WO2012022456A1 - Vorrichtung zur ermittlung und/oder überwachung von fremdstrukturen in einem fluid oder einem fluidstrom sowie verfahren hierzu - Google Patents

Vorrichtung zur ermittlung und/oder überwachung von fremdstrukturen in einem fluid oder einem fluidstrom sowie verfahren hierzu Download PDF

Info

Publication number
WO2012022456A1
WO2012022456A1 PCT/EP2011/004072 EP2011004072W WO2012022456A1 WO 2012022456 A1 WO2012022456 A1 WO 2012022456A1 EP 2011004072 W EP2011004072 W EP 2011004072W WO 2012022456 A1 WO2012022456 A1 WO 2012022456A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
monitoring
signal
blood
ultrasound
Prior art date
Application number
PCT/EP2011/004072
Other languages
English (en)
French (fr)
Inventor
Christoph Wiktor
Original Assignee
Fresenius Medical Care Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fresenius Medical Care Deutschland Gmbh filed Critical Fresenius Medical Care Deutschland Gmbh
Priority to US13/817,651 priority Critical patent/US9068965B2/en
Priority to CN201180039775.4A priority patent/CN103068418B/zh
Priority to EP11745700.2A priority patent/EP2605811B1/de
Priority to JP2013524374A priority patent/JP5873870B2/ja
Priority to AU2011291085A priority patent/AU2011291085B2/en
Publication of WO2012022456A1 publication Critical patent/WO2012022456A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3626Gas bubble detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3622Extra-corporeal blood circuits with a cassette forming partially or totally the blood circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3622Extra-corporeal blood circuits with a cassette forming partially or totally the blood circuit
    • A61M1/36222Details related to the interface between cassette and machine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/367Circuit parts not covered by the preceding subgroups of group A61M1/3621
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3306Optical measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3306Optical measuring means
    • A61M2205/3313Optical measuring means used specific wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3375Acoustical, e.g. ultrasonic, measuring means

