WO2012022026A1 - 一种资源分配方法、系统和发射机 - Google Patents

一种资源分配方法、系统和发射机 Download PDF

Info

Publication number
WO2012022026A1
WO2012022026A1 PCT/CN2010/076061 CN2010076061W WO2012022026A1 WO 2012022026 A1 WO2012022026 A1 WO 2012022026A1 CN 2010076061 W CN2010076061 W CN 2010076061W WO 2012022026 A1 WO2012022026 A1 WO 2012022026A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
mapping relationship
transmitter
resource mapping
receiver
Prior art date
Application number
PCT/CN2010/076061
Other languages
English (en)
French (fr)
Inventor
兰元荣
王轶
张元涛
周华
吴建明
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to KR20137006573A priority Critical patent/KR20130042021A/ko
Priority to JP2013524329A priority patent/JP5565525B2/ja
Priority to EP20100856024 priority patent/EP2608613A1/en
Priority to PCT/CN2010/076061 priority patent/WO2012022026A1/zh
Priority to CN201080068509XA priority patent/CN103053211A/zh
Publication of WO2012022026A1 publication Critical patent/WO2012022026A1/zh
Priority to US13/767,483 priority patent/US9014120B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a resource allocation method, system, and transmitter. Background technique
  • a base station In a long term evaluation (LTE) system, a base station (BS: Base Station) allocates resource information used for transmitting or receiving data according to a request of a user equipment (UE: User Equipment), including the UE used by the user equipment.
  • UE User Equipment
  • the uplink shared channel resource information and the Physical Hybrid ARQ indicator channel (PHICH) information of the uplink data are transmitted, and then the base station BS notifies the user equipment UE of the resource information, so that the user equipment UE can utilize the allocated uplink.
  • PHICH Physical Hybrid ARQ indicator channel
  • the resource sends uplink data and confirms (ACK: Acknowledgment)/Negative Acknowledgment (NACK: Negative Acknowledgment) information in the corresponding PHICH channel detection, where ACK indicates that the data is correctly received, and NACK indicates that the data is incorrectly received.
  • ACK Acknowledgment
  • NACK Negative Acknowledgment
  • the inventors have found that after the base station BS initially allocates uplink resources for each user equipment UE, when the PHICH resources are allocated for each user equipment UE, different user equipment UE indications may occur.
  • the problem of the same PHICH resource causes the PHICH resource to collide.
  • the base station BS does not allocate resource information for the user in which the collision occurs, so that the user equipment UE cannot upload data, or the base station BS adjusts the minimum uplink resource of the user equipment UE.
  • the index of the block imposes restrictions on the scheduling algorithm.
  • the following example illustrates the occurrence of a PHICH resource collision.
  • the number of PRBs is 50, and the number of available downlink PHICHs is assumed to be 32. If the initial PRB index number of the base station BS is initially allocated to the user equipment UE1, The number of consecutively allocated PRBs is 5. As shown in Table 1, the PHICH resource that the base station BS can allocate for the user equipment UE1 is PHICH (0, 0); for the user equipment UE2, if the initial PRB index number
  • the number of consecutively allocated PRBs is 5.
  • the PHICH resources allocated by the base station BS for the user equipment UE2 are also PHICH (0, 0), so that even the user equipment UE1 and the user equipment UE2 initial The resource blocks are different, but the PHICH resources are the same.
  • different user equipments are assigned the same PHICH resource called PHICH resource collision. Therefore, the base station BS does not notify the UE2 resource information, so that the user equipment UE2 cannot upload data, or the base station BS adjusts the index of the minimum uplink resource block of the user equipment UE, which limits the scheduling algorithm.
  • DM_RS Demodulation- Reference symbol
  • index the lowest PRB index number
  • Table 2a represents the relationship between the lowest PRB index number, the index number of the PHICH group, and n (DM_RS)
  • Table 2b shows the relationship between the lowest PRB index number, the PHICH sequence number, and n (DM_RS). Relationship. i(group) l(lowest_index, PRB_RA)
  • n(DM_RS) 1
  • the PHICH resource allocated to the user equipment UE2 is PHICH (1, 1), so that the occurrence of collision can be reduced to some extent.
  • PHICH collision is not due to insufficient PHICH resources (the number of PHICHs configured by the system is not less than the number of uplink user equipment UEs:), and collisions may occur when PHICH resources are abundant.
  • the number of PRBs is 50.
  • the number of available downlink PHICHs is 32, as shown in Tables 2a and 2b, there are four table sets available for 50 PRBs, respectively, table_0, table — 1, table— 2, table— 3, Each table set represents the PHICH usage. The following only shows table 0, table 1.
  • the base station BS allocates the user equipment UE.
  • the only table set used by the PHICH resource is one of table-0, table-1, table-2, and table-3, such as table-0.
  • An object of the embodiments of the present invention is to provide a resource allocation method, system, and transmitter, where a transmitter can select a PHICH resource for each receiver by using an agreed and alternate resource mapping relationship, thereby reducing or completely avoiding collision of PHICH resources. occur.
  • a resource allocation method includes: the transmitter schedules the multiple receivers according to a transmission uplink data request sent by multiple receivers, to initially determine the multiple receivers.
  • Uplink shared transport channel resource; the uplink shared transport channel resource used by one receiver is determined by an initial resource block index number and a number of consecutively allocated resource blocks;
  • the transmitter notifies the plurality of receivers of the determined uplink shared transmission channel resources of the plurality of receivers, the resource mapping relationship used, and the final n (DM-RS).
  • a transmitter configured to schedule the multiple receivers according to a transmission uplink data request sent by multiple receivers, to determine the multiple Uplink shared transmission channel resources of the receivers; the uplink shared transmission channel resources used by one receiver are determined by an initial resource block index number and a number of consecutively allocated resource blocks;
  • a resource allocation unit configured to determine, according to a scheduling result of the scheduling unit, an agreed resource mapping relationship and an alternate resource mapping relationship, and a cyclic displacement sequence number n (DM_RS) for indicating an uplink feedback channel, respectively, determining the multiple receiving The uplink shared transport channel resource of the machine, the resource mapping relationship used, and the final cyclic shift sequence number n (DM_RS); wherein the resource mapping relationship refers to the index number of the smallest resource block, and the cyclic shift sequence number n (DM-RS) and the relationship between the group index number and the serial number of the feedback channel;
  • the resource notification unit is configured to notify the plurality of receivers of the uplink shared transport channel resources of the plurality of receivers determined by the resource allocation unit, the resource mapping relationship used, and the final n (DM_RS).
  • a wireless communication system includes at least one transmitter and at least one receiver, the transmitter using the resource allocation method to allocate resources for the at least one receiver.
  • the configuration of the transmitter is as described above.
  • a computer readable program which, when executed in a transmitter, causes the computer to perform the above-described method of resource allocation in the transmitter.
  • a storage medium storing a computer readable program for causing a computer to perform the above-described method of resource allocation in a transmitter is provided.
  • the transmitter can select PHICH resources for each receiver by using at least two resource mapping relationships, that is, the agreed and alternate resource mapping relationships, and fully utilize the PHICH resources of the system idle, thereby reducing or The collision of PHICH resources is completely avoided.
  • FIG. 1 is a flowchart of a resource allocation method according to Embodiment 1 of the present invention.
  • FIG. 2 is a flow chart showing a method of allocating resources for one of a plurality of receivers in the transmitter of Embodiment 1 of the present invention
  • 3 is a flowchart of a method for a base station BS to allocate resources for one of a plurality of user equipment UEs according to Embodiment 1 of the present invention
  • 4 is a flowchart of an implementation of step 302 of the embodiment of the present invention
  • Figure 5 is a schematic structural diagram of a transmitter according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural diagram of a resource allocation unit in Embodiment 2 of the present invention.
  • Figure 7 is a schematic structural view of the second determining unit of Figure 6;
  • FIG. 8 is a schematic structural view of a fifth determining unit in FIG. 6;
  • Figure 9 is a structural diagram of a wireless communication system according to Embodiment 3 of the present invention.
