cross-sectional view of a three-dimensional structure having a laser induced surface layer having a substrate 11 and protrusions 14.
  • FIG. 2B shows a three-dimensional structure having a laser induced surface layer having an ordered structure.
  • the dot-like convex portions 14 are arranged two-dimensionally on the surface of the substrate 11.
  • the spacing 21 of the convex portions 14 is approximately equal to the wavelength 532 nm of the laser light 13, and the spacing 22 (distance between apexes) of the convex portions 14 is 1/9 to 1/4 (60 to 130 nm) of the wavelength 532 nm of the laser light 13 It is. That is, the distance between the apexes of the plurality of convex portions 14 (quantum dots) forming the line is shorter than the wavelength of the laser, and the distance between the apexes of adjacent lines is longer than the distance between the apexes in one line.
  • FIG. 2C shows a three-dimensional structure having a laser induced surface layer with a randomly arranged structure.
  • dot-shaped convex portions 14 are two-dimensionally randomly arranged on the surface of the substrate 11.
  • the random arrangement structure of the three-dimensional structure having the laser induced surface layer shown in this figure is to rotate the substrate 11 at a constant speed (1 rpm) with the center position of the laser irradiation part as the rotation axis when irradiating the laser light 13. It is formed by
  • the convex portions 14 are obtained.
  • EDX energy dispersive X-ray spectroscopy
  • the substrate 11 having the convex portion 14 formed of the amorphous compound of Si and Au After heating the substrate 11 having the convex portion 14 formed of the amorphous compound of Si and Au to 500 ° C. or higher, it becomes a two-phase structure (eutectic structure) of Si and Au and is changed to a crystallized structure I understand.
  • the combination of the first element forming the substrate 11 and the second element (included in the convex portion forming material) forming the film 12 is not limited to this embodiment, and many combinations are possible. There is.
  • the first element forming the substrate 11 may be in a solid state in the manufacturing process. Further, the substrate 11 may be smooth or may have asperities.
  • the convex portion forming material is used in the state of the film 12 (solid state), but it is not limited to this, and the convex portion forming material is in the form of gas and droplets on the surface of the substrate 11 (fine droplets are Or in the form of an aerosol, or may be deposited on the surface of the substrate 11 in the form of dots or ripples in the form of solid or liquid.
  • the convex portion forming material may be adsorbed on the surface of the substrate 11.
  • the convex-portion-forming substance may be one which causes a chemical change by laser irradiation to vaporize part of the constituent elements. That is, only a part of the elements constituting the convex portion forming material may form the convex portion 14.
  • the combination of the first element and the second element can be a free combination of the same element or different elements in the periodic table.
  • the first element is C, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Mo, Ru, Rh, It is desirable that at least one element selected from the group consisting of Pd, Ag, In, Sn, Sb, Hf, Ta, W, Ir, Pt, Au and Pb.
  • the second element also includes C, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Mo, Ru, Rh, It is desirable that at least one element selected from the group consisting of Pd, Ag, In, Sn, Sb, Hf, Ta, W, Ir, Pt, Au and Pb.
  • the second element can be used even if it is an element other than the above elements and is in a gaseous state in the manufacturing process.
  • the laser irradiation conditions are: a nanosecond pulse laser in the atmosphere, and the irradiation conditions of 2.0 ⁇ 10 3 to 4.0 ⁇ 10 3 mJ / m 2 / pulse, 2 to 20 Hz, and 200 to 20000 pulses of pulses. Is desirable. Further, it is more preferable that the number of pulses be 500 to 5000 pulses.
  • FIG. 3 is a schematic plan view showing a three-dimensional structure having a ripple-like laser induced surface layer.
  • the three-dimensional structure having a laser induced surface layer shown in this figure has a ripple-like convex portion 15 formed on the surface of a substrate 11.
  • the spacing 21 of the projections 15 is approximately equal to the wavelength 532 nm of the laser light 13.
  • FIGS. 2A-2C and 3 An actual photograph of a three-dimensional structure having a laser induced surface layer corresponding to FIGS. 2A-2C and 3 described above is shown and an example will be described.
  • FIG. 4 is a cross-sectional TEM image showing a three-dimensional structure having the dot-like laser induced surface layer of FIG. 2A.
  • TEM is an abbreviation of Transmission Electron Microscope.
  • Si was used as the first element constituting the substrate 11
  • Au was used as the convex portion forming material (second element).
  • the laser irradiation conditions for producing the three-dimensional structure having the laser induced surface layer shown in this figure are pulsed laser in the atmosphere, and 100 mJ / pulse (3.5 ⁇ 10 3 J / m 2 / pulse), It is 2 Hz and 2000 pulses.
  • an organometallic particle film 16 (organic palladium) is thinly coated on the surface of the sample, and a carbon protective film 31 is coated thereon. Further, it can be understood from this figure that the spacing 21 (distance between the apexes) of the convex portions 14 is approximately equal to the wavelength 532 nm of the irradiated laser.
  • the projections 14 on the surface of the substrate 11 were formed of an Au—Si alloy.
  • FIG. 5 is a surface SEM photograph showing a three-dimensional structure having a laser induced surface layer having the dot-like regular array structure of FIG. 2B. This figure is taken from an angle of 45 ° to the surface normal direction.
  • SEM is an abbreviation for a scanning electron microscope.
  • molybdenum (Mo) is used as the first element constituting the substrate 11
  • carbon (C) is used as the convex portion forming material (second element).
  • the laser irradiation conditions for producing the three-dimensional structure having the laser induced surface layer shown in this figure are pulsed laser in the atmosphere, and 100 mJ / pulse (3.5 ⁇ 10 3 J / m 2 / pulse), It is 2 Hz and 2000 pulses.
  • the spacing 21 (distance between apexes) of the convex portions 14 is approximately equal to the wavelength 532 nm of the irradiated laser, and the spacing 22 (distance between apexes) is smaller than the wavelength 532 nm of the irradiated laser.
  • the spacing 22 (the distance between the apexes) is found to be approximately in the range of 1/8 to 1 ⁇ 4 of the wavelength of the irradiated laser, although there is some variation between 70 and 130 nm.
  • the convex portion 14 was formed of carbon (C).
  • FIG. 6 is a surface SEM image showing a three-dimensional structure having a laser induced surface layer having the dot-like random arrangement structure of FIG. 2C. This figure is taken from an angle of 45 ° to the surface normal direction.
  • the laser irradiation conditions for producing the three-dimensional structure having the laser induced surface layer shown in this figure are pulsed laser in the atmosphere, and 100 mJ / pulse (3.5 ⁇ 10 3 J / m 2 / pulse), It is 2 Hz and 500 pulses.
  • the convex part 14 is arrange
  • the convex portion 14 was formed of Si.
  • FIG. 7 is a surface SEM photograph showing a three-dimensional structure having a laser induced surface layer having the ripple-like regular array structure of FIG. This figure is taken from an angle of 45 ° to the surface normal direction.
  • Ni was used as the first element of the substrate 11
  • Au was used as the convex portion forming material (second element).
  • the laser irradiation condition for producing the three-dimensional structure having the laser induced surface layer shown in the figure is an atmospheric pulse laser, which is 114 mJ / pulse (4.0 ⁇ 10 3 J / m 2 / pulse), It is 2 Hz and 3000 pulses.
  • the convex portions 15 have a stripe shape, that is, a shape having ridge lines arranged substantially at equal intervals.
  • the spacing 21 (the distance between the apexes) of the projections 15 is approximately equal to the wavelength 532 nm of the irradiated laser.
  • the convex portion 15 was formed of an Au-Ni alloy.
  • the number of pulses was 500 pulses.
  • Cr which is the second element
  • the method of depositing the second element is not limited to sputtering (sputtering), and a laser-induced surface layer having the same rippled convex portion 15 may be used even if other methods (e.g. vapor deposition) are used. It was possible to produce a three-dimensional structure having.
  • the number of pulses be low, and 200 to 3000 pulses be good.
  • Example 1 Before performing the manufacturing process of the three-dimensional structure having the laser induced surface layer shown in FIGS. 1A to 1E, that is, before forming the film 12 on the surface of the substrate 11, the same conditions as Example 1 are applied to the surface of the substrate 11. Laser irradiation was performed, and then a convex portion forming material for forming the film 12 on the surface of the substrate 11 was supplied, and laser irradiation was performed from above the substrate 11 on which the film 12 was formed .
  • the convex portion 14 could be formed at the position of the jump on the surface of the substrate 11.
  • the convex portion 14 can be formed by repeating the laser irradiation and the supply of the convex portion forming material, and the shape of the convex portion 14 can be changed.
  • Example 4 Before forming a film on the surface of the substrate 11 under the conditions of Example 4, laser irradiation under the same conditions as in Example 4 is performed on the surface of the substrate 11, and then a convex portion forming material for forming a film on the surface of the substrate 11 Further, laser irradiation was performed from the upper side of the substrate 11 on which the film was formed under the same conditions as the above laser irradiation.
  • the ripple-like convex portions 15 on the surface of the substrate 11 could be formed.
  • the convex portion 15 can be formed by repeating the laser irradiation and the supply of the convex portion forming material, and the shape of the convex portion 15 can be changed.
  • the second element an element which does not form a solid solution or an intermetallic compound with the first element can be selected under generally known conditions. Furthermore, in this case, it is preferable that the first element is a substance having a low sputtering rate by laser irradiation.
  • the substance constituting the convex portion 14 can be manufactured to be composed of one or more kinds of crystals, to be composed of one or more kinds of amorphous, or to be a combination of one or more kinds of crystals and amorphous.
  • the above-mentioned laser induced surface foreign substance structure also when the method of supplying the convex portion forming substance (second element) is a method of coating the substance A such as vapor deposition, sputtering, AD method, coating method, CVD method, etc. ( Figures 2A-2C and Figure 3) could be formed.
  • the method of supplying the convex portion forming material (second element) is a method of covering the surface of the substrate such as vapor deposition, sputtering, AD method, coating method, or CVD method, which can be performed simultaneously with laser irradiation,
  • the above laser induced surface foreign substance structures (FIGS. 2A to 2C and FIG. 3) could be formed.
  • the above-mentioned laser induced surface foreign substance structure is also formed when the three-dimensional surface structure is formed by performing heat treatment in an arbitrary atmosphere simultaneously with or after the laser irradiation. ( Figures 2A-2C and Figure 3) could be formed.
  • the photoluminescence (PL) measurement of the quantum dot pattern for which the quantum functional physical property measurement was performed for the quantum device of the present invention having the quantum dot pattern Carried out is particularly advantageous.
  • PL measurement was performed with a femtosecond pulse laser (wavelength 800 nm) so as not to break the quantum dot pattern.
  • a very sharp signal with a half width of about 20 nm was detected around 600 nm. This is a green band quantum dot signal from the dot surface (naturally oxidized interface), and it could be verified that the quantum device having the quantum dot pattern of the present invention has good quantum functional physical properties.
  • the quantum functional surface physical properties of the quantum device having the quantum dot pattern (Example 5) manufactured by the method of the present invention were measured.
  • Photoemission measurement detection of electron emission by applying light was performed as a quantum functional surface property.
  • the quantum dot ripple portion was a white contrast portion, and the other region was a gray contrast portion.
  • the non-ripple portion has a work function value of about 5.0 eV (4.4 to 5.6 eV) and the quantum dot ripple portion has a work function value of 5.6 eV or more.
  • the quantum device having the quantum dot pattern of the present invention is also used as a catalytic device or functional surface device having additional surface energy (in this case, 0.5 to 1.2 eV) It was possible to confirm that it was possible.
  • the manufacturing method of the quantum dot formation surface which carries out periodical arrangement of (convex part) can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Laser Beam Processing (AREA)

