WO2016070672A1 - 一种实现数据传输的方法及装置 - Google Patents

一种实现数据传输的方法及装置 Download PDF

Info

Publication number
WO2016070672A1
WO2016070672A1 PCT/CN2015/087685 CN2015087685W WO2016070672A1 WO 2016070672 A1 WO2016070672 A1 WO 2016070672A1 CN 2015087685 W CN2015087685 W CN 2015087685W WO 2016070672 A1 WO2016070672 A1 WO 2016070672A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
harq
data
maximum number
unlicensed spectrum
Prior art date
Application number
PCT/CN2015/087685
Other languages
English (en)
French (fr)
Inventor
杨维维
戴博
梁春丽
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016070672A1 publication Critical patent/WO2016070672A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems

Definitions

  • This application relates to, but is not limited to, the field of wireless communications.
  • LTE Long Term Evolution
  • the licensed spectrum will no longer be able to withstand such a huge amount of data. Therefore, deploying LTE in the unlicensed spectrum and sharing the data traffic in the authorized carrier through the unlicensed spectrum is an important evolution direction of the subsequent LTE development.
  • Unlicensed spectrum resources are free/low cost (no need to purchase non-spectrum, spectrum resources are zero cost); 2. Low access requirements and low cost (individuals and enterprises can participate) Deploying, the equipment of the equipment vendor can be arbitrarily); 3, belonging to a shared resource (when multiple different systems are operating or when different operators of the same system are operating, some shared resources can be considered to improve spectrum efficiency);
  • the LTE system For unlicensed spectrum, multiple systems operate on the same spectrum. In order to ensure that each system uses the unlicensed spectrum fairly, it is possible for the LTE system to occupy the unlicensed spectrum discontinuously.
  • the data transmission is implemented based on the contiguous spectrum, and the LTE system of the related art performs the data transmission method, and the data cannot be transmitted on the unlicensed spectrum, so that the LTE system is deployed in the unlicensed spectrum.
  • the data transmission, determining the HARQ process corresponding to the carrier on the unlicensed spectrum and realizing the data transmission is an urgent problem to be solved.
  • the present invention provides a method and device for implementing data transmission, which can implement data transmission when deployed in an unlicensed spectrum, and solve the problem that the carrier determines the corresponding HARQ process and implements data transmission on the unlicensed spectrum.
  • a method of implementing data transmission comprising:
  • the data is transmitted on the unlicensed spectrum according to the maximum number of HARQ processes obtained.
  • the maximum number of HARQ processes is obtained by one or more preset determination manners
  • the preset method of determining the acquisition includes:
  • the obtaining the maximum number of HARQ processes according to the fixed value corresponding to the carrier includes:
  • the maximum number of HARQ processes corresponding to the carrier is a fixed value
  • the determining the manner of obtaining the maximum number of HARQ processes according to the transmission mode of the carrier includes:
  • the maximum number of HARQ processes is the maximum number of HARQ processes corresponding to the frequency division duplex FDD system;
  • the maximum number of HARQ processes is the maximum number of HARQ processes corresponding to the time division duplex TDD downlink/uplink configuration K; the TDD downlink/uplink configuration K is according to the carrier The ratio of uplink and downlink transmission is determined;
  • the determining the manner of obtaining the maximum number of HARQ processes according to the HARQ timing adopted by the carrier according to the HARQ timing adopted by the carrier includes:
  • the maximum number of HARQ processes is the maximum number of HARQ processes corresponding to the FDD system;
  • the maximum HARQ timing is Refer to the maximum number of HARQ processes corresponding to the downlink/uplink configuration Z;
  • the obtaining the maximum number of HARQ processes according to the rule of using the unlicensed spectrum includes:
  • the maximum number of HARQ processes is the number of subframes used for transmission in the channel occupation time specified by the regulations;
  • the channel occupation time is determined according to the regulations of a country or region; or,
  • the determining the manner of obtaining the maximum number of HARQ processes according to the frequency band in which the carrier is located includes:
  • the number of corresponding maximum HARQ processes is determined according to the carriers on different frequency bands.
  • the maximum number of HARQ processes is obtained by using one or more preset determining manners
  • the maximum number of HARQ processes is a minimum value of the maximum number of HARQ processes obtained by each preset determining manner.
  • implementing data transmission on the unlicensed spectrum according to the obtained maximum number of HARQ processes includes:
  • the first transmission data and the retransmission data in the same HARQ process are transmitted on the same carrier; or,
  • the first transmission data and the retransmission data in the same HARQ process are transmitted on different carriers.
  • the first transmission data and the retransmission data in the same HARQ process are transmitted on the same carrier, and the data is transmitted on the unlicensed spectrum according to the obtained maximum number of HARQ processes.
  • the process of indexing the process in the HARQ process area by using the HARQ process field in the DCI triggers retransmission of data in the HARQ process
  • the HARQ process domain size is determined according to the determined maximum number of HARQ processes.
  • the first transmission data and the retransmission data in the same HARQ process are transmitted on different carriers, and the data is transmitted on the unlicensed spectrum according to the obtained maximum number of HARQ processes.
  • the corresponding first transmission data in the HARQ process is transmitted on the subframe z of the carrier P
  • the resources on the subframe z+k of the carrier P are available
  • the corresponding retransmission data in the HARQ process is transmitted on the carrier P
  • the resources on the subframe z+k of P are not available
  • the corresponding retransmission data in the HARQ process is transmitted on the carrier Q available for the resource.
  • the carrier Q is a carrier on the licensed spectrum, and the carrier Q is selected according to a carrier priority on the licensed spectrum
  • the carrier Q is a carrier available on the unlicensed spectrum.
  • the priority of the carrier on the licensed spectrum is:
  • the secondary serving cell determines the priority according to the carrier index.
  • the method further includes: indicating, by signaling, a relationship between the carrier Q and the carrier P;
  • the signaling is: physical layer signaling or high layer signaling.
  • indicating, by signaling, the relationship between the carrier Q and the carrier P includes:
  • DCI downlink control signaling
  • a retransmission carrier indication field is introduced in the DCI, and the relationship between the carrier Q and the carrier P is indicated by the retransmission carrier indication field;
  • the retransmission carrier indication domain and the carrier indication domain enter Row joint coding, indicating the relationship between the carrier Q and the carrier P by joint coding.
  • the carrier Q is a carrier that is in the same group as the carrier P after grouping the aggregated carriers.
  • grouping the aggregated carriers includes:
  • Each carrier group includes at least a primary serving cell; and/or,
  • Each carrier packet contains one or more carriers on the licensed spectrum; and/or,
  • the carriers on the licensed spectrum are grouped into one group, and the carriers on the unlicensed spectrum are grouped into one group.
  • the first transmission data and the retransmission data in the same HARQ process are transmitted on different carriers, including:
  • the PHICH channel corresponding to the uplink data and the DCI of the uplink data are transmitted on different carriers;
  • the uplink HARQ is used to trigger the transmission of the retransmitted data in the HARQ process only through the DCI; the HARQ process index is added to the HARQ process field in the DCI to trigger the transmission of the retransmitted data in the HARQ process, and the size of the HARQ process domain is determined according to the determined maximum HARQ.
  • the number of processes is determined; or,
  • the data transmission on the unlicensed spectrum is implemented according to the maximum number of HARQ processes obtained:
  • the HARQ timing corresponding to the carrier on the unlicensed spectrum is delayed by the original HARQ or advanced by T subframes;
  • the HARQ timing corresponding to the carrier on the unlicensed spectrum is delayed by the original HARQ or advanced by T subframes.
  • t is less than or equal to a preset threshold, the carrier on the unlicensed spectrum corresponds to The HARQ timing remains unchanged;
  • the T is a preset value.
  • the data is transmitted on the unlicensed spectrum according to the obtained maximum number of HARQ processes: the carriers on the unlicensed spectrum are occupied in N times, and the data transmission is in the same position in the occupied time.
  • An apparatus for implementing data transmission comprising: acquiring a process unit and a data transmission unit; wherein
  • Obtaining a process unit configured to: obtain a maximum hybrid automatic repeat request HARQ process number corresponding to a carrier on an unlicensed spectrum in carrier aggregation;
  • the data transmission unit is configured to: implement data transmission on the unlicensed spectrum according to the obtained maximum number of HARQ processes.
  • the acquiring the process unit is configured to obtain, by using one or more preset determining manners, the number of HARQ processes corresponding to the carriers in the unlicensed spectrum in the carrier aggregation;
  • the acquiring process unit obtains the number of HARQ processes corresponding to the carrier on the unlicensed spectrum in the carrier aggregation by using a preset determining manner
  • the acquisition process unit is set to be obtained according to a fixed value corresponding to the carrier;
  • the maximum HARQ process number corresponding to the carrier is a fixed value;
  • the acquiring process unit is set to
  • the maximum number of HARQ processes is the maximum number of HARQ processes corresponding to the frequency division duplex FDD system;
  • the maximum number of HARQ processes corresponding to the time division duplex TDD downlink/uplink configuration K; the TDD downlink/uplink configuration K is determined according to the uplink and downlink transmission ratios in the carrier;
  • the preset determining manner is obtained when the maximum number of HARQ processes is obtained according to the HARQ timing adopted by the carrier, and the acquiring process unit is set to,
  • the maximum number of HARQ processes is the maximum number of HARQ processes corresponding to the FDD system;
  • the maximum HARQ timing is Refer to the maximum number of HARQ processes corresponding to the downlink/uplink configuration Z;
  • the preset determining manner is obtained when the maximum number of HARQ processes is obtained according to a rule for using an unlicensed spectrum, and the acquiring process unit is set to,
  • the maximum number of HARQ processes is the number of subframes used for transmission in the channel occupation time specified by the regulations;
  • the channel occupation time is determined according to the regulations of a country or region; or,
  • the preset determining manner is obtained when the maximum number of HARQ processes is obtained according to the frequency band in which the carrier is located, and the acquiring process unit is set to,
  • the corresponding maximum number of HARQ processes is determined according to the carriers on different frequency bands.
  • the maximum number of HARQ processes is obtained by using one or more preset determining manners
  • the maximum number of HARQ processes is a minimum value of the maximum number of HARQ processes obtained by each preset determining manner.
  • the data transmission unit is configured to transmit the first transmission data and the retransmission data in the same HARQ process on the same carrier according to the obtained maximum number of HARQ processes, and add the HARQ process domain through the DCI. Instructing the process index to trigger retransmission of data in the HARQ process;
  • the HARQ process domain size is determined according to the determined maximum number of HARQ processes.
  • the data transmission unit is configured to: when the first transmission data and the retransmission data in the same HARQ process are transmitted on different carriers according to the obtained maximum number of HARQ processes:
  • the corresponding first transmission data in the HARQ process is transmitted on the subframe z of the carrier P
  • the resources on the subframe z+k of the carrier P are available
  • the corresponding retransmission data in the HARQ process is transmitted on the carrier P
  • the resources on the subframe z+k of P are not available
  • the corresponding retransmission data in the HARQ process is transmitted on the carrier Q available for the resource.
  • the device further includes a carrier relationship unit, configured to: determine a carrier Q, where
  • the carrier Q is a carrier on the licensed spectrum, and the carrier Q is selected according to the carrier priority on the licensed spectrum;
  • the carrier Q is a carrier available on the unlicensed spectrum.
  • the apparatus further includes an indication unit, configured to: indicate, by signaling, a relationship between the carrier Q and the carrier P;
  • the signaling is: physical layer signaling, or high layer signaling.
  • the indication unit is set to,
  • the DCI includes a carrier indication field
  • a retransmission carrier indication field is introduced in the DCI, and the carrier indication domain and the retransmission carrier indication domain are jointly encoded, and the carrier Q and the carrier P are jointly indicated by joint coding. relationship.
  • the device further includes a carrier relationship unit, configured to: determine a carrier Q, where
  • the aggregated carriers are grouped, they are in the same group as the carrier P.
  • the carrier relationship unit is configured to: aggregate the carrier according to the following manner:
  • Each carrier group includes at least a primary serving cell; and/or,
  • Each carrier packet contains one or more carriers on the licensed spectrum; and/or,
  • the carriers on the licensed spectrum are grouped into one group, and the carriers on the unlicensed spectrum are grouped into one group;
  • Carrier Q is a carrier that is in the same group as carrier P and that is available for resources.
  • the data transmission unit is configured to transmit, according to the obtained maximum number of HARQ processes, the first transmission data and the retransmission data in the same HARQ process on the unlicensed spectrum on different carriers, including:
  • the PHICH channel corresponding to the uplink data and the DCI of the uplink data are transmitted on different carriers;
  • the uplink HARQ is used to trigger the transmission of the retransmitted data in the HARQ process only through the DCI; the HARQ process index is added to the HARQ process field in the DCI to trigger the transmission of the retransmitted data in the HARQ process, and the size of the HARQ process domain is determined according to the determined maximum HARQ.
  • the number of processes is determined; or,
  • the data cache is an original cache, or an extended cache based on the original cache.
  • the data transmission unit is set to,
  • the HARQ timing corresponding to the carrier on the unlicensed spectrum is delayed by the original HARQ timing or T subframes earlier; or
  • the HARQ timing corresponding to the carrier on the unlicensed spectrum is delayed by the original HARQ or advanced by T subframes.
  • t is less than or equal to a preset threshold, the carrier on the unlicensed spectrum corresponds to The HARQ timing remains unchanged;
  • T is a preset value.
  • the data transmission unit is configured to implement data transmission on the unlicensed spectrum according to the obtained maximum number of HARQ processes
  • the carrier on the unlicensed spectrum is occupied in N times, and the data transmission is in the same position within the occupied time.
  • a computer readable storage medium storing computer executable instructions for performing the method of any of the above.
  • the technical solution provided by the embodiment of the present invention includes: obtaining a maximum hybrid automatic repeat request (HARQ) process number corresponding to a carrier on an unlicensed spectrum in carrier aggregation; and implementing the maximum number of HARQ processes according to the obtained maximum number of HARQ processes Data is transmitted on the unlicensed spectrum.
  • the method of the embodiment of the invention obtains the maximum number of HARQ processes corresponding to the carrier on the unlicensed spectrum in the carrier aggregation, and solves the problem of data transmission on the unlicensed spectrum by using the maximum number of HARQ processes obtained, and realizes the unlicensed spectrum. Data transfer on.
  • FIG. 1 is a schematic diagram of a carrier structure of a first scenario for implementing data transmission according to an embodiment of the present invention
  • FIG. 1(a) is a schematic diagram of a carrier structure for implementing data transmission according to Embodiment 1 of the present invention
  • FIG. 1(b) is a schematic diagram of a carrier structure for implementing data transmission according to Embodiment 4 of the present invention.
  • FIG. 2 is a schematic diagram of a carrier structure of a second scenario for implementing data transmission according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a carrier structure of a third scenario for implementing data transmission according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a carrier structure of a fourth scenario for implementing data transmission according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a carrier structure of a fifth scenario for implementing data transmission according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a carrier structure of a sixth scenario for implementing data transmission according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a carrier structure of a seventh scenario for implementing data transmission according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a carrier structure of an eighth scenario for implementing data transmission according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a carrier structure of a ninth scenario for implementing data transmission according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a carrier structure of a tenth scenario for implementing data transmission according to an embodiment of the present invention
  • FIG. 11 is a flowchart of a method for implementing data transmission according to an embodiment of the present invention.
  • FIG. 12 is a structural block diagram of an apparatus for implementing data transmission according to an embodiment of the present invention.
  • the HARQ process refers to: when the sender has data to transmit, the receiver allocates information required for transmission to the sender through downlink control information; for example, frequency domain resources and packet information.
  • the transmitting end sends data according to the information, and saves the transmitted data in its own buffer for retransmission; when the receiving end receives the data and detects that the data is correctly received, an acknowledgement (ACK) is sent to the transmitting end.
  • ACK acknowledgement
  • the data transmission is completed in such a manner that the sender clears the buffer used when transmitting data.
  • the receiving end sends an unacknowledged (NACK) to the transmitting end, and saves the packet that is not correctly received in the buffer of the receiving end, and the transmitting end presents the data from the buffer according to the received NACK information. And use a specific packet format for retransmission in the corresponding subframe and frequency domain locations. After receiving the retransmission packet, the receiving end merges with the packet that was not correctly received before and detects again until the data is correctly received or the number of transmissions exceeds the maximum number of times.
  • NACK unacknowledged
  • the physical downlink shared channel (PDSCH) scheduling timing (scheduling for downlink HARQ) in downlink HARQ has the following provisions: after detecting the physical downlink control channel (PDCCH) on the subframe i, the UE The information of the PDCCH parses the PDSCH of the current subframe.
  • PDCCH physical downlink control channel
