WO2012020666A1 - プラントの制御システム - Google Patents

プラントの制御システム Download PDF

Info

Publication number
WO2012020666A1
WO2012020666A1 PCT/JP2011/067683 JP2011067683W WO2012020666A1 WO 2012020666 A1 WO2012020666 A1 WO 2012020666A1 JP 2011067683 W JP2011067683 W JP 2011067683W WO 2012020666 A1 WO2012020666 A1 WO 2012020666A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
function
plant
control means
reactor
Prior art date
Application number
PCT/JP2011/067683
Other languages
English (en)
French (fr)
Inventor
哲郎 永井
秀和 佐竹
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/816,172 priority Critical patent/US9558856B2/en
Priority to EP11816332.8A priority patent/EP2605088B1/en
Publication of WO2012020666A1 publication Critical patent/WO2012020666A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/04Safety arrangements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/001Computer implemented control
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/007Expert systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a plant control system that controls a plant using a plurality of digital control devices.
  • a distributed control device including a host control device, a local control device, and a general control device is known (see, for example, Patent Document 1).
  • the host control device monitors and controls the entire plant
  • the local control device controls individual devices in the plant
  • the general control device controls these local control devices for each function.
  • the host control device includes plant control means having the same function as the plant control means of the overall control device so that the host control device performs plant control instead of the overall control device when a failure occurs in the overall control device. .
  • the higher-level control device has the same plant control means as the overall control device, so that the higher-level control device has more plant control means. For this reason, the configuration of the host control device increases, resulting in an increase in device cost. On the other hand, if the configuration of the host control device is not changed, if a failure occurs in the overall control device, the overall control device cannot control the local control device.
  • an object of the present invention is to provide a plant control system that can safely control a plant even if the digital control device breaks down while using a plurality of digital control devices.
  • the plant control system of the present invention uses a plurality of digital control devices to control the plant.
  • the plurality of digital control devices have a plurality of control means, and the plurality of control means. Are distributed in a plurality of digital control devices so as not to fall below a safety standard preset by safety analysis.
  • a plurality of control means can be distributed to a plurality of digital control devices.
  • the plant can be controlled by another control means of another digital control device.
  • other digital control devices can control the plant safely without falling below safety standards.
  • the plant is a nuclear facility having a nuclear reactor, a plurality of steam generators connected to the nuclear reactor, and a plurality of main water supply systems capable of supplying coolant to each steam generator
  • the plurality of control means preferably include a plurality of water supply control means for controlling the respective main water supply systems, and the plurality of water supply control means are preferably provided in different digital control devices.
  • a plurality of water supply control means that respectively control a plurality of main water supply systems can be distributed to a plurality of digital control devices.
  • another main water supply system can be controlled by another water supply control means of another digital control device. Each can be controlled.
  • the plant is a nuclear facility having a nuclear reactor
  • the plurality of control means include an operation control means for controlling the operation of equipment provided in the nuclear facility, and an interlock control means for locking the operation control by the operation control means. It is preferable that the operation control means and the interlock control means are provided separately in different digital control devices.
  • the operation control means and the interlock control means can be distributed to a plurality of digital control devices.
  • the operation control of the operation control means can be locked by the interlock control means of the other digital control device.
  • the operation control means of one digital control device can suitably control the operation of the device.
  • the plant includes a nuclear reactor in which a fuel assembly is stored, a control rod driving device capable of driving a control rod inserted in the fuel assembly, a steam generator connected to the nuclear reactor, a steam A main water supply system capable of supplying coolant to the generator, and a plurality of control means include control rod drive control means for controlling the control rod drive device, and water supply for controlling the main water supply system It is preferable that the control rod drive control unit and the water supply control unit are distributed in different digital control devices.
  • the control rod drive control means and the water supply control means can be distributed to a plurality of digital control devices.
  • the main water supply system can be controlled by the water supply control means of the other digital control device.
  • the control rod drive control means of one digital control device can suitably control the control rod drive device. it can.
  • the plant includes a nuclear reactor in which a fuel assembly and a control rod inserted into the fuel assembly are stored, a boron concentration adjusting device capable of adjusting a boron concentration of a coolant flowing in the reactor,
  • a plurality of control means comprising: a control rod stop margin monitoring means capable of monitoring a margin of reactor shutdown by the control rod; and a boron concentration adjustment control means for controlling the boron concentration adjusting device. It is preferable that the control rod stop margin monitoring means and the boron concentration adjustment control means are provided separately in different digital control devices.
  • the control rod stop margin monitoring means and the boron concentration adjustment control means can be distributed to a plurality of digital control devices. Thereby, even if one of the digital control devices fails and the control rod stop margin monitoring means does not function, the boron concentration can be adjusted by the boron concentration adjustment control means of the other digital control device. In addition, even if the other digital control device fails and the boron concentration adjustment control means cannot control the boron concentration adjustment device, the control rod stop margin monitoring means of one digital control device stops the reactor by the control rod. Can be monitored.
  • each of the plurality of digital control devices has a plurality of arithmetic devices.
  • the digital control device since the digital control device has a plurality of arithmetic devices, even if one arithmetic device does not operate due to a failure, the control means can be operated by another arithmetic device. For this reason, loss of the function of the digital control device due to a single failure can be avoided.
  • the plant control system of the present invention even if a failure occurs in one digital control device, the plant can be safely controlled by another digital control device.
  • FIG. 1 is a schematic configuration diagram schematically illustrating a nuclear facility controlled by the control system according to the present embodiment.
  • FIG. 2 is an explanatory diagram showing a plurality of digital control devices in which a plurality of control functions are distributed based on safety analysis.
  • FIG. 1 is a schematic configuration diagram schematically showing a nuclear facility controlled by the control system according to the present embodiment.
  • the plant control system 40 controls a nuclear facility 1 having a nuclear reactor 5 as a plant.
  • a nuclear reactor 5 for example, a pressurized water reactor (PWR: Pressurized Water Reactor) is used. It has been.
  • a nuclear facility 1 using this pressurized water reactor 5 includes a reactor cooling system 3 including the reactor 5 and a turbine system 4 that exchanges heat with the reactor cooling system 3.
  • a reactor coolant flows, and in the turbine system 4, a secondary coolant flows.
  • the reactor cooling system 3 has a reactor 5 and a steam generator 7 connected to the reactor 5 through a cold leg 6a and a hot leg 6b.
  • a pressurizer 8 is interposed in the hot leg 6b
  • a reactor coolant pump 9 is interposed in the cold leg 6a.