Abstract

基板の表面に量子ドット又は量子細線として利用可能なナノメートル~数十ナノメートルオーダの凸部を形成すること、及び、基板を構成する元素と異なる元素で構成されたナノメートル~数十ナノメートルオーダの凸部を形成することを目的とする。第一の元素を含む基板11の表面に、第二の元素を含む凸部形成物質を供給し、基板11の表面にレーザーを照射し、基板11の表面に、第二の元素を主成分とする複数個の凸部14、又は第一の元素及び第二の元素を含む複数個の凸部14をレーザーの波長以下の間隔21(頂点間距離)で形成する。第一の元素は、第二の元素と異なる元素であってもよい。レーザーは、ナノ秒パルスレーザーが望ましく、レーザーの照射条件は、2.0×10~4.0×10mJ/m/pulse、2~20Hz、かつ、パルス数200~20000pulsesが望ましい。

Description

レーザー誘起表面層を有する3次元構造体及びその製造方法
 本発明は、レーザー誘起表面層を有する3次元構造体及びその製造方法に関する。
 近年、量子ドットの作製技術、表面処理による触媒作用発現技術、光特性付与技術、新物質創生技術などを含む、表面の多機能化・高機能化に関する研究が進められている。
 このうち、量子ドットは、エレクトロニクス分野においてレーザー、光増幅器、単一光子発生素子等、情報通信分野において量子暗号通信、量子コンピュータ等、環境・エネルギー分野において太陽電池等、ライフサイエンス分野においてバイオセンサー、蛍光マーカー等への応用が期待されており、一部は実用化されている。
 一方、表面加工の分野において、基板(基材)の表面に、その基板を構成する元素とは異なる元素を含む複数の量子ドットを、2次元的に整列した配列構造を保持しながら、レーザー照射により一気に同時作製した例は世の中にない。
 フォトエッチングなどのトップダウン方式による表面加工によるパターン化においては、光の波長が最小サイズとなり、マイクロメートル程度が最小加工サイズの限界値である。
 特許文献1には、半導体装置の製造において、単結晶に近い結晶性を有し、粒径が均一なシリコン薄膜を大面積で高スループットで形成することを目的として、パルスレーザー強度を空間的にラインビームの長軸方向に周期的に強度変調させる手段を有し、ラインビームの照射領域全体にわたって一定の方向に成長した結晶からなる多結晶膜をショット毎に一括形成する半導体薄膜の製造方法が開示されている。  
 特許文献2には、超短パルスレーザー(フェムト秒レーザー)を低フルーエンスで偏光制御して固体材料表面に照射することで、パルスレーザーの波長より小さいサイズの微細構造を形成する微細加工方法が開示されている。
 特許文献3には、レーザー直接描画技術により基板上において任意に金属配線を描画する方法が開示されている。これは、原料W(CO)ガスがレーザー(Arレーザー光)照射した部分で基板表面上に吸着し、レーザー照射ビームに沿ってW(タングステン)線を描画する方法に関するものである。この場合、W線はレーザー照射部に満遍なくデポジション形成される。
 一方、レーザー照射による加工技術として、レーザービームをレンズなどで絞り込み、照射部を削り取るトップダウン法による方法が通常法として知られている。
 非特許文献1には、Ge、Si、Al及び黄銅を対象として、リップルパターンと呼ばれる縞状の起伏を周期的に並べた構造をこの加工技術で発現させることに初めて成功したことが記載されている。
特開2004-119919号公報 特開2003-211400号公報 特開平4-99874号公報
J.F.Young、J.S.Preston、H.M.van Driel、and J.E.Sipe:"Laser-induced periodic structure. II. Experiments on Ge、Si、Al、and brass"、Physical Review B、vol.27、No.2(1983)、p.1155
 本発明の目的は、基板(基材)の表面に量子ドット又は量子細線として利用可能なナノメートルオーダの凸部を形成すること、及び、基板を構成する元素と異なる元素で構成されたナノメートル~数十ナノメートルオーダの凸部を形成することにある。
 本発明のレーザー誘起表面層を有する3次元構造体の製造方法は、第一の元素を含む基材の表面に、第二の元素を含む凸部形成物質を供給し前記基材の表面にレーザーを照射することにより、前記基材の表面に、前記第二の元素を主成分とする複数個の凸部、又は前記第一の元素及び前記第二の元素を含む複数個の凸部を前記レーザーの波長以下の頂点間距離で形成する方法であって、前記第二の元素は、前記第一の元素と同一の元素又は異なる元素であることを特徴とする。
 本発明のレーザー誘起表面層を有する3次元構造体は、第一の元素を含む基材と、前記基材の表面にレーザーを照射することにより形成した複数個の凸部とを含む3次元構造体であって、前記凸部は、第二の元素を主成分とするもの又は前記第一の元素及び前記第二の元素を含むものであり、前記第二の元素は、前記第一の元素と同一の元素又は異なる元素であり、前記複数個の凸部の頂点間距離は、前記レーザーの波長以下であることを特徴とする。
 本発明によれば、レーザービームの干渉性を利用したパターニング(トップダウン法)、及び、レーザービーム照射下での表面原子の自己組織化(ボトムアップ)の両方の機能を同時に発揮させることができる。
 また、本発明によれば、基板の表面に量子ドット又は量子細線として利用可能なナノメートルオーダの凸部の規則的な配列又は不規則な配列を形成することができる。
実施例のレーザー誘起表面層を有する3次元構造体の製造工程(凸部形成物質の膜の形成)を示す模式断面図である。 実施例のレーザー誘起表面層を有する3次元構造体の製造工程(レーザーの照射)を示す模式断面図である。 実施例のレーザー誘起表面層を有する3次元構造体の製造工程(凸部の形成の初期段階)を示す模式断面図である。 実施例のレーザー誘起表面層を有する3次元構造体の製造工程(膜の消滅)を示す模式断面図である。 実施例のレーザー誘起表面層を有する3次元構造体の製造工程(レーザーの照射後)を示す模式断面図である。 実施例のレーザー誘起表面層を有する3次元構造体(ドット状)を示す模式断面図である。 実施例のレーザー誘起表面層を有する3次元構造体(ドット状、規則配列)を示す模式平面図である。 実施例のレーザー誘起表面層を有する3次元構造体(ドット状、ランダム配列(不規則配列))を示す模式平面図である。 実施例のレーザー誘起表面層を有する3次元構造体(リップル状)を示す模式平面図である。 実施例のレーザー誘起表面層を有する3次元構造体(ドット状)を示す断面TEM写真である。 実施例のレーザー誘起表面層を有する3次元構造体(ドット状)の規則配列構造を示す表面SEM写真である。 実施例のレーザー誘起表面層を有する3次元構造体(ドット状)のランダム配列構造を示す表面SEM写真である。 実施例のレーザー誘起表面層を有する3次元構造体(リップル状)の規則配列構造を示す表面SEM写真である。
 本発明は、レーザーの照射を用いて、基板(基材)の表面にその基板を構成する元素と異なる元素又は同一の元素を、その波長以下の間隔で独立した複数個の凸部を有する3次元積層体(レーザー誘起表面層を有する3次元構造体とも呼ぶ。)としてレーザー照射領域内に同時に形成し、かつ、その3次元積層体を2次元方向(3次元積層体の表面)においてナノ配列させる方法に係り、この方法を用いて製造した電子・電磁デバイス、量子ドットデバイス、光電子デバイス、太陽電池材料、触媒材料、ナノバイオ材料などの3次元積層構造を表面に有する機能性材料に関する。
 ここで、ナノバイオ材料とは、遺伝子、たんぱく質、がん細胞等と結合した状態で紫外線等の光を当てることにより蛍光を発する材料であり、遺伝子、たんぱく質、がん細胞等のイメージングを可能とする材料である。現状においては、半導体であるCdSe(カドミウムセレン)の量子ドットをZnS(硫化亜鉛)で被覆し、その表面にカルボキシル基やアミノ基を末端基として有する有機物を結合してカルボキシル基やアミノ基に抗体、レクチン等を結合することにより、特定の遺伝子、たんぱく質、がん細胞等と選択的に結合する材料である。
 本発明におけるナノバイオ材料は、基材の表面に配列した3次元構造体であって、特定の遺伝子、たんぱく質、がん細胞等と選択的に結合させることができる材料であり、特定の遺伝子、たんぱく質、がん細胞等を固定してイメージングすること又は検出することを可能にする材料である。
 さらに、本発明におけるナノバイオ材料は、紫外線等の光を当てることにより発せられる蛍光を用いて、基材の表面に固定した特定の遺伝子、たんぱく質等に化学変化を生じさせ、変質させることが可能な材料である。
 さらにまた、本発明におけるナノバイオ材料は、紫外線等の光を当てることにより発せられる蛍光を用いて、基材の表面に固定した特定のがん細胞等を殺傷する機能を有し、がん細胞等の紫外線等又は蛍光に対する強さを測定する素子として利用することも可能である。
 さらに、本発明は、レーザーの照射を用いて、基板の表面にその基板を構成する元素と異なる元素又は同一の元素を、ランダムな間隔を有する不特定の位置に、複数個の凸部を有する3次元積層体としてレーザー照射領域内に同時に形成し、かつ、その3次元積層体を2次元方向においてランダムに配列させる方法に係り、その方法を用いて製造した電子・電磁デバイス、量子ドットデバイス、光電子デバイス、太陽電池材料、触媒材料、ナノバイオ材料などの3次元積層構造を表面に有する機能性材料に関する。
 ここで、量子ドットについて説明する。
 量子ドットとは、数ナノメートル~数十ナノメートルの大きさを有する3次元の狭い領域に電子を閉じ込めた半導体等の構造をいう。本明細書においては、このような構造に相当する固体表面に形成された微小ドット(数ナノメートル~数十ナノメートルの大きさを有する凸部)を量子ドットと呼ぶことにする。
 半導体や金属においては、量子ドットの構造によって電子の移動の自由度を決めることができ、3次元で自由に電子が動くことができるバルク、2次元に限定した量子井戸、1次元に限定した量子細線がある。これに対して、量子ドットは、電子を狭い領域に閉じ込める系(0次元電子系)を作ることができる。
 すなわち、本発明のレーザー誘起表面層を有する3次元構造体は、基板の表面に量子ドット、量子細線等を形成した構造体である。
 量子ドットの中に閉じ込められた電子は、運動が量子化され、離散的なエネルギー準位を形成する。そのため、バルク中で連続的なバンド構造を取って自由に動き回る電子とは振る舞いが大きく異なり、一定のエネルギー準位に留まる。また、量子ドットは、単一の電子スピンを制御することができ、半導体よりも効率が高い発光特性や電気特性を示す。