  • the PUCCH (downlink HARQ timing relationship) of the HARQ-ACK for transmitting the PDSCH in the downlink HARQ has the following timing rule, and the UE detects the PDSCH transmission on the subframe i or indicates the downlink semi-permanent scheduling release.
  • the PDCCH of (SPS release) transmits a corresponding HARQ-ACK response on a subframe number of n plus 4.
  • the timing relationship of the downlink HARQ is as follows: the UE detects the PDSCH transmission or the PDCCH indicating the downlink SPS release on the subframe ik, and transmits the corresponding PDCCH in the subframe number of the uplink subframe.
  • HARQ-ACK response where k belongs to K, and the value of K is as shown in Table 1:
  • the uplink physical uplink shared channel (PUSCH) scheduling timing is as follows:
  • the UE detects a downlink control channel/enhanced downlink control channel (PDCCH/EPDCCH) or a physical HARQ indicator channel (PHICH) transmission carrying uplink and downlink control information (DCI) information on the subframe i, the UE Adjusting PUSCH transmission on subframe i+4 according to PDCCH/EPDCCH and PHICH information;
  • PDCH/EPDCCH downlink control channel/enhanced downlink control channel
  • PHICH physical HARQ indicator channel
  • the UE detects the PDCCH/EPDCCH carrying the uplink DCI information on the subframe i or detects the PHICH on the subframe i-5, and the UE adjusts the subframe i+4 according to the PDCCH/EPDCCH and the PHICH information.
  • the first PUSCH transmission in the binding is the PDCCH/EPDCCH carrying the uplink DCI information on the subframe i or detects the PHICH on the subframe i-5, and the UE adjusts the subframe i+4 according to the PDCCH/EPDCCH and the PHICH information.
  • the uplink PUSCH scheduling timing is as follows:
  • the UE detects the PDCCH/EPDCCH or PHICH transmission carrying the uplink DCI information on the subframe i, and the UE adjusts the PUSCH on the subframe i+k according to the PDCCH/EPDCCH and the PHICH information. transmission;
  • the lowest bit of the UL index field in the PDCCH/EPDCCH on the subframe i is 1 or the PHICH is received on the subframe 0 or 5 using the PHICH resource index 1 or the PHICH is in the subframe.
  • Receiving 1 or 6, the UE adjusts the transmission of the PUSCH on the subframe i+7 according to the PDCCH/EPDCCH and the PHICH information;
  • the UE adjusts the subframes i+k and i+7 according to the PDCCH/EPDCCH and the PHICH information.
  • the transmission of the PUSCH wherein the correspondence between the value of the medium k and the uplink-downlink configuration information and the subframe number of the subframe is as shown in Table 2:
  • Table 2 shows the values of k for each sub-frame in different uplink and downlink configurations.
  • the PHICH for transmitting the HARQ-ACK response of the PUSCH in the uplink HARQ has the following timing rule, that is, the timing relationship of the uplink HARQ is as follows:
  • the PHICH channel received on the PHICH channel of the subframe i is the HARQ-ACK response of the PUSCH on the subframe i-k;
  • the HARQ-ACK response of the PUSCH on the subframe i-k is received on the PHICH resource index 0 on the subframe i;
  • the HARQ-ACK response of the PUSCH on the subframe i-6 is received on the PHICH resource index 1 on the subframe i;
  • CC component carrier
  • SCC/SCell secondary component carrier/cell
  • a cross-carrier scheduling that is, a PDCCH on a certain serving cell, may be used to schedule a PDSCH/PUSCH of a plurality of serving cells, where a serving cell where the PDCCH is located is called a scheduling cell, and a serving cell where the PDSCH/PUSCH is located is called a scheduled service.
  • a scheduling cell a serving cell where the PDCCH is located
  • a serving cell where the PDSCH/PUSCH is located is called a scheduled service.
  • the related art carrier aggregation technology supports FDD serving cell carrier aggregation, TDD serving cell carrier aggregation, FDD serving cell and TDD serving cell carrier aggregation;
  • the maximum number of downlink HARQ processes per serving cell is 8;
  • the maximum number of DL HARQ processes in the serving cell is 8;
  • the maximum number of DL HARQ processes is configured according to the uplink and downlink, and the values are as shown in Table 4:
  • Table 4 is the TDD downlink/uplink configuration K corresponding.
  • the maximum number of HARQ processes, where the TDD uplink and downlink configuration in the table is the DL reference uplink and downlink configuration.
  • the primary serving cell is TDD
  • the secondary serving cell is FDD.
  • the maximum number of HARQ processes is determined according to the downlink reference uplink and downlink configuration. Table 5 shows the maximum number of HARQ processes corresponding to the downlink/uplink configuration Z.
  • TDD uplink-downlink configuration Maximum number of DL HARQ processes 0 4 1 7 2 10 3 9 4 12 5 15 6 6
  • Table 4 shows the maximum number of HARQ processes corresponding to the TDD downlink/uplink configuration K.
  • Table 5 shows the maximum number of HARQ processes corresponding to the downlink/uplink configuration Z.
  • LBT listen before talk
  • FBE LBT based frame equipment
  • LBE load-based equipment
  • Tables 6 and 7 are some of the important requirements for LBT for European countries FBE and LBE.
  • the embodiment refers to a partial abbreviation, where D is an abbreviation of downlink (DL), U is an abbreviation of uplink (UL), and S is an abbreviation of a special subframe specified by the protocol.
  • D is an abbreviation of downlink (DL)
  • U is an abbreviation of uplink (UL)
  • S is an abbreviation of a special subframe specified by the protocol.
  • FIG. 1 is a schematic diagram of a carrier structure of a first scenario for implementing data transmission according to an embodiment of the present invention.
  • a carrier is included, where a primary carrier PCell (or a primary serving cell) is an FDD serving cell.
  • the transmission mode of the secondary carrier (or the secondary serving cell) SCell is pure downlink (SDL), and the SCell accesses the unlicensed spectrum according to the LBE rule, and the corresponding maximum occupation time is 13 ms, that is, 13 subframes, located at 5 GHz. Unlicensed spectrum.
  • X in the radio frame X represents a radio frame index.
  • Embodiments 1 to 5 are examples of obtaining the maximum number of HARQ processes corresponding to carriers on the unlicensed spectrum in carrier aggregation.
  • the maximum number of HARQ processes corresponding to the carrier on the unlicensed spectrum is a fixed value. Because the transmission mode of the SCell is SDL, the maximum number of downlink (DL) HARQ processes corresponding to the carrier on the unlicensed spectrum, that is, the maximum DL HARQ process of the SCell is determined.
  • the number of the DL HARQ1 is as shown in Figure 1 (a).
  • the data can be transmitted in the radio frame X subframe 9 at the earliest.
  • the retransmission data can be transmitted in the radio frame X subframe 9 at the earliest, which means that the maximum hybrid automatic retransmission request corresponding to the carrier on the unlicensed spectrum in the carrier aggregation is obtained.
  • the number of (HARQ) processes is 8, so that 8 subframes are occupied, and the retransmission data is transmitted from the radio frame X subframe 9.
  • the left diagonal frame numbered 1 to 8 in the figure represents the carrier occupied by HARQ.
  • the carrier corresponding to the blank frame numbered 1 to 5 is used for transmission of retransmission data.
  • the maximum number of HARQ processes is the maximum number of HARQ processes corresponding to the frequency division duplex (FDD) system; that is, 8 (as defined in the prior art, when the FDD service cell is aggregated, The maximum number of DL HARQ processes is 8), and the schematic diagram is the same as FIG. 1(a). Since the maximum number of DL HARQ processes is 8, the retransmission data of DL HARQ1 can be transmitted in the radio frame X subframe 9 at the earliest.
  • FDD frequency division duplex
  • the maximum number of HARQ processes corresponding to the carrier on the unlicensed spectrum in the carrier aggregation is obtained.
  • the PCell is the FDD carrier and the SCell1 is the SDL transmission
  • the HARQ timing corresponding to the SCell is according to the HARQ timing of the PCell (HARQ timing). Determining the type of the primary serving cell, the type of the secondary serving cell, and the uplink-downlink configuration, that is, according to the HARQ timing corresponding to the existing FDD system, so the number of the maximum HARQ processes of the SCell is the same as the maximum number of the HARQ processes corresponding to the FDD system. That is, since the maximum number of DL HARQ processes is 8, the retransmission data of DL HARQ1 can be transmitted in the radio frame X subframe 9 as early as possible.
  • FIG. 1(b) is a carrier for implementing data transmission according to Embodiment 4 of the present invention.
  • the structure diagram, as shown in Figure 1 (b), corresponds to a maximum number of DL HARQ processes of 13.
  • the maximum number of DL HARQ processes corresponding to the SCell is 8.
  • the maximum number of processes in the 5G band is 8 is a preset value, which is preset according to the actual application of different frequency bands.
  • FIG. 2 is a schematic diagram of a carrier structure of a second scenario for implementing data transmission according to an embodiment of the present invention.
  • the method includes two carriers for aggregation, where a primary carrier PCell (or a primary serving cell) is a TDD serving cell and uplinks. -
  • the downlink configuration is 0, which is located on the licensed spectrum.
  • the transmission mode of the secondary carrier (or secondary serving cell) SCell is pure downlink.
  • the SCell accesses the unlicensed spectrum according to the LBE rule.
  • the maximum occupation time is 13 ms, that is, 13 subframes. Unlicensed spectrum.
  • the corresponding HARQ timing of the SCell is set according to the TDD downlink reference configuration 0 (according to Table 4 of the TDD-FDD carrier aggregation), and the corresponding maximum DL HARQ process number is 10.
  • FIG. 3 is a schematic diagram of a carrier structure of a third scenario for implementing data transmission according to an embodiment of the present invention.
  • the method includes two carriers for aggregation, where the primary carrier PCell is an FDD serving cell, which is located on the licensed spectrum, and the secondary carrier SCell.
  • the transmission mode is DL/UL and the uplink-downlink ratio is 7:3.
  • the SCell accesses the unlicensed spectrum according to the FBE rule, and the corresponding FBE frame is 10 ms, that is, 10 subframes.
  • the maximum number of HARQ processes corresponding to the carriers on the unlicensed spectrum in the carrier aggregation is obtained according to the rule of using the unlicensed spectrum, that is, the maximum number of UL HARQ processes corresponding to the carriers on the unlicensed spectrum is determined:
  • the corresponding rule specifies that the frame length is 10 ms, and the subframe that can be used for uplink transmission is 3. Therefore, the corresponding maximum number of UL HARQ processes is 3. Show.
  • PCell, SCell1 and SCell2 are located in the licensed spectrum.
  • SCell3 and SCell4 are located on the unlicensed spectrum, and SCell3 and SCell4 are connected to the unlicensed spectrum in the form of FBE.
  • the data is transmitted on the unlicensed spectrum according to the obtained maximum number of HARQ processes, and the data is transmitted on different carriers according to the first transmission data and the retransmission data in the same HARQ process. transmission.
  • the available carrier Q is obtained by:
  • the carrier on the licensed spectrum includes the carrier on the licensed spectrum and the carrier on the unlicensed spectrum, and the carrier Q is the SCell4.
  • the carrier available for the resource only includes the carrier on the licensed spectrum
  • the carrier Q can be the primary serving cell. Or SCell1 with a larger carrier index or SCell2 with a smaller carrier index;
  • the aggregated carriers are grouped, and the carrier Q is a carrier that is in the same group as the SCell3 and the resources are available.
  • SCell3 and a group of primary serving cells, a group of SCell4 and primary serving cells; and/or,
  • a group of SCell3 and a primary serving cell a group of SCell4 and SCell2; or a group of SCell3 and SCell2, a group of SCell4 and SCell1; or a group of SCell3 and SCell1, a group of SCell4 and SCell2; and/or,
  • the high layer signaling indicates a group of SCell3 and SCell1, a group of SCell4 and SCell2; and/or,
  • SCell3 and SCell4 are a group
  • the relationship between the carrier Q and the carrier P is obtained by signaling: when the signaling is the downlink control information DCI, the retransmission carrier indication field is obtained by adding the DCI.
  • the retransmission carrier indication field is used to indicate the relationship between the carrier Q and the carrier P. That is, the retransmission carrier indication field can obtain the retransmission data of the carrier used by the carrier where the downlink control information is located/indicated, and the retransmitted carrier indication domain. It is 3 bits. If the control information includes a carrier indication field, the retransmission carrier indication field may be jointly coded with the carrier indication field; for example, 5 bits after joint coding.
  • the number of the maximum DL HARQ processes of the SCell is 8, and according to the obtained maximum number of HARQ processes 8, the data is transmitted in the unlicensed spectrum according to the same HARQ process.
  • the first transmission data and the retransmission data are transmitted on the same carrier, that is, the first transmission data and the retransmission data in the same DL HARQ process on the SCell must be transmitted on the same carrier; for the DL HARQ process 6, the SCell radio frame X+1 The corresponding resource on subframe 3 is unavailable, and HARQ6 hangs until resources are available.
  • the number of the maximum DL HARQ processes of the SCell is 8, and according to the obtained maximum number of HARQ processes 8, the data is transmitted on the unlicensed spectrum according to the first transmission data and the retransmitted data in the same HARQ process on different carriers.
  • the uplink transmission that is, the first transmission data and the retransmission data in the same HARQ process on the SCell may be transmitted on different carriers; for the DL HARQ process 6, the terminal detects that the corresponding resource on the SCell radio frame X+1 subframe 3 is unavailable.
  • the downlink control information that triggers the retransmission is on the PCell and the 3-bit retransmission carrier field is added to indicate that the retransmission data of the SCell is transmitted on the PCell, so the terminal receives the heavy weight on the PCell radio frame X+1 subframe 0.
  • the data is transmitted, and the meaning of the retransmission indication field is as shown in the following table; the retransmission data from the SCell is stored in the data cache of the PCell.
  • the number of the maximum DL HARQ processes of the SCell is 8, and according to the obtained maximum number of HARQ processes 8, the data is transmitted on the unlicensed spectrum according to the first transmission data and the retransmitted data in the same HARQ process on different carriers.
  • the uplink transmission that is, the first transmission data and the retransmission data in the same HARQ process on the SCell2 may be transmitted on different carriers; for the DL HARQ process 6, the terminal detects that the corresponding resource on the SCell radio frame X+1 subframe 3 is unavailable.
  • FIG. 4 is a schematic diagram of a fourth scenario carrier structure for implementing data transmission according to an embodiment of the present invention.
  • the embodiment is configured to perform cross-carrier scheduling, and the maximum number of UL HARQ processes is obtained according to Embodiment 7, and the obtained The maximum number of HARQ processes is 3, and the first transmission data and the retransmission data in the same HARQ process are transmitted on the same carrier when the data is transmitted on the unlicensed spectrum, that is, the first transmission data and the weight in the same UL HARQ process on the SCell.
  • the transmitted data must be transmitted on the same carrier; for UL HARQ Process 3, the corresponding resource on the SCell radio frame X+1 subframe 4 is unavailable, and UL HARQ3 hangs until resources are available.
  • the dotted line indicates that the carrier resource is unavailable.
  • the cross-carrier scheduling is configured.
  • the maximum number of UL HARQ processes is three, and the data is obtained on the unlicensed spectrum according to the maximum number of HARQ processes 3 obtained.
  • the transmission is performed on the same carrier according to the first transmission data and the retransmission data in the same HARQ process, that is, the first transmission data and the retransmission data in the same UL HARQ process on the SCell must be transmitted on the same carrier; for UL HARQ In process 3, the terminal receives the corresponding PHICH in the radio frame X subframe 0, and when it is NACK, it needs to transmit the retransmission data on the SCell radio frame X+1 subframe 4, but because the radio frame X+1 subframe 4 The corresponding resource is unavailable, and the retransmission data cannot be transmitted. Therefore, asynchronous HARQ is introduced, and the retransmission data of the UL HARQ process 3 is triggered by the uplink indication information.
  • the HARQ process domain is added to the UL grant to indicate which HARQ process retransmits.
  • the HARQ process domain is 3 bits. The meaning of the HARQ process domain is as shown in Table 9.
  • FIG. 5 is a schematic diagram of a carrier structure of a fifth scenario for implementing data transmission according to an embodiment of the present invention.
  • the embodiment is configured as self-carrier scheduling, and the maximum number of UL HARQ processes is obtained according to Embodiment 7, and is obtained according to Embodiment 7.
  • the maximum number of HARQ processes 3 enables the data transmission on the same carrier according to the first transmission data and the retransmission data in the same HARQ process when the data is transmitted on the unlicensed spectrum, that is, in the same UL HARQ process on the SCell.
  • the first transmission data and the retransmission data must be transmitted on the same carrier; for the UL HARQ process 3, the base station triggers the transmission of the retransmission data of the UL HARQ process 3 by using the uplink indication information (UL grant).
  • the HARQ process field is added to the UL grant to indicate which HARQ process is retransmitted. The meanings are shown in Table 7.
  • FIG. 6 is a schematic diagram of a carrier structure of a sixth scenario for implementing data transmission according to an embodiment of the present invention.
  • a dotted line indicates that a resource is unavailable, and a self-carrier scheduling is configured.
  • the maximum number of UL HARQ processes is obtained. 3.
  • data transmission on the unlicensed spectrum is performed according to the first transmission data and the retransmission data in the same HARQ process, and the data transmission is performed on different carriers, that is, the same UL HARQ on the SCell.
  • the first transmission data and the retransmission data in the process may be transmitted on different carriers; for the UL HARQ process 3, after the terminal transmission is the first transmission data, in the radio frame X+1 subframe 0, the terminal does not detect the PHICH on the SCell, Then, the terminal detects the corresponding PHICH in the PCell, and if the NACK is NACK, the data is retransmitted, and the SCell and the PCell are grouped according to the packet, so the corresponding retransmission data is sent on the PCell, because the SCell and the PCell are a group, so the SCell The retransmission data is stored in the data cache corresponding to the PCell.
  • FIG. 7 is a schematic diagram of a carrier structure of a seventh scenario for implementing data transmission according to an embodiment of the present invention.
  • a dotted line indicates that a resource is unavailable, and is configured to perform cross-carrier scheduling, and the maximum number of UL HARQ processes is obtained according to Embodiment 7.
  • the first transmission data and the retransmission data in the same HARQ process are transmitted on different carriers to realize data transmission, that is, the same UL on the SCell.
  • the first transmission data and the retransmission data in the HARQ process may be transmitted on different carriers.
  • the terminal receives the UL grant corresponding to the retransmission in the PCell radio frame X subframe 0, and needs to be in the SCell radio frame X+1.
  • the retransmission data is transmitted on the subframe 4, and the terminal does not detect the resource corresponding to the SCell in the radio frame X+1 subframe 4, and the retransmission data cannot be transmitted, and the 3-bit retransmission carrier indication field in the UL grant
