WO2012023479A1 - Solid fuel, and method and apparatus for producing same - Google Patents

Solid fuel, and method and apparatus for producing same Download PDF

Info

Publication number
WO2012023479A1
WO2012023479A1 PCT/JP2011/068324 JP2011068324W WO2012023479A1 WO 2012023479 A1 WO2012023479 A1 WO 2012023479A1 JP 2011068324 W JP2011068324 W JP 2011068324W WO 2012023479 A1 WO2012023479 A1 WO 2012023479A1
Authority
WO
WIPO (PCT)
Prior art keywords
pks
solid fuel
solid
heating
heat
Prior art date
Application number
PCT/JP2011/068324
Other languages
French (fr)
Japanese (ja)
Inventor
茂也 林
宏 天野
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2012529577A priority Critical patent/JP5741585B2/en
Priority to CN201180027939.1A priority patent/CN102959059B/en
Publication of WO2012023479A1 publication Critical patent/WO2012023479A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/363Pellets or granulates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • C10L5/445Agricultural waste, e.g. corn crops, grass clippings, nut shells or oil pressing residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • C10L9/083Torrefaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a solid fuel obtained by heating biomass, a method for producing the same, and a production apparatus.
  • biomass is used as a partial fuel substitute for coal in a coal-fired power plant.
  • pulverization of biomass is necessary to improve combustion efficiency.
  • a coal-fired power plant has a coal crusher that crushes coal, so biomass is crushed together with coal by a coal crusher, and the pulverized biomass and pulverized coal are mixed and burned (co-fired).
  • biomass generally has a high porosity and thus has poor energy transportability, and has a high moisture content, so it has a low thermal energy density and a small calorific value when used as a fuel as it is. For this reason, the biomass is used by drying, crushing and pelletizing the biomass, and carbonizing the biomass.
  • Patent Document 1 describes a method of burning a biomass-based fuel in which carbonized biomass and coal are co-fired.
  • Patent Document 2 discloses the contents of compressing crushed coconut shell and using the coconut shell as a microbial base for garbage treatment instead of fuel.
  • An object of the present invention is to provide a solid fuel which uses palm kernel shell as biomass, is excellent in grindability, is high in calories, and does not generate dust, and a method for producing the solid fuel and its production apparatus.
  • the present inventors have found that low-temperature carbonization treatment of a palm kernel shell can provide a solid fuel that solves the above-mentioned problems.
  • the present invention was made based on the above findings, and is a solid fuel obtained by heating a shell after squeezing a kernel oil from a seed of a fruit of a coconut, wherein the solid carbon is 20 to 60 on an air-dried basis.
  • the present invention provides a method for producing the solid fuel, the step of supplying shells to a heating means after squeezing a kernel oil from seeds of a fruit of an eggplant, and heating the shells in the heating means
  • the present invention provides a method for producing a solid fuel, comprising the steps of: heating to obtain a fuel; and setting the heating temperature in the heating to 240 to 350 ° C.
  • the present invention is also an apparatus for producing a solid fuel, wherein solid fuel is obtained from shells after squeezing nuclear oil from seeds of a fruit of an eggplant, and the heating means for heating the shells to obtain the solid fuel, and It is an object of the present invention to provide a solid fuel manufacturing apparatus characterized in that the heating means is provided with a feeding means for feeding the shell, and the heating temperature in the heating means is 240 to 350 ° C.
  • a solid fuel which uses palm kernel shell as biomass is easy to be crushed, has a small amount of crushing energy and is high in calories.
  • solid fuel can be obtained which is safe and does not cause environmental pollution.
  • a palm kernel shell may be pressure-compressed and flattened to be used as a fuel as a reference example.
  • FIG. 13 (a) is a 30 ⁇ SEM picture of the fractured surface of PKS before heating
  • FIG. 13 (b) is a SEM picture of 200 ⁇ of the fractured surface of PKS before heating
  • FIG. 13 (b) is a SEM picture of 200 ⁇ of the fractured surface of PKS before heating
  • FIG. 13 (c) It is a 1000 times SEM photograph of the fractured surface of PKS before heating.
  • FIG. 14 (a) is a 30 ⁇ SEM picture of the fractured surface of PKS heat-treated at 300 ° C.
  • FIG. 14 (b) is a 200 ⁇ SEM photograph of the fractured surface of PKS heat-treated at 300 ° C.
  • FIG. 14 (c) is a SEM photograph at 1000 times the fracture surface of PKS heat-treated at 300 ° C.
  • the solid fuel of the present invention will be described based on its preferred production method.
  • the “shell after oiling a kernel oil from seeds of a fruit of a coconut palm” used as biomass in the present invention is referred to as palm kernel shell (hereinafter sometimes abbreviated as PKS).
  • PKS preferably has a water content of 40% by mass or less, and more preferably a water content of 15% by mass or less.
  • the heat treatment of the PKS is carried out at a temperature of 220 to 400 ° C., preferably 240 to 350 ° C., more preferably 296 to 350 ° C., particularly preferably 300 to 300 ° C. in a state where supply of air is restricted or shut off or an inert gas atmosphere.
  • the temperature referred to in the present invention means the temperature of the heat-treated solid.
  • low temperature carbonization refers to thermal decomposition of an organic solid performed in a reducing atmosphere at 400 ° C. or less.
  • the reducing atmosphere refers to a state in which the supply of air is restricted or shut off or an inert gas atmosphere.
  • the oxygen concentration in the reducing atmosphere is preferably 5% by volume or less.
  • the temperature of the heat treatment is less than 220 ° C., the crushability is improved as compared to the case where low temperature carbonization is not performed.
  • the temperature of the heat treatment exceeds 350 ° C., the solid yield after the heat treatment is small, and the energy loss at the heat treatment tends to be large.
  • the temperature is 296 ° C. or more, the crushability is significantly improved.
  • the heating device used for the heat treatment may be a heating device conventionally used for carbonization treatment of biomass, and may be an internal heating type, an external heating type, a batch type or a continuous type. Specifically, for example, an internal heating rotary kiln, an external heating rotary kiln, a moving bed heating apparatus, a packed bed heating apparatus and the like can be mentioned.
  • the temperature raising rate is not particularly limited, but it is usually from 1 to 10 ° C./minute, preferably from 1 to 5 ° C./minute, from the ambient temperature to the desired heating temperature.
  • the heat treatment time is preferably within 90 minutes, more preferably within 50 minutes, after reaching a temperature of 220 to 400 ° C. If the heat treatment time is too long, the solid yield after heat treatment decreases and the heat energy recovery rate to solid decreases, so the temperature rise rate and heat treatment time are appropriately determined according to the desired properties of the solid fuel. Do.
  • the solid fuel of the present invention as a heat-treated solid and the first gas as a gas component are obtained.
  • the first gas contains tar and volatile matter. Therefore, also from the viewpoint of suppression of energy loss, after the first gas is discharged from the heating device, the first gas is supplied to the combustion device to burn tar and volatile matter in the first gas, and After obtaining the second gas, it is preferable to return the second gas to the heating device and recover it as part of the energy for the heat treatment of the PKS.
  • the combustion temperature of the first gas in the combustion apparatus is preferably 500 to 1,200 ° C., more preferably 850 to 1,000 ° C.
  • the combustion apparatus for burning the first gas is not particularly limited as long as it can burn tar or volatile matter in the first gas, and it is usually a refractory-lined gas combustion furnace or the like.
  • the first gas may be burned together with the solid fuel of the present invention by the “heat utilization facility using the solid fuel of the present invention” described later.
  • the first gas can also be cooled to separate the tar.
  • the properties of the solid fuel of the present invention obtained by the above-described PKS heat treatment will be described.
  • the fixed carbon of the solid fuel is 25 to 60% by mass, preferably 35 to 60% by mass, more preferably 45 to 55% by mass on an air-dry basis.
  • the volatile content is 30 to 66% by mass, preferably 35 to 55% by mass, more preferably 35 to 45% by mass on an air-dry basis.
  • the ash content is 3 to 6% by mass, preferably 3 to 5% by mass on an air-dry basis.
  • the water content is 6% by mass or less, preferably 5% by mass or less.
  • the higher calorific value is 20 to 30 MJ / kg, preferably 24 to 30 MJ / kg, more preferably 25 to 30 MJ / kg on an air-dried basis.
  • the air-dried base means a solid weight measured by the air-dried sample preparation method described in Japanese Industrial Standard JIS M 8811.
  • the method of measuring the fixed carbon, volatile matter, ash and water of the solid fuel according to the present invention was based on the method described in Japanese Industrial Standard JIS M8812.
  • the high-order calorific value refers to the total calorific value, and the measurement method was according to the method described in Japanese Industrial Standard JIS M8814.
  • the volatile matter contained in the solid fuel is partially aromatic or the like.
  • the solid fuel of the present invention is substantially equivalent to the particle size of raw PKS by the above-mentioned heat treatment of PKS, and is not pulverized. Therefore, when transporting solid fuel after low temperature carbonization, there is no contamination around the area due to dusting.
  • the average particle size of raw PKS is usually about 5 mm, and the average particle size of the solid fuel of the present invention is also about 5 mm.
  • the average particle diameter referred to in the present invention means a median diameter, and can be obtained by the particle size test method described in JIS M8801.
  • the solid fuel obtained by the heat treatment of the present invention has improved crushability compared to that before the heat treatment.
  • the WI equivalent number of the solid fuel obtained by the present invention is 0.7 to 2.5.
  • the solid fuel is evaluated as having the same degree of grindability as coal because the WI equivalent number is 1.0 to 2.0.
  • the WI equivalent number refers to a relative evaluation of the grindability, and can be obtained by measurement of an initial grinding rate using a ball mill. It indicates that the smaller the value of the WI equivalent number, the easier the pulverization (described later).
  • the solid fuel obtained in the present invention has a HGI equivalent number of 16 to 25, is a solid maintaining an appropriate hardness, and has no dusting property.
  • the HGI equivalent number refers to the grindability index obtained by the measurement method similar to HGI described in JIS M8801, and is determined by the degree of grinding at a constant rotation number using a ball mill. The larger the value of the HGI equivalent number, the easier the pulverization is shown (described later).
  • the equivalent WI number is 2.5 or less, and the equivalent HGI number is preferably 15 or more, particularly preferably 16 or more, from the viewpoint of the required power for pulverizing solid fuel. The details of the evaluation method of the WI equivalent number and the HGI equivalent number will be described in more detail in the following examples.
  • the solid fuel of the present invention is used as an energy source of heat utilization equipment by supplying it to the heat utilization equipment and burning it.
  • the solid fuel of the present invention is preferably supplied to a heat utilization facility and burned as a partial replacement fuel for coal.
  • the heat utilization equipment in which the solid fuel of the present invention is used is not limited, and the existing heat utilization equipment can be used, for example, pulverized coal firing boiler, rotary kiln of cement clinker production equipment, cement clinker A calcining furnace for manufacturing equipment, a coke furnace for iron making equipment, a blast furnace, etc. may be mentioned, and among them, a pulverized coal burning boiler, a rotary kiln for cement clinker manufacturing equipment, a calcining furnace and the like are preferable.
  • the solid fuel of the present invention may be pulverized and then supplied to the heat utilization facility from the viewpoint of improving combustion efficiency and the like.
  • the degree of this pulverization depends on the heat utilization equipment to which the solid fuel is supplied, but usually, it is preferable to pulverize so that the average particle diameter is 1,000 ⁇ m or less, and pulverize so that the average particle diameter is 750 ⁇ m or less Is more preferable.
  • the solid fuel of the present invention has excellent crushability and can be easily crushed by a vertical roller mill, a tube mill, a hammer mill, a fan type mill, etc., and is also provided in a coal-fired power plant. Can be easily pulverized with the coal. Also, solid fuel can be supplied to a heat utilization facility with coal and burned.
  • the WI equivalent number is a value proportional to the pulverizing power per unit weight of the solid fuel, and the smaller this value is, the smaller the pulverizing power is.
  • the measurement method of WI equivalent number is as follows. Among solids, a 4.75 mm sieve was used as a sample for measurement of equivalent number of WI.
  • This sample of 480 g comprises 43 steel balls having a diameter of 36.5 mm, 67 steel balls having a diameter of 30.2 mm, 10 steel balls having a diameter of 25.4 mm, 71 steel balls having a diameter of 19.1 mm, and a diameter of 15
  • a ball mill containing 94 9 mm steel balls it is ground at a rotation speed of 70 revolutions per minute for 1 minute, 2 minutes, 4 minutes, 10 minutes, and each milled using a standard sieve with an opening of 150 ⁇ m. The weight under the sieve in time was measured, and the mass fraction was calculated.
  • the HGI equivalent number of solid fuel is measured by the following method.
  • the HGI equivalent number is a numerical value for evaluating the grinding ability of solid fuel, and the larger the numerical value, the better the grinding property.
  • the high calorific value was determined according to JIS M8814.
  • the energy immobilization rate was calculated from the solid yield after the heat treatment and the high calorific value of the sample before and after the heat treatment. The larger the value, the larger the energy available as the heat-treated solid.
  • the energy fixation rate was determined by the following equation. In the present invention, from the viewpoint of effective use of energy, the energy fixation rate is considered to be within the allowable range of 65% or more.
  • Example 1 Shells were used after oil extraction of the kernel oil from the seeds of oil palm fruits.
  • the PKS used is a shell of Indonesian oil palm, and the elemental composition is as follows. Carbon (% on anhydrous basis) 52.1 Hydrogen (% on anhydrous basis) 4.8 Nitrogen (% anhydrous basis) 0.4 Total sulfur (% on anhydrous basis) 0.03 Chlorine (% anhydrous basis) 0.007
  • the industrial analysis values are as follows. Moisture (air dry basis%) 9.0 Ash (air dry basis%) 2.4 Volatile matter (air-dry basis%) 70.7 Fixed carbon (air dry basis%) 17.9
  • the HGI equivalent number is 14, and the WI equivalent number is 11.
  • the PKS was dried on the sun to a moisture content of 12% by mass, and used was one having a particle size of 1 to 16 mm and an average particle size of 5 mm.
  • 4 kg of the PKS is placed in a sample case with an inner diameter of 600 mm and a length of 500 mm, and the sample case is attached to an external heating rotary kiln to raise temperature from ambient temperature to 320 ° C. while circulating nitrogen gas as inert gas. Heated at 2 ° C./min.
  • the reference heating temperature was the temperature of the gas phase atmosphere at the center of the axial center of the sample case. In the rotary kiln, the temperature of the gas phase atmosphere is the same as the temperature of the heat-treated solid.
  • Table 1 also shows the moisture content and average particle size of PKS and the heat treatment conditions (heat treatment temperature and heat treatment time) of PKS.
  • Table 1 also shows the physical properties of raw PKS (non-heat-treated solid) before heat treatment.
  • the HGI equivalent number is 24, which is much larger than the raw PKS.
  • the equivalent number of WI was 0.1 times or less of that of raw PKS, and the crushability was improved.
  • the particle size distribution of the heat-treated solid was almost the same as that of the raw PKS, and the low temperature carbonization did not powder the solid particles.
  • Example 2 The same procedure as in Example 1 was carried out except that the heat treatment temperature of PKS was changed to 240 ° C. in Example 1, and a solid fuel as a heat-treated solid and a first gas were produced.
  • the chemical composition of solid fuel, average particle size, higher calorific value, equivalent number of HGI, equivalent number of WI, moisture content and average particle size of PKS, and heat treatment condition of PKS are shown in Table 1.
  • the HGI equivalent number is 16 and is larger than the raw PKS.
  • the equivalent number of WI was about 0.2 times that of raw PKS, and the crushability was improved.
  • the particle size distribution of the heat-treated solid was almost the same as that of the raw PKS, and the low temperature carbonization did not powder the solid particles.
  • Example 3 The same procedure as in Example 1 was carried out except that the heat treatment temperature of PKS was changed to 350 ° C. in Example 1, to produce a solid fuel as a heat-treated solid and a first gas.
  • the chemical composition of solid fuel, average particle size, higher calorific value, equivalent number of HGI, equivalent number of WI, moisture content and average particle size of PKS, and heat treatment condition of PKS are shown in Table 1.
  • the HGI equivalent number was 23 and significantly increased from the raw PKS.
  • the WI equivalent number was about 0.1 times that of raw PKS, and the crushability was improved.
  • the particle size distribution of the heat-treated solid was almost the same as that of the raw PKS, and the low temperature carbonization did not powder the solid particles.
  • Example 1 The same procedure as in Example 1 was carried out except that the heat treatment temperature of PKS in Example 1 was 220 ° C., and a solid fuel as a heat-treated solid and a first gas were produced.
  • the average particle size of the solid fuel, the HGI equivalent number, the water content and average particle size of PKS, and the heat treatment conditions of PKS are shown in Table 1.
  • the HGI equivalent number was 15, and the crushability was slightly improved as compared to the raw PKS.
  • the WI equivalent number was about 3 times that of coal, and the crushability was slightly improved.
  • Example 2 The same procedure as in Example 1 was carried out except that the heat treatment temperature of PKS was set to 400 ° C. in Example 1, to produce a solid fuel as a heat-treated solid and a first gas.
  • the chemical composition of solid fuel, average particle size, higher calorific value, equivalent number of HGI, equivalent number of WI, moisture content and average particle size of PKS, and heat treatment condition of PKS are shown in Table 1.
  • the grindability was improved for both the HGI equivalent number and the WI equivalent number. However, the energy fixation rate dropped to about 60%.
  • Example 2 the same PKS as used in Example 1 was used as PKS.
  • the heat treatment of PKS or wood waste was carried out in the same manner as in Example 1 except the heating temperature, unless otherwise indicated.
  • FIGS. 2 and 3 show the results of FT-IR analysis of the heat-treated solid (manufactured by DigiLab, model number: FTS-7000e, single reflection method (using diamond)).
  • FIG. 2 shows the case of PKS and
  • FIG. 3 shows the case of wood waste.
  • FIG. 4 is a diagram showing the relationship between the equivalent number of WI and the heat treatment temperature of the heat-treated solid.
  • Table 3 shows the weight composition of raw PKS before heating, cellulose in raw wood waste (Japanese cypress) and lignin. It can be seen from Table 3 that raw PKS has a high proportion of lignin and a low proportion of cellulose (including hemicellulose) as compared to raw wood waste. Hemicellulose is a fibrous substance which connects celluloses.
  • the heat-treated solid of PKS having a relatively small amount of residual cellulose is superior in grindability to the heat-treated solid of wood waste having a large amount of residual cellulose. It can also be seen from FIG. 4 that the heat-treated solid of PKS has a relatively lower WI equivalent number than that of the heat-treated solid of wood chips, with the exception of a part of the heat-treated solid.
  • raw PKS contains a large proportion of lignin as compared to raw wood waste, so that even in the heat-treated solid, PKS has relatively more residual lignin compared to wood waste. Therefore, the heat-treated solid of PKS is relatively strong compared to the heat-treated solid of wood waste, and is less likely to be pulverized during transportation.
  • FIG. 5 shows the powdering test results of heat-treated solids of PKS and wood waste.
  • the powdering test was carried out by putting 1 kg or more of wood waste and PKS samples of 1 mm or more in a polyethylene bag, dropping 10 kg from a height of 3.1 m, and then measuring the ratio of 1 mm undersize particles. From FIG. 5, it is judged that the heat-treated solid of PKS has less particles of 1 mm or less compared to the heat-treated solid of wood waste at the same temperature, and is hard to be pulverized. Therefore, the heat-treated solid of PKS having a relatively large amount of residual lignin compared to the heat-treated solid of wood waste is less likely to be pulverized during transportation, and is excellent in the handling property.
  • FIG. 6 is a graph showing the relationship between the particle size of PKS and the undersize integration.
  • the raw PKS, the graph of carbonized goods in each temperature of 290 degreeC, 300 degreeC, 310 degreeC, 320 degreeC, and 330 degreeC is shown. None of the 290.degree. C. to 330.degree. C. carbonized products has a large difference from the raw PKS, indicating that the dusting property is small.
  • H / C and O / C values of PKS heat-treated solid at 300 to 320 ° C. both decrease further than the lignin H / C and O / C values, and coal H / C and O / C Close to the value of.
  • volatiles, fixed carbon, and higher calorific value values in industrial analysis were also close to coal, and PKS heat-treated solid at 300 to 320 ° C. became a fuel close to coal.
  • the values of H / C and O / C in the 300 ° C. heat-treated solid of wood waste were only about the same value as the 240-280 ° C. heat-treated solid of PKS.
  • the carbon content in elemental analysis was also higher in PKS when compared at the same 300 ° C. heat-treated solid. Therefore, when heated at the same temperature, PKS is closer to coal than wood waste and has good characteristics as a fuel.
  • FIG. 8 is a graph which shows the change of the heat processing temperature of PKS and wood chips, and the value of H / C, O / C.
  • the values of H / C and O / C in the PKS heat-treated solid are substantially the same at 240 to 280 ° C., but decrease sharply at 280 to 300 ° C. and do not change significantly at 300 ° C. to 320 ° C. thereafter.
  • the heat-treated solid at 240 ° C. to 280 ° C. for PKS exhibits almost the same H / C and O / C values (region D1), but when the heating temperature rises from 280 ° C. to 300 ° C.
  • the values of / C and O / C sharply decrease and become approximately the same at 300 ° C. and 320 ° C. (region D2).
  • the heat-treated solid of PKS at 300 to 320 ° C. (corresponding to area D2 in FIG. 7) is compared to the heat-treated solid at 240 to 280 ° C. (corresponding to area D1 in FIG. 7).
  • the HGI equivalent number has improved.
  • the region D1 is close to cellulose and hemicellulose, and the region D2 is close to coal. Therefore, it is surmised that PKS becomes closer to coal by heat treatment at 300 to 320 ° C., and the grindability is improved.
  • FIGS. 9 and 10 show thermogravimetric analysis of PKS, wood waste, and coal (both at a heating rate of 10 ° C./min).
  • FIG. 9 shows a graph in air
  • N 2 : 96% gas (FIG. 10 on an anhydrous basis).
  • FIG. 9 and FIG. 10 it was confirmed that the PKS semi-carbonized product is closer to coal than the wood chip semi-carbonized product and has good combustion characteristics.
  • FIG. 11 is a graph showing the results of underwater immersion test of PKS
  • FIG. 12 is a graph showing the results of underwater immersion test of wood waste.
  • the immersion test in water was conducted by immersing 100 g of a sample in 1 liter of water at room temperature and measuring the change with time of solid moisture.
  • PKS had lower equilibrium water content than wood waste for both the raw material and the heat-treated solid, and was hard to absorb water. Therefore, since the moisture absorbed during storage is also low, PKS has a high amount of heat per unit weight and is excellent in handleability as compared to wood waste.
  • PKS contains more lignin in the raw material than wood waste, and there is more residual lignin even after heating.
  • lignin adheres cellulose to each other and fills the void existing between the cellulose. Therefore, in PKS having a relatively large amount of lignin, there are relatively few voids between celluloses as compared to wood waste. As a result, since the moisture entering between the celluloses decreases when immersed in water, it is presumed that PKS has less equilibrium moisture than wood waste.
  • FIGS. 13 (a) to (c) and FIGS. 14 (a) to (c) are SEM photographs of fractured surfaces of PKS.
  • FIG. 13 shows a broken surface of raw PKS before heating
  • FIG. 14 shows a broken surface of PKS heat-treated solid after heating at 300 ° C.
  • cell walls the main constituent is cellulose
  • irregularities like the raw material before heating can not be confirmed on the fracture surface of the heat-treated solid at 300 ° C.
  • the fractured surface was smooth and uniform. It is presumed that this is because the heat-treated solid has a homogeneous structure mainly composed of lignin as a result of decomposition of cellulose by heating.
  • the heating temperature in the heating step is set to 300 to 330 ° C. This makes it possible to obtain fuel closer to coal.
  • PKS is heated at 240 ° C. to 350 ° C. to obtain a fuel, but heating may be performed if it is suitable as a fuel.
  • PKS may be pressure-compressed to form a flat plate having a thickness of several mm or less. This makes it possible to obtain a biomass-blended fuel that can be mixed and pulverized with coal and has good combustibility.

