WO2012022027A1 - 一种无铜陶瓷型摩擦材料及其制备方法 - Google Patents

一种无铜陶瓷型摩擦材料及其制备方法 Download PDF

Info

Publication number
WO2012022027A1
WO2012022027A1 PCT/CN2010/076062 CN2010076062W WO2012022027A1 WO 2012022027 A1 WO2012022027 A1 WO 2012022027A1 CN 2010076062 W CN2010076062 W CN 2010076062W WO 2012022027 A1 WO2012022027 A1 WO 2012022027A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
friction material
alkaline earth
friction
fiber
Prior art date
Application number
PCT/CN2010/076062
Other languages
English (en)
French (fr)
Inventor
陆小华
史以俊
陈健
王昌松
穆立文
Original Assignee
南京钛威科技有限公司
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钛威科技有限公司, 南京工业大学 filed Critical 南京钛威科技有限公司
Priority to US13/817,446 priority Critical patent/US20130203888A1/en
Priority to EP10856025.1A priority patent/EP2607335B1/en
Priority to PCT/CN2010/076062 priority patent/WO2012022027A1/zh
Publication of WO2012022027A1 publication Critical patent/WO2012022027A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Compositions of linings; Methods of manufacturing
    • F16D69/027Compositions based on metals or inorganic oxides
    • F16D69/028Compositions based on metals or inorganic oxides containing fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/36Reinforced clay-wares
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/053Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/481Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing silicon, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/63476Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Compositions of linings; Methods of manufacturing
    • F16D69/025Compositions based on an organic binder
    • F16D69/026Compositions based on an organic binder containing fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0082Production methods therefor
    • F16D2200/0086Moulding materials together by application of heat and pressure