  • the PCell is used to transmit the retransmission data on the SCell, and the terminal transmits the retransmission data corresponding to the SCell on the PCell, and retransmits the meaning of the carrier indication field.
  • SCell retransmission PCell corresponding to data stored in the data cache.
  • the dashed line in FIG. 7 indicates that the resource is not available.
  • the cross-carrier scheduling is configured.
  • the maximum number of UL HARQ processes is three, and the maximum number of HARQ processes 3 obtained is used to transmit data on the unlicensed spectrum.
  • Performing data transmission on different carriers according to the first transmission data and the retransmission data in the same HARQ process, that is, the first transmission data and the retransmission data in the same UL HARQ process on the SCell can be transmitted on different carriers; for UL HARQ In process 3, the terminal receives the UL grant corresponding to the retransmission in the PCell radio frame X subframe 0, and needs to transmit the retransmission data on the SCell radio frame X+1 subframe 4, and the terminal does not have the radio frame X+1 subframe 4 The corresponding resource is detected, and the retransmission data cannot be transmitted.
  • the 5-bit joint indication field in the UL grant indicates that the PCell is used to transmit the retransmission data of the SCell, and then the terminal transmits the retransmission data of the SCell in the PCell, where
  • the joint indication field is used to indicate a carrier indication and a retransmission carrier indication, where the carrier indication is used to indicate which SCell is transmitted, and the retransmission indication is used to indicate which SCell is transmitted, and the meaning is as shown in Table 9.
  • Joint indication field Carrier indication Retransmit carrier indication 00000 PCell SCell1 00011 PCell SCell2
  • FIG. 8 is a schematic diagram of a carrier structure of an eighth scenario for implementing data transmission according to an embodiment of the present invention.
  • a primary carrier PCell or a primary serving cell
  • SCell accesses the unlicensed spectrum according to the FBE rule, that is, the frame length is 10 ms in a certain period of time, and is located on the unlicensed spectrum, 5 GHz.
  • SCell is t symbols ahead of PCell.
  • the original HARQ timing is advanced by one subframe, and the original timing is the HARQ-ACK response information corresponding to the subframe i transmitted on the subframe i+4, and the SCell downlink subframe 0 is taken as an example.
  • the HARQ-ACK response information is transmitted in the primary serving cell UL subframe 3; as shown by the dotted line in the figure.
  • FIG. 9 is a schematic diagram of a carrier structure of a ninth scenario for implementing data transmission according to an embodiment of the present invention.
  • a primary carrier PCell or a primary serving cell
  • SCell accesses the unlicensed spectrum according to the FBE rule, that is, the frame length is 10 ms in a certain time, and is located on the unlicensed spectrum of 5 GHz.
  • SCell is delayed by t symbols compared to PCell.
  • the original HARQ timing delay is 1 subframe
  • the original timing is the HARQ-ACK response information corresponding to the subframe i transmitted on the subframe i+4, and the SCell downlink subframe 0 is taken as an example.
  • the HARQ-ACK response information is transmitted in the primary serving cell UL subframe 5; as shown by the dotted line in the figure.
  • FIG. 10 is a schematic diagram of another carrier structure for implementing data transmission according to an embodiment of the present invention.
  • a primary carrier PCell or a primary serving cell
  • the transmission mode of the secondary carrier (or the secondary serving cell) SCell is SDL
  • the SCell accesses the unlicensed spectrum according to the FBE rule, that is, the frame length is 10 ms in a certain period of time, and is located on the unlicensed spectrum, 5 GHz.
  • SCell is t symbols earlier than PCell, t is 10, and the threshold is 7.
  • the corresponding HARQ timing on the SCell is: since t is greater than the threshold 7, the HARQ timing corresponding to the SCell is 1 subframe in advance of the original HARQ timing. Otherwise, the HARQ timing corresponding to the carrier on the unlicensed spectrum is the original HARQ timing.
  • the timing is to transmit the HARQ-ACK response information corresponding to the subframe i on the subframe i+4, and the SCell downlink subframe 0 is taken as an example, and the corresponding HARQ-ACK response information is sent in the primary serving cell UL subframe 3; In the middle dotted line;
  • the primary carrier PCell (or primary serving cell) is an FDD serving cell, which is located on the licensed spectrum
  • the secondary carrier (or secondary serving cell) SCell has a transmission mode of DL/UL.
  • the SCell accesses the unlicensed spectrum according to the FBE rule, that is, the frame length is 5 ms in a certain period of time, and is located on the unlicensed spectrum, 5 GHz.
  • the SCell takes 2 times as an example.
  • the location of the data transmission is the third subframe in the occupation period, and in the second occupation, the location of the data transmission is also the third subframe in the occupation period;
  • the location of the data transmission is the fourth subframe in the occupation period, and in the second occupation, the location of the data transmission is also the fourth subframe in the occupation period;
  • the data transmission location in the first occupation, is the fifth subframe in the occupation period, and in the second occupation, the data transmission location is also the fifth subframe in the occupation period.
  • FIG. 11 is a flowchart of a method for implementing data transmission according to an embodiment of the present invention. As shown in FIG.
  • Step 1100 Obtain a maximum hybrid automatic repeat request (HARQ) process number corresponding to a carrier on the unlicensed spectrum in carrier aggregation.
  • HARQ hybrid automatic repeat request
  • the maximum number of HARQ processes is obtained by one or more preset determination methods. Obtained by pre-determined methods, including:
  • the preset determination manner is obtained according to a fixed value corresponding to the carrier, and includes:
  • the maximum number of HARQ processes corresponding to the carrier is a fixed value
  • the preset determination manner is obtained when the maximum number of HARQ processes is obtained according to the transmission mode of the carrier, including:
  • the maximum number of HARQ processes is the maximum number of HARQ processes corresponding to the frequency division duplex (FDD) system;
  • the maximum number of HARQ processes is the maximum number of HARQ processes corresponding to the time division duplex TDD downlink/uplink configuration K; the TDD downlink/uplink configuration K is based on the uplink and downlink transmissions in the carrier.
  • the preset determination manner is obtained when the maximum number of HARQ processes is obtained according to the HARQ timing adopted by the carrier, including:
  • the maximum number of HARQ processes is the maximum number of HARQ processes corresponding to the FDD system;
  • the maximum HARQ timing is the TDD system reference downlink/uplink The maximum number of HARQ processes corresponding to Z;
  • the preset determination method is obtained when the maximum number of HARQ processes is obtained according to the regulations using the unlicensed spectrum, including:
  • the maximum number of HARQ processes is the number of subframes used for transmission in the channel occupation time specified by the regulations;
  • Channel occupancy time is determined according to the regulations of a country or region; or,
  • the preset determination manner is obtained when the maximum number of HARQ processes is obtained according to the frequency band in which the carrier is located, including:
  • the corresponding maximum number of HARQ processes is determined according to the carriers on different frequency bands.
  • the maximum number of HARQ processes is obtained by more than one preset determination manner
  • the maximum number of HARQ processes is the minimum of the maximum number of HARQ processes obtained by each preset determination manner.
  • Step 1101 Realize data transmission on the unlicensed spectrum according to the obtained maximum number of HARQ processes.
  • the method includes: transmitting, according to the obtained maximum number of HARQ processes, the first transmission data and the retransmission data in the same HARQ process on the unlicensed spectrum on the same carrier; or
  • the first transmission data and the retransmission data in the same HARQ process are transmitted on different carriers.
  • the method includes:
  • the re-transmission of data in the HARQ process is triggered by adding a HARQ process domain indication process index in the DCI; the HARQ process domain size is determined according to the determined maximum number of HARQ processes.
  • the corresponding first transmission data in the HARQ process is transmitted on the subframe z of the carrier P
  • the resources on the subframe z+k of the carrier P are available
  • the corresponding retransmission data in the HARQ process is transmitted on the carrier P
  • the resources on the subframe z+k of P are not available
  • the corresponding retransmission data in the HARQ process is transmitted on the carrier Q available for the resource.
  • the carrier Q is the carrier on the licensed spectrum, and the carrier Q is selected according to the carrier priority on the licensed spectrum;
  • the carrier Q is a carrier available on the unlicensed spectrum.
  • the priority of the carrier on the licensed spectrum is:
  • the secondary serving cell determines the priority according to the carrier index.
  • the relationship between the carrier Q and the carrier P is indicated by signaling; the signaling is: physical layer signaling, or higher layer signaling.
  • the retransmission carrier indication field is introduced in the DCI, and the relationship between the carrier Q and the carrier P is indicated by the retransmission carrier indication field;
  • the retransmission carrier indication field and the carrier indication domain are jointly coded, and the relationship between the carrier Q and the carrier P is indicated by joint coding.
  • the carrier Q is a carrier that is grouped in the same group as the carrier P after the aggregated carriers are grouped.
  • Grouping the aggregated carriers includes:
  • Each carrier group includes at least a primary serving cell; and/or,
  • Each carrier packet contains one or more carriers on the licensed spectrum; and/or,
  • the carriers on the licensed spectrum are grouped into one group, and the carriers on the unlicensed spectrum are grouped into one group.
  • the transmission of the first transmission data and the retransmission data in the same HARQ process on different carriers includes:
  • the PHICH channel corresponding to the uplink data and the DCI of the uplink data are transmitted on different carriers;
  • the uplink HARQ is used to trigger the transmission of the retransmitted data in the HARQ process only through the DCI; the HARQ process index is added to the HARQ process field in the DCI to trigger the transmission of the retransmitted data in the HARQ process, and the size of the HARQ process domain is determined according to the determined maximum HARQ.
  • the number of processes is determined; or,
  • the original cache is the cache of the original settings in the system.
  • the retransmission data included in the carrier itself is retransmission data of other carriers.
  • the transmission of data on the unlicensed spectrum is based on the maximum number of HARQ processes obtained:
  • the HARQ timing corresponding to the carrier on the unlicensed spectrum is delayed by the original HARQ timing or T subframes earlier; or
  • the HARQ timing corresponding to the carrier on the unlicensed spectrum is delayed/advanced T subframes to the original HARQ timing; otherwise, the HARQ timing corresponding to the carrier on the unlicensed spectrum remains unchanged;
  • T is a preset value.
  • T is generally set to a value of 1 in practical applications.
  • the original HARQ timing refers to the HARQ timing defined by the existing protocol.
  • the transmission of data on the unlicensed spectrum is based on the maximum number of HARQ processes obtained:
  • the carrier on the unlicensed spectrum is occupied in N times, and the data transmission is in the same position within the occupied time.
  • the HARQ process in the embodiment of the present invention is: a downlink HARQ process, and/or an uplink HARQ process.
  • FIG. 12 is a schematic diagram of an apparatus for implementing data transmission according to an embodiment of the present invention. As shown in FIG. 12, the method includes:
  • the obtaining process unit 121 is configured to: obtain the maximum hybrid automatic repeat request HARQ process number corresponding to the carrier on the unlicensed spectrum in the carrier aggregation;
  • the obtaining process unit 121 is configured to obtain the number of HARQ processes corresponding to the carriers on the unlicensed spectrum in the carrier aggregation by one or more preset determination manners.
  • the obtaining process unit 121 is configured to obtain, by using a preset determining manner, the number of HARQ processes corresponding to carriers on the unlicensed spectrum in carrier aggregation.
  • the maximum number of HARQ processes corresponding to the carrier is a fixed value
  • the acquisition process unit 121 is set to
  • the maximum number of HARQ processes is the maximum number of HARQ processes corresponding to the frequency division duplex FDD system;
  • the maximum number of HARQ processes is the maximum number of HARQ processes corresponding to the time division duplex TDD downlink/uplink configuration K; the TDD downlink/uplink configuration K is based on the uplink in the carrier.
  • the downlink transmission ratio is determined;
  • the preset determining manner is obtained when the maximum number of HARQ processes is obtained according to the HARQ timing adopted by the carrier, and the acquiring process unit is set to,
  • the maximum number of HARQ processes is the maximum number of HARQ processes corresponding to the FDD system; when the carrier adopts the HARQ timing of the reference downlink/uplink configuration Z, the maximum HARQ timing is the reference downlink/uplink configuration Z corresponding. Maximum number of HARQ processes;
  • the preset determination manner is obtained by obtaining the maximum HARQ according to the regulations using the unlicensed spectrum.
  • the acquisition process unit 121 is set to,
  • the maximum number of HARQ processes is the number of subframes used for transmission in the channel occupation time specified by the regulations;
  • Channel occupancy time is determined according to the regulations of a country or region; or,
  • the acquisition process unit 121 is set to
  • the corresponding maximum number of HARQ processes is determined according to the carriers on different frequency bands.
  • the maximum number of HARQ processes is obtained by more than one preset determination manner
  • the maximum number of HARQ processes is the minimum of the maximum number of HARQ processes obtained by each preset determination manner.
  • the data transmission unit 122 is configured to: implement data transmission on the unlicensed spectrum according to the obtained maximum number of HARQ processes.
  • the data transmission unit 122 is configured to transmit the first transmission data and the retransmission data in the same HARQ process on the same carrier according to the obtained maximum number of HARQ processes,
  • the process of indexing the process in the HARQ process area by using the HARQ process field in the DCI triggers retransmission of data in the HARQ process
  • the HARQ process domain size is determined according to the determined maximum number of HARQ processes.
  • the data transmission unit 122 is configured to: when the first transmission data and the retransmission data in the same HARQ process are transmitted on different carriers according to the obtained maximum number of HARQ processes on the unlicensed spectrum:
  • the corresponding first transmission data in the HARQ process is transmitted on the subframe z of the carrier P
  • the resources on the subframe z+k of the carrier P are available
  • the corresponding retransmission data in the HARQ process is transmitted on the carrier P
  • the resources on the subframe z+k of P are not available
  • the corresponding retransmission data in the HARQ process is transmitted on the carrier Q available for the resource.
  • the data transfer unit 122 is set to,
  • the HARQ timing corresponding to the carrier on the weight spectrum is delayed by or delayed by T subframes;
  • the HARQ timing corresponding to the carrier on the unlicensed spectrum is delayed or advanced by T subframes. Otherwise, the HARQ timing corresponding to the carrier on the unlicensed spectrum remains unchanged.
  • Data transmission is performed according to the HARQ timing corresponding to the carrier on the determined unlicensed spectrum.
  • T is a preset value.
  • the data transmission unit 122 is configured to implement data transmission on the unlicensed spectrum according to the obtained maximum number of HARQ processes
  • the carrier on the unlicensed spectrum is occupied in N times, and the data transmission is in the same position within the occupation time of the maximum number of HARQ processes.
  • the device of the embodiment of the present invention further includes a carrier relationship unit 123, configured to: determine a carrier Q, where
  • the carrier Q is the carrier on the licensed spectrum, and the carrier Q is selected according to the carrier priority on the licensed spectrum;
  • the carrier Q is a carrier available on the unlicensed spectrum.
  • the carrier relationship unit 123 is configured to: determine a carrier Q, where
  • the aggregated carriers are grouped, they are in the same group as the carrier P.
  • the carrier relationship unit 123 is configured to group the aggregated carriers as follows:
  • Each carrier group includes at least a primary serving cell; and/or,
  • Each carrier packet contains one or more carriers on the licensed spectrum; and/or,
  • the carriers on the licensed spectrum are grouped into one group, and the carriers on the unlicensed spectrum are grouped into one group;
  • Carrier Q is a carrier that is in the same group as carrier P and that is available for resources.
  • the apparatus further includes an indication unit 124 configured to: indicate, by signaling, a relationship between the carrier Q and the carrier P; the signaling is physical layer signaling or higher layer signaling.
  • the indicating unit 124 is configured to, when the signaling is the downlink control signaling DCI,
  • the retransmission carrier indication field is introduced in the DCI, and the carrier indication field and the retransmission carrier indication field are jointly coded, and the relationship between the carrier Q and the carrier P is indicated by joint coding.
  • the data transmission unit 122 is configured to transmit the first transmission data and the retransmission data in the same HARQ process on the unlicensed spectrum according to the obtained maximum number of HARQ processes on different carriers, including:
  • the PHICH channel corresponding to the uplink data and the DCI of the uplink data are transmitted on different carriers;
  • the uplink HARQ is used to trigger the transmission of the retransmitted data in the HARQ process only through the DCI; the HARQ process index is added to the HARQ process field in the DCI to trigger the transmission of the retransmitted data in the HARQ process, and the size of the HARQ process domain is determined according to the determined maximum HARQ.
  • the number of processes is determined; or,
  • the data transfer unit 122 is set to,
  • the HARQ timing corresponding to the carrier on the unlicensed spectrum is delayed by the original HARQ or advanced by T subframes;
  • the HARQ timing corresponding to the carrier on the unlicensed spectrum is delayed by the original HARQ or advanced by T subframes.
  • t is less than or equal to a preset threshold, the carrier on the unlicensed spectrum corresponds to The HARQ timing remains unchanged; T is a preset value.
  • the data transmission unit is configured to implement data transmission on the unlicensed spectrum according to the obtained maximum number of HARQ processes
  • the carrier on the unlicensed spectrum is occupied in N times, and the data transmission is in the same position within the occupied time.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the embodiment of the present invention solves the problem of data transmission on an unlicensed spectrum by obtaining the maximum number of HARQ processes corresponding to carriers on the unlicensed spectrum in carrier aggregation, and implements data transmission on the unlicensed spectrum.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公布一种实现数据传输的方法及装置,包括:获得载波聚合中处于非授权频谱上的载波对应的最大混合自动重传请求(HARQ)进程数;根据获得的最大HARQ进程数实现数据在非授权频谱上传输。