  • Figure 10 is a block diagram showing the structure of a receiver in Embodiment 3 of the present invention.
  • FIG. 11 is a schematic diagram of resource initial allocation according to an application example of the present invention.
  • FIG. 12 is a schematic diagram of resource transfer of an application example of the present invention. detailed description
  • FIG. 1 is a flowchart of a resource allocation method according to an embodiment of the present invention. As shown in FIG. 1, the method includes: Step 101: A transmitter schedules multiple receivers according to a transmission uplink data request sent by multiple receivers, to initially determine uplink shared transmission channel resources of multiple receivers; The uplink shared transport channel resource used by the receiver is determined by the initial resource block index number and the number of consecutively allocated resource blocks;
  • Step 102 The transmitter determines uplink shared transmission of multiple receivers according to a scheduling result, an agreed resource mapping relationship, an alternate resource mapping relationship, and a cyclic displacement sequence number n (DM_RS) for indicating an uplink feedback channel.
  • DM_RS cyclic displacement sequence number
  • Channel resources, resource mapping relationships used, and final n (DM-RS) where, the resource mapping relationship refers to the index number of the smallest resource block, the cyclic shift sequence number n (DM_RS), and the group of feedback channels. The relationship between the index number and the serial number;
  • Step 103 The transmitter notifies the plurality of receivers of the determined uplink shared transmission channel resources of the plurality of receivers, the used resource mapping relationship, and the final cyclic displacement sequence number n (DM_RS).
  • the transmitter can use at least two resource mapping relationships, that is, the agreed and alternate resource mapping relationships, to select feedback channel resources for each receiver, and fully utilize idle feedback channel resources, thereby reducing or completely avoiding The occurrence of a resource collision.
  • step 101 in a wireless communication system, when a plurality of receivers are powered on to establish a connection with a transmitter, if the receiver needs to send uplink data to the transmitter through the PUSCH, the receiver sends a transmission data request to the transmitter, The transmitter may schedule a plurality of receivers according to the received request to initially determine uplink shared transmission channel resources of the multiple receivers; the uplink shared transmission channel resources
  • the initial resource block index number ⁇ - ⁇ and the number of consecutively allocated resource blocks may be used, and any one of the existing scheduling modes may be used to schedule the multiple receivers, such as using a round robin algorithm (RR: Round Robin), max. C/I scheduling algorithm (Max C/I) or proportional fair scheduling algorithm (Proportional Fairness), which will not be described here.
  • RR Round Robin
  • Max C/I max. C/I scheduling algorithm
  • Proportional Fairness proportional fair scheduling algorithm
  • the transmitter After the transmitter allocates uplink shared transmission channel resources for each receiver, it is also necessary to determine, respectively, the feedback channel resources that the transmitter sends uplink feedback ACK/NACK for each receiver, and then determine the determined uplink shared transmission channel resources and The feedback channel is used to notify each user equipment, so that each receiver detects downlink feedback ACK/NACK information on the corresponding feedback channel after transmitting uplink data through the PUSCH.
  • the feedback channel PHICH resource may be a resource for an uplink feedback channel indicating cyclic shift sequence number " ⁇ ⁇ - ⁇ 3-bit signaling, the 3-bit values in Table 5 respectively.
  • the transmitter may be a base station BS
  • the receiver may be a user equipment UE.
  • the transmitter determines the uplink shared transport channel resource used by each receiver, the resource mapping relationship used, and the final " ⁇ M - ⁇ ⁇ and notifies the receiver, which is determined below.
  • One of the receivers is described by taking the transmitter as the base station BS, the receiver as the user equipment UE, and the feedback channel as the PHICH.
  • FIG. 2 is a diagram showing that the base station BS is one of the plurality of user equipment UEs in Embodiment 1 of the present invention. Flowchart of a method for allocating resources.
  • the base station BS is a plurality of user equipments
  • a user equipment UE herein referred to as a current user equipment UE
  • allocates resources in the UE as shown in FIG. 2, the method includes:
  • Step 201 The base station BS determines, by using the resource mapping relationship with the user equipment UE, whether the feedback channel corresponding to the current user equipment UE has been occupied by other user equipment UEs according to the cyclic displacement sequence number " ⁇ M - ⁇ . , the resource mapping relationship refers to the index number ⁇ lowest of the smallest resource block
  • Step 202 If the determination result is occupied by other user equipment UEs, the base station BS uses the alternate resource mapping relationship to determine the final cyclic displacement sequence number " ⁇ M- ⁇ " to allocate the idle feedback channel to the current User equipment UE;
  • Step 203 The base station BS notifies the current receiver of the current shared transmission channel resource of the current receiver, the alternate resource mapping relationship, and the finally determined cyclic displacement sequence number " ⁇ M - ⁇ .
  • step 204 is performed, and the base station BS can sequentially adjust the cyclic displacement sequence number by using the agreed resource mapping relationship and the technique in Rel. 8 ("DM - ) , as shown in Tables 2a and 2b , until the idle PHICH resource is found, the method is prior art, and details are not described herein again.
  • DM - agreed resource mapping relationship and the technique in Rel. 8
  • Step 205 After determining the cyclic shift sequence number in step 204, the base station notifies the current user of the current shared transport channel resource of the current user equipment, the agreed resource mapping relationship used, and the finally determined n (DM_RS). device.
  • Step 206 After step 203 and step 205, the user equipment receives the uplink shared transport channel resource, the used resource mapping relationship, and the finally determined n (DM_RS) to notify the current user equipment.
  • the current resource mapping relationship may be used as the current The user equipment UE selects other idle PHICH resources, thereby reducing or completely avoiding the occurrence of PHICH resource collisions.
  • step 201 when the system bandwidth is 10 MHz, the number of physical resource blocks PRB is 50, and the number of available downlink PHICHs is assumed to be 32, and the resource mapping relationship corresponds to As shown in Tables 3a to 3d, the base station BS can pre-agreed with the user equipment UE the resource mapping relationship used, as shown in table-0 of Table 3a. In this way, the base station BS can determine whether the PHICH resource has been occupied by other user equipments according to the table table-0, and 8 different cyclic displacement sequence numbers " ⁇ M - ⁇ , that is, whether the table-0 has been used. 8 times, if yes, it indicates that the PHICH resources of the current user equipment UE are all occupied by other user equipment UEs, and PHICH resource collision occurs.
  • step 201 If the result of the determination in step 201 is YES, in the prior art, the base station BS cannot allocate resources to the current user equipment, so that the current user equipment cannot transmit data.
  • step 202 if the result of the determination in step 201 is YES, the base station BS will select an alternate resource mapping relationship, as shown in table table-1 or table table-3.
  • the resource mapping relationship is selected to " ⁇ M - ⁇ " to allocate idle PHICH resources for the current user equipment, thereby avoiding collision of PHICH resources.
  • the transmitter notifies the receiver of the uplink shared transport channel resource of the receiver, the resource mapping relationship used, and the finally determined cyclic shift sequence number " ⁇ M - ⁇ ⁇ .
  • additional control information bits may be added to transmit the foregoing resource information, but a large modification to the original system is required.
  • the control information of the original system may be utilized.
  • the bit transmits the foregoing resource information, for example, by using a number of bits in the downlink control channel indicating that the PUSCH corresponding to the current user equipment UE is in the initial position of the system bandwidth and the length of the continuously occupied resource.
  • a resource indication value (RIV: Resource Indication Value) may be used to indicate an uplink shared transport channel resource and a used resource mapping relationship.
  • the RIV can be calculated using the following formula:
  • RIV N R D B L (N ⁇ L ⁇ L CRBs + 1) + (N ⁇ L ⁇ 1 ⁇ RB start ) ( 2 ) ⁇ lowest where the relationship between the RIV and the resource mapping relationship, and the index number of the minimum resource block and the number of consecutively allocated resource blocks can be preset, even if the same resource allocation manner, different resource mapping relationships are different RIV value.