Definitions

  • the invention belongs to the field of friction materials, and particularly relates to a copper-free and non-asbestos-friendly environment-friendly brake pad material.
  • ABS anti-lock brake
  • copper materials such as copper fiber, copper fiber and copper particles are characterized by the softness of copper material and high thermal conductivity, which is beneficial to the rapid dissipation of heat generated by friction and facilitates the formation of friction transfer film. surface.
  • environmentalists have shown that a large amount of copper pollution in the environment comes from the production of dust. High concentrations of copper in the environment can cause toxic effects on organisms, especially in aquatic environments. Therefore, the content of copper in the brake material will also be gradually restricted. The state of Washington, USA, etc. has also begun to gradually limit the copper content in the brakes. US patents are also beginning to involve research in this area. For example, U.S. Patent Nos.
  • Carbon fiber is a kind of high modulus and high strength fiber. It is light in weight and high in temperature. It does not creep-free in the high temperature section, has good fatigue resistance, small thermal expansion coefficient, good corrosion resistance and high thermal conductivity. in
  • Patent EP1357310-A uses carbon fiber reinforced C/SiC material, and by adding copper, it produces high conductivity.
  • the thermal coefficient of the brake material makes the material have good friction properties at high temperatures;
  • EP1028098-A is made of a carbon fiber reinforced carbon/carbon composite material for friction materials at high speed and high load.
  • the invention draws on the idea of C/C composite material, utilizes the high thermal conductivity of carbon fiber, and applies it to the phenolic resin-based friction material to obtain a material which can maintain good friction performance under high speed and high load.
  • the carbon fiber improves the thermal conductivity of the material to some extent.
  • the braking force requirement is relatively high, and it is necessary to add other substances to improve the frictional wear performance of the material.
  • Asbestos is a commonly used material for early brake pads, but because of its poor heat resistance and a carcinogen, it has been banned from use in brake pads in many countries. Materials in future brakes will use more materials with a length to diameter ratio of less than 3 or a layered block structure. Titanate is a new type of ceramic material. As an alternative to asbestos, it has been widely used in brake pads in recent years. Japan's Otsuka Company invented a friction material (ZL00800133.2). It uses an alkali metal titanate as a friction material, which is a planar layer of titanate. Good friction and wear properties can be achieved by adding 3 to 50% alkali metal titanate. In other patents it is also concerned with the use of titanates in brake pads.
  • patent CN101631747 provides a potassium titanate having a novel shape, excellent wear resistance in a friction material, and excellent reinforcing properties in a resin composition
  • Patent KR2009019982-A provides a 7-9 Friction material of % copper fiber and 6 ⁇ 8% potassium titanate fiber. Summary of the invention
  • the object of the present invention is to solve the problem that the friction material resists heat decay and poor friction stability in a copper-free environment, and provides an environment-friendly brake pad friction material which can still be used at 250-600 ° C. Maintains stable and good friction properties.
  • the object of the invention can be achieved by the following measures:
  • a copper-free ceramic friction material comprising at least an alkaline earth metal compound having a mass content of 2 to 30% and a carbon fiber having a mass content of 2 to 30%, wherein the alkaline earth metal compound is M x Fe y TiO z , the M is an alkaline earth metal element Be, Mg, Ca, Sr or Ba, and x is 0.2 ⁇ 2, y is 1 to 2, and z is 4 to 16.
  • the copper-free ceramic type friction material also contains a common component of the existing copper-free ceramic type friction material.
  • a preferred copper-free ceramic friction material comprising, in addition to an alkaline earth-based metal compound and carbon fiber, a binder, a friction modifier, and a filler, wherein the binder has a mass content of 5 to 20%, and the friction property is adjusted.
  • the mass of the agent and the filler is 20 to 80%, and the sum of the components satisfies 100%.
  • the mass content of the alkaline earth-based metal compound is preferably 5% to 25%, more preferably 10% to 20%. In order to achieve a better or more specific performance, the content of the alkaline earth metal compound can be controlled to be 10% to 15%.
  • the mass content of the carbon fibers is preferably 2% to 25%, more preferably 2% to 20%, still more preferably 5% to 10%.
  • M is preferably an alkaline earth metal element Mg, Ca or Ba
  • x is preferably 0.2 to 1
  • y is preferably 1 to 2
  • z is preferably 4 to 4.
  • the microscopic form of the alkaline earth-based metal compound of the present invention is preferably a fine particle having a ratio of the equivalent length to the equivalent width of 1 to 3, a thickness of 0.5 to 20 ⁇ m, and a width of 0.5 to 20 ⁇ m, and the specific shape is a sheet or a block.
  • the method for preparing the alkaline earth-based metal compound of the present invention is obtained by using carnallite and titanium-containing mineral as main raw materials, or further comprising an alkali metal compound, and sintering at 800 to 1200 ° C.
  • carnallite and titanium-containing mineral as main raw materials, or further comprising an alkali metal compound, and sintering at 800 to 1200 ° C.
  • the carbon fiber of the present invention may be any of various carbon fibers conventionally used conventionally, and is specifically preferably one or more selected from the group consisting of polyacrylonitrile-based carbon fibers, pitch-based carbon fibers, viscose-based carbon fibers, and phenolic fiber-based carbon fibers.
  • the binder is one or more selected from the group consisting of a phenol resin, a modified phenol resin, and a nitrile rubber.
  • the friction property modifier and filler are selected from the group consisting of glass fiber, ceramic fiber, composite mineral fiber, silicate fiber, lignin fiber, cellulose fiber, aramid, iron black, zircon, iron oxide, zirconium oxide, magnesium oxide, One or more of mica powder, fluorite powder, zeolite, vermiculite, anatase, attapulgite, kaolin, lithopone, barium sulfate, friction powder or heavy calcium carbonate.
  • the friction property modifier in the present invention refers to other friction property adjusting fibers other than carbon fibers.
  • a method for preparing a copper-free ceramic type friction material of the present invention comprising the steps of:
  • step (2) Mixing: taking binder, friction modifier and filler, mixed with step (1) After the materials are stirred and mixed, they are added into a hot press mold;
  • Hot pressing heating to 155 ⁇ 200 °C, holding at a pressure of 10 ⁇ 30MPa for 3 ⁇ 10 minutes for hot pressing;
  • Alkaline earth-based metal compounds have good resistance to decay and have a large friction coefficient, which can effectively reduce wear. Since the raw materials and products of the alkaline earth metal exhibit weaker alkalinity than the alkali metal, it is more advantageous as a brake pad for an alkali-resistant raw material such as a protective resin. In addition, experiments have shown that the addition of such materials can significantly improve the mechanical properties of the composite, and can also absorb the braking noise of part of the braking process during braking. This material is undoubtedly the ideal friction material. This non-fibrous structure is a non-toxic and harmless substance that does not have respirable fibers and therefore does not adversely affect the working environment.
  • the alkaline earth metal compound in the present invention is an alkaline earth metal compound containing iron, and its electrical conductivity is 2 to 10 times that of ordinary titanate. During the braking process, the static electricity generated by the friction material surface can be effectively guided to provide an antistatic effect.
  • Carbon fiber is a high modulus, high strength fiber that is light in weight. It is resistant to high temperature, does not occur in the high temperature section, has no creep, has good fatigue resistance, small thermal expansion coefficient, good corrosion resistance, high thermal conductivity, and is more conducive to heat loss during braking.
  • the friction coefficient is relatively high, but the friction coefficient is unstable at high temperature, and the mechanical properties are relatively poor.
  • the friction performance can be maintained at a high temperature. And can maintain good mechanical properties, but the friction coefficient is relatively low.
  • the thermal conductivity of the copper-free ceramic friction material of the invention is 0.8 ⁇ 3W ⁇ K-lm-1, and the friction material has a friction coefficient higher than that of the brake pad without carbon fiber and alkaline earth metal compound in the constant speed experiment above 250 °C.
  • the ratio is increased by 1% to 10%, the wear rate is reduced by 10% to 30%, and the temperature of the friction surface is reduced by 2 to 15%.
  • the invention combines carbon fiber and alkaline earth-based metal compound without using copper, can not only exert good friction and wear performance of alkaline earth metal compound, but also exhibit good mechanical skeleton performance and good thermal conductivity of carbon fiber.
  • the synergy between the two makes the friction material It has a relatively stable friction coefficient at high temperatures, which has a comfortable braking feel, and has a small wear rate and good mechanical properties. It is an environmentally friendly material.
  • the combination of the two can make the friction performance of the material better than the frictional properties of the alkali metal titanate alone, and also reduce the cost of the brake pad material.