  • the reactor 5, the cold leg 6 a, the hot leg 6 b, the steam generator 7, the pressurizer 8, and the reactor coolant pump 9 are accommodated in the reactor containment vessel 10.
  • the reactor 5 is a pressurized water reactor as described above, and the inside thereof is filled with a reactor coolant.
  • a large number of fuel assemblies 15 are accommodated in the nuclear reactor 5, and a large number of control rods 16 for controlling the nuclear fission of the fuel assemblies 15 are provided so as to be insertable into the respective fuel assemblies 15. ing.
  • the pressurizer 8 interposed in the hot leg 6b suppresses boiling of the reactor coolant by pressurizing the reactor coolant that has become high temperature. Further, the steam generator 7 heat-exchanges the reactor coolant that has become high temperature and high pressure with the secondary coolant, thereby evaporating the secondary coolant and generating steam, and also has high temperature and pressure. Reactor coolant is being cooled.
  • the reactor coolant pump 9 circulates the reactor coolant in the reactor cooling system 3, and sends the reactor coolant from the steam generator 7 to the reactor 5 through the cold leg 6 a, and also the reactor coolant. From the nuclear reactor 5 to the steam generator 7 through the hot leg 6b.
  • the reactor coolant is heated by the thermal energy generated by the fission reaction in the reactor 5, the heated reactor coolant is transferred to the steam generator 7 via the hot leg 6b by the reactor coolant pump 9. Sent.
  • the high-temperature reactor coolant passing through the hot leg 6b is pressurized by the pressurizer 8 to suppress boiling, and flows into the steam generator 7 in a state of high temperature and pressure.
  • the high-temperature and high-pressure reactor coolant flowing into the steam generator 7 is cooled by exchanging heat with the secondary coolant, and the cooled reactor coolant is passed through the cold leg 6 a by the reactor coolant pump 9. And sent to the reactor 5.
  • the reactor 5 is cooled by the cooled reactor coolant flowing into the reactor 5. That is, the reactor coolant is circulated between the reactor 5 and the steam generator 7.
  • the reactor coolant is light water used as a coolant and a neutron moderator.
  • the turbine system 4 connects a turbine 22 connected to each steam generator 7 through a steam pipe 21, a condenser 23 connected to the turbine 22, and the condenser 23 and each steam generator 7. And a water supply pump 24 interposed in the water supply pipe 26.
  • a generator 25 is connected to the turbine 22.
  • the condenser 23 has a cooling pipe 27 disposed therein, and one of the cooling pipes 27 is connected to a water intake pipe 28 for supplying cooling water (for example, seawater). A drain pipe 29 for draining the cooling water is connected to.
  • the condenser 23 cools the steam flowing in from the turbine 22 by the cooling pipe 27, thereby returning the steam to a liquid.
  • the secondary coolant that has become liquid is sent to the steam generator 7 through the feed water pipe 26 by the feed water pump 24.
  • the secondary coolant sent to the steam generator 7 becomes steam again by exchanging heat with the reactor coolant in the steam generator 7.
  • FIG. 2 is an explanatory diagram showing a plurality of digital control devices in which a plurality of control functions are distributed based on safety analysis.
  • the nuclear power facility 1 configured as described above is provided with a control system 40 that controls the operation of the various pumps and valves (not shown) provided in the nuclear power facility 1.
  • the control system 40 includes a plurality of digital control devices 41, and the plurality of digital control devices 41 controls the operation of the nuclear facility 1.
  • the digital control device 41 is equipped with a calculation device such as a CPU, and the nuclear power facility 1 can be controlled by executing various programs by the calculation device. At this time, the digital control device 41 has a plurality of arithmetic devices 45, and even if one arithmetic device 45 becomes inoperable due to a failure or the like, the other arithmetic device 45 operates, so that the nuclear facility 1 It is possible to control the operation.
  • a calculation device such as a CPU
  • the nuclear power facility 1 can be controlled by executing various programs by the calculation device.
  • the digital control device 41 has a plurality of arithmetic devices 45, and even if one arithmetic device 45 becomes inoperable due to a failure or the like, the other arithmetic device 45 operates, so that the nuclear facility 1 It is possible to control the operation.
  • the plurality of digital control devices 41 have a plurality of various control functions for controlling the nuclear facility 1.
  • the plurality of control functions for example, a water supply control function 46, a main steam relief valve control function 47, a main steam relief valve interlock function 57, a pressurizer pressure control function 48, a pressurizer water level control function 49, Pressurizer interlock function 50, main feed water pump speed control function 51, turbine bypass control function 52, turbine bypass interlock function 58, control rod drive control function 53, control rod stop margin monitoring function 54, control There are a bar interlock function 55 and a boron concentration control function 56.
  • the water supply control function 46 is a function for controlling a main water supply system capable of supplying a coolant to the steam generator 7 connected to the nuclear reactor 5.
  • a plurality of water supply control functions 46 are provided according to the plurality of steam generators 7.
  • the main steam relief valve control function 47 is a function for controlling a valve for letting the steam in the steam generator 7 escape.
  • the main steam relief valve interlock function 57 is a function for locking the control by the main steam relief valve control function 47. Also in this case, a plurality of main steam relief valve control functions 47 and main steam relief valve interlock functions 57 are provided according to the plurality of steam generators 7.
  • the pressurizer pressure control function 48 is a function for controlling the pressure in the pressurizer 8.
  • the pressurizer water level control function 49 is a function for controlling the water level in the pressurizer 8.
  • the pressurizer interlock function 50 is a function for locking the control by the pressurizer pressure control function 48 and the pressurizer water level control function 49.
  • the main feed pump speed control function 51 is a function for controlling the feed pump 24 that supplies coolant to the steam generator 7 connected to the nuclear reactor 5.
  • the turbine bypass control function 52 is a function of controlling a turbine bypass valve for releasing steam supplied from the steam generator 7 toward the turbine 22.
  • the turbine bypass interlock function 58 is a function for locking the control by the turbine bypass control function 52.
  • the control rod drive control function 53 is a function for controlling the drive of the control rod 16 inserted into the fuel assembly 15.
  • the control rod interlock function 55 is a function for locking the control by the control rod drive control function 53.
  • the control rod stop margin monitoring function 54 is a function that monitors the margin of stoppage of the reactor 5 by the control rod 16.
  • the boron concentration control function 56 is a function of adjusting the boron concentration of the coolant flowing through the nuclear reactor 5.
  • the plurality of control functions described above are distributed with respect to the plurality of digital control devices 41. At this time, the plurality of control functions are distributed so as not to fall below safety standards set in advance by safety analysis.
  • the plurality of control functions include simultaneous occurrence of abnormality between the output of the nuclear reactor 5 and heat removal from the turbine system 4, and simultaneous occurrence of abnormality between the output of the nuclear reactor 5 and the pressure of the reactor cooling system 3.
  • the dispersion is performed so as to avoid the simultaneous occurrence of abnormalities between the pressure of the reactor cooling system 3 and the heat removal of the turbine system 4. That is, according to the safety analysis, the plurality of control functions are distributed into a control function related to heat removal of the turbine system 4, a control function related to the pressure of the reactor cooling system 3, and a control function related to the reactor output. .
  • the control functions related to heat removal of the turbine system 4 include a plurality of (four in this embodiment) water supply control functions 46, a plurality (four in this embodiment) main steam relief valve control functions 47, and a plurality of functions.