 量子ドットの作製方法としては、自己組織化成長法、液滴エピタキシー法などが挙げられる。
 現在は、自己組織化成長法の一つであるStranski-Krastanow結晶成長法(SKモード法)が主流となっている。SKモード法においては、ある基板に格子定数の異なる結晶を成長させるときの格子不整合による歪みエネルギーを利用して量子ドットを形成する。
 また、液滴エピタキシー法においては、真空環境中で基板の表面に低融点の分子をビーム状に照射する。このとき、均一な大きさの多数の微細な液滴ができ、その液滴が量子ドットとなる。
 量子ドットの材料としては、InAs、GaAsなどII-IV族化合物半導体が多く用いられているが、将来的に様々な産業分野で利用することを目指し、Siや有機化合物などの材料を用いた量子ドットの作製に関する研究が進められている。
 本発明のレーザー誘起表面層を有する3次元構造体は、レーザーの照射条件を選ぶことにより、量子ドットが基板の表面に整列した構造(規則的な配列構造)、及び、量子ドットが基板の表面にランダムな跳び跳びの位置に比較的均一な密度で分布した構造(不規則な配列構造)を含む。
 レーザー照射によって基板の表面に複数個の量子ドットを同時に作製した例はなく、新規なものである。
 また、本発明のレーザー誘起表面層を有する3次元構造体のようなナノ構造を形成した構造体を用いて、電子・電磁デバイス、量子ドットデバイス、光電子デバイス、太陽電池材料、触媒材料、ナノバイオ材料などの機能性材料を製造した事例は皆無である。
 本発明は、具体的には、上記の凸部を一つ一つ描画する従来のレーザー加工方法を用いないで、(1)レーザーを照射するだけで、照射範囲内で上記構造体を複数個同時に作製する新規な方法を見出すこと、及び、(2)その方法を用いて触媒作用、光特性、新物質創生などの現象を発現させた表面機能を有する材料・デバイスを作製することの2点を課題としている。このため、上記の複数の凸部は、量子ドットであってもよく、また、量子ドット以上の大きさを有する別の機能を有する積層体であってもよい。これらは、本発明の対象である。
 つぎに、量子ドットに求められている一般的な課題について以下に触れる。
 量子ドットは、サイズを均一化することにより発光の単色性や強さを向上させることができる。例えば、量子ドットレーザーの性能を上げることなどが可能となるため、量子ドットの均一化は重要な課題である。
 量子ドットサイズの均一性の指標としては、発光スペクトルの幅(=PL半値幅)が用いられ、PL半値幅が狭いほど均一である。量子ドットの面密度を高くし、構造の微細化を行うことは、キャリアを増加させ、レーザーや光増幅器などの性能を向上させるため、非常に重要な課題である。
 また、現在、走査型プローブ顕微鏡(SPM)を用いた加工による量子ドットの配列制御は可能であるが、量子ドットが発光しないため、発光が見られる高品質な配列制御が求められている。また、SPMを用いた加工方法においては、量子ドットの構造を1つずつ加工していくため、工業的な量産に用いる機能表面作製方法としては可能性の低い方法である。
 高品質な配列制御が可能になると、例えば、規則的な量子ドットの配列が必要な量子ドット太陽電池の実用化や、量子コンピュータのための素子構造の作製実現などが期待できる。様々な産業分野において量子ドットを応用するために、現在使用されているInAs、GaAs以外に、GaN系化合物半導体、Si、C、有機化合物など、新しい材料を開発していく必要がある。また、量子ドットに用いられている材料には、Cd、Hg、Asなどの有害物質が含まれるため、それらを含まない材料を用いた量子ドットの開発も求められている。
 以上に述べたように、量子ドットの作製方法としては、自己組織化成長法の一つであるStranski-Krastanow結晶成長法(SKモード法)が主流であるが、量子ドットのサイズ制御及び配列制御が不十分である。このため、サイズ制御及び配列制御が可能であり、かつ、簡易な作製法を開発することが課題である。また、将来的に低コストで大量生産することを目的とした、全く新しい作製法を開発することも必要である。
 量子暗号通信、量子コンピュータの実現のためには、コヒーレンス時間(量子状態の重ね合わせ状態を保持し、量子ビットが演算可能な状態にある時間)を長く保ち、安定した情報伝達を行う必要がある。量子ドットのナノサイズレベルでの構造制御が上記のような物性制御に関する課題の解決に繋がるものと期待される。
 本発明は、上述の課題を踏まえ、これまで世の中で成しえなかった、レーザー照射による複数個の量子ドットの周期的な形成、及び、量子ドットの周期的な構造を2次元的にパターン配列させ、かつ、量子ドットと化学組成の異なる物質(基板)の表面に、3次元的に積層した表面周期構造の作製方法を提供することを第一の課題とした。
 さらに、これらのドット形状周期構造をレーザーにより同時付与した表面量子ドット構造を有する各種の量子デバイス、機能デバイス、電子・情報素子、エネルギー素子、ナノバイオデバイス等を提供することを第二の課題とした。
 次に、本発明は、これまで世の中で成しえなかった、レーザー照射による1種類又は2種類以上の構成元素から成るリップル構造(基板の表面の縞状(線状)の凸部)の周期的な形成、及び、この周期構造を2次元的にパターン配列させ、かつ、これらのリップル構造を、これらのリップル構造を構成する元素と異なる元素で形成された基材の表面に、3次元的に積層した表面周期構造の作製方法を提供することを課題とした。さらに、これらのリップル形状周期構造をレーザーにより同時付与した表面構造を有する各種の機能デバイス、エネルギー素子、バイオデバイス等を提供することを課題とした。
 最後に、本発明は、これまで世の中で成しえなかった、レーザー照射による1種類又は2種類以上の構成元素から成る複数個の凸部を同時にランダムに配置した構造体を形成すること、及び、これらの凸部を2次元的にランダム配列させ、かつ、これらの凸部を構成する元素と異なる元素で形成された基材の表面に、3次元的に積層した表面構造の作製方法を提供することを課題とした。さらに、これらの構造体を用いて、各種の機能デバイス、エネルギー素子、バイオデバイス等を提供することを課題とした。
 本発明においては、レーザービームの干渉性を利用したパターニング(トップダウン法)、及び、レーザービーム照射下における表面原子の自己組織化(ボトムアップ)の両方の機能を同時に発揮させるレーザー条件下において、基板の表面に、この基板を構成する物質とは異なる物質を供給し、基板を構成する物質及び基板の表面に供給した物質と異なる物質をドット状、リップル状などの積層構造を有する凸部として形成させる。
 すなわち、本発明においては、主に、ナノ秒パルスレーザーを用い、レーザー照射条件として2.0×10~4.0×10mJ/m/pulse、2~20Hz、パルス数200pulses~20000pulsesが適切である。
 ここで、「供給」は、基板の表面の上方に気体状態で送ること、基板の表面に吸着させること、基板の表面に固体又は液体の膜を形成する(膜状に付着させる)こと、及び基板の表面に固体又は液体の粒子として付着させる(粒子状に付着させる)ことを含む用語である。
 さらに、本発明においては、レーザー照射条件や物質の種類の組み合わせにより、基板の表面に、基板を構成する物質と異なる物質を、ランダムな2次元配列を有しながら、基板の表面に3次元的に積層してレーザー誘起表面層を有する3次元構造体を製造することも可能である。ここで、基板や積層される物質としては、絶縁物、半導体、金属、合金、又はセラミックスなどの無機系の材料を主に用いることができた。基板を構成する物質及び基板の表面に供給する物質に対し、基板の表面に形成する物質は、基板の表面に供給する物質と同じで物質でもよく、さらに、基板を構成する物質と基板の表面に供給する物質との混合物でもよい。基板の表面に形成する物質は、用いる物質の組み合わせ、レーザー照射条件などを適切に選定することにより制御することができる。
 具体的には、次に挙げる方法により、上記の凸部のパターニングを行うことができる。
 1)基板の表面に、基板を構成する物質aとは異なる物質bを供給し、その上からレーザーを照射することにより、基板の表面の跳び跳びの位置に、基板を構成する物質とは異なる物質b又はcからなる複数の凸部を形成する。
 2)上記1)に記載のレーザー照射を、物質bの供給前に実施した後、物質aの表面に、物質aとは異なる物質bを供給し、さらに、その上から先のレーザーを同じ条件で照射することにより、物質aの表面の跳び跳びの位置に、物質aとは異なる物質b又はcからなる複数の凸部を形成する。
 3)上記1)及び2)に記載の物質cは、物質bと物質aとの混合物としてもよい。
 4)上記1)及び3)に記載の物質bは、2種類以上の元素を含むものであってもよい。
 5)上記3)及び4)に記載の物質bと物質aとの混合物である物質cは、単一の相又は複数の相からなる合金で形成してもよい。すなわち、物質cは、共晶組織及び共析組織を含む混合組織を有する物質としてもよい。
 6)上記5)に記載の物質cは、1種類以上の結晶から成る物質、または、1種類以上のアモルファスから成る物質、または、1種類以上の結晶及びアモルファスが共存する物質としてもよい。すなわち、物質cは、結晶及びアモルファスのうち少なくとも一方を含む。
 7)上記1)~6)に記載の基板の表面に形成した凸部は、ランダムな配置、整列した溝、または、整列した2次元配置を有する独立体(ドット)のいずれでもよい。
 8)上記1)~7)に記載の物質bの供給は、レーザー照射前に終了し、物質bが粉末状又は膜状に物質aを被覆するようにしてもよい。
 9)上記8)の物質bの供給方法は、蒸着法、スパッタ法、エアロゾルデポジション法(以下、AD法と呼ぶ。)、塗布法、化学気相蒸着法(以下、CVD法と呼ぶ。)などにより物質aを被覆する方法としてもよい。
 10)上記1)~7)に記載の物質bの供給は、レーザー照射前のみ、レーザー照射前及びレーザー照射中、又はレーザー照射中のみに実施してもよい。
 11)上記10)に記載の物質bの供給方法は、レーザー照射と同時に行うことができる蒸着法、スパッタ法、AD法、塗布法、CVD法などにより物質aを被覆する方法としてもよい。
 12)上記1)~11)に記載のレーザー誘起表面異物質積層方法(レーザー誘起表面層を有する3次元構造体の製造方法)において、3次元表面構造体(レーザー誘起表面層を有する3次元構造体)を、レーザーを照射している状態、又はレーザー照射後、任意雰囲気における熱処理を実施して形成してもよい。