  • the friction material produced has a high thermal conductivity.
  • the heat generated by the friction is dissipated in time, so that the temperature of the friction surface is effectively reduced.
  • the friction and wear performance is also significantly improved, which also makes the maximum speed of the vehicle appropriately increase when the load of the entire vehicle and the required braking distance are the same.
  • the speed of the vehicle is the same as the required braking distance, the vehicle can withstand a greater load.
  • the combination of carbon fiber and alkaline earth-based metal compound can make the friction performance of the material superior to that of the alkali metal titanate alone, and also reduce the cost of the brake pad raw material.
  • the friction material of the present invention has excellent thermal conductivity, so that the heat generated by the friction process can be evenly distributed on the surface of the brake pad without generating hot spots. In the high temperature range, the friction material maintains stable friction properties and improves the thermal decay resistance of the friction material.
  • the friction material of the present invention makes it easier to produce a transfer film during the rubbing process, stabilizes the friction coefficient, and reduces the amount of wear.
  • the alkaline earth-based metal compound itself is weakly alkaline, which is advantageous for protecting the resin-based material, and at the same time, its electrical conductivity prevents static electricity to a certain extent.
  • the friction material of the present invention contains both an alkaline earth-based metal compound and a carbon fiber, and the simultaneous addition of the two synergistically enhances the friction performance, so that the friction performance in the high temperature section is more excellent and the friction coefficient is more stable.
  • the two are complementary in size, and the addition of the alkaline earth-based metal compound effectively enhances the lean region, and the heat resistance and wear resistance of the brake pad are greatly improved.
  • the friction material of the invention contains both an alkaline earth metal compound and a carbon fiber, both of which have high electrical conductivity, effectively reducing the presence of static electricity during braking and braking, and playing an antistatic role. .
  • the friction brake material of the present invention combines with the ABS system to have a better braking effect. This is directly reflected in the higher thermal conductivity than brake pads without carbon fiber and alkaline earth based metal compounds. 1 ⁇ 3 times, the temperature of the friction surface is effectively reduced, and the heat decay resistance is obviously improved. At the same time, this also makes the maximum speed of the vehicle appropriately increase when the load of the entire vehicle and the required braking distance are the same. When the speed of the vehicle is the same as the required braking distance, the vehicle can withstand a greater load.
  • the alkaline earth-based metal compound is selected from Mg ⁇ FeuTiC ⁇ , and the ratio of the equivalent length to the equivalent width is 2.5 to 3, and the thickness is 0.5 to 5 ⁇ m; the carbon fiber is a polyacrylonitrile-based carbon fiber.
  • the ratio of the equivalent length and the equivalent width of the Mg ⁇ FeuTiO ⁇ to the alkaline earth-based metal compound is 2.5 to 3, and the thickness is 0.5 to 5 ⁇ m; the carbon fiber is a polyacrylonitrile-based carbon fiber.
  • Alkaline earth based metal compound selection The ratio of the equivalent length to the equivalent width is 2.5 to 3, and the thickness is 0.5 to 5 ⁇ m; the carbon fiber is a polyacrylonitrile-based carbon fiber.
  • the flat vulcanizer was held at 160 ° C under a pressure of 15 MPa for 10 minutes, and then the brake pad was taken out and then sintered at 185 ° C for 4 hours.
  • the alkaline earth-based metal compound is selected from Mg ⁇ Fe ⁇ TiOe, and the ratio of the equivalent length to the width of the mixture is 2.5 to 3, and the thickness is 0.5 to 5 ⁇ m; the carbon fiber is a polyacrylonitrile-based carbon fiber.
  • alkaline earth metal compound 13% carbon fiber 8%, phenolic resin 9%, nitrile rubber 3%, aramid 4%, glass fiber 8%, ceramic fiber 4%, zircon 3%, magnesium oxide 4 %, barium sulfate 19%, calcium carbonate 7%, mica powder 9%, vermiculite 4%, friction powder 2%, fluorite powder 3% placed in a high-speed disperser, stirred evenly, then taken out into the abrasive press to form,
  • the flat vulcanizer was held at 160 ° C under a pressure of 15 MPa for 10 minutes, and then the brake pad was taken out and then sintered at 185 ° C for 4 hours.
  • the ratio of the equivalent length and the equivalent width of the Ba ⁇ Fe ⁇ T to the alkaline earth-based metal compound is 2.5 to 3, and the thickness is 0.5 to 5 ⁇ m; the carbon fiber is a polyacrylonitrile-based carbon fiber.
  • alkaline earth metal compound 13% carbon fiber 8%, phenolic resin 9%, nitrile rubber 3%, aramid 4%, glass fiber 8%, ceramic fiber 4%, zircon 3%, magnesium oxide 4 %, barium sulfate 19%, calcium carbonate 7%, mica powder 9%, vermiculite 4%, friction powder 2%, fluorite powder 3% placed in a high-speed disperser, stirred evenly, then taken out into the abrasive press to form,
  • the flat vulcanizer was held at 160 ° C under a pressure of 15 MPa for 10 minutes, and then the brake pad was taken out and then sintered at 185 ° C for 4 hours.
  • the alkali-based metal compound is selected from Ca ⁇ Fe ⁇ TiO ⁇ equivalent length and equivalent The width ratio is 2.5 ⁇ 3, and the thickness is 0.5 ⁇ 5 microns; the carbon fiber is polyacrylonitrile-based carbon fiber. Comparative example 1:
  • Base metal compound 13%, carbon fiber 8%, phenolic resin 9%, nitrile rubber 3%, aramid 4%, glass fiber 8%, ceramic fiber 4%, zircon 3%, magnesium oxide 4%, barium sulfate 19%, 7% calcium carbonate, 9% of mica powder, 4% of vermiculite, 2% of friction powder, 3% of fluorite powder are placed in a high-speed disperser, stirred evenly, and then taken out into a grinding tool for press forming, in a flat vulcanizing machine. At 160 ° C, the pressure was set at 15 MPa for 10 minutes, then the brake pads were removed and then sintered at 185 ° C for 4 hours.
  • the base metal compound titanate is Na. 6 Mg a75 Ti0 4 whiskers, length 50-60 microns, width 0.3 microns; carbon fiber is polyacrylonitrile-based carbon fiber.
  • Base metal compound 21%, phenolic resin 9%, nitrile rubber 3%, aramid 4%, glass fiber 8%, ceramic fiber 4%, zircon 3%, magnesium oxide 4%, barium sulfate 19%, carbonic acid 7% of calcium, 9% of mica powder, 4% of vermiculite, 2% of friction powder, and 3% of fluorite powder are placed in a high-speed dispersing machine. After mixing, the mixture is taken out and placed in a grinding tool to form, at 160 ° C, in a flat vulcanizing machine. The pressure was maintained at 15 MPa for 10 minutes, and then the brake pad was taken out and then sintered at 185 ° C for 4 hours.
  • the alkali fund compound titanate is K ⁇ Mg ⁇ Ti ⁇ C ⁇ planar layered titanate with a length of 50-60 microns, a width of 0.3 microns, an aspect ratio and a length-to-thickness ratio of about 180-200.
  • carbon fiber 21% carbon fiber, 9% phenolic resin, 3% nitrile rubber, 4% aramid, 8% glass fiber, 4% ceramic fiber, 3% zircon, 4% magnesium oxide, 19% barium sulfate, 7% calcium carbonate , mica powder 9%, vermiculite 4%, friction powder 2%, fluorite powder 3% into a high-speed disperser, stir evenly and then put into the abrasive press to form, in the flat vulcanizing machine at 160 ° C, pressure level 15MPa Under the conditions, hold for 10 minutes, then remove the brake pads and then sinter at 185 ° C for 4 hours.
  • the carbon fiber is a polyacrylonitrile-based carbon fiber.
  • the ratio of the equivalent length and the equivalent width of the alkaline earth metal compound to Mg ⁇ Fe ⁇ TiO ⁇ is 2.5 ⁇ 3, and the thickness is 0.5-5 microns;
  • Embodiment 1 Embodiment 2 Embodiment 3 Embodiment 4 Embodiment 5 Embodiment 6
  • Embodiment 1 Embodiment 2 Embodiment 3 Embodiment 4 Embodiment 5 Embodiment 6
  • the friction properties of alkaline earth-based metal compounds and carbon fibers are significantly higher than those of alkali metal-containing metal compounds, and the friction and wear properties are greatly improved.
  • the friction coefficient is increased by nearly 20% in the high temperature range.
  • the wear rate is also reduced by nearly 20%, and the resistance to high temperature decay is more obvious.
  • the carbon fiber alone has a relatively low friction coefficient, but its wear rate is relatively large; the alkaline earth-based metal compound alone has a relatively large friction coefficient, but its wear rate is larger than that of the carbon fiber alone.
  • the combination of the two effectively combines the advantages of both, and synergistically enhances the friction and wear properties of the friction material.
  • the thermal conductivity (Table 5) in the embodiment of the present invention is significantly higher than the thermal conductivity of the comparative material, which is twice as large as the comparative example, and it is easier to dissipate the heat generated by the friction during the friction braking process, which is effective.
  • the stability of the friction surface is reduced, the high temperature resistance is improved, and the friction and wear performance is better than the comparative example.
  • the brake pads prepared by the present invention have better friction and wear properties.
  • the ceramic type brake pad of the present invention can also achieve the performance of a copper ceramic type brake pad under the condition of no copper.
  • the sample is run in the whole vehicle. Compared with the brake pads of the original car, the brake braking distance is reduced, and the safety of the car is greatly improved.
  • the invention is applied to the whole vehicle operation, has good braking effect, good stability, no noise, and conforms to various national standards.