  • the user equipment when the user equipment receives the RIV value sent by the transmitter, it can reverse the minimum allocated.
  • Table 6 shows the number of bits of downlink control information transmitted under other system bandwidths, as well as the status of use and the status of unused.
  • FIG. 3 is a flowchart of a method for a base station BS to allocate resources to one of a plurality of user equipment UEs according to another embodiment of the present invention, where the agreed resource mapping relationship corresponds to table-0, and the alternate resource mapping relationship corresponds to table. — 1 is an example.
  • the method includes:
  • Step 301 The base station BS uses the resource mapping relationship (table_0) agreed with the user equipment UE, and determines, according to the cyclic displacement sequence number " ⁇ M- ⁇ , whether the feedback channel corresponding to the current user equipment UE has been used by other Receiver occupancy; where the resource mapping relationship refers to the index ⁇ lowest of the smallest resource block
  • Step 302 If the result of the determination in step 301 is that all receivers are occupied, the base station
  • the BS further determines whether the alternate resource mapping relationship (table-1) can be used to determine the final cyclic displacement sequence number DM - RS ;
  • Step 303 Determining whether the current user equipment is capable of utilizing the alternate resource mapping relationship; Step 303, if the determination result in step 302 is YES, the base station BS uses table-1 to determine the final cyclic displacement sequence number. ⁇ M - ⁇ ), to allocate an idle feedback channel to the current user equipment UE;
  • Step 304 The base station BS notifies the current user equipment UE of the current shared transport channel resource of the current user equipment UE, the standby resource mapping relationship table_1, and the finally determined cyclic displacement sequence number " ⁇ M - ⁇ " .
  • step 305 may be performed.
  • the transmitter can use the technique in Rd. 8 to sequentially adjust " ⁇ M- ⁇ and determine the final cyclic displacement sequence number DM - RS .
  • Step 307 The base station BS notifies the current user equipment of the uplink shared transport channel resource of the current user equipment UE, the resource mapping relationship used, and the finally determined cyclic shift sequence number “ ⁇ M — ⁇ ⁇ , where the agreed Resource mapping relationship, that is, table - 0.
  • step 308 in step 302, if the determination result is no, the base station BS further determines whether the resource allocation of other user equipment UEs having the standby resource mapping relationship occupies the PHICH resources in talbe-0;
  • Step 309 in step 308, if the determination result is yes, the base station BS further determines whether there is still an idle PHICH resource in the system;
  • Step 311 Assign the PHICH resource in the vacated table_0 to the user equipment UE.
  • step 308-311 if the resource allocation of the user equipment UE with the standby resource mapping relationship is processed first, if it is found that the resource is available, the process proceeds to step 305, assuming that the user equipment UE has the standby resource mapping relationship.
  • the PHICH (0,0:> of the table 0 is used. After the base station BS processes the resource allocation of the user equipment UE without the standby resource mapping relationship, it is found that the PHICH resource in the table 0 has been used up.
  • the PHICH resource of the user equipment UE with the alternate resource mapping relationship is indicated to another table, and at the same time, the user equipment UE that does not have the standby resource mapping relationship is placed at the removed location.
  • FIG. 4 is a flowchart of an implementation of step 302 of the embodiment of the present invention. As shown in Figure 4, the following steps are included:
  • Step 401 Determine whether the initial resource block of the current user equipment UE determined by the initial determination is between a predetermined location and a termination location of the resource block that can utilize the alternate resource mapping relationship.
  • the method may be as follows: determining, according to a predetermined number M of resource blocks that can utilize an alternate resource mapping relationship, and a starting location or a termination location corresponding to the resource block, determining the resource block that can utilize the alternate resource mapping relationship. Start position index number and end position index number;
  • the base station determines that the initial resource block of the current user equipment UE is in a predetermined resource mapping relationship that can utilize the alternate resource. Between the initial position and the end position of the contiguous resource block;
  • M may be determined in advance, and the location on the bandwidth resource where the consecutive M resource blocks are located is assumed. If the initial location index number of the M resource blocks is assumed to be 0, the M resource block termination positions are The index number is 0+M-1, but is not limited thereto, and the initial position index numbers of the M resource blocks may be other.
  • step 401 ho if the judgment result is YES, the receiver into a continuous current distribution is determined at the beginning ho ho determined number of resource blocks £ « « continuous resource is less than the maximum supported by the system L
  • Step 403 in step 402, if the determination result is yes, the base station BS determines that the final cyclic displacement sequence number " ⁇ M - ⁇ can be determined by using the alternate resource mapping relationship, otherwise it is determined that the alternate resource mapping cannot be utilized. Relationship to determine the final cyclic displacement sequence number "( DM - ⁇ ).
  • step 202 and step 403 if the result of the determination is no, step 405 is performed, the base station BS does not allocate resources for the user equipment or avoids collision by changing the index number of the initial resource block.
  • the resource block M capable of utilizing the alternate resource mapping relationship may be determined in advance, and determined in the following manner.
  • X is the index number of the resource block termination location that can utilize the alternate resource mapping relationship, indicating the system bandwidth, W indicating the number of alternate resource mapping relationships, and N p representing the system
  • the number of downlink PHICHs is 16 and the number of available downlink PHICH groups is 2.
  • the embodiment of the invention also provides a transmitter, as described in the following embodiments. Since the principle of the transmitter solving the problem is similar to the above-described transmitter-based communication method, the implementation of the transmitter can be referred to the implementation of the method, and the repetition will not be repeated.
  • FIG. 5 is a block diagram showing the structure of a transmitter in Embodiment 2 of the present invention.
  • the transmitter includes: a scheduling unit 501, configured to schedule multiple receivers according to a transmission uplink data request sent by multiple receivers, to initially determine uplink shared transmission channel resources of multiple receivers;
  • the uplink shared transport channel resource used by one receiver is determined by the initial resource block index number and the number of consecutively allocated resource blocks;
  • the resource allocation unit 502 is configured to determine, according to a scheduling result of the scheduling unit, an agreed resource mapping relationship and an alternate resource mapping relationship, and a cyclic displacement sequence number (DM_W) for indicating an uplink feedback channel, respectively, Uplink shared transport channel resource, resource mapping relationship used, and final cyclic shift sequence number "( DM - ⁇ ) ; where resource mapping relationship refers to the index number of the smallest resource block, cyclic shift sequence number" ( DM - ⁇ ⁇ the relationship between the group index number and the serial number of the feedback channel;
  • the resource notification unit 503 is configured to notify the plurality of receivers of the uplink shared transport channel resources of the plurality of receivers determined by the resource allocation unit, the resource mapping relationship used, and the final cyclic shift sequence number "( DM - ⁇ ).
  • FIG. 6 is a block diagram showing the structure of a resource allocation unit in Embodiment 2 of the present invention. As shown in FIG. 6, when determining the uplink shared transport channel resource of one of the plurality of receivers, the resource mapping relationship used, and the final cyclic shift sequence number "( DM - ⁇ ), the resource allocation unit 502 includes:
  • the first determining unit 601 is configured to determine, according to the resource mapping relationship agreed with the receiver, whether the feedback channel corresponding to the current receiver has been occupied by other receivers according to the cyclic displacement sequence number " ⁇ M - ⁇ ;