Description

一种实现数据传输的方法及装置 技术领域
本申请涉及但不限于无线通信领域。
背景技术
截止目前,LTE(Long Term Evolution,长期演进)是部署在授权载波中运营的。但是随着数据业务的快速增长,在不久的将来,授权频谱将不能再承受下如此巨大的数据量。因此,在非授权频谱中部署LTE,通过非授权频谱来分担授权载波中的数据流量,是后续LTE发展的一个重要的演进方向。
对于非授权频谱,存在以下优点:1、非授权频谱资源是免费/低费用(不需要购买非频谱,频谱资源为零成本);2、准入要求低,成本低(个人、企业都可以参与部署,设备商的设备可以任意);3、属于共享资源(多个不同系统都运营其中时或者同一系统的不同运营商运营其中时,可以考虑一些共享资源的方式,提高频谱效率);
非授权频谱的上述优点同样带来了相关的问题:1、无线接入技术多(跨不同的通信标准,协作难,网络拓扑多样);2、无线接入站点多(用户数量大,协作难度大,集中式管理开销大);3、应用多(从资料看,多业务被提及可以在其中运营,例如Machine to machine(M2M)、Vehicle to vehicle(V2V))。
对于非授权频谱,会有多个系统工作在相同的频谱上。为了保证每个系统公平使用非授权频谱,LTE系统有可能非连续的占用非授权频谱。而相关技术的LTE系统中,数据传输都是基于占用连续频谱实现的,相关技术的LTE系统进行数据传输的方法,无法实现数据在非授权频谱上传输,为了实现LTE系统部署在非授权频谱时的数据传输,确定非授权频谱上载波对应的HARQ进程并实现数据传输是亟待解决的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本文提供一种实现数据传输的方法及装置,能够实现部署在非授权频谱时的数据传输,解决在非授权频谱上载波确定对应的HARQ进程并实现数据传输。
一种实现数据传输的方法;包括:
获得载波聚合中处于非授权频谱上的载波对应的最大混合自动重传请求HARQ进程数;
根据获得的最大HARQ进程数实现数据在非授权频谱上传输。
可选地,最大HARQ进程数通过一种或一种以上预设的确定方式获得;
预设的确定方式获得包括:
根据载波对应的固定值获得;或,
根据载波的传输方式获得;或,
根据载波采用的HARQ定时获得;或,
根据使用非授权频谱的法规获得;或,
根据载波所处的频段获得。
可选地,当最大HARQ进程数通过一种预设的确定方式获得时,
预设的确定方式获得为根据所述载波对应的固定值获得时,所述根据所述载波对应的固定值获得所述最大HARQ进程数包括:
所述载波对应的最大HARQ进程数为固定值;
所述预设的确定方式获得为根据所述载波的传输方式获得所述最大HARQ进程数时,所述根据所述载波的传输方式获得最大HARQ进程数包括:
当所述载波的传输方式为纯下行SDL时,所述最大HARQ进程数为频分双工FDD系统对应的最大HARQ进程数;
当所述载波的传输方式为下行/上行DL/UL时,所述最大HARQ进程数为时分双工TDD下行/上行配置K对应的最大HARQ进程数;TDD下行/上行配置K根据所述载波中上行与下行传输比例确定;
所述预设的确定方式获得为根据载波采用的HARQ定时获得所述最大HARQ进程数时,所述根据所述载波采用的HARQ定时获得所述最大HARQ进程数包括:
当所述载波采用FDD系统的HARQ定时时,所述最大HARQ进程数为FDD系统对应的最大HARQ进程数;当所述载波采用参考下行/上行配置Z的HARQ定时时,所述最大HARQ定时为参考下行/上行配置Z对应的最大HARQ进程数;
所述预设的确定方式获得为根据使用非授权频谱的法规获得所述最大HARQ进程数时,所述根据使用所述非授权频谱的法规获得所述最大HARQ进程数包括:
所述最大HARQ进程数为法规规定的信道占用时间内用于传输的子帧个数;
所述信道占用时间为:根据一国家或区域的法规确定;或,
根据所有国家或区域的法规规定的最大值确定;或,
根据所有国家或区域的法规规定的最小值确定;
所述预设的确定方式获得为根据载波所处的频段获得所述最大HARQ进程数时,所述根据所述载波所处的频段获得所述最大HARQ进程数包括:
根据处在不同频段上的载波,确定对应的最大HARQ进程数。
可选地,当所述最大HARQ进程数通过一种以上预设的确定方式获得时,所述最大HARQ进程数为每个预设的确定方式获得的最大HARQ进程数中的最小值。
可选地,根据获得的最大HARQ进程数实现数据在非授权频谱上传输包括:
同一HARQ进程中的首传数据和重传数据在相同的载波上传输;或,
同一HARQ进程中的首传数据和重传数据在不同的载波上传输。
可选地,当实现数据在非授权频谱上传输为在同一HARQ进程中的首传数据和重传数据在相同的载波上传输时,根据获得的最大HARQ进程数实现数据在非授权频谱上传输包括:
通过DCI中增加HARQ进程域指示进程索引触发HARQ进程中数据的重传;
HARQ进程域大小根据确定的最大HARQ进程数确定。
可选地,当实现数据在非授权频谱上传输为在同一HARQ进程中的首传数据和重传数据在不同的载波上传输时,根据获得的最大HARQ进程数实现数据在非授权频谱上传输包括:
如果HARQ进程中对应的首传数据在载波P的子帧z上发送,在载波P的子帧z+k上的资源可用时,HARQ进程中对应的重传数据在载波P上发送;在载波P的子帧z+k上的资源不可用时,HARQ进程中对应的重传数据在资源可用的载波Q上传输。
可选地,当仅有授权频谱上的载波为资源可用的载波时,所述载波Q为授权频谱上的载波,载波Q按照授权频谱上载波优先级选择;
当授权频谱上的载波和非授权频谱上的载波均为资源可用的载波时,所述载波Q为非授权频谱上资源可用的载波。
可选地,授权频谱上载波的优先级为:
按照载波索引确定的优先级;或,
确定主服务小区的优先级最高,辅服务小区按照载波索引确定优先级。
可选地,该方法还包括:通过信令指示载波Q和所述载波P的关系;
信令为:物理层信令、或高层信令。
可选地,通过信令指示所述载波Q和所述载波P的关系包括:
当所述信令为下行控制信令DCI时,在DCI中引入重传载波指示域,通过所述重传载波指示域指示所述载波Q和所述载波P的关系;或,
当所述DCI中包含载波指示域时,所述重传载波指示域和载波指示域进 行联合编码,通过联合编码指示所述载波Q和所述载波P的关系。
可选地,载波Q为:将聚合的载波分组后,与载波P处于同一组内的载波。
可选地,将聚合的载波分组包括:
每个载波分组至少包含主服务小区;和/或,
每个载波分组中包含有一个或一个以上授权频谱上的载波;和/或,
根据高层信令指示分组;和/或,
将授权频谱上的载波分为一组,非授权频谱上的载波分为一组。
可选地,在同一HARQ进程中的首传数据和重传数据在不同的载波上传输包括:
上行数据对应的PHICH信道和上行数据的DCI在不同的载波上传输;或,
上行HARQ,仅通过DCI触发HARQ进程中重传数据的传输;通过DCI中增加的HARQ进程域指示HARQ进程索引触发HARQ进程中重传数据的传输,所述HARQ进程域的大小根据确定的最大HARQ进程数确定;或,
对来自其他载波的重传数据和载波自身的重传数据共用一个数据缓存;或者,来自同组载波的重传数据共用一个缓存,所述数据缓存为原有缓存、或基于原有缓存的扩展缓存。
可选地,根据获得的最大HARQ进程数实现数据在非授权频谱上的传输为:
当非授权频谱上的载波和主服务小区之间相差t个OFDM符号时,非授权频谱上的载波对应的HARQ定时为对原HARQ定时延迟或提前T个子帧;或,
当t大于预先设置的阈值时,非授权频谱上的载波对应的HARQ定时为对原HARQ定时延迟或提前T个子帧,当t小于或等于预先设置的阈值时,非授权频谱上的载波对应的HARQ定时保持不变;
所述T为预先设定的值。
可选地,根据获得的最大HARQ进程数实现数据在非授权频谱上的传输为:非授权频谱上的载波在N次占用中,数据传输在占用时间内的位置相同。
一种实现数据传输的装置,包括:获取进程单元和数据传输单元;其中,
获取进程单元,设置为:获得载波聚合中处于非授权频谱上的载波对应的最大混合自动重传请求HARQ进程数;
数据传输单元,设置为:根据获得的最大HARQ进程数实现数据在非授权频谱上传输。
可选地,获取进程单元是设置为,通过一种或一种以上预设的确定方式获得载波聚合中处于非授权频谱上的载波对应的HARQ进程数;
通过预设的确定方式获得包括:
根据载波对应的固定值获得;或,
根据载波的传输方式获得;或,
根据载波采用的HARQ定时获得;或,
根据使用非授权频谱的法规获得;或,
根据载波所处的频段获得。
可选地,获取进程单元通过一种预设的确定方式获得载波聚合中处于非授权频谱上的载波对应的HARQ进程数时,
所述预设的确定方式获得为根据所述载波对应的固定值获得时,获取进程单元是设置为,根据所述载波对应的固定值获得;所述载波对应的最大HARQ进程数为固定值;
所述预设的确定方式获得为根据所述载波的传输方式获得所述最大HARQ进程数时,获取进程单元是设置为,
当所述载波的传输方式为纯下行SDL时,所述最大HARQ进程数为频分双工FDD系统对应的最大HARQ进程数;
当所述载波的传输方式为下行/上行DL/UL时,所述最大HARQ进程数 为时分双工TDD下行/上行配置K对应的最大HARQ进程数;TDD下行/上行配置K根据所述载波中上行与下行传输比例确定;
所述预设的确定方式获得为根据载波采用的HARQ定时获得所述最大HARQ进程数时,获取进程单元是设置为,
当所述载波采用FDD系统的HARQ定时时,所述最大HARQ进程数为FDD系统对应的最大HARQ进程数;当所述载波采用参考下行/上行配置Z的HARQ定时时,所述最大HARQ定时为参考下行/上行配置Z对应的最大HARQ进程数;
所述预设的确定方式获得为根据使用非授权频谱的法规获得所述最大HARQ进程数时,获取进程单元是设置为,
最大HARQ进程数为法规规定的信道占用时间内用于传输的子帧个数;
所述信道占用时间为:根据一国家或区域的法规确定;或,
根据所有国家或区域的法规规定的最大值确定;或,
根据所有国家或区域的法规规定的最小值确定;
所述预设的确定方式获得为根据载波所处的频段获得所述最大HARQ进程数时,获取进程单元是设置为,
根据处在不同频段上的载波,确定相应的最大HARQ进程数。
可选地,当所述最大HARQ进程数通过一种以上预设的确定方式获得时,所述最大HARQ进程数为每个预设的确定方式获得的最大HARQ进程数中的最小值。
可选地,数据传输单元是设置为,根据获得的最大HARQ进程数在非授权频谱上在同一HARQ进程中的首传数据和重传数据在相同的载波上传输,通过DCI中增加HARQ进程域指示进程索引触发HARQ进程中数据的重传;
所述HARQ进程域大小根据确定的最大HARQ进程数确定。
可选地,数据传输单元,是设置为:根据获得的最大HARQ进程数在非授权频谱上在同一HARQ进程中的首传数据和重传数据在不同的载波上传输时:
如果HARQ进程中对应的首传数据在载波P的子帧z上发送,在载波P的子帧z+k上的资源可用时,HARQ进程中对应的重传数据在载波P上发送;在载波P的子帧z+k上的资源不可用时,HARQ进程中对应的重传数据在资源可用的载波Q上传输。
可选地,该装置还包括载波关系单元,设置为:确定载波Q,其中,
当仅有授权频谱上的载波为资源可用的载波时,所述载波Q为授权频谱上的载波,载波Q按照授权频谱上载波优先级选择;
当授权频谱上的载波和非授权频谱上的载波均为资源可用的载波时,所述载波Q为非授权频谱上资源可用的载波。
可选地,该装置还包括指示单元,设置为:通过信令指示所述载波Q和所述载波P的关系;
所述信令为:物理层信令、或高层信令。
可选地,指示单元是设置为,
当所述信令为下行控制信令DCI时,
在所述DCI中引入重传载波指示域,通过所述重传载波指示域指示所述载波Q和所述载波P的关系;或,
当所述DCI中包含载波指示域时,在所述DCI中引入重传载波指示域,载波指示域与重传载波指示域进行联合编码,通过联合编码指示所述载波Q和所述载波P的关系。
可选地,该装置还包括载波关系单元,设置为:确定载波Q,其中,
将聚合的载波分组后,与所属载波P处于同一组内的载波。
可选地,载波关系单元是设置为,将聚合的载波按照如下方式:
每个载波分组至少包含主服务小区;和/或,
每个载波分组中包含有一个或一个以上授权频谱上的载波;和/或,
根据高层信令指示分组;和/或,
将授权频谱上的载波分为一组,非授权频谱上的载波分为一组;
进行分组后,
载波Q为和载波P处于同一组内且资源可用的载波。
可选地,数据传输单元是设置为,根据获得的最大HARQ进程数在非授权频谱上在同一HARQ进程中的首传数据和重传数据在不同的载波上传输,包括:
上行数据对应的PHICH信道和上行数据的DCI在不同的载波上传输;或,
上行HARQ,仅通过DCI触发HARQ进程中重传数据的传输;通过DCI中增加的HARQ进程域指示HARQ进程索引触发HARQ进程中重传数据的传输,所述HARQ进程域的大小根据确定的最大HARQ进程数确定;或,
对来自其他载波的重传数据和载波自身的重传数据共用一个数据缓存;或者,来自同组载波的重传数据共用一个缓存,
所述数据缓存为原有缓存、或基于原有缓存的扩展缓存。
可选地,数据传输单元是设置为,
当非授权频谱上的载波和主服务小区之间相差t个OFDM符号时,
非授权频谱上的载波对应的HARQ定时为对原HARQ定时延迟或提前T个子帧;或,
当t大于预先设置的阈值时,非授权频谱上的载波对应的HARQ定时为对原HARQ定时延迟或提前T个子帧,当t小于或等于预先设置的阈值时,非授权频谱上的载波对应的HARQ定时保持不变;