Description

说明书
一种无铜陶瓷型摩擦材料及其制备方法 技术领域
本发明属于摩擦材料领域, 具体涉及一种无铜无石棉的环境友好型刹车 片材料。
背景技术
当今很多汽车朝着高速高载方向发展, 这对制动材料提出更加苛刻的要 求, 如盘式制动器制动时瞬时温度可达到 400~600°C, 在一些长坡道制动温 度高达 800°C以上, 亟待开发出一种高性能环保型的摩擦材料。 高档轿车普 遍采用的 ABS (防抱死制动)系统。 ABS系统工作时相当于以很高的频率进行 点刹, 如何能够使在停刹间隙把积聚的热量快速散发出去, 这就需要摩擦材 料具有较高的导热系数, 与此同时材料还需有良好的摩擦磨损性能, 这样才 能提高制动材料的使用寿命。
铜纤维、 紫铜纤维、 铜颗粒等铜质材料作为一种常见的摩擦添加剂, 其 特点在于铜质材料质软, 导热系数高, 利于摩擦产生的热量快速地散去, 且 有利于形成摩擦转移膜面。 但环保人士调査表明环境中大量铜污染来源于制 动粉尘, 环境中高浓度的铜会对生物产生毒害作用尤其是对于水环境中的生 物。 因此铜在制动材料的含量也将逐步受到严格的限制, 美国华盛顿州等也 开始对于制动器中的铜含量进行了逐步的限制。 美国专利也开始涉及这方面 的研究。 例如美国专利 US2010084232(A1)、 US2010084233 (A1 ) 发明了一 种无铜的无石棉刹车片。 这些专利中在不含有铜和铜合金的情况下, 采用酚 醛树脂、 有机纤维、 金属硫化物等制得性能优良的摩擦材料。
碳纤维是一种高模量高强度的纤维, 质轻、 耐高温, 在高温段不发生无 蠕变, 耐疲劳性好, 热膨胀系数小, 耐腐蚀性好, 具有较高的导热性能。 在
ABS制动过程中更加有利于热量的散失, 使得制动盘面不会产生过热点, 从 而影响摩擦性能。 在摩擦材料中, 碳纤维更多的应用于 C/C复合材料中。 例 如: 专利 EP1357310-A采用碳纤维增强 C/SiC材料, 通过添加铜, 制得高导 热系数的制动材料, 使得该材料在高温下具有良好的摩擦性能; 专利
EP1028098-A通过碳纤维增强碳 /碳复合材料制得适用于高速高载下的摩擦 材料。 本发明借鉴 C/C复合材料的思想, 利用碳纤维高导热的特点, 把其应 用于酚醛树脂基摩擦材料中, 制得在高速高载下仍能保持良好摩擦性能的材 料。
在摩擦过程中, 碳纤维在一定程度上提高了材料的导热性能。 但作为制 动摩擦材料, 其制动力要求比较高, 需要加入其它的物质提高材料的摩擦磨 损性能。
石棉是早期刹车片常用的一种材料, 但由于其耐热性较差, 且是一种致 癌物质, 在很多国家已经属于一种被禁止使用在刹车片中的物质。 未来的刹 车中的材料将会更多的使用长径比小于 3或者层状块状结构的物质。 钛酸盐 是一种新型的陶瓷材料, 作为一种石棉的替代品, 最近几年在刹车片上有很 广泛的应用。 日本大塚公司发明了一种摩擦材料(ZL00800133.2)。它以碱金 属钛酸盐为摩擦材料, 它是一种具有平面层状的钛酸盐。 通过添加 3~50%的 碱金属钛酸盐能够达到摩擦磨损较好的性能。 在其他的一些专利中也涉及到 关于钛酸盐在刹车片中应用。例如专利 CN101631747发明提供一种具有新颖 的形状、 具有摩擦材料中的优异的耐磨损性和树脂组合物中的优异的增强性 能的钛酸钾; 专利 KR2009019982-A提供了一种含有 7~9%铜纤维和 6~8%钛 酸钾纤维的摩擦材料。 发明内容
本发明的目的是为了解决在无铜环境下, 摩擦材料抗热衰退及摩擦稳定 性不佳的问题, 提供一种环境友好型刹车片的摩擦材料, 该摩擦材料在 250-600 °C仍然能保持稳定且良好的摩擦性能。
本发明的目的可以通过以下措施达到:
一种无铜陶瓷型摩擦材料, 该摩擦材料至少含有质量含量为 2〜30%的 碱土基金属化合物和质量含量为 2〜30%的碳纤维, 其中所述碱土基金属化 合物为 MxFeyTiOz,所述 M为碱土金属元素 Be、 Mg、 Ca、 Sr或 Ba, x为 0.2〜 2, y为 1〜2, z为 4〜16。该无铜陶瓷型摩擦材料中除了上述的两种组分外, 还含有现有无铜陶瓷型摩擦材料的常用组分。
一种优选的无铜陶瓷型摩擦材料,其除了碱土基金属化合物和碳纤维外, 还包括粘结剂、 摩擦性能调节剂及填料, 其中粘结剂的质量含量为 5~20%, 摩擦性能调节剂及填料的质量含量为 20~80%, 各组分之和满足 100%。
本发明的无铜陶瓷型摩擦材料中, 碱土基金属化合物的质量含量优选为 5%〜25%, 进一步优选为 10%〜20%。 为了达到一种更佳或更特殊的性能, 可以将碱土基金属化合物的含量控制在 10%〜15%。 碳纤维的质量含量优选 为 2%〜25%, 进一步优选为 2%〜20%, 更进一步为 5%〜: 10%。
碱土基金属化合物 MxFeyTiOz中, M优选为碱土金属元素 Mg、 Ca或 Ba, x优选为 0.2〜1, 最优选为 0.2〜0.5, y优选为 1〜2, z优选为 4〜8。本发明 的碱土基金属化合物的微观形态, 优选采用当量长度与当量宽度之比为 1〜 3、 厚度为 0.5〜20微米、 宽度为 0.5〜20微米的微粒, 具体形状如片状或者 块状。 本发明的碱土基金属化合物的制备方法为以光卤石和含钛矿物为主要 原料, 或者还包括碱金属化合物, 在 800〜1200°C下烧结得到, 详细方法可 参考 CN101254944A。
本发明的碳纤维可以采用现有常规使用的各种碳纤维, 具体优选选自聚 丙烯腈基碳纤维、 沥青基碳纤维、 粘胶丝基碳纤维或酚醛纤维基碳纤维中的 一种或者几种。
粘结剂选自酚醛树脂、 改性酚醛树脂或丁腈橡胶中的一种或几种。
摩擦性能调节剂及填料选自玻璃纤维、 陶瓷纤维、 复合矿物纤维、 硅酸 盐纤维、 木质素纤维、 纤维素纤维、 芳纶、 铁黑、 锆英石、 铁红、 氧化锆、 氧化镁、 云母粉、 萤石粉、 沸石、 蛭石、 锐钛矿、 凹土、 高岭土、 立德粉、 硫酸钡、 摩擦粉或重质碳酸钙中的一种或几种。 本发明中的摩擦性能调节剂 是指除碳纤维外的其他摩擦性能调节性纤维。
本发明的无铜陶瓷型摩擦材料的制备方法, 其包括如下步骤:
( 1 ) 预混: 取碱土基金属化合物和碳纤维, 混合均匀;
(2) 混合: 取粘结剂、 摩擦性能调节剂及填料, 与步骤 (1 ) 中的混合 物料搅拌混合后, 加入热压模具中;
(3 ) 热压: 升温到 155〜200°C, 在压力为 10〜30MPa下保温保压 3〜 10分钟进行热压处理;
(4) 后处理: 将热压后的材料在 185〜200°C下保温 3~8小时, 然后降 温, 得到无铜陶瓷型摩擦材料。
碱土基金属化合物具有良好的抗衰退性能, 摩擦系数比较大, 能够有效 降低磨损。由于碱土金属的制造原料以及产物都较碱金属呈现出更弱的碱性, 其作为刹车片对保护树脂等不耐碱原材料更加有利。 另外实验表明加入该类 材料可以明显改善复合材料的力学性能, 在制动过程中还能吸收部分制动过 程的制动噪音, 无疑这种材料是理想的摩擦材料。 这种材料非纤维状结构, 是一种无毒无害的物质, 不存在可吸入纤维, 因此不会对工作环境有不利的 影响。 另外本发明中的碱土金属化合物是一种含有铁的碱土基金属化合物, 其导电性能是普通钛酸盐导电性的 2~10倍。 在制动过程中, 可以有效的导 出摩擦材料表面因摩擦产生的静电, 起到一个防静电作用。
碳纤维是一种高模量高强度的纤维, 质轻。 它耐高温, 在高温段不发生 无蠕变, 耐疲劳性好, 热膨胀系数小, 耐腐蚀性好, 具有较高的导热性能, 在制动过程中更加有利于热量的散失。
在无铜陶瓷刹车片体系中, 单独使用碱土基金属化合物时, 摩擦系数比 较高, 但是高温时段摩擦系数不稳定, 力学性能比较差; 单独使用碳纤维时, 在高温段能够保持很好的摩擦性能, 而且能够保持很好的力学性能, 但摩擦 系数比较低。