Abstract

Disclosed is a solid fuel which contains, on air dried basis, 20-60% by mass of fixed carbon, 30-66% by mass of volatile content and 3-6% by mass of ash content, while containing 6% by mass or less of moisture content. The solid fuel has a higher calorific value of 20-30 MJ/kg on air dried basis. This solid fuel can be produced by a method for producing a solid fuel, said method comprising a supply step wherein shells left after obtaining kernel oil by oil-pressing palm fruit seeds are supplied to a heating means and a heating step wherein the shells are heated at a temperature of 240-350°C by the heating means, thereby obtaining a heat-treated solid of the shells.

Description

固体燃料、およびその製造方法、製造装置Solid fuel, method of manufacturing the same, and manufacturing apparatus
 本発明は、バイオマスを加熱して得られる固体燃料およびその製造方法、製造装置に関する。 The present invention relates to a solid fuel obtained by heating biomass, a method for producing the same, and a production apparatus.
 地球温暖化防止の対策の一つとして、生物由来の燃料としてのバイオマスをエネルギー源として利用することが行われている。例えば、石炭火力発電設備で石炭の一部代替燃料としてバイオマスが使用されている。石炭火力発電設備でバイオマスを使用するためには、燃焼効率を向上させるためにバイオマスの微粉砕化が必要である。石炭火力発電設備では、石炭を粉砕する石炭粉砕機を有していることから、バイオマスを石炭とともに石炭粉砕機で粉砕し、粉砕されたバイオマスと微粉炭とを混合燃焼(混焼)している。 As one of the measures against global warming, using biomass as fuel derived from a living thing as an energy source is performed. For example, biomass is used as a partial fuel substitute for coal in a coal-fired power plant. In order to use biomass in a coal thermal power plant, pulverization of biomass is necessary to improve combustion efficiency. A coal-fired power plant has a coal crusher that crushes coal, so biomass is crushed together with coal by a coal crusher, and the pulverized biomass and pulverized coal are mixed and burned (co-fired).
 また、バイオマスは、一般に空隙率が高いためエネルギーの輸送性が乏しく、また含水率が高いため熱エネルギー密度が低く、燃料としてそのまま利用する場合には発熱量が小さい。このため、バイオマスを乾燥、粉砕してペレット化したり、バイオマスを炭化処理したりして、利用されている。例えば、特許文献1には、バイオマスの炭化物と石炭とを混焼するバイオマス系燃料の燃焼方法が記載されている。また、特許文献2には、椰子殻破砕物を圧縮し、椰子殻を燃料ではなく生ごみ処理用の微生物基材として用いる内容が開示されている。 In addition, biomass generally has a high porosity and thus has poor energy transportability, and has a high moisture content, so it has a low thermal energy density and a small calorific value when used as a fuel as it is. For this reason, the biomass is used by drying, crushing and pelletizing the biomass, and carbonizing the biomass. For example, Patent Document 1 describes a method of burning a biomass-based fuel in which carbonized biomass and coal are co-fired. Further, Patent Document 2 discloses the contents of compressing crushed coconut shell and using the coconut shell as a microbial base for garbage treatment instead of fuel.
特開2005-114261号公報JP, 2005-114261, A 特開2002-316128号公報JP 2002-316128 A
 しかし、バイオマスを石炭粉砕機で微粉砕化することは容易ではなく、特にバイオマスが椰子の果実の種子から核油を搾油した後の殻(パームカーネルシェル)の場合、石炭よりも粉砕性が悪く、十分に微粉砕化することができない。
 また、特許文献1で使用されているバイオマスの炭化物は、400~500℃の高温で炭化されたものであり、炭化時に損失するエネルギーが多く、また、輸送時に粉化し環境汚染のおそれがある。
 また特許文献2では、椰子殻を圧縮する点は記載されているものの、圧縮した椰子殻をバイオマス燃料として用いることについては記載されていない。
 本発明の課題は、バイオマスとしてパームカーネルシェルを使用し、粉砕性に優れ、かつハイカロリーであり、しかも発塵性のない、固体燃料およびその製造方法、製造装置を提供することである。
However, comminution of biomass with a coal crusher is not easy, and the crushability is worse than that of coal, especially in the case of a shell (palm kernel shell) after the biomass has oiled nuclear oil from the seeds of a fruit of a coconut palm , Can not be finely pulverized.
The biomass carbide used in Patent Document 1 is carbonized at a high temperature of 400 to 500 ° C., and a large amount of energy is lost at the time of carbonization, and there is also the possibility of powderization during transportation and environmental pollution.
Moreover, although the point which compresses coconut shell is described in patent document 2, it does not describe using compressed coconut shell as biomass fuel.
An object of the present invention is to provide a solid fuel which uses palm kernel shell as biomass, is excellent in grindability, is high in calories, and does not generate dust, and a method for producing the solid fuel and its production apparatus.
 本発明者らは、種々検討した結果、パームカーネルシェルを低温炭化処理することにより、上記課題を解決する固体燃料が得られることを知見した。
 本発明は、上記知見に基づいてなされたもので、椰子の果実の種子から核油を搾油した後の殻を加熱して得られる固体燃料であって、気乾ベースで固定炭素を20~60質量%、揮発分を30~66質量%、灰分を3~6質量%含み、水分を6質量%以下含み、高位発熱量が気乾ベースで20~30MJ/kgである固体燃料を提供するものである。
 また、上記固体燃料において、炭素分Cに対する水素分Hのモル比をH/Cとし、炭素分Cに対する酸素分Oのモル比をO/Cとすると、0.65<H/C<1.1および0.15<O/C<0.5である固体燃料を提供するものである。
 また、本発明は、上記固体燃料の製造方法として、椰子の果実の種子から核油を搾油した後の殻を加熱手段に供給する供給工程と、前記加熱手段において前記殻を加熱し、前記固体燃料を得る加熱工程とを有し、前記加熱工程における加熱温度を、240~350℃とすることを特徴とする固体燃料の製造方法を提供するものである。
 また、本発明は、椰子の果実の種子から核油を搾油した後の殻から固体燃料を得る固体燃料の製造装置であって、前記殻を加熱し、前記固体燃料とする加熱手段と、前記加熱手段に対し、前記殻を供給する供給手段とを有し、前記加熱手段における加熱温度は、240~350℃であることを特徴とする固体燃料の製造装置を提供するものである。
As a result of various studies, the present inventors have found that low-temperature carbonization treatment of a palm kernel shell can provide a solid fuel that solves the above-mentioned problems.
The present invention was made based on the above findings, and is a solid fuel obtained by heating a shell after squeezing a kernel oil from a seed of a fruit of a coconut, wherein the solid carbon is 20 to 60 on an air-dried basis. To provide a solid fuel containing 30% to 66% by mass of volatile matter, 3 to 6% by mass of ash, 6% by mass or less of water, and having a high calorific value of 20 to 30 MJ / kg on an air-dry basis It is.
In the above solid fuel, assuming that the molar ratio of hydrogen H to carbon C is H / C and the molar ratio of oxygen O to carbon C is O / C, then 0.65 <H / C <1. It is intended to provide a solid fuel wherein 1 and 0.15 <O / C <0.5.
Further, the present invention provides a method for producing the solid fuel, the step of supplying shells to a heating means after squeezing a kernel oil from seeds of a fruit of an eggplant, and heating the shells in the heating means The present invention provides a method for producing a solid fuel, comprising the steps of: heating to obtain a fuel; and setting the heating temperature in the heating to 240 to 350 ° C.
The present invention is also an apparatus for producing a solid fuel, wherein solid fuel is obtained from shells after squeezing nuclear oil from seeds of a fruit of an eggplant, and the heating means for heating the shells to obtain the solid fuel, and It is an object of the present invention to provide a solid fuel manufacturing apparatus characterized in that the heating means is provided with a feeding means for feeding the shell, and the heating temperature in the heating means is 240 to 350 ° C.
 本発明によれば、バイオマスとしてパームカーネルシェルを使用し、粉砕が容易で、粉砕エネルギーが少なく、かつハイカロリーである固体燃料を得ることができる。また、発塵性がないため、空気中に飛散することがなく、安全で環境汚染のおそれのない、固体燃料を得ることができる。
 なお、本発明の範囲外ではあるが、参考例としてパームカーネルシェルを加圧圧縮し、平板化したものを燃料として用いてもよい。
According to the present invention, it is possible to obtain a solid fuel which uses palm kernel shell as biomass, is easy to be crushed, has a small amount of crushing energy and is high in calories. In addition, since there is no dust generation property, solid fuel can be obtained which is safe and does not cause environmental pollution.
Although it is out of the scope of the present invention, a palm kernel shell may be pressure-compressed and flattened to be used as a fuel as a reference example.
表2に示す加熱処理温度とHGI相当数との関係を示すグラフである。It is a graph which shows the relationship between the heat processing temperature shown in Table 2, and HGI equivalent number. PKSの加熱処理固体のFT-IR分析結果を示すグラフである。It is a graph which shows the FT-IR analysis result of the heat processing solid of PKS. 木くずの加熱処理固体のFT-IR分析結果を示すグラフである。It is a graph which shows the FT-IR analysis result of the heat processing solid of wood waste. PKSおよび木くずの加熱処理固体のWI相当数と加熱処理温度との関係を示すグラフである。It is a graph which shows the relationship between the WI equivalent number of heat processing solid of PKS and wood waste and the heat processing temperature. PKSおよび木くずの加熱処理固体の粉化試験の結果を示すグラフである。It is a graph which shows the result of a pulverization test of heat processing solid of PKS and wood chips. PKSの粒子径と篩下積算の関係を示すグラフである。It is a graph which shows the particle diameter of PKS, and the relationship of under-sieve integration. 各種原料の元素組成比の比較を示す図である。It is a figure which shows the comparison of the elemental composition ratio of various raw materials. PKSおよび木くずの加熱処理温度とH/CおよびO/Cの値の変化を示すグラフである。It is a graph which shows the change of the heat processing temperature of PKS and wood waste, and the value of H / C and O / C. 空気中でのPKSと木くず、および石炭の熱重量分析を示すグラフである。It is a graph which shows thermogravimetric analysis of PKS and wood waste in the air, and coal. 2:4%、N2:96%中でのPKSと木くず、および石炭の熱重量分析を示すグラフである。 O 2: 4%, N 2 : PKS and wood chips in a 96% and is a graph showing the thermogravimetric analysis of coal. PKSの水中浸漬試験結果を示すグラフである。It is a graph which shows the underwater immersion test result of PKS. 木くずの水中浸漬試験結果を示すグラフである。It is a graph which shows the underwater immersion test result of wood chips. 図13(a)は加熱前のPKSの破断面の30倍のSEM写真であり、図13(b)は加熱前のPKSの破断面の200倍のSEM写真であり、図13(c)は加熱前のPKSの破断面の1000倍のSEM写真である。FIG. 13 (a) is a 30 × SEM picture of the fractured surface of PKS before heating, FIG. 13 (b) is a SEM picture of 200 × of the fractured surface of PKS before heating, and FIG. 13 (c) It is a 1000 times SEM photograph of the fractured surface of PKS before heating. 図14(a)は300℃で加熱処理したPKSの破断面の30倍のSEM写真であり、図14(b)は300℃で加熱処理したPKSの破断面の200倍のSEM写真であり、図14(c)は300℃で加熱処理したPKSの破断面の1000倍のSEM写真である。FIG. 14 (a) is a 30 × SEM picture of the fractured surface of PKS heat-treated at 300 ° C. FIG. 14 (b) is a 200 × SEM photograph of the fractured surface of PKS heat-treated at 300 ° C. FIG. 14 (c) is a SEM photograph at 1000 times the fracture surface of PKS heat-treated at 300 ° C.
 本発明の固体燃料を、その好ましい製造方法に基づいて説明する。
 本発明でバイオマスとして使用される「椰子の果実の種子から核油を搾油した後の殻」は、パームカーネルシェル(以下、PKSと略記することもある)と称されているものである。
 前記PKSは、含水率が40質量%以下のものが好ましく、含水率が15質量%以下のものがより好ましい。
The solid fuel of the present invention will be described based on its preferred production method.
The “shell after oiling a kernel oil from seeds of a fruit of a coconut palm” used as biomass in the present invention is referred to as palm kernel shell (hereinafter sometimes abbreviated as PKS).
The PKS preferably has a water content of 40% by mass or less, and more preferably a water content of 15% by mass or less.
 前記PKSの加熱処理は、空気の供給を制限もしくは遮断した状態または不活性ガス雰囲気で、220~400℃の温度、好ましくは240~350℃、より好ましくは296~350℃、特に好ましくは300~330℃の温度で行う、所謂、低温炭化処理である。ここで、本発明でいう温度とは、加熱処理固体の温度をいう。また、低温炭化とは、400℃以下の還元雰囲気下で行う有機固体の熱分解をいう。さらに、還元雰囲気とは、空気の供給を制限もしくは遮断した状態または不活性ガス雰囲気をいう。還元雰囲気(加熱処理雰囲気)の酸素濃度は、5容量%以下が好ましい。
 該加熱処理の温度が220℃未満であると、低温炭化を行なわない場合に比べて粉砕性が向上する。該加熱処理の温度が350℃を超えると、加熱処理後の固体収率が小さく、加熱処理時に損失エネルギーが多くなる傾向がある。また、296℃以上の場合、粉砕性が著しく向上する。
 該加熱処理に用いられる加熱装置は、バイオマスの炭化処理に従来より用いられている加熱装置を用いることができ、内熱式でも外熱式でもよく、また回分式でも連続式でもよい。具体的には、例えば、内熱式ロータリーキルン、外熱式ロータリーキルン、移動層式加熱装置、充填層式加熱装置などが挙げられる。