T为预先设定的值。
可选地,数据传输单元是设置为,根据获得的最大HARQ进程数实现数据在非授权频谱上传输;
非授权频谱上的载波在N次占用中,数据传输在占用时间内的位置相同。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一项的方法。
与相关技术相比,本发明实施例提供的技术方案,包括:获得载波聚合中处于非授权频谱上的载波对应的最大混合自动重传请求(HARQ)进程数;根据获得的最大HARQ进程数实现数据在非授权频谱上传输。本发明实施例方法获得载波聚合中处于非授权频谱上的载波对应的最大HARQ进程数,通过获得的最大HARQ进程数,解决了在非授权频谱上进行数据传输的问题,实现了在非授权频谱上的数据传输。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例实现数据传输的第一场景的载波结构示意图;
图1(a)为本发明实施例1实现数据传输的载波结构示意图;
图1(b)为本发明实施例4实现数据传输的载波结构示意图;
图2为本发明实施例实现数据传输的第二场景的载波结构示意图;
图3为本发明实施例实现数据传输的第三场景的载波结构示意图;
图4为本发明实施例实现数据传输的第四场景的载波结构示意图;
图5为本发明实施例实现数据传输的第五场景的载波结构示意图;
图6为本发明实施例实现数据传输的第六场景的载波结构示意图;
图7为本发明实施例实现数据传输的第七场景的载波结构示意图;
图8为本发明实施例实现数据传输的第八场景的载波结构示意图;
图9为本发明实施例实现数据传输的第九场景的载波结构示意图;
图10为本发明实施例实现数据传输的第十场景的载波结构示意图;
图11为本发明实施例实现数据传输的方法的流程图;
图12为本发明实施例实现数据传输的装置的结构框图。
本发明的实施方式
下文中将结合附图对本申请的实施方式进行详细说明。需要说明的是, 在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
以下对本发明实施例所涉及到的部分技术和概念进行简要说明。
首先,LTE系统中,HARQ进程是指:当发送端有数据需要传输时,接收端通过下行控制信息为发送端分配传输时所需的信息;如,频域资源和分组信息等。发送端根据这些信息发送数据,同时将发送的数据保存在自身的缓存器中,以便进行重传;当接收端接收到数据且检测出数据被正确接收,则发送确认(ACK)给发送端,以使发送端清空发送数据时所使用的缓存器,完成数据发送。如果数据没有被正确接收,则接收端发送未确认(NACK)给发送端,并将未正确接收的分组保存在接收端的缓存器中,发送端根据接收到的NACK信息从缓存器中提出数据,并在相应的子帧及频域位置上使用特定的分组格式进行重传。接收端在接收到重传分组之后,与前面没有正确接收的分组进行合并、并再次检测,直到数据被正确接收或发送次数超过最大次数门限。
LTE/LTE-A系统中,关于下行HARQ中物理下行共享信道(PDSCH)调度定时(对下行HARQ的调度)有如下规定:UE在子帧i上检测到物理下行控制信道(PDCCH)后,根据PDCCH的信息解析当前子帧的PDSCH。
LTE/LTE-A FDD系统中,关于下行HARQ中发送PDSCH的HARQ-ACK相应的PUCCH(下行HARQ的定时关系)有如下定时规则,UE在子帧i上检测PDSCH传输或者指示下行半永久性调度释放(SPS release)的PDCCH,在子帧号为n加4上传输对应的HARQ-ACK响应。
LTE/LTE-A TDD系统中,对下行HARQ的定时关系有如下规定:UE在子帧i-k上检测PDSCH传输或者指示下行SPS release的PDCCH,在上行子帧的子帧号为n上传输对应的HARQ-ACK响应,其中k属于K,K的取值如表1所示:
Figure PCTCN2015087685-appb-000001
表1不同上下行配置中K的取值
LTE/LTE-A FDD系统中,关于上行物理上行共享信道(PUSCH)调度定时有如下规定:
1、对于常规HARQ操作,UE在子帧i上检测携带上行下行控制信息(DCI)信息的下行控制信道/增强的下行控制信道(PDCCH/EPDCCH)、或物理HARQ指示信道(PHICH)传输,UE根据PDCCH/EPDCCH和PHICH信息调整子帧i+4上的PUSCH传输;
2、对于子帧绑定操作,UE在子帧i上检测携带上行DCI信息的PDCCH/EPDCCH或在子帧i-5上检测PHICH,UE根据PDCCH/EPDCCH和PHICH信息调整子帧i+4中绑定中第一个PUSCH传输。
LTE/LTE-A TDD系统中,关于上行PUSCH调度定时有如下规定:
1、对于上下行配置1-6且常规HARQ操作,UE在子帧i上检测携带上行DCI信息的PDCCH/EPDCCH或PHICH传输,UE根据PDCCH/EPDCCH和PHICH信息调整子帧i+k上的PUSCH传输;
2、对于上下行配置0且常规的HARQ操作,UE在子帧i上检测携带上行DCI信息的PDCCH/EPDCCH或PHICH传输,如果PDCCH/EPDCCH中UL index域的最高位为1或者PHICH是在子帧i=0或5上使用PHICH资源索 引0接收,UE根据PDCCH/EPDCCH和PHICH信息调整子帧i+k上的PUSCH传输;
3、对于上下行配置0和常规HARQ操作,子帧i上PDCCH/EPDCCH中UL index域的最低位为1或者PHICH是在子帧0或5上使用PHICH资源索引1接收或PHICH是在子帧1或6接收,UE根据PDCCH/EPDCCH和PHICH信息调整子帧i+7上PUSCH的传输;
4、对于上下行配置0,如果子帧i中PDCCH/EPDCCH中UL index的最高位和最低位都进行了设置,那么UE根据PDCCH/EPDCCH和PHICH信息调整子帧i+k和i+7上PUSCH的传输,其中规定中k的取值与上行-下行配置信息和子帧的子帧号的对应关系如表2所示:
Figure PCTCN2015087685-appb-000002
表2不同上下行配置对应每个子帧的k的取值
LTE/LTE-A TDD系统中,关于上行HARQ中发送PUSCH的HARQ-ACK响应的PHICH有如下定时规定,即对上行HARQ的定时关系有如下规定:
1、对于上下行配置1-6,子帧i上PHICH信道收到的是子帧i-k上PUSCH的HARQ-ACK响应;
2、对于上下行配置0,子帧i上在PHICH资源索引0上收到的是子帧i-k上PUSCH的HARQ-ACK响应;
3、对于上下行配置0,子帧i上在PHICH资源索引1上收到的是子帧i-6上PUSCH的HARQ-ACK响应;
上述规定中,k的取值与上行-下行配置及子帧号i的对应关系如表3所示:
Figure PCTCN2015087685-appb-000003
表3不同上行-下行配置及对应子帧号中k的取值
LTE-A系统相对于LTE系统最为显著的特征是引入载波聚合技术,即将LTE系统的带宽进行聚合以获得更大的带宽。在引入载波聚合的系统中,进行聚合的载波称为分量载波(Component Carrier,简称CC),也称为一个服务小区(Serving Cell)。同时,还提出了主分量载波/小区(Primary Component Carrier/Cell,简称为PCC/PCell)和辅分量载波/小区(Secondary Component Carrier/Cell,简称为SCC/SCell)的概念。在进行了载波聚合的系统中,至少包含一个主服务小区和辅服务小区;其中,主服务小区一直处于激活状态,并且规定PUCCH仅在PCell上传输。LTE-A系统中引入跨载波调度即某服务小区上的PDCCH可以调度多个服务小区的PDSCH/PUSCH,其中PDCCH所在的服务小区称为调度小区,PDSCH/PUSCH所在的服务小区称为被调度服务小区。
相关技术的载波聚合技术支持FDD服务小区载波聚合、TDD服务小区载波聚合、FDD服务小区和TDD服务小区载波聚合;
对于DL HARQ最大进程数,已有标准规定如下:
对于FDD,每个服务小区最大下行HARQ进程数为8;
对于TDD-FDD聚合且主服务小区为FDD,服务小区最大DL HARQ进程数为8;
对于TDD和没有配置eIMTA,如果配置单个服务小区,或者配置相同上下行配置的TDD服务小区聚合时,最大DL HARQ进程数根据上下行配置的,其值如表4所示:
对于TDD,如果不同上下行配置服务小区聚合或者其中一个服务小区配置了eIMTA,或者,对于TDD-FDD CA中主服务小区和辅服务小区都为TDD时,表4为TDD下行/上行配置K对应的最大HARQ进程数,其中表中TDD上下行配置为DL参考上下行配置。
TDD-FDD聚合时,主服务小区为TDD,辅服务小区为FDD,最大HARQ进程数根据下行参考上下行配置确定,表5为下行/上行配置Z对应的最大HARQ进程数。
TDD上行-下行配置 最大DL HARQ进程数
0 4
1 7
2 10
3 9
4 12
5 15
6 6
表4为TDD下行/上行配置K对应的最大HARQ进程数
下行-参考上下行配置 最大DL HARQ进程数
0 10
1 11
2 12
3 15
4 16
5 16
6 12
表5为下行/上行配置Z对应的最大HARQ进程数
使用非授权频谱需要遵守非授权频谱的使用规则,每个国家/地区对于非授权频谱的使用规则不同,例如欧洲,必须支持先听后说(listen before talk,简称LBT),LBT基于帧设备(frame-based equipment,简称FBE)和基于负载设备(load-based equipment,简称LBE)两种形式;在日本,必须支持先听后说而且规定最大的占用时间为4ms。表6和表7为欧洲国家FBE和LBE的LBT的一些重要需求。
参数 需求 说明
干净信道评估时间 最小20us  
信道占用时间 最小1ms,最大10ms  
空闲期 最小值为信道占用时间的5%  
固定帧周期 等于信道占用时间+空闲期  
短控制信令发送时间 50ms中最大占空比为5% 部分信道占用时间
表6欧洲基于FBE的LBT需求
Figure PCTCN2015087685-appb-000004
Figure PCTCN2015087685-appb-000005
表7欧洲基于LBE的LBT需求
以下对本发明实施例方法进行清楚详细的说明,实施例中涉及到部分缩写,其中D为下行(DL)的缩写,U为上行(UL)的缩写,S是协议规定的特殊子帧的缩写。
图1为本发明实施例实现数据传输的第一场景的载波结构示意图,如图1所示,包含有2个载波进行聚合,其中主载波PCell(或称主服务小区)为FDD服务小区,位于授权频谱上;辅载波(或称辅服务小区)SCell的传输模式为纯下行(SDL),SCell根据LBE规则接入非授权频谱,对应的最大占用时间为13ms,即13个子帧,位于5GHz的非授权频谱上。其中,无线帧X中的X代表无线帧索引。实施例1~5为获得载波聚合中处于非授权频谱上的载波对应的最大HARQ进程数的示例。
实施例1
处于非授权频谱上的载波对应的最大HARQ进程数为固定值,因为SCell的传输模式为SDL,通过确定非授权频谱上载波对应的最大下行(DL)HARQ进程个数,即SCell最大DL HARQ进程个数为固定值8,图1(a)为本发明实施例1实现数据传输的载波结构示意图,如图1(a)所示,因为最大DL HARQ进程个数为8,那么DL HARQ1的重传数据最早可以在无线帧X子帧9发送,这里,重传数据最早可以在无线帧X子帧9发送是指由于获得载波聚合中处于非授权频谱上的载波对应的最大混合自动重传请求(HARQ)进程数为8,因此占用8个子帧,从无线帧X子帧9开始进行重传数据的传输,图中编号为1~8的左斜线框代表HARQ进行占用的载波,编 号为1~5的空白框对应的载波用于进行重传数据的传输。
实施例2
根据载波的传输方式获得载波聚合中处于非授权频谱上的载波对应的最大HARQ进程数,因为SCell为纯下行传输,所以是确定非授权频谱上载波对应的最大DL HARQ进程个数;
当载波的传输方式为纯下行(SDL)时,最大HARQ进程数为频分双工(FDD)系统对应的最大HARQ进程数;也就是8(已有技术中规定的、FDD服务小区聚合时,最大DL HARQ进程个数为8),示意图与图1(a)相同,因为最大DL HARQ进程个数为8,那么DL HARQ1的重传数据最早可以在无线帧X子帧9发送。
实施例3
根据载波采用的HARQ定时获得载波聚合中处于非授权频谱上的载波对应的最大HARQ进程数,因为PCell为FDD载波,SCell1为SDL传输,所以SCell对应的HARQ定时按照PCell的HARQ定时(HARQ定时的确定跟聚合的主服务小区,辅服务小区的类型,上行-下行配置有关),也就是按照已有FDD系统对应的HARQ定时,所以SCell最大HARQ进程数和FDD系统对应的最大HARQ进程数相同,也就是8,因为最大DL HARQ进程个数为8,那么DL HARQ1的重传数据最早可以在无线帧X子帧9发送。
实施例4
根据使用非授权频谱的法规获得载波聚合中处于非授权频谱上的载波对应的最大HARQ进程数:
因为SCell是以LBE的方式接入非授权频谱的,对应的法规为最大占用时间为13ms,可用于下行传输的子帧为13,图1(b)为本发明实施例4实现数据传输的载波结构示意图,如图1(b)所示,对应的最大DL HARQ进程数为13。
实施例5
根据载波所处的频段获得载波聚合中处于非授权频谱上的载波对应的最大HARQ进程数:
因为SCell位于5G频段,所以SCell对应的最大DL HARQ进程个数为8。这里,5G频段的最大进程数为8是预先设定的数值,根据不同频段实际应用进行预先设定。
图2为本发明实施例实现数据传输的第二场景的载波结构示意图,如图2所示,包含有2个载波进行聚合,其中主载波PCell(或称主服务小区)为TDD服务小区且上行-下行配置为0,位于授权频谱上,辅载波(或称辅服务小区)SCell的传输模式为纯下行,SCell根据LBE规则接入非授权频谱,最大占用时间为13ms,即13个子帧,位于非授权频谱上。
实施例6
根据所述载波采用的HARQ定时获得载波聚合中处于非授权频谱上的载波对应的最大HARQ进程数,即确定非授权频谱上载波对应的最大DL HARQ进程个数:
因为PCell为TDD载波,SCell为纯下行传输,所以SCell对应的HARQ定时按照TDD下行参考配置0(根据TDD-FDD载波聚合的表4),对应的最大DL HARQ进程个数为10。
图3为本发明实施例实现数据传输的第三场景的载波结构示意图,如图3所示,包含有2个载波进行聚合,其中主载波PCell为FDD服务小区,位于授权频谱上,辅载波SCell的传输模式为DL/UL且上下行比例7:3,SCell根据FBE规则接入非授权频谱,对应的FBE帧为10ms,即10个子帧。
实施例7
根据使用非授权频谱的法规获得载波聚合中处于非授权频谱上的载波对应的最大HARQ进程数,即确定非授权频谱上载波对应的最大UL HARQ进程个数:
因为SCell是以FBE的方式接入非授权频谱的,对应的法规规定帧长为10ms,可用于上行传输的子帧为3,所以对应的最大UL HARQ进程个数为3,示意图同图3所示。
实施例8
假设有5个载波进行聚合,其中PCell,SCell1和SCell2位于授权频谱 上,SCell3和SCell4位于非授权频谱上,SCell3和SCell4以FBE的形式接入非授权频谱。
获得SCell3和SCell4对应的最大HARQ进程数后,根据获得的最大HARQ进程数实现数据在非授权频谱上的传输时按照同一HARQ进程中的首传数据和重传数据在不同的载波上传输实现数据传输。当Scell3对应的重传数据需要在除SCell3之外的资源可用载波Q上传输时,可用载波Q通过以下方式获得:
方法一,当资源可用的载波即包含授权频谱上的载波和非授权频谱上的载波,载波Q为SCell4;当资源可用的载波只包含授权频谱上的载波时,载波Q可以为主服务小区,或者载波索引较大的SCell1,或者载波索引较小的SCell2;
方法二,将聚合的载波分组,载波Q为和SCell3处于同一组内且资源可用的载波;其中,将聚合的载波分组包括:
SCell3和主服务小区一组,SCell4和主服务小区一组;和/或,
SCell3和主服务小区一组,SCell4和SCell2一组;或者,SCell3和SCell2一组,SCell4和SCell1一组;或者,SCell3和SCell1一组,SCell4和SCell2为一组;和/或,
高层信令指示SCell3和SCell1一组,SCell4和SCell2一组;和/或,
SCell3和SCell4为一组;
方法三,载波Q和载波P的关系通过信令得到:当信令为下行控制信息DCI时,通过DCI中增加重传载波指示域得到。其中,重传载波指示域用来指示载波Q和载波P的关系;即通过重传载波指示域可以得到下行控制信息所在/指示的载波用来传输哪个载波的重传数据,重传载波指示域为3比特。如果控制信息中包含载波指示域,重传载波指示域可以和载波指示域联合编码;例如,联合编码后为5比特。
实施例9
根据实施例1得到SCell最大DL HARQ进程个数为8,根据获得的最大HARQ进程数8实现数据在非授权频谱上的传输时按照同一HARQ进程中的 首传数据和重传数据在相同的载波上传输,也就是SCell上同一DL HARQ进程中的首传数据和重传数据必须在相同载波上传输;对于DL HARQ进程6,SCell无线帧X+1子帧3上对应的资源不可用,HARQ6挂起,直到有资源可用为止。
实施例10
根据实施例1得到SCell最大DL HARQ进程个数为8,根据获得的最大HARQ进程数8实现数据在非授权频谱上的传输时按照同一HARQ进程中的首传数据和重传数据在不同的载波上传输,也就是SCell上同一HARQ进程中的首传数据和重传数据可以在不同载波上传输;对于DL HARQ进程6,终端检测到SCell无线帧X+1子帧3上对应的资源不可用,而触发重传的下行控制信息在PCell上且增加3比特重传载波域,用于指示PCell上传输的是SCell的重传数据,所以终端在PCell无线帧X+1子帧0上接收重传数据,重传指示域含义如下表所示;来自SCell的重传数据存储在PCell的数据缓存。
重传指示域 含义
000 PCell
001 SCell1
010 SCell2
011 SCell3
100 SCell4
表8重传指示域
实施例11
根据实施例1得到SCell最大DL HARQ进程个数为8,根据获得的最大HARQ进程数8实现数据在非授权频谱上的传输时按照同一HARQ进程中的首传数据和重传数据在不同的载波上传输,也就是SCell2上同一HARQ进程中的首传数据和重传数据可以在不同载波上传输;对于DL HARQ进程6,终端检测到SCell无线帧X+1子帧3上对应的资源不可用,根据分组得到SCell 和PCell是一组,所以终端在PCell无线帧X+1子帧0上接收重传数据;在PCell的数据缓存的基础上增加扩展缓存,SCell的重传数据存储在所述扩展缓存上。
实施例12
图4为本发明实施例实现数据传输的第四场景载波结构示意图,如图4所示,本实施例配置为跨载波调度,根据实施例7得到最大UL HARQ进程个数为3,根据获得的最大HARQ进程数3实现数据在非授权频谱上的传输时按照同一HARQ进程中的首传数据和重传数据在相同的载波上传输,也就是SCell上同一UL HARQ进程中的首传数据和重传数据必须在相同载波上传输;对于UL HARQ进程3,SCell无线帧X+1子帧4上对应的资源不可用,UL HARQ3挂起,直到有资源可用为止。
实施例13
在图4中,虚线表示载波资源不可用,本实施例为配置跨载波调度,根据实施例7得到最大UL HARQ进程个数为3,根据获得的最大HARQ进程数3实现数据在非授权频谱上的传输时按照同一HARQ进程中的首传数据和重传数据在相同的载波上传输,也就是SCell上同一UL HARQ进程中的首传数据和重传数据必须在相同载波上传输;对于UL HARQ进程3,终端在无线帧X子帧0收到对应的PHICH,当为NACK时,需要在SCell无线帧X+1子帧4上传输重传数据,但是由于无线帧X+1子帧4上对应的资源不可用,无法实现重传数据的传输,所以引入异步HARQ,通过上行指示信息触发UL HARQ进程3的重传数据的传输。其中UL grant中增加HARQ进程域,用于指示哪个HARQ进程重传,可选的,HARQ进程域为3比特,HARQ进程域的含义如表9所示。
HARQ进程域 含义
000 进程1
001 进程2
010 进程3
011 进程4
100 进程5
101 进程6
110 进程7
111 进程8
表9HARQ进程域
实施例14
图5为本发明实施例实现数据传输的第五场景的载波结构示意图,如图5所示,本实施例配置为自载波调度,根据实施例7得到最大UL HARQ进程个数为3,根据获得的最大HARQ进程数3实现数据在非授权频谱上的传输时按照在同一HARQ进程中的首传数据和重传数据在相同的载波上传输实现数据传输,也就是SCell上同一UL HARQ进程中的首传数据和重传数据必须在相同载波上传输;对于UL HARQ进程3,基站通过上行指示信息(UL grant)触发UL HARQ进程3的重传数据的传输。其中UL grant中增加HARQ进程域,用于指示哪个HARQ进程重传,含义如表7所示。
实施例15
图6为本发明实施例实现数据传输的第六场景的载波结构示意图,如图6所示,图中虚线表示资源不可用,配置自载波调度,根据实施例7得到最大UL HARQ进程个数为3,根据获得的最大HARQ进程数3实现数据在非授权频谱上的传输时按照同一HARQ进程中的首传数据和重传数据在不同的载波上传输实现数据传输,也就是SCell上同一UL HARQ进程中的首传数据和重传数据可以在不同载波上传输;对于UL HARQ进程3,终端发送是首传数据后,在无线帧X+1子帧0,终端在SCell上没有检测到PHICH,那么终端在PCell检测对应的PHICH,如果为NACK则要重传数据,根据分组得到SCell和PCell为一组,所以对应的重传数据在PCell上发送,因为SCell和PCell为一组,所以SCell的重传数据存储在PCell对应的数据缓存。
实施例16
图7为本发明实施例实现数据传输的第七场景的载波结构示意图,如图7所示,图中虚线表示资源不可用,配置为跨载波调度,根据实施例7得到最大UL HARQ进程个数为3,根据获得的最大HARQ进程数3实现数据在非授权频谱上的传输时按照同一HARQ进程中的首传数据和重传数据在不同的载波上传输实现数据传输,也就是SCell上同一UL HARQ进程中的首传数据和重传数据可以在不同载波上传输;对于UL HARQ进程3,终端在PCell无线帧X子帧0收到重传对应的UL grant,需要在SCell无线帧X+1子帧4上传输重传数据,终端在无线帧X+1子帧4上没有检测到SCell对应的资源,无法实现重传数据的传输,而所述UL grant中的3比特重传载波指示域,通过重传载波指示域和载波指示域的信息得到PCell是用来传输SCell上的重传数据,终端在PCell上传输SCell对应的重传数据,重传载波指示域的含义如表6所示,SCell的重传数据存储在PCell对应的数据缓存。
实施例17
图7中虚线表示资源不可用,本实施例为配置跨载波调度,根据实施例7得到最大UL HARQ进程个数为3,根据获得的最大HARQ进程数3实现数据在非授权频谱上的传输时按照同一HARQ进程中的首传数据和重传数据在不同的载波上传输实现数据传输,也就是SCell上同一UL HARQ进程中的首传数据和重传数据可以在不同载波上传输;对于UL HARQ进程3,终端在PCell无线帧X子帧0收到重传对应的UL grant,需要在SCell无线帧X+1子帧4上传输重传数据,终端在无线帧X+1子帧4上没有检测到对应的资源,无法实现重传数据的传输,而UL grant中5比特联合指示域指示PCell是用来传输的是SCell的重传数据,那么终端在PCell传输SCell的重传时数据,其中联合指示域用来表示载波指示和重传载波指示,其中载波指示用来表示在哪个SCell上传输,重传指示用来表示传输的是哪个SCell的,含义如表9所示;
联合指示域 载波指示 重传载波指示
00000 PCell SCell1
00011 PCell SCell2
00010 PCell SCell3
00011 PCell SCell4
00100 SCell1 SCell2
00101 SCell1 SCell3
00110 SCell1 SCell4
01000 SCell2 SCell1
01001 SCell2 SCell3
01010 SCell2 SCell4
01100 SCell3 SCell1
01101 SCell3 SCell2
01110 SCell3 SCell4
10000 SCell4 SCell1
10001 SCell4 SCell2
01110 SCell4 SCell3
表10联合指示域含义
实施例18
图8为本发明实施例实现数据传输的第八场景的载波结构示意图,如图8所示,有2个载波进行聚合,其中主载波PCell(或称主服务小区)为FDD服务小区,位于授权频谱上,辅载波(或称辅服务小区)SCell的传输模式为SDL,SCell根据FBE规则接入非授权频谱,也就是一定时间内帧长10ms,位于非授权频谱上,5GHz。SCell相比PCell提前t个符号。
对于SCell上对应的HARQ定时为原有HARQ定时提前1个子帧,原有定时为在子帧i+4上发送子帧i对应的HARQ-ACK应答信息,以SCell下行子帧0为例,对应的HARQ-ACK应答信息在主服务小区UL子帧3发送;如图中虚线所示。
实施例19
图9为本发明实施例实现数据传输的第九场景的载波结构示意图,如图9所示,有2个载波进行聚合,其中主载波PCell(或称主服务小区)为FDD服务小区,位于授权频谱上,辅载波(或称辅服务小区)SCell的传输模式为SDL,SCell根据FBE规则接入非授权频谱,也就是一定时间内帧长10ms,位于5GHz的非授权频谱上。SCell相比PCell延迟t个符号。
对于SCell上对应的HARQ定时为原有HARQ定时延迟1个子帧,原有定时为在子帧i+4上发送子帧i对应的HARQ-ACK应答信息,以SCell下行子帧0为例,对应的HARQ-ACK应答信息在主服务小区UL子帧5发送;如图中虚线所示。
实施例20
图10为本发明实施例实现数据传输的还一种载波结构示意图,如图10所示,有2个载波进行聚合,其中主载波PCell(或称主服务小区)为FDD服务小区,位于授权频谱上,辅载波(或称辅服务小区)SCell的传输模式为SDL,SCell根据FBE规则接入非授权频谱,也就是一定时间内帧长10ms,位于非授权频谱上,5GHz。SCell相比PCell提前t个符号,t为10,阈值为7。