  • the control function related to heat removal of the turbine system 4 is that two or more abnormalities of the plurality of water supply control functions 46 occur simultaneously, two or more abnormalities of the plurality of main steam relief valve control functions 47 occur simultaneously,
  • the bypass control function 52 is distributed so as to avoid the occurrence of an abnormality.
  • the plurality of water supply control functions 46 are distributed to different digital control devices 41, and the plurality of main steam relief valve control functions 47 are distributed to different digital control devices 41. Also, the main steam relief valve control function 47 and the main steam relief valve interlock function 57 corresponding to the main steam relief valve control function 47 are distributed to different digital control devices 41, respectively, and the turbine bypass control function 52 and the turbine bypass interface The lock function 58 is distributed among different digital control devices 41.
  • the control functions related to the pressure of the reactor cooling system 3 are the pressurizer pressure control function 48 and the pressurizer interlock function 50 described above. At this time, the control function related to the pressure of the reactor cooling system 3 is distributed so as to avoid the simultaneous occurrence of abnormalities in the pressurizer pressure control function 48 and the pressurizer interlock function 50. That is, according to the safety analysis, the pressurizer pressure control function 48 and the pressurizer interlock function 50 are distributed to different digital control devices 41.
  • the control functions related to the reactor power are a control rod drive control function 53, a control rod interlock function 55, a boron concentration control function 56, and a control rod stop margin monitoring function 54.
  • the control function related to the reactor power is that abnormality occurs in the control rod drive control function 53 and the control rod interlock function 55 simultaneously, the control rod drive control function 53, the boron concentration control function 56, and the control rod stop margin. It is distributed so as to avoid the occurrence of abnormality with the monitoring function 54 at the same time. That is, according to the safety analysis, the control rod drive control function 53 and the control rod interlock function 55 are distributed to different digital control devices 41, and the control rod drive control function 53, boron concentration control function 56, and control.
  • the bar stop margin monitoring function 54 is distributed to different digital control devices 41.
  • FIG. 2 shows the result of distributing a plurality of control functions based on safety analysis.
  • the control function is distributed. That is, the first digital control device 41 includes a first feed water control function 46, a first main steam relief valve control function 47, a pressurizer interlock control function 50, a main feed pump speed control function 51, And a second main steam relief valve interlock function 57.
  • the second digital control device 41 includes a second water supply control function 46, a second main steam relief valve control function 47, a pressurizer pressure control function 48, and a third main steam relief valve interlock function 57. have.
  • the third digital controller 41 includes a third water supply control function 46, a third main steam relief valve control function 47, a pressurizer water level control function 49, a fourth main steam relief valve interlock function 57, have.
  • the fourth digital controller 41 includes a fourth water supply control function 46, a fourth main steam relief valve control function 47, a control rod stop margin monitoring function 54, and a first main steam relief valve interlock function 57. And have.
  • the fifth digital control device 41 has a turbine bypass control function 52, a control rod interlock function 55, and a boron concentration control function 56.
  • the sixth digital control device 41 has a control rod drive control function 53 and a turbine bypass interlock function 58.
  • a plurality of control means can be distributed to the plurality of digital control devices 41.
  • the nuclear facility 1 can be controlled by another control means of another digital control device 41.
  • the other digital control device 41 can safely control the nuclear facility 1 without falling below safety standards.
  • the safety control of the nuclear facility 1 will be described in detail.
  • the control system 40 uses the other digital device 41 to set the safety standard. The operation of the nuclear facility 1 is stopped while controlling so as not to fall below.
  • a plurality of water supply control functions 46 can be distributed to a plurality of digital control devices 41. For this reason, even if one digital control device 41 breaks down and one main water supply system 46 cannot be controlled by one water supply control function 46, the other water supply control functions 46 of other digital control devices 41 can Each main water supply system can be controlled. As a result, the plurality of digital control devices 41 can safely control the nuclear facility 1.
  • the pressurizer pressure control function 48 and the pressurizer interlock function 50 can be distributed to a plurality of digital control devices 41.
  • the main steam relief valve control function 47 and the main steam relief valve interlock function 57 corresponding to the main steam relief valve control function 47 can be distributed to a plurality of digital control devices 41.
  • the turbine bypass control function 52 and the turbine bypass interlock function 58 can be distributed to a plurality of digital control devices 41.
  • the control rod drive control function 53 and the control rod interlock function 55 can be distributed to a plurality of digital control devices 41.
  • the other digital control device 41 fails and the pressurizer interlock function 50, the main steam relief valve interlock function 57, the turbine bypass interlock function 58 or the control rod interlock function 55 does not function,
  • the pressurizer pressure control function 48, the main steam relief valve control function 47, the turbine bypass control function 52, or the control rod drive control function 53 of the digital control device 41 can be suitably controlled.
  • the plurality of digital control devices 41 can safely control the nuclear facility 1.
  • the water supply control function 46 and the control rod drive control function 53 can be distributed to a plurality of digital control devices 41. Therefore, even if one of the digital control devices 41 breaks down and the control rod drive control function 53 malfunctions, the main water supply system is controlled by the water supply control function 46 of the other digital control device 41, and the reactor cooling system 3 pressures can be controlled. Conversely, even if the other digital control device 41 fails and the main water supply system cannot be controlled by the water supply control function 46, the reactor cooling system 3 is controlled by the control rod drive control function 53 of the one digital control device 41. The pressure can be controlled. As a result, the plurality of digital control devices 41 can safely control the nuclear facility 1.
  • control rod stop margin monitoring function 54 and the boron concentration control function 56 can be distributed to a plurality of digital control devices 41. Therefore, even if one of the digital control devices 41 fails and the control rod stop margin monitoring function 54 does not function, the boron concentration is adjusted by the boron concentration control function 56 of the other digital control device 41 to control the nuclear reaction. can do. Conversely, even if the other digital control device 41 fails and the boron concentration control function 56 cannot adjust the boron concentration, the control rod stop margin monitoring function 54 of the one digital control device 41 causes the control rod 16 to control the reactor 5. Other measures can be taken by monitoring the margin of stoppage.
  • the digital control device 41 since the digital control device 41 includes a plurality of arithmetic devices 45, even if one arithmetic device 45 does not operate due to a failure, the other arithmetic devices 45 can execute a plurality of control functions. For this reason, loss of the function of the digital control device 41 due to a single failure can be avoided.
  • the plant is described as being applied to a nuclear facility.
  • the present invention is not limited to this and may be applied to a thermal power plant or a chemical plant.
  • the plant control system according to the present invention is useful in a nuclear facility where high safety is required, and is particularly suitable for control using a plurality of digital control devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Safety Devices In Control Systems (AREA)