 なお、量子ドットは、円錐状であっても半球状であってもよい。また、量子ドットの底部(基板との接点)の直径に比べて量子ドットの頂点部分の直径の方が大きくなるように(すなわち、くびれ形状に)量子ドットの形状を制御することもできる。
 以上の具体的、かつ、普遍的な方法を用いることにより、従来、レーザー照射では成しえなかった、レーザーを照射する表面基材(基板)に基板とは異なる物質から成る量子ドット形状を有する3次元積層構造体(レーザー誘起表面層を有する3次元構造体)を周期配列させる量子ドット形成表面の製造方法を提供できる。
 さらに、以上の具体的、かつ、普遍的な方法を用いることにより、基板の表面に、基板とは異なる物質をドット形状の他、線状のリップル2次元パターンあるいは3次元積層体をランダムに2次元配置させた構成を有する構造表面の製造方法を提供できる。
 さらに、上記のレーザー照射条件下においては、量子ドットの直径が1~100ナノメートル程度の大きさを有し、量子ドットの高さは、照射量を変えることによりナノメートルからマイクロメートルまで自由に制御可能である。
 また、本発明においては、レーザーの量子性(波動性及び粒子性)、表面スパッタを引き起こす光ビームの粒子性と波としての性質を制御して、物質aで構成された基板の表面に、物質aとは異なる物質bを3次元積層し、かつ、波長を下回る間隔でパターンを配列することができる。
 そのため、レーザー加工に通常用いられるようにレンズでレーザーを高強度に集光することなく(レンズ不使用で)、試料に直接レーザーを照射し、レーザー発振装置一体型光学系盤兼試料固定盤を作製し、レーザーから試料までのすべてを同一系にすることにより、レーザーの位置の振動から試料の位置まですべての光学機器の振動を同期させるようにした。
 これにより、直線偏光性のレーザーの強度及び照射量を制御して照射することにより、上記独立積層体のレーザー誘起表面ナノ配列化が可能となった。
 また、本発明においては、量子ドット等を制御する手段として、(1)レーザー波長による組織制御、(2)偏光方向による組織制御、(3)照射角度による組織制御、及び(4)ターゲット種による組織制御という4つの方法で表面組織を制御できることを見出した。
 以下、本発明者の研究結果、及び本発明の実施例について述べる。
 はじめに、本発明者の研究結果を以下に箇条書きにしてまとめる。
 1)大気中でナノ秒パルスレーザーを、照射条件2.0×10~4.0×10mJ/m/pulse、2~20Hzであり、かつ、パルス数が200~20000pulsesで照射すると、基板の表面に、基板を構成する物質とは異なる物質から成る量子ドット、リップル構造の凸部、または量子ドットより大きな形状を有する3次元構造の凸部を、同時に多数(複数個以上)、2次元周期パターン配列またはランダムな2次元配列を有しながら、基板の表面に3次元的に積層して製造することができた。
 2)基板の表面に周期配列した物質と異なる物質からなる量子ドットは、高さ10~100nm、大きさ(直径)5nm~50nmを典型的な大きさとし、配列の間隔(頂点間距離)は、波長及び波長の1/9~1/4(60~130nm)程度であった。
 3)基板を構成する物質と異なる物質からなるリップルパターン(起伏)の出現は、波長間隔で並び偏光面に垂直となっているが、リップルパターンの模様の縞状線が、整列した量子ドットの配列(各縞が量子ドットの並びで構成されている。)から構成できるようになった。
 4)基板を構成する物質と異なる物質からなる表面ドットあるいはリップルは、レーザー偏光面に対して垂直に並ぶことがわかった。
 5)レーザー偏光方向を制御、或いは偏光方向を傾斜して、基板を構成する物質と異なる物質からなるドットの配列方向を変えることができた。
 6)レーザー偏光方向を傾斜して照射することにより、基板を構成する物質と異なる物質からなるドットの間隔の制御が可能となった。
 7)逐次・重畳照射により基板を構成する物質と異なる物質からなるドットの2次元パターン化が可能となった。
 8)基板を構成する物質と異なる物質からなる表面ドットの2次元配列パターン化が可能となり、特徴的な光ルミネッセンスピーク並びに表面光電子特性を有すること、及び光・電子デバイス、量子ドットレーザー、半導体集積デバイス、パターン化触媒デバイス、ナノバイオデバイス等の作製手法として有効であることが判明した。
 本発明の基板を構成する物質と異なる物質からなる量子ドット形成表面の製造方法は、基板の表面にレーザー照射を施して、該表面に量子ドット形状を有する量子ドット構造を1バッチの照射で複数個同時に形成し、かつ、前記量子ドット構造を周期配列させる工程を含むことを特徴とする。
 本発明の基板を構成する物質と異なる物質からなる量子ドットの形成表面の製造方法は、前記表面に量子ドット構造を1バッチの照射で複数個同時に形成し、かつ、前記量子ドット構造を周期配列させる工程を、バッチの偏光を変えて複数組み合わせて同一場所に逐次照射することにより、前記量子ドット構造の周期配列を2次元パターン化することを特徴とする。
 本発明の基板を構成する物質と異なる物質からなる量子ドット形成表面の製造方法は、バッチの偏光を変えて複数組み合わせて同一場所に照射する工程を、同時に行う重畳照射とすることを特徴とする。
 本発明の基板を構成する物質と異なる物質からなる量子ドット形成表面の製造方法は、量子ドットの構造が線状ないし曲線状に連なる2次元パターンを構成することを特徴とする。
 本発明の基板を構成する物質と異なる物質からなる量子ドット2次元周期パターン配列形成表面の製造方法は、上記の量子ドット形成表面の製造方法を用いる量子ドット2次元周期パターン配列形成表面の製造方法であって、前記レーザー照射は、集光レンズを用いず、真空中又は大気中での偏光性パルスレーザー照射を利用して、レーザーの波動性による周期構造化、及び、表面原子の自己組織化機能を利用したボトムアップ法による波長以下の短周期構造化の両方の表面ドット配列化を同時に行うことを特徴とする。
 本発明の基板を構成する物質と異なる物質からなる量子ドット2次元周期パターン配列形成表面の製造方法は、前記レーザービームがナノ秒パルスレーザーであり、かつ、レーザー照射条件が2.0×10~4.0×10mJ/m/pulse、2~20Hzであり、かつ、パルス数が200~20000pulsesであることを特徴とする。
 本発明の基板を構成する物質と異なる物質からなる量子ドット2次元周期パターン配列形成表面の製造方法は、量子ドットの直径が1~100ナノメートルサイズであり、量子ドットの高さは、照射量を変えることによりマイクロメートルまで自由に制御可能であることを特徴とする。
 本発明の基板物質と異なる異物質からなる量子ドット2次元周期パターン配列形成表面構造は、上記の量子ドット2次元周期パターン配列形成表面の製造方法により作製した量子ドット2次元周期パターン配列形成表面構造であって、直線偏光のレーザー照射により、その直線偏光の波長に対して10%以内の誤差範囲にある間隔(頂点間距離)を有する線状のドット配列と、線内におけるドットの間隔(頂点間距離)が波長の1/9~1/4である規則配列とを有することを特徴とする。
 ここで、凸部の一種である量子ドットの頂点とは、1個の量子ドットにおいて基板の表面から最も離れた位置をいい、その位置と基板の表面との距離は、量子ドットの高さと呼ぶべきものである。したがって、量子ドットの間隔とは、相隣る量子ドットの頂点間の距離をいい、これを相隣る量子ドットの頂点間距離と呼ぶことにする。
 複数個の量子ドットで構成された複数本の列(規則的な配列構造)の場合、相隣る列の頂点間距離は、列を構成する量子ドットのうちの1個と、隣の列を構成する量子ドットのうち最短距離にあるものとの頂点間距離と定義する。この場合に、相隣る列の頂点間距離は、他の相隣る列の頂点間距離と等しいということができる。
 また、縞状の凸部の場合、ほぼ平行に並んだ線状の凸部の尾根(稜線)の部分の任意の点を頂点と呼ぶことにする。本明細書においては、ほぼ平行に並んだ線状の凸部の頂点間距離(間隔)は、相隣る凸部の頂点間距離のうち一方の凸部の頂点を固定し、他方の凸部の頂点が最短となる距離と定義する。
 この定義によれば、縞状の凸部の場合、凸部の間隔(頂点間距離)をレーザーの波長と同程度とすることができ、凸部の間隔(頂点間距離)の誤差をレーザーの波長に対して10%以内とすることができる、ということができる。
 本発明の基板を構成する物質と異なる物質からなる量子ドット2次元周期パターン配列形成表面の製造方法は、量子ドットが連なって構成される縞状起伏の結晶が、下地である前記基板の表面からエピタキシャル成長すること、または、基板を構成する物質と異なる物質の特定結晶方位及び基板の特定結晶方位に相関を有する結晶成長をすることを特徴とする。
 本発明の基板を構成する物質と異なる物質からなる量子ドット2次元周期パターン配列形成表面構造は、上記の量子ドット2次元周期パターン配列形成表面の製造方法により作製した量子ドット2次元周期パターン配列形成表面構造であって、量子ドットが連なって構成される縞状起伏の結晶が、下地である前記基板の表面からエピタキシャル成長したものであること、または、基板を構成する物質と異なる物質の特定結晶方位及び基板の特定結晶方位に相関を有した結晶成長をすることを特徴とする。
 本発明の基板を構成する物質と異なる物質からなる量子ドット形成表面の製造方法は、量子ビームの逐次照射又は重畳照射を用いて量子ドットの2次元パターン化を実施することを特徴とする。
 本発明の基板を構成する物質と異なる物質からなる量子ドット2次元周期パターン配列形成表面の製造方法は、量子ビームの逐次照射又は重畳照射を用いて量子ドットの2次元パターン化を実施することを特徴とする。
 本発明の基板を構成する物質と異なる物質からなる量子ドット形成表面の製造方法は、量子ビームの照射をレーザー付設電子顕微鏡内において量子ドットパターン製造工程をその場観察しながら実施することを特徴とする。
 本発明の基板を構成する物質と異なる物質からなる量子ドット2次元周期パターン配列形成表面の製造方法は、量子ビームの照射をレーザー付設電子顕微鏡内において量子ドットパターン製造工程をその場観察しながら実施することを特徴とする。
 本発明の基板を構成する物質と異なる物質からなる量子ドット形成表面の製造方法は、量子ビームの照射を、レーザー発振装置一体型光学系盤兼試料固定盤を用いて大気中で実施することを特徴とする。
 本発明の基板を構成する物質と異なる物質からなる量子ドット2次元周期パターン配列形成表面の製造方法は、量子ビームの照射を、レーザー発振装置一体型光学系盤兼試料固定盤を用いて大気中で実施することを特徴とする。