本发明无铜陶瓷型摩擦材料的导热系数为 0.8〜3W · K-lm-1 , 该摩擦材 料在 250°C以上定速实验中, 其摩擦系数比不含碳纤维和碱土基金属化合物 的刹车片比提高 1%〜10%, 磨损率下降 10%〜30%, 摩擦表面的温度降低 2~15%。
本发明在不使用铜的条件下, 将碳纤维和碱土基金属化合物两者的混合 使用, 既能发挥碱土基金属化合物良好的摩擦磨损性能, 又能发挥碳纤维良 好的力学骨架性能、 导热性能好的优势。 两者的协同作用使得该摩擦材料在 高温情况下有相对稳定的摩擦系数, 从而具有舒适的制动感, 并且有磨损率 较小、 力学性能好的特点, 属于一种环境友好型材料。 两者的混合使用, 能 够使得材料的摩擦性能优于单独使用碱金属钛酸盐的摩擦性能, 也降低了其 刹车片原料的成本。 另外由于这两种材料具有较高的导热性能, 使得制得的 摩擦材料具有较高的导热系数, 在摩擦制动过程, 及时的散去了摩擦产生的 热量,使得摩擦表面的温度有效的降低,摩擦磨损性能也得到了明显的提高, 这也使得当整车的载荷和要求的制动距离相同时,车辆的最高时速适当提高。 当整车的速度和要求的制动距离相同时, 车辆可以承受更大的载荷。 同时将 碳纤维和碱土基金属化合物混合使用, 能够使得材料的摩擦性能优于单独使 用碱金属钛酸盐的摩擦性能, 也降低了其刹车片原料的成本。
本发明的有益效果:
1. 本发明的摩擦材料具有优异的导热性能, 使得摩擦过程产生的热量能 够均匀的分布在刹车片表面, 不产生过热点。 在高温段, 摩擦材料能够保持 稳定的摩擦性能, 提高了摩擦材料的抗热衰退性能。
2. 本发明的摩擦材料使得摩擦过程中更容易产生转移膜, 稳定了摩擦系 数, 降低了磨损量。 碱土基金属化合物其本身的弱碱性, 有利于保护树脂基 材料, 同时其导电性能, 在一定程度防止了静电。
3. 本发明的摩擦材料同时含有碱土基金属化合物和碳纤维, 两者的同时 加入协同增强了摩擦性能, 使得高温段的摩擦性能更加优异, 摩擦系数更加 稳定。 两者在尺寸上形成了互补, 碱土基金属化合物的加入有效的增强了其 贫纤区, 刹车片的耐热性和耐磨性都得到了很到的提高。
4. 在无铜环境下, 两者依然能够保持良好的摩擦性能, 两者的存在有效 的补足了含有铜的陶瓷型刹车片中铜的作用。
5. 本发明的摩擦材料中同时含有碱土基金属化合物和碳纤维, 这两种物 质都具有较高的导电性能, 在刹车制动过程中, 有效的降低了静电的存在, 起到了一个防静电作用。
6. 本发明的摩擦制动材料与 ABS系统结合具有更佳的制动效果。这直接 体现在, 与不加碳纤维和碱土基金属化合物的刹车片相比, 导热系数提高了 1~3倍, 使得摩擦表面的温度有效的降低, 抗热衰退性能得到了明显的提高。 同时这也使得当整车的载荷和要求的制动距离相同时, 车辆的最高时速适当 提高。 当整车的速度和要求的制动距离相同时, 车辆可以承受更大的载荷。 具体实施方式
下面通过实施例和对比例, 对本发现的技术方案作一步具体的说明。 为 验证本发明的效果, 按中国 GB5763-1998国家标准, 将实施例制备的刹车片 与对比例和日本某公司生产的有铜纤维的陶瓷型刹车片分别在定速摩擦试验 机进行试验。 实施例和对比例按照如下物质配置。
实施例 1:
按照重量百分比将碱土基金属化合物 2%、 碳纤维 2%、 酚醛树脂 13%、 丁腈橡胶 4%、 芳纶 3%、 玻璃纤维 8%、 陶瓷纤维 4%、 锆英石 3%、 氧化镁 4%、 硫酸钡 24%、 碳酸钙 7%、 云母粉 15%、 蛭石 5%、 摩擦粉 6%放入高速 分散机内, 搅拌均匀后取出放入磨具压制成形, 在平板硫化机于 160°C, 压 力位 15MPa的条件下, 保持 10分钟, 然后取出刹车片, 然后在 185°C下烧 结 4小时。 碱土基金属化合物选用 Mg^FeuTiC^, 当量长度和当量宽度之比 为 2.5~3, 厚度在 0.5~5微米; 碳纤维为聚丙烯腈基碳纤维。
实施例 2:
按照重量百分比将碱土基金属化合物 30%、 碳纤维 2%、 酚醛树脂 9%、 丁腈橡胶 3%、 芳纶 3%、 玻璃纤维 7%、 陶瓷纤维 3%、 锆英石 3%、 氧化镁 3%、 硫酸钡 19%、 碳酸钙 3%、 云母粉 5%、 蛭石 5%、 摩擦粉 5%、 放入高 速分散机内, 搅拌均匀后取出放入磨具压制成形, 在平板硫化机于 160°C, 压力位 15MPa的条件下, 保持 10分钟, 然后取出刹车片, 然后在 185°C下 烧结 4小时。 碱土基金属化合物选用 Mg^FeuTiO^ 当量长度和当量宽度之 比为 2.5~3, 厚度在 0.5~5微米; 碳纤维为聚丙烯腈基碳纤维。
实施例 3:
按照重量百分比将碱土基金属化合物 2%、 碳纤维 30%、 酚醛树脂 9%、 丁腈橡胶 3%、 芳纶 1%、 玻璃纤维 4%、 陶瓷纤维 4%、 锆英石 5%、 氧化镁 4%、 硫酸钡 24%、 碳酸钙 6%、 蛭石 3%、 萤石粉 5%放入高速分散机内, 搅 拌均匀后取出放入磨具压制成形, 在平板硫化机于 160°C, 压力位 15MPa的 条件下, 保持 10分钟, 然后取出刹车片, 然后在 185 °C下烧结 4小时。 碱土 基金属化合物选用
Figure imgf000008_0001
当量长度和当量宽度之比为 2.5~3, 厚度 在 0.5~5微米; 碳纤维为聚丙烯腈基碳纤维。
实施例 4:
按照重量百分比将碱土基金属化合物 13%、 碳纤维 8%、 酚醛树脂 9%、 丁腈橡胶 3%、 芳纶 4%、 玻璃纤维 8%、 陶瓷纤维 4%、 锆英石 3%、 氧化镁 4%、 硫酸钡 19%、 碳酸钙 7%、 云母粉 9%、 蛭石 4%、 摩擦粉 2%、 萤石粉 3%放入高速分散机内, 搅拌均匀后取出放入磨具压制成形, 在平板硫化机于 160°C, 压力位 15MPa的条件下, 保持 10分钟, 然后取出刹车片, 然后在 185 °C下烧结 4小时。 碱土基金属化合物选用 Mg^Fe^TiOe, 当量长度和当 量宽度之比为 2.5~3, 厚度在 0.5~5微米; 碳纤维为聚丙烯腈基碳纤维。 实施例 5:
按照重量百分比将碱土基金属化合物 13%、 碳纤维 8%、 酚醛树脂 9%、 丁腈橡胶 3%、 芳纶 4%、 玻璃纤维 8%、 陶瓷纤维 4%、 锆英石 3%、 氧化镁 4%、 硫酸钡 19%、 碳酸钙 7%、 云母粉 9%、 蛭石 4%、 摩擦粉 2%、 萤石粉 3%放入高速分散机内, 搅拌均匀后取出放入磨具压制成形, 在平板硫化机于 160°C, 压力位 15MPa的条件下, 保持 10分钟, 然后取出刹车片, 然后在 185 °C下烧结 4小时。碱土基金属化合物选用 Ba^Fe^T 当量长度和当量 宽度之比为 2.5~3, 厚度在 0.5~5微米; 碳纤维为聚丙烯腈基碳纤维。
实施例 6:
按照重量百分比将碱土基金属化合物 13%、 碳纤维 8%、 酚醛树脂 9%、 丁腈橡胶 3%、 芳纶 4%、 玻璃纤维 8%、 陶瓷纤维 4%、 锆英石 3%、 氧化镁 4%、 硫酸钡 19%、 碳酸钙 7%、 云母粉 9%、 蛭石 4%、 摩擦粉 2%、 萤石粉 3%放入高速分散机内, 搅拌均匀后取出放入磨具压制成形, 在平板硫化机于 160°C, 压力位 15MPa的条件下, 保持 10分钟, 然后取出刹车片, 然后在 185 °C下烧结 4小时。碱土基金属化合物选用 Ca^Fe^TiO^ 当量长度和当量 宽度之比为 2.5~3, 厚度在 0.5~5微米; 碳纤维为聚丙烯腈基碳纤维。 对比例 1:
碱基金属化合物 13%、 碳纤维 8%、 酚醛树脂 9%、 丁腈橡胶 3%、 芳纶 4%、 玻璃纤维 8%、 陶瓷纤维 4%、 锆英石 3%、 氧化镁 4%、 硫酸钡 19%、 碳酸钙 7%、 云母粉 9%、 蛭石 4%、 摩擦粉 2%、 萤石粉 3%放入高速分散机 内, 搅拌均匀后取出放入磨具压制成形, 在平板硫化机于 160° C, 压力位 15MPa的条件下, 保持 10分钟, 然后取出刹车片, 然后在 185° C下烧结 4 小时。 碱基金属化合物钛酸盐为 Na。.6Mga75Ti04晶须, 长度 50~60微米, 宽 度 0.3微米; 碳纤维为聚丙烯腈基碳纤维。
对比例 2:
碱基金属化合物 21%、 酚醛树脂 9%、 丁腈橡胶 3%、 芳纶 4%、 玻璃纤 维 8%、 陶瓷纤维 4%、 锆英石 3%、 氧化镁 4%、 硫酸钡 19%、 碳酸钙 7%、 云母粉 9%、 蛭石 4%、 摩擦粉 2%、 萤石粉 3%放入高速分散机内, 搅拌均匀 后取出放入磨具压制成形, 在平板硫化机于 160° C, 压力位 15MPa的条件 下, 保持 10分钟, 然后取出刹车片, 然后在 185 ° C下烧结 4小时。 碱基金 属化合物钛酸盐为 K^Mg^Ti^C^平面层状钛酸盐, 长度 50~60微米, 宽度 0.3微米, 长宽比和长厚比约 180~200。
对比例 3:
碳纤维 21%、 酚醛树脂 9%、 丁腈橡胶 3%、 芳纶 4%、 玻璃纤维 8%、 陶 瓷纤维 4%、 锆英石 3%、 氧化镁 4%、 硫酸钡 19%、 碳酸钙 7%、 云母粉 9%、 蛭石 4%、 摩擦粉 2%、 萤石粉 3%放入高速分散机内, 搅拌均匀后取出放入 磨具压制成形, 在平板硫化机于 160° C, 压力位 15MPa的条件下, 保持 10 分钟, 然后取出刹车片, 然后在 185° C下烧结 4小时。 碳纤维为聚丙烯腈 基碳纤维。
对比例 4:
碱土基金属化合物 21%、 酚醛树脂 9%、 丁腈橡胶 3%、 芳纶 4%、 玻璃 纤维 8%、 陶瓷纤维 4%、 锆英石 3%、 氧化镁 4%、 硫酸钡 19%、 碳酸钙 7%、 云母粉 9%、 蛭石 4%、 摩擦粉 2%、 萤石粉 3%放入高速分散机内, 搅拌均匀 后取出放入磨具压制成形, 在平板硫化机于 160° C, 压力位 15MPa的条件 下, 保持 10分钟, 然后取出刹车片, 然后在 185 ° C下烧结 4小时。 碱土基 金属化合物选用 Mg^Fe^TiO^ 当量长度和当量宽度之比为 2.5~3, 厚度在 0.5-5微米;
对比例 5:
市售东风本田新思域自动豪华型汽车使用的陶瓷型刹车片。
表 1 : 实施例刹车片摩擦系数实验数据表
摩擦系数
实施例 1 实施例 2 实施例 3 实施例 4 实施例 5 实施例 6
100 0. 38 0. 36 0. 41 0. 40 0. 39 0. 38 0. 42 0. 40 0. 41 0. 40 0. 43 0. 40
150 0. 39 0. 37 0. 40 0. 39 0. 40 0. 37 0. 43 0. 41 0. 42 0. 42 0. 41 0. 40
200 0. 40 0. 38 0. 42 0. 41 0. 40 0. 38 0. 42 0. 40 0. 41 0. 41 0. 42 0. 40
250 0. 40 0. 39 0. 45 0. 42 0. 39 0. 38 0. 41 0. 40 0. 42 0. 40 0. 42 0. 41
300 0. 39 0. 38 0. 43 0. 43 0. 41 0. 39 0. 42 0. 41 0. 41 0. 39 0. 43 0. 42
350 0. 40 0. 42 0. 40 0. 40 0. 42 0. 41
表 2: 实施例刹车片磨损性能实验数据表
磨损率 /10— 7cm7Nm
温度〃 C
实施例 1 实施例 2 实施例 3 实施例 4 实施例 5 实施例 6
100 0. 14 0. 12 0. 15 0. 12 0. 11 0. 12
150 0. 15 0. 14 0. 17 0. 13 0. 13 0. 13
200 0. 18 0. 17 0. 19 0. 15 0. 16 0. 14
250 0. 20 0. 19 0. 20 0. 17 0. 18 0. 16
300 0. 21 0. 20 0. 21 0. 19 0. 19 0. 18
350 0. 22 0. 21 0. 22 0. 20 0. 21 0. 20 表 3: 对比例刹车片摩擦系数实验数据表
摩擦系数
对比例 1 对比例 2 对比例 3 对比例 4 对比例 5
100 0. 32 0. 30 0. 33 0. 30 0. 30 0. 30 0. 35 0. 33 0. 40 0. 38
150 0. 33 0. 31 0. 34 0. 32 0. 29 0. 28 0. 36 0. 35 0. 40 0. 39
200 0. 32 0. 30 0. 32 0. 33 0. 28 0. 30 0. 34 0. 33 0. 38 0. 40
250 0. 32 0. 30 0. 33 0. 32 0. 28 0. 29 0. 35 0. 31 0. 39 0. 48
300 0. 31 0. 29 0. 30 0. 31 0. 29 0. 30 0. 32 0. 32 0. 40 0. 39
350 0. 30 0. 32 0. 30 0. 34 0. 39
表 4: 对比例刹车片磨损性能实验数据表
磨损率 /10— 7cm3/Nm
温度 /°C
对比例 1 对比例 2 对比例 3 对比例 4 对比例 5
100 0. 15 0. 15 0. 13 0. 14 0. 12
150 0. 17 0. 16 0. 14 0. 16 0. 14
200 0. 18 0. 19 0. 16 0. 20 0. 17
250 0. 21 0. 20 0. 18 0. 21 0. 19
300 0. 22 0. 21 0. 19 0. 22 0. 20
350 0. 24 0. 23 0. 20 0. 25 0. 22
表 5: 部分实施例和对比例导热系数比较
实施例 实施例 实施例 实施例 对比例 对比例 对比例 试样
1 2 3 4 3 4 5 导热系数
1. 001 1. 021 1 .622 1. 421 0. 901 0. 723 0. 795
/W+m— LK— 1 从对比例和实施例比较, 含有碱土基金属化合和碳纤维的摩擦性能, 明 显高于含有碱金属基金属化合物, 其摩擦磨损性能有了很大的提升, 摩擦系 数在高温段提高了将近 20%, 磨损率也降低了近 20%, 抗高温衰退性能更加 明显。从对比例 3、 4中, 单独使用碳纤维其摩擦系数比较低, 但其磨损率比 较大; 单独使用碱土基金属化合物其摩擦系数比较大, 但其磨损率比起单独 使用碳纤维要来的大。 两者的混合使用, 有效的结合了两者的优势, 协同增 强了摩擦材料的摩擦磨损性能。
从实验结果表格可以看出, 在含有不同类型的碱土基金属化合物和碳纤 维时 (实施例 4、 5、 6), 其具有类似的摩擦和磨损性能, 在数值上的大小没 有很明显的体现。 不同类型的碱土基金属化合物和碳纤维协同作用都能够有 效的提高其摩擦材料的摩擦学性能。
本发明的实施例中的导热系数(表 5 )明显高于对比例材料的导热系数, 是对比例中的 2倍,在摩擦制动过程中更容易把摩擦产生的热量给散发出去, 有效的降低了摩擦表面的稳定, 抗高温性能得到了明显的提高, 摩擦磨损性 能也优于对比例。 相比市场购买的刹车片(对比例 5 ), 采用本发明制备的刹 车片, 具有更好的摩擦磨损性能。 本发明的陶瓷型刹车片在无铜条件下, 同 样可以达到有铜陶瓷型刹车片的性能。
将试样进行整车运行, 与原车的刹车片相比, 刹车制动距离减少了, 汽 车的安全性有了更大的提高。 将本发明应用于整车运行, 制动效果良好, 平 稳性好, 无噪音, 符合国家的各类标准。