The heat treatment of the PKS is carried out at a temperature of 220 to 400 ° C., preferably 240 to 350 ° C., more preferably 296 to 350 ° C., particularly preferably 300 to 300 ° C. in a state where supply of air is restricted or shut off or an inert gas atmosphere. It is a so-called low temperature carbonization treatment performed at a temperature of 330 ° C. Here, the temperature referred to in the present invention means the temperature of the heat-treated solid. In addition, low temperature carbonization refers to thermal decomposition of an organic solid performed in a reducing atmosphere at 400 ° C. or less. Furthermore, the reducing atmosphere refers to a state in which the supply of air is restricted or shut off or an inert gas atmosphere. The oxygen concentration in the reducing atmosphere (heat treatment atmosphere) is preferably 5% by volume or less.
When the temperature of the heat treatment is less than 220 ° C., the crushability is improved as compared to the case where low temperature carbonization is not performed. When the temperature of the heat treatment exceeds 350 ° C., the solid yield after the heat treatment is small, and the energy loss at the heat treatment tends to be large. When the temperature is 296 ° C. or more, the crushability is significantly improved.
The heating device used for the heat treatment may be a heating device conventionally used for carbonization treatment of biomass, and may be an internal heating type, an external heating type, a batch type or a continuous type. Specifically, for example, an internal heating rotary kiln, an external heating rotary kiln, a moving bed heating apparatus, a packed bed heating apparatus and the like can be mentioned.
 昇温速度は、特に限定されるものではないが、大気温度から所望の加熱温度まで、通常、1~10℃/分とするとよく、1~5℃/分とするのがより好ましい。
 前記加熱処理の時間は、220~400℃の温度内に到達後、該温度内で、90分間以内が好ましく、50分間以内がより好ましい。加熱処理時間が長すぎると、加熱処理後の固体収率が小さくなり、固体への熱エネルギー回収率が低下するため、所望する固体燃料の性状に応じて昇温速度および加熱処理時間を適宜決定する。
The temperature raising rate is not particularly limited, but it is usually from 1 to 10 ° C./minute, preferably from 1 to 5 ° C./minute, from the ambient temperature to the desired heating temperature.
The heat treatment time is preferably within 90 minutes, more preferably within 50 minutes, after reaching a temperature of 220 to 400 ° C. If the heat treatment time is too long, the solid yield after heat treatment decreases and the heat energy recovery rate to solid decreases, so the temperature rise rate and heat treatment time are appropriately determined according to the desired properties of the solid fuel. Do.
 前記のPKSの加熱処理により、加熱処理固体として本発明の固体燃料と、気体成分として第1のガスとが得られる。
 第1のガスは、タールや揮発分を含有している。そこで、エネルギー損失の抑制の観点からも、第1のガスは、前記加熱装置から排出した後、燃焼装置に供給して第1のガス中のタールや揮発分を燃焼し、熱ガスとしての第2のガスを得た後、該第2のガスを前記加熱装置に戻し、PKSの加熱処理のためのエネルギーの一部として回収することが好ましい。燃焼装置における第1のガスの燃焼温度は、好ましくは500~1,200℃、より好ましくは850~1,000℃である。
 第1のガスを燃焼するための燃焼装置としては、第1のガス中のタールや揮発分を燃焼し得るものであれば特に制限されるものではなく、耐火物内張ガス燃焼炉などの通常の燃焼装置が用いられるが、その他、後述する「本発明の固体燃料が使用される熱利用設備」により、本発明の固体燃料とともに第1のガスを燃焼させることもできる。また、第1のガスを冷却して、タールを分離することもできる。
By the heat treatment of the PKS, the solid fuel of the present invention as a heat-treated solid and the first gas as a gas component are obtained.
The first gas contains tar and volatile matter. Therefore, also from the viewpoint of suppression of energy loss, after the first gas is discharged from the heating device, the first gas is supplied to the combustion device to burn tar and volatile matter in the first gas, and After obtaining the second gas, it is preferable to return the second gas to the heating device and recover it as part of the energy for the heat treatment of the PKS. The combustion temperature of the first gas in the combustion apparatus is preferably 500 to 1,200 ° C., more preferably 850 to 1,000 ° C.
The combustion apparatus for burning the first gas is not particularly limited as long as it can burn tar or volatile matter in the first gas, and it is usually a refractory-lined gas combustion furnace or the like. The first gas may be burned together with the solid fuel of the present invention by the “heat utilization facility using the solid fuel of the present invention” described later. The first gas can also be cooled to separate the tar.
 前記のPKSの加熱処理により得られる本発明の固体燃料の性状について説明する。固体燃料の固定炭素は気乾ベースで25~60質量%、好ましくは35~60質量%、より好ましくは45~55質量%である。また、揮発分は気乾ベースで30~66質量%、好ましくは35~55質量%、より好ましくは35~45質量%である。さらに、灰分は気乾ベースで3~6質量%、好ましくは3~5質量%である。また、水分を6質量%以下、好ましくは5質量%以下含む。さらに、高位発熱量が気乾ベースで20~30MJ/kg、好ましくは24~30MJ/kg、より好ましくは25~30MJ/kgである。ここで、気乾ベースとは、日本工業規格JIS M8811に記載の気乾試料の調製方法によって測定した固体重量をいう。また、本発明の固体燃料の固定炭素、揮発分、灰分および水分の測定方法は、日本工業規格JIS M8812に記載の方法に依った。さらに、高位発熱量とは、総発熱量をいい、測定方法は日本工業規格JIS M8814に記載の方法に依った。該固体燃料に含まれる前記揮発分は、一環芳香族などである。 The properties of the solid fuel of the present invention obtained by the above-described PKS heat treatment will be described. The fixed carbon of the solid fuel is 25 to 60% by mass, preferably 35 to 60% by mass, more preferably 45 to 55% by mass on an air-dry basis. Further, the volatile content is 30 to 66% by mass, preferably 35 to 55% by mass, more preferably 35 to 45% by mass on an air-dry basis. Furthermore, the ash content is 3 to 6% by mass, preferably 3 to 5% by mass on an air-dry basis. In addition, the water content is 6% by mass or less, preferably 5% by mass or less. Furthermore, the higher calorific value is 20 to 30 MJ / kg, preferably 24 to 30 MJ / kg, more preferably 25 to 30 MJ / kg on an air-dried basis. Here, the air-dried base means a solid weight measured by the air-dried sample preparation method described in Japanese Industrial Standard JIS M 8811. Further, the method of measuring the fixed carbon, volatile matter, ash and water of the solid fuel according to the present invention was based on the method described in Japanese Industrial Standard JIS M8812. Furthermore, the high-order calorific value refers to the total calorific value, and the measurement method was according to the method described in Japanese Industrial Standard JIS M8814. The volatile matter contained in the solid fuel is partially aromatic or the like.
 本発明の固体燃料は、前記のPKSの加熱処理によって、生のPKSの粒子径とほぼ同等であり、粉化することはない。従って、低温炭化した後の固体燃料を輸送する際に発じんによる周辺の汚染もない。生のPKSの平均粒子径は、通常、5mm程度であり、本発明の固体燃料の平均粒子径も、ほぼ5mm程度である。ここで、本発明でいう平均粒子径とは、メジアン径をいい、JIS M8801に記載の粒度試験方法により求められる。 The solid fuel of the present invention is substantially equivalent to the particle size of raw PKS by the above-mentioned heat treatment of PKS, and is not pulverized. Therefore, when transporting solid fuel after low temperature carbonization, there is no contamination around the area due to dusting. The average particle size of raw PKS is usually about 5 mm, and the average particle size of the solid fuel of the present invention is also about 5 mm. Here, the average particle diameter referred to in the present invention means a median diameter, and can be obtained by the particle size test method described in JIS M8801.
 本発明の加熱処理によって得られた固体燃料は、加熱処理を行なう前のものに比べて粉砕性が向上する。本発明で得られた固体燃料のWI相当数は、0.7~2.5である。比較のために測定した一般的な燃料用の石炭では、WI相当数が1.0~2.0であったことから、固体燃料は石炭とほぼ同程度の粉砕性であると評価できる。ここで、WI相当数とは、粉砕性の相対評価をいい、ボールミルを使用した初期粉砕速度の測定により求められる。WI相当数の値が小さいほど、粉砕しやすいことを示す(後述)。
 また、本発明で得られた固体燃料は、HGI相当数が16~25であり、適度な硬さを保った固体であり、発塵性がない。ここで、HGI相当数とは、JIS M8801に記載のHGIと類似する測定方法により得られた粉砕性指数をいい、ボールミルを使用した一定回転数における粉砕度合により求められる。HGI相当数の値が大きいほど、粉砕しやすいことを示す(後述)。
 固体燃料の粉砕所要動力の点から、本発明においては、WI相当数は、2.5以下、HGI相当数は、15以上、特に16以上が好ましい範囲であると考えられる。WI相当数およびHGI相当数の評価方法の詳細については、以下の実施例でより詳細に説明する。
The solid fuel obtained by the heat treatment of the present invention has improved crushability compared to that before the heat treatment. The WI equivalent number of the solid fuel obtained by the present invention is 0.7 to 2.5. In the case of common fuel coals measured for comparison, the solid fuel is evaluated as having the same degree of grindability as coal because the WI equivalent number is 1.0 to 2.0. Here, the WI equivalent number refers to a relative evaluation of the grindability, and can be obtained by measurement of an initial grinding rate using a ball mill. It indicates that the smaller the value of the WI equivalent number, the easier the pulverization (described later).
In addition, the solid fuel obtained in the present invention has a HGI equivalent number of 16 to 25, is a solid maintaining an appropriate hardness, and has no dusting property. Here, the HGI equivalent number refers to the grindability index obtained by the measurement method similar to HGI described in JIS M8801, and is determined by the degree of grinding at a constant rotation number using a ball mill. The larger the value of the HGI equivalent number, the easier the pulverization is shown (described later).
In the present invention, the equivalent WI number is 2.5 or less, and the equivalent HGI number is preferably 15 or more, particularly preferably 16 or more, from the viewpoint of the required power for pulverizing solid fuel. The details of the evaluation method of the WI equivalent number and the HGI equivalent number will be described in more detail in the following examples.
 本発明の固体燃料は、熱利用設備に供給して燃焼させることにより、熱利用設備のエネルギー源として使用される。特に、本発明の固体燃料は、石炭の一部代替燃料として、熱利用設備に供給して燃焼させることが好ましい。
 本発明の固体燃料が使用される熱利用設備としては、制限されるものではなく、既存の熱利用設備を使用することができ、例えば、微粉炭焚きボイラ、セメントクリンカ製造設備のロータリーキルン、セメントクリンカ製造設備の仮焼炉、製鉄設備のコークズ炉、高炉などが挙げられ、これらの中でも、微粉炭焚きボイラ、セメントクリンカ製造設備のロータリーキルン、仮焼炉などが好ましい。
The solid fuel of the present invention is used as an energy source of heat utilization equipment by supplying it to the heat utilization equipment and burning it. In particular, the solid fuel of the present invention is preferably supplied to a heat utilization facility and burned as a partial replacement fuel for coal.
The heat utilization equipment in which the solid fuel of the present invention is used is not limited, and the existing heat utilization equipment can be used, for example, pulverized coal firing boiler, rotary kiln of cement clinker production equipment, cement clinker A calcining furnace for manufacturing equipment, a coke furnace for iron making equipment, a blast furnace, etc. may be mentioned, and among them, a pulverized coal burning boiler, a rotary kiln for cement clinker manufacturing equipment, a calcining furnace and the like are preferable.
 本発明の固体燃料は、燃焼効率の向上などの点から、粉砕した後、前記熱利用設備に供給しても良い。この粉砕の程度は、固体燃料が供給される熱利用設備にもよるが、通常、平均粒子径が1,000μm以下となるように粉砕するとよく、平均粒子径が750μm以下となるように粉砕するのがより好ましい。
 本発明の固体燃料は、粉砕性に優れており、竪型ローラーミル、チューブミル、ハンマーミル、ファン型ミルなどで容易に粉砕することができ、また石炭火力発電設備に備えられている石炭粉砕機で、石炭とともに容易に微粉砕化することもできる。また、固体燃料を石炭とともに熱利用設備に供給して燃焼することができる。
The solid fuel of the present invention may be pulverized and then supplied to the heat utilization facility from the viewpoint of improving combustion efficiency and the like. The degree of this pulverization depends on the heat utilization equipment to which the solid fuel is supplied, but usually, it is preferable to pulverize so that the average particle diameter is 1,000 μm or less, and pulverize so that the average particle diameter is 750 μm or less Is more preferable.