 本発明の電子・電磁デバイスは、上記の量子ドット形成表面の製造方法又は上記の量子ドット2次元周期パターン配列形成表面の製造方法を用いて作製したことを特徴とする。
 本発明の量子ドットデバイスは、上記の量子ドット形成表面の製造方法又は上記の量子ドット2次元周期パターン配列形成表面の製造方法を用いて作製したことを特徴とする。
 本発明の光電子デバイスは、上記の量子ドット形成表面の製造方法又は上記の量子ドット2次元周期パターン配列形成表面の製造方法を用いて作製したことを特徴とする。
 本発明の太陽電池は、上記の量子ドット形成表面の製造方法又は上記の量子ドット2次元周期パターン配列形成表面の製造方法を用いて作製したことを特徴とする。
 本発明のパターン化触媒材料は、上記の量子ドット形成表面の製造方法又は上記の量子ドット2次元周期パターン配列形成表面の製造方法を用いて作製したことを特徴とする。
 本発明の機能性デバイスは、上記の量子ドット形成表面の製造方法又は上記の量子ドット2次元周期パターン配列形成表面の製造方法を用いて作製したことを特徴とする。
 本発明のパターンメディア用機能性材料は、上記の量子ドット形成表面の製造方法又は上記の量子ドット2次元周期パターン配列形成表面の製造方法を用いて作製したことを特徴とする。
 本発明の量子ドットレーザーは、上記の量子ドット形成表面の製造方法又は上記の量子ドット2次元周期パターン配列形成表面の製造方法を用いて作製したことを特徴とする。
 本発明の光増幅器は、上記の量子ドット形成表面の製造方法又は上記の量子ドット2次元周期パターン配列形成表面の製造方法を用いて作製したことを特徴とする。
 本発明の量子暗号通信・量子コンピュータ用素子は、上記の量子ドット形成表面の製造方法又は上記の量子ドット2次元周期パターン配列形成表面の製造方法を用いて作製したことを特徴とする。
 本発明のバイオデバイスは、上記の量子ドット形成表面の製造方法又は上記の量子ドット2次元周期パターン配列形成表面の製造方法を用いて作製したことを特徴とする。
 本発明の光電子デバイスは、600nm近傍に光ルミネッセンスピークを有することを特徴とする。
 本発明の量子ドットデバイスは、600nm近傍に光ルミネッセンスピークを有することを特徴とする。
 本発明のパターン化触媒材料は、仕事関数約5.6eV以上、他の部位(4.4~5eV)と比較して0.6~1.2eV以上の付加的エネルギーを有する表面光電子特性を有することを特徴とする。
 本発明の機能性デバイスは、仕事関数約5.6eV以上、他の部位(4.4~5eV)と比較して0.6~1.2eV以上の付加的エネルギーを有する表面光電子特性を有することを特徴とする。
 本発明の基板を構成する物質と異なる物質からなる量子ドット形成表面構造は、レーザー照射により同時に複数の量子ドットを作製し、複数の量子ドット構造が表面にパターン化されて成ることを特徴とする。
 本発明の量子デバイスは、レーザー照射により同時に複数の基板物質と異なる物質からなる量子ドットを作製し、複数の量子ドット構造が表面にパターン化されて成ることを特徴とする。
 本発明の量子ドット形成表面構造は、レーザー照射により同時に複数の、基板物質と異なる物質からなる量子ドットを作製し、該複数の量子ドットの結晶が、その下地の結晶からエピタキシャル成長して成る均一材質を有し、複数の量子ドット構造が表面にパターン化されて成ることを特徴とする。
 本発明の基板を構成する物質と異なる物質からなる量子ドットで構成されるデバイスは、レーザー照射により同時に複数の、基板を構成する物質と異なる物質からなる量子ドットを作製し、該複数の量子ドットの結晶が、その下地の結晶にエピタキシャル的な方位関係を有して結晶成長する場合があることを具備した、基板を構成する物質と異なる物質からなる複数の量子ドット構造が表面にパターン化されて成ることを特徴とする。
 以下、図を用いて説明する。
 図1A~1Eは、実施例のレーザー誘起表面層を有する3次元構造体の製造工程を示す模式断面図である。
 図1Aは、基板11(基材)の表面に凸部形成物質の膜12を形成した状態である。
 膜12の形成は、スパッタリング又は蒸着によって行った。膜12の厚さは、約10nmとした。
 図1Bは、膜12を形成した基板11の上方からレーザー光13を照射している状態を示したものである。
 レーザー光13は、波長532nmのパルスレーザーを用い、2.0×10~4.0×10mJ/m/pulse、2~20Hz、かつ、パルス数200~20000pulsesの条件で照射した。
 図1Cは、基板11の表面の跳び跳びの位置に凸部14が形成される過程を示したものである。
 膜12の厚さが減少し(膜12が徐々に薄くなり)、ドット状又はリップル状の凸部14が成長する。
 図1Dは、基板11の表面において凸部14がほぼ完成した状態を示したものである。
 膜12を構成していた凸部形成物質は、凸部14に取り込まれて消失した状態である。
 図1Eは、凸部14が完成し、レーザー光13の照射を停止した状態を示したものである。
 凸部14は、レーザー光13の波長532nmとほぼ等しい間隔で列をなしている。
 図2A~2Cは、図1A~1Eに示す製造工程を経て基板11の表面に形成されたドット状の凸部14を有するレーザー誘起表面層を有する3次元構造体を示したものである。
 図2Aは、基板11及び凸部14を有するレーザー誘起表面層を有する3次元構造体の断面図である。
 図2Bは、規則配列構造を有するレーザー誘起表面層を有する3次元構造体を示したものである。
 本図においては、ドット状の凸部14が基板11の表面に2次元的に整列した配置となっている。凸部14の間隔21は、レーザー光13の波長532nmとほぼ等しく、凸部14の間隔22(頂点間距離)は、レーザー光13の波長532nmの1/9~1/4(60~130nm)である。すなわち、列をなす複数個の凸部14(量子ドット)の頂点間距離は、レーザーの波長よりも短く、相隣る列の頂点間距離は、一本の列における頂点間距離より長い。
 図2Cは、ランダム配列構造を有するレーザー誘起表面層を有する3次元構造体を示したものである。
 本図においては、ドット状の凸部14が基板11の表面に2次元的にランダムな配置となっている。
 本図に示すレーザー誘起表面層を有する3次元構造体のランダム配列構造は、レーザー光13の照射の際、レーザー照射部の中心位置を回転軸として基板11を一定速度(1rpm)で回転させることによって形成したものである。
 図1A~1Eに示す製造工程を経て基板11の表面に形成されたドット状の凸部14をエネルギー分散型X線分光法(Energy Dispersive X-ray spectroscopy:EDX)により分析した結果、凸部14は、Si及びAuのアモルファス化合物であり、非平衡な相として存在していることがわかった。通常、Si及びAuは固溶体を形成することはなく、上記のアモルファス化合物は、本実施例において見出されたものである。
 また、Si及びAuのアモルファス化合物で形成された凸部14を有する基板11を500℃以上に加熱した後は、Si及びAuの2相組織(共晶組織)となり、結晶化組織に変化したことがわかった。
 なお、基板11を形成する第一の元素と膜12を形成する第二の元素(凸部形成物質に含まれる。)との組み合わせは、本実施例に限定されるものではなく、多くの組み合わせがある。
 基板11を形成する第一の元素は、製造工程において固体状態であればよい。また、基板11は、平滑であってもよいし、凹凸を有していてもよい。
 凸部形成物質は、膜12の状態(固体状態)で用いたが、これに限定されるものではなく、凸部形成物質を基板11の表面に気体状態、液滴状態(微細液滴状態が望ましい。)又はエアロゾル状態で供給してもよいし、基板11の表面にドット状又はリップル状に固体状態又は液体状態で付着させてもよい。また、凸部形成物質を基板11の表面に吸着させてもよい。さらに、凸部形成物質は、レーザーの照射によって化学変化を起こして構成元素の一部が気化するものであってもよい。すなわち、凸部形成物質を構成する元素のうち一部の元素のみが凸部14を形成するものとしてもよい。
 第一の元素と第二の元素との組み合わせは、周期律表における同一の元素又は異なる元素の自由な組み合わせを選ぶことができる。
 すなわち、第一の元素は、C、Mg、Al、Si、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、In、Sn、Sb、Hf、Ta、W、Ir、Pt、Au及びPbからなる群から選択される少なくとも1種類の元素であることが望ましい。
 また、第二の元素も、C、Mg、Al、Si、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、In、Sn、Sb、Hf、Ta、W、Ir、Pt、Au及びPbからなる群から選択される少なくとも1種類の元素であることが望ましい。第二の元素に関しては、上記以外の元素であって製造工程において気体状態となる元素であっても用いることができる。
 レーザー照射条件は、大気中でナノ秒パルスレーザーを、照射条件2.0×10~4.0×10mJ/m/pulse、2~20Hz、かつ、パルス数200~20000pulsesとすることが望ましい。また、パルス数は、500~5000pulsesとすることが更に望ましい。
 図3は、リップル状のレーザー誘起表面層を有する3次元構造体を示す模式平面図である。
 本図に示すレーザー誘起表面層を有する3次元構造体は、基板11の表面にリップル状の凸部15を形成したものである。凸部15の間隔21は、レーザー光13の波長532nmとほぼ等しくなっている。
 以上に述べた図2A~2C及び図3に対応するレーザー誘起表面層を有する3次元構造体の実際の写真を示し、実施例を説明する。
 図4は、図2Aのドット状のレーザー誘起表面層を有する3次元構造体を示す断面TEM写真である。
 ここで、TEMは、透過型電子顕微鏡(Transmission Electron Microscope)の略称である。
 本図においては、基板11を構成する第一の元素としてSiを用い、凸部形成物質(第二の元素)としてAuを用いた。
 本図に示すレーザー誘起表面層を有する3次元構造体を作製する際のレーザー照射条件は、大気中パルスレーザーであって、100mJ/pulse(3.5×10J/m/pulse)、2Hz、2000pulsesである。
 TEMによる撮影の際に試料の表面を保護するため、試料の表面には、有機金属粒子膜16(有機パラジウム)が薄くコーティングしてあり、その上にカーボン保護膜31がコーティングしてある。また、本図から、凸部14の間隔21(頂点間距離)は、照射したレーザーの波長532nmとほぼ等しいことがわかる。