Claims

权利要求书
1、一种无铜陶瓷型摩擦材料, 其特征在于该摩擦材料至少含有质量含量 为 2%〜30%的碱土基金属化合物和质量含量为 2%〜30%的碳纤维, 其中所 述碱土基金属化合物为 MxFeyTiOz, 所述 M为碱土金属元素 Be、 Mg、 Ca、 Sr或 Ba, x为 0.2〜2, y为 1〜2, z为 4〜16。
2、根据权利要求 1所述的无铜陶瓷型摩擦材料, 其特征在于该无铜陶瓷 型摩擦材料还包括粘结剂、 摩擦性能调节剂及填料, 其中粘结剂的质量含量 为 5%~20%, 摩擦性能调节剂及填料的质量含量为 20%~80%。
3、根据权利要求 1所述的无铜陶瓷型摩擦材料, 其特征在于摩擦材料中 碱土基金属化合物的质量含量为 10%〜20%,碳纤维的质量含量为 2%〜20%。
4、根据权利要求 1所述的无铜陶瓷型摩擦材料, 其特征在于所述碱土基 金属化合物为 MxFeyTiOz, M为碱土金属元素 Mg、 Ca或 Ba, x为 0.2〜1, y 为 1〜2, z为 4〜8。
5、根据权利要求 1或 4所述的无铜陶瓷型摩擦材料, 其特征在于所述碱 土基金属化合物采用当量长度与当量宽度之比为 1〜3、厚度为 0.5〜20微米、 宽度为 0.5〜20微米的微粒。
6、根据权利要求 1所述的无铜陶瓷型摩擦材料, 其特征在于所述碳纤维 选自聚丙烯腈基碳纤维、 沥青基碳纤维、 粘胶丝基碳纤维或酚醛纤维基碳纤 维中的一种或者几种。
7、根据权利要求 2所述的无铜陶瓷型摩擦材料, 其特征在于所述粘结剂 选自酚醛树脂、 改性酚醛树脂或丁腈橡胶中的一种或几种。
8、根据权利要求 2所述的无铜陶瓷型摩擦材料, 其特征在于所述摩擦性 能调节剂及填料选自玻璃纤维、 陶瓷纤维、 复合矿物纤维、 硅酸盐纤维、 木 质素纤维、 纤维素纤维、 芳纶、 铁黑、 锆英石、 铁红、 氧化锆、 氧化镁、 云 母粉、 萤石粉、 沸石、 蛭石、 锐钛矿、 凹土、 高岭土、 立德粉、 硫酸钡、 摩 擦粉或重质碳酸钙中的一种或几种。
9、权利要求 1或 2所述的无铜陶瓷型摩擦材料的制备方法, 其特征在于 ( 1 ) 预混: 取碱土基金属化合物和碳纤维, 混合均匀;
(2) 混合: 取粘结剂、 摩擦性能调节剂及填料, 与步骤 (1 ) 中的混合 物料搅拌混合后, 加入热压模具中;
(3 ) 热压: 升温到 155〜200°C, 在压力为 10〜30MPa下保温保压 3〜 10分钟进行热压处理;
(4) 后处理: 将热压后的材料在 185〜200°C下保温 3~8小时, 然后降 温, 得到无铜陶瓷型摩擦材料。
10、 根据权利要求 9所述的无铜陶瓷型摩擦材料的制备方法, 其特征在 于所述无铜陶瓷型摩擦材料的导热系数为 0.8〜3W * K-lm-l, 该摩擦材料在 250°C 以上定速实验中, 其摩擦系数比不含碳纤维和碱土基金属化合物的刹 车片比提高 1%〜: 10%,磨损率下降 10%〜30%,摩擦表面的温度降低 2~15%。
PCT/CN2010/076062 2010-08-17 2010-08-17 一种无铜陶瓷型摩擦材料及其制备方法 WO2012022027A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/817,446 US20130203888A1 (en) 2010-08-17 2010-08-17 Copper-free ceramic friction material and preparation method thereof
EP10856025.1A EP2607335B1 (en) 2010-08-17 2010-08-17 Copper-free ceramic friction material and preparation method thereof
PCT/CN2010/076062 WO2012022027A1 (zh) 2010-08-17 2010-08-17 一种无铜陶瓷型摩擦材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/076062 WO2012022027A1 (zh) 2010-08-17 2010-08-17 一种无铜陶瓷型摩擦材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2012022027A1 true WO2012022027A1 (zh) 2012-02-23

Family

ID=45604682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076062 WO2012022027A1 (zh) 2010-08-17 2010-08-17 一种无铜陶瓷型摩擦材料及其制备方法

Country Status (3)

Country Link
US (1) US20130203888A1 (zh)
EP (1) EP2607335B1 (zh)
WO (1) WO2012022027A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103409105A (zh) * 2013-07-26 2013-11-27 安徽昕宏通用设备制造有限公司 一种制动器刹车片摩擦材料及其制备工艺
EP2980181A4 (en) * 2013-03-29 2016-11-16 Akebono Brake Ind FRICTION MATERIAL
TWI699401B (zh) * 2018-12-04 2020-07-21 若林企業股份有限公司 抗菌砧板之製造方法
CN114278691A (zh) * 2019-07-03 2022-04-05 福建省晋江凯燕新材料研究院有限公司 利用螺旋微碳纤维制备有机摩擦材料的方法
CN115322517A (zh) * 2022-09-13 2022-11-11 久铖高科(厦门)集团有限公司 一种电机用电磁制动摩擦片及其制备方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103613789B (zh) * 2013-11-13 2016-05-25 烟台石川密封科技股份有限公司 一种无石棉抄取密封板材及其制备方法
CN104455123A (zh) * 2014-09-27 2015-03-25 安徽金庆龙机械制造有限公司 一种双层陶瓷刹车片生产工艺
CN104565136A (zh) * 2014-12-23 2015-04-29 江西科技学院 一种复合纳米刹车片制造方法
US10233988B2 (en) 2015-09-23 2019-03-19 Akebono Brake Industry Co., Ltd Friction material
CN105134846B (zh) * 2015-09-28 2017-10-31 东营博瑞制动系统有限公司 一种陶瓷摩擦材料及其制造方法
CN105351413B (zh) * 2015-12-02 2018-11-27 重庆红宇摩擦制品有限公司 耐高温汽车制动器有机摩擦衬片及其制造方法
CN105927687A (zh) * 2016-06-13 2016-09-07 安徽越天特种车桥有限公司 一种汽车陶瓷刹车片生产工艺
CN105927688B (zh) * 2016-07-06 2017-12-12 辽宁科技大学 石墨化纤维、碳纤维、陶瓷纤维刹车盘及制造工艺
CN106051006A (zh) * 2016-07-11 2016-10-26 福州大学 稀土氧化物改性树脂基汽车制动摩擦材料及其制备方法
CN107163913A (zh) * 2017-06-12 2017-09-15 太仓捷公精密金属材料有限公司 一种用酚醛树脂改性无金属陶瓷摩擦材料
JP7078359B2 (ja) 2017-06-27 2022-05-31 曙ブレーキ工業株式会社 焼結摩擦材及び焼結摩擦材の製造方法
CN107935608B (zh) * 2017-11-17 2020-10-09 淄博工陶新材料集团有限公司 使用致密锆英石骨料制备锆英石砖的方法
CN107935623B (zh) * 2017-12-14 2021-01-12 苏州新汉盛精密陶瓷科技有限公司 一种耐磨的陶瓷材料及其制备方法和应用
CN113930045B (zh) * 2021-10-13 2022-08-12 福州大学 一种利用铸造废树脂砂制备的高性能无铜树脂基制动材料