  • the information determining unit 602 is configured to determine, by using the alternate resource mapping relationship, the final cyclic shift sequence number n ⁇ DM _ RS) ⁇ to be idle when the judgment result of the first determining unit 601 is all occupied by other receivers.
  • the feedback channel is assigned to the current receiver.
  • the resource allocation unit 502 may further include:
  • the second determining unit 603 is configured to further determine whether the final resource mapping relationship can be used to determine the final "( DM - ⁇ ) when the determination result of the first determining unit 601 is YES;
  • the information determining unit 602 determines that the final resource "( DM - ⁇ ) can be determined using the alternate resource mapping relationship when the determination result of the second judging unit 603 is YES.
  • the base station BS processes the resource allocation of the user equipment UE that has no standby resource mapping relationship, it is found that the PHICH resource has been used up.
  • the PHICH resource of the user equipment UE with the alternate resource mapping relationship may be indicated to another one with the idle PHICH resource, and at the same time, the user equipment UE that does not have the spare resource mapping relationship is placed at the removed location.
  • the resource allocating unit 502 may further include a third determining unit 604, a fourth determining unit 605, a resource transferring unit 606, and a processing unit 607.
  • the third determining unit 604 is configured to: when the determination result of the second determining unit 604 is negative, further determine whether there is a receiver having an alternate resource mapping relationship among other receivers occupying the feedback channel resource;
  • the fourth determining unit 605 is configured to: when the determination result of the third determining unit 604 is YES, further determine whether there is still an idle feedback channel resource in the system;
  • a resource transfer unit 606, configured to use the location when the determination result of the fourth determining unit is YES
  • the alternate resource mapping relationship corresponding to the other receivers moves the feedback channel resources of the other receivers to the idle feedback channel resources; allocates the vacated feedback channel resources to the current receiver; and the processing unit 607 is configured to: When the determination result of the third determining unit 604 and the fourth determining unit 605 is NO, resources are not allocated for the current receiver, or the initial resource block index number of the current receiver determined by the initial determination is adjusted.
  • the second determining unit 603 may include a fifth determining unit 701, a sixth determining unit 702, and a capability determining unit 703;
  • the fifth determining unit 701 is configured to determine whether the initial resource block of the current receiver determined by the initial determination is between the initial position and the end position of the predetermined resource block capable of utilizing the alternate resource mapping relationship;
  • the maximum consecutive resource blocks sixth judging unit 702 the determination result for the fifth judging unit 701 is YES, whether the number of resource blocks into a ho ho determined current is determined at the beginning of a continuous distribution less than £ f ⁇ receiver system support quantity;
  • the fifth determining unit 701 may include an index number determining unit 801 and a position determining unit 802;
  • the index number determining unit 801 is configured to determine, according to the predetermined number M of resource blocks that can utilize the alternate resource mapping relationship, and the starting location or the ending location corresponding to the predetermined contiguous resource block, to determine the continuity of the resource mapping relationship that can be utilized.
  • the ⁇ lowest position determining unit 802 is configured to: when the initial resource block index number of the current receiver is less than or equal to the end position index number and greater than or equal to the starting position index number, determine that the initial resource block of the current receiver is in a predetermined capacity to be used.
  • the resource map is between the initial position and the end position of the resource block.
  • the number M of resource blocks that can utilize the alternate resource mapping relationship can be calculated by using the above formula, and the locations in the bandwidth resources of the resource blocks that can utilize the alternate resource mapping relationship can be determined in advance. Let me repeat.
  • Figure 9 is a block diagram showing the structure of a wireless communication system according to a third embodiment of the present invention.
  • the system includes at least one transmitter 901 and at least one receiver 902.
  • the transmitter 901 can be a base station, and its configuration and implementation are as described in Embodiments 1 and 2, and details are not described herein.
  • the receiver 902 sends a transmission uplink data request to the transmitter, and transmits.
  • the machine 901 determines, according to the received request, resource information used by the receiver 902, where the resource information includes an uplink shared transport channel resource, a resource mapping relationship used, and a final "( DM - ⁇ ), and the specific method is as in Embodiment 1. The description is not repeated here.
  • FIG. 10 is a block diagram showing the construction of a receiver in Embodiment 3 of the present invention.
  • the receiver includes at least a request transmitting unit 1001 for transmitting a transmission uplink data request to the transmitter 901, so that the transmitter 901 allocates resources to the receiver according to the request.
  • the receiver further includes an information receiving unit 1002, configured to receive an uplink shared transport channel resource, a resource mapping relationship used by the transmitter 901 according to the request, and a final "( DM - ⁇ ).
  • the M value may be pre-computed and then input to the base station BS for use by the base station BS, or may be calculated by the base station BS, and further, the M resource blocks are presupposed
  • a resource indication value (RIV: Resource Indication Value) is used to indicate an uplink shared transport channel resource and a used resource mapping relationship.
  • the RIV value can be pre-calculated according to the above formulas (1) and (2), and then the relationship between the RIV value and table-0, table-1 and table-3 is established in advance, so that even the same resource allocation method is different
  • the resource mapping relationship also corresponds to different RIV values.
  • the RIV values are different, as shown in Table 8 (the values in Table 8 are only examples).
  • the RIV value can be applied to the unused state in the system, between 1275 and 2047, so that no major changes to the original system are required.
  • the allocated ⁇ lowest j can be deduced.
  • the RIV and resource mapping relationship and the uplink resource relationship may be determined in advance.
  • a base station allocates resources for one of a plurality of receivers.
  • FIG. 11 a schematic diagram of a base station BS scheduling a user to initially determine a resource is provided. To facilitate the description, only one user equipment is occupied. Resource block.
  • the base station BS schedules multiple receivers according to the transmission uplink data request sent by the multiple user equipments to determine the uplink shared transmission channel resources of the multiple receivers;
  • the uplink shared transport channel resource used by the receiver is determined by the initial resource block number and the number of consecutively allocated resource blocks;
  • the base station BS first determines whether the PHICH resource can be allocated using the alternate resource mapping relationship, that is, table-1 or table-3, wherein the following method can be used to determine:
  • the base station BS can allocate PHICH resources to the user equipment by using table-1 or table-3, and in the allocation process, whether or not there are other users in the order of " ⁇ M- ⁇ from 0 to 7".
  • the base station BS determines whether there are any idle resources in the system. If the judgment result is in the table-2, the base station BS can set the table- The resources in 1 or table-3 are moved to table-2, and then the vacated PHICH resources are allocated to the user equipment UE, as shown in FIG.
  • the base station BS does not allocate resources for the user equipment UE, or the base station BS adjusts the location of the initial resource block allocated to the user equipment. .
  • the RIV value is used to notify the user of the uplink resource used by the device, and the resource mapping relationship and "(DM_ ⁇ ) used, so that it can be implemented without making major changes to the original system, thereby saving costs.
  • the apparatus and method may be implemented by hardware or by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or The components are constructed, or the various components or steps described above are implemented.
  • the present invention also relates to a storage medium for storing the above programs, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种资源分配方法、 系统和发射机 技术领域
本发明涉及一种无线通信领域, 特别涉及一种资源分配方法、 系统和发 射机。 背景技术