 分析の結果、基板11の表面の凸部14は、Au-Si合金で形成されていることがわかった。
 図5は、図2Bのドット状の規則配列構造を有するレーザー誘起表面層を有する3次元構造体を示す表面SEM写真である。本図は、表面の法線方向と45°をなす角度から撮影したものである。
 ここで、SEMは、走査型電子顕微鏡(Scanning Electron Microscope)の略称である。
 本図においては、基板11を構成する第一の元素としてモリブデン(Mo)を用い、凸部形成物質(第二の元素)として炭素(C)を用いた。
 本図に示すレーザー誘起表面層を有する3次元構造体を作製する際のレーザー照射条件は、大気中パルスレーザーであって、100mJ/pulse(3.5×10J/m/pulse)、2Hz、2000pulsesである。
 本図から、凸部14の間隔21(頂点間距離)は、照射したレーザーの波長532nmとほぼ等しく、間隔22(頂点間距離)は、照射したレーザーの波長532nmより小さいことがわかる。間隔22(頂点間距離)は、70~130nmで若干のばらつきはあるが、概ね照射したレーザーの波長の1/8~1/4の範囲であることがわかる。
 分析の結果、凸部14は炭素(C)で形成されていることがわかった。
 図6は、図2Cのドット状のランダム配列構造を有するレーザー誘起表面層を有する3次元構造体を示す表面SEM写真である。本図は、表面の法線方向と45°をなす角度から撮影したものである。
 本図においては、基板11を構成する第一の元素としてMoを用い、凸部形成物質(第二の元素)としてSiを用いた。
 本図に示すレーザー誘起表面層を有する3次元構造体を作製する際のレーザー照射条件は、大気中パルスレーザーであって、100mJ/pulse(3.5×10J/m/pulse)、2Hz、500pulsesである。
 本図において、凸部14は、基板11の表面にランダムに配置されているが、基板11の表面における凸部14の密度は、ほぼ均一であることがわかる。また、凸部14の間隔(頂点間距離)は、60~130nmで若干のばらつきはあるが、概ね照射したレーザーの波長の1/9~1/4の範囲であることがわかる。
 分析の結果、凸部14はSiで形成されていることがわかった。
 図7は、図3のリップル状の規則配列構造を有するレーザー誘起表面層を有する3次元構造体を示す表面SEM写真である。本図は、表面の法線方向と45°をなす角度から撮影したものである。
 本図においては、基板11を構成する第一の元素としてNiを用い、凸部形成物質(第二の元素)としてAuを用いた。
 本図に示すレーザー誘起表面層を有する3次元構造体を作製する際のレーザー照射条件は、大気中パルスレーザーであって、114mJ/pulse(4.0×10J/m/pulse)、2Hz、3000pulsesである。
 本図において、凸部15は、縞状、すなわち、ほぼ等間隔に並んだ稜線を有する形状である。
 本図から、凸部15の間隔21(頂点間距離)は、照射したレーザーの波長532nmとほぼ等しいことがわかる。
 分析の結果、凸部15はAu-Ni合金で形成されていることがわかった。
 図3のリップル状の規則配列構造を有するレーザー誘起表面層を有する3次元構造体に関しては、このほか、基板11を構成する第一の元素としてCuを用い、凸部形成物質(第二の元素)としてCrを用いた結果を次に示す。
 この場合、レーザー照射条件のうち、パルス数は500pulsesとした。
 ここで、第二の元素であるCrは、レーザー照射の前に、スパッタ法(スパッタリング)により基板11の表面に約10nmの厚さで付着させた。第二の元素を付着させる方法は、スパッタ法(スパッタリング)に限定されるものではなく、他の方法(蒸着法等)を用いても同様のリップル状の凸部15を有するレーザー誘起表面層を有する3次元構造体を作製することができた。
 また、基板11を構成する第一の元素としてSiを用い、凸部形成物質(第二の元素)としてAuを用いても、同様にリップル構造を有するレーザー誘起表面層を有する3次元構造体を作製することができた。この場合も、レーザー照射条件のうち、パルス数は500pulsesとした。
 パルス数は低い方が望ましく、200~3000pulsesがよい。
 以下、いくつかの変形例について説明する。
 図1A~1Eに示すレーザー誘起表面層を有する3次元構造体の製造工程を行う前、すなわち、基板11の表面に膜12を形成する前に、基板11の表面に実施例1と同じ条件のレーザー照射を行い、その後、基板11の表面に膜12を形成する凸部形成物質を供給し、さらに、膜12を形成した基板11の上方から上記のレーザー照射と同じ条件でレーザー照射を行った。
 この場合も、実施例1と同様に、基板11の表面における跳び跳びの位置に凸部14を形成することができた。
 また、レーザー照射と凸部形成物質の供給とを繰り返すことによっても、凸部14を形成でき、凸部14の形状を変化させることができた。
 実施例4の条件で基板11の表面に膜を形成する前に、基板11の表面に実施例4と同じ条件のレーザー照射を行い、その後、基板11の表面に膜を形成する凸部形成物質を供給し、さらに、膜を形成した基板11の上方から上記のレーザー照射と同じ条件でレーザー照射を行った。
 この場合も、実施例4と同様に、基板11の表面のリップル状の凸部15を形成することができた。
 また、レーザー照射と凸部形成物質の供給とを繰り返すことによっても、凸部15を形成でき、凸部15の形状を変化させることができた。
 実施例2~4における凸部14を構成する元素が、凸部形成物質(第二の元素)となるように第一の元素と第二の元素との組み合わせを選択した場合にも、図2B、2C及び3に示す各種のレーザー誘起表面層を有する3次元構造体を形成することができた。
 この場合、第二の元素として、一般に知られている条件では、第一の元素と固溶体または金属間化合物を形成しない元素を選ぶことができる。さらに、この場合、第一の元素がレーザー照射によるスパッタリングレイトの低い物質が好ましい。
 凸部14を構成する物質は、1種類以上の結晶で構成されたものも、1種類以上のアモルファスで構成されたものも、1種類以上の結晶及びアモルファスが共存するものも製造することができた。
 凸部形成物質(第二の元素)の供給方法が、レーザー照射前に終了し、基板の表面が凸部形成物質(第二の元素)で粉末状ないし膜状に被覆している場合にも、上記レーザー誘起表面異物質構造(図2A~2C及び図3)を形成することができた。
 凸部形成物質(第二の元素)の供給方法が、蒸着法、スパッタ法、AD法、塗布法、CVD法などの物質Aを被覆する方法である場合にも、上記レーザー誘起表面異物質構造(図2A~2C及び図3)を形成することができた。
 凸部形成物質(第二の元素)の供給を、レーザー照射前及びレーザー照射中、又はレーザー照射中のみに実施する場合にも、上記レーザー誘起表面異物質構造(図2A~2C及び図3)を形成できた。
 凸部形成物質(第二の元素)の供給方法が、レーザー照射と同時に行える、蒸着法、スパッタ法、AD法、塗布法、CVD法などの基板の表面を被覆する方法である場合にも、上記レーザー誘起表面異物質構造(図2A~2C及び図3)を形成することができた。
 上記のレーザー誘起表面異物質積層方法において、3次元表面構造体が、レーザー照射と同時に、又はレーザー照射後に、任意雰囲気における熱処理を実施して形成される場合にも、上記レーザー誘起表面異物質構造(図2A~2C及び図3)を形成することができた。
 本発明の方法により製造した上記のレーザー誘起表面異物質構造有する材料のうち、量子ドットパターンを有する本発明の量子デバイスについて、量子機能物性測定を実施した量子ドットパターンの光ルミネッセンス(PL)測定を実施した。
 量子ドットパターンを壊さないように、フェムト秒パルスレーザー(波長800nm)によりPL測定を行った。量子ドットパターン材料からの信号は600nm付近に半値幅20nm程度と非常にシャープなシグナルが検出された。これはドット表面(自然酸化した界面)からのグリーンバンドの量子ドットシグナルであり、本発明の量子ドットパターンを形成した量子デバイスは良好な量子機能物性を有することが検証できた。
 本発明の方法により製造した量子ドットパターン(実施例5)を有する量子デバイスについて、量子機能表面物性を測定した。
 量子機能表面物性として光電子放出測定(PEEM:光を当てて電子放出を検出)を実施した。
 測定対象部のSEM写真においては、量子ドットリップル部が白いコントラスト部となり、その他の領域がグレーコントラスト部となっていた。
 220~280nmの紫外光を用いてPEEM測定を行うと、量子ドットリップル形成部においては、電子放出が起こらず黒くなっていた。一方、220nm(5eV)のカットフィルターを入れて短波長域をカットした場合、全域が暗くなったことから、レーザー強度が高く、リップルパターンができている領域とその周りの部分とは表面の仕事関数が異なることが判った。
 リップルパターンでない部分は、約5.0eV(4.4~5.6eV)で、量子ドットリップル部は5.6eV以上の仕事関数値を有していると考えることができる。
 この特徴的な表面光電子特性により、本発明の量子ドットパターンを形成した量子デバイスは、付加的表面エネルギー(この場合は0.5~1.2eV)を有する触媒デバイスや機能性表面デバイスとしても使用可能であることを確認することができた。
 本発明の方法を用いることにより、従来、レーザー照射では成しえなかった、レーザーを照射する基板の表面に基板を構成する物質とは異なる物質で構成された量子ドット形状を有する3次元積層構造(凸部)を周期配列させる量子ドット形成表面の製造方法を提供することができる。
 さらに、上述の具体的、かつ、普遍的な本発明の方法を用いることにより、表面の形状付与形態として、基板の表面に、基板を構成する物質とは異なる物質をドット形状の他、線状のリップル2次元パターンあるいは3次元積層体をランダムに2次元配置させた構成を有する構造表面の製造方法を提供することができる。
 また、上述した本発明の製造方法を用いることにより、より性能の優れた電子・電磁デバイス、量子ドットデバイス、光電子デバイス、量子ドット太陽電池、パターン化触媒材料、機能性デバイス、パターンメディア用機能性材料、量子ドットレーザー、光増幅器、量子暗号通信・量子コンピュータ用素子構造、エネルギー素子、バイオデバイス等を提供できる。
 11:基板、12:膜、13:レーザー光、14、15:凸部、16:有機金属粒子膜、21、22:間隔、31:カーボン保護膜。