Definitions

  • the present invention relates to a device for detecting and / or monitoring foreign structures in a fluid or a fluid flow and in particular a method for this purpose.
  • extracorporeal blood circulation z In extracorporeal blood circulation z.
  • a hemodialysis system it is important to monitor blood for hazardous components that may be present as a result of the treatment.
  • care must be taken to ensure that gas bubbles and blood clots in the extracorporeal bloodstream can be detected and / or retained.
  • Known treatment systems are able to respond to the detection of air bubbles and cause a corresponding alarm and / or treatment stop.
  • an attempt is made to retain blood clots by means of clot trap.
  • the problem is that it is not ruled out despite anticoagulation that arise in the extracorporeal blood circulation of a dialysis machine blood clots.
  • the reasons for this can be many and not always the wrong dosage of anticoagulants such as heparin or citrate is the cause.
  • Blood arrest, stagnation zones and contact with air or the artificial surfaces of the extracorporeal blood circulation promote activation of the coagulation cascade.
  • thrombocytes or blood platelets in the blood change their shape after activation of coagulation and aggregate into thrombi. These thrombi can block the capillaries of the dialyzer and, if they do not catch in the extracorporeal bloodstream, enter the patient's circulation and close smaller vessels there. For this reason, in many current blood tubing and cassette systems, venous clots exist to trap blood clots before they enter a patient's body. However, this protective measure is not undisputed.
  • US 4,122,713 discloses a measuring system for determining the flow rate of a fluid. This system is also able to determine the presence of air bubbles in the blood in addition to the measurement of blood flow velocity.
  • EP 0 979 11 B1 relates to a device for optical recognition and quantification of microbubbles in the blood.
  • an optical detection of blood clots is described, but in this form can only be accepted by particles of a corresponding size, but not for small blood clots.
  • JP 7103967 describes an arrangement for the examination of blood serum samples that are in a sample vessel such.
  • B a measuring cup.
  • optical sensors and an ultrasonic sensor By means of optical sensors and an ultrasonic sensor, a filling level measurement and a phase boundary detection of separated blood samples located in the sample vessels are carried out.
  • US 3,935,876 discloses an apparatus for monitoring blood flow with respect to air bubbles by optical means, wherein monitoring of blood clots can take place simultaneously with the apparatus.
  • a device for detecting and / or monitoring foreign structures in a fluid or a fluid stream with at least one optical monitoring means, at least one ultrasound monitoring means and at least one Signal evaluating means is provided, wherein the fluid is monitored by means of ultrasound optically and at least by means of ultrasound monitoring means at least by means of the optical monitoring means and wherein at least one foreign structure, in particular an air bubble and / or a solid such as a blood clot, in the fluid by means of the combination of the monitoring signals obtained therefrom the signal evaluation means recognizable and / or distinguishable from at least one second foreign structure by means of the signal evaluation means.
  • the fluid may be blood and the fluid flow may be, in particular, a bloodstream.
  • the combination of the monitoring signals for the detection of the at least one foreign structure or for distinguishing the first foreign structure from at least one second foreign structure can preferably take place on the basis of the balancing of the monitoring signals of the optical monitoring means and of the ultrasound monitoring means.
  • the foreign structure may for example be an air bubble and / or a solid such as a blood clot, in particular an air bubble represents a first foreign structure and a solid such as a blood clot a second foreign structure, which are advantageously recognizable and distinguishable by means of the device. If a foreign structure is detected by means of the ultrasound monitoring means, an air bubble is thereby detected, and this in principle also independent of whether this is likewise detected by means of the optical monitoring means. Normally, and preferably, an air bubble is detected by both the ultrasound monitoring means and the optical monitoring means. However, this is not absolutely necessary for the detection of air bubbles.
  • the optical monitoring means for example, the measuring principle of a simple transmission measurement can be used.
  • the ultrasound monitoring principle all measuring principles are possible by the z. B. gas bubbles can be detected.
  • the ultrasound monitoring means may be arranged on one side of a fluid guide path with its receiver part.
  • the ultrasonic pulse can then be coupled by a transmitter in the fluid-flowed fluid guide.
  • the gas bubbles in the fluid weaken the acoustic signal.
  • After traveling through the sound signal through the fluid guide the signal hits the wall of the fluid guide channel and is reflected accordingly. This signal then again traverses the fluid guide and can be absorbed by the receiver part. Based on the evaluation of the sound signal can then be distinguished whether gas bubbles are present or not.
  • the optical monitoring means By the combined evaluation of the monitoring signals that can be obtained from the optical monitoring means and the ultrasound monitoring means, it is advantageously possible to easily and reliably detect the presence of an air bubble and / or a solid.
  • a corresponding signal evaluation means may be, for example, an arithmetic unit, which may also be the arithmetic unit of a device connected to the device. standing standing control and / or regulating means of a blood treatment device such as a hemodialysis machine can act.
  • one or more air bubbles in the fluid can be detected by means of the signal evaluation means if at least the ultrasound monitoring means registers at least one foreign structure as a signal-triggering event and emits a signal or if the optical monitoring means and the ultrasound monitoring means each have at least one foreign structure as a signal-triggering one Register substantially simultaneous event and give a signal, and / or that by means of the signal evaluation one or more solids, especially blood clots, are recognizable in the fluid when the optical monitoring means registers at least one foreign structure as a signal-triggering event and the ultrasound monitoring means substantially at the same time no or one Very small foreign structure registered as a signal-triggering event.
  • a simultaneous measurement can only take place if the optical monitoring means and the ultrasound monitoring means are arranged at the same location or register signal-triggering events at the same location. If the optical monitoring means and the ultrasound monitoring means are not arranged at the same location but offset or register signal-triggering events at different locations, this offset is e.g. B. by taking into account the flow rate and the associated dead time. Even in such a case, the registration of the signal-triggering events by the consideration of the offset then also takes place substantially simultaneously in the aforementioned sense.
  • optical monitoring means and the ultrasound monitoring means are preferably arranged with only a small or very small offset. It is also conceivable in this context that a clot can be detected when the optical signal is substantially greater or stronger than the ultrasound signal obtained.
  • the optical monitoring means is at least one optical sensor or comprises at least one optical sensor and / or that the ultrasound monitoring means is at least one ultrasound sensor or at least comprises an ultrasound sensor and / or that by means of the optical monitoring means air bubbles and solid, in particular blood clots detectable and air bubbles are detectable by means of the ultrasound monitoring means.
  • the optical sensor can react to air bubbles and blood clots alike with a short and strong signal rise, since the transmitted intensity of the radiation increases briefly.
  • an ultrasonic sensor can detect and quantify only passing air bubbles.
  • a clot detection can not be done by the ultrasonic sensor, because the density difference between blood or plasma and clots is too low.
  • the ultrasonic sensor does not generate a signal, it can be determined that a blood clot is in the bloodstream. Accordingly, one or more air bubbles can be detected if both sensors, ie the optical sensor and the ultrasonic sensor generate a signal, are detected.
  • the optical sensor has at least one light source and at least one photodetector, the light source preferably being or comprising at least one LED and / or narrow-band, near-infrared light with a peak wavelength of about 805 nm being particularly advantageous by means of the light source ,
  • the wavelength range around 805 nm is particularly suitable for the optical sensor for clot detection, in particular because the absorption by the hemoglobin in the erythrocytes on the one hand is very low and, on the other hand, independent of the oxygen content. Consequently, signal generation is advantageously freed accordingly from corresponding interference factors and signal distortions.
  • Platelets have a very low absorption coefficient (not measurable) at 805 nm, but scattering takes place on the cells, which is essentially directed forward (as with erythrocytes). Normally (without thrombosis) However, this scattering is negligible, since the number and size of platelets is very low compared to erythrocytes: 99% of the blood cells are erythrocytes with a diameter of about 7.5 pm (platelets have a diameter of 1, 5-3 pm). At the onset of clotting, platelets aggregate, form a thrombus and occupy more volume. This leads to reduced absorption within the measuring section and thus to an increase in the transmitted radiation at 805 nm.
  • At least one high-pass filter is arranged downstream of the optical monitoring means, by means of which the monitoring signal obtained by means of optical monitoring can be filtered.
  • the high-pass filter may be a filter in which the monitoring signal can be integrated at fixed intervals of a few milliseconds and a moving average can be determined from a predetermined number of preceding measurements and subtracted from the current integration result.
  • a filter has the advantage that it allows a simple evaluation of the signal. If the integration result is weighted higher than the low-pass filter in such a filter, a high-boost filter is obtained, which has the advantage that the fundamental signal profile is retained, while the short-term changes are emphasized. If the high-pass filtered signal exceeds a threshold value, then either an air bubble or a clot has flowed through the measuring path. If the ultrasonic sensor also detects its own signal in a timely manner, taking into account the flow velocity, it is an air bubble. However, if the ultrasound sensor registers nothing, a clot was detected.
  • the device it is possible for the device to have a receptacle into which a fluid guide means, preferably a hose set or a part of a hose set or a cassette, in particular a disposable cassette, or a measuring channel, can be used and / or that the device has a measuring channel.
  • a fluid guide means preferably a hose set or a part of a hose set or a cassette, in particular a disposable cassette, or a measuring channel
  • a tube set may in particular be the tube set of an extracorporeal blood circulation for a hemodialysis machine.
  • a disposable cassette can be a disposable cassette in which parts of an extracorporeal blood circulation for a hemodialysis machine are arranged.
  • the device has or forms a limited measuring path or measuring point, on which both the optical monitoring means and the ultrasound monitoring means are arranged.
  • the local proximity of the optical monitoring means to the ultrasound monitoring means can advantageously improve monitoring for air bubbles or blood clots.
  • the measuring section or measuring point is arranged in and / or on the receptacle and / or that the measuring section or measuring point is surrounded by the light source, the ultrasonic sensor and the photodetector of the optical monitoring means from three sides, preferably in this order and advantageously arranged such that the light source, the ultrasonic sensor and the photodetector of the optical monitoring means enclose the measuring section or measuring point U-shaped.
  • the U-shaped arrangement of light source, ultrasonic sensor and photodetector a very short measuring path with the advantage that a relatively high-precision monitoring of the measuring path is possible.
  • the time offset between the respectively generated signals of the optical monitoring means and the ultrasound monitoring means is thereby kept as low as possible.