The solid fuel of the present invention has excellent crushability and can be easily crushed by a vertical roller mill, a tube mill, a hammer mill, a fan type mill, etc., and is also provided in a coal-fired power plant. Can be easily pulverized with the coal. Also, solid fuel can be supplied to a heat utilization facility with coal and burned.
 以下、実施例および比較例を挙げ、本発明を具体的に説明するが、本発明は、これらの実施例および比較例により何ら制限されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited at all by these examples and comparative examples.
[固体燃料のWI相当数の測定]
 WI相当数は,固体燃料の単位重量当たりの粉砕動力に比例した数値であり、この値が小さい方が、粉砕動力が小さいことを表す。WI相当数の測定方法は、次のとおりである。
 固体のうち、4.75mm篩下をWI相当数測定用試料とした。この試料480gを直径36.5mmの鋼製球43個、直径30.2mmの鋼製球67個、直径25.4mmの鋼製球10個、直径19.1mmの鋼製球71個、直径15.9mmの鋼製球94個を投入したボールミルで、毎分70回転の回転速度で、1分間、2分間、4分間、10分間粉砕して、目開き150μmの標準ふるいを用いてそれぞれの粉砕時間における、ふるい下重量を測定し、その質量分率を算出した。つぎに、上記で求めた質量分率と粉砕時間との関係を図にプロットして、その傾きから粉砕速度定数kxc(min-1)を求め、次式によって、WI相当数を求めた。
WI相当数=Xc0.5・(kxc・Ws)-0.82
Xc:標準ふるいの目開き=150(μm)
kxc:粉砕速度定数(min-1
Ws:480(g)
[Measurement of WI equivalent number of solid fuel]
The WI equivalent number is a value proportional to the pulverizing power per unit weight of the solid fuel, and the smaller this value is, the smaller the pulverizing power is. The measurement method of WI equivalent number is as follows.
Among solids, a 4.75 mm sieve was used as a sample for measurement of equivalent number of WI. This sample of 480 g comprises 43 steel balls having a diameter of 36.5 mm, 67 steel balls having a diameter of 30.2 mm, 10 steel balls having a diameter of 25.4 mm, 71 steel balls having a diameter of 19.1 mm, and a diameter of 15 In a ball mill containing 94 9 mm steel balls, it is ground at a rotation speed of 70 revolutions per minute for 1 minute, 2 minutes, 4 minutes, 10 minutes, and each milled using a standard sieve with an opening of 150 μm. The weight under the sieve in time was measured, and the mass fraction was calculated. Next, the relationship between the mass fraction determined above and the grinding time is plotted in the figure, the grinding rate constant kxc (min −1 ) is determined from the slope, and the WI equivalent number is determined by the following equation.
Equivalent number of WI = Xc 0.5 · (kxc · Ws) -0.82
Xc: Standard sieve opening = 150 (μm)
kxc: Grinding rate constant (min -1 )
Ws: 480 (g)
[固体燃料のHGI相当数の測定]
 固体燃料のHGI相当数は、下記の方法により測定したものである。HGI相当数は固体燃料の粉砕能を評価する数値であり、この数値が大きいほうが粉砕性が良い。HGI相当数の測定方法は、次のとおりである。
 固体をカッターミルで粉砕し、500μm篩上、1,000μm篩下の試料をHGI相当数測定用試料とした。この測定用試料50gを直径25.4mmの鋼製球を8個投入したボールミルで毎分15~20回転の速度で、60回転運転し、得られた粉砕試料を75μm篩を用いて篩下の試料重量(wg)を測定した。このようにして得られた数値wを用いて、次式によって、HGI相当数を求めた。
HGI相当数=13+6.93×w
w:75μm篩下重量(g)
[Measurement of HGI equivalent number of solid fuel]
The HGI equivalent number of solid fuel is measured by the following method. The HGI equivalent number is a numerical value for evaluating the grinding ability of solid fuel, and the larger the numerical value, the better the grinding property. The measurement method of the HGI equivalent number is as follows.
The solid was crushed by a cutter mill, and a sample under a 1,000 μm sieve was used as a sample for measuring HGI equivalent number on a 500 μm sieve. A ball mill containing 50 g of this sample for measurement of 50 g of steel balls with a diameter of 25.4 mm was operated at a speed of 15 to 20 revolutions per minute at 60 revolutions, and the ground sample obtained was sieved using a 75 μm sieve. The sample weight (wg) was measured. Using the numerical value w obtained in this manner, the HGI equivalent number was determined by the following equation.
HGI equivalent number = 13 + 6.93 x w
w: weight under 75 μm sieve (g)
[加熱処理後の固体収率]
 加熱処理後の固体収率は次式によって求めた。
Y=W1×(1-h1/100)/{W0×(1-h0/100)}×100
Y:固体収率(質量%)
W1:加熱処理後の固体重量(g)
h1:加熱処理後固体の水分割合(質量%)
W0:加熱処理前の固体重量(g)
h0:加熱処理前固体の水分割合(質量%)
[Solid yield after heat treatment]
The solid yield after the heat treatment was determined by the following equation.
Y = W1 × (1−h1 / 100) / {W0 × (1−h0 / 100)} × 100
Y: solid yield (mass%)
W1: Solid weight after heat treatment (g)
h1: Moisture content of solid after heat treatment (mass%)
W0: Solid weight before heat treatment (g)
h0: Moisture content of solid before heat treatment (mass%)
[試料の高位発熱量]
 高位発熱量はJIS M8814によって求めた。
[High-order calorific value of sample]
The high calorific value was determined according to JIS M8814.
[エネルギー固定化率の算定]
 上記加熱処理後の固体収率と、加熱処理前後の試料の高位発熱量とから、エネルギー固定化率を算出した。この値が大きい方が、加熱処理固体として利用できるエネルギーが大きいことを表す。エネルギー固定化率は、次式によって求めた。本発明においては、エネルギーの有効利用の観点から、エネルギー固定化率は、65%以上が許容範囲であると考えられる。
 Ye=H1×W1×(1-h1/100)/{H0×W0×(1-h0/100)}×100
  Ye:エネルギー固定化率(%)
  H1:加熱処理後の固体高位発熱量(MJ/kg)
  W1:加熱処理後の固体重量(g)
  h1:加熱処理後固体の水分割合(質量%)
  H0:加熱処理前の固体高位発熱量(MJ/kg)
  W0:加熱処理前の固体重量(g)
  h0:加熱処理前固体の水分割合(質量%)
[Calculation of energy fixation rate]
The energy immobilization rate was calculated from the solid yield after the heat treatment and the high calorific value of the sample before and after the heat treatment. The larger the value, the larger the energy available as the heat-treated solid. The energy fixation rate was determined by the following equation. In the present invention, from the viewpoint of effective use of energy, the energy fixation rate is considered to be within the allowable range of 65% or more.
Ye = H1 × W1 × (1−h1 / 100) / {H0 × W0 × (1−h0 / 100)} × 100
Ye: Energy fixation rate (%)
H1: Solid high-order calorific value (MJ / kg) after heat treatment
W1: Solid weight after heat treatment (g)
h1: Moisture content of solid after heat treatment (mass%)
H0: Solid high-order calorific value (MJ / kg) before heat treatment
W0: Solid weight before heat treatment (g)
h0: Moisture content of solid before heat treatment (mass%)
〔実施例1〕
 アブラヤシの果実の種子から核油を搾油した後の殻(PKS)を用いた。用いたPKSはインドネシア産アブラヤシの殻で、元素組成は次のとおりである。
炭素(無水ベース%) 52.1
水素(無水ベース%) 4.8
窒素(無水ベース%) 0.4
全硫黄(無水ベース%) 0.03
塩素(無水ベース%) 0.007
また、工業分析値は次の通りである。
水分(気乾ベース%) 9.0
灰分(気乾ベース%) 2.4
揮発分(気乾ベース%) 70.7
固定炭素(気乾ベース%) 17.9
HGI相当数は14、WI相当数は11である。
Example 1
Shells (PKS) were used after oil extraction of the kernel oil from the seeds of oil palm fruits. The PKS used is a shell of Indonesian oil palm, and the elemental composition is as follows.
Carbon (% on anhydrous basis) 52.1
Hydrogen (% on anhydrous basis) 4.8
Nitrogen (% anhydrous basis) 0.4
Total sulfur (% on anhydrous basis) 0.03
Chlorine (% anhydrous basis) 0.007
The industrial analysis values are as follows.
Moisture (air dry basis%) 9.0
Ash (air dry basis%) 2.4
Volatile matter (air-dry basis%) 70.7
Fixed carbon (air dry basis%) 17.9
The HGI equivalent number is 14, and the WI equivalent number is 11.
 PKSを天日乾燥させ、含水率12質量%とし、粒子径1~16mm、平均粒子径が5mmのものを使用した。
 前記PKS4kgを、内径600mm×長さ500mmの試料ケースに投入し、試料ケースごと外熱式ロータリーキルンに装着して、不活性ガスである窒素ガスを流通させながら、大気温度から320℃まで昇温速度2℃/分で加熱した。なお、基準とする加熱温度としては、試料ケースの軸中心中央部の気相雰囲気の温度とした。尚、ロータリーキルンにおいては、前記気相雰囲気の温度と、加熱処理固体の温度とは一致している。加熱温度が320℃に到達した後、320℃の温度で1分間維持し、その後すみやかに160℃まで冷却し、その後、試料ケースをロータリーキルンから取り出して大気中に試料を取り出し、室温まで冷却させた。このようにして加熱処理固体としての固体燃料と第1のガスとを製造した。固体燃料とともに製造された第1のガスは、PKSを加熱処理中、燃焼装置に連続的に供給して燃焼し、第2のガスを得た。
 固体燃料の化学組成、平均粒子径、高位発熱量、HGI相当数、WI相当数、固体収率、エネルギー固定化率を表1に示す。表1には、PKSの含水率および平均粒子径ならびにPKSの加熱処理条件(加熱処理温度および加熱処理時間)も併記した。また、表1には加熱処理前の生のPKS(未加熱処理固体)の各物性も合わせて記載した。HGI相当数は、24となり生のPKSと比べて大幅に大きくなった。また、WI相当数は、生のPKSの0.1倍以下となり、粉砕性が良好となった。また、加熱処理固体の粒子径分布は生のPKSとほぼ同じであり、低温炭化によって、固体粒子が粉化することはなかった。
The PKS was dried on the sun to a moisture content of 12% by mass, and used was one having a particle size of 1 to 16 mm and an average particle size of 5 mm.
4 kg of the PKS is placed in a sample case with an inner diameter of 600 mm and a length of 500 mm, and the sample case is attached to an external heating rotary kiln to raise temperature from ambient temperature to 320 ° C. while circulating nitrogen gas as inert gas. Heated at 2 ° C./min. The reference heating temperature was the temperature of the gas phase atmosphere at the center of the axial center of the sample case. In the rotary kiln, the temperature of the gas phase atmosphere is the same as the temperature of the heat-treated solid. After the heating temperature reached 320 ° C., the temperature was maintained at 320 ° C. for 1 minute, and then it was rapidly cooled to 160 ° C. After that, the sample case was taken out of the rotary kiln and the sample was taken out to the air and allowed to cool to room temperature . Thus, a solid fuel as a heat-treated solid and a first gas were produced. The first gas produced together with the solid fuel was continuously supplied to the combustion apparatus and burned during the heat treatment of PKS to obtain a second gas.
The chemical composition, the average particle size, the higher calorific value, the HGI equivalent number, the WI equivalent number, the solid yield, and the energy immobilization rate of solid fuel are shown in Table 1. Table 1 also shows the moisture content and average particle size of PKS and the heat treatment conditions (heat treatment temperature and heat treatment time) of PKS. Table 1 also shows the physical properties of raw PKS (non-heat-treated solid) before heat treatment. The HGI equivalent number is 24, which is much larger than the raw PKS. In addition, the equivalent number of WI was 0.1 times or less of that of raw PKS, and the crushability was improved. In addition, the particle size distribution of the heat-treated solid was almost the same as that of the raw PKS, and the low temperature carbonization did not powder the solid particles.
〔実施例2〕
 実施例1において、PKSの加熱処理温度を240℃にした以外は、実施例1と同様に実施し、加熱処理固体としての固体燃料と第1のガスとを製造した。
 固体燃料の化学組成、平均粒子径、高位発熱量、HGI相当数、WI相当数、PKSの含水率および平均粒子径ならびにPKSの加熱処理条件を表1に示す。HGI相当数は、16となり生のPKSと比べて大きくなった。WI相当数は、生のPKSの約0.2倍となり、粉砕性が良好となった。また、加熱処理固体の粒子径分布は生のPKSとほぼ同じであり、低温炭化によって、固体粒子が粉化することはなかった。
Example 2
The same procedure as in Example 1 was carried out except that the heat treatment temperature of PKS was changed to 240 ° C. in Example 1, and a solid fuel as a heat-treated solid and a first gas were produced.
The chemical composition of solid fuel, average particle size, higher calorific value, equivalent number of HGI, equivalent number of WI, moisture content and average particle size of PKS, and heat treatment condition of PKS are shown in Table 1. The HGI equivalent number is 16 and is larger than the raw PKS. The equivalent number of WI was about 0.2 times that of raw PKS, and the crushability was improved. In addition, the particle size distribution of the heat-treated solid was almost the same as that of the raw PKS, and the low temperature carbonization did not powder the solid particles.
〔実施例3〕
 実施例1において、PKSの加熱処理温度を350℃にした以外は、実施例1と同様に実施し、加熱処理固体としての固体燃料と第1のガスとを製造した。
 固体燃料の化学組成、平均粒子径、高位発熱量、HGI相当数、WI相当数、PKSの含水率および平均粒子径ならびにPKSの加熱処理条件を表1に示す。HGI相当数は、23となり生のPKSから大幅に上昇した。さらに、WI相当数は、生のPKSの約0.1倍となり、粉砕性が良好となった。また、加熱処理固体の粒子径分布は生のPKSとほぼ同じであり、低温炭化によって、固体粒子が粉化することはなかった。
[Example 3]
The same procedure as in Example 1 was carried out except that the heat treatment temperature of PKS was changed to 350 ° C. in Example 1, to produce a solid fuel as a heat-treated solid and a first gas.