Claims (26)

  1.  第一の元素を含む基材の表面に、第二の元素を含む凸部形成物質を供給し前記基材の表面にレーザーを照射することにより、前記基材の表面に、前記第二の元素を主成分とする複数個の凸部、又は前記第一の元素及び前記第二の元素を含む複数個の凸部を前記レーザーの波長以下の頂点間距離で形成する方法であって、前記第二の元素は、前記第一の元素と同一の元素又は異なる元素であることを特徴とするレーザー誘起表面層を有する3次元構造体の製造方法。
  2.  前記凸部形成物質は、前記基材の表面に吸着させ、又は、膜状若しくは粒子状に付着させ、その後、前記レーザーを照射することを特徴とする請求項1記載のレーザー誘起表面層を有する3次元構造体の製造方法。
  3.  前記凸部形成物質は、気体状態で前記基材の表面に供給することを特徴とする請求項1記載のレーザー誘起表面層を有する3次元構造体の製造方法。
  4.  前記第一の元素及び前記第二の元素はそれぞれ、C、Mg、Al、Si、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、In、Sn、Sb、Hf、Ta、W、Ir、Pt、Au及びPbからなる群から選択される少なくとも一種類以上の元素であることを特徴とする請求項1~3のいずれか一項に記載のレーザー誘起表面層を有する3次元構造体の製造方法。
  5.  前記凸部形成物質は、蒸着法、スパッタ法、エアロゾルデポジション法、塗布法又は化学気相蒸着法を用いて供給することを特徴とする請求項1~4のいずれか一項に記載のレーザー誘起表面層を有する3次元構造体の製造方法。
  6.  前記凸部形成物質は、前記レーザー照射前にのみ、前記レーザー照射前及び前記レーザーの照射と同時に、又は前記レーザーの照射と同時にのみ供給することを特徴とする請求項1~5のいずれか一項に記載のレーザー誘起表面層を有する3次元構造体の製造方法。
  7.  前記レーザーの照射と同時に、又は前記レーザーの照射後に、熱処理を行うことを特徴とする請求項1~6のいずれか一項に記載のレーザー誘起表面層を有する3次元構造体の製造方法。
  8.  前記レーザーは、ナノ秒パルスレーザーであり、前記レーザーの照射条件は、2.0×10~4.0×10mJ/m/pulse、2~20Hz、かつ、パルス数200~20000pulsesであることを特徴とする請求項1~7のいずれか一項に記載のレーザー誘起表面層を有する3次元構造体の製造方法。
  9.  第一の元素を含む基材と、前記基材の表面にレーザーを照射することにより形成した複数個の凸部とを含む3次元構造体であって、前記凸部は、第二の元素を主成分とするもの又は前記第一の元素及び前記第二の元素を含むものであり、前記第二の元素は、前記第一の元素と同一の元素又は異なる元素であり、前記複数個の凸部の頂点間距離は、前記レーザーの波長以下であることを特徴とするレーザー誘起表面層を有する3次元構造体。
  10.  前記凸部は、前記レーザーの波長以下の頂点間距離で並んだ複数個の量子ドットで構成された複数本の列を形成し、相隣る前記列の頂点間距離は、他の相隣る前記列の頂点間距離と等しいことを特徴とする請求項9記載のレーザー誘起表面層を有する3次元構造体。
  11.  前記凸部は、前記レーザーの波長以下の頂点間距離で複数個の量子ドットが二次元的にランダムに配列されたものであることを特徴とする請求項9記載のレーザー誘起表面層を有する3次元構造体。
  12.  前記凸部は、縞状であることを特徴とする請求項9記載のレーザー誘起表面層を有する3次元構造体。
  13.  前記凸部は、電子及びホールの対である励起子を閉じ込める構造であることを特徴とする請求項9記載のレーザー誘起表面層を有する3次元構造体。
  14.  前記第一の元素及び前記第二の元素はそれぞれ、C、Mg、Al、Si、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、In、Sn、Sb、Hf、Ta、W、Ir、Pt、Au及びPbからなる群から選択される少なくとも一種類以上の元素であることを特徴とする請求項9~13のいずれか一項に記載のレーザー誘起表面層を有する3次元構造体。
  15.  前記凸部は、単一の相又は複数の相からなる合金で形成されていることを特徴とする請求項9~14のいずれか一項に記載のレーザー誘起表面層を有する3次元構造体。
  16.  前記凸部は、結晶及びアモルファスのうち少なくとも一方を含むことを特徴とする請求項15記載のレーザー誘起表面層を有する3次元構造体。
  17.  前記列をなす前記複数個の量子ドットの頂点間距離は、前記レーザーの波長よりも短く、相隣る前記列の頂点間距離は、一本の前記列における前記頂点間距離より長いことを特徴とする請求項10記載のレーザー誘起表面層を有する3次元構造体。
  18.  相隣る前記列の頂点間距離は、前記波長に対して10%以内の誤差範囲であることを特徴とする請求項17記載のレーザー誘起表面層を有する3次元構造体。
  19.  前記列をなす前記複数個の量子ドットの頂点間距離は、前記波長の1/9~1/4であることを特徴とする請求項18記載のレーザー誘起表面層を有する3次元構造体。
  20.  請求項9~19のいずれか一項に記載のレーザー誘起表面層を有する3次元構造体を用いたことを特徴とする機能性材料。
  21.  請求項9~19のいずれか一項に記載のレーザー誘起表面層を有する3次元構造体を用いたことを特徴とする電子・電磁デバイス。
  22.  請求項9~19のいずれか一項に記載のレーザー誘起表面層を有する3次元構造体を用いたことを特徴とする量子ドットデバイス。
  23.  請求項9~19のいずれか一項に記載のレーザー誘起表面層を有する3次元構造体を用いたことを特徴とする光電子デバイス。
  24.  請求項9~19のいずれか一項に記載のレーザー誘起表面層を有する3次元構造体を用いたことを特徴とする太陽電池。
  25.  請求項9~19のいずれか一項に記載のレーザー誘起表面層を有する3次元構造体を用いたことを特徴とする触媒。
  26.  請求項9~19のいずれか一項に記載のレーザー誘起表面層を有する3次元構造体を用いたことを特徴とするナノバイオ材料。
PCT/JP2011/068552 2010-08-27 2011-08-16 レーザー誘起表面層を有する3次元構造体及びその製造方法 WO2012026359A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010190345A JP2012045672A (ja) 2010-08-27 2010-08-27 レーザー誘起表面層を有する3次元構造体及びその製造方法
JP2010-190345 2010-08-27