  • the optical monitoring means and the ultrasound monitoring means are arranged in transmission and in each case transversely to the direction of flow. Furthermore, it is conceivable that the optical monitoring means are arranged transversely to the flow direction in the transmission and the ultrasound monitoring means are arranged along the direction of flow. Furthermore, it can be provided that the device has at least one protection means and / or at least one warning means and / or is in communication with at least one protection means and / or at least one warning means, wherein by means of the protection means preferably the fluid flow is stoppable and / or preferably by means of the warning means on components recognized in the fluid, in particular air bubbles and solids such as blood clots is modalbar.
  • the warning means may be, for example, an audible and / or visual warning means.
  • a warning message is output on a screen, at the same time a warning tone sounds.
  • the protective means may for example be designed as a clamp or comprise a clamp and at the same time preferably cooperate with a drive means such as the pump of the fluid flow.
  • the protection means and also the warning means can advantageously be components of a blood treatment device, such as a hemodialysis machine, which are basically present in the blood treatment device as usual components anyway. This results in the advantage of being able to access already existing components, so that existing blood treatment devices can be easily retrofitted.
  • the device is part of a blood treatment device, in particular a hemodialysis machine, or that the device is a blood treatment device, in particular a hemodialysis machine.
  • the invention relates to a method for determining and / or monitoring foreign structures in a fluid or a fluid flow with the features of claim 11.
  • the fluid is monitored optically and by means of ultrasound and wherein based on the combination of the monitoring signals obtained therefrom, in particular by means of balancing the monitoring signals obtained therefrom, at least one foreign structure, in particular an air bubble and / or a solid such as a blood clot, recognizable in the fluid and / or is distinguishable from at least one second foreign structure.
  • a first foreign structure such as an air bubble
  • a second foreign structure such as a blood clot
  • optical monitoring means and the ultrasound monitoring means are not arranged at the same location but offset or register signal-triggering events at different locations, this offset is e.g. B. by taking into account the flow rate and the associated dead time. Even in such a case, the registration of the signal-triggering events by the consideration of the offset then also takes place substantially simultaneously in the aforementioned sense.
  • optical monitoring means and ultrasound waking means preferably arranged only with a small or very small offset. It is also conceivable in this context that a clot can be detected when the optical signal is substantially greater or stronger than the ultrasound signal obtained. On the basis of the divergence of the signals obtained thus also a clot can be detected.
  • the monitoring signal obtained by means of optical monitoring is filtered by means of a high-pass filter.
  • any type of high-pass filter is suitable for this purpose.
  • the high-pass filter is preferably a filter in which the monitoring signal is integrated at fixed intervals of a few milliseconds and a moving average is determined from a predetermined number of preceding measurements and subtracted from the current integration result.
  • the present invention relates to the use of a device according to claim 1 to 10 for carrying out the method according to claim 11 to 15 and / or the use of a device according to claim 1 to 10 in a blood treatment device, in particular in a hemodialysis machine.
  • the present invention relates to a blood treatment device, in particular a hemodialysis machine with the features of claim 17. Thereafter, it is provided that a blood treatment device, in particular a hemodialysis machine is provided with at least one device according to one of claims 1 to 10. Furthermore, the present invention relates to the use of a blood treatment device having the features of claim 18. Thereafter, it is provided that a blood treatment device, in particular blood treatment device according to claim 17, for carrying out the method with the features of claims 11 to 15 and / or in a blood treatment device, in particular a hemodialysis machine is used.
  • the invention relates to a disposable with the features of claim 19. It is then provided that a disposable, in particular a disposable tube set or a Diposablekassette, for use in a device according to one of claims 1 to 10, preferably for use in the Recording the device according to claim 6 to 10 is used.
  • Figure 1 a schematic representation of the detection of air bubbles by means of ultrasound
  • Figure 2 a schematic representation of an inventive device for
  • FIG. 3 shows a diagram relating to detection of blood clots by means of the optical sensor
  • FIG. 4 shows a flow chart relating to the signal evaluation of the method and the device according to the invention.
  • Figure 1 shows a schematic representation of the detection of air bubbles by means of ultrasound by means of an ultrasonic sensor 15, as it is used in the device 10 for the detection and monitoring of air bubbles and blood clots.
  • the sound pulse from the transmitter of the ultrasonic sensor 15 is coupled into the liquid-flowed fluid guide 30, which may be a piece of tubing 30 of a non-illustrated disposable tubing set for hemodialysis.
  • Gas bubbles L, L 'of different sizes in the blood B weaken this signal.
  • the signal hits the transmitter of the opposite wall of the fluid guide 30 and is reflected.
  • the reflected signal now travels a second time through the fluid guide 30 and is received by a receiver of the ultrasonic sensor 15. Based on the evaluation of the sound signal, it is now basically possible to distinguish whether gas bubbles are present or not.
  • the ultrasonic sensor 15 combines transmitter and receiver preferably in a common piezoelectric element, by means of which the ultrasonic signal can be emitted and received. In such an embodiment, for example, is switched periodically between transmission and reception.
  • the optical sensor 11 for clot detection (clot detector 11) of the device 10 essentially consists of an LED 12 as the light source 12, which emits narrow-band, near-infrared light with a peak wavelength of approximately 805 nm.
  • the wavelength range around 805 nm is therefore particularly well suited because the absorption by the hemoglobin in the erythrocytes (red blood cells) is on the one hand very low and, on the other hand, independent of the oxygen content.
  • a photodetector 13 is arranged for the transmission measurement.
  • this is a photodetector 13 which outputs a frequency signal corresponding to the received intensity.
  • a photodiode it is also possible to output a voltage proportional to the intensity or a current proportional to the intensity.
  • the measuring section Between light source 12 (transmitter) and photodetector 13 (receiver) is the measuring section.
  • This measuring section can either be a clamped tube 30 or a channel of a cassette system.
  • the air bubble detector 15 In the immediate vicinity of the clot detector 11, the air bubble detector 15 is based on ultrasound, which is ideally mounted only on one side (see also Figure 1), so that the measuring section is enclosed in a U-shape. On the opposite side of the air bubble detector 15 is not shown in detail machine front of a blood treatment device such. B. a Hä modialysemaschine.
  • the ultrasonic sensor 15 detects and quantifies passing air bubbles. Clot, this sensor 15 can not detect because the density difference between blood or plasma and clots is too low.
  • the clot detector 11 reacts to air bubbles and blood clots alike with a short, strong signal rise, since the transmitted intensity of the radiation increases briefly.
  • the signal of the photodetector 13 is integrated by a not shown evaluation at fixed intervals of a few ms. This happens at the detector with frequency output by counting the pulses or measuring the frequency. From a certain number of previous measurements, a moving average is determined and subtracted from the current integration result. This type of high pass filter allows easy evaluation of the signal. However, other high-pass filters are also suitable for evaluation.
  • FIG. 3 shows by way of example the result of a measurement with blood and with the optical sensor 11.
  • the coagulation of the blood occurs after a little more than 60 minutes, which can be recognized by the decrease of the platelets in the blood.
  • a plurality of blood clots that are detected by the sensor 11 occur.
  • the deflections of the sensor signals are plotted as vertical bars in the diagram.
  • the height of the pulses can be influenced by design of the sensor 11. In the present case, an integration of the sensor signal was made over 20 ms. If this integration time is selected shorter, the pulses are more clearly distinguished from the remaining transmission signal.
  • the design of the filter or high-pass filter - in particular the number of measured values which are included in the calculation of the moving average - also has an influence on this.
  • an alarm is output by the blood treatment device, in particular the hemodialysis machine, for example by a warning tone and by a corresponding display by means of hazard warning lights or on the control screen.
  • the device according to the invention can be used in the reinfusion of blood from the extracorporeal blood circulation, because in this case blood is not necessarily conveyed through the clot trap usually present in the venous part.
  • the special handling may consist in conveying the corresponding fluid flow with clots or air bubbles into a saline bag or another collecting container.
  • the sensor pair consisting of the optical sensor 11 and the ultrasonic sensor 15 on the venous side of the extracorporeal blood circulation can be evaluated for clots and request a special handling in a detection.
  • the pair of sensors for example by means of pumping saline solution from a saline bag connected to the arterial line and reinfusing the blood via the venous part of the extracorporeal blood circuit, the pair of sensors comprising the optical sensor 11 and the ultrasound sensor 15 can or do likewise evaluated the venous side of the extracorporeal blood circulation.
  • both sensor pairs ie both the sensor pair on the arterial and the venous side, are evaluated, both detecting the clot or an air bubble Either stop reinfusion on the appropriate page or request a special handling.
  • the safety clamp is used to stop blood flow.
  • FIG. 4 again shows the flowchart relating to the signal evaluation of the device or of the method.
  • the signal received by the optical sensor 11 is passed through a high-pass filter and subjected to pulse detection. If an event has been detected, this is compared with the signal obtained by the ultrasonic sensor 15. If an event has been detected substantially simultaneously by both the optical sensor 11 and the ultrasound sensor 15, it is detected by means of the signal evaluation means, which may be part of the central control and / or regulating unit of the blood treatment device, for example, that air bubbles have passed. If an event has only been detected by means of the optical sensor 11, it is detected by means of the signal evaluation means that a clot has passed by. In such a case, protection and warning means 40 are activated. In detail, this may mean, for example, that issues a warning message on an output means such as a screen of a blood treatment device in which the device according to the invention is used, and further that optionally the extracorporeal blood circulation is stopped.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Anesthesiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cardiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Ecology (AREA)
  • Acoustics & Sound (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • External Artificial Organs (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Vorrichtung zur Ermittlung und/oder Überwachung von Fremdstrukturen in einem Fluid oder einem Fluidstrom, insbesondere Blut oder Blutstrom, mit wenigstens einem optischen Überwachungsmittel, wenigstens einem Ultraschallüberwachungsmittel und wenigstens einem Signalauswertemittel, wobei das Fluid zumindest mittels des optischen Überwachungsmittels optisch und zumindest mittels des Ultraschallüberwachungsmittels mittels Ultraschall überwachbar ist und wobei anhand der Kombination der hieraus erhaltenen Überwachungssignale, insbesondere anhand des Abgleichs der hieraus erhaltenen Überwachungssignale, wenigstens eine Fremdstruktur, insbesondere eine Luftblase und/oder ein Festkörper wie ein Blutgerinnsel, im Fluid mittels des Signalauswertemittels erkennbar und/oder von wenigstens einer zweiten Fremdstruktur mittels des Signalauswertemittels unterscheidbar ist.