The chemical composition of solid fuel, average particle size, higher calorific value, equivalent number of HGI, equivalent number of WI, moisture content and average particle size of PKS, and heat treatment condition of PKS are shown in Table 1. The HGI equivalent number was 23 and significantly increased from the raw PKS. Furthermore, the WI equivalent number was about 0.1 times that of raw PKS, and the crushability was improved. In addition, the particle size distribution of the heat-treated solid was almost the same as that of the raw PKS, and the low temperature carbonization did not powder the solid particles.
〔参考例1〕
 実施例1において、PKSの加熱処理温度を220℃にした以外は、実施例1と同様に実施し、加熱処理固体としての固体燃料と第1のガスとを製造した。
 固体燃料の平均粒子径、HGI相当数、PKSの含水率および平均粒子径ならびにPKSの加熱処理条件を表1に示す。HGI相当数は15であり、生のPKSと比べて粉砕性が若干向上する程度であった。また、WI相当数は、石炭と比べて3倍程度であり、粉砕性は若干向上する程度であった。
[Reference Example 1]
The same procedure as in Example 1 was carried out except that the heat treatment temperature of PKS in Example 1 was 220 ° C., and a solid fuel as a heat-treated solid and a first gas were produced.
The average particle size of the solid fuel, the HGI equivalent number, the water content and average particle size of PKS, and the heat treatment conditions of PKS are shown in Table 1. The HGI equivalent number was 15, and the crushability was slightly improved as compared to the raw PKS. In addition, the WI equivalent number was about 3 times that of coal, and the crushability was slightly improved.
〔参考例2〕
 実施例1において、PKSの加熱処理温度を400℃にした以外は、実施例1と同様に実施し、加熱処理固体としての固体燃料と第1のガスとを製造した。
 固体燃料の化学組成、平均粒子径、高位発熱量、HGI相当数、WI相当数、PKSの含水率および平均粒子径ならびにPKSの加熱処理条件を表1に示す。HGI相当数、WI相当数ともに、粉砕性の改善が見られた。しかし、エネルギー固定化率は60%程度まで低下した。
Reference Example 2
The same procedure as in Example 1 was carried out except that the heat treatment temperature of PKS was set to 400 ° C. in Example 1, to produce a solid fuel as a heat-treated solid and a first gas.
The chemical composition of solid fuel, average particle size, higher calorific value, equivalent number of HGI, equivalent number of WI, moisture content and average particle size of PKS, and heat treatment condition of PKS are shown in Table 1. The grindability was improved for both the HGI equivalent number and the WI equivalent number. However, the energy fixation rate dropped to about 60%.
[HGIによる粉砕性の詳細評価]
 上記の結果を踏まえて、加熱温度と粉砕性について、より詳細な検討を行なった。
[実施例6~16]
 加熱処理温度を表2に示すように変えた以外は、実施例1と同様な方法により加熱処理を行なった。その結果を表2および図1に示す。加熱処理温度が296℃からHGI相当数が上昇し、300℃以上においてHGI相当数が急激に上昇することが明らかとなった。これは、粉砕性が大幅に向上することを意味する。また、固体燃料の粒子が粉化することはなかった。
[Detailed evaluation of grindability by HGI]
Based on the above results, the heating temperature and the crushability were examined in more detail.
[Examples 6 to 16]
The heat treatment was performed in the same manner as in Example 1 except that the heat treatment temperature was changed as shown in Table 2. The results are shown in Table 2 and FIG. It was revealed that the heat treatment temperature increased from 296 ° C. to the equivalent number of HGI, and the heat treatment equivalent number rapidly increased at 300 ° C. or higher. This means that the crushability is significantly improved. In addition, the particles of solid fuel were not pulverized.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 さらに、PKSの加熱処理固体の性状を調べるために下記の各種試験を行った。各種試験において、PKSとしては実施例1で用いたものと同じPKSを用いた。PKSまたは木くずの加熱処理は、特に示さない限り、加熱温度以外は実施例1と同様な方法により行った。 Furthermore, the following various tests were conducted to determine the properties of the heat-treated solid of PKS. In various tests, the same PKS as used in Example 1 was used as PKS. The heat treatment of PKS or wood waste was carried out in the same manner as in Example 1 except the heating temperature, unless otherwise indicated.
 [セルロースまたはリグニンの残留量と加熱処理固体の性状との相関]
 (セルロース残留量との相関)
 PKSと木くず(ヒノキ)の加熱処理固体の比較を行った。加熱処理固体としては、240℃、260℃、300℃で加熱したものを用いた。図2および図3は、加熱処理固体のFT-IR分析結果である(デジラボ社製、型番:FTS-7000e、一回反射法(ダイヤモンド使用))。図2はPKSの場合を示し、図3は木くずの場合を示す。図4は加熱処理固体のWI相当数と加熱処理温度との関係を示す図である。
 なお、表3に、加熱前の生のPKS、生の木くず(ヒノキ)におけるセルロース、リグニンの重量組成を示す。表3から、生のPKSは生の木くずと比べてリグニンの割合が多く、セルロース(ヘミセルロースを含む)の割合が低いことがわかる。なお、ヘミセルロースはセルロース同士を接続する繊維状物質である。
[Correlation between residual amount of cellulose or lignin and properties of heat-treated solid]
(Correlation with residual cellulose)
A comparison was made between PKS and wood treated with heat-treated wood (Japanese cypress). As a heat processing solid, what was heated at 240 ° C, 260 ° C, and 300 ° C was used. FIGS. 2 and 3 show the results of FT-IR analysis of the heat-treated solid (manufactured by DigiLab, model number: FTS-7000e, single reflection method (using diamond)). FIG. 2 shows the case of PKS and FIG. 3 shows the case of wood waste. FIG. 4 is a diagram showing the relationship between the equivalent number of WI and the heat treatment temperature of the heat-treated solid.
Table 3 shows the weight composition of raw PKS before heating, cellulose in raw wood waste (Japanese cypress) and lignin. It can be seen from Table 3 that raw PKS has a high proportion of lignin and a low proportion of cellulose (including hemicellulose) as compared to raw wood waste. Hemicellulose is a fibrous substance which connects celluloses.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 リグニンはO-CH3結合(2850cm-1付近)、およびC=C結合(1600cm-1付近)を有する一方、セルロースはこの2種類の結合を有しない。一方、O-H結合(3400cm-1付近)は主にセルロースが有する結合であるため、加熱前後における上記3種の結合の量を比較することにより、リグニンおよびセルロースの分解の程度を推察することが可能である。 Lignin while having O-CH 3 bond (2850 cm around -1), and C = C bond (1600 cm around -1), cellulose does not have the two types of bonds. On the other hand, since the OH bond (around 3400 cm -1 ) is mainly a bond possessed by cellulose, the degree of degradation of lignin and cellulose should be inferred by comparing the amounts of the above three types of bonds before and after heating. Is possible.
 図2から明かなように、PKSの加熱処理固体では、O-CH3結合、C=C結合はともに加熱によって減少するものの、完全に分解されることなく残留している。また、図3から明かなように、木くずの加熱処理固体では、C=C結合はほとんど減少していない。したがって、PKS、木くずともに、少なくとも240℃~300℃の加熱後であってもリグニンが残留していると推察される。 As is clear from FIG. 2, in the heat-treated solid of PKS, the O—CH 3 bond and the C = C bond both decrease by heating but remain without being completely decomposed. Also, as is clear from FIG. 3, CCC bonds are hardly reduced in the heat-treated solid of wood waste. Therefore, it is surmised that lignin remains even after heating at least 240 ° C. to 300 ° C. for both PKS and wood waste.
 一方O-H結合については、図2から明かなように、PKSでは少なくとも240℃の加熱によって大きく減少しているが、図3から明かなように、木くずでは300℃の加熱によってもあまり減少していない。したがって、240℃~300℃でPKS、木くずを加熱した場合、リグニンはともに残留する一方、生のPKS中のセルロースは大きく分解されるが、生の木くず中のセルロースはほとんど分解されないと推察される。 On the other hand, for OH bond, PKS is greatly reduced by heating at least 240 ° C as shown in FIG. 2, but as is clear from FIG. 3, wood waste is also reduced significantly by 300 ° C. Not. Therefore, when PKS and wood waste are heated at 240 ° C to 300 ° C, it is assumed that while lignin remains while both cellulose in raw PKS is largely decomposed, cellulose in raw wood waste is hardly decomposed. .
 これにより、相対的に残存セルロースが少ないPKSの加熱処理固体は、セルロースの残存量が大きい木くずの加熱処理固体よりも粉砕性に優れる。図4からも、PKSの加熱処理固体は一部を除いて相対的に木くずの加熱処理固体よりもWI相当数が低く、粉砕性に優れていることがわかる。 As a result, the heat-treated solid of PKS having a relatively small amount of residual cellulose is superior in grindability to the heat-treated solid of wood waste having a large amount of residual cellulose. It can also be seen from FIG. 4 that the heat-treated solid of PKS has a relatively lower WI equivalent number than that of the heat-treated solid of wood chips, with the exception of a part of the heat-treated solid.
 (リグニン残留量との相関)
 生のPKS、生の木くずの強度はセルロースと、セルロース同士を接着するリグニンによって保持されている。ここで、加熱後のリグニン残存量が多ければ、加熱によりセルロースが分解された場合であっても残存リグニンによって加熱処理固体の強度が保持されるため、加熱処理固体の強度が大きく低減することがない。
(Correlation with lignin residue)
The strength of raw PKS, raw wood waste is maintained by cellulose and lignin bonding cellulose to each other. Here, if the residual amount of lignin after heating is large, even if the cellulose is decomposed by heating, the strength of the heat-treated solid is maintained by the remaining lignin, so the strength of the heat-treated solid is greatly reduced. Absent.
 上記表3から明らかなように、生のPKSは生の木くずと比べてリグニンの割合が多く、そのため加熱処理固体においても、PKSは木くずと比べて残存リグニンが相対的に多い。したがって、PKSの加熱処理固体は木くずの加熱処理固体と比べて相対的に強度が高く、輸送中に粉化するおそれが低い。 As apparent from Table 3 above, raw PKS contains a large proportion of lignin as compared to raw wood waste, so that even in the heat-treated solid, PKS has relatively more residual lignin compared to wood waste. Therefore, the heat-treated solid of PKS is relatively strong compared to the heat-treated solid of wood waste, and is less likely to be pulverized during transportation.
 図5は、PKSおよび木くずの加熱処理固体の粉化試験結果を示すものである。粉化試験は、木くずおよびPKSのうち1mm以上の試料をポリエチレン袋に1kg入れ、3.1mの高さから10回落下させた後、1mm篩下粒子の割合を測定することで行った。図5から、PKSの加熱処理固体は、同一温度における木くずの加熱処理固体と比べて1mm以下の粒子が少なく、粉化しにくいと判断される。したがって、木くずの加熱処理固体と比べて残存リグニンが相対的に多いPKSの加熱処理固体は、輸送時に粉化するおそれが少なく、ハンドリング性に優れている。 FIG. 5 shows the powdering test results of heat-treated solids of PKS and wood waste. The powdering test was carried out by putting 1 kg or more of wood waste and PKS samples of 1 mm or more in a polyethylene bag, dropping 10 kg from a height of 3.1 m, and then measuring the ratio of 1 mm undersize particles. From FIG. 5, it is judged that the heat-treated solid of PKS has less particles of 1 mm or less compared to the heat-treated solid of wood waste at the same temperature, and is hard to be pulverized. Therefore, the heat-treated solid of PKS having a relatively large amount of residual lignin compared to the heat-treated solid of wood waste is less likely to be pulverized during transportation, and is excellent in the handling property.
 図6は、PKSの粒子径と篩下積算の関係を示すグラフである。図6では生のPKS、290℃、300℃、310℃、320℃、330℃の各温度における炭化品のグラフを示す。290℃~330℃炭化品のいずれも生のPKSと大きな差異はなく、発塵性は少ないことが示される。 FIG. 6 is a graph showing the relationship between the particle size of PKS and the undersize integration. In FIG. 6, the raw PKS, the graph of carbonized goods in each temperature of 290 degreeC, 300 degreeC, 310 degreeC, 320 degreeC, and 330 degreeC is shown. None of the 290.degree. C. to 330.degree. C. carbonized products has a large difference from the raw PKS, indicating that the dusting property is small.
 (PKS加熱処理固体と石炭との比較)
 表4は各種原料の元素分析および工業分析の結果であり、図7は表4に基づく各種原料の元素組成比の比較(炭素Cに対する水素Hの比=H/C、炭素Cに対する酸素Oの比=O/C)を示す図である。セルロース、ヘミセルロースはH/C、O/Cの値がともに大きく、リグニンはともに小さい。また、石炭はリグニンよりもH/C、O/Cの値がさらに小さい(図7参照)。
(Comparison between PKS heat-treated solid and coal)
Table 4 shows the results of elemental analysis and industrial analysis of various raw materials. FIG. 7 is a comparison of elemental composition ratios of various raw materials based on Table 4 (ratio of hydrogen H to carbon C = H / C, oxygen O to carbon C) It is a figure which shows ratio = O / C. Both cellulose and hemicellulose have high H / C and O / C values, and both lignin is low. In addition, coal has smaller H / C and O / C values than lignin (see FIG. 7).