Publications (1)

Publication Number Publication Date
WO2012026359A1 true WO2012026359A1 (ja) 2012-03-01

Family

ID=45723361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068552 WO2012026359A1 (ja) 2010-08-27 2011-08-16 レーザー誘起表面層を有する3次元構造体及びその製造方法

Country Status (2)

Country Link
JP (1) JP2012045672A (ja)
WO (1) WO2012026359A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112652651A (zh) * 2020-12-22 2021-04-13 北京维信诺科技有限公司 一种显示面板及其制造方法、显示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016121462A1 (de) * 2016-11-09 2018-05-09 Aixtron Se Strukturierte Keimschicht

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219600A (ja) * 1999-01-27 2000-08-08 Nippon Steel Corp 微結晶粒および微結晶細線及びそれらの作成方法
WO2010137297A1 (ja) * 2009-05-25 2010-12-02 株式会社日立製作所 レーザー誘起表面ナノ配列構造の作製方法及びそれを用いて作製したデバイス構造

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219600A (ja) * 1999-01-27 2000-08-08 Nippon Steel Corp 微結晶粒および微結晶細線及びそれらの作成方法
WO2010137297A1 (ja) * 2009-05-25 2010-12-02 株式会社日立製作所 レーザー誘起表面ナノ配列構造の作製方法及びそれを用いて作製したデバイス構造

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
H. KUMAGAI: "Fabrication of Periodic Submicron Dot Structures of N-InP by Laser-Induced Surface Electromagnetic Wave Etching", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 31, 15 July 1992 (1992-07-15), pages L928 - L930 *
K. NISHIOKA: "Periodically Aligned Submicron Dots of Silicon and Nickel Fabricated by Irradiation with Linearly Polarized Nd:YAG Pulsed Laser", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 46, no. 23, 8 June 2007 (2007-06-08), pages L556 - L558 *
Y. YOSHIDA ET AL.: "Fabrication of Dot-like Nano-protrusions on Silicon Surfaces Using Nanosecond Pulse Nd: YAG Laser Irradiation", TRANSACTIONS OF THE JAPAN INSTITUTE OF ELECTRONICS PACKAGING, vol. 3, no. 1, 21 April 2011 (2011-04-21), pages 57 - 61 *
Y. YUTAKA ET AL.: "Self-Organized Two- Dimensional Vidro-Nanodot Array on Laser- Irradiated Si Surface", APPLIED PHYSICS EXPRESS, vol. 4, no. 4, May 2011 (2011-05-01), pages 055202.1 - 055202.3 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112652651A (zh) * 2020-12-22 2021-04-13 北京维信诺科技有限公司 一种显示面板及其制造方法、显示装置
CN112652651B (zh) * 2020-12-22 2023-10-27 北京维信诺科技有限公司 一种显示面板及其制造方法、显示装置

Also Published As

Publication number Publication date
JP2012045672A (ja) 2012-03-08

Similar Documents

Publication Publication Date Title
US7105118B2 (en) Methods of forming three-dimensional nanodot arrays in a matrix
US20160281222A1 (en) 3-dimensional nanoplasmonic structure and method of manufacturing the same
Irrera et al. Light-emitting silicon nanowires obtained by metal-assisted chemical etching
JP5674285B2 (ja) レーザー誘起表面ナノ配列構造の作製方法及びそれを用いて作製したデバイス構造
Schramm et al. Large array of single, site-controlled InAs quantum dots fabricated by UV-nanoimprint lithography and molecular beam epitaxy
Abdullayeva et al. Zinc oxide and metal halide perovskite nanostructures having tunable morphologies grown by nanosecond laser ablation for light-emitting devices
Sutter et al. Tunable layer orientation and morphology in vapor–liquid–solid growth of one-dimensional GeS van der Waals nanostructures
Sun et al. Top‐Down Fabrication of Semiconductor Nanowires with Alternating Structures along their Longitudinal and Transverse Axes
JP5620154B2 (ja) 中空微小体およびその作製方法
WO2012026359A1 (ja) レーザー誘起表面層を有する3次元構造体及びその製造方法
US20060266442A1 (en) Methods of forming three-dimensional nanodot arrays in a matrix
JP2004098246A (ja) ナノスケール山谷構造基板を用いた金ナノ粒子一次元鎖列の製造法
CN109119332A (zh) 一种采用退火方法制备图案化有序双金属纳米粒子阵列的方法
US8883266B2 (en) Irradiation assisted nucleation of quantum confinements by atomic layer deposition
US6344082B1 (en) Fabrication method of Si nanocrystals
Maiti et al. Revealing structure and crystallographic orientation of soft epitaxial assembly of nanocrystals by grazing incidence x-ray scattering
JP2007216369A (ja) シリコンナノ結晶材料の製造方法及び該製造方法で製造されたシリコンナノ結晶材料
KR101079213B1 (ko) 태양전지 및 그 제조방법
JP2023541226A (ja) 高度に配向した単結晶低次元ナノ構造体、製造方法及び装置
JP4631095B2 (ja) 金属ナノ粒子の生成方法
Grigoropoulos LASER PROCESSING OF SEMICONDUCTOR NANOMATERIALS
CN110087816A (zh) 使用激光束制备结构化的晶核层的方法和相应的设备
Flavel et al. Nanosphere lithography using thermal evaporation of gold
JP4922566B2 (ja) ナノワイヤの製造方法
US20220344462A1 (en) Wafer, optical emission device, method of producing a wafer, and method of characterizing a system for producing a wafer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819822

Country of ref document: EP

Kind code of ref document: A1