Description

Vorrichtung zur Ermittlung und/oder Überwachung von Fremdstrukturen in einem Fluid oder einem Fluidstrom sowie Verfahren hierzu
Die vorliegende Erfindung betrifft eine Vorrichtung zur Ermittlung und/oder Überwachung von Fremdstrukturen in einem Fluid oder einem Fluidstrom sowie insbesondere ein Verfahren hierzu.
Im extrakorporalen Blutkreislauf z. B. eines Hämodialysesystems ist es von Bedeutung, dass Blut hinsichtlich gefährlicher Bestandteile, die durch die Behandlung auftreten können, überwacht wird. Insbesondere ist streng darauf zu achten, dass Gasblasen und Blutgerinnsel im extrakorporalen Blutkreislauf erkannt und/oder zurückgehalten werden können. Bekannte Behandlungssysteme sind dabei in der Lage, auf die Erkennung von Luftblasen zu reagieren und einen entsprechenden Alarm und/oder Behandlungsstopp zu bewirken. Des Weiteren wird versucht, Blutgerinnsel mittels Gerinnselfänger zurückzuhalten.
Gängige Untersuchungen von Blutproben hinsichtlich ihrer Bestandteile oder ihrer Strömungscharakteristik können z. B. mit Ultraschallmessungen basierend auf verschiedenen Prinzipien oder durch optische Messungen erfolgen. Mit einer Ultraschallanalyse durch entsprechend ausgerichtete Frequenzen können z. B. Gasblasen im Blut erkannt werden. Das Auftreten von Blutgerinnseln kann dagegen nicht mit dem gleichen Ultraschallprinzip erfasst werden, da die Streuwirkung des Schalls an den Gerinnseln in der Regel zu gering ist. Auch kann es der Fall sein, dass der Dichteunterschied im Blutabschnitt von Gerinnseln nicht von anderen Abschnitten zu unterscheiden ist. Optische Messungen können das Auftreten von Gerinnseln durch eine Änderung der Transmission von Licht erkennen. Allerdings können Gerinnsel gleichzeitig aber nicht von Gasblasen unterschieden werden, die ebenfalls eine Transmissionszunahme hervorrufen.
Problematisch ist, dass es trotz Antikoagulation nicht ausgeschlossen ist, dass im extrakorporalen Blutkreislauf einer Dialysemaschine Blutgerinnsel entstehen. Die Gründe dafür können vielfältig sein und nicht immer ist die falsche Dosierung von Antikoagulantien wie Heparin oder Citrat die Ursache. Blutstillstand, Stagnationszonen sowie der Kontakt mit Luft oder den künstlichen Oberflächen des extrakorporalen Blutkreislaufs begünstigen eine Aktivierung der Gerinnungskaskade.
Die Thromobozyten oder Blutplättchen im Blut verändern nach Aktivierung der Gerinnung ihre Form und aggregieren zu Thromben. Diese Thromben können die Kapillaren des Dialysators verstopfen und, sofern sie sich nicht im extrakorporalen Blutkreislauf verfangen, in den Kreislauf des Patienten gelangen und dort kleinere Gefäße verschließen. Aus diesem Grund gibt es in vielen aktuellen Blutschlauch- und Kassettensystemen venöse Gerinnselfänger, die Blutgerinnsel auffangen sollen, bevor sie in den Körper eines Patienten gelangen. Diese Schutzmaßnahme ist jedoch nicht unumstritten.
Möchte man nun nach einer Dialysebehandlung das Blut nicht venös, sondern arteriell zurückgeben, so schafft ein mechanischer Gerinnselfänger auf arterieller Seite keine Abhilfe, da bei Strömungsumkehr zuvor gefangene Gerinnsel wieder freigesetzt werden und in den Patienten gelangen können.
Aus dem Stand der Technik sind bereits einige Ansätze zur Überwachung eines Fluidstroms auf darin vorkommende Gasblasen oder Festkörper bekannt. W
- 3 -
Die US 4,122,713 offenbart beispielsweise ein Messsystem zur Ermittlung der Flussgeschwindigkeit eines Fluids. Dieses System ist dabei auch in der Lage, neben der Messung der Blutflussgeschwindigkeit auch die Anwesenheit von Luftblasen im Blut zu ermitteln.
Die EP 0 979 11 B1 betrifft eine Vorrichtung zur optischen Erkennung und Quantifizierung von Mikrobläschen im Blut. Dabei wird auch eine optische Erkennung von Blutgerinnseln beschrieben, die in dieser Form jedoch nur von Partikeln mit einer entsprechenden Größe angenommen werden kann, nicht jedoch für kleine Blutgerinnsel.
Die JP 7103967 beschreibt eine Anordnung zur Untersuchung von Blutserumproben, die sich in einem Probengefäß wie z. B. einem Messbecher befinden. Mittels optischer Sensoren und einem Ultraschallsensor wird eine Füllstandsmessung und eine Phasengrenzdetektion von in den Probengefäßen befindlichen separierten Blutproben vorgenommen.
Aus der WO 2007/12 398 A2 ist weiter ein System zur Detektion von Gasblasen und festen Partikeln in Blut durch Radiowellenanalyse bekannt.
Die US 3,935,876 offenbart eine Vorrichtung zur Überwachung eines Blutstroms hinsichtlich Luftblasen mit optischen Mitteln, wobei zugleich mit der Vorrichtung eine Überwachung auf Blutgerinnsel stattfinden kann.
Trotz der bisherigen Ansätze wäre es wünschenswert, das Auftreten von Blutgerinnseln, insbesondere auch kleinen Blutgerinnseln sowie Gasblasen im Blut schnell und sicher zu erkennen, wobei eine entsprechende Messeinrichtung möglichst einfach aufgebaut ist.
Es ist daher die Aufgabe der vorliegenden Erfindung, eine Vorrichtung und ein Verfahren der eingangs genannten Art in vorteilhafter Weise weiterzubilden, insbesondere dahingehend, dass ein einfacheres und sichereres Verfahren sowie eine ein- fach und sicher betreibbare Vorrichtung bereitgestellt werden, wobei vorteilhafterweise eine sichere und hochgenaue Überwachung eines Blutstroms hinsichtlich Luftblasen und Blutgerinnsel möglich ist.
Diese Aufgabe wird erfindungsgemäß gelöst durch eine Vorrichtung mit den Merkmalen des Anspruchs 1. Danach ist vorgesehen, dass eine Vorrichtung zur Ermittlung und/oder Überwachung von Fremdstrukturen in einem Fluid oder einem Fluid- strom mit wenigstens einem optischen Überwachungsmittel, wenigstens einem Ultraschallüberwachungsmittel und wenigstens einem Signalauswertemittel versehen ist, wobei das Fluid zumindest mittels des optischen Überwachungsmittels optisch und zumindest mittels des Ultraschallüberwachungsmittels mittels Ultraschall überwachbar ist und wobei anhand der Kombination der hieraus erhaltenen Überwachungssignale wenigstens eine Fremdstruktur, insbesondere eine Luftblase und/oder ein Festkörper wie ein Blutgerinnsel, im Fluid mittels des Signalauswertemittels erkennbar und/oder von wenigstens einer zweiten Fremdstruktur mittels des Signalauswertemittels unterscheidbar ist.
Das Fluid kann insbesondere Blut sein und der Fluidstrom kann insbesondere ein Blutstrom sein.
Die Kombination der Überwachungssignale zur Erkennung der wenigstens einen Fremdstruktur bzw. zur Unterscheidung der ersten Fremdstruktur von wenigstens einer zweiten Fremdstruktur kann vorzugsweise anhand des Abgleichs der Überwachungssignale des optischen Überwachungsmittels und des Ultraschallüberwachungsmittels erfolgen.
Die Fremdstruktur kann beispielsweise eine Luftblase und/oder ein Festkörper wie ein Blutgerinnsel sein, insbesondere stellt eine Luftblase eine erste Fremdstruktur und ein Festkörper wie ein Blutgerinnsel eine zweite Fremdstruktur dar, die mittels der Vorrichtung vorteilhafterweise erkennbar und unterscheidbar sind. Wird mittels des Ultraschallüberwachungsmittels eine Fremdstruktur detektiert, so wird hierdurch eine Luftblase erkannt und dies grundsätzlich auch unabhängig davon, ob dies mittels des optischen Überwachungsmittels ebenfalls detektiert wird. Im Normalfall und vorzugsweise wird eine Luftblase sowohl durch das Ultraschallüberwachungsmittel als auch durch das optische Überwachungsmittel detektiert. Dies ist jedoch zur Detektion von Luftblasen nicht zwingend notwendig.
Dadurch ergibt sich der Vorteil, einfach und zuverlässig arbeitende Überwachungsmethoden einsetzen zu können, nämlich ein optisches Überwachungsmittel und ein Ultraschallüberwachungsmittel. Bei dem optischen Überwachungsmittel kann beispielsweise das Messprinzip einer einfachen Transmissionsmessung genutzt werden. Bei der Ultraschallüberwachung sind grundsätzlich alle Messprinzipien möglich, durch die z. B. Gasblasen detektiert werden können.
Beispielsweise kann das Ultraschallüberwachungsmittel an einer Seite eines Fluid- führungsweges mit seinem Empfängerteil angeordnet sein. Der Ultraschallimpuls kann sodann von einem Sender in die mit Flüssigkeit durchströmte Fluidführung eingekoppelt werden. Die Gasblasen im Fluid schwächen das akustische Signal ab. Nach Durchwandern des Schallsignals durch die Fluidführung trifft das Signal auf die Wandung des Fluidführungskanals und wird entsprechend reflektiert. Dieses Signal durchwandert sodann erneut die Fluidführung und kann vom Empfängerteil aufgenommen werden. Anhand der Auswertung des Schallsignals kann sodann unterschieden werden, ob Gasblasen vorhanden sind oder nicht.
Durch die kombinierte Auswertung der Überwachungssignale, die vom optischen Überwachungsmittel und vom Ultraschallüberwachungsmittel erhalten werden können, ist es vorteilhaft möglich, einfach und sicher das Vorhandensein einer Luftblase und/oder eines Festkörpers zu erkennen.
Ein entsprechendes Signalauswertemittel kann beispielsweise eine Recheneinheit sein, wobei es sich auch um die Recheneinheit eines mit der Vorrichtung in Verbin- dung stehenden Steuerungs- und/oder Regelungsmittels einer Blutbehandlungsvorrichtung wie einer Hämodialysemaschine handeln kann.
Des Weiteren kann vorgesehen sein, dass mittels des Signalauswertemittels eine oder mehrere Luftblasen im Fluid erkennbar sind, wenn zumindest das Ultraschallüberwachungsmittel wenigstens eine Fremdstruktur als ein signalauslösendes Ereignis registriert und ein Signal abgibt oder wenn das optische Überwachungsmittel und das Ultraschallüberwachungsmittel jeweils wenigstens eine Fremdstruktur als ein signalauslösendes Ereignis im Wesentlichen zeitgleich registrieren und ein Signal abgeben, und/oder dass mittels des Signalauswertemittels ein oder mehrere Festkörper, insbesondere Blutgerinnsel, im Fluid erkennbar sind, wenn das optische Überwachungsmittel wenigstens eine Fremdstruktur als signalauslösendes Ereignis registriert und das Ultraschallüberwachungsmittel im Wesentlichen zeitgleich keine oder eine sehr kleine Fremdstruktur als signalauslösendes Ereignis registriert. Eine zeitgleiche Messung kann verständlicherweise nur erfolgen, wenn das optische Überwachungsmittel und das Ultraschallüberwachungsmittel am gleichen Ort angeordnet sind bzw. am gleichen Ort signalauslösende Ereignisse registrieren. Wenn das optische Überwachungsmittel und das Ultraschallüberwachungsmittel nicht am gleichen Ort, sondern versetzt angeordnet sind bzw. an unterschiedlichen Orten signalauslösende Ereignisse registrieren, so ist dieser Versatz z. B. durch Berücksichtigung der Strömungsgeschwindigkeit und der damit verbundenen Totzeit zu berücksichtigen. Auch in einem derartigen Fall erfolgt die Registrierung der signalauslösenden Ereignisse durch die Berücksichtigung des Versatzes dann ebenfalls im Wesentlichen zeitgleich im vorgenannten Sinne. Insbesondere sind optische Überwachungsmittel und das Ultraschallüberwachungsmittel vorzugsweise nur mit einem geringen bzw. sehr geringen Versatz angeordnet. Es ist in diesem Zusammenhang auch denkbar, dass ein Gerinnsel dann erkannt werden kann, wenn das optische Signal wesentlich größer bzw. stärker ist als das erhaltene Ultraschallsignal. Anhand der Divergenz der erhaltenen Signale kann somit ebenfalls ein Gerinnsel detektiert werden. Es ist möglich, dass das optische Überwachungsmittel wenigstens ein optischer Sensor ist oder wenigstens einen optischen Sensor umfasst und/oder dass das Ultraschallüberwachungsmittel wenigstens ein Ultraschallsensor ist oder wenigstens einen Ultraschallsensor umfasst und/oder dass mittels des optischen Überwachungsmittels Luftblasen und Festkörper, insbesondere Blutgerinnsel, detektierbar und mittels des Ultraschallüberwachungsmittels Luftblasen detektierbar sind. Der optische Sensor kann auf Luftblasen und Blutgerinnsel gleichermaßen mit einem kurzen und starken Signalanstieg reagieren, da die transmittierte Intensität der Strahlung kurzzeitig zunimmt. Demgegenüber kann ein Ultraschallsensor nur vorbeiströmende Luftblasen detektieren und quantifizieren. Eine Gerinnselerkennung kann durch den Ultraschallsensor nicht erfolgen, da der Dichteunterschied zwischen Blut bzw. Plasma und Gerinnsel zu gering ist. Folglich kann in einem Fall, in dem nur der optische Sensor ein Signal generiert und der Ultraschallsensor kein Signal generiert, festgestellt werden, dass sich ein Blutgerinnsel im Blutstrom befindet. Entsprechend kann bzw. können eine oder mehrere Luftblasen detektiert werden, wenn beide Sensoren, also der optische Sensor und der Ultraschallsensor ein Signal generieren, festgestellt werden.