Abstract

 複数のデジタル制御装置(41)を使用して、原子力施設(1)等のプラントを制御するプラントの制御システムにおいて、複数のデジタル制御装置(41)は、複数の制御機能(46-56)を有しており、複数の制御機能(46-56)は、安全解析によって予め設定された安全基準を下回らないように、複数のデジタル制御装置(41)に分散させて設けられている。 これにより、複数のデジタル制御装置(41)を使用しつつ、デジタル制御装置が故障しても、プラントを安全に運転することができるプラントの制御システムを提供している。

Description

プラントの制御システム
 本発明は、複数のデジタル制御装置を使用して、プラントを制御するプラントの制御システムに関するものである。
 従来、上位制御装置と、ローカル制御装置と、統括制御装置とを備えた分散形制御装置が知られている(例えば、特許文献1参照)。この分散形制御装置において、上位制御装置は、プラント全体を監視制御しており、ローカル制御装置は、プラント内の個々の装置を制御し、統括制御装置は、これらのローカル制御装置を機能ごとに統括制御している。そして、統括制御装置の故障発生時に、上位制御装置が統括制御装置の代わりにプラント制御を行うように、上位制御装置は、統括制御装置のプラント制御手段と同じ機能のプラント制御手段を備えている。
特開平4-248798号公報
 しかしながら、従来の分散形制御装置では、上位制御装置が統括制御装置と同じプラント制御手段を有する分、上位制御装置のプラント制御手段が増える。このため、上位制御装置の構成が増え、装置コストの増大を招く。一方で、上位制御装置の構成を代えない場合、統括制御装置に故障が発生すると、統括制御装置は、ローカル制御装置を制御することができない。
 そこで、本発明は、複数のデジタル制御装置を使用しつつ、デジタル制御装置が故障しても、プラントを安全に制御することができるプラントの制御システムを提供することを課題とする。
 本発明のプラントの制御システムは、複数のデジタル制御装置を使用して、プラントを制御するプラントの制御システムにおいて、複数のデジタル制御装置は、複数の制御手段を有しており、複数の制御手段は、安全解析によって予め設定された安全基準を下回らないように、複数のデジタル制御装置に分散させて設けられていることを特徴とする。
 この構成によれば、複数のデジタル制御装置に、複数の制御手段を分散させることができる。これにより、1つのデジタル制御装置が故障して1つの制御手段を行うことができなくとも、他のデジタル制御装置の他の制御手段によりプラントを制御することができる。これにより、他のデジタル制御装置は、安全基準を下回ることなく、プラントを安全に制御することが可能となる。
 この場合、プラントは、原子炉と、原子炉に接続された複数の蒸気発生器と、各蒸気発生器ヘ向けて冷却材を供給可能な複数の主給水系と、を有する原子力施設であり、複数の制御手段は、各主給水系を制御する複数の給水制御手段を有し、複数の給水制御手段は、それぞれ異なるデジタル制御装置に分散させて設けられていることが、好ましい。
 この構成によれば、複数の主給水系をそれぞれ制御する複数の給水制御手段を、複数のデジタル制御装置に分散させることができる。これにより、1つのデジタル制御装置が故障して1つの給水制御手段により1つの主給水系を制御することができなくとも、他のデジタル制御装置の他の給水制御手段により他の主給水系をそれぞれ制御することができる。
 この場合、プラントは、原子炉を有する原子力施設であり、複数の制御手段は、原子力施設に設けられた機器を作動制御する作動制御手段と、作動制御手段による作動制御をロックするインターロック制御手段と、を有し、作動制御手段とインターロック制御手段とは、それぞれ異なるデジタル制御装置に分散させて設けられていることが、好ましい。
 この構成によれば、作動制御手段とインターロック制御手段とを、複数のデジタル制御装置に分散させることができる。これにより、一方のデジタル制御装置が故障して作動制御手段が誤作動しても、他方のデジタル制御装置のインターロック制御手段により、作動制御手段の作動制御をロックすることができる。また、他方のデジタル制御装置が故障してインターロック制御手段が機能せずとも、一方のデジタル制御装置の作動制御手段は好適に機器を作動制御することができる。
 この場合、プラントは、内部に燃料集合体が格納された原子炉と、燃料集合体に挿入される制御棒を駆動可能な制御棒駆動装置と、原子炉に接続された蒸気発生器と、蒸気発生器ヘ向けて冷却材を供給可能な主給水系と、を有する原子力施設であり、複数の制御手段は、制御棒駆動装置を制御する制御棒駆動制御手段と、主給水系を制御する給水制御手段と、を有し、制御棒駆動制御手段と給水制御手段とは、それぞれ異なるデジタル制御装置に分散させて設けられていることが、好ましい。
 この構成によれば、制御棒駆動制御手段と給水制御手段とを、複数のデジタル制御装置に分散させることができる。これにより、一方のデジタル制御装置が故障して制御棒駆動制御手段が誤作動しても、他方のデジタル制御装置の給水制御手段により主給水系を制御することができる。また、他方のデジタル制御装置が故障して給水制御手段により主給水系を制御することができなくとも、一方のデジタル制御装置の制御棒駆動制御手段は好適に制御棒駆動装置を制御することができる。
 この場合、プラントは、燃料集合体および燃料集合体に挿入される制御棒が内部に格納された原子炉と、原子炉内を流通する冷却材のホウ素濃度を調整可能なホウ素濃度調整装置と、を有する原子力施設であり、複数の制御手段は、制御棒による原子炉の停止の余裕度を監視可能な制御棒停止余裕監視手段と、ホウ素濃度調整装置を制御するホウ素濃度調整制御手段と、を有し、制御棒停止余裕監視手段とホウ素濃度調整制御手段とは、それぞれ異なるデジタル制御装置に分散させて設けられていることが、好ましい。
 この構成によれば、制御棒停止余裕監視手段とホウ素濃度調整制御手段とを、複数のデジタル制御装置に分散させることができる。これにより、一方のデジタル制御装置が故障して制御棒停止余裕監視手段が機能せずとも、他方のデジタル制御装置のホウ素濃度調整制御手段によりホウ素濃度を調整することができる。また、他方のデジタル制御装置が故障してホウ素濃度調整制御手段によりホウ素濃度調整装置を制御することができなくとも、一方のデジタル制御装置の制御棒停止余裕監視手段により制御棒による原子炉の停止の余裕度を監視することができる。
 この場合、複数のデジタル制御装置は、それぞれ複数の演算装置を有していることが、好ましい。
 この構成によれば、デジタル制御装置は、複数の演算装置を有するため、1つの演算装置が故障により作動せずとも、他の演算装置により制御手段を作動させることができる。このため、単一の故障によるデジタル制御装置の機能の喪失を回避することができる。
 本発明のプラントの制御システムによれば、1つのデジタル制御装置に不具合が生じても、他のデジタル制御装置によりプラントを安全に制御することができる。
図1は、本実施例に係る制御システムにより制御される原子力施設を模式的に表した概略構成図である。 図2は、安全解析に基づいて、複数の制御機能を分散させた複数のデジタル制御装置を示す説明図である。
 以下、添付した図面を参照して、本発明に係るプラントの制御システムについて説明する。なお、以下の実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものが含まれる。
 図1は、本実施例に係る制御システムにより制御される原子力施設を模式的に表した概略構成図である。本発明に係るプラントの制御システム40は、プラントとして、原子炉5を有する原子力施設1を制御するものであり、原子炉5としては、例えば、加圧水型原子炉(PWR:Pressurized Water Reactor)が用いられている。この加圧水型の原子炉5を用いた原子力施設1は、原子炉5を含む原子炉冷却系3と、原子炉冷却系3と熱交換するタービン系4とで構成されており、原子炉冷却系3には、原子炉冷却材が流通し、タービン系4には、二次冷却材が流通している。
 原子炉冷却系3は、原子炉5と、コールドレグ6aおよびホットレグ6bを介して原子炉5に接続された蒸気発生器7とを有している。また、ホットレグ6bには、加圧器8が介設され、コールドレグ6aには、原子炉冷却材ポンプ9が介設されている。そして、原子炉5、コールドレグ6a、ホットレグ6b、蒸気発生器7、加圧器8および原子炉冷却材ポンプ9は、原子炉格納容器10に収容されている。