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 加熱温度の上昇に伴ってPKS加熱処理固体のCは増加、H、Oはともに減少するため、H/C、O/Cの値も加熱温度が高いほど小さくなる。表4から明らかなように、生のPKSを240~280℃で加熱した加熱処理固体はH/C、O/Cの値が減少し、リグニンのH/C、O/Cの値に近接した。これに対し、木くずの240℃、260℃加熱処理固体におけるH/C、O/Cの値は、PKSのものほど減少しなかった。これは、PKSでは、加熱によりセルロースの分解が進み加熱処理固体に残存するリグニンの割合が増加する一方、木くずは当初原料(生の木くず)に含まれるリグニンが少なく、残存するリグニン量もPKSに比べて低いためと推察される。 Since C of PKS heat-treated solid increases and H and O both decrease as the heating temperature rises, the values of H / C and O / C also decrease as the heating temperature increases. As apparent from Table 4, the heat-treated solid heated with raw PKS at 240 to 280 ° C. decreased in H / C and O / C values and was close to the lignin H / C and O / C values. . On the other hand, the values of H / C and O / C in the woods 240 ° C. and 260 ° C. heat-treated solid did not decrease as much as those of PKS. This is because in PKS, heating causes decomposition of cellulose to increase the proportion of lignin remaining in the heat-treated solid, while wood waste initially contains less lignin in the raw material (raw wood waste), and the amount of remaining lignin is also PKS It is guessed that it is lower than it is.
 また、300~320℃におけるPKS加熱処理固体のH/C、O/Cの値は、ともにリグニンのH/C、O/Cの値よりもさらに減少して石炭のH/C、O/Cの値に近接した。さらに工業分析値における揮発分、固定炭素、高位発熱量の値も石炭に近接し、300~320℃におけるPKS加熱処理固体は石炭に近い燃料となった。これに対し、木くずの300℃加熱処理固体におけるH/C、O/Cの値は、PKSの240~280℃加熱処理固体とほぼ同一の値でしかなかった。また元素分析における炭素分も、同じ300℃加熱処理固体で比較した場合、PKSのほうが多かった。したがって、同一温度で加熱した場合、木くずよりもPKSのほうがより石炭に近く、燃料として良好な特性を有する。 Also, the H / C and O / C values of PKS heat-treated solid at 300 to 320 ° C. both decrease further than the lignin H / C and O / C values, and coal H / C and O / C Close to the value of. Furthermore, volatiles, fixed carbon, and higher calorific value values in industrial analysis were also close to coal, and PKS heat-treated solid at 300 to 320 ° C. became a fuel close to coal. On the other hand, the values of H / C and O / C in the 300 ° C. heat-treated solid of wood waste were only about the same value as the 240-280 ° C. heat-treated solid of PKS. The carbon content in elemental analysis was also higher in PKS when compared at the same 300 ° C. heat-treated solid. Therefore, when heated at the same temperature, PKS is closer to coal than wood waste and has good characteristics as a fuel.
 また、図8はPKSおよび木くずの加熱処理温度とH/C、O/Cの値の変化を示すグラフである。PKS加熱処理固体におけるH/C、O/Cの値は、240~280℃ではほぼ同じ値であるが、280~300℃で急減し、それ以降の300℃~320℃では大きく変化しない。同様に、図7においてもPKSの240℃~280℃加熱処理固体はほぼ同様のH/C、O/Cの値を示すが(領域D1)、加熱温度が280℃から300℃に上昇するとH/C、O/Cの値が急減し、300℃、320℃でほぼ同じ値となる(領域D2)。 Moreover, FIG. 8 is a graph which shows the change of the heat processing temperature of PKS and wood chips, and the value of H / C, O / C. The values of H / C and O / C in the PKS heat-treated solid are substantially the same at 240 to 280 ° C., but decrease sharply at 280 to 300 ° C. and do not change significantly at 300 ° C. to 320 ° C. thereafter. Similarly, in FIG. 7, the heat-treated solid at 240 ° C. to 280 ° C. for PKS exhibits almost the same H / C and O / C values (region D1), but when the heating temperature rises from 280 ° C. to 300 ° C. The values of / C and O / C sharply decrease and become approximately the same at 300 ° C. and 320 ° C. (region D2).
 さらに表2から明らかなように、PKSの300~320℃の加熱処理固体(図7の領域D2に相当)は、240~280℃の加熱処理固体(図7の領域D1に相当)と比べてHGI相当数が向上している。図7における領域D1,D2の相対位置を比較すると、領域D1はセルロースおよびヘミセルロースに近く、領域D2は石炭に近い。したがって300~320℃の加熱処理を行うことにより、PKSはより石炭に近接し、粉砕性が向上するものと推察される。 Further, as apparent from Table 2, the heat-treated solid of PKS at 300 to 320 ° C. (corresponding to area D2 in FIG. 7) is compared to the heat-treated solid at 240 to 280 ° C. (corresponding to area D1 in FIG. 7). The HGI equivalent number has improved. When the relative positions of the regions D1 and D2 in FIG. 7 are compared, the region D1 is close to cellulose and hemicellulose, and the region D2 is close to coal. Therefore, it is surmised that PKS becomes closer to coal by heat treatment at 300 to 320 ° C., and the grindability is improved.
 このように、PKSを300℃付近で加熱することにより、加熱処理固体のH/C、O/Cの値が領域D1からD2に遷移する。したがって、生のPKSを300~320℃で加熱することで、より石炭に近い性状の燃料を得ることが可能となる。 As described above, by heating PKS at around 300 ° C., the values of H / C and O / C of the heat-treated solid transit from the region D1 to the region D2. Therefore, by heating raw PKS at 300 to 320 ° C., it is possible to obtain a fuel having properties closer to coal.
 図9、図10はPKSと木くず、および石炭の熱重量分析(いずれも昇温速度は10℃/min)である。図9は空気中、図10はO2:4%、N2:96%ガス中のグラフを示す(図10は無水ベース)。図9、図10いずれにおいても、PKSの半炭化品は木くずの半炭化品よりも石炭に近接しており、良好な燃焼特性を有することが確認された。 FIGS. 9 and 10 show thermogravimetric analysis of PKS, wood waste, and coal (both at a heating rate of 10 ° C./min). FIG. 9 shows a graph in air, FIG. 10 in O 2 : 4%, N 2 : 96% gas (FIG. 10 on an anhydrous basis). In both of FIG. 9 and FIG. 10, it was confirmed that the PKS semi-carbonized product is closer to coal than the wood chip semi-carbonized product and has good combustion characteristics.
 [残留リグニンと平衡水分の相関]
 (水中浸漬試験)
 図11はPKSの水中浸漬試験結果を、図12は木くずの水中浸漬試験結果を示すグラフである。水中浸漬試験は室温で水1リットルに対し試料100gを浸漬させ、固体水分の経時変化を測定することにより行った。図11および図12から明らかなように、原料、加熱処理固体ともにPKSは木くずよりも平衡水分が低く、水分を吸収しにくかった。したがって貯蔵時に吸収する水分も低くなるため、木くずに比べ、PKSは単位重量当たりの熱量が高く、かつハンドリング性に優れている。
[Correlation of residual lignin and equilibrium water]
(Immersion test in water)
FIG. 11 is a graph showing the results of underwater immersion test of PKS, and FIG. 12 is a graph showing the results of underwater immersion test of wood waste. The immersion test in water was conducted by immersing 100 g of a sample in 1 liter of water at room temperature and measuring the change with time of solid moisture. As is clear from FIGS. 11 and 12, PKS had lower equilibrium water content than wood waste for both the raw material and the heat-treated solid, and was hard to absorb water. Therefore, since the moisture absorbed during storage is also low, PKS has a high amount of heat per unit weight and is excellent in handleability as compared to wood waste.
 上述のとおり、PKSは木くずと比べて原料中のリグニンが相対的に多く、加熱後においても残存リグニンが多いと推察される。また、リグニンはセルロース同士を接着し、セルロース間に存在する空隙を充填している。したがってリグニンが相対的に多いPKSではセルロース間に存在する空隙が木くずに比べて相対的に少ない。これにより水中浸漬時においてセルロース間に進入する水分が少なくなるため、木くずに比べてPKSは平衡水分が少なくなると推測される。 As described above, it is presumed that PKS contains more lignin in the raw material than wood waste, and there is more residual lignin even after heating. In addition, lignin adheres cellulose to each other and fills the void existing between the cellulose. Therefore, in PKS having a relatively large amount of lignin, there are relatively few voids between celluloses as compared to wood waste. As a result, since the moisture entering between the celluloses decreases when immersed in water, it is presumed that PKS has less equilibrium moisture than wood waste.
 (破断面写真)
 図13(a)~(c)、図14(a)~(c)は、PKSの破断面におけるSEM写真である。図13は加熱前の生のPKSの破断面を、図14は300℃加熱後のPKS加熱処理固体の破断面を示す。加熱前原料の破断面では細胞壁(主要構成成分はセルロース)が略六角形状の凹凸となって確認されるが、300℃加熱処理固体の破断面では加熱前原料のような凹凸が確認できず、破断面が平滑・均一となっていた。これは、加熱によりセルロースが分解された結果、加熱処理固体がリグニン主体の均質な構造となったためと推測される。
(Photograph of the fracture surface)
FIGS. 13 (a) to (c) and FIGS. 14 (a) to (c) are SEM photographs of fractured surfaces of PKS. FIG. 13 shows a broken surface of raw PKS before heating, and FIG. 14 shows a broken surface of PKS heat-treated solid after heating at 300 ° C. Although cell walls (the main constituent is cellulose) are confirmed as irregularities of a substantially hexagonal shape on the fracture surface of the raw material before heating, irregularities like the raw material before heating can not be confirmed on the fracture surface of the heat-treated solid at 300 ° C. The fractured surface was smooth and uniform. It is presumed that this is because the heat-treated solid has a homogeneous structure mainly composed of lignin as a result of decomposition of cellulose by heating.
 [実施形態の効果]
 (1)椰子の果実の種子から核油を搾油した後の殻を加熱して得られる固体燃料であって、
 気乾ベースで固定炭素を20~60質量%、揮発分を30~66質量%、灰分を3~6質量%含み、水分を6質量%以下含み、高位発熱量が気乾ベースで20~30MJ/kgであることとした。
 これにより、揮発分、固定炭素等の燃料性状および粉砕性の点で、石炭に近い燃料を得ることができる。
[Effect of the embodiment]
(1) It is a solid fuel obtained by heating a shell after squeezing a nuclear oil from seeds of a fruit of an eggplant,
Containing 20 to 60% by mass of fixed carbon, 30 to 66% by mass of volatile matter, 3 to 6% by mass of ash, containing up to 6% by mass of moisture, and having a high calorific value of 20 to 30 MJ It was assumed to be / kg.
As a result, fuel close to coal can be obtained in terms of fuel properties such as volatile component and fixed carbon and grindability.
 (2)上記(1)に記載の固体燃料において、
 炭素分Cに対する水素分Hのモル比をH/Cとし、炭素分Cに対する酸素分Oのモル比をO/Cとすると、0.65<H/C<1.1、0.15<O/C<0.5とすることとした。これにより、リグニンを残存させつつセルロースの分解し、PKS加熱処理固体の強度を維持しつつ繊維質を低減させ、輸送時の粉化を低減することでハンドリングを向上させるとともに、粉砕性に優れた固体燃料を得ることができる。0.7<H/C<0.8、0.2<O/C<0.3であればより好ましい。
(2) In the solid fuel described in (1) above,
Assuming that the molar ratio of hydrogen H to carbon C is H / C and the molar ratio of oxygen O to carbon C is O / C, 0.65 <H / C <1.1, 0.15 <O It was decided that / C <0.5. As a result, the cellulose is decomposed while leaving lignin, the fiber quality is reduced while maintaining the strength of the PKS heat-treated solid, and the handling is improved by reducing the pulverization during transportation, and the crushability is excellent. Solid fuel can be obtained. It is more preferable if 0.7 <H / C <0.8 and 0.2 <O / C <0.3.
 (3)上記(1)、(2)に記載の固体燃料の製造方法であって、前記殻を加熱手段に供給する供給工程と、前記加熱手段において前記殻を加熱し、前記固体燃料を得る加熱工程とを有し、前記加熱工程における加熱温度を、240~350℃とすることとした。これにより、リグニンを残存させつつセルロースの分解を促進することが可能となる。よって、PKS加熱処理固体の強度を維持しつつ繊維質を低減させ、輸送時の粉化を低減することでハンドリングを向上させるとともに、粉砕性に優れた固体燃料を得ることができる。 (3) The method for producing a solid fuel according to (1) or (2), wherein the shell is supplied to a heating unit, and the shell is heated in the heating unit to obtain the solid fuel. And a heating step, and the heating temperature in the heating step is set to 240 to 350.degree. This makes it possible to accelerate the decomposition of cellulose while leaving lignin. Therefore, while maintaining the strength of the PKS heat-treated solid and reducing the fiber quality to reduce the pulverization at the time of transportation, it is possible to improve the handling and obtain a solid fuel having excellent grindability.
 (4)上記(3)において、前記加熱工程における加熱温度を、300~330℃とすることとした。これにより、より石炭に近接した燃料を得ることができる。 (4) In the above (3), the heating temperature in the heating step is set to 300 to 330 ° C. This makes it possible to obtain fuel closer to coal.
 なお、本明細書ではPKSを240℃~350℃で加熱して燃料を得たが、燃料として好適であれば加熱するものでなくとも良い。例えば、PKSを加圧圧縮して厚さ数mm以下の平板形状とすることとしてもよい。これにより、石炭と混合粉砕可能であって、かつ良好な燃焼性を有するバイオマス混合燃料を得ることができる。 In the present specification, PKS is heated at 240 ° C. to 350 ° C. to obtain a fuel, but heating may be performed if it is suitable as a fuel. For example, PKS may be pressure-compressed to form a flat plate having a thickness of several mm or less. This makes it possible to obtain a biomass-blended fuel that can be mixed and pulverized with coal and has good combustibility.