Vorzugsweise kann vorgesehen sein, dass der optische Sensor wenigstens eine Lichtquelle und wenigstens einen Photodetektor aufweist, wobei die Lichtquelle vorzugsweise wenigstens eine LED ist oder umfasst und/oder wobei mittels der Lichtquelle besonders vorteilhaft schmalbandiges, nahinfrarotes Licht mit einer Spitzenwellenlänge von etwa 805 nm ausstrahlbar ist. Der Wellenlängenbereich um 805nm eignet sich für den optischen Sensor zur Gerinnseldetektion insbesondere deswegen gut, da die Absorption durch das Hämoglobin in den Erythrozyten einerseits sehr gering und andererseits unabhängig vom Sauerstoffgehalt ist. Die Signalgene- rierung ist folglich vorteilhafterweise von entsprechenden Störfaktoren und Signalverfälschungen entsprechend befreit.
Thrombozyten besitzen bei 805 nm einen sehr niedrigen Absorptionskoeffizienten (nicht messbar), jedoch findet an den Zellen eine Streuung statt, die (wie bei Erythrozyten) im Wesentlichen vorwärts gerichtet ist. Im Normalfall (ohne Thromben- bildung) ist diese Streuung jedoch vernachlässigbar, da die Anzahl und Größe der Thrombozyten im Vergleich zu Erythrozyten sehr gering ist: 99% der Blutzellen sind Erythrozyten mit einem Durchmesser von ca. 7,5 pm (Thrombozyten haben einen Durchmesser von 1 ,5-3 pm). Beim Einsetzen der Gerinnung aggregieren Thrombozyten, bilden einen Thrombus und nehmen mehr Volumen ein. Das führt zu verringerter Absorption innerhalb der Messstrecke und damit zu einem Anstieg der transmittierten Strahlung bei 805 nm.
Darüber hinaus ist denkbar, dass signalabwärts des optischen Überwachungsmittels wenigstens ein Hochpassfilter angeordnet ist, mittels dessen das mittels optischer Überwachung gewonnene Überwachungssignal filterbar ist.
Vorteilhafterweise kann es sich bei dem Hochpassfilter um einen Filter handeln, in dem das Überwachungssignal in festen Abständen von wenigen Millisekunden integrierbar und aus einer vorbestimmten Anzahl von vorangegangener Messungen ein gleitender Mittelwert bestimmbar und vom aktuellen Integrationsergebnis subtrahierbar ist. Ein derartiger Filter weist den Vorteil auf, dass er eine einfache Auswertung des Signals ermöglicht. Wird bei einem solchen Filter das Integrationsergebnis höher gewichtet als der Tiefpass, so erhält man einen High-Boost-Filter, der den Vorteil hat, dass der prinzipielle Signalverlauf erhalten bleibt, während die kurzzeitigen Änderungen hervorgehoben werden. Überschreitet das hochpassgefil- terte Signal einen Schwellwert, so ist entweder eine Luftblase oder ein Gerinnsel durch die Messstrecke geströmt. Detektiert der Ultraschallsensor zeitnah unter Berücksichtigung der Strömungsgeschwindigkeit ebenfalls ein eigenes Signal, so handelt es sich um eine Luftblase. Registriert der Ultraschallsensor jedoch nichts, so wurde ein Gerinnsel detektiert.
Grundsätzlich sind jedoch auch andere Hochpassfilter zur Auswertung geeignet.
Außerdem ist möglich, dass die Vorrichtung eine Aufnahme aufweist, in die ein Flu- idführungsmittel, vorzugsweise ein Schlauchset oder ein Teil eines Schlauchsets öder eine Kassette, insbesondere eine Disposablekassette, oder ein Messkanal, einsetzbar ist und/oder dass die Vorrichtung einen Messkanal aufweist. Bei einem derartigen Schlauchset kann es sich insbesondere um das Schlauchset eines extrakorporalen Blutkreislaufs für eine Hämodialysemaschine handeln. Des Weiteren kann es sich bei einer derartigen Disposablekassette um eine Disposablekassette handeln, in der Teile eines extrakorporalen Blutkreislaufs für eine Hämodialysemaschine angeordnet sind.
Ferner ist denkbar, dass die Vorrichtung eine begrenzte Messstrecke oder Messstelle aufweist oder ausbildet, an der sowohl das optische Überwachungsmittel als auch das Ultraschallüberwachungsmittel angeordnet sind. Durch die örtliche Nähe des optischen Überwachungsmittels zum Ultraschallüberwachungsmittel kann die Überwachung auf Luftblasen bzw. Blutgerinnsel vorteilhaft verbessert werden.
Besonders vorteilhaft ist es, wenn die Messstrecke oder Messstelle in und/oder an der Aufnahme angeordnet ist und/oder dass die Messstrecke oder Messstelle von der Lichtquelle, dem Ultraschallsensor und dem Photodetektor des optischen Überwachungsmittels von drei Seiten umschlossen ist, vorzugsweise in dieser Reihenfolge und vorteilhafterweise derart angeordnet, so dass die Lichtquelle, der Ultraschallsensor und der Fotodetektor des optischen Überwachungsmittels die Messstrecke oder Messstelle U-förmig umschließen. Insbesondere kann durch die U-förmige Anordnung von Lichtquelle, Ultraschallsensor und Photodetektor eine sehr kurze Messstrecke realisiert werden mit dem Vorteil, dass eine vergleichsweise hochgenaue Überwachung der Messstrecke möglich ist. Der Zeitversatz zwischen den jeweils generierten Signalen des optischen Überwachungsmittels als auch des Ultraschallüberwachungsmittels wird hierdurch so gering wie möglich gehalten.
Grundsätzlich ist auch denkbar, dass das optische Überwachungsmittel und das Ultraschallüberwachungsmittel in Transmission und jeweils quer zur Flussrichtung angeordnet sind. Weiter ist denkbar, dass das optische Überwachungsmittel in Transmission quer zur Flussrichtung und das Ultraschallüberwachungsmittel längs zur Flussrichtung angeordnet sind. Des Weiteren kann vorgesehen sein, dass die Vorrichtung wenigstens ein Schutzmittel und/oder wenigstens ein Warnmittel aufweist und/oder mit wenigstens einem Schutzmittel und/oder wenigstens einem Warnmittel in Verbindung steht, wobei mittels des Schutzmittels vorzugsweise der Fluidstrom stoppbar ist und/oder wobei vorzugsweise mittels des Warnmittels auf im Fluid erkannte Bestandteile, insbesondere Luftblasen und Festkörper wie Blutgerinnsel hinweisbar ist. Das Warnmittel kann beispielsweise ein akustisches und/oder optisches Warnmittel sein. Insbesondere kann vorgesehen sein, dass mittels des Warnmittels etwa auf einem Bildschirm ein Warnhinweis ausgegeben wird, wobei zugleich ein Warnton ertönt. Das Schutzmittel kann beispielsweise als Klemme ausgeführt sein oder eine Klemme umfassen und zugleich vorzugsweise mit einem Antriebsmittel wie der Pumpe des Fluidstroms zusammenwirken. Dadurch kann vorteilhafterweise sichergestellt werden, dass bei Erkennung von Fremdstrukturen im Fluid sofort der Fluidstrom gestoppt und eine entsprechende Warnung ausgegeben werden kann. Dies ist insbesondere bei der Hämodialyse sehr wichtig und von Vorteil, da hierdurch eine Zuführung von Luftblasen oder Blutgerinnseln zum Patienten sicher unterbunden werden kann.
Das Schutzmittel und auch das Warnmittel können vorteilhafterweise Bestandteile einer Blutbehandlungsvorrichtung wie einer Hämodialysemaschine sein, die bei der Blutbehandlungsvorrichtung als übliche Komponenten ohnehin grundsätzlich vorhanden sind. Es ergibt sich somit der Vorteil, auf bereits bestehende Komponenten zugreifen zu können, so dass bestehende Blutbehandlungsvorrichtungen einfach nachgerüstet werden können.
Darüber hinaus kann vorgesehen sein, dass die Vorrichtung Bestandteil einer Blutbehandlungsvorrichtung, insbesondere einer Hämodialysemaschine ist oder das die Vorrichtung eine Blutbehandlungsvorrichtung, insbesondere eine Hämodialysemaschine ist. Des Weiteren betrifft die Erfindung ein Verfahren zur Ermittlung und/oder Überwachung von Fremdstrukturen in einem Fluid oder einem Fluidstrom mit den Merkmalen des Anspruchs 11. Danach ist vorgesehen, dass zur Ermittlung und/oder Überwachung von Fremdstrukturen in einem Fluid oder einem Fluidstrom, insbesondere Blut oder Blutstrom, das Fluid optisch und mittels Ultraschall überwacht wird und wobei anhand der Kombination der hieraus erhaltenen Überwachungssignale, insbesondere anhand des Abgleichs der hieraus erhaltenen Überwachungssignale, wenigstens eine Fremdstruktur, insbesondere eine Luftblase und/oder ein Festkörper wie ein Blutgerinnsel, im Fluid erkennbar und/oder von wenigstens einer zweiten Fremdstruktur unterscheidbar ist. Insbesondere ist von Vorteil, dass eine erste Fremdstruktur wie eine Luftblase von einer zweiten Fremdstruktur wie einem Blutgerinnsel durch das erfindungsgemäße Verfahren einfach und sicher sowie zuverlässig unterscheidbar ist.
Ferner kann vorgesehen sein, dass eine oder mehrere Luftblasen im Fluid erkannt werden, wenn zumindest mittels Ultraschallüberwachung wenigstens eine Fremdstruktur im Fluid erkannt wird oder wenn sowohl mittels optischer Überwachung und Ultraschallüberwachung im Wesentlichen zeitgleich wenigstens eine Fremdstruktur im Fluid erkannt wird, und/oder dass ein oder mehrere Festkörper, insbesondere Blutgerinnsel, im Fluid erkannt werden, wenn optisch wenigstens eine Fremdstruktur im Fluid erkannt wird und mittels Ultraschall keine oder eine sehr kleine Fremdstruktur im Fluid erkannt wird. Eine zeitgleiche Messung kann verständlicherweise nur erfolgen, wenn das optische Überwachungsmittel und das Ultraschallüberwachungsmittel am gleichen Ort angeordnet sind bzw. am gleichen Ort signalauslösende Ereignisse registrieren. Wenn das optische Überwachungsmittel und das Ultraschallüberwachungsmittel nicht am gleichen Ort, sondern versetzt angeordnet sind bzw. an unterschiedlichen Orten signalauslösende Ereignisse registrieren, so ist dieser Versatz z. B. durch Berücksichtigung der Strömungsgeschwindigkeit und der damit verbundenen Totzeit zu berücksichtigen. Auch in einem derartigen Fall erfolgt die Registrierung der signalauslösenden Ereignisse durch die Berücksichtigung des Versatzes dann ebenfalls im Wesentlichen zeitgleich im vorgenannten Sinne. Insbesondere sind optische Überwachungsmittel und das Ultraschallüber- wachungsmittel vorzugsweise nur mit einem geringen bzw. sehr geringen Versatz angeordnet. Es ist in diesem Zusammenhang auch denkbar, dass ein Gerinnsel dann erkannt werden kann, wenn das optische Signal wesentlich größer bzw. stärker ist als das erhaltene Ultraschallsignal. Anhand der Divergenz der erhaltenen Signale kann somit ebenfalls ein Gerinnsel detektiert werden.
Des Weiteren ist vorteilhaft möglich, dass das mittels optischer Überwachung gewonnene Überwachungssignal mittels eines Hochpassfilter gefiltert wird.
Grundsätzlich ist hierzu jegliche Art von Hochpassfiltern geeignet.