 原子炉5は、上記したように加圧水型原子炉であり、その内部は原子炉冷却材で満たされている。そして、原子炉5内には、多数の燃料集合体15が収容されると共に、燃料集合体15の核分裂を制御する多数の制御棒16が、各燃料集合体15に対し、挿入可能に設けられている。
 制御棒16により核分裂反応を制御しながら燃料集合体15を核分裂させると、この核分裂により熱エネルギーが発生する。発生した熱エネルギーは原子炉冷却材を加熱し、加熱された原子炉冷却材は、ホットレグ6bを介して蒸気発生器7へ送られる。一方、コールドレグ6aを介して各蒸気発生器7から送られてきた原子炉冷却材は、原子炉5内に流入して、原子炉5内を冷却する。
 ホットレグ6bに介設された加圧器8は、高温となった原子炉冷却材を加圧することにより、原子炉冷却材の沸騰を抑制している。また、蒸気発生器7は、高温高圧となった原子炉冷却材を、二次冷却材と熱交換させることにより、二次冷却材を蒸発させて蒸気を発生させ、且つ、高温高圧となった原子炉冷却材を冷却している。原子炉冷却材ポンプ9は、原子炉冷却系3において原子炉冷却材を循環させており、原子炉冷却材を蒸気発生器7からコールドレグ6aを介して原子炉5へ送り込むと共に、原子炉冷却材を原子炉5からホットレグ6bを介して蒸気発生器7へ送り込んでいる。
 ここで、原子力施設1の原子炉冷却系3における一連の動作について説明する。原子炉5内の核分裂反応により発生した熱エネルギーにより、原子炉冷却材が加熱されると、加熱された原子炉冷却材は、原子炉冷却材ポンプ9によりホットレグ6bを介して蒸気発生器7に送られる。ホットレグ6bを通過する高温の原子炉冷却材は、加圧器8により加圧されることで沸騰が抑制され、高温高圧となった状態で、蒸気発生器7に流入する。蒸気発生器7に流入した高温高圧の原子炉冷却材は、二次冷却材と熱交換を行うことにより冷却され、冷却された原子炉冷却材は、原子炉冷却材ポンプ9によりコールドレグ6aを介して原子炉5に送られる。そして、冷却された原子炉冷却材が原子炉5に流入することで、原子炉5が冷却される。つまり、原子炉冷却材は、原子炉5と蒸気発生器7との間を循環している。なお、原子炉冷却材は、冷却材および中性子減速材として用いられる軽水である。
 タービン系4は、蒸気管21を介して各蒸気発生器7に接続されたタービン22と、タービン22に接続された復水器23と、復水器23と各蒸気発生器7とを接続する給水管26に介設された給水ポンプ24と、を有している。そして、上記のタービン22には、発電機25が接続されている。
 ここで、原子力施設1のタービン系4における一連の動作について説明する。蒸気管21を介して蒸気発生器7から蒸気がタービン22に流入すると、タービン22は回転を行う。タービン22が回転すると、タービン22に接続された発電機25は、発電を行う。この後、タービン22から流出した蒸気は復水器23に流入する。復水器23は、その内部に冷却管27が配設されており、冷却管27の一方には冷却水(例えば、海水)を供給するための取水管28が接続され、冷却管27の他方には冷却水を排水するための排水管29が接続されている。そして、復水器23は、タービン22から流入した蒸気を冷却管27により冷却することで、蒸気を液体に戻している。液体となった二次冷却材は、給水ポンプ24により給水管26を介して蒸気発生器7に送られる。蒸気発生器7に送られた二次冷却材は、蒸気発生器7において原子炉冷却材と熱交換を行うことにより再び蒸気となる。
 ここで、図2は、安全解析に基づいて、複数の制御機能を分散させた複数のデジタル制御装置を示す説明図である。図2に示すように、上記のように構成された原子力施設1には、原子力施設1に設けられた上記の各種ポンプや図示しないバルブ等の各機器の作動を制御する制御システム40が配設されている。この制御システム40は、複数のデジタル制御装置41を有しており、複数のデジタル制御装置41は、原子力施設1の運転を制御している。
 デジタル制御装置41は、CPU等の演算装置を搭載しており、演算装置により各種プログラムを実行することで、原子力施設1を制御可能となっている。このとき、デジタル制御装置41は、複数の演算装置45を有しており、1つの演算装置45が故障等により作動不能となっても、他の演算装置45が作動することにより、原子力施設1の運転を制御することが可能となっている。
 ここで、複数のデジタル制御装置41は、原子力施設1を制御する各種制御機能を複数有している。複数の制御機能としては、例えば、給水制御機能46と、主蒸気逃がし弁制御機能47と、主蒸気逃がし弁インターロック機能57と、加圧器圧力制御機能48と、加圧器水位制御機能49と、加圧器インターロック機能50と、主給水ポンプ速度制御機能51と、タービンバイパス制御機能52と、タービンバイパスインターロック機能58と、制御棒駆動制御機能53と、制御棒停止余裕監視機能54と、制御棒インターロック機能55と、ホウ素濃度制御機能56とがある。
 給水制御機能46は、原子炉5に接続された蒸気発生器7ヘ向けて冷却材を供給可能な主給水系を制御する機能である。このとき、原子力施設1に蒸気発生器7が複数設けられている場合、給水制御機能46は、複数の蒸気発生器7に応じて複数設けられている。主蒸気逃がし弁制御機能47は、蒸気発生器7内の蒸気を逃がすための弁を制御する機能である。主蒸気逃がし弁インターロック機能57は、主蒸気逃がし弁制御機能47による制御をロックする機能である。この場合も、主蒸気逃がし弁制御機能47および主蒸気逃がし弁インターロック機能57は、複数の蒸気発生器7に応じて複数設けられている。
 加圧器圧力制御機能48は、加圧器8内の圧力を制御する機能である。加圧器水位制御機能49は、加圧器8内の水位を制御する機能である。加圧器インターロック機能50は、加圧器圧力制御機能48および加圧器水位制御機能49による制御をロックする機能である。
 主給水ポンプ速度制御機能51は、原子炉5に接続された蒸気発生器7へ向けて冷却材を供給する給水ポンプ24を制御する機能である。タービンバイパス制御機能52は、蒸気発生器7からタービン22へ向けて供給される蒸気を逃がすためのタービンバイパス弁を制御する機能である。タービンバイパスインターロック機能58は、タービンバイパス制御機能52による制御をロックする機能である。
 制御棒駆動制御機能53は、燃料集合体15に挿入される制御棒16の駆動を制御する機能である。制御棒インターロック機能55は、制御棒駆動制御機能53による制御をロックする機能である。制御棒停止余裕監視機能54は、制御棒16による原子炉5の停止の余裕度を監視する機能である。ホウ素濃度制御機能56は、原子炉5内を流通する冷却材のホウ素濃度を調整する機能である。
 上記した複数の制御機能は、複数のデジタル制御装置41に対し、分散させて設けられる。このとき、複数の制御機能は、安全解析によって予め設定された安全基準を下回らないように分散される。
 具体的に、複数の制御機能は、原子炉5の出力とタービン系4の除熱との異常の同時発生と、原子炉5の出力と原子炉冷却系3の圧力との異常の同時発生と、原子炉冷却系3の圧力とタービン系4の除熱との異常の同時発生とを回避するように分散される。つまり、安全解析上に従えば、複数の制御機能は、タービン系4の除熱に関する制御機能と、原子炉冷却系3の圧力に関する制御機能と、原子炉出力に関する制御機能と、に分散される。
 タービン系4の除熱に関する制御機能としては、上記した複数(本実施例では4つ)の給水制御機能46と、複数(本実施例では4つ)の主蒸気逃がし弁制御機能47と、複数(本実施例では4つ)の主蒸気逃がし弁インターロック機能57と、タービンバイパス制御機能52と、主給水ポンプ速度制御機能51とである。このとき、タービン系4の除熱に関する制御機能は、複数の給水制御機能46の異常が2以上同時に発生すること、複数の主蒸気逃がし弁制御機能47の異常が2以上同時に発生すること、タービンバイパス制御機能52の異常が発生することを回避するように分散される。つまり、安全解析上に従えば、複数の給水制御機能46は、それぞれ異なるデジタル制御装置41に分散され、複数の主蒸気逃がし弁制御機能47は、それぞれ異なるデジタル制御装置41に分散される。また、主蒸気逃がし弁制御機能47およびこの主蒸気逃がし弁制御機能47に対応する主蒸気逃がし弁インターロック機能57は、それぞれ異なるデジタル制御装置41に分散され、タービンバイパス制御機能52およびタービンバイパスインターロック機能58は、それぞれ異なるデジタル制御装置41に分散される。