对于SCell上对应的HARQ定时为:由于t大于阈值7时,SCell对应的HARQ定时为原有HARQ定时提前1个子帧,否则,非授权频谱上的载波对应的HARQ定时为原有HARQ定时,原有定时为在子帧i+4上发送子帧i对应的HARQ-ACK应答信息,以SCell下行子帧0为例,对应的HARQ-ACK应答信息在主服务小区UL子帧3发送;如图中虚线所示;
实施例21
图10所示,有2个载波进行聚合,其中主载波PCell(或称主服务小区)为FDD服务小区,位于授权频谱上,辅载波(或称辅服务小区)SCell的传输模式为DL/UL,SCell根据FBE规则接入非授权频谱,也就是一定时间内帧长5ms,位于非授权频谱上,5GHz,图中以SCell占用2次为例。
对于UL HARQ进程1,第一次占用中,数据传输所在的位置为占用期内的第3个子帧,那么第二次占用中,数据传输所在的位置也为占用期内的第3个子帧;
对于UL HARQ进程2,第一次占用中,数据传输所在的位置为占用期内的第4个子帧,那么第二次占用中,数据传输所在的位置也为占用期内的第4个子帧;
对于UL HARQ进程3,第一次占用中,数据传输所在的位置为占用期内的第5个子帧,那么第二次占用中,数据传输所在的位置也为占用期内的第5个子帧。
图11为本发明实施例实现数据传输的方法的流程图,如图11所示,包括:
步骤1100、获得载波聚合中处于非授权频谱上的载波对应的最大混合自动重传请求(HARQ)进程数;
本步骤,最大HARQ进程数通过一种或一种以上预设的确定方式获得。通过预设的确定方式获得,包括:
根据载波对应的固定值获得;或,
根据载波的传输方式获得;或,
根据载波采用的HARQ定时获得;或,
根据使用非授权频谱的法规获得;或,
根据载波所处的频段获得。
当最大HARQ进程数通过一种预设的确定方式获得时,
预设的确定方式获得为根据载波对应的固定值获得时,包括:
所述载波对应的最大HARQ进程数为固定值;
预设的确定方式获得为根据载波的传输方式获得最大HARQ进程数时,包括:
当载波的传输方式为纯下行(SDL)时,最大HARQ进程数为频分双工(FDD)系统对应的最大HARQ进程数;
当载波的传输方式为下行/上行(DL/UL)时,最大HARQ进程数为时分双工TDD下行/上行配置K对应的最大HARQ进程数;TDD下行/上行配置K根据载波中上行与下行传输比例确定;
预设的确定方式获得为根据载波采用的HARQ定时获得最大HARQ进程数时,包括:
当载波采用FDD系统的HARQ定时时,最大HARQ进程数为FDD系统对应的最大HARQ进程数;当所述载波采用TDD参考下行/上行Z的HARQ定时时,最大HARQ定时为TDD系统参考下行/上行Z对应的最大HARQ进程数;
预设的确定方式获得为根据使用非授权频谱的法规获得最大HARQ进程数时,包括:
最大HARQ进程数为法规规定的信道占用时间内用于传输的子帧个数;
信道占用时间为:根据一国家或区域的法规确定;或,
根据所有国家或区域的法规规定的最大值确定;或,
根据所有国家或区域的法规规定的最小值确定;
预设的确定方式获得为根据载波所处的频段获得最大HARQ进程数时,包括:
根据处在不同频段上的载波,确定相应的最大HARQ进程数。
当最大HARQ进程数通过一种以上预设的确定方式获得时,最大HARQ进程数为每个预设的确定方式获得的最大HARQ进程数中的最小值。
步骤1101、根据获得的最大HARQ进程数实现数据在非授权频谱上传输。
本步骤包括:根据获得的最大HARQ进程数在非授权频谱上在同一HARQ进程中的首传数据和重传数据在相同的载波上传输;或,
在同一HARQ进程中的首传数据和重传数据在不同的载波上传输。
当实现数据在非授权频谱上传输为在同一HARQ进程中的首传数据和重传数据在相同的载波上传输时,包括:
通过DCI中增加HARQ进程域指示进程索引触发HARQ进程中数据的重传;HARQ进程域大小根据确定的最大HARQ进程数确定。
当实现数据在非授权频谱上传输为在同一HARQ进程中的首传数据和重 传数据在不同的载波上传输时,
如果HARQ进程中对应的首传数据在载波P的子帧z上发送,在载波P的子帧z+k上的资源可用时,HARQ进程中对应的重传数据在载波P上发送;在载波P的子帧z+k上的资源不可用时,HARQ进程中对应的重传数据在资源可用的载波Q上传输。
载波P和载波Q为进行描述时,本领域技术人员习惯性的定义名称,而K、i等为计算参数。
当仅有授权频谱上的载波为资源可用的载波时,载波Q为授权频谱上的载波,载波Q按照授权频谱上载波优先级选择;
当授权频谱上的载波和非授权频谱上的载波均为资源可用的载波时,载波Q为非授权频谱上资源可用的载波。
这里,授权频谱上载波的优先级是指:
按照载波索引确定的优先级;或,
确定主服务小区的优先级最高,辅服务小区按照载波索引确定优先级。
本发明实施例方法还包括:
通过信令指示载波Q和载波P的关系;信令为:物理层信令、或高层信令。
包括:
当信令为下行控制信令DCI时,在DCI中引入重传载波指示域,通过重传载波指示域指示载波Q和载波P的关系;或,
当DCI中包含载波指示域时,重传载波指示域和载波指示域进行联合编码,通过联合编码指示载波Q和载波P的关系。
载波Q为:将聚合的载波分组后,与所属载波P处于同一组内的载波。
将聚合的载波分组包括:
每个载波分组至少包含主服务小区;和/或,
每个载波分组中包含有一个或一个以上授权频谱上的载波;和/或,
根据高层信令指示分组;和/或,
将授权频谱上的载波分为一组,非授权频谱上的载波分为一组。
在同一HARQ进程中的首传数据和重传数据在不同的载波上传输包括:
上行数据对应的PHICH信道和上行数据的DCI在不同的载波上传输;或,
上行HARQ,仅通过DCI触发HARQ进程中重传数据的传输;通过DCI中增加的HARQ进程域指示HARQ进程索引触发HARQ进程中重传数据的传输,所述HARQ进程域的大小根据确定的最大HARQ进程数确定;或,
对来自其他载波的重传数据和载波自身的重传数据共用一个数据缓存;或者,来自同组载波的重传数据共用一个缓存,所述数据缓存为原有缓存、或基于原有缓存的扩展缓存。
原有缓存是指系统中原有的设置的缓存。在载波自身包含有重传数据时,除载波自身包含的重传数据为其他载波的重传数据。
根据获得的最大HARQ进程数实现数据在非授权频谱上的传输为:
当非授权频谱上的载波和主服务小区之间相差t个OFDM符号时,
非授权频谱上的载波对应的HARQ定时为对原HARQ定时延迟或提前T个子帧;或,
当t大于预先设置的阈值时,非授权频谱上的载波对应的HARQ定时为对原HARQ定时延迟/提前T个子帧,否则,非授权频谱上的载波对应的HARQ定时保持不变;
T为预先设定的值。这里,T在实际应用中一般设置其数值为1。
需要说明的是,原HARQ定时是指已有协议定义的HARQ定时。
根据获得的最大HARQ进程数实现数据在非授权频谱上的传输为:
非授权频谱上的载波在N次占用中,数据传输在占用时间内的位置相同。
本发明实施例的HARQ进程为:下行HARQ进程、和/或上行HARQ进程。
图12为本发明实施例实现数据传输的装置,如图12所示,包括:
获取进程单元121,设置为:获得载波聚合中处于非授权频谱上的载波对应的最大混合自动重传请求HARQ进程数;
获取进程单元121是设置为,通过一种或一种以上预设的确定方式获得载波聚合中处于非授权频谱上的载波对应的HARQ进程数。
通过预设的确定方式获得包括:
根据所述载波对应的固定值获得;或,
根据载波的传输方式获得;或,
根据载波采用的HARQ定时获得;或,
根据使用非授权频谱的法规获得;或,
根据载波所处的频段获得。
获取进程单元121是设置为,通过一种预设的确定方式获得载波聚合中处于非授权频谱上的载波对应的HARQ进程数时,
预设的确定方式获得为根据载波对应的固定值获得时,载波对应的最大HARQ进程数为固定值;
预设的确定方式获得为根据所述载波的传输方式获得最大HARQ进程数时,获取进程单元121是设置为,
当载波的传输方式为纯下行SDL时,所述最大HARQ进程数为频分双工FDD系统对应的最大HARQ进程数;
当载波的传输方式为下行/上行DL/UL时,所述最大HARQ进程数为时分双工TDD下行/上行配置K对应的最大HARQ进程数;TDD下行/上行配置K根据所述载波中上行与下行传输比例确定;
预设的确定方式获得为根据载波采用的HARQ定时获得所述最大HARQ进程数时,获取进程单元是设置为,
当载波采用FDD系统的HARQ定时时,最大HARQ进程数为FDD系统对应的最大HARQ进程数;当载波采用参考下行/上行配置Z的HARQ定时时,最大HARQ定时为参考下行/上行配置Z对应的最大HARQ进程数;
预设的确定方式获得为根据使用非授权频谱的法规获得所述最大HARQ 进程数时,获取进程单元121是设置为,
最大HARQ进程数为法规规定的信道占用时间内用于传输的子帧个数;
信道占用时间为:根据一国家或区域的法规确定;或,
根据所有国家或区域的法规规定的最大值确定;或,
根据所有国家或区域的法规规定的最小值确定;
预设的确定方式获得为根据载波所处的频段获得所述最大HARQ进程数时,获取进程单元121是设置为,
根据处在不同频段上的载波,确定相应的最大HARQ进程数。
当所述最大HARQ进程数通过一种以上预设的确定方式获得时,所述最大HARQ进程数为每个预设的确定方式获得的最大HARQ进程数中的最小值。
数据传输单元122,设置为:根据获得的最大HARQ进程数实现数据在非授权频谱上传输。
数据传输单元122是设置为,根据获得的最大HARQ进程数在非授权频谱上在同一HARQ进程中的首传数据和重传数据在相同的载波上传输,
通过DCI中增加HARQ进程域指示进程索引触发HARQ进程中数据的重传;
HARQ进程域大小根据确定的最大HARQ进程数确定。
数据传输单元122,是设置为:根据获得的最大HARQ进程数在非授权频谱上在同一HARQ进程中的首传数据和重传数据在不同的载波上传输时:
如果HARQ进程中对应的首传数据在载波P的子帧z上发送,在载波P的子帧z+k上的资源可用时,HARQ进程中对应的重传数据在载波P上发送;在载波P的子帧z+k上的资源不可用时,HARQ进程中对应的重传数据在资源可用的载波Q上传输。
数据传输单元122是设置为,
当非授权频谱上的载波和主服务小区之间相差t个OFDM符号时,非授 权频谱上的载波对应的HARQ定时为对HARQ定时延迟或提前T个子帧;或,
当t大于预先设置的阈值时,非授权频谱上的载波对应的HARQ定时为对HARQ定时延迟或提前T个子帧,否则,非授权频谱上的载波对应的HARQ定时保持不变;
根据确定的非授权频谱上的载波对应的HARQ定时进行数据传输。
T为预先设定的值。
数据传输单元122是设置为,根据获得的最大HARQ进程数实现数据在非授权频谱上传输;
非授权频谱上的载波在N次占用中,数据传输在最大HARQ进程数的占用时间内的位置相同。
本发明实施例装置还包括载波关系单元123,设置为:确定载波Q,其中,
当仅有授权频谱上的载波为资源可用的载波时,载波Q为授权频谱上的载波,载波Q按照授权频谱上载波优先级选择;
当授权频谱上的载波和非授权频谱上的载波均为资源可用的载波时,所述载波Q为非授权频谱上资源可用的载波。
载波关系单元123,设置为:确定载波Q,其中,
将聚合的载波分组后,与所属载波P处于同一组内的载波。
载波关系单元123是设置为,将聚合的载波按照如下方式:
每个载波分组至少包含主服务小区;和/或,
每个载波分组中包含有一个或一个以上授权频谱上的载波;和/或,
根据高层信令指示分组;和/或,
将授权频谱上的载波分为一组,非授权频谱上的载波分为一组;
进行分组后,
载波Q为和载波P处于同一组内且资源可用的载波。
装置还包括指示单元124,设置为:通过信令指示所述载波Q和所述载波P的关系;信令为物理层信令或高层信令。
指示单元124是设置为,当信令为下行控制信令DCI时,
在DCI中引入重传载波指示域,通过所述重传载波指示域指示所述载波Q和所述载波P的关系;或,
当DCI中包含载波指示域时,在DCI中引入重传载波指示域,载波指示域与重传载波指示域进行联合编码,通过联合编码指示载波Q和所述载波P的关系。
数据传输单元122是设置为,根据获得的最大HARQ进程数在非授权频谱上在同一HARQ进程中的首传数据和重传数据在不同的载波上传输,包括:
上行数据对应的PHICH信道和上行数据的DCI在不同的载波上传输;或,
上行HARQ,仅通过DCI触发HARQ进程中重传数据的传输;通过DCI中增加的HARQ进程域指示HARQ进程索引触发HARQ进程中重传数据的传输,所述HARQ进程域的大小根据确定的最大HARQ进程数确定;或,
对来自其他载波的重传数据和载波自身的重传数据共用一个数据缓存;或者,来自同组载波的重传数据共用一个缓存,所述数据缓存为原有缓存、或基于原有缓存的扩展缓存。
数据传输单元122是设置为,
当非授权频谱上的载波和主服务小区之间相差t个OFDM符号时,非授权频谱上的载波对应的HARQ定时为对原HARQ定时延迟或提前T个子帧;或,
当t大于预先设置的阈值时,非授权频谱上的载波对应的HARQ定时为对原HARQ定时延迟或提前T个子帧,当t小于或等于预先设置的阈值时,非授权频谱上的载波对应的HARQ定时保持不变;T为预先设定的值。
数据传输单元是设置为,根据获得的最大HARQ进程数实现数据在非授权频谱上传输;
非授权频谱上的载波在N次占用中,数据传输在占用时间内的位置相同。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
本发明实施例通过获得载波聚合中处于非授权频谱上的载波对应的最大HARQ进程数,解决了在非授权频谱上进行数据传输的问题,实现了在非授权频谱上的数据传输。