Besonders vorteilhaft ist es jedoch, wenn der Hochpassfilter vorzugsweise ein Filter ist, in dem das Überwachungssignal in festen Abständen von wenigen Millisekunden integriert und aus einer vorbestimmten Anzahl von vorangegangenen Messungen ein gleitender Mittelwert bestimmt und vom aktuellen Integrationsergebnis subtrahiert wird.
Es kann vorgesehen sein, dass das Verfahren mit wenigstens einer Vorrichtung nach einem der Ansprüche 1 bis 10 durchgeführt wird.
Ferner betrifft die vorliegende Erfindung die Verwendung einer Vorrichtung gemäß Anspruch 1 bis 10 zur Durchführung des Verfahrens gemäß Anspruch 11 bis 15 und/oder die Verwendung einer Vorrichtung gemäß Anspruch 1 bis 10 in einer Blutbehandlungsvorrichtung, insbesondere in einer Hämodialysemaschine.
Darüber hinaus betrifft die vorliegende Erfindung eine Blutbehandlungsvorrichtung, insbesondere eine Hämodialysemaschine mit den Merkmalen des Anspruchs 17. Danach ist vorgesehen, dass eine Blutbehandlungsvorrichtung, insbesondere eine Hämodialysemaschine mit wenigstens einer Vorrichtung nach einem der Ansprüche 1 bis 10 versehen ist. Ferner betrifft die vorliegende Erfindung die Verwendung einer Blutbehandlungsvorrichtung mit den Merkmalen des Anspruchs 18. Danach ist vorgesehen, dass eine Blutbehandlungsvorrichtung, insbesondere Blutbehandlungsvorrichtung nach Anspruch 17, zur Durchführung des Verfahrens mit den Merkmalen der Ansprüche 11 bis 15 und/oder in einer Blutbehandlungsvorrichtung, insbesondere einer Hämodia- lysemaschine verwendet wird.
Darüber hinaus betrifft die Erfindung ein Disposable mit den Merkmalen des Anspruchs 19. Danach ist vorgesehen, dass ein Disposable, insbesondere ein dispo- sables Schlauchset oder eine Diposablekassette, zur Verwendung in einer Vorrichtung nach einem der Ansprüche 1 bis 10, vorzugsweise zum Einsatz in die Aufnahme der Vorrichtung gemäß Anspruch 6 bis 10 eingesetzt wird.
Weitere Einzelheiten und Vorteile der Erfindung sollen nachfolgend in einem in der Zeichnung dargestellten Ausführungsbeispiel der Erfindung näher erläutert werden.
Es zeigen:
Figur 1 : eine schematische Darstellung der Detektion von Luftblasen mittels Ultraschall;
Figur 2: eine schematische Darstellung einer erfindungsgemäßen Vorrichtung zur
Ermittlung und Überwachung von Luftblasen und Blutgerinnseln in einem Blutstrom;
Figur 3: ein Diagramm betreffend Erfassung von Blutgerinnseln mittels des optischen Sensors; und
Figur 4: ein Flussdiagramm betreffend die Signalauswertung des Verfahrens und der Vorrichtung gemäß der Erfindung. Figur 1 zeigt in schematischer Darstellung die Detektion von Luftblasen mittels Ultraschall mittels eines Ultraschallsensors 15, wie er in der Vorrichtung 10 zur Ermittlung und Überwachung von Luftblasen und Blutgerinnseln verwendet wird.
Wie in Figur 1 gezeigt, wird der Schallimpuls vom Sender des Ultraschallsensors 15 in die mit Flüssigkeit durchströmte Fluidführung 30, die ein Schlauchstück 30 eines nicht näher dargestellten disposablen Schlauchsets für die Hämodialyse sein kann, eingekoppelt. Im Blut B befindliche Gasblasen L, L' mit unterschiedlichen Größen schwächen dieses Signal ab. Nach Durchwandern des Schallsignal trifft das Signal auf die dem Sender gegenüberliegende Wand der Fluidführung 30 und wird reflektiert. Das reflektierte Signal durchwandert nun ein zweites Mal die Fluidführung 30 und wird von einem Empfänger des Ultraschallsensors 15 aufgenommen. Anhand der Auswertung des Schallsignals ist es nun grundsätzlich möglich zu unterscheiden, ob Gasblasen vorhanden sind oder nicht.
Der Ultraschallsensor 15 vereint Sender und Empfänger vorzugsweise in einem gemeinsamen Piezoelement, mittels dessen das Ultraschallsignal abgebbar und aufnehmbar ist. In einer derartigen Ausführung wird beispielsweise periodisch zwischen Senden und Empfangen umgeschaltet.
Der optische Sensor 11 zur Gerinnseldetektion (Gerinnseldetektor 11 ) der Vorrichtung 10 besteht, wie in Figur 2 ersichtlich, im Wesentlichen aus einer LED 12 als Lichtquelle 12, die schmalbandiges, nahinfrarotes Licht mit einer Spitzenwellenlänge von etwa 805 nm ausstrahlt. Der Wellenlängenbereich um 805 nm eignet sich deswegen besonders gut, da die Absorption durch das Hämoglobin in den Erythrozyten (rote Blutkörperchen) einerseits sehr gering und andererseits unabhängig vom Sauerstoffgehalt ist.
Gegenüber dieser Lichtquelle 12 ist zur Transmissionsmessung ein Photodetektor 13 angeordnet. Vorzugsweise ist dies ein Photodetektor 13, der ein der empfangenen Intensität entsprechendes Frequenzsignal ausgibt. Alternativ ist ein Photode- tektor, der eine der Intensität proportionale Spannung oder einen der Intensität proportionalen Strom ausgibt, jedoch ebenfalls möglich.
Zwischen Lichtquelle 12 (Sender) und Photodetektor 13 (Empfänger) befindet sich die Messstrecke. Diese Messstrecke kann entweder ein eingespannter Schlauch 30 oder ein Kanal eines Kassettensystems sein. Durch diese Messstrecke strömt das Blut B. In unmittelbarer Nähe des Gerinnseldetektors 11 befindet sich der Luftblasendetektor 15 auf Ultraschallbasis, der idealerweise nur einseitig angebracht wird (vgl. auch Figur 1 ), so dass die Messstrecke U-förmig umschlossen wird. Auf der gegenüberliegenden Seite des Luftblasendetektors 15 befindet sich die nicht näher dargestellte Maschinenfront einer Blutbehandlungsvorrichtung, wie z. B. einer Hä- modialysemaschine.
Der Ultraschallsensor 15 detektiert und quantifiziert vorbeiströmende Luftblasen. Gerinnsel kann dieser Sensor 15 nicht detektieren, da der Dichteunterschied zwischen Blut bzw. Plasma und Gerinnsel zu gering ist. Der Gerinnseldetektor 11 reagiert auf Luftblasen und Blutgerinnsel gleichermaßen mit einem kurzen, starken Signalanstieg, da die transmittierende Intensität der Strahlung kurzzeitig zunimmt. Zur Auswertung wird das Signal des Photodetektors 13 durch eine nicht näher dargestellte Auswerteeinheit in festen Abständen von einigen ms integriert. Das geschieht beim Detektor mit Frequenzausgang durch Zählen der Pulse oder Messen der Frequenz. Aus einer bestimmten Anzahl vorangegangener Messungen wird ein gleitender Mittelwert bestimmt und vom aktuellen Integrationsergebnis subtrahiert. Diese Art des Hochpassfilters ermöglicht eine einfache Auswertung des Signals. Andere Hochpassfilter eignen sich jedoch ebenfalls zur Auswertung. Überschreitet das hochpassgefilterte Signal einen Schwellwert, so ist entweder eine Luftblase oder ein Gerinnsel durch die Messstrecke geströmt. Detektiert der Ultraschallsensor 15 (zeitnah unter Berücksichtigung der Strömungsgeschwindigkeit) ebenfalls ein Ereignis, so handelt es sich um eine Luftblase. Registriert der Ultraschallsensor 15 jedoch nichts, so wurde ein Gerinnsel detektiert. Figur 3 zeigt beispielhaft das Ergebnis einer Messung mit Blut und mit dem optischen Sensor 11. Die Gerinnung des Blutes tritt nach etwas mehr als 60 Minuten ein, was an dem Rückgang der Thrombozyten im Blut erkennbar ist. Folglich kommt es zum Auftreten von mehreren Blutgerinnsel, die mittels des Sensors 11 detektiert werden. Die Ausschläge der Sensorsignale sind als senkrechte Balken im Diagramm angetragen.
Die Höhe der Impulse kann durch Auslegung des Sensors 11 beeinflusst werden. Im hier vorliegenden Fall wurde eine Integration des Sensorsignals über 20 ms vorgenommen. Wird diese Integrationszeit kürzer gewählt, so heben sich die Impulse deutlicher vom restlichen Transmissionssignal ab. Die Auslegung des Filters bzw. Hochpassfilters - insbesondere die Anzahl der Messwerte, die in die Berechnung des gleitenden Durchschnitts einfließen - hat ebenfalls Einfluss hierauf.
Wird nun ein Gerinnsel oder eine Luftblase detektiert, so wird durch die Blutbehandlungsvorrichtung, insbesondere die Hämodialysemaschine ein Alarm ausgegeben, etwa durch einen Warnton sowie durch eine entsprechende Anzeige mittels Warnblinklicht oder auf dem Bedienbildschirm.
Besonders vorteilhaft kann die erfindungsgemäße Vorrichtung bei der Reinfusion von Blut aus dem extrakorporalen Blutkreislauf eingesetzt werden, denn hierbei wird Blut nicht zwangsweise durch den im venösen Teil üblicherweise vorhandenen Gerinnselfänger durchgefördert. Beispielsweise kann bei der Reinfusion im Alarmfall ein Beenden der Reinfusion oder ein Einleiten eines Sonderhandlings durch den Bediener ausgelöst werden, wobei das Sonderhandling darin bestehen kann, dass der entsprechende Fluidstrom mit Gerinnsel oder Luftblasen in einen Kochsalzbeutel oder ein sonstiges Auffangbehältnis gefördert wird. Zugleich kann aber auch für Gerinnsel oder Luftblasen, die bei normaler Flussrichtung, also durch den Luft- und Gerinnselfänger im venösen Teil des extrakorporalen Blutkreislaufs gefördert werden, keine Warnung ausgegeben werden, denn diese stellen keine Gefahr für den Patienten dar. Diese Funktionen können vorzugsweise automatisch oder halbautomatisch durch ein Schutz- und Warnmittel 40 (vgl. Figur 4) durchgeführt werden. Denkbar ist beispielsweise, dass jeweils ein optischer Sensor 11 und ein Ultraschallsensor 15 sowohl auf der arteriellen als auch auf der venösen Seite des Blutkreislaufs vorgesehen ist. Im normalen Behandlungsbetrieb kann das Sensorpaar bestehend aus dem optischen Sensor 11 und dem Ultraschallsensor 15 auf der venösen Seite des extrakorporalen Blutkreislaufs auf Gerinnsel ausgewertet werden und bei einer Detektion ein Sonderhandling anfordern. Bei normaler Reinfusi- on, beispielsweise mittels eines Einförderns von Kochsalzlösung aus einem an die arterielle Leitung angeschlossenen Kochsalzlösungsbeutels und einer Reinfusion des Blutes über den venösen Teil des extrakorporalen Blutkreislaufs kann bzw. wird ebenfalls das Sensorpaar bestehend aus dem optischen Sensor 11 und dem Ultraschallsensor 15 auf der venösen Seite des extrakorporalen Blutkreislaufs ausgewertet. Bei simultaner Reinfusion, wenn also das Blut sowohl über den arteriellen und venösen Teil des extrakorporalen Blutkreislaufs zurückgegeben wird, werden beide Sensorpaare, also sowohl das Sensorpaar auf der arteriellen als auch auf der venösen Seite ausgewertet, wobei beide bei Detektion eines Gerinnsels oder einer Luftblase die Reinfusion auf der entsprechenden Seite entweder beenden oder ein Sonderhandling anfordern. In jedem Fall wird die Sicherheitsklemme genutzt, um den Blutfluss zu stoppen.
Figur 4 zeigt vereinfacht nochmals das Flussdiagramm betreffend die Signalauswertung der Vorrichtung bzw. des Verfahrens. Das vom optischen Sensor 11 aufgenommene Signal wird durch einen Hochpassfilter geleitet und einer Pulsdetektion unterzogen. Sofern ein Ereignis detektiert wurde, wird dieses mit dem vom Ultraschallsensor 15 gewonnenen Signal verglichen. Sollte im Wesentlichen zeitgleich sowohl vom optischen Sensor 11 als auch vom Ultraschallsensor 15 ein Ereignis detektiert worden sein, wird mittels des Signalauswertemittels, das beispielsweise Bestandteil der zentralen Steuer- und/oder Regelungseinheit der Blutbehandlungsvorrichtung sein kann, erkannt, dass Luftblasen vorbeigeströmt sind. Sollte nur mittels des optischen Sensors 11 ein Ereignis detektiert worden sein, so wird mittels des Signalauswertemittels erkannt, dass ein Gerinnsel vorbeigeströmt ist. ln einem derartigen Fall werden Schutz- und Warnmittel 40 aktiviert. Im Einzelnen kann dies beispielsweise bedeuten, dass auf einem Ausgabemittel wie einem Bildschirm einer Blutbehandlungsvorrichtung, in der die erfindungsgemäße Vorrichtung verwendet wird, eine Warnmeldung ausgibt und dass weiter gegebenenfalls der extrakorporale Blutkreislauf gestoppt wird.