 原子炉冷却系3の圧力に関する制御機能としては、上記した加圧器圧力制御機能48と、加圧器インターロック機能50とである。このとき、原子炉冷却系3の圧力に関する制御機能は、加圧器圧力制御機能48と加圧器インターロック機能50との異常が同時に発生することを回避するように分散される。つまり、安全解析に従えば、加圧器圧力制御機能48および加圧器インターロック機能50は、それぞれ異なるデジタル制御装置41に分散される。
 原子炉出力に関する制御機能としては、制御棒駆動制御機能53と、制御棒インターロック機能55と、ホウ素濃度制御機能56と、制御棒停止余裕監視機能54とである。このとき、原子炉出力に関する制御機能は、制御棒駆動制御機能53と制御棒インターロック機能55との異常が同時に発生すること、制御棒駆動制御機能53とホウ素濃度制御機能56と制御棒停止余裕監視機能54との異常が同時に発生することを回避するように分散される。つまり、安全解析上に従えば、制御棒駆動制御機能53および制御棒インターロック機能55は、それぞれ異なるデジタル制御装置41に分散され、また、制御棒駆動制御機能53、ホウ素濃度制御機能56および制御棒停止余裕監視機能54は、それぞれ異なるデジタル制御装置41に分散される。
 そして、図2には、安全解析に基づいて、複数の制御機能を分散させた結果が示されている。なお、図2では、6つのデジタル制御装置41を用い、4つの給水制御機能46、4つの主蒸気逃がし弁制御機能47および4つの主蒸気逃がし弁インターロック機能57を設けた場合において、複数の制御機能を分散させたものである。つまり、第1のデジタル制御装置41は、第1の給水制御機能46と、第1の主蒸気逃がし弁制御機能47と、加圧器インターロック制御機能50と、主給水ポンプ速度制御機能51と、第2の主蒸気逃がし弁インターロック機能57とを有している。第2のデジタル制御装置41は、第2の給水制御機能46と、第2の主蒸気逃がし弁制御機能47と、加圧器圧力制御機能48と、第3の主蒸気逃がし弁インターロック機能57とを有している。第3のデジタル制御装置41は、第3の給水制御機能46と、第3の主蒸気逃がし弁制御機能47と、加圧器水位制御機能49と、第4の主蒸気逃がし弁インターロック機能57とを有している。第4のデジタル制御装置41は、第4の給水制御機能46と、第4の主蒸気逃がし弁制御機能47と、制御棒停止余裕監視機能54と、第1の主蒸気逃がし弁インターロック機能57とを有している。第5のデジタル制御装置41は、タービンバイパス制御機能52と、制御棒インターロック機能55と、ホウ素濃度制御機能56とを有している。第6のデジタル制御装置41は、制御棒駆動制御機能53と、タービンバイパスインターロック機能58とを有している。
 以上の構成によれば、複数のデジタル制御装置41に、複数の制御手段を分散させることができる。これにより、1つのデジタル制御装置41が故障して1つの制御手段を行うことができなくとも、他のデジタル制御装置41の他の制御手段により原子力施設1を制御することができる。これにより、他のデジタル制御装置41は、安全基準を下回ることなく、原子力施設1を安全に制御することが可能となる。ここで、原子力施設1の安全制御について具体的に説明すると、複数のデジタル制御装置41のうち、1つのデジタル装置41が故障した場合、制御システム40は、他のデジタル装置41により、安全基準を下回らないように制御しながら、原子力施設1の運転を停止させている。
 また、具体的に、複数の給水制御機能46を、複数のデジタル制御装置41に分散させることができる。このため、1つのデジタル制御装置41が故障して1つの給水制御機能46により1つの主給水系を制御することができなくとも、他のデジタル制御装置41の他の給水制御機能46により他の主給水系をそれぞれ制御することができる。これにより、複数のデジタル制御装置41は、原子力施設1を安全に制御することが可能となる。
 また、具体的に、加圧器圧力制御機能48と加圧器インターロック機能50とを、複数のデジタル制御装置41に分散させることができる。同様に、主蒸気逃がし弁制御機能47とこの主蒸気逃がし弁制御機能47に対応する主蒸気逃がし弁インターロック機能57とを、複数のデジタル制御装置41に分散させることができる。同様に、タービンバイパス制御機能52とタービンバイパスインターロック機能58とを、複数のデジタル制御装置41に分散させることができる。同様に、制御棒駆動制御機能53と制御棒インターロック機能55とを、複数のデジタル制御装置41に分散させることができる。このため、一方のデジタル制御装置41が故障して加圧器圧力制御機能48、主蒸気逃がし弁制御機能47、タービンバイパス制御機能52または制御棒駆動制御機能53が誤作動しても、他方のデジタル制御装置41の加圧器インターロック機能50、主蒸気逃がし弁インターロック機能57、タービンバイパスインターロック機能58または制御棒インターロック機能55により、加圧器圧力制御機能48、主蒸気逃がし弁制御機能47、タービンバイパス制御機能52または制御棒駆動制御機能53の制御をロックすることができる。逆に、他方のデジタル制御装置41が故障して加圧器インターロック機能50、主蒸気逃がし弁インターロック機能57、タービンバイパスインターロック機能58または制御棒インターロック機能55が機能せずとも、一方のデジタル制御装置41の加圧器圧力制御機能48、主蒸気逃がし弁制御機能47、タービンバイパス制御機能52または制御棒駆動制御機能53は、好適に制御を行うことが可能である。これにより、複数のデジタル制御装置41は、原子力施設1を安全に制御することが可能となる。
 また、具体的に、給水制御機能46と制御棒駆動制御機能53とを、複数のデジタル制御装置41に分散させることができる。このため、一方のデジタル制御装置41が故障して制御棒駆動制御機能53が誤作動しても、他方のデジタル制御装置41の給水制御機能46により主給水系を制御して、原子炉冷却系3の圧力を制御することができる。逆に、他方のデジタル制御装置41が故障して給水制御機能46により主給水系を制御することができなくとも、一方のデジタル制御装置41の制御棒駆動制御機能53により、原子炉冷却系3の圧力を制御することができる。これにより、複数のデジタル制御装置41は、原子力施設1を安全に制御することが可能となる。
 また、具体的に、制御棒停止余裕監視機能54とホウ素濃度制御機能56とを、複数のデジタル制御装置41に分散させることができる。このため、一方のデジタル制御装置41が故障して制御棒停止余裕監視機能54が機能せずとも、他方のデジタル制御装置41のホウ素濃度制御機能56によりホウ素濃度を調整して、核反応を制御することができる。逆に、他方のデジタル制御装置41が故障してホウ素濃度制御機能56によりホウ素濃度を調整できなくとも、一方のデジタル制御装置41の制御棒停止余裕監視機能54により制御棒16による原子炉5の停止の余裕度を監視することで、他の対策を講じることができる。
 また、デジタル制御装置41は、複数の演算装置45を有するため、1つの演算装置45が故障により作動せずとも、他の演算装置45により複数の制御機能を実行することができる。このため、単一の故障によるデジタル制御装置41の機能の喪失を回避することができる。
 なお、本実施例では、プラントとして、原子力施設に適用して説明したが、これに限らず、火力発電プラントや、化学プラントに適用しても良い。
 以上のように、本発明に係るプラントの制御システムは、高い安全性が求められる原子力施設において有用であり、特に、複数のデジタル制御装置を用いて制御する場合に適している。
 1  原子力施設
 3  原子炉冷却系
 4  タービン系
 5  原子炉
 7  蒸気発生器
 8  加圧器
 15 燃料集合体
 16 制御棒
 22 タービン
 25 発電機
 40 制御システム
 41 デジタル制御装置
 45 演算装置
 46 給水制御機能
 47 主蒸気逃がし弁制御機能
 48 加圧器圧力制御機能
 49 加圧器水位制御機能
 50 加圧器インターロック機能
 51 主給水ポンプ速度制御機能
 52 タービンバイパス制御機能
 53 制御棒駆動制御機能
 54 制御棒停止余裕監視機能
 55 制御棒インターロック機能
 56 ホウ素濃度制御機能
 57 主蒸気逃がし弁インターロック機能
 58 タービンバイパスインターロック機能