在长期演进 (LTE: long term evaluation)系统中,基站(BS: Base Station) 根据用户设备(UE: User Equipment)的请求为其分配传输或接收数据所使用 的资源信息,包括该用户设备 UE使用的传送上行数据的上行共享信道资源信 息和物理 HARQ指示信道 (PHICH: Physical Hybrid ARQ indicator channel) 信息, 然后该基站 BS将资源信息通知该用户设备 UE, 这样, 该用户设备 UE 可利用分配的上行资源发送上行数据、 并在相应的 PHICH信道检测下行反馈 的确认( ACK: Acknowledgment)/否定确认(NACK: Negative Acknowledgment) 信息, 其中 ACK表示数据正确接收, NACK表示数据错误接收。
在实现本发明的过程中发明人发现存在如下问题:在基站 BS初歩为每个 用户设备 UE分配上行资源后, 在为每个用户设备 UE分配 PHICH资源时, 有可能出现不同的用户设备 UE 指示同一个 PHICH 资源的问题, 这样造成 PHICH资源碰撞, 在这种情况下, 基站 BS不为发生碰撞的用户分配资源信 息, 使得用户设备 UE无法上传数据, 或基站 BS调整用户设备 UE的最小上 行资源块的索引, 对调度算法造成限制。
以下举例说明出现 PHICH资源碰撞的情况。
对于 Rd.8, 由于可用 PHICH 的数目小于系统中物理资源块 (PRB: Physical Resource Block) 的数目, 所以不可避免地出现 PHICH碰撞。
如表 1所示, 其中, 表 1中仅示意出最小 PRB索引号 为 0到 35 的情况。 表 1
Figure imgf000003_0001
例如, 对于 10MHz的系统, PRB数量为 50个, 假设可用下行 PHICH数 量为 32个,若基站 BS初歩分配给用户设备 UE1的初始 PRB索引号 =0, 连续分配的 PRB数量为 5, 由表 1可知, 基站 BS可为该用户设备 UE1分配 的 PHICH 资源为 PHICH (0,0); 对于用户设备 UE2, 若初始 PRB 索引号
!〖— =32, 连续分配的 PRB数量为 5, 由表 1可知, 基站 BS为该用户设备 UE2分配的 PHICH资源也为 PHICH (0,0), 这样, 即使用户设备 UE1和用 户设备 UE2初始资源块不同,但是 PHICH资源相同,此处将不同的用户设备 分配同样的 PHICH资源称之 PHICH资源碰撞。因此, 基站 BS不通知该 UE2 资源信息, 使得用户设备 UE2无法上传数据, 或基站 BS调整用户设备 UE 的最小上行资源块的索引, 对调度算法造成限制。
在 Rd.8 中, 为了解决上述问题, 采用 3bit 上行链路调制—参考符号 ( DM_RS: Demodulation— Reference symbol )循环移位对应的值 n ( DM_RS ) 和最低的 PRB 索引号 (index) 联合指示 PHICH资源。 通过这种方法, 对于 一个上行的 PUSCH信道, 有 8个 PHICH信道可选, 基站 BS可以综合考虑, 给有潜在碰撞情况的 UE分配不同的 PHICH资源, 从而在一定程度降低了碰 撞的概率。 如表 2a和 2b所示, 其中表 2a表示最低 PRB索引号、 PHICH组 的索引号、 n (DM_RS) 之间的关系, 表 2b表示最低 PRB索引号、 PHICH 序列号、 n (DM_RS) 之间的关系。 i(group) l(lowest_index,PRB_RA)
2a
2b
Figure imgf000004_0001
例如,若基站 BS初歩分配给用户设备 UE 1的初始 PRB索引号 匿 w =0, 连续分配的 PRB数量为 5; 由表 2a和 2b可知, 当 n (DM— RS ) =0, 基站 BS 可为该用户设备 UE1分配的 PHICH资源为 PHICH(0,0);对于用户设备 UE2, 若初始 PRB索引号 =32, 连续分配的 PRB数量为 5, 且 n ( DM_RS ) =0, 则表 2a和 2b可知, 基站 BS为用户设备 UE2分配的 PHICH资源也为 PHICH (0,0), 出现了 PHICH资源碰撞的情况。 目前, 为了解决上述 PHICH 资源碰撞的问题, 基站 BS可为用户设备 UE2选择不同的 n (DM— RS) 值, 例如,基站 BS可选择 n(DM— RS)=1〜7中有空闲 PHICH的一个,如 n(DM— RS) =1, 这时, 由表 2a和 2b可知, 分配用户设备 UE2的 PHICH资源为 PHICH ( 1,1 ), 从而可在一定程度上减少了碰撞的发生。
虽然采用上述方式可避免碰撞, 但由表 2a和 2b 可知, 可供分配的 n (DM— RS) 值只有 7个, 因此, 对于在 Rel.10以及之后的版本中, 由于载波 聚合 ( Carrier Aggregation )、 多用户多入多出 ( MIMO : Multiple-Input Multiple-Output) 以及其他可能出现的情况, 碰撞的概率超过容忍的范围。
值得注意的是: 发生 PHICH碰撞的问题并不是由于 PHICH资源不够用 (系统配置的 PHICH的数目不小于上行用户设备 UE的数目:), 而且在 PHICH 资源比较充裕的时候还可能发生碰撞。
例如, 对于 10MHz的系统, PRB数量为 50个, 假设可用下行 PHICH数 量为 32个, 由表 2a和 2b可知, 对于 50个 PRB可供使用的表集为 4个, 分 别为 table— 0, table— 1, table— 2, table— 3, 每个表集表示 PHICH的使用情况, 以下仅示意出 table 0, table 1。
table 0
Figure imgf000005_0001
Figure imgf000005_0002
目前按照基站 BS和用户设备 UE的约定, 基站 BS为用户设备 UE分配 PHICH资源仅使用的表集为 table— 0、 table— 1、 table— 2和 table— 3其中之一, 如为 table— 0。
若基站 BS给用户设备 UE1分配的 PHICH资源为 PHICH (0,0), 当基站 BS为用户设备 UE2分配的 PHICH资源为 PHICH (0,0)时, 这时为避免发生 碰撞, 如上所述, 该基站 BS可为用户设备 UE2分配 n (DM— RS ) =1〜7对应 的空闲的 PHICH资源中一个, 若 table— 0中的所有 PHICH资源均被使用, 则 目前即使其他的表集, 如 table— 1, table— 2, table— 3中的任一个都存在空闲的 HPICH资源, 该基站 BS也无法为用户设备 UE2分配这些 PHICH资源, 从而 不可避免发生 PHICH碰撞,最终导致用户设备 UE2无法传输上行数据或调度 受限。
如表 4a 和 4b 所示发生碰撞的情况, 以 w = 0,5,10,15,16,21,26, 31,32,37,42,47,48开始的 PUSCH使用一个表集, 如 table— 0, 对于该表集的第 九个之后的使用来说, 不可避免发生碰撞, 即使其他的表集空闲也可能发生 碰撞。
表 4a
Figure imgf000006_0001
下面列出了对于理解本发明和常规技术有益的文献, 通过引用将它们并 入本文中, 如同在本文中完全阐明了一样。
1) US7414989, ACK/NACK determination reliability for a communication device;
2) US6813261 , Method of mobile communication and apparatus therefor。 发明内容
本发明实施例的目的在于提供一种资源分配方法、 系统和发射机, 发射 机可利用约定的和备用的资源映射关系为每个接收机选择 PHICH资源, 从而 可减少或完全避免 PHICH资源碰撞的发生。
根据本发明实施例的一个方面提供了一种资源分配方法, 该方法包括: 发射机根据多个接收机发送的传输上行数据请求来调度该多个接收机, 以初歩确定该多个接收机的上行共享传输信道资源; 该被一个接收机使用的 上行共享传输信道资源由初始资源块索引号和连续分配的资源块的数量来确 定;
根据调度结果、 约定的资源映射关系、 备用的资源映射关系、 以及用于 指示上行反馈信道的循环位移序列号 n (DM— RS ) 分别确定该多个接收机的 上行共享传输信道资源、 所使用的资源映射关系、 以及最终的 n (DM— RS ); 其中,该资源映射关系是指最小资源块的索引号、循环移位序列号 n(DM—RS ) 与反馈信道的组索引号和序列号之间的关系;
该发射机将确定的该多个接收机的上行共享传输信道资源、 所使用的资 源映射关系、 以及最终的 n (DM— RS ) 通知该多个接收机。
根据本发明实施例的另一个方面提供了一种发射机, 该发射机包括: 调度单元, 用于根据多个接收机发送的传输上行数据请求来调度该多个 接收机, 以初歩确定该多个接收机的上行共享传输信道资源; 该被一个接收 机使用的上行共享传输信道资源由初始资源块索引号和连续分配的资源块的 数量来确定;
资源分配单元, 用于根据该调度单元的调度结果、 约定的资源映射关系 和备用的资源映射关系、 以及用于指示上行反馈信道的循环位移序列号 n (DM— RS ) 分别确定该多个接收机的上行共享传输信道资源、 所使用的资源 映射关系、 以及最终的循环位移序列号 n (DM— RS ); 其中, 该资源映射关系 是指最小资源块的索引号、 循环移位序列号 n (DM— RS ) 与反馈信道的组索 引号和序列号之间的关系; 资源通知单元, 用于将该资源分配单元确定的该多个接收机的上行共享 传输信道资源、 所使用的资源映射关系、 以及最终的 n (DM— RS) 通知该多 个接收机。
根据本发明实施例的另一个方面提供了一种无线通信系统, 包括至少一 个发射机和至少一个接收机, 所述发射机使用上述资源分配方法为该至少一 个接收机分配资源。 所述发射机的构成如上所述。
根据本发明实施例的另一个方面提供了一种计算机可读程序, 当在发射 机中执行该程序时, 该程序使得计算机在该发射机中执行上述进行资源分配 的方法。
根据本发明实施例的另一个方面提供了一种存储有计算机可读程序的存 储介质, 该计算机可读程序使得计算机在发射机中执行上述进行资源分配的 方法。
本发明实施例的有益效果在于: 发射机可利用至少两种资源映射关系, 即约定的和备用的资源映射关系为每个接收机选择 PHICH资源, 充分利用系 统空闲的 PHICH资源, 从而可减少或完全避免 PHICH资源碰撞的发生。
参照后文的说明和附图, 详细公开了本发明的特定实施方式, 指明了本 发明的原理可以被采用的方式。 应该理解, 本发明的实施方式在范围上并不 因而受到限制。 在所附权利要求的精神和条款的范围内, 本发明的实施方式 包括许多改变、 修改和等同。
针对一种实施方式描述和 /或示出的特征可以以相同或类似的方式在一 个或更多个其它实施方式中使用, 与其它实施方式中的特征相组合, 或替代 其它实施方式中的特征。
应该强调, 术语 "包括 /包含"在本文使用时指特征、 整件、 歩骤或组件 的存在, 但并不排除一个或更多个其它特征、 整件、 歩骤或组件的存在或附 加。 附图说明
图 1是本发明的实施例 1的资源分配方法流程图;
图 2是本发明的实施例 1中发射机为多个接收机之一分配资源的方法流 程图;
图 3是本发明的实施例 1中基站 BS为多个用户设备 UE之一分配资源的 方法流程图; 图 4是本发明实施例的歩骤 302的实现流程图;
图 5是本发明实施例 2的发射机的结构示意图;
图 6是本发明实施例 2中资源分配单元的构成示意图;
图 7是图 6中第二判断单元的结构示意图;
图 8是图 6中第五判断单元的结构示意图;
图 9是本发明实施例 3的无线通信系统结构图;
图 10是本发明实施例 3中一个接收机的构成示意图;
图 11是本发明应用实例的资源初歩分配示意图;
图 12是本发明应用实例的资源转移示意图。 具体实施方式
下面结合附图对本发明的各种实施方式进行说明。 这些实施方式只是示 例性的, 不是对本发明的限制。 为了使本领域的技术人员能够容易地理解本 发明的原理和实施方式, 本发明的实施方式以无线通信系统为例进行说明。 但应该注意的是, 本发明的实施方式适用于所有碰撞避免的通信系统, 而不 局限于无线通信系统。
图 1是本发明实施例的资源分配方法流程图。 如图 1所示, 该方法包括: 歩骤 101,发射机根据多个接收机发送的传输上行数据请求来调度多个接 收机, 以初歩确定多个接收机的上行共享传输信道资源; 被一个接收机使用 的上行共享传输信道资源由初始资源块索引号和连续分配的资源块的数量来 确定;
歩骤 102, 该发射机根据调度结果、约定的资源映射关系、备用的资源映 射关系、 以及用于指示上行反馈信道的循环位移序列号 n (DM— RS ) 确定多 个接收机的上行共享传输信道资源、 所使用的资源映射关系、 以及最终的 n (DM— RS ); 其中, 资源映射关系是指最小资源块的索引号、循环移位序列号 n (DM— RS ) 与反馈信道的组索引号和序列号之间的关系;
歩骤 103,该发射机将确定的多个接收机的上行共享传输信道资源、所使 用的资源映射关系、 以及最终的循环位移序列号 n (DM— RS ) 通知多个接收 机。
由上述实施例可知, 发射机可利用至少两种资源映射关系, 即约定的和 备用的资源映射关系为每个接收机选择反馈信道资源, 充分利用空闲的反馈 信道资源, 从而可减少或完全避免资源碰撞的发生。 在歩骤 101 中, 在无线通信系统中, 当多个接收机开机与发射机建立连 接后, 若接收机需要通过 PUSCH向发射机发送上行数据时, 该接收机向发射 机发送传输数据请求, 该发射机可根据接收到的请求来调度多个接收机, 以 初歩确定该多个接收机的上行共享传输信道资源; 该上行共享传输信道资源
τ lowest j
包括初始资源块索引号 ^-^和连续分配的资源块的数量 其中, 可采 用现有的任一种调度方式来调度该多个接收机,如采用轮循算法(RR: Round Robin )、 最大 C/I 调度算法 (Max C/I)或正比公平调度算法 (Proportional Fairness), 此处不再赘述。
在该发射机为每个接收机分配上行共享传输信道资源后, 还需逐一确定 发射机为每个接收机发送上行反馈 ACK/NACK的反馈信道资源,然后将确定 后的上行共享传输信道资源以及使用的反馈信道通知每个用户设备, 使得每 个接收机在通过 PUSCH传输上行数据后, 在相应的反馈信道检测下行反馈 ACK/ NACK信息。
在本实施例中, 该反馈信道资源可为 PHICH资源, 用于指示上行反馈信 道的循环位移序列号 "^Μ-^为 3比特信令,该 3比特分别对应表 5中的数值。
表 5
Figure imgf000010_0001
在本实施例中, 发射机可为基站 BS, 接收机可为用户设备 UE。
在歩骤 102和 103中, 发射机分别确定每个接收机所使用的上行共享传 输信道资源、 所使用的资源映射关系、 以及最终的 "^M-^ ^并通知接收机, 以下以确定多个接收机中的一个且以发射机为基站 BS , 接收机为用户设备 UE、 反馈信道为 PHICH为例进行说明。 图 2是本发明的实施例 1中基站 BS 为多个用户设备 UE之一分配资源的方法流程图。 当基站 BS为多个用户设备 UE中的一个用户设备 UE (此处称为当前用户设备 UE) 分配资源时, 如图 2 所示, 该方法包括:
歩骤 201, 基站 BS利用与用户设备 UE约定的资源映射关系、 且根据循 环位移序列号 "^M-^ ^逐一判断该当前用户设备 UE对应的反馈信道是否已 被其他用户设备 UE 占用; 其中, 该资源映射关系是指最小资源块的索引号 τ lowest
lpRB - ^、 循环移位序列号"^ ^M-^ ^与反馈信道的组索引号 ί η匿 和序列 号 mCH 、 之间的关系;
歩骤 202, 若判断结果均被其他用户设备 UE占用, 则该基站 BS利用备 用的资源映射关系来确定最终的循环位移序列号 "^M-^), 以将空闲的反馈 信道分配给该当前用户设备 UE;
歩骤 203, 该基站 BS将该当前接收机的上行共享传输信道资源、 该备用 的资源映射关系、 以及最终确定的循环位移序列号 "^M-^ ^通知该当前接收 机。
在本实施例中, 若歩骤 201 的判断结果为否, 则执行歩骤 204, 该基站 BS可利用约定的资源映射关系、 采用的 Rel.8中的技术依次调整循环位移序 列号" (DM - ) , 如表 2a2b所示, 直到找到空闲的 PHICH资源, 该方式 为现有技术, 此处不再赘述。
歩骤 205, 在歩骤 204确定了循环位移序列号 后, 该基站将当 前用户设备的上行共享传输信道资源、 使用的约定的资源映射关系、 最终确 定的 n (DM— RS) 通知该当前用户设备。
歩骤 206,在歩骤 203和歩骤 205将当前用户设备的上行共享传输信道资 源、 使用的资源映射关系、 最终确定的 n (DM— RS)通知该当前用户设备后, 该用户设备接收该基站发送的该用户设备使用的上行共享传输信道资源、 使 用的资源映射关系、 最终确定的 n (DM— RS )。
由上述实施例可知, 在利用约定的资源映射关系为当前用户设备 UE分 配 PHICH资源时,当前用户设备 UE与其他用户设备 UE的 PHICH资源发生 碰撞时,可通过使用备用的资源映射关系为该当前用户设备 UE选择其他空闲 的 PHICH资源, 从而减少或完全避免 PHICH资源碰撞的发生。
在本实施例中, 在歩骤 201 中, 当系统带宽为 10MHz时, 物理资源块 PRB数量为 50个, 假设可用下行 PHICH数量为 32个, 该资源映射关系对应 如表 3a至 3d四个表集, 基站 BS可与用户设备 UE预先约定所使用的资源映 射关系, 如表 3a的 table— 0所示。 这样, 该基站 BS可根据表 table— 0、 以及 8 个不同的循环位移序列号" ^M-^ ^逐一来判断是否 PHICH资源已被其他的 用户设备占用, 即是否该 table— 0已使用了 8次, 若是, 则说明该当前用户设 备 UE的 PHICH资源已全部被其他的用户设备 UE占用,发生 PHICH资源碰撞。
若在歩骤 201中判断结果为是,则在现有技术中,该基站 BS无法为该当 前用户设备分配资源, 使得该当前用户设备无法传输数据。
而在本发明实施例中, 在歩骤 202中, 若在歩骤 201中判断结果为是, 则该基站 BS将选择备用的资源映射关系,如表 table— 1或表 table— 3所示的资 源映射关系来选择" ^M-^^, 以为该当前用户设备分配空闲的 PHICH资源, 从而避免 PHICH资源碰撞。
在歩骤 203 中, 发射机将接收机的上行共享传输信道资源、 所使用的资 源映射关系、 以及最终确定的循环位移序列号 "^M-^ ^通知接收机。 在本发 明的一个实施例中, 可在下行控制信道中添加额外的控制信息比特来传输上 述资源信息, 但是需要对原有系统作较大的改动; 在本发明的另一个实施例 中, 可利用原有系统的控制信息比特来传输上述资源信息, 如利用下行控制 信道中指示该当前用户设备 UE对应的 PUSCH在系统带宽的初始位置和连续 占用资源长度的若干比特来通知分配的资源。
例如, 以 10MHz的系统为例, 一共有 50个 RB, 则有 1275种资源分配 方式 (在任意的地方开始, 可支持的连续的 PRB长度, 一共有的组合数目:)。 为了指示接收机使用某一种资源分配方式, 至少需要 11个比特表示。并且 11 个 bit至少可以表示 2048种可能, 所以剩余 2048-1275 =773种状态没有被使 用, 因此, 在本发明实施例中可利用这些没被使用的状态来通知接收机分配 的资源, 不需对原有系统作改动即可实施, 因此可节约成本。
在本实施例中, 可采用资源指示值 (RIV: Resource Indication Value) 来 指示上行共享传输信道资源、 所使用的资源映射关系。 该 RIV可采用如下公 式计算:
若 (LCRBs - 1) < 2」, 则 = NR D B L (LCRBs - 1) + RBstart ( 1 ) 若 (^^ _ 1) > ^^ /2」, 则采用公式:
RIV = NR D B L (N^L― LCRBs + 1) + (N^L― 1― RBstart ) ( 2 ) τ lowest 其中,可预先设定 RIV与资源映射关系、以及最小资源块的索引号 和连续分配的资源块的数量 之间的关系, 即使相同的资源分配方式但是 不同的资源映射关系也会对应不同的 RIV值。
例如, 在使用约定的资源映射关系的情况下, 若分配给当前接收机的最
/lowest j
小资源块的索引号 PRR -^ ΏΛ =4 Λ 8 ο, Ι连^续^.分 / Τ配ηίΖΤ t的^iA资源块 ^的-t数 ^ -量& J ^^ ^ =2, 则可根据上 述公式( 1 )获得该资源对应的 RIV=98 (即 50* ( 2- 1 ) +48=98)。若发生 PHICH 资源碰撞, 则使用备用的资源映射关系, 如 table— 1, 这时可以通过发射机和 接收机预先协商好的一个 RIV值来表示 (这个 RIV是没有使用的 773 ( 1275〜 2047 ) 中的一种, 如使用 RIV=1277, 这样可以充分利用未使用的状态, 不需 增加额外的资源表示), 如表 5所示, 因此, 发射机将 RIV=1277通知用户设备。 表 5
Figure imgf000013_0001
这样, 当用户设备接收到发射机发送的 RIV值后, 可反推出分配的最小
τ lowest j
资源块的索引号 -^ =48, 连续分配的资源块的数量 ^ =2, 并获知使用的 备用的资源映射关系, 因此, 进一歩可根据备用的资源映射关系和循环位移 序列号 n ( DM— RS ) 来确定反馈信道资源。
表 6为其他系统带宽下传输下行控制信息的比特数, 以及使用的状态和 未使用的状态。
表 6 上行带宽 (RB) 25 50 100