Claims (5)

  1.  椰子の果実の種子から核油を搾油した後の殻を加熱して得られる固体燃料であって、
     気乾ベースで固定炭素を20~60質量%、揮発分を30~66質量%、灰分を3~6質量%含み、水分を6質量%以下含み、高位発熱量が気乾ベースで20~30MJ/kgである固体燃料。
    It is a solid fuel obtained by heating shells after squeezing a nuclear oil from the seeds of the fruit of a coconut palm,
    Containing 20 to 60% by mass of fixed carbon, 30 to 66% by mass of volatile matter, 3 to 6% by mass of ash, containing up to 6% by mass of moisture, and having a high calorific value of 20 to 30 MJ Solid fuel which is / kg.
  2.  炭素分Cに対する水素分Hのモル比をH/Cとし、炭素分Cに対する酸素分Oのモル比をO/Cとすると、
    0.65<H/C<1.1
    0.15<O/C<0.5
     である請求項1記載の固体燃料。
    Assuming that the molar ratio of hydrogen H to carbon C is H / C and the molar ratio of oxygen O to carbon C is O / C,
    0.65 <H / C <1.1
    0.15 <O / C <0.5
    The solid fuel according to claim 1.
  3.  請求項1または2記載の固体燃料の製造方法であって、
     椰子の果実の種子から核油を搾油した後の殻を加熱手段に供給する供給工程と、
     前記加熱手段において前記殻を加熱し、前記固体燃料を得る加熱工程とを有し、
    前記加熱工程における加熱温度を、240~350℃とすること
     を特徴とする固体燃料の製造方法。
    The method for producing a solid fuel according to claim 1 or 2, wherein
    Supplying the heating means with a shell after squeezing out the nuclear oil from the seeds of the fruit of the eggplant;
    Heating the shell in the heating means to obtain the solid fuel;
    The heating temperature in the heating step is set to 240 to 350 ° C.
  4.  前記加熱工程における加熱温度を、300~330℃とする請求項3記載の固体燃料の製造方法。 The method for producing a solid fuel according to claim 3, wherein a heating temperature in the heating step is set to 300 to 330 ° C.
  5.  椰子の果実の種子から核油を搾油した後の殻から固体燃料を得る固体燃料の製造装置であって、
     前記殻を加熱し、前記固体燃料とする加熱手段と、
     前記加熱手段に対し、前記殻を供給する供給手段とを有し、
     前記加熱手段における加熱温度は、240~350℃であること
    を特徴とする固体燃料の製造装置。
    What is claimed is: 1. A solid fuel production apparatus for obtaining solid fuel from husks after oil extraction of nuclear oil from fruit seeds of a coconut palm,
    Heating means for heating the shell to obtain the solid fuel;
    Supply means for supplying the shell to the heating means;
    The heating temperature in the heating means is 240 to 350 ° C., and the apparatus for manufacturing a solid fuel.
PCT/JP2011/068324 2010-08-17 2011-08-10 Solid fuel, and method and apparatus for producing same WO2012023479A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012529577A JP5741585B2 (en) 2010-08-17 2011-08-10 SOLID FUEL AND METHOD FOR MANUFACTURING THE SAME
CN201180027939.1A CN102959059B (en) 2010-08-17 2011-08-10 Solid fuel and manufacture method, manufacturing installation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010182199 2010-08-17
JP2010-182199 2010-08-17
JP2011025399 2011-02-08
JP2011-025399 2011-02-08