Claims

12.08.2011 02085-11 He/We/se Fresenius Medical Care Deutschland GmbH D-61532 Bad Homburg Vorrichtung zur Ermittlung und/oder Überwachung von Fremdstrukturen in einem Fluid oder einem Fluidstrom sowie Verfahren hierzu Ansprüche
1. Vorrichtung zur Ermittlung und/oder Überwachung von Fremdstrukturen in einem Fluid oder einem Fluidstrom, insbesondere Blut oder Blutstrom, mit wenigstens einem optischen Überwachungsmittel, wenigstens einem Ultraschallüberwachungsmittel und wenigstens einem Signalauswertemittel, wobei das Fluid zumindest mittels des optischen Überwachungsmittels optisch und zumindest mittels des Ultraschallüberwachungsmittels mittels Ultraschall überwachbar ist und wobei anhand der Kombination der hieraus erhaltenen Überwachungssignale, insbesondere anhand des Abgleichs der hieraus erhaltenen Überwachungssignale, wenigstens eine Fremdstruktur, insbesondere eine Luftblase und/oder ein Festkörper wie ein Blutgerinnsel, im Fluid mittels des Signalauswertemittels erkennbar und/oder von wenigstens einer zweiten Fremdstruktur mittels des Signalauswertemittels unterscheidbar ist.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass mittels des Signalauswertemittels eine oder mehrere Luftblasen im Fluid erkennbar sind, wenn zumindest das Ultraschallüberwachungsmittel wenigstens eine Fremdstruktur als ein signalauslösendes Ereignis registriert und ein Signal abgibt oder wenn das optische Überwachungsmittel und das Ultraschallüberwachungsmittel jeweils wenigstens eine Fremdstruktur als ein signalauslösendes Ereignis im Wesentlichen zeitgleich registrieren und ein Signal abgeben, und/oder dass mittels des Signalauswertemittels ein oder mehrere Festkörper, insbesondere Blutgerinnsel, im Fluid erkennbar sind, wenn das optische Überwachungsmittel wenigstens eine Fremdstruktur als signalauslösendes Ereignis registriert und das Ultraschallüberwachungsmittel im Wesentlichen zeitgleich keine oder eine sehr kleine Fremdstruktur als signalauslösendes Ereignis registriert.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das optische Überwachungsmittel wenigstens ein optischer Sensor ist oder wenigstens einen optischen Sensor umfasst und/oder dass das Ultraschallüberwachungsmittel wenigstens ein Ultraschallsensor ist oder wenigstens einen Ultraschallsensor umfasst und/oder dass mittels des optischen Überwachungsmittels Luftblasen und Festkörper, insbesondere Blutgerinnsel, detektierbar und mittels des Ultraschallüberwachungsmittels Luftblasen detektierbar sind.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der optische Sensor wenigstens eine Lichtquelle und wenigstens einen Photodetektor aufweist, wobei die Lichtquelle vorzugsweise wenigstens eine LED ist oder umfasst und/oder wobei mittels der Lichtquelle besonders vorteilhaft schmalban- diges, nahinfrarotes Licht mit einer Spitzenwellenlänge von etwa 805 nm ausstrahlbar ist.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass signalabwärts des optischen Überwachungsmittels wenigstens ein Hochpassfilter angeordnet ist, mittels dessen das mittels optischer Überwachung gewonnene Überwachungssignal filterbar ist, wobei der Hochpassfilter vorzugsweise ein Filter ist, in dem das Überwachungssignal in festen Ab- ständen von wenigen Millisekunden integrierbar und aus einer vorbestimmten Anzahl von vorangegangener Messungen ein gleitender Mittelwert bestimmbar und vom aktuellen Integrationsergebnis subtrahierbar ist.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorrichtung eine Aufnahme aufweist, in die ein Fluidfüh- rungsmittel, vorzugsweise ein Schlauchset oder ein Teil eines Schlauchsets oder eine Kassette, insbesondere eine Disposablekassette, oder ein Messkanal, einsetzbar ist und/oder dass die Vorrichtung einen Messkanal aufweist.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorrichtung eine begrenzte Messstrecke oder Messstelle aufweist oder ausbildet, an der sowohl das optische Überwachungsmittel als auch das Ultraschallüberwachungsmittel angeordnet sind.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Messstrecke oder Messstelle in und/oder an der Aufnahme angeordnet ist und/oder dass die Messstrecke oder Messstelle von der Lichtquelle, dem Ultraschallsensor und dem Photodetektor von drei Seiten umschlossen ist, vorzugsweise in dieser Reihenfolge und vorteilhafterweise derart angeordnet, so dass die Lichtquelle, der Ultraschallsensor und der Photodetektor die Messstrecke oder Messstelle U-förmig umschließen.
9. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorrichtung wenigstens ein Schutzmittel und/oder wenigstens ein Warnmittel aufweist und/oder mit wenigstens einem Schutzmittel und/oder wenigstens einem Warnmittel in Verbindung steht, wobei mittels des Schutzmittels vorzugsweise der Fluidstrom stoppbar ist und/oder wobei vorzugsweise mittels des Warnmittels auf im Fluid erkannte Fremdstrukturen, insbesondere auf Luftblasen und Festkörper wie Blutgerinnsel, hinweisbar ist.
10. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorrichtung Bestandteil einer Blutbehandlungsvorrichtung, insbesondere einer Hämodialysemaschine ist oder eine Blutbehandlungsvorrichtung, insbesondere eine Hämodialysemaschine, ist.
11. Verfahren zur Ermittlung und/oder Überwachung von Fremdstrukturen in einem Fluid oder einem Fluidstrom, insbesondere Blut oder Blutstrom, wobei das Fluid optisch und mittels Ultraschall überwacht wird und wobei anhand der Kombination der hieraus erhaltenen Überwachungssignale, insbesondere anhand des Abgleichs der hieraus erhaltenen Überwachungssignale, wenigstens eine Fremdstruktur, insbesondere eine Luftblase und/oder ein Festkörper wie ein Blutgerinnsel, im Fluid erkennbar und/oder von wenigstens einer zweiten Fremdstruktur unterscheidbar ist.
12. Verfahren nach Anspruch 11 , dadurch gekennzeichnet, dass eine oder mehrere Luftblasen im Fluid erkannt werden, wenn zumindest mittels Ultraschallüberwachung wenigstens eine Fremdstruktur im Fluid erkannt wird oder wenn sowohl mittels optischer Überwachung und Ultraschallüberwachung im Wesentlichen zeitgleich wenigstens eine Fremdstruktur im Fluid erkannt wird, und/oder dass ein oder mehrere Festkörper, insbesondere Blutgerinnsel, im Fluid erkannt werden, wenn optisch wenigstens eine Fremdstruktur im Fluid erkannt wird und mittels Ultraschall keine oder eine sehr kleine Fremdstruktur im Fluid erkannt wird.
13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass das mittels optischer Überwachung gewonnene Überwachungssignal mittels eines Hochpassfilters gefiltert wird.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass der Hochpassfilter vorzugsweise ein Filter ist, in dem das Überwachungssignal in festen Abständen von wenigen Millisekunden integriert und aus einer vorbestimmten Anzahl von vorangegangenen Messungen ein gleitender Mittelwert bestimmt und vom aktuellen Integrationsergebnis subtrahiert wird.
15. Verfahren nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, dass das Verfahren mit wenigstens einer Vorrichtung nach einem der Ansprüche 1 bis 10 durchgeführt wird.
16. Verwendung einer Vorrichtung nach einem der Ansprüche 1 bis 10 zur Durchführung des Verfahrens gemäß Anspruch 11 bis 15 und/oder in einer Blutbehandlungsvorrichtung, insbesondere einer Hämodialysemaschine.
17. Blutbehandlungsvorrichtung, insbesondere Hämodialysemaschine, mit wenigstens einer Vorrichtung nach einem der Ansprüche 1 bis 10.
18. Verwendung einer Blutbehandlungsvorrichtung, insbesondere eine Blutbehandlungsvorrichtung nach Anspruch 17, zur Durchführung des Verfahrens gemäß Anspruch 11 bis 15.
19. Disposable, insbesondere disposables Schlauchset oder Disposablekassette, zur Verwendung, in einer Vorrichtung nach einem der Ansprüche 1 bis 10, vorzugsweise zum Einsatz in die Aufnahme der Vorrichtung gemäß Anspruch 6 bis 10.
PCT/EP2011/004072 2010-08-17 2011-08-12 Vorrichtung zur ermittlung und/oder überwachung von fremdstrukturen in einem fluid oder einem fluidstrom sowie verfahren hierzu WO2012022456A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/817,651 US9068965B2 (en) 2010-08-17 2011-08-12 Apparatus and method for detecting blood clots in an extracorporeal blood circuit
CN201180039775.4A CN103068418B (zh) 2010-08-17 2011-08-12 用于对流体或流体流中的杂质结构进行测定和/或监控的设备以及对此的方法
EP11745700.2A EP2605811B1 (de) 2010-08-17 2011-08-12 Vorrichtung zur ermittlung und/oder überwachung von fremdstrukturen in einem fluid oder einem fluidstrom sowie verfahren hierzu
JP2013524374A JP5873870B2 (ja) 2010-08-17 2011-08-12 液体又は流体中における外来物の測定及び/又は監視装置、及び、その方法
AU2011291085A AU2011291085B2 (en) 2010-08-17 2011-08-12 Device for determining and/or monitoring foreign structures in a fluid or in a fluid stream, and method for doing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010034553A DE102010034553A1 (de) 2010-08-17 2010-08-17 Vorrichtung zur Ermittlung und/oder Überwachung von Fremdstrukturen in einem Fluid oder einem Fluidstrom sowie Verfahren hierzu
DE102010034553.9 2010-08-17

Publications (1)

Publication Number Publication Date
WO2012022456A1 true WO2012022456A1 (de) 2012-02-23

Family

ID=44509180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/004072 WO2012022456A1 (de) 2010-08-17 2011-08-12 Vorrichtung zur ermittlung und/oder überwachung von fremdstrukturen in einem fluid oder einem fluidstrom sowie verfahren hierzu

Country Status (9)

Country Link
US (1) US9068965B2 (de)
EP (1) EP2605811B1 (de)
JP (1) JP5873870B2 (de)
CN (1) CN103068418B (de)
AR (1) AR082713A1 (de)
AU (1) AU2011291085B2 (de)
DE (1) DE102010034553A1 (de)
TW (1) TWI569821B (de)
WO (1) WO2012022456A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104056315A (zh) * 2014-06-20 2014-09-24 郭淑玲 一种血液净化用气泡监测系统
WO2018224603A1 (de) * 2017-06-10 2018-12-13 Fresenius Medical Care Deutschland Gmbh Vorrichtung zur extrakorporalen blutbehandlung und vorrichtung zum sammeln von blutgerinnseln sowie verfahren zum bestimmen eines hämodynamischen parameters während einer extrakorporalen blutbehandlung
CN110554087A (zh) * 2019-09-18 2019-12-10 哈尔滨工业大学 一种检测血凝块的装置
EP3610258A4 (de) * 2017-04-10 2020-12-30 Fresenius Medical Care Holdings, Inc. Optischer nachweis von luftblasen in kochsalzlösung, blut oder einer mischung aus beidem

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009060668A1 (de) * 2009-12-28 2011-06-30 Fresenius Medical Care Deutschland GmbH, 61352 Vorrichtung und Verfahren zur Überwachung einer extrakorporalen Blutbehandlung
WO2014190295A2 (en) * 2013-05-23 2014-11-27 Rapid Diagnostek Two part assembly
DE102013224389A1 (de) 2013-11-28 2015-05-28 GAMPT mbH, Gesellschaft für angewandte medizinische Physik und Technik Verfahren zur Ermittlung und/oder Überwachung des Zustandes eines extrakorporalen Fluides oder Fluidstroms mittels Ultraschall
DE102015120099B4 (de) 2015-11-19 2024-02-22 GAMPT mbH Gesellschaft für Angewandte Medizinische Physik und Technik Ultraschallsonde zur Detektion von Fremdstrukturen in Fluiden
DE102017001484A1 (de) * 2017-02-16 2018-08-16 Fresenius Medical Care Deutschland Gmbh Verfahren und Anordnung zum Kalibrieren von Vorrichtungen zur Erkennung von Blut oder Blutbestandteilen in einer Flüssigkeit
DE102017122540A1 (de) * 2017-09-28 2019-03-28 B. Braun Avitum Ag Mehrfachsensorvorrichtung
US10596311B2 (en) 2018-05-25 2020-03-24 Fresenius Medical Care Holdings, Inc. Fiber-optic clot detector with an ultrasonic clot neutralizer
CN110849974B (zh) * 2019-12-03 2022-03-01 常州市第一人民医院 一种吸附柱扫描仪