RIV比特长度 9 1 1 13 所需要的状态数 325 1275 5050 剩余的状态数 187 773 3142 图 3是本发明的另一个实施例中基站 BS为多个用户设备 UE之一分配资 源的方法流程图, 其中, 以约定的资源映射关系对应为 table— 0、 备用的资源 映射关系对应为 table— 1为例进行说明。
如图 3所示, 该方法包括:
歩骤 301, 基站 BS利用与用户设备 UE约定的资源映射关系 (table— 0)、 且根据循环位移序列号"^ ^M - ^ ^逐一判断该当前用户设备 UE对应的反馈信 道是否已被其他接收机占用; 其中, 该资源映射关系是指最小资源块的索引 τ lowest
1 -1 ^ 、 循环移位序列号" (DM-^)与反馈信道的组索引号 和序 列号 CH 之间的关系;
歩骤 302, 若歩骤 301 中的判断结果为均被其他接收机占用, 则该基站
BS进一歩判断是否能够利用备用的资源映射关系 (table— 1 ) 来确定最终的循 环位移序列号 DM - RS
其中, 判断该当前用户设备是否有能力利用该备用的资源映射关系; 歩骤 303, 若在歩骤 302中判断结果为是, 则该基站 BS利用 table— 1来 确定最终的循环位移序列号 "^M-^), 以将空闲的反馈信道分配给该当前用 户设备 UE;
歩骤 304, 该基站 BS将该当前用户设备 UE的上行共享传输信道资源、 该备用的资源映射关系 table— 1、以及最终确定的循环位移序列号" ^M-^ ^通 知该当前用户设备 UE。
在本实施例中, 在歩骤 301的判断结果为否的情况下, 可执行歩骤 305、
306, 该发射机可采用的 Rd.8中的技术依次调整" ^M-^ 并确定最终的循 环位移序列号 DM - RS、。
歩骤 307, 基站 BS将当前用户设备 UE的上行共享传输信道资源、 使用 的资源映射关系、 以及最终确定的循环位移序列号" ^M-^ ^通知当前用户设 备, 此时使用的是约定的资源映射关系, 即 table— 0。
歩骤 308, 在歩骤 302中, 若判断结果为否, 则基站 BS进一歩判断是否 有具有备用的资源映射关系的其他用户设备 UE的资源分配占用了 talbe— 0中 的 PHICH资源;
歩骤 309, 在歩骤 308中, 若判断结果为是, 则基站 BS进一歩判断系统 中是否还存在空闲的 PHICH资源; 歩骤 310, 在歩骤 309中, 若判断结果为是, 则利用该其他设备 UE对应 的备用的资源映射关系将该其他用户设备 UE的 PHICH资源从 table— 0中移 出, 以空出 table— 0中的 PHICH资源。
歩骤 311, 将空出的 table— 0中的 PHICH资源分配给该用户设备 UE。 歩骤 312, 若歩骤 308、 309中判断结果为否, 则该基站 BS不为该当前 用户设备分配资源, 或者通过改变初始资源块的索引号来避免碰撞。
由上述歩骤 308〜311可知, 若先处理了具有备用的资源映射关系的用户 设备 UE的资源分配, 如果发现有资源可用, 则进入歩骤 305, 假设具有备用 的资源映射关系的用户设备 UE使用了 table— 0的 PHICH(0,0:>, 之后基站 BS 在处理一个没有备用的资源映射关系的用户设备 UE 的资源分配时, 发现 table— 0里面的 PHICH资源已经用完了,这时可将具有备用的资源映射关系的 用户设备 UE的 PHICH资源指示到另外一个 table上, 同时,将不具有备用的 资源映射关系的用户设备 UE放到挪出的那个位置上。
图 4是本发明实施例的歩骤 302的实现流程图。 如图 4所示, 包括以下 歩骤:
歩骤 401,判断初歩确定的当前用户设备 UE的初始资源块是否处于预定 的能够利用备用的资源映射关系的资源块的初始位置和终止位置之间;
其中, 可采用如下方式: 根据预定的能够利用备用的资源映射关系的资 源块的数量 M、 以及该资源块对应的起始位置或终止位置来确定该能够利用 备用的资源映射关系的资源块的起始位置索引号和终止位置索引号;
τ lowest
若该当前用户设备 UE的初始资源块索引号 小于等于终止位置索 引号且大于等于起始位置索引号,则该基站判断当前用户设备 UE的初始资源 块处于预定的能够利用备用的资源映射关系的连续资源块的初始位置和终止 位置之间;
在本实施例中, 可预先确定 M, 并且假设该连续 M个资源块所在带宽资 源上的位置, 若假设该 M个资源块的初始位置索引号为 0, 则该 M个资源块 终止位置的索引号为 0+M-1 , 但不限于此, 该 M个资源块的初始位置索引号 还可为其他。
歩骤 402, 在歩骤 401中, 若判断结果为是, 则进一歩判断初歩确定的当 前接收机的连续分配的资源块的数量£««是否小于系统支持的最大连续资源 L
块的数: Thred
歩骤 403, 在歩骤 402中, 若判断结果为是, 则基站 BS确定能够利用备 用的资源映射关系来确定最终的循环位移序列号 "^M-^^, 否则确定不能利 用备用的资源映射关系来确定最终的循环位移序列号" (DM-^)。
在歩骤 202和歩骤 403中, 若判断结果为否, 则执行歩骤 405, 该基站 BS不为用户设备分配资源或者通过改变初始资源块的索引号来避免碰撞。
在本实施例中, 可预先确定能够利用备用的资源映射关系的资源块 M, 采用如下方式确定
1) 计算第一计算值 M。, 其中采用如下公式计算:
Figure imgf000016_0001
若第一计算值 M。小于等于系统支持的最大连续资源块的数量 , 则 M = M。, 其中, 系统支持的最大连续资源块的数量 ^=^ _^^^; 若第一计算值 M。大于系统支持的最大连续资源块的数量 , 则采用如 下公式计算 M, 该公式为:
LThred - , fe - )»(l + N RB X ATUL ,
M = N ' RB +x
Thred 2·1 Thred
其中, X表示所述能够利用备用的资源映射关系的资源块终止位置的索引 号, 表示系统带宽, W表示备用的资源映射关系的数量, N p 表示系
用下行 PHICH数量为 16个,可用下行 PHICH组为 2个,则其备用的资源映射 关系数量 W=l。
由上述实施例可知,在当前接收机与其他接收机的 PHICH资源发生碰撞 时, 可通过使用备用的资源映射关系为该当前接收机选择其他空闲的 PHICH 资源, 从而减少或完全避免 PHICH资源碰撞的发生; 此外, 通过使用不同的 RIV 值来通知用户设备所使用的上行资源, 以及所使用的资源映射关系和 «(DM _ W),从而可在不对原有系统作较大改动的基础上即可实施,节约成本。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分歩骤 是可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一计算机可 读取存储介质中, 该程序在执行时, 可以包括上述实施例方法中的全部或部 分歩骤, 所述的存储介质可以包括: ROM、 RAM, 磁盘、 光盘等。
本发明实施例还提供了一种发射机, 如下面的实施例所述。 由于该发射 机解决问题的原理与上述基于发射机的通信方法相似, 因此该发射机的实施 可以参见方法的实施, 重复之处不再赘述。
图 5是本发明实施例 2的发射机的结构示意图。 如图 5所示, 该发射机 包括: 调度单元 501, 用于根据多个接收机发送的传输上行数据请求来调度多 个接收机, 以初歩确定多个接收机的上行共享传输信道资源; 被一个接收机 使用的上行共享传输信道资源由初始资源块索引号和连续分配的资源块的数 量来确定;
资源分配单元 502,用于根据调度单元的调度结果、约定的资源映射关系 和备用的资源映射关系、 以及用于指示上行反馈信道的循环位移序列号 (DM _ W)分别确定多个接收机的上行共享传输信道资源、所使用的资源映射 关系、 以及最终的循环位移序列号 "(DM-^) ; 其中, 资源映射关系是指最小 资源块的索引号、循环移位序列号" (DM-^ ^与反馈信道的组索引号和序列号 之间的关系;
资源通知单元 503,用于将资源分配单元确定的多个接收机的上行共享传 输信道资源、 所使用的资源映射关系、 以及最终的循环位移序列号 "(DM-^) 通知多个接收机。
由上述实施例可知, 发射机可利用至少两种资源映射关系, 即约定的和 备用的资源映射关系为每个接收机选择反馈信道资源, 充分利用空闲的反馈 信道资源, 从而可减少或完全避免资源碰撞的发生。 图 6是本发明实施例 2中资源分配单元的构成示意图。 如图 6所示, 当 确定多个接收机中的一个当前接收机的上行共享传输信道资源、 所使用的资 源映射关系、 以及最终的循环位移序列号 "(DM-^)时, 资源分配单元 502包 括:
第一判断单元 601,用于利用与接收机约定的资源映射关系、按照循环位 移序列号" ^M-^ ^逐一判断当前接收机对应的反馈信道是否已被其他接收 机占用;
信息确定单元 602,用于在第一判断单元 601的判断结果为均被其他接收 机占用时, 利用备用的资源映射关系来确定最终的循环位移序列号 n{DM _ RS) ^ 以将空闲的反馈信道分配给当前接收机。
在另一实施例中, 在第一判断单元 601判断结果为是时, 还可进一歩判 断是否能够利用备用的资源映射关系, 若判断结果为是, 信息确定单元 603 将利用备用的资源映射关系来确定最终的 "(DM-^)。 因此, 如图 6所示, 资 源分配单元 502还可包括:
第二判断单元 603,用于在第一判断单元 601的判断结果为是时,进一歩 判断是否能够利用备用的资源映射关系来确定最终的" (DM-^);
并且信息确定单元 602在第二判断单元 603的判断结果为是时确定能够 利用备用的资源映射关系来确定最终的" (DM-^)。
此外, 若先处理了具有备用的资源映射关系的用户设备 UE的资源分配, 之后基站 BS在处理一个没有备用的资源映射关系的用户设备 UE的资源分配 时, 发现 PHICH资源已经用完了, 这时可将具有备用的资源映射关系的用户 设备 UE的 PHICH资源指示到另外一个具有空闲 PHICH资源上, 同时,将不 具有备用的资源映射关系的用户设备 UE放到挪出的那个位置上。
因此, 在本实施例中, 如图 6所示, 资源分配单元 502还可包括第三判 断单元 604、 第四判断单元 605、 资源转移单元 606和处理单元 607。
其中, 第三判断单元 604, 用于在第二判断单元 604的判断结果为否时, 进一歩判断占用反馈信道资源的其他接收机中是否存在具有备用的资源映射 关系的接收机;
第四判断单元 605,用于在所述第三判断单元 604的判断结果为是时,进 一歩判断系统中是否还存在空闲的反馈信道资源;
资源转移单元 606,用于在所述第四判断单元的判断结果为是时,利用所 述其他接收机对应的备用的资源映射关系将所述其他接收机的反馈信道资源 移到空闲的反馈信道资源; 将空出的反馈信道资源分配给所述当前接收机; 处理单元 607,用于在所述第三判断单元 604和第四判断单元 605的判断 结果为否时, 不为所述当前接收机分配资源, 或者调整初歩确定的所述当前 接收机的初始资源块索引号。
在本实施例中,第二判断单元 603可包括第五判断单元 701、第六判断单 元 702和能力确定单元 703 ; 其中,
第五判断单元 701,用于判断初歩确定的当前接收机的初始资源块是否处 于预定的能够利用备用的资源映射关系的资源块的初始位置和终止位置之 间;
第六判断单元 702,用于在第五判断单元 701的判断结果为是时,进一歩 判断初歩确定的当前接收机的连续分配的资源块的数量 £f ^是否小于系统支 持的最大连续资源块的数量 ;
能力确定单元 703,若第六判断单元 702的判断结果为是,则能够利用备 用的资源映射关系来确定最终的循环位移序列号 "^M-^ 否则不能。
在本实施例中, 如图 8所示, 第五判断单元 701可包括索引号确定单元 801和位置确定单元 802; 其中,
索引号确定单元 801,用于根据预定的能够利用备用的资源映射关系的资 源块的数量 M、 以及预定的连续资源块对应的起始位置或终止位置来确定能 够利用备用的资源映射关系的连续资源块的起始位置索引号和终止位置索引 号;
τ lowest 位置确定单元 802, 用于在当前接收机的初始资源块索引号 小于 等于终止位置索引号且大于等于起始位置索引号时, 确定当前接收机的初始 资源块处于预定的能够利用备用的资源映射关系的资源块的初始位置和终止 位置之间。
在本实施例中, 能够利用备用的资源映射关系的资源块的数量 M可采用 上述公式计算, 并且可预先确定这些能够利用备用的资源映射关系的资源块 所在带宽资源中的位置, 此处不再赘述。
由上述实施例可知,在当前接收机与其他接收机的 PHICH资源发生碰撞 时, 可通过使用备用的资源映射关系为该当前接收机选择其他空闲的 PHICH 资源, 从而减少或完全避免 PHICH资源碰撞的发生; 此外, 通过使用不同的 RIV值来通知用户设备所使用的上行资源, 以及所使用的资源映射关系和循 环位移序列号 , 从而可在不对原有系统作较大改动的基础上即可实 施, 节约成本。
图 9是本发明实施例 3的无线通信系统结构示意图。 如图 9所示, 该系 统包括至少一个发射机 901和至少一个接收机 902; 其中, 发射机 901可为基 站, 其构成和实现方式如实施例 1、 2所述, 此处不再赘述。
如图 9所示, 当多个接收机 902开机与发射机 901建立连接后, 若接收 机 902需要通过 PUSCH向发射机 901发送上行数据时,接收机 902向发射机 发送传输上行数据请求, 发射机 901根据接收到的请求确定接收机 902所使 用的资源信息, 该资源信息包括上行共享传输信道资源、 所使用的资源映射 关系、 以及最终的 "(DM-^), 具体方法如实施例 1所述, 此处不再赘述。
图 10是本发明实施例 3中一个接收机的构成示意图。 如图 10所示, 该 接收机至少包括请求发送单元 1001, 用于向发射机 901发送传输上行数据请 求, 使得发射机 901根据该请求为接收机分配资源。
此外, 如图 10所示, 该接收机还包括信息接收单元 1002, 用于接收发射 机 901 根据该请求发送的上行共享传输信道资源、 所使用的资源映射关系、 以及最终的" (DM-^)。
以下以 10MHz的系统为例对本发明实施例进一歩进行说明。
在 10MHz的系统中, 50个 RB; 可用 PHICH资源为 32个, PHICH组 的数目等于 4, 该备用的资源映射关系的数量 W为 2, 表示一共存在三种映射 关系, 假设备用的资源映射关系对应 table— 0, 其他备用的资源映射关系对应 table— 1和 table— 3;
在该系统中, 剩余 2048-1275 =773种状态没有被使用; 系统支持的最大连续资源块的数量 ^^=50-32=18;
计算在这种场景下确定能够利用备用的资源映射关系的资源块 M, 该 M 值可预先计算好之后输入基站 BS供基站 BS使用, 也可基站 BS计算, 此外, 预先假设该 M个资源块处于带宽资源的位置, 其可处于任意位置, 例如此场 景中处于带宽资源的最下方, 则该 M个资源块的终止位置的索引号为 x=49, 开始位置索引号 =χ - Μ+1, 采用如下公式:
Figure imgf000021_0001
2) n =26 , 于系统支持的最大连续资源块的数量 =18, 则
R L 1 , fe- )»(l + N
M Thred RB
' RB =30 (
iy ^Thred ^ ^ ^Thred
3 ) 该 M个资源块处于带宽资源的位置: 起始位置索引号为 10=49-30+1=30, 终止位置索引号 Il=x=49。
上述各参数由表 7示出, 如表 7所示: 表 7
Figure imgf000021_0002
在本实施例中, 采用资源指示值 (RIV: Resource Indication Value) 来指 示上行共享传输信道资源、 所使用的资源映射关系。
其中, RIV值可根据上述公式(1)和(2)预先计算, 然后预先建立 RIV 值与 table— 0、 table— 1和 table— 3之间的关系, 这样, 即使相同的资源分配方式 但是不同的资源映射关系也会对应不同的 RIV值。
J lowest j
如对于同样的资源分配方式, 如 - =48, L =2, RIV值不同, 如表 8所示(表 8中的数值仅为示例)。其中 RIV值可适用系统中未被使用的状态, 1275〜2047之间, 这样, 不需对原有系统作大的改动。 表 8
Figure imgf000022_0001
j lowest j
由上述可知, RIV=98, 表示 - ^ =48、 LcRB =2、 以及使用 table— 0;
τ lowest j
RIV=1277 , 表示 ^ =48、 LcRB =2、 以及使用 table— 1 ; RIV=1279, 表示 j lowest j
層 ^ =48、 LCRB =2、 以及使用 table— 3。
这样, 当用户设备 UE接收到发射机发送的 RIV值后, 可反推出分配的 τ lowest j
最小资源块的索引号 -^ =48, 连续分配的资源块的数量 ^ =2, 并获知使 用的备用的资源映射关系, 因此, 进一歩可根据备用的资源映射关系和 n (DM_RS) 来确定 PHICH资源。
上述 RIV与资源映射关系、 以及上行资源关系可预先确定下来。
以下以基站为多个接收机中的一个接收机分配资源时的过程进行说明, 如图 11所示为基站 BS调度用户初歩确定资源情况示意图, 为了便于说明问 题, 只示意出一个用户设备占用的资源块。
当用户设备 UE开机, 与基站 BS建立连接后, 基站 BS根据多个用户设 备 UE发送的传输上行数据请求来调度多个接收机,以初歩确定多个接收机的 上行共享传输信道资源; 被一个接收机使用的上行共享传输信道资源由初始 资源块索弓 I号和连续分配的资源块的数量来确定;
τ lowest ― τ
若基站分配给该用户设备的 =LcRS =2。
首先基站利用 table— 0,按照 "(DM-^ ^从 0到 Ί的顺序逐一确定是否有没 有被其他用户设备 UE占用的 PHICH资源,若 "(DM-^) =3时,对应的 PHICH 资源状态为空闲, 则该基站 BS可确定最终的 "^M-^^=3, RIV=98, 然户将 RIV=98, n(DM _ RS) ^向该用户设备 UE发送, 这样当该用户设备 UE接收到 lowest ―
上述信息后, 可根据 1 1¥=98确定 -^ = 46L =2 , 并且确定使用的是 table— 0, 则可根据 "^Μ-^)=3确定基站 BS上行反馈使用的 PHICH资源。
若基站在按照 "^M-^ ^从 0到 7的顺序逐一确定是否存在没有被其他用 户设备 UE占用的 PHICH资源时, 确定的结果为 table— 0的 PHICH资源使用 状态没有空闲,这是,该基站 BS首先确定是否能够使用备用的资源映射关系, 即 table— 1或 table— 3来分配 PHICH资源, 其中, 可采用如下方式判断: 首先
J lowest ―
判断 是否在 [20,49]之间, 判断结果为是, 则进一歩判断 «« =2是 否小于^ /^ =18, 判断结果为是, 则可知能够使用 table— 1 或 table— 3来分配 PHICH资源。
这样, 该基站 BS可使用 table— 1或 table— 3为该用户设备分配 PHICH资 源, 在分配过程中, 还是按照"^ ^M -^ ^从 0到 7的顺序逐一确定是否存在没 有被其他用户设备 UE占用的 PHICH资源,直到找到空闲的 PHICH资源, 以 确定最终的" (DM -^), 若基站 BS使用了 table— 1, 则对应 RIV=1277, 若基 站 BS使用了 table— 3, 则对应 RIV=1279;
若遍历了 table— 1和 table— 3之后, 还是没有空闲的 PHICH资源, 则该基 站 BS判断系统中是否还有空闲的资源, 若判断结果为 table— 2中有, 则基站 BS可将 table— 1或 table— 3中的资源移到 table— 2中, 然后再将空出的 PHICH 资源分配给该用户设备 UE, 如图 12所示。
若确定 table— 1、 table— 2和 table— 3中均没有空闲的 PHICH资源时, 该基 站 BS不为该用户设备 UE分配资源, 或者该基站 BS调整分配给该用户设备 的初始资源块的位置。
上述实施例仅以上行带宽资源为 50为例进行说明,对于其他带宽系统处 理方式与上述类似, 此处不再赘述, 通过本发明实施例, 可完全避免或减少 PHICH资源冲突。 如表 9所示各种情况下的避免资源碰撞的情况。 表 9
上行带宽 (RB) 25 50 100
RIV比特长度 9 11 13
所需要的状态数 325 1275 5050
剩余的状态数 187 773 3142
Ng=1/6,N_PHICH =16 完全消除 完全消除 完全消除 Ng=1/2,N_PHICH =32 - 完全消除 几乎完全消除
Ng=1,N_PHICH =56 - - 几乎完全消除
Ng=2,N_PHICH =104 - - -
由上述实施例可知,在当前接收机与其他接收机的 PHICH资源发生碰撞 时, 可通过使用备用的资源映射关系为该当前接收机选择其他空闲的 PHICH 资源, 从而减少或完全避免 PHICH资源碰撞的发生; 此外, 通过使用不同的
RIV 值来通知用户设备所使用的上行资源, 以及所使用的资源映射关系和 "(DM_^),从而可在不对原有系统作较大改动的基础上即可实施,节约成本。 本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。 本发明涉及这样的计算机可读程序, 当该程序被逻辑部件所执行时, 能够使 该逻辑部件实现上文所述的装置或构成部件, 或使该逻辑部件实现上文所述 的各种方法或歩骤。 本发明还涉及用于存储以上程序的存储介质, 如硬盘、 磁盘、 光盘、 DVD、 flash存储器等。
以上结合具体的实施方式对本发明进行了描述, 但本领域技术人员应该 清楚, 这些描述都是示例性的, 并不是对本发明保护范围的限制。 本领域技 术人员可以根据本发明的精神和原理对本发明做出各种变型和修改, 这些变 型和修改也在本发明的范围内。