Claims (18)

  1. 一种实现数据传输的方法,包括:
    获得载波聚合中处于非授权频谱上的载波对应的最大混合自动重传请求HARQ进程数;
    根据获得的最大HARQ进程数实现数据在非授权频谱上传输。
  2. 根据权利要求1所述的方法,其中,所述最大HARQ进程数通过一种或一种以上预设的确定方式获得;
    所述预设的确定方式获得包括:
    根据所述载波对应的固定值获得;或,
    根据所述载波的传输方式获得;或,
    根据所述载波采用的HARQ定时获得;或,
    根据使用所述非授权频谱的法规获得;或,
    根据所述载波所处的频段获得。
  3. 根据权利要求2所述的方法,其中,当所述最大HARQ进程数通过一种预设的确定方式获得时,
    所述预设的确定方式获得为根据所述载波对应的固定值获得时,所述根据所述载波对应的固定值获得所述最大HARQ进程数包括:
    所述载波对应的最大HARQ进程数为固定值;
    所述预设的确定方式获得为根据所述载波的传输方式获得所述最大HARQ进程数时,所述根据所述载波的传输方式获得最大HARQ进程数包括:
    当所述载波的传输方式为纯下行SDL时,所述最大HARQ进程数为频分双工FDD系统对应的最大HARQ进程数;
    当所述载波的传输方式为下行/上行时,所述最大HARQ进程数为时分双工TDD下行/上行配置K对应的最大HARQ进程数;TDD下行/上行配置K根据所述载波中上行与下行传输比例确定;
    所述预设的确定方式获得为根据载波采用的HARQ定时获得所述最大HARQ进程数时,所述根据所述载波采用的HARQ定时获得所述最大HARQ进程数包括:
    当所述载波采用FDD系统的HARQ定时时,所述最大HARQ进程数为FDD系统对应的最大HARQ进程数;当所述载波采用参考下行/上行配置Z的HARQ定时时,所述最大HARQ定时为参考下行/上行配置Z对应的最大HARQ进程数;
    所述预设的确定方式获得为根据使用非授权频谱的法规获得所述最大HARQ进程数时,所述根据使用所述非授权频谱的法规获得所述最大HARQ进程数包括:
    所述最大HARQ进程数为法规规定的信道占用时间内用于传输的子帧个数;
    所述信道占用时间为:根据一国家或区域的法规确定;或,
    根据所有国家或区域的法规规定的最大值确定;或,
    根据所有国家或区域的法规规定的最小值确定;
    所述预设的确定方式获得为根据载波所处的频段获得所述最大HARQ进程数时,所述根据所述载波所处的频段获得所述最大HARQ进程数包括:
    根据处在不同频段上的载波,确定对应的最大HARQ进程数。
  4. 根据权利要求2所述的方法,其中,当所述最大HARQ进程数通过一种以上预设的确定方式获得时,所述最大HARQ进程数为每个预设的确定方式获得的最大HARQ进程数中的最小值。
  5. 根据权利要求1所述的方法,其中,所述根据获得的最大HARQ进程数实现数据在非授权频谱上传输包括:
    同一HARQ进程中的首传数据和重传数据在相同的载波上传输;或,
    同一HARQ进程中的首传数据和重传数据在不同的载波上传输。
  6. 根据权利要求1或5所述的方法,其中,当所述实现数据在非授权频谱上传输为在同一HARQ进程中的首传数据和重传数据在相同的载波上传输 时,根据获得的最大HARQ进程数实现数据在非授权频谱上传输包括:
    通过DCI中增加HARQ进程域指示进程索引触发HARQ进程中数据的重传;
    所述HARQ进程域大小根据确定的最大HARQ进程数确定。
  7. 根据权利要求1或5所述的方法,其中,当所述实现数据在非授权频谱上传输为在同一HARQ进程中的首传数据和重传数据在不同的载波上传输时,根据获得的最大HARQ进程数实现数据在非授权频谱上传输包括:
    如果HARQ进程中对应的首传数据在载波P的子帧z上发送,在载波P的子帧z+k上的资源可用时,HARQ进程中对应的重传数据在载波P上发送;在载波P的子帧z+k上的资源不可用时,HARQ进程中对应的重传数据在资源可用的载波Q上传输。
  8. 根据权利要求7所述的方法,其中,
    当仅有授权频谱上的载波为资源可用的载波时,所述载波Q为授权频谱上的载波,载波Q按照授权频谱上载波优先级选择;
    当授权频谱上的载波和非授权频谱上的载波均为资源可用的载波时,所述载波Q为非授权频谱上资源可用的载波。
  9. 根据权利要求8所述的方法,其中,所述授权频谱上载波的优先级为:
    按照载波索引确定的优先级;或,
    确定主服务小区的优先级最高,辅服务小区按照载波索引确定优先级。
  10. 根据权利要求7所述的方法,该方法还包括:
    通过信令指示所述载波Q和所述载波P的关系;
    所述信令为:物理层信令、或高层信令。
  11. 根据权利要求10所述的方法,其中,所述通过信令指示所述载波Q和所述载波P的关系包括:
    当所述信令为下行控制信令DCI时,在DCI中引入重传载波指示域,通过所述重传载波指示域指示所述载波Q和所述载波P的关系;或,
    当所述DCI中包含载波指示域时,所述重传载波指示域和载波指示域进行联合编码,通过联合编码指示所述载波Q和所述载波P的关系。
  12. 根据权利要求7所述的方法,其中,所述载波Q为:
    将聚合的载波分组后,与所述载波P处于同一组内的载波。
  13. 根据权利要求12所述的方法,其中,所述将聚合的载波分组包括:
    每个载波分组至少包含主服务小区;和/或,
    每个载波分组中包含有一个或一个以上授权频谱上的载波;和/或,
    根据高层信令指示分组;和/或,
    将授权频谱上的载波分为一组,非授权频谱上的载波分为一组。
  14. 根据权利要求5所述的方法,其中,所述在同一HARQ进程中的首传数据和重传数据在不同的载波上传输包括:
    上行数据对应的PHICH信道和上行数据的DCI在不同的载波上传输;或,
    上行HARQ,仅通过DCI触发HARQ进程中重传数据的传输;通过DCI中增加的HARQ进程域指示HARQ进程索引触发HARQ进程中重传数据的传输,所述HARQ进程域的大小根据确定的最大HARQ进程数确定;或,
    对来自其他载波的重传数据和载波自身的重传数据共用一个数据缓存;或者,来自同组载波的重传数据共用一个缓存,所述数据缓存为原有缓存、或基于原有缓存的扩展缓存。
  15. 根据权利要求1所述的方法,其中,所述根据获得的最大HARQ进程数实现数据在非授权频谱上的传输为:
    当非授权频谱上的载波和主服务小区之间相差t个OFDM符号时,
    非授权频谱上的载波对应的HARQ定时为对原HARQ定时延迟或提前T个子帧;或,
    当t大于预先设置的阈值时,非授权频谱上的载波对应的HARQ定时为对原HARQ定时延迟或提前T个子帧,当t小于或等于预先设置的阈值时, 非授权频谱上的载波对应的HARQ定时保持不变;
    所述T为预先设定的值。
  16. 根据权利要求1所述的方法,其中,所述根据获得的最大HARQ进程数实现数据在非授权频谱上的传输为:非授权频谱上的载波在N次占用中,数据传输在占用时间内的位置相同。
  17. 一种实现数据传输的装置,包括:获取进程单元和数据传输单元;其中,
    获取进程单元,设置为:获得载波聚合中处于非授权频谱上的载波对应的最大混合自动重传请求HARQ进程数;
    数据传输单元,设置为:根据获得的最大HARQ进程数实现数据在非授权频谱上传输。
  18. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1-16任一项的方法。
PCT/CN2015/087685 2014-11-07 2015-08-20 一种实现数据传输的方法及装置 WO2016070672A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410623976.4A CN105634688B (zh) 2014-11-07 2014-11-07 一种实现数据传输的方法及装置
CN201410623976.4 2014-11-07

Publications (1)

Publication Number Publication Date
WO2016070672A1 true WO2016070672A1 (zh) 2016-05-12

Family

ID=55908530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087685 WO2016070672A1 (zh) 2014-11-07 2015-08-20 一种实现数据传输的方法及装置

Country Status (2)

Country Link
CN (1) CN105634688B (zh)
WO (1) WO2016070672A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105978671A (zh) * 2016-06-27 2016-09-28 深圳市金立通信设备有限公司 一种harq重传的指示方法及相关设备
WO2018031770A1 (en) * 2016-08-10 2018-02-15 Idac Holdings, Inc. Methods, devices and systems for grant-less uplink multiple access
CN108633044B (zh) * 2017-03-24 2021-12-28 华为技术有限公司 数据传输方法、终端设备及接入网设备
CN109428686B (zh) * 2017-06-22 2021-06-18 中国电信股份有限公司 数据传输方法、系统、终端、基站及计算机可读存储介质
CN108496384A (zh) * 2017-07-31 2018-09-04 深圳市大疆创新科技有限公司 通信方式控制方法及设备
WO2019191987A1 (zh) * 2018-04-04 2019-10-10 Oppo广东移动通信有限公司 传输上行数据的方法、终端设备和网络设备
CN110351026A (zh) * 2018-04-08 2019-10-18 华为技术有限公司 数据传输方法、终端和网络设备
CN110830177B (zh) * 2018-08-10 2021-03-30 华为技术有限公司 一种混合自动重传请求传输方法和装置
CN109314614B (zh) 2018-08-23 2022-03-01 北京小米移动软件有限公司 混合自动重传请求反馈方法及装置、用户设备和基站

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101784076A (zh) * 2009-01-21 2010-07-21 大唐移动通信设备有限公司 降低多载波系统中harq重传时间间隔的方法和基站
CN103095435A (zh) * 2011-11-04 2013-05-08 中国移动通信集团公司 确定harq模式的方法、上行数据传输方法及设备
CN103326806A (zh) * 2012-03-19 2013-09-25 电信科学技术研究院 一种下行控制信令的传输方法及装置
CN103430606A (zh) * 2011-03-07 2013-12-04 英特尔公司 无线电接入技术之间动态流切换的机会性载波聚合
CN103973426A (zh) * 2011-05-10 2014-08-06 德国电信股份公司 用于提高可用带宽的方法、系统、接入点以及用户设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101784076A (zh) * 2009-01-21 2010-07-21 大唐移动通信设备有限公司 降低多载波系统中harq重传时间间隔的方法和基站
CN103430606A (zh) * 2011-03-07 2013-12-04 英特尔公司 无线电接入技术之间动态流切换的机会性载波聚合
CN103973426A (zh) * 2011-05-10 2014-08-06 德国电信股份公司 用于提高可用带宽的方法、系统、接入点以及用户设备
CN103095435A (zh) * 2011-11-04 2013-05-08 中国移动通信集团公司 确定harq模式的方法、上行数据传输方法及设备
CN103326806A (zh) * 2012-03-19 2013-09-25 电信科学技术研究院 一种下行控制信令的传输方法及装置

Also Published As

Publication number Publication date
CN105634688B (zh) 2021-08-17
CN105634688A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
JP6956065B2 (ja) 無線ネットワークにおけるアップリンク制御情報送/受信
US20210028879A1 (en) Transmissions in Scheduled Time Intervals by a Wireless Device
US20210144743A1 (en) Wireless Communications For Scheduling Transmissions
AU2017345518B2 (en) HARQ feedback for unscheduled uplink
WO2016070672A1 (zh) 一种实现数据传输的方法及装置
US11140713B2 (en) Preemptive retransmissions on Listen-Before-Talk cells
US11818694B2 (en) Terminal and communication method
WO2017045496A1 (zh) 一种下行控制方法及装置
KR20210015334A (ko) 무선 통신 시스템에서 사이드링크 자원결정 및 사이드링크 신호 송수신 방법 및 장치
CN109644087A (zh) 用于未授权频谱中的上行链路的lbt参数
WO2017165198A1 (en) User equipment, base station and methods to drop a pucch if colliding with a s-pucch in the same interval
WO2018018620A1 (zh) 反馈ack/nack信息的方法、终端设备和网络侧设备
CN111480359A (zh) 用于发送数据单元的通信设备、处理设备及方法
KR101465909B1 (ko) 기기 간 통신을 지원하는 무선 접속 시스템에서 앵커 단말을 통해 기지국과 제어 정보 및/또는 데이터를 송수신하기 위한 방법 및 장치
WO2014176972A1 (zh) D2d通信中的数据发送方法和设备
CN104936189A (zh) 一种ue、基站中在非授权频带上的通信方法和设备
CN107431580A (zh) 授权辅助接入系统中用于传输上行数据的方法和装置
WO2013109086A1 (en) Apparatus and method for transmitting/receiving physical uplink shared channel signal in cellular radio communication system supporting carrier aggregation scheme
WO2016000368A1 (zh) 上行控制信道的配置和发送方法、装置及基站和用户设备
CN103096494B (zh) 基于跨载波调度的数据传输方法、用户设备和基站
WO2014173351A1 (zh) 一种上行控制信息的发送方法及用户设备、基站
CN110235399A (zh) 发送及检测控制信息的方法、终端设备和网络设备
WO2014173333A1 (zh) 一种上行控制信息的发送方法及装置
US11805525B2 (en) Method and apparatus for determining of transmission resources for uplink channels of use for dual connectivity in wireless communication system
WO2017113405A1 (zh) 一种跨载波调度方法、反馈方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856182

Country of ref document: EP

Kind code of ref document: A1