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935876A (en) 1974-11-15 1976-02-03 Renal Systems, Inc. Air leak detector
US4122713A (en) 1977-05-19 1978-10-31 Medtronic, Inc. Liquid velocity measuring system
JPH07103967A (ja) * 1993-10-05 1995-04-21 Syst Sutatsuku:Kk 検体処理装置
JPH07103967B2 (ja) 1988-11-29 1995-11-08 松下電器産業株式会社 石油燃焼装置
EP0980686A2 (de) * 1998-08-19 2000-02-23 Fresenius Medical Care Deutschland GmbH Multifunktionssensor
US6740036B1 (en) * 2000-07-18 2004-05-25 Lian-Pin Lee Optical and ultrasound probe for monitoring blood volume changes
EP0979111B1 (de) 1997-04-29 2006-02-01 Medtronic, Inc. Optische erkennung und quantifizierung von mikrobläschen in blut
US20060287628A1 (en) * 2005-06-17 2006-12-21 Terumo Kabushiki Kaisha Blood component collection apparatus and method
WO2007121398A2 (en) 2006-04-17 2007-10-25 Greenwald Technologies, Inc. Systems and methods for detecting the presence and/or absence of a solid liquid or gas
US20090078047A1 (en) * 2007-09-21 2009-03-26 Cosense, Inc. Non-invasive multi-function sensor system

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974681A (en) * 1973-10-23 1976-08-17 Jerry Namery Ultrasonic bubble detector
US4418565A (en) * 1980-12-03 1983-12-06 Baxter Travenol Laboratories, Inc. Ultrasonic bubble detector
JPS5896234A (ja) * 1981-12-03 1983-06-08 Daicel Chem Ind Ltd 漏血検出方法及びその装置
US4690002A (en) * 1986-05-14 1987-09-01 Minnesota Minning And Manufacturing Company Doppler system for measurement of blood flow during cardiopulmonary bypass and ventricular assist
EP0321717B1 (de) * 1987-11-30 1995-07-05 Aloka Co. Ltd. Verfahren und Anordnung zur Ultraschall-Messung der Strömungsgeschwindigkeit
US5043706A (en) * 1990-10-19 1991-08-27 Eastman Kodak Company System and method for detecting bubbles in a flowing fluid
JP2971182B2 (ja) * 1991-06-05 1999-11-02 日機装株式会社 漏血検出器
US5394732A (en) * 1993-09-10 1995-03-07 Cobe Laboratories, Inc. Method and apparatus for ultrasonic detection of air bubbles
US5591344A (en) * 1995-02-13 1997-01-07 Aksys, Ltd. Hot water disinfection of dialysis machines, including the extracorporeal circuit thereof
WO1997002059A1 (en) * 1995-07-06 1997-01-23 Disetronic Licensing Ag Disposable cassette for connection to a liquid drug infusion pump
US5730720A (en) * 1995-08-18 1998-03-24 Ip Scientific, Inc. Perfusion hyperthermia treatment system and method
US6538739B1 (en) * 1997-09-30 2003-03-25 The Regents Of The University Of California Bubble diagnostics
US6531708B1 (en) * 2001-04-16 2003-03-11 Zevex, Inc. Optical bubble detection system
JP4680422B2 (ja) * 2001-05-29 2011-05-11 嘉之 山海 血栓計測装置
JP4129866B2 (ja) * 2002-07-18 2008-08-06 日機装株式会社 血液処理装置
DE10243069B4 (de) * 2002-08-28 2006-07-13 Fresenius Medical Care Deutschland Gmbh Verwendung einer Vorrichtung zur Anordnung eines Sensors für Einschlüsse und/oder Teilchen in einer Flüssigkeit, die durch einen Schlauch transportiert wird
JP3958733B2 (ja) * 2002-11-14 2007-08-15 日機装株式会社 血液浄化装置
AU2004294569A1 (en) * 2003-11-26 2005-06-16 Separation Technology, Inc. Method and apparatus for ultrasonic determination of hematocrit and hemoglobin concentrations
DE102005025500B3 (de) * 2005-06-03 2006-10-05 Fresenius Medical Care Deutschland Gmbh Verfahren und Vorrichtung zum Überwachen einer strömenden Flüssigkeit auf das Vorhandensein von Luft
US7998115B2 (en) * 2007-02-15 2011-08-16 Baxter International Inc. Dialysis system having optical flowrate detection
US8287480B2 (en) * 2007-06-29 2012-10-16 Jms Co., Ltd. Hemodialysis apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935876A (en) 1974-11-15 1976-02-03 Renal Systems, Inc. Air leak detector
US4122713A (en) 1977-05-19 1978-10-31 Medtronic, Inc. Liquid velocity measuring system
JPH07103967B2 (ja) 1988-11-29 1995-11-08 松下電器産業株式会社 石油燃焼装置
JPH07103967A (ja) * 1993-10-05 1995-04-21 Syst Sutatsuku:Kk 検体処理装置
EP0979111B1 (de) 1997-04-29 2006-02-01 Medtronic, Inc. Optische erkennung und quantifizierung von mikrobläschen in blut
EP0980686A2 (de) * 1998-08-19 2000-02-23 Fresenius Medical Care Deutschland GmbH Multifunktionssensor
US6740036B1 (en) * 2000-07-18 2004-05-25 Lian-Pin Lee Optical and ultrasound probe for monitoring blood volume changes
US20060287628A1 (en) * 2005-06-17 2006-12-21 Terumo Kabushiki Kaisha Blood component collection apparatus and method
WO2007121398A2 (en) 2006-04-17 2007-10-25 Greenwald Technologies, Inc. Systems and methods for detecting the presence and/or absence of a solid liquid or gas
US20090078047A1 (en) * 2007-09-21 2009-03-26 Cosense, Inc. Non-invasive multi-function sensor system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104056315A (zh) * 2014-06-20 2014-09-24 郭淑玲 一种血液净化用气泡监测系统
CN104056315B (zh) * 2014-06-20 2017-02-01 刘波 一种血液净化用气泡监测系统
EP3610258A4 (de) * 2017-04-10 2020-12-30 Fresenius Medical Care Holdings, Inc. Optischer nachweis von luftblasen in kochsalzlösung, blut oder einer mischung aus beidem
US11083832B2 (en) 2017-04-10 2021-08-10 Fresenius Medical Care Holdings, Inc. Optical detection of air bubbles in either saline or blood or a mixture of both
WO2018224603A1 (de) * 2017-06-10 2018-12-13 Fresenius Medical Care Deutschland Gmbh Vorrichtung zur extrakorporalen blutbehandlung und vorrichtung zum sammeln von blutgerinnseln sowie verfahren zum bestimmen eines hämodynamischen parameters während einer extrakorporalen blutbehandlung
US11324868B2 (en) 2017-06-10 2022-05-10 Fresenius Medical Care Deutschland Gmbh Device for extracorporeal blood treatment and device for collecting blood clots, and method for determining a hemodynamic parameter during an extracorporeal blood treatment
CN110554087A (zh) * 2019-09-18 2019-12-10 哈尔滨工业大学 一种检测血凝块的装置

Also Published As

Publication number Publication date
JP2013534160A (ja) 2013-09-02
TWI569821B (zh) 2017-02-11
AU2011291085A1 (en) 2013-02-28
JP5873870B2 (ja) 2016-03-01
AU2011291085B2 (en) 2015-01-22
EP2605811A1 (de) 2013-06-26
CN103068418B (zh) 2016-10-26
CN103068418A (zh) 2013-04-24
EP2605811B1 (de) 2015-10-21
US9068965B2 (en) 2015-06-30
US20130155387A1 (en) 2013-06-20
AR082713A1 (es) 2012-12-26
DE102010034553A1 (de) 2012-03-08
TW201223570A (en) 2012-06-16

Similar Documents

Publication Publication Date Title
EP2605811B1 (de) Vorrichtung zur ermittlung und/oder überwachung von fremdstrukturen in einem fluid oder einem fluidstrom sowie verfahren hierzu
JP4373684B2 (ja) フィルタ目詰まり状況監視装置およびベッドサイドシステム
EP1886130B1 (de) Verfahren und vorrichtung zum überwachen einer strömenden flüssigkeit auf das vorhandensein von luft
JP4573860B2 (ja) 血液浄化装置
DE102005025500B3 (de) Verfahren und Vorrichtung zum Überwachen einer strömenden Flüssigkeit auf das Vorhandensein von Luft
EP1199029A2 (de) Verfahren und Vorrichtung zur Pulswellenlaufzeitbestimmung und extrakorporale Blutbehandlungseinrichtung mit einer solchen Vorrichtung
EP2068973B1 (de) Verfahren und vorrichtung zur erkennung von luft in einem flüssigkeitssystem, insbesondere in einem extrakorporalen blutkreislauf einer blutbehandlungsvorrichtung
EP0358873B1 (de) Vorrichtung zur Bestimmung der Änderung des intravasalen Blutvolumens während der Blutfiltration in einer Blutreinigungseinrichtung
EP0995451A2 (de) Verfahren und Vorrichtung zur Überwachung eines Gefässzuganges
DE102010028902A1 (de) Verfahren und Vorrichtung zur Bestimmung zellulärer und/oder extrazellulärer, insbesondere makromolekularer Anteile von Flüssigkeiten, vorzugsweise von Körperflüssigkeiten von Lebewesen
EP3074060B1 (de) Verfahren zur ermittlung und/oder überwachung des zustands eines extrakorporalen fluides oder fluidstroms mittels ultraschall
EP3063541B1 (de) Verfahren und vorrichtung zur erfassung der hämolyse oder zur bestimmung eines den einfluss der hämolyse auf eine messung des hämatokrits korrigierenden korrekturfaktors
EP2590562B1 (de) Bestimmen der konzentration eines blutbestandteils in einer schlauchleitung
DE102015120099B4 (de) Ultraschallsonde zur Detektion von Fremdstrukturen in Fluiden
DE102009005402B4 (de) Verfahren zum Bestimmen der Konzentration von Blutbestandteilen in einer mit Blut gefüllten Schlauchleitung
DE3720667A1 (de) Haemodialyse- und haemofiltrationsvorrichtung
WO2015004009A1 (de) Verfahren und vorrichtung zur detektion eines ansaugens einer entnahmekanüle
WO2013139438A1 (de) Verfahren und system zur spüllösungsversorgung bei endoskopischen eingriffen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180039775.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11745700

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 9488/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2013524374

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13817651

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011291085

Country of ref document: AU

Date of ref document: 20110812

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011745700

Country of ref document: EP