Publications (1)

Publication Number Publication Date
WO2012023479A1 true WO2012023479A1 (en) 2012-02-23

Family

ID=45605133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068324 WO2012023479A1 (en) 2010-08-17 2011-08-10 Solid fuel, and method and apparatus for producing same

Country Status (4)

Country Link
JP (1) JP5741585B2 (en)
CN (1) CN102959059B (en)
MY (1) MY161924A (en)
WO (1) WO2012023479A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130199086A1 (en) * 2012-02-03 2013-08-08 China Steel Corporation Method for producing a bio-coal
ITRM20120090A1 (en) * 2012-03-13 2013-09-14 Ambiotec Sas PROCEDURE AND DEVICE FOR THE CONSTRUCTION OF BUCKETS BASED ON BIOMATERIAL RECOVERED BY NATURAL VEGETABLE WASTE
JP2013204013A (en) * 2012-03-29 2013-10-07 Nippon Paper Industries Co Ltd Method for producing solid fuel, and solid fuel
JP2014070172A (en) * 2012-09-28 2014-04-21 Nippon Paper Industries Co Ltd Method for producing solid fuel, and solid fuel
WO2014087949A1 (en) * 2012-12-05 2014-06-12 宇部興産株式会社 Biomass solid fuel
JP2014201722A (en) * 2013-04-09 2014-10-27 一般財団法人電力中央研究所 Method of carbide and quality inspection method of carbide
JP2015052159A (en) * 2013-09-09 2015-03-19 新日鐵住金株式会社 Production method of biomass charcoal
JP2015078397A (en) * 2013-10-15 2015-04-23 新日鐵住金株式会社 Method for manufacturing sintered ore
JP2015086418A (en) * 2013-10-29 2015-05-07 新日鐵住金株式会社 Palm-kernel shell charcoal production method
JP2016043335A (en) * 2014-08-26 2016-04-04 株式会社トクヤマ Storage method of palm seed shell
WO2016056608A1 (en) * 2014-10-07 2016-04-14 宇部興産株式会社 Solid biomass fuel
JP2017171938A (en) * 2017-06-06 2017-09-28 日本製紙株式会社 Method of producing solid fuel and solid fuel
CZ307732B6 (en) * 2017-11-15 2019-04-03 Mendelova Univerzita V Brně A method of producing fuel pellets from grapevine seeds and a device for the production of fuel pellets based on the method
JP2020049487A (en) * 2019-12-26 2020-04-02 三菱日立パワーシステムズ株式会社 Evaluation method for crushing capacity of vertical mill
US11390823B2 (en) 2016-04-06 2022-07-19 Ube Industries, Ltd. Biomass solid fuel
JP7475161B2 (en) 2020-02-28 2024-04-26 大阪瓦斯株式会社 Biomass gasification method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126573A (en) * 2003-10-24 2005-05-19 Hitachi Eng Co Ltd Equipment for producing plant-based biomass charcoal
JP2008215710A (en) * 2007-03-05 2008-09-18 Tokyo Electric Power Co Inc:The Solid biomass fuel supply device
JP2009057438A (en) * 2007-08-31 2009-03-19 Tohoku Univ Method for manufacturing semi-dry distilled biomass carbon micropowder and method for using the same
JP2010229259A (en) * 2009-03-26 2010-10-14 Tokyo Electric Power Co Inc:The Method for producing biomass fuel for dust coal boiler

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304532C (en) * 2005-02-28 2007-03-14 昆明理工大学 Method for producing charcoal by using agricultural and forest waste
CN101558170B (en) * 2008-03-28 2012-12-26 钢铁普蓝特克股份有限公司 Arc furnace steelmaking process using palm shell charcoal
AU2010210195A1 (en) * 2009-02-04 2011-07-28 Shell Internationale Research Maatschappij B.V. Process to convert biomass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126573A (en) * 2003-10-24 2005-05-19 Hitachi Eng Co Ltd Equipment for producing plant-based biomass charcoal
JP2008215710A (en) * 2007-03-05 2008-09-18 Tokyo Electric Power Co Inc:The Solid biomass fuel supply device
JP2009057438A (en) * 2007-08-31 2009-03-19 Tohoku Univ Method for manufacturing semi-dry distilled biomass carbon micropowder and method for using the same
JP2010229259A (en) * 2009-03-26 2010-10-14 Tokyo Electric Power Co Inc:The Method for producing biomass fuel for dust coal boiler

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9096810B2 (en) * 2012-02-03 2015-08-04 China Steel Corporation Method for producing a bio-coal
US20130199086A1 (en) * 2012-02-03 2013-08-08 China Steel Corporation Method for producing a bio-coal
ITRM20120090A1 (en) * 2012-03-13 2013-09-14 Ambiotec Sas PROCEDURE AND DEVICE FOR THE CONSTRUCTION OF BUCKETS BASED ON BIOMATERIAL RECOVERED BY NATURAL VEGETABLE WASTE
JP2013204013A (en) * 2012-03-29 2013-10-07 Nippon Paper Industries Co Ltd Method for producing solid fuel, and solid fuel
JP2014070172A (en) * 2012-09-28 2014-04-21 Nippon Paper Industries Co Ltd Method for producing solid fuel, and solid fuel
US9523056B2 (en) 2012-12-05 2016-12-20 Ube Industries, Ltd. Biomass solid fuel
WO2014087949A1 (en) * 2012-12-05 2014-06-12 宇部興産株式会社 Biomass solid fuel
JPWO2014087949A1 (en) * 2012-12-05 2017-01-05 宇部興産株式会社 Biomass solid fuel
JP2014201722A (en) * 2013-04-09 2014-10-27 一般財団法人電力中央研究所 Method of carbide and quality inspection method of carbide
JP2015052159A (en) * 2013-09-09 2015-03-19 新日鐵住金株式会社 Production method of biomass charcoal
JP2015078397A (en) * 2013-10-15 2015-04-23 新日鐵住金株式会社 Method for manufacturing sintered ore
JP2015086418A (en) * 2013-10-29 2015-05-07 新日鐵住金株式会社 Palm-kernel shell charcoal production method
JP2016043335A (en) * 2014-08-26 2016-04-04 株式会社トクヤマ Storage method of palm seed shell
WO2016056608A1 (en) * 2014-10-07 2016-04-14 宇部興産株式会社 Solid biomass fuel
JPWO2016056608A1 (en) * 2014-10-07 2017-07-20 宇部興産株式会社 Biomass solid fuel
JP2020090673A (en) * 2014-10-07 2020-06-11 宇部興産株式会社 Biomass solid fuel
JP2022000527A (en) * 2014-10-07 2022-01-04 宇部興産株式会社 Biomass solid fuel
US11390822B2 (en) 2014-10-07 2022-07-19 Ube Industries, Ltd. Biomass solid fuel
US11390823B2 (en) 2016-04-06 2022-07-19 Ube Industries, Ltd. Biomass solid fuel
JP2017171938A (en) * 2017-06-06 2017-09-28 日本製紙株式会社 Method of producing solid fuel and solid fuel
CZ307732B6 (en) * 2017-11-15 2019-04-03 Mendelova Univerzita V Brně A method of producing fuel pellets from grapevine seeds and a device for the production of fuel pellets based on the method
JP2020049487A (en) * 2019-12-26 2020-04-02 三菱日立パワーシステムズ株式会社 Evaluation method for crushing capacity of vertical mill
JP7475161B2 (en) 2020-02-28 2024-04-26 大阪瓦斯株式会社 Biomass gasification method

Also Published As

Publication number Publication date
CN102959059B (en) 2015-11-25
JPWO2012023479A1 (en) 2013-10-28
MY161924A (en) 2017-05-15
CN102959059A (en) 2013-03-06
JP5741585B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
WO2012023479A1 (en) Solid fuel, and method and apparatus for producing same
JP6684298B2 (en) Solid fuel manufacturing method and solid fuel
Phanphanich et al. Impact of torrefaction on the grindability and fuel characteristics of forest biomass
JP7252388B2 (en) Biomass solid fuel and its production method
EP2829588A1 (en) Method for producing bio-coke
JP6606845B2 (en) Method for producing solid fuel and solid fuel
US20190112530A1 (en) Cooling apparatus for carbonized biomass
JP6328901B2 (en) Method for producing solid fuel and solid fuel
JP6161242B2 (en) Manufacturing method of mixed fuel
JP6185699B2 (en) Method for producing solid fuel and solid fuel
JP7449162B2 (en) Method for producing composite solid fuel
JP6639075B2 (en) Method for producing solid fuel and solid fuel
JP6430691B2 (en) Method for producing solid fuel and solid fuel
JP5965693B2 (en) Method for producing solid fuel and solid fuel
JP6357836B2 (en) Method for producing solid fuel and solid fuel
JP6283724B2 (en) Manufacturing method of mixed fuel
JP6283727B2 (en) Manufacturing method of mixed fuel
Tesfaye et al. Development and evaluation of a coffee husk biomass briquette machine
JP6691508B2 (en) Solid fuel manufacturing method and solid fuel
JP2024025561A (en) Coke manufacturing method
JP6169323B2 (en) Method for producing solid fuel and solid fuel
JP5308612B2 (en) Coke production method
JP2005231945A (en) Production method for woody granular active carbide
JP6283726B2 (en) Manufacturing method of mixed fuel
JP6283723B2 (en) Manufacturing method of mixed fuel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180027939.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11818121

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012529577

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 3836/KOLNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11818121

Country of ref document: EP

Kind code of ref document: A1