Claims (6)

  1.  複数のデジタル制御装置を使用して、プラントを制御するプラントの制御システムにおいて、
     前記複数のデジタル制御装置は、複数の制御手段を有しており、
     前記複数の制御手段は、安全解析によって予め設定された安全基準を下回らないように、前記複数のデジタル制御装置に分散させて設けられていることを特徴とするプラントの制御システム。
  2.  前記プラントは、原子炉と、前記原子炉に接続された複数の蒸気発生器と、前記各蒸気発生器ヘ向けて冷却材を供給可能な複数の主給水系と、を有する原子力施設であり、
     前記複数の制御手段は、前記各主給水系を制御する複数の給水制御手段を有し、
     前記複数の給水制御手段は、それぞれ異なる前記デジタル制御装置に分散させて設けられていることを特徴とする請求項1に記載のプラントの制御システム。
  3.  前記プラントは、原子炉を有する原子力施設であり、
     前記複数の制御手段は、前記原子力施設に設けられた機器を作動制御する作動制御手段と、前記作動制御手段による作動制御をロックするインターロック制御手段と、を有し、
     前記作動制御手段と前記インターロック制御手段とは、それぞれ異なる前記デジタル制御装置に分散させて設けられていることを特徴とする請求項1または2に記載のプラントの制御システム。
  4.  前記プラントは、内部に燃料集合体が格納された原子炉と、前記燃料集合体に挿入される制御棒を駆動可能な制御棒駆動装置と、前記原子炉に接続された蒸気発生器と、前記蒸気発生器ヘ向けて冷却材を供給可能な主給水系と、を有する原子力施設であり、
     前記複数の制御手段は、前記制御棒駆動装置を制御する制御棒駆動制御手段と、前記主給水系を制御する給水制御手段と、を有し、
     前記制御棒駆動制御手段と前記給水制御手段とは、それぞれ異なる前記デジタル制御装置に分散させて設けられていることを特徴とする請求項1ないし3のいずれか1項に記載のプラントの制御システム。
  5.  前記プラントは、燃料集合体および前記燃料集合体に挿入される制御棒が内部に格納された原子炉と、前記原子炉内を流通する冷却材のホウ素濃度を調整可能なホウ素濃度調整装置と、を有する原子力施設であり、
     前記複数の制御手段は、前記制御棒による前記原子炉の停止の余裕度を監視可能な制御棒停止余裕監視手段と、前記ホウ素濃度調整装置を制御するホウ素濃度調整制御手段と、を有し、
     前記制御棒停止余裕監視手段と前記ホウ素濃度調整制御手段とは、それぞれ異なる前記デジタル制御装置に分散させて設けられていることを特徴とする請求項1ないし4のいずれか1項に記載のプラントの制御システム。
  6.  前記複数のデジタル制御装置は、それぞれ複数の演算装置を有していることを特徴とする請求項1ないし5のいずれか1項に記載のプラントの制御システム。
PCT/JP2011/067683 2010-08-12 2011-08-02 プラントの制御システム WO2012020666A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/816,172 US9558856B2 (en) 2010-08-12 2011-08-02 Control system for plant
EP11816332.8A EP2605088B1 (en) 2010-08-12 2011-08-02 Plant control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010181025A JP5634163B2 (ja) 2010-08-12 2010-08-12 プラントの制御システム
JP2010-181025 2010-08-12