Claims

权利要求书
1、 一种资源分配方法, 所述方法包括:
发射机根据多个接收机发送的传输上行数据请求来调度所述多个接收 机, 以初歩确定所述多个接收机的上行共享传输信道资源; 所述被一个接收 机使用的上行共享传输信道资源由初始资源块索引号和连续分配的资源块的 数量来确定;
根据调度结果、 约定的资源映射关系、 备用的资源映射关系、 以及用于 指示上行反馈信道的循环位移序列号" (DM - )分别确定所述多个接收机的 上行共享传输信道资源、 所使用的资源映射关系、 以及最终的" ^M-^) ; 其 中, 所述资源映射关系是指最小资源块的索引号、 循环移位序列号" (DM-^) 与反馈信道的组索引号和序列号之间的关系;
所述发射机将确定的所述多个接收机的上行共享传输信道资源、 所使用 的资源映射关系、 以及最终的" ^M-^ ^通知所述多个接收机。
2、 根据权利要求 1所述的方法, 其中, 当所述发射机确定所述多个接收 机中的一个当前接收机的上行共享传输信道资源、 所使用的资源映射关系、 以及最终的" (DM - )时, 所述方法包括:
所述发射机利用与接收机约定的资源映射关系、 按照所述循环位移序列 号" φΜ_Λ^逐一判断所述当前接收机对应的反馈信道是否已被其他接收机 占用;
若判断结果为均被其他接收机占用, 所述发射机利用备用的资源映射关 系来确定最终的循环位移序列号" ^Μ-^^, 以将空闲的反馈信道分配给所述 当前接收机。
3、 根据权利要求 1所述的方法, 其中, 在所述发射机利用备用的资源映 射关系来确定最终的循环位移序列号" ^Μ-^ ^之前, 所述方法还包括:
所述发射机判断是否能够利用备用的资源映射关系来确定最终的循环位 移序列号" (DM- ) ;
若判断结果为是, 则所述发射机利用备用的资源映射关系来确定最终的 循环位移序列号" (DM-^)。
4、 根据权利要求 3所述的方法, 其中, 若判断结果为所述发射机不能利 用备用的资源映射关系来确定最终的循环位移序列号 ^DM-^ ^时, 所述方法 还包括:
所述发射机进一歩判断占用反馈信道资源的其他接收机中是否存在具有 备用的资源映射关系的接收机;
若判断结果为存在具有备用的资源映射关系的接收机, 则所述发射机进 一歩判断系统中是否还存在空闲的反馈信道资源;
若判断结果为还存在空闲的反馈信道资源, 则利用所述其他接收机对应 的备用的资源映射关系将所述其他接收机的反馈信道资源移到空闲的反馈信 道资源;
将空出的反馈信道资源分配给所述当前接收机;
若判断结果为不存在具有备用的资源映射关系的接收机或者判断结果为 系统中不存在空闲的反馈信道, 则所述发射机不为所述当前接收机分配资源, 或者所述发射机调整初歩确定的所述当前接收机的初始资源块索引号。
5、 根据权利要求 3所述的方法, 其中, 所述发射机判断是否能够利用备 用的资源映射关系来确定所述最终的循环位移序列号 "^M-^^, 包括:
判断初歩确定的所述当前接收机的初始资源块是否处于预定的能够利用 备用的资源映射关系的资源块的初始位置和终止位置之间;
若判断结果为是, 则进一歩判断初歩确定的所述当前接收机的连续分配 的资源块的数量^^5是否小于系统支持的最大连续资源块的数量
若判断结果为是, 则所述发射机判断能够利用备用的资源映射关系来确 定所述最终的循环位移序列号" (DM-^), 否则不能。
6、 根据权利要求 5所述的方法, 其中, 所述判断初歩确定的所述当前接 收机的初始资源块是否处于预定的能够利用备用的资源映射关系的资源块的 初始位置和终止位置之间, 包括:
根据预定的能够利用备用的资源映射关系的资源块的数量 、 以及预定 的所述资源块对应的起始位置或终止位置来确定所述能够利用备用的资源映 射关系的资源块的起始位置索弓 1号和终止位置索引号;
J lowest
若所述当前接收机的初始资源块索引号 s- 小于等于终止位置索引号 且大于等于起始位置索引号, 则所述发射机判断当前接收机的初始资源块处 于预定的能够利用备用的资源映射关系的连续资源块的初始位置和终止位置 之间。
7、 根据权利要求 6所述的方法, 其中, 所述方法还包括: 确定能够利用 备用的资源映射关系的资源块的数量 M, 具体包括: 计算第一计算值 M。, 其中采用如下公式计算:
, r 8R
N + 1 ) +——
N
+ x - N[
2 若所述第一计算值 M。小于等于系统支持的最大连续资源块的数量 Thred 则所述 M = M。, 其中, 所述系统支持的最大连续资源块的数
L Thred
Figure imgf000027_0001
若所述第一计算值 M。大于系统支持的最大连续资源块的数
Figure imgf000027_0002
用如下公式计算所述 M, 所述公式为:
Figure imgf000027_0003
其中, X表示所述能够利用备用的资源映射关系的资源块终止位置的索引
N
号, 表示系统带宽, W表示备用的资源映射关系的数量, 翻 表; 统能够利用的反馈信道的数量。
8、 根据权利要求 1至 7任一项权利要求所述的方法, 其中, 所述备用的 资源映射关系与系统中反馈信道的组数有关;
当反馈信道的组数为 2时, 所述备用的资源映射关系的数量 W为 1 ; 当 反馈信道的组数为 2个以上时, 所述备用的资源映射关系的数量 W为 2。
9、 根据权利要求 1至 7任一项权利要求所述的方法, 其中, 所述发射机 利用下行控制信道中指示所述当前用户对应的 PUSCH在系统带宽的初始位 置和连续占用资源长度的若干比特位来通知所述接收机。
10、 根据权利要求 1所述的方法, 其中, 所述方法还包括:
所述至少一个接收机接收所述发射机发送的上行共享传输信道资源、 所 使用的资源映射关系、 以及最终的 "(DM-^)。
11、 一种发射机, 所述发射机包括:
调度单元, 用于根据多个接收机发送的传输上行数据请求来调度所述多 个接收机, 以初歩确定所述多个接收机的上行共享传输信道资源; 所述被一 个接收机使用的上行共享传输信道资源由初始资源块索引号和连续分配的资 源块的数量来确定;
资源分配单元, 用于根据所述调度单元的调度结果、 约定的资源映射关 系和备用的资源映射关系、 以及用于指示上行反馈信道的循环位移序列号 "(DM _ W)分别确定所述多个接收机的上行共享传输信道资源、所使用的资源 映射关系、 以及最终的循环位移序列号 "(DM-^) ; 其中, 所述资源映射关系 是指最小资源块的索引号、循环移位序列号" (DM-^)与反馈信道的组索引号 和序列号之间的关系;
资源通知单元, 用于将所述资源分配单元确定的所述多个接收机的上行 共享传输信道资源、 所使用的资源映射关系、 以及最终的循环位移序列号 ^DM-^ ^通知所述多个接收机。
12、 根据权利要求 11所述的发射机, 其中, 当确定所述多个接收机中的 一个当前接收机的上行共享传输信道资源、 所使用的资源映射关系、 以及最 终的循环位移序列号 "(DM-^)时, 所述资源分配单元包括:
第一判断单元, 用于利用与接收机约定的资源映射关系、 按照循环位移 序列号 "^M-^ ^逐一判断所述当前接收机对应的反馈信道是否已被其他接 收机占用;
信息确定单元, 用于在所述第一判断单元的判断结果为均被其他接收机 占用时, 利用备用的资源映射关系来确定最终的循环位移序列号 "(DM-^), 以将空闲的反馈信道分配给所述当前接收机。
13、 根据权利要求 11所述的发射机, 其中, 所述资源分配单元还包括: 第二判断单元, 用于在所述第一判断单元的判断结果为是时, 进一歩判 断是否能够利用备用的资源映射关系来确定最终的循环位移序列号 n(DM _ RS) . 并且所述信息确定单元在所述第二判断单元的判断结果为是时确定能够 利用备用的资源映射关系来确定最终的循环位移序列号 "(DM-^)。
14、 根据权利要求 13所述的发射机, 其中, 所述资源分配单元还包括: 第三判断单元, 用于在所述第二判断单元的判断结果为否时, 进一歩判 断占用反馈信道资源的其他接收机中是否存在具有备用的资源映射关系的接 收机;
第四判断单元, 用于在所述第三判断单元的判断结果为是时, 进一歩判 断系统中是否还存在空闲的反馈信道资源; 资源转移单元, 用于在所述第四判断单元的判断结果为是时, 利用所述 其他接收机对应的备用的资源映射关系将所述其他接收机的反馈信道资源移 到空闲的反馈信道资源; 将空出的反馈信道资源分配给所述当前接收机; 处理单元,用于在所述第三判断单元和第四判断单元的判断结果为否时, 不为所述当前接收机分配资源, 或者调整初歩确定的所述当前接收机的初始 资源块索引号。
15、 根据权利要求 13所述的发射机, 其中, 所述第二判断单元包括: 第五判断单元, 用于判断初歩确定的所述当前接收机的初始资源块是否 处于预定的能够利用备用的资源映射关系的资源块的初始位置和终止位置之 间;
第六判断单元, 用于在所述第五判断单元的判断结果为是时, 进一歩判 断初歩确定的所述当前接收机的连续分配的资源块的数量£««是否小于系统 支持的最大连续资源块的数量 若判断结果为是, 则能够利用备用的资 源映射关系来确定所述最终的循环位移序列号" ^M-^^, 否则不能。
16、 根据权利要求 15所述的发射机, 其中, 所述第五判断单元包括: 索引号确定单元, 用于根据预定的能够利用备用的资源映射关系的资源 块的数量 、 以及预定的所述连续资源块对应的起始位置或终止位置来确定 所述能够利用备用的资源映射关系的连续资源块的起始位置索引号和终止位 置索引号;
τ lowest 位置确定单元, 用于在所述当前接收机的初始资源块索引号 小于 等于终止位置索引号且大于等于起始位置索引号时, 确定当前接收机的初始 资源块处于预定的能够利用备用的资源映射关系的资源块的初始位置和终止 位置之间。
17、 一种无线通信系统, 包括至少一个发射机和至少一个接收机, 所述 发射机使用权利要求 1至 10的任一项权利要求所述的方法为所述至少一个接 收机分配资源。
18、 根据权利要求 17所述的系统, 其中, 所述至少一个接收机包括请求 发送单元, 用于向所述发射机发送传输上行数据请求, 使得所述发射机根据 所述请求为所述接收机分配资源。
19、 一种计算机可读程序, 其中当在发射机中执行所述程序时, 所述程 序使得计算机在所述发射机中执行如权利要求 1-10中任意一项所述的进行资 源分配的方法。
20、 一种存储有计算机可读程序的存储介质, 其中所述计算机可读程序 使得计算机在发射机中执行如权利要求 1-10中任意一项所述的进行资源分配 的方法。
PCT/CN2010/076061 2010-08-17 2010-08-17 一种资源分配方法、系统和发射机 WO2012022026A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR20137006573A KR20130042021A (ko) 2010-08-17 2010-08-17 자원을 할당하기 위한 방법, 시스템 및 송신기
JP2013524329A JP5565525B2 (ja) 2010-08-17 2010-08-17 リソース割り当て方法、システムと送信機
EP20100856024 EP2608613A1 (en) 2010-08-17 2010-08-17 Method, system and transmitter for allocating resources
PCT/CN2010/076061 WO2012022026A1 (zh) 2010-08-17 2010-08-17 一种资源分配方法、系统和发射机
CN201080068509XA CN103053211A (zh) 2010-08-17 2010-08-17 一种资源分配方法、系统和发射机
US13/767,483 US9014120B2 (en) 2010-08-17 2013-02-14 Method of resource allocation, system and transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/076061 WO2012022026A1 (zh) 2010-08-17 2010-08-17 一种资源分配方法、系统和发射机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/767,483 Continuation US9014120B2 (en) 2010-08-17 2013-02-14 Method of resource allocation, system and transmitter

Publications (1)

Publication Number Publication Date
WO2012022026A1 true WO2012022026A1 (zh) 2012-02-23

Family

ID=45604681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076061 WO2012022026A1 (zh) 2010-08-17 2010-08-17 一种资源分配方法、系统和发射机

Country Status (6)

Country Link
US (1) US9014120B2 (zh)
EP (1) EP2608613A1 (zh)
JP (1) JP5565525B2 (zh)
KR (1) KR20130042021A (zh)
CN (1) CN103053211A (zh)
WO (1) WO2012022026A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140045508A1 (en) * 2012-08-07 2014-02-13 Chandra Sekhar Bontu Code rate adaptation in wireless communication systems
CN105612712A (zh) * 2013-09-17 2016-05-25 英特尔Ip公司 用于识别物理混合自动重传请求指示符信道资源的技术

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8950394B2 (en) 2010-01-12 2015-02-10 Dance Biopharm Inc. Preservative-free single dose inhaler systems
US9545488B2 (en) 2010-01-12 2017-01-17 Dance Biopharm Inc. Preservative-free single dose inhaler systems
US20130269684A1 (en) 2012-04-16 2013-10-17 Dance Pharmaceuticals, Inc. Methods and systems for supplying aerosolization devices with liquid medicaments
CN103327615B (zh) * 2012-03-20 2016-04-20 华为技术有限公司 资源分配指示方法、资源分配方法及设备
US9248246B2 (en) * 2013-09-27 2016-02-02 Cellco Partnership Category 1 M2M device data transmission via a long term evolution network
WO2016026087A1 (zh) * 2014-08-19 2016-02-25 华为技术有限公司 数据传输方法和装置
US9750056B2 (en) * 2015-01-27 2017-08-29 Huawei Technologies Co., Ltd. System and method for transmission in a grant-free uplink transmission scheme
US9585155B2 (en) * 2015-03-20 2017-02-28 Qualcomm Incorporated Optimizing the allocation of spare resources
CN107615841B (zh) 2015-05-29 2020-06-02 华为技术有限公司 一种资源映射方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009875A (zh) * 2007-01-26 2007-08-01 中国科学技术大学 一种多天线系统中基于满意度的多用户调度方法
US7414989B2 (en) 2003-05-07 2008-08-19 Motorola, Inc. ACK/NACK determination reliability for a communication device
US20090196240A1 (en) * 2008-02-04 2009-08-06 Nokia Siemens Networks Oy Method, apparatus and computer program to map a cyclic shift to a channel index
CN101682917A (zh) * 2007-06-18 2010-03-24 三菱电机株式会社 通信方法、无线通信系统、发送机以及接收机
CN101779513A (zh) * 2007-08-13 2010-07-14 高通股份有限公司 用于在无线通信系统中支持广播和多播业务的方法和设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101252783B (zh) * 2008-03-27 2012-09-05 中兴通讯股份有限公司 一种资源分配方法
US8531962B2 (en) * 2008-04-29 2013-09-10 Qualcomm Incorporated Assignment of ACK resource in a wireless communication system
TWI416977B (zh) * 2008-08-19 2013-11-21 Korea Electronics Telecomm 傳送確認/負面確認的方法及裝置
JP5075859B2 (ja) * 2009-03-09 2012-11-21 株式会社エヌ・ティ・ティ・ドコモ 無線基地局
CN101702644B (zh) * 2009-11-02 2014-08-13 中兴通讯股份有限公司 一种物理混合重传指示信道的传输方法和装置
SG182371A1 (en) * 2010-01-08 2012-08-30 Interdigital Patent Holdings Method and apparatus for channel resource mapping in carrier aggregation
JP5097793B2 (ja) * 2010-04-30 2012-12-12 株式会社エヌ・ティ・ティ・ドコモ 基地局装置、移動端末装置および通信制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7414989B2 (en) 2003-05-07 2008-08-19 Motorola, Inc. ACK/NACK determination reliability for a communication device
CN101009875A (zh) * 2007-01-26 2007-08-01 中国科学技术大学 一种多天线系统中基于满意度的多用户调度方法
CN101682917A (zh) * 2007-06-18 2010-03-24 三菱电机株式会社 通信方法、无线通信系统、发送机以及接收机
CN101779513A (zh) * 2007-08-13 2010-07-14 高通股份有限公司 用于在无线通信系统中支持广播和多播业务的方法和设备
US20090196240A1 (en) * 2008-02-04 2009-08-06 Nokia Siemens Networks Oy Method, apparatus and computer program to map a cyclic shift to a channel index

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140045508A1 (en) * 2012-08-07 2014-02-13 Chandra Sekhar Bontu Code rate adaptation in wireless communication systems
CN105612712A (zh) * 2013-09-17 2016-05-25 英特尔Ip公司 用于识别物理混合自动重传请求指示符信道资源的技术
CN105612712B (zh) * 2013-09-17 2019-06-25 英特尔Ip公司 用于识别物理混合自动重传请求指示符信道资源的方法、装置及设备

Also Published As

Publication number Publication date
KR20130042021A (ko) 2013-04-25
US20130155987A1 (en) 2013-06-20
JP2013539274A (ja) 2013-10-17
US9014120B2 (en) 2015-04-21
JP5565525B2 (ja) 2014-08-06
EP2608613A1 (en) 2013-06-26
CN103053211A (zh) 2013-04-17

Similar Documents

Publication Publication Date Title
WO2012022026A1 (zh) 一种资源分配方法、系统和发射机
US11444729B2 (en) Transmitting feedback for data transmission through a sidelink
WO2021063374A1 (en) Devices and methods of signaling for resource selection and reservation in sidelink transmission
CN114175781A (zh) 基于侧行链路传输优先级的感测和资源选择
EP3038424B1 (en) Improved allocation of uplink resources in orthogonal frequency-division multiple access wireless networks
CA2915317C (en) Systems and methods for traffic-aware medium access selection
JP7120716B2 (ja) ユーザ機器間通信のための方法及びユーザ機器
CN114128346A (zh) 用于在无线通信系统中控制拥塞的装置和方法
WO2016177162A1 (zh) 一种资源分配方法和装置
WO2009030168A1 (fr) Procédé et dispositif d&#39;allocation de canal de commande et d&#39;indication d&#39;allocation de canal ack/nack
JP7476900B2 (ja) 通信デバイス、インフラストラクチャ機器、および方法
WO2015018037A1 (zh) 资源分配方法及设备
WO2012122849A1 (zh) 上行资源分配方法和设备
CN111132313B (zh) 一种进行资源选择的方法及设备
WO2015043246A1 (zh) 上行功率削减处理方法、装置、终端及基站
WO2016070672A1 (zh) 一种实现数据传输的方法及装置
WO2016019557A1 (zh) 一种资源配置方法、用户直联通信方法及装置
CN114009122A (zh) 用于多个配置授权的方法、通信装置和基础设施设备
WO2021004136A1 (zh) 组播反馈资源确定方法及装置、存储介质、用户设备
JP2024020563A (ja) Psfchリソースの決定方法、配置方法及び通信機器
WO2016127348A1 (zh) 接入点ap、站点sta、通信系统及数据传输方法
WO2016033962A1 (zh) 一种信道复用的方法和装置
WO2010069274A1 (zh) 反馈信息传输方法、系统及设备
WO2016179839A1 (zh) 一种数据发送方法及装置
WO2013020511A1 (zh) 一种物理混合重传指示信道的分配方法、设备及用户设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068509.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856024

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010856024

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013524329

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137006573

Country of ref document: KR

Kind code of ref document: A