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045413A (ja) * 1996-07-31 1998-02-17 Kubota Corp 複合チタン化合物粉末およびその製造方法
JP2000178536A (ja) * 1998-12-14 2000-06-27 Kubota Corp 摩擦材
EP1028098A2 (en) 1999-02-09 2000-08-16 Ngk Insulators, Ltd. SiC-C/C composite material, uses thereof and method for producing the same
EP1357310A1 (de) 2002-03-21 2003-10-29 Sgl Carbon Ag Verbundwerkstoff mit Verstärkungsfasern aus Kohlenstoff
CN1576637A (zh) * 2003-07-18 2005-02-09 曙制动器工业株式会社 摩擦材料
CN1754050A (zh) * 2003-01-24 2006-03-29 布拉德原料产品公司 碳纤维摩擦材料
WO2007106880A2 (en) * 2006-03-15 2007-09-20 Federal-Mogul Corporation Friction material
CN101254944A (zh) 2008-04-08 2008-09-03 南京工业大学 一种基于光卤石和含钛矿物制备钛酸盐的方法
KR20090019982A (ko) 2007-08-22 2009-02-26 현대자동차주식회사 비석면 유기질 마찰재 조성물과 그 제조방법
CN101631747A (zh) 2007-04-04 2010-01-20 大塚化学株式会社 钛酸钾及其制造方法、以及摩擦材料和树脂组合物
US20100084233A1 (en) 2008-10-03 2010-04-08 Federal-Mogul Products, Inc. Friction Material For Brakes
US20100084232A1 (en) 2008-10-03 2010-04-08 Federal-Mogul Products, Inc. Friction material for brakes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0853553A (ja) * 1994-08-12 1996-02-27 Kubota Corp 摩擦材
US5803210A (en) * 1994-12-28 1998-09-08 Nippon Oil Co., Ltd. Disk brakes
GB9518798D0 (en) * 1995-09-14 1995-11-15 Secr Defence Apparatus and method for spinning hollow polymeric fibres
KR100612733B1 (ko) * 1998-08-26 2006-08-18 닛신보세키 가부시키 가이샤 비석면계 마찰재
US6579920B2 (en) * 2001-07-02 2003-06-17 Prizmalite Friction pads and disks and compositions and methods for producing same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045413A (ja) * 1996-07-31 1998-02-17 Kubota Corp 複合チタン化合物粉末およびその製造方法
JP2000178536A (ja) * 1998-12-14 2000-06-27 Kubota Corp 摩擦材
EP1028098A2 (en) 1999-02-09 2000-08-16 Ngk Insulators, Ltd. SiC-C/C composite material, uses thereof and method for producing the same
EP1357310A1 (de) 2002-03-21 2003-10-29 Sgl Carbon Ag Verbundwerkstoff mit Verstärkungsfasern aus Kohlenstoff
CN1754050A (zh) * 2003-01-24 2006-03-29 布拉德原料产品公司 碳纤维摩擦材料
CN1576637A (zh) * 2003-07-18 2005-02-09 曙制动器工业株式会社 摩擦材料
WO2007106880A2 (en) * 2006-03-15 2007-09-20 Federal-Mogul Corporation Friction material
CN101631747A (zh) 2007-04-04 2010-01-20 大塚化学株式会社 钛酸钾及其制造方法、以及摩擦材料和树脂组合物
KR20090019982A (ko) 2007-08-22 2009-02-26 현대자동차주식회사 비석면 유기질 마찰재 조성물과 그 제조방법
CN101254944A (zh) 2008-04-08 2008-09-03 南京工业大学 一种基于光卤石和含钛矿物制备钛酸盐的方法
US20100084233A1 (en) 2008-10-03 2010-04-08 Federal-Mogul Products, Inc. Friction Material For Brakes
US20100084232A1 (en) 2008-10-03 2010-04-08 Federal-Mogul Products, Inc. Friction material for brakes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2607335A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980181A4 (en) * 2013-03-29 2016-11-16 Akebono Brake Ind FRICTION MATERIAL
CN103409105A (zh) * 2013-07-26 2013-11-27 安徽昕宏通用设备制造有限公司 一种制动器刹车片摩擦材料及其制备工艺
CN103409105B (zh) * 2013-07-26 2016-06-08 安徽昕宏通用设备制造有限公司 一种制动器刹车片摩擦材料及其制备工艺
TWI699401B (zh) * 2018-12-04 2020-07-21 若林企業股份有限公司 抗菌砧板之製造方法
CN114278691A (zh) * 2019-07-03 2022-04-05 福建省晋江凯燕新材料研究院有限公司 利用螺旋微碳纤维制备有机摩擦材料的方法
CN114278691B (zh) * 2019-07-03 2023-11-24 福建省晋江凯燕新材料研究院有限公司 利用螺旋微碳纤维制备有机摩擦材料的方法
CN115322517A (zh) * 2022-09-13 2022-11-11 久铖高科(厦门)集团有限公司 一种电机用电磁制动摩擦片及其制备方法

Also Published As

Publication number Publication date
EP2607335B1 (en) 2016-11-23
EP2607335A4 (en) 2014-03-05
EP2607335A1 (en) 2013-06-26
US20130203888A1 (en) 2013-08-08

Similar Documents

Publication Publication Date Title
WO2012022027A1 (zh) 一种无铜陶瓷型摩擦材料及其制备方法
WO2012159286A1 (zh) 用于刹车片的无铜摩擦材料组合物
CN104854213B (zh) 摩擦材料
CN100516122C (zh) 一种湿法混料制备摩擦材料的方法
US9382429B2 (en) Preparation method of carbon modified filler
WO2012159284A1 (zh) 用于刹车片的少铜摩擦材料
CN101555920B (zh) 高性能汽车陶瓷刹车片
CN101948673B (zh) 一种无铜陶瓷型摩擦材料及其制备方法
JP3998879B2 (ja) 摩擦材
CN106969072B (zh) 一种低噪音商用车用气压盘式刹车片及其制备方法
CN101759958B (zh) 一种陶瓷增强型摩擦材料及其制备方法
EP3438223B1 (en) Friction material composition
CN101759862A (zh) 一种纳米颗粒改性摩擦材料的制备方法
JP2005036157A (ja) 摩擦材
CN105715720A (zh) 一种环保型双层复合结构刹车片
JPWO2016060129A1 (ja) 摩擦材組成物、摩擦材および摩擦部材
CN112752912A (zh) 用于制备摩擦材料、尤其是用于制造制动衬块的方法及相关制动衬块
CN102516942B (zh) 一种稀土氧化物改性的环保型摩擦材料及其制备方法
JP5540396B2 (ja) 摩擦材
CN103821852A (zh) 一种采用无铜微晶摩擦材料的环保刹车片
CN105952825B (zh) 一种高性能复合纤维刹车片
JP7128323B2 (ja) 摩擦材
CN105909708B (zh) 一种高性能纳米材料刹车片
CN114135609A (zh) 一种无铜摩擦材料及其制备方法
CN108468736A (zh) 一种摩擦材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010856025

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010856025

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13817446

Country of ref document: US