Publications (1)

Publication Number Publication Date
WO2012020666A1 true WO2012020666A1 (ja) 2012-02-16

Family

ID=45567635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067683 WO2012020666A1 (ja) 2010-08-12 2011-08-02 プラントの制御システム

Country Status (4)

Country Link
US (1) US9558856B2 (ja)
EP (1) EP2605088B1 (ja)
JP (1) JP5634163B2 (ja)
WO (1) WO2012020666A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10126716B2 (en) 2014-02-11 2018-11-13 Saudi Basic Industries Corporation Electronic bypass system
US20170140842A1 (en) * 2015-11-12 2017-05-18 Westinghouse Electric Company Llc Subcritical Reactivity Monitor Utilizing Prompt Self-Powered Incore Detectors
US20170263342A1 (en) * 2016-03-10 2017-09-14 Westinghouse Electric Company Llc Real-time reactor coolant system boron concentration monitor utilizing an ultrasonic spectroscpopy system
KR20200027252A (ko) * 2018-09-04 2020-03-12 농업회사법인 만나씨이에이 주식회사 분산제어 스마트팜 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309102A (ja) * 1988-01-08 1989-12-13 Hitachi Ltd 分散型制御装置の構成方法
JPH04101201A (ja) * 1990-08-21 1992-04-02 Toshiba Corp プラント監視制御システム
JP2008020957A (ja) * 2006-07-10 2008-01-31 Kanagawa Prefecture 制御システム、プログラマブルコントローラおよびリモートi/o

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4434132A (en) * 1981-04-09 1984-02-28 Westinghouse Electric Corp. Power supply with nuclear reactor
US4584165A (en) * 1983-02-09 1986-04-22 General Electric Company Redundant reactivity control system
US4804515A (en) * 1984-10-31 1989-02-14 Westinghouse Electric Corp. Distributed microprocessor based sensor signal processing system for a complex process
US5287264A (en) * 1988-08-05 1994-02-15 Hitachi, Ltd. Multicontroller apparatus, multicontroller system, nuclear reactor protection system, inverter control system and diagnostic device
JPH04248798A (ja) 1991-02-05 1992-09-04 Toshiba Corp 分散形制御装置
US5311562A (en) * 1992-12-01 1994-05-10 Westinghouse Electric Corp. Plant maintenance with predictive diagnostics
US6049578A (en) * 1997-06-06 2000-04-11 Abb Combustion Engineering Nuclear Power, Inc. Digital plant protection system
US5984504A (en) * 1997-06-11 1999-11-16 Westinghouse Electric Company Llc Safety or protection system employing reflective memory and/or diverse processors and communications
US6532550B1 (en) * 2000-02-10 2003-03-11 Westinghouse Electric Company Llc Process protection system
KR100408493B1 (ko) * 2001-05-07 2003-12-06 한국전력기술 주식회사 소프트웨어 공통유형고장을 자체 배제한 디지털원자로 보호시스템 및 그 제어방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309102A (ja) * 1988-01-08 1989-12-13 Hitachi Ltd 分散型制御装置の構成方法
JPH04101201A (ja) * 1990-08-21 1992-04-02 Toshiba Corp プラント監視制御システム
JP2008020957A (ja) * 2006-07-10 2008-01-31 Kanagawa Prefecture 制御システム、プログラマブルコントローラおよびリモートi/o

Also Published As

Publication number Publication date
US9558856B2 (en) 2017-01-31
JP5634163B2 (ja) 2014-12-03
EP2605088B1 (en) 2018-05-16
JP2012043009A (ja) 2012-03-01
EP2605088A4 (en) 2017-03-08
US20130136222A1 (en) 2013-05-30
EP2605088A1 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5701033B2 (ja) 原子炉停止装置
US9728281B2 (en) Auxiliary condenser system for decay heat removal in a nuclear reactor
JP5634163B2 (ja) プラントの制御システム
JP5675256B2 (ja) 原子力施設の制御システム
JP5675208B2 (ja) 原子力施設の制御システム
JP5606260B2 (ja) 原子力施設の制御システム
JP6444098B2 (ja) 原子力発電プラントの監視制御装置
JP2011128090A (ja) カリーナサイクルを用いた原子力発電プラント
JP2020020580A (ja) 原子炉停止装置、原子力プラント及び原子炉停止方法
US6928132B2 (en) Methods and apparatus for operating a system
JP2017120226A (ja) 冷却設備及び原子力プラント
RU2645719C1 (ru) Интегральная схема тепловой разгрузки ядерного реактора блока аэс с турбонасосами прокачки теплоносителя
JP2012149968A (ja) 原子力発電プラントの1/2次系排水システム及び原子力発電プラント
JP5754952B2 (ja) 原子力発電プラントの1/2次系冷却水システム及び原子力発電プラント
JP6774737B2 (ja) 原子炉の安全システム
KR102578178B1 (ko) 소형원자로의 원자로냉각재펌프 1 대 정지 시 원자로 정지 예방 시스템
JP2013113653A (ja) 加圧水型原子炉及び炉心崩壊熱除去方法
JP7026034B2 (ja) 原子炉出力制御装置、原子力プラント及び原子炉出力制御方法
EP3460203B1 (en) Steam turbine plant
JP2013217814A (ja) 原子力発電プラント
JP2020187061A (ja) 原子力発電プラントの制御装置、原子力発電プラントおよび原子力発電プラントの制御方法
Hui et al. ICONE19-43275 Studies on the Coordinated Operation and Autonomous Control for Multi-modular Nuclear Power Plants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816332

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13816172

Country of ref document: US

Ref document number: 2011816332

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE