WO2012019719A1 - Wärmeleitplatte mit einem netz von strömungskanälen, verfahren zum transport von wärme und elektrochemischer energiespeicher - Google Patents

Wärmeleitplatte mit einem netz von strömungskanälen, verfahren zum transport von wärme und elektrochemischer energiespeicher Download PDF

Info

Publication number
WO2012019719A1
WO2012019719A1 PCT/EP2011/003828 EP2011003828W WO2012019719A1 WO 2012019719 A1 WO2012019719 A1 WO 2012019719A1 EP 2011003828 W EP2011003828 W EP 2011003828W WO 2012019719 A1 WO2012019719 A1 WO 2012019719A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
flow channels
conducting plate
network
heat conducting
Prior art date
Application number
PCT/EP2011/003828
Other languages
English (en)
French (fr)
Inventor
Christian Zahn
Original Assignee
Li-Tec Battery Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li-Tec Battery Gmbh filed Critical Li-Tec Battery Gmbh
Priority to JP2013523515A priority Critical patent/JP2013535840A/ja
Priority to CN2011800394101A priority patent/CN103069642A/zh
Priority to EP11748264.6A priority patent/EP2603948A1/de
Priority to KR1020137005952A priority patent/KR20130097745A/ko
Priority to US13/814,880 priority patent/US20130196207A1/en
Publication of WO2012019719A1 publication Critical patent/WO2012019719A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a heat conducting plate, a method for transporting heat and an electrochemical energy store and in particular the temperature of such an electrochemical energy store by means of a heat conducting plate.
  • Heat conducting plates are used in various technical fields of application for the transport of heat between heat sources and heat sinks, in particular for tempering technical components and in particular for cooling electrochemical
  • Energy storage used for example in electric vehicles.
  • DE 10 2008 027 293 A1 describes such a device for cooling a vehicle battery having a heat sink with channels through which a fluid flows, wherein the electrochemical storage elements are in thermal contact with the heat sink and heat of the storage elements is transferred to the fluid.
  • DE 10 2008 034 868 A1 describes a battery with a battery housing and a heat conducting plate arranged therein for tempering the battery, wherein a plurality of electrically parallel and / or serially interconnected individual cells thermally conductively connected to the heat conducting plate and thus with their pole contacts are projecting through this.
  • DE 10 2008 034 869 A1 describes a battery having a plurality of battery cells forming a cell assembly and a cooling plate thermally conductively connected to the battery cells via guide elements.
  • the invention has for its object to avoid the disadvantages or limitations associated with these or other known solutions, if possible, at least partially and to provide a technical teaching for the transport of heat by means of a heat conduction. This object is achieved by a device according to one of the device claims or by a method according to a method claims.
  • a heat conduction plate is provided with a network of flow channels, with at least one inlet and at least one outlet for a fluid.
  • the flow channels are arranged in the heat-conducting plate in such a way that a fluid which flows into the network of flow channels at the at least one inlet flows through an arrangement of zones of the heat-conducting plate to be tempered and then flows out of the network of flow channels at the at least one outlet can.
  • the flow channels are arranged one above the other in at least two planes.
  • the network of flow channels comprises a tree-like structure of distribution channels arranged in at least one first plane, which, starting from the at least one inlet into the network of flow channels, conducts a fluid to the zones of the heat conduction plate to be tempered.
  • the network of flow channels comprises a arranged in at least a second level tree-like structure of collecting channels, which receive a fluid in the zones to be tempered the heat conduction from the distribution channels and to the at least one outlet from the network of flow channels.
  • a method for the transport of heat is provided in which a heat conducting plate according to the invention is used.
  • an electrochemical energy store is also provided, which is tempered by means of a method according to the invention or whose electrical contacts are at least partially in heat-conducting contact with at least one heat-conducting plate according to the invention.
  • a heat conducting plate is to be understood as meaning a heat conducting body which, due to its shape or its material properties and preferably also due to its structural properties, is suitable for transporting heat from at least one heat source to at least one heat sink.
  • such a heat conducting plate is equipped with a network of flow channels.
  • a gaseous, liquid or free-flowing fluid whose chemical or physical composition is selected such that the flow of this fluid through the flow channels supports the heat transfer from the at least one heat source to the at least one heat sink.
  • the fluid may be, for example, a refrigerant or a coolant, which preferably enters the network of flow channels of the heat transfer plate coming from an external refrigeration circuit or cooling circuit at an inlet of the heat conduction plate, flows through this network of flow channels and finally at one Outlet of the heat conduction emerging from the network of flow channels and the cooling circuit or refrigeration cycle is supplied again.
  • the heat-conducting plate according to the invention has an arrangement of zones to be tempered, which are traversed by the flow channels in such a way that the fluid flowing through the flow channels flows through, overflows or underflows these zones to be tempered.
  • These zones to be tempered can completely or partially cover the heat conduction plate;
  • this arrangement of the zones to be tempered can also consist of a single zone to be tempered, which completely or partially covers the heat-conducting plate.
  • the zones to be tempered can be arranged in different ways.
  • the flow channels are arranged in the heat-conducting plate in at least two planes arranged one above the other or below one another. It also transitions between these levels are possible. These planes are preferably substantially parallel to the two substantially parallel large outer boundary surfaces of the substantially plate-shaped réelleleitplatte.
  • the network of flow channels in this case comprises a arranged in at least a first level tree-like structure of distribution channels, which, starting from the at least one inlet into the network of flow channels, a fluid to be tempered zones of the heat conducting.
  • a heat conducting plate according to the invention may contain a plurality of preferably tree-like flow channel networks, which can be flowed through by different fluids having different physical properties, in particular heat transport properties.
  • the fluid flowing through the flow channels can preferably also change its state of aggregation during flow through the flow channels, in particular pass from the liquid to the gaseous phase, ie evaporate and thus withdraw heat from its environment, or vice versa, from the gaseous to the liquid phase, ie condense , and thus give heat to its environment.
  • these phase transitions in different areas of the network of flow channels can take place temporally next to one another.
  • the fluid in the distribution channels may vaporize and condense in the collector channels or, conversely, condense in the distribution channels and vaporize in the collector channels, depending on which zones are to be cooled or heated.
  • a tree-like structure of distribution channels in this context means an arrangement of distribution channels which is designed so that the fluid which enters the network of flow channels in the at least one inlet, in the manner desired by the user in the network Distributed by flow channels, that the individual zones to be tempered evenly or depending on the strength of the heat sinks located in their area or heat sources from the fluid flows through, overflowed or underflowed.
  • a tree tige structure of distribution channels can serve branching arterial blood vessels of the human or animal blood circulation.
  • the network of flow channels of the heat-conducting plate according to the invention has a tree-like structure of collecting ducts arranged in at least one second plane, which receive a fluid in the zones to be tempered of the heat conducting plate from the distribution channels and to the at least one outlet from the network of flow channels conduct.
  • the veins in this picture correspond to the collection channels, while the arteries correspond to the distribution channels.
  • the tree-like structures of the network are connected in at least two levels with the advantage that the flow channels can run very flexible according to the particular requirements of the underlying application, whereas in an arrangement in only one level, restrictions by the impossibility of crossing themselves Flow channels would result.
  • thermal contact surfaces are provided in at least some of the zones to be tempered on at least one side of the heat conducting plate, which are arranged by their shape, arrangement or by their material properties for producing a heat-conducting contact of the heat conducting plate with a heat sink or with a heat source.
  • Such heat contact surfaces may preferably be correspondingly shaped, in particular ground, surfaces inside or outside one of the two substantially parallel outer wall surfaces of the heat conducting plate, which are shaped and arranged to assist in heat-conducting contacting of the heat conducting plate with corresponding contact surfaces of the heat sinks or heat sources.
  • a special material properties of these heat contact surfaces can promote the heat conduction between the heat sinks to be contacted or heat sources, especially when the material from which these heat contact surfaces consist is selected from a group of materials with particularly high thermal conductivity. In some applications of the invention, it may be advantageous if the material is selected so that at high thermal conductivity of the electrical resistance is so high that can essentially be said electrical insulation. These material properties are particularly advantageous when the heat sources or heat sinks are electrically conductive contacts of an electrochemical energy store.
  • the heat contact surfaces belong to one of at least two groups of heat contact surfaces, which are electrically insulated from each other and from the rest of the heat-conducting plate, but at least thermally conductively connected to the remaining heat-conducting plate.
  • Each group of thermal contact surfaces preferably comprises those thermal contact surfaces which are in contact with electrically conductive contacts of the same electrical polarity and voltage of a device to be tempered by means of the heat-conducting plate.
  • the division of the thermal contact surfaces in more than two groups may be advantageous, especially when more than two groups of electrically conductive contacts are to be tempered using the heat conduction, for example, by electrical voltages or other electrical properties such for example, distinguish electrical signals applied to these electrical conductors, so that no electrically conductive connection may be made between electrical contacts of different classes.
  • the heat contact surfaces preferably also still have the electrical connection of the electrical conductors to one another, insofar as they belong to the same group or class.
  • Thermal contact surfaces of different groups are therefore electrically insulated from one another and from the rest of the heat-conducting plate in these embodiments, but at least thermally conductively connected to one another with the remaining heat-conducting plate and possibly also with each other within the same group.
  • Such structures can be realized, for example, in that the heat contact surfaces are separated from the remaining heat conducting plate by an electrically insulating, but thermally conductive heat conducting foil or thermal compound.
  • At least one thermal contact surface having a heat sink or a heat source is disposed over an electrically insulating heat conducting film disposed between the at least one thermal contact surface and a heat sink or heat source insulating heat conductive paste in a heat-conducting contact.
  • Such heat-conducting pastes are obtained, for example, by finely distributing thermally conductive small solids into an electrically insulating, for example wax-like material.
  • thermal contact surfaces may also be constructed of a thermally conductive, electrically insulating ceramic layer containing, for example, compounds such as lithium carbide or aluminum nitrite.
  • structures are provided for attaching fastening means to the heat-conducting plate, with the aid of which at least one thermal contact surface can be pressed against a heat sink or heat source.
  • Such structures are preferably configured in the form of threaded holes in the heat conducting plate, so that screws or bolts or similar fasteners can be screwed with matching to the threads of these holes threads in these holes.
  • Other possibilities for realizing such structures are familiar to the person skilled in the art and need not be described in detail here.
  • the attachment structures consist of a material with high thermal conductivity and it is advantageous in some applications, if these structures consist of electrically insulating materials or by use of the structures of electrically insulating materials surrounding electrically isolated from the environment are.
  • the flow channels are at least partially formed of an electrically insulating, but highly thermally conductive material.
  • electrically conductive fluids is possible, which often have better thermal conduction properties, as electrically insulating fluids.
  • a method for transporting heat is further provided by using a heat plate according to the invention.
  • an electrochemical energy store is tempered in this method, ie cooled or heated by its electrical contacts are brought into a heat-conducting contact with a heat conducting plate according to the invention.
  • FIG. 1 schematically a preferred example of a heat conducting plate according to the invention in plan view
  • Figure 2 schematically a preferred embodiment of a heat conducting plate according to the invention in a perspective side view
  • FIG. 3 schematically a preferred embodiment of a heat conducting plate according to the invention in a perspective side view
  • FIG. 4 consisting of the figures 4a to 4e schematically a preferred embodiment of a heat conducting plate according to the invention in an exploded view.
  • the heat-conducting plate 1 is equipped with a network of flow channels 2.
  • a fluid flows through the inlet 3 into the distribution channels 6 and in this way reaches the zones 5 to be tempered, in which the fluid exchanges heat with its surroundings. Thereafter, the fluid is collected in the collecting channels 7 and leaves the network of flow channels through the outlet 4.
  • FIG. 2 shows the same arrangement in a perspective side view. Visible is the arrangement of the distribution channels 6 in an upper level, which are connected via vertically extending flow channels with the collecting channels 7 in a lower level.
  • the illustrations in FIGS. 1 and 2 are to be interpreted at least partially only schematically.
  • the distribution channels 6 and the collecting channels can also have other tree-like structures, their sections neither straight nor horizontal
  • the invention is not limited to the embodiments shown and is based on the more general idea to supply a fluid via a tree-like structure of manifolds to be tempered zones 5 of a heat conducting and the fluid in these zones to be tempered 5 by means of a tree-like structure of collecting channels 7 again to collect.
  • the invention makes use of a principle known from human or animal blood circulation, wherein an artery increasingly branches until the vessels pass into a capillary system which pervades the organism uniformly or according to physiological requirements.
  • the invention provides a heat conduction plate 1 with a network of flow channels 2, with at least one inlet 3 and at least one outlet 4 for a fluid.
  • the flow channels are arranged in the heat conducting plate 1 such that a fluid which is at the at least one inlet 3 into the network of
  • Flow channels 2 flows, an arrangement of temperature-controlled zones 5 of the heat conduction plate 1 to flow through and then at the at least one outlet 4 can flow out of the network of flow channels 2.
  • the flow channels are arranged one above the other in at least two planes.
  • the network of flow channels 2 comprises a arranged in at least a first level, tree-like structure of distribution channels 6, starting from the at least one inlet 3 into the network of flow channels 2, a fluid to be tempered zones 5 of the heat conducting 1.
  • the network of flow channels 2 comprises a tree-like structure of collecting channels 7 which is arranged in at least one second plane and which comprises a fluid in the zones 5 of the heat-conducting plate 1 to be tempered from the distributor channels 6. take and lead to the at least one outlet 4 from the network of flow channels 2.
  • a method for transporting heat for example for cooling or for heating a vehicle battery, is provided in which a heat conducting plate 1 according to the invention is used.
  • an electrochemical energy store is also provided, which is tempered by means of a method according to the invention or whose electrical contacts are at least partially in heat-conducting contact with at least one heat-conducting plate 1 according to the invention.
  • a heat-conducting plate 1 is to be understood as meaning a heat-conducting body which, due to its shape or its material properties and preferably also due to its structural properties, is suitable for transporting heat from at least one heat source to at least one heat sink.
  • the heat-conducting plate 1 has an arrangement of zones 5 to be tempered, which are traversed by the flow channels 2 in such a way that the fluid flowing through the flow channels flows through, overflows or underflows these zones 5 to be tempered.
  • These zones 5 to be tempered can completely or partially cover the heat-conducting plate 1;
  • this arrangement of the zones 5 to be tempered may also consist of a single zone to be tempered, which completely or partially covers the heat-conducting plate 1.
  • the zones 5 to be tempered can be arranged in different ways.
  • the flow channels are arranged in the heat conducting plate 1 in two superimposed or underlying planes. These planes lie, as shown schematically in the figures, preferably substantially parallel to the two substantially parallel large outer boundary surfaces of the substantially plate-shaped heat conducting plate 1.
  • the network of flow channels 2 shown in Figures 1 and 2 comprises one in at least a first Level arranged tree-like structure of distribution channels 6, the Starting an inlet 3 in the network of flow channels 2 starting a fluid to be tempered zones 5 of the heat conducting 1.
  • a heat conducting plate 1 according to the invention can also contain a plurality of preferably tree-like flow channel networks, which can be flowed through by different fluids having different physical properties, in particular heat transport properties.
  • the fluid flowing through the flow channels can preferably also change its state of aggregation during flow through the flow channels, in particular pass from the liquid to the gaseous phase, ie evaporate and thus withdraw heat from its environment, or vice versa, from the gaseous to the liquid phase, ie condense , and thus give heat to its environment.
  • these phase transitions in different areas of the network of flow channels 2 can also take place side by side in terms of time.
  • the fluid in the distribution channels 6 may vaporize and condense in the collector channels or, conversely, condense in the distribution channels 6 and vaporize in the collector channels, depending on which zones 5 are to be cooled or heated. In other embodiments, evaporation may occur in one part of zones 5 while condensation takes place in another part of zones 5.
  • the tree-like structure of distributor channels 6 shown in FIGS. 1 and 2 is designed such that it allows the fluid entering the at least one inlet 3 into the network of flow channels 2 to be arranged in the network of flow channels 2 in the manner desired by the user distributed that the individual to be tempered zones 5 flows through or overflowed or underflow evenly or in dependence on the strength of the heat sinks located in their area or heat sources of the fluid.
  • the tree-like structures of the network in two planes have the advantage that the flow channels are very flexible. xibel can run in accordance with the respective requirements of the underlying application, whereas in an arrangement in only one level would be limited by the impossibility of intersecting flow channels 2.
  • thermal contact surfaces are provided by their shape, arrangement or by their material properties for producing a heat-conducting contact of the heat-conducting plate 1 with a heat sink or with a Heat source are set up.
  • Such heat contact surfaces may preferably be correspondingly shaped, in particular ground surfaces, not shown in the figures, inside or outside of one of the two substantially parallel outer wall surfaces of the heat conduction plate 1, which are shaped and arranged such that they provide a heat conducting contact with the heat conduction plate 1 with corresponding contact surfaces the heat sinks or heat sources support.
  • FIG. 3 shows schematically a preferred exemplary embodiment of a heat-conducting plate 1 according to the invention, the details of which are shown in FIG. 4, which is executed as an exposition, consisting of the sub-figures 4a, 4b, 4c, 4d and 4e.
  • This heat-conducting plate 1 consists of the bottom plate 419 shown in FIG. 4e, the plates 417, 414 and 412 arranged above it, shown in FIGS. 4b, 4c and 4d, wherein the plate 417 is the channel plate, the plate 414 the layer-change plate and the plate 412 the distributor plate is, and from the cover plate 407 shown in the figure 4a, on which the connecting flange 401 is mounted with the connection piece 402 and 403.
  • the fluid flows through the heat conducting plate 1 in a network of flow channels with at least one inlet 408 and at least one outlet 409 for the fluid.
  • the flow channels 411, 416 are arranged in the heat conducting plate 407, 412, 414, 417 and 419 in such a way that a fluid which flows into the network of flow channels at the at least one inlet 408 forms a contact. order to flow through to be tempered zones of the heat conducting plate 1 and then at the at least one outlet 409 can flow out of the network of flow channels.
  • the flow channels 411, 416 are arranged one above the other in at least two planes 412 in FIGS. 4b and 417 in FIG. 4d.
  • the network of flow channels comprises a tree-like structure of distribution channels 411 arranged in at least one first plane, which, starting from the at least one inlet 409 into the network of flow channels, conducts a fluid to the zones of the heat-conducting plate 1 to be tempered.
  • the network of flow channels comprises a tree-like structure of collecting channels 416 arranged in at least one second plane, which receive a fluid in the zones of the heat-conducting plate 1 to be tempered from the distributor channels 411 and guide them to the at least one outlet 409 from the network of flow channels.
  • the fluid flows from the connection port 403 of the connection flange 401 via the outlet 405 of the connection flange 401 through the inlet 408 of the cover plate into the distribution channel 411 of the distributor plate.
  • the fluid enters the collection channels 416 through the recesses 415 of the layer exchange plate 414, from where it passes through the recesses 413, 410 and 409 via the outlet 404 of the connection flange 401 and through the connection piece 402 exits the heat conducting plate 1.
  • the individual partial plates are preferably screwed together at the recesses 406 and 418.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Secondary Cells (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Road Paving Structures (AREA)

Abstract

Bei einer Wärmeleitplatte (1) mit einem Netz von Strömungskanälen (2), wenigstens einem Einlass (3) und wenigstens einem Auslass (4) für ein Fluid sind die Strömungskanäle derart angeordnet sind, dass ein Fluid, welches an dem wenigstens einen Einlass (3) in das Netz von Strömungskanälen einströmt, eine Anordnung von zu temperierenden Zonen (5) der Wärmeleitplatte durchströmen und anschließend an dem wenigstens einen Auslass (4) aus dem Netz von Strömungskanälen ausströmen kann. Die Strömungskanale sind in wenigstens zwei Ebenen übereinander angeordnet. Das Netz von Strömungskanälen umfasst eine in wenigstens einer ersten Ebene angeordnete, baumartige Struktur von Verteilerkanälen (6), die von dem wenigstens einen Einlass in das Netz von Strömungskanälen ausgehend ein Fluid zu den zu temperierenden Zonen (5) der Wärmeleitplatte leiten. Das Netz von Strömungskanälen umfasst außerdem eine in wenigstens einer zweiten Ebene angeordnete, baumartige Struktur von Sammelkanälen (7), die ein Fluid in den zu temperierenden Zonen (5) der Wärmeleitplatte aus den Verteilerkanälen aufnehmen und zu dem wenigstens einem Auslass (4) aus dem Netz von Strömungskanälen leiten.

Description

Wärmeleitplatte mit einem Netz von Strömungskanälen, Verfahren zum Transport von Wärme und elektrochemischer Energiespeicher
Die Erfindung betrifft eine Wärmeleitplatte, ein Verfahren zum Transport von Wärme und einen elektrochemischen Energiespeicher und insbesondere die Temperierung eines solchen elektrochemischen Energiespeichers mit Hilfe einer Wärmeleitplatte. Wärmeleitplatten werden in unterschiedlichen technischen Anwendungsgebieten zum Transport von Wärme zwischen Wärmequellen und Wärmesenken, insbesondere zum Temperieren technischer Bauteile und insbe- sondere zum Kühlen elektrochemischer
Energiespeicher, beispielsweise in Elektrofahrzeugen verwendet.
Die DE 10 2008 027 293 A1 beschreibt eine solche Vorrichtung zur Kühlung einer Fahrzeugbatterie mit einem Kühlkörper mit Kanälen, die von einem Fluid durchströmt werden, wobei die elektrochemischen Speicherelemente mit dem Kühlkörper in thermischem Kontakt stehen und Wärme der Speicherelemente an das Fluid übertragen wird.
Die DE 10 2008 034 868 A1 beschreibt eine Batterie mit einem Batteriegehäuse und einer darin angeordneten Wärmeleitplatte zum Temperieren der Batterie, wobei mehrere elektrisch parallel und/oder seriell miteinander verschaltete Einzelzellen wärmeleitend mit der Wärmeleitplatte verbunden und somit mit ihren Polkontakten durch diese hindurchragend befestigt sind. Die DE 10 2008 034 869 A1 beschreibt eine Batterie mit mehreren, einen Zellenverbund bildenden Batteriezellen und einer mit den Batteriezellen über Leitelemente wärmeleitend verbundenen Kühlplatte. Der Erfindung liegt die Aufgabe zugrunde, die mit diesen oder anderen bekannten Lösungen verbundenen Nachteile oder Beschränkungen nach Möglichkeit wenigstens teilweise zu vermeiden und eine technische Lehre zum Transport von Wärme mit Hilfe einer Wärmeleitplatte anzugeben. Diese Aufgabe wird durch eine Vorrichtung nach einem der Vorrichtungsansprüche bzw. durch ein Verfahren nach einem Verfahrensansprüche gelöst.
Erfindungsgemäß ist eine Wärmeleitplatte mit einem Netz von Strömungskanä- len vorgesehen, mit wenigstens einem Einlass und wenigstens einem Auslass für ein Fluid. Die Strömungskanäle sind in der Wärmeleitplatte derart angeordnet, dass ein Fluid, welches an dem wenigstens einen Einlass in das Netz von Strömungskanälen einströmt, eine Anordnung von zu temperierenden Zonen der Wärmeleitplatte durchströmen und anschließend an dem wenigstens einen Aus- lass aus dem Netz von Strömungskanälen ausströmen kann. Die Strömungskanäle sind in wenigstens zwei Ebenen übereinander angeordnet. Das Netz von Strömungskanälen umfasst eine in wenigstens einer ersten Ebene angeordnete, baumartige Struktur von Verteilerkanälen, die von dem wenigstens einen Einlass in das Netz von Strömungskanälen ausgehend, ein Fluid zu den zu temperie- renden Zonen der Wärmeleitplatte leiten. Das Netz von Strömungskanälen umfasst eine in wenigstens einer zweiten Ebene angeordnete baumartige Struktur von Sammelkanälen, die ein Fluid in den zu temperierenden Zonen der Wärmeleitplatte aus den Verteilerkanälen aufnehmen und zu dem wenigstens einen Auslass aus dem Netz von Strömungskanälen leiten.
Erfindungsgemäß ist auch ein Verfahren zum Transport von Wärme vorgesehen, bei dem eine erfindungsgemäße Wärmeleitplatte verwendet wird. Schließlich ist erfindungsgemäß auch ein elektrochemischer Energiespeicher vorgesehen, der mit Hilfe eines erfindungsgemäßen Verfahrens temperiert wird oder dessen elektrische Kontakte wenigstens teilweise mit wenigstens einer erfindungsgemäßen Wärmeleitplatte in wärmeleitenden Kontakt stehen. Im Zusammenhang mit der Beschreibung der vorliegenden Erfindung ist unter einer Wärmeleitplatte ein wärmeleitender Körper zu verstehen, der aufgrund seiner Form oder seiner Materialbeschaffenheit und vorzugsweise auch aufgrund seiner konstruktiven Eigenschaften geeignet ist, Wärme von wenigstens einer Wärmequelle zu wenigstens einer Wärmesenke zu transportieren. Gemäß der vorliegenden Erfindung ist eine solche Wärmeleitplatte mit einem Netz von Strömungskanälen ausgestattet. Durch diese Strömungskanäle fließt ein gasförmiges, flüssiges oder fließfähiges Fluid, dessen chemische oder physikalische Zusammensetzung derart gewählt ist, dass der Fluss dieses Fluids durch die Strömungskanäle den Wärmetransport von der wenigstens einen Wärmequelle zu der wenigstens einen Wärmesenke unterstützt. Bei dem Fluid kann es sich beispielsweise um ein Kältemittel oder um ein Kühlmittel handeln, das vorzugsweise aus einem externen Kältekreislauf oder Kühlkreislauf kommend an einem Einlass der Wärmeleitplatte in das Netz von Strömungskanälen der Wär- meleitplatte eintritt, dieses Netz von Strömüngskanälen durchströmt und schließlich an einem Auslass der Wärmeleitplatte aus dem Netz von Strömungskanälen austritt und dem Kühlkreislauf oder Kältekreislauf erneut zugeführt wird.
Die erfindungsgemäße Wärmeleitplatte weist eine Anordnung von zu temperie- renden Zonen auf, die so von den Strömungskanälen durchzogen sind, dass das durch die Strömungskanäle fließende Fluid diese zu temperierenden Zonen durchströmt, überströmt oder unterströmt. Diese zu temperierenden Zonen können die Wärmeleitplatte ganz oder teilweise überdecken; insbesondere kann diese Anordnung der zu temperierenden Zonen auch aus einer einzigen zu tem- perierenden Zone bestehen, welche die Wärmeleitplatte ganz oder teilweise überdeckt. Auf den beiden Seiten der Wärmeleitplatte können die zu temperierenden Zonen in unterschiedlicher Weise angeordnet sein.
Die Strömungskanäle sind in der Wärmeleitplatte in wenigstens zwei übereinan- der oder untereinanderliegenden Ebenen angeordnet. Dabei sind auch Übergänge zwischen diesen Ebenen möglich. Diese Ebenen liegen vorzugsweise im Wesentlichen parallel zu den beiden im Wesentlichen parallel liegenden großen äußeren Begrenzungsflächen der im Wesentlichen plattenförmigen Wärmeleitplatte. Das Netz von Strömungskanälen umfasst dabei eine in wenigstens einer ersten Ebene angeordnete baumartige Struktur von Verteilerkanälen, die von dem wenigstens einen Einlass in das Netz von Strömungskanälen ausgehend ein Fluid zu dem zu temperierenden Zonen der Wärmeleitplatte leiten. Eine erfindungsgemäße Wärmeleitplatte kann eine Mehrzahl von vorzugsweise baumartigen Strömungskanalnetzen enthalten, die von unterschiedlichen Fluiden mit unterschiedlichen physikalischen Eigenschaften, insbesondere Wärmetransporteigenschaften durchströmt werden können.
Das die Strömungskanäle durchströmende Fluid kann vorzugsweise während des Durchströmens der Strömungskanäle auch seinen Aggregatzustand ändern, insbesondere von der flüssigen in die gasförmige Phase übergehen, also verdampfen und seiner Umgebung so Wärme entziehen, oder umgekehrt, von der gasförmigen in die flüssige Phase übergehen, also kondensieren, und auf diese Weise seiner Umgebung Wärme zuführen. Vorzugsweise können diese Phasenübergänge in verschiedenen Bereichen des Netzes von Strömungskanälen zeitlich nebeneinander ablaufen. Beispielsweise kann das Fluid in den Verteilerkanälen verdampfen und in den Sammlerkanälen kondensieren oder, umge- kehrt, in den Verteilerkanälen kondensieren und in den Sammlerkanälen verdampfen, je nachdem, welche Zonen zu kühlen oder zu erwärmen sind. Bei anderen Ausführungsformen kann eine Verdampfung in einem Teil der Zonen ablaufen, während eine Kondensation in einem anderen Teil der Zonen stattfindet. Unter einer baumartigen Struktur von Verteilerkanälen ist in diesem Zusammenhang eine Anordnung von Verteilerkanälen zu verstehen, die so ausgestaltet ist, dass sie das Fluid, welches in den wenigstens einen Einlass in das Netz von Strömungskanälen eintritt, in der vom Anwender gewünschten Weise so in dem Netz von Strömungskanälen verteilt, dass die einzelnen zu temperierenden Zo- nen gleichmäßig oder in Abhängigkeit von der Stärke der in ihrem Bereich befindlichen Wärmesenken oder Wärmequellen von dem Fluid durchströmt, überströmt oder unterströmt werden. Als Veranschaulichung für eine solche baumar- tige Struktur von Verteilerkanälen können sich verzweigende arterielle Blutgefäße des menschlichen oder tierischen Blutkreislaufs dienen. Diese arteriellen Blutgefäße verästeln sich immer feiner und gehen schließlich in ein System von kapillaren Blutgefäßen über, die das Blut gleichmäßig oder nach Maßgabe der physiologischen Anforderungen bestimmter Körperregionen verteilen, um schließlich in sich zu venösen Strukturen vereinigenden Kapillaren gesammelt zu werden. In ähnlicher Weise weist das Netz von Strömungskanälen der erfindungsgemäßen Wärmeleitplatte eine in wenigstens einer zweiten Ebene angeordnete, baumartige Struktur von Sammelkanälen auf, die ein Fluid in den zu temperierenden Zonen der Wärmeleitplatte aus den Verteilerkanälen aufnehmen und zu dem wenigstens einen Auslass aus dem Netz von Strömungskanälen leiten. Die Venen entsprechen in diesem Bild den Sammelkanälen, während die Arterien den Verteilerkanälen entsprechen. Bei geeigneter Ausführung sind die baumartigen Strukturen des Netzes in wenigstens zwei Ebenen mit dem Vorteil verbunden, dass die Strömungskanäle sehr flexibel nach Maßgabe der jeweiligen Anforderungen der zugrundeliegenden Anwendung verlaufen können, wogegen bei einer Anordnung in nur einer Ebene sich Beschränkungen durch die Unmöglichkeit von sich kreuzenden Strömungskanälen ergeben würden.
Bei einer bevorzugten Ausführungsform der Erfindung sind in wenigstens einigen der zu temperierenden Zonen auf wenigstens einer Seite der Wärmeleitplatte Wärmekontaktflächen vorgesehen, die durch ihre Form, Anordnung oder durch ihre Materialbeschaffenheit zur Herstellung eines wärmeleitenden Kontakts der Wärmeleitplatte mit einer Wärmesenke oder mit einer Wärmequelle eingerichtet sind. Derartige Wärmekontaktflächen können vorzugsweise entsprechend geformte, insbesondere geschliffene Flächen innerhalb oder außerhalb einer der beiden im Wesentlichen parallelen äußeren Wandflächen der Wärmeleitplatte sein, die so geformt und angeordnet sind, dass sie eine wärmeleitende Kontaktierung der Wärmeleitplatte mit entsprechenden Kontaktflächen der Wärmesenken oder Wärmequellen unterstützen. Auch eine besondere Materialbeschaffenheit dieser Wärmekontaktflächen kann die Wärmeleitung zwischen den zu kontaktierenden Wärmesenken oder Wärmequellen fördern, insbesondere dann, wenn das Material, aus dem diese Wärmekontaktflächen bestehen, aus einer Gruppe von Materialien mit besonders hoher Wärmeleitfähigkeit gewählt wird. Bei einigen Anwendungen der Erfindung kann es vorteilhaft sein, wenn das Material so gewählt wird, dass bei hoher Wärmeleitfähigkeit der elektrische Widerstand so hoch ist, dass im Wesentlichen von einer elektrischen Isolation gesprochen werden kann. Diese Ma- terialeigenschaften sind insbesondere dann vorteilhaft, wenn es sich bei den Wärmequellen oder Wärmesenken um elektrisch leitende Kontakte eines elektrochemischen Energiespeichers handelt.
Bei einer bevorzugten Ausführungsform der Erfindung gehören die Wärmekon- taktflächen einer von wenigstens zwei Gruppen von Wärmekontaktflächen an, die gegeneinander und gegenüber der restlichen Wärmeleitplatte elektrisch isoliert, aber wenigstens mit der restlichen Wärmeleitplatte wärmeleitend verbunden sind. Jede Gruppe von Wärmekontaktflächen umfasst dabei vorzugsweise diejenigen Wärmekontaktflächen, die mit elektrisch leitenden Kontakten gleich- namiger elektrischer Polarität und Spannung einer mit Hilfe der Wärmeleitplatte zu temperierenden Einrichtung in Kontakt stehen. Bei anderen technischen Anwendungen kann die Einteilung der Wärmekontaktflächen in mehr als zwei Gruppen vorteilhaft sein, insbesondere dann, wenn mehr als zwei Gruppen e- lektrisch leitender Kontakte mit Hilfe der Wärmeleitplatte zu temperieren sind, die sich beispielsweise durch elektrische Spannungen oder andere elektrische Eigenschaften, wie beispielsweise an diesen elektrischen Leitern anliegende elektrische Signale unterscheiden, so dass zwischen elektrischen Kontakten unterschiedlicher Klassen keine elektrisch leitende Verbindung hergestellt werden darf.
Bei diesen und anderen bevorzugten Ausführungsbeispielen der vorliegenden Erfindung, die vorteilhaft auch miteinander kombiniert werden können, dienen die Wärmekontaktflächen neben der Verbesserung des wärmeleitenden Kontaktes zwischen der Wärmeleitplatte und den zu temperierenden Wärmequellen oder Wärmesenken vorzugsweise auch noch der elektrischen Verbindung der elektrischen Leiter untereinander, soweit sie derselben Gruppe oder Klasse an- gehören. Wärmekontaktflächen unterschiedlicher Gruppen sind in diesen Ausführungsbeispielen also gegeneinander und gegenüber der restlichen Wärmeleitplatte elektrisch isoliert, aber wenigstens mit der restlichen Wärmeleitplatte und möglicherweise auch untereinander innerhalb derselben Gruppe wärmeleitend miteinander verbunden. Derartige Strukturen lassen sich beispielsweise dadurch verwirklichen, dass die Wärmekontaktflächen von der restlichen Wärmeleitplatte durch eine elektrisch isolierende, aber wärmeleitende Wärmeleitfolie oder Wärmeleitpaste getrennt sind.
Bei anderen bevorzugten Ausführungsbeispielen der Erfindung, die auch mit Merkmalen oben beschriebener oder anderer Ausführungsbeispiele kombiniert werden können, steht wenigstens eine Wärmekontaktfläche mit einer Wärmesenke oder mit einer Wärmequelle über eine zwischen der wenigstens einen Wärmekontaktfläche und einer Wärmesenke oder einer Wärmequelle angeordneten elektrisch isolierenden Wärmeleitfolie oder elektrisch isolierenden Wärme- leitpaste in einem wärmeleitenden Kontakt. Derartige Wärmeleitpasten werden beispielsweise gewonnen, indem wärmeleitende kleine Festkörper in einen e- lektrisch isolierenden, beispielsweise wachsartigen Material fein verteilt werden. Wärmekontaktflächen können jedoch auch aus einer wärmeleitenden, elektrisch isolierenden Keramikschicht aufgebaut sein, die beispielsweise Verbindungen wie Lithiumcarbid oder Aluminiumnitrit enthält. Andere Beispiele für Materialien zur Herstellung von Wärmeleitfolien oder Wärmekontaktflächen sind elektrisch isolierende Elastomere, denen wärmeleitende Füllstoffe in Form von beispielsweise Aluminiumplättchen beigefügt sind. Die Aluminiumplättchen sorgen für eine verbesserte Wärmeleitfähigkeit, wobei jedoch das Material insgesamt elekt- risch isolierend bleibt. Als Füllstoffe in thermoelastischen Gummiverbindungen oder Kunststoffen eignen sich auch kleine Teilchen aus Bohrnitrit oder Alumini- um. Wärmeleitfolien lassen sich auch darstellen als Polymerfolien, in welche Grafitfasern als wärmeleitende Füllstoffe eingelassen sind.
Bei einer bevorzugten Ausführungsform sind Strukturen zur Anbringung von Be- festigungsmitteln an der Wärmeleitplatte vorgesehen, mit deren Hilfe wenigstens eine Wärmekontaktfläche an eine Wärmesenke oder Wärmequelle angepresst werden kann. Derartige Strukturen sind vorzugsweise in Form von mit Gewinden ausgestatteten Bohrungen in der Wärmeleitplatte ausgestaltet, so dass in diese Bohrungen Schrauben oder Bolzen oder ähnliche Befestigungselemente mit zu den Gewinden dieser Bohrungen passenden Gewinden eingeschraubt werden können. Andere Möglichkeiten zur Realisierung solcher Strukturen sind dem Fachmann geläufig und müssen hier nicht näher dargestellt werden. Vorteilhaft ist in diesem Zusammenhang, wenn die Befestigungsstrukturen aus einem Material mit hoher Wärmeleitfähigkeit bestehen und vorteilhaft ist es in einigen An- wendungsfällen weiterhin, wenn diese Strukturen aus elektrisch isolierenden Materialien bestehen oder durch den Einsatz die Strukturen umgebender elektrisch isolierender Materialien elektrisch von der Umgebung isoliert sind.
Bei anderen bevorzugten Ausführungsbeispielen der Erfindung, die auch mit den vorbeschriebenen Ausführungsbeispielen und mit anderen Ausführungsbeispielen kombiniert werden können, sind die Strömungskanäle wenigstens teilweise aus einem elektrisch isolierenden, aber gut wärmeleitenden Material gebildet. Bei diesen Ausführungsbeispielen ist auch der Einsatz von elektrisch leitenden Fluiden möglich, welche häufig bessere Wärmeleiteigenschaften haben, als elektrisch isolierende Fluide.
Erfindungsgemäß ist ferner ein Verfahren zum Transport von Wärme vorgesehen, indem eine erfindungsgemäße Wärmeplatte verwendet wird. Bei bevorzugten Ausführungsformen der Erfindung wird bei diesem Verfahren ein elektro- chemischer Energiespeicher temperiert, d.h. gekühlt oder erwärmt, indem seine elektrischen Kontakte in einen wärmeleitenden Kontakt mit einer erfindungsgemäßen Wärmeleitplatte gebracht werden. lm Folgenden wird die Erfindung anhand bevorzugter Ausführungsbeispiele und mit Hilfe der Figuren näher beschrieben. Dabei zeigt
Figur 1 in schematischer Weise ein bevorzugtes Beispiel einer erfindungsgemäßen Wärmeleitplatte in Draufsicht; Figur 2 in schematischer Weise ein bevorzugtes Ausführungsbeispiel einer erfindungsgemäßen Wärmeleitplatte in perspektivischer Seitenansicht;
Figur 3 in schematischer Weise ein bevorzugtes Ausführungsbeispiel einer erfindungsgemäßen Wärmeleitplatte in perspektivischer Seitenansicht und
Figur 4, bestehend aus den Figuren 4a bis 4e in schematischer Weise ein bevorzugtes Ausführungsbeispiel einer erfindungsgemäßen Wärmeleitplatte in einer Explosionsdarstellung. Wie in der Figur 1 schematisch gezeigt wird, ist die Wärmeleitplatte 1 mit einem Netz von Strömungskanälen 2 ausgestattet. Ein Fluid strömt durch den Einlass 3 in die Verteilerkanäle 6 und erreicht auf diesem Wege die zu temperierenden Zonen 5, in denen das Fluid Wärme mit seiner Umgebung austauscht. Daraufhin wird das Fluid in den Sammelkanälen 7 gesammelt und verlässt das Netz von Strömungskanälen durch den Auslass 4.
Figur 2 zeigt die gleiche Anordnung in einer perspektivischen Seitenansicht. Erkennbar ist die Anordnung der Verteilerkanäle 6 in einer oberen Ebene, die über vertikal verlaufende Strömungskanäle mit den Sammelkanälen 7 in einer unte- ren Ebene verbunden sind. Die Darstellungen in den Figuren 1 und 2 sind zumindest teilweise nur schematisch zu interpretieren. So können die Verteilerkanäle 6 und die Sammelkanäle auch andere baumartige Strukturen aufweisen, deren Teilstücke weder geradlinig noch horizontal
oder vertikal verlaufen müssen.
Die Erfindung ist nicht auf die gezeigten Ausführungsbeispiele beschränkt und beruht auf dem allgemeineren Gedanken, ein Fluid über eine baumartige Struktur von Verteilern den zu temperierenden Zonen 5 einer Wärmeleitplatte zuzuführen und das Fluid in diesen zu temperierenden Zonen 5 mit Hilfe einer baumartigen Struktur von Sammelkanälen 7 wieder zu sammeln. Insofern macht sich die Erfindung ein von menschlichen oder tierischen Blutkreisläufen bekanntes Prinzip zunutze, wobei eine Arterie sich zunehmend verzweigt, bis die Gefäße in ein Kapillarsystem übergehen, das den Organismus gleichmäßig oder nach physiologischen Anforderungen durchzieht.
Die vorstehend und nachstehend beschriebenen Ausführungsbeispiele können auch vorteilhaft miteinander kombiniert werden.
Die Erfindung sieht eine Wärmeleitplatte 1 mit einem Netz von Strömungskanälen 2 vor, mit wenigstens einem Einlass 3 und wenigstens einem Auslass 4 für ein Fluid. Die Strömungskanäle sind in der Wärmeleitplatte 1 derart angeordnet, dass ein Fluid, welches an dem wenigstens einen Einlass 3 in das Netz von
Strömungskanälen 2 einströmt, eine Anordnung von zu temperierenden Zonen 5 der Wärmeleitplatte 1 durchströmen und anschließend an dem wenigstens einen Auslass 4 aus dem Netz von Strömungskanälen 2 ausströmen kann. Die Strömungskanäle sind in wenigstens zwei Ebenen übereinander angeordnet. Das Netz von Strömungskanälen 2 umfasst eine in wenigstens einer ersten Ebene angeordnete, baumartige Struktur von Verteilerkanälen 6, die von dem wenigstens einen Einlass 3 in das Netz von Strömungskanälen 2 ausgehend, ein Fluid zu den zu temperierenden Zonen 5 der Wärmeleitplatte 1 leiten. Das Netz von Strömungskanälen 2 umfasst eine in wenigstens einer zweiten Ebene angeordnete baumartige Struktur von Sammelkanälen 7, die ein Fluid in den zu temperierenden Zonen 5 der Wärmeleitplatte 1 aus den Verteilerkanälen 6 auf- nehmen und zu dem wenigstens einen Auslass 4 aus dem Netz von Strömungskanälen 2 leiten.
Außerdem ist auch ein Verfahren zum Transport von Wärme, beispielsweise zur Kühlung oder zur Erwärmung einer Fahrzeugbatterie, vorgesehen, bei dem eine erfindungsgemäße Wärmeleitplatte 1 verwendet wird. Schließlich ist erfindungsgemäß auch ein elektrochemischer Energiespeicher vorgesehen, der mit Hilfe eines erfindungsgemäßen Verfahrens temperiert wird oder dessen elektrische Kontakte wenigstens teilweise mit wenigstens einer erfindungsgemäßen Wär- meleitplatte 1 in wärmeleitenden Kontakt stehen. Unter einer Wärmeleitplatte 1 ist in diesem Zusammenhang ein wärmeleitender Körper zu verstehen, der aufgrund seiner Form oder seiner Materialbeschaffenheit und vorzugsweise auch aufgrund seiner konstruktiven Eigenschaften geeignet ist, Wärme von wenigstens einer Wärmequelle zu wenigstens einer Wärmesenke zu transportieren.
Die erfindungsgemäße Wärmeleitplatte 1 weist eine Anordnung von zu temperierenden Zonen 5 auf, die so von den Strömungskanälen 2 durchzogen sind, dass das durch die Strömungskanäle fließende Fluid diese zu temperierenden Zonen 5 durchströmt, überströmt oder unterströmt. Diese zu temperierenden Zonen 5 können die Wärmeleitplatte 1 ganz oder teilweise überdecken; insbesondere kann diese Anordnung der zu temperierenden Zonen 5 auch aus einer einzigen zu temperierenden Zone bestehen, welche die Wärmeleitplatte 1 ganz oder teilweise überdeckt. Auf den beiden Seiten der Wärmeleitplatte 1 können die zu temperierenden Zonen 5 in unterschiedlicher weise angeordnet sein.
Die Strömungskanäle sind in der Wärmeleitplatte 1 in zwei übereinander oder untereinanderliegenden Ebenen angeordnet. Diese Ebenen liegen, wie in den Figuren schematisch dargestellt, vorzugsweise im Wesentlichen parallel zu den beiden im Wesentlichen parallel liegenden großen äußeren Begrenzungsflächen der im Wesentlichen plattenförmigen Wärmeleitplatte 1. Das in den Figuren 1 und 2 gezeigte Netz von Strömungskanälen 2 umfasst eine in wenigstens einer ersten Ebene angeordnete baumartige Struktur von Verteilerkanälen 6, die von einen Einlass 3 in das Netz von Strömungskanälen 2 ausgehend ein Fluid zu dem zu temperierenden Zonen 5 der Wärmeleitplatte 1 leiten. Eine erfindungsgemäße Wärmeleitplatte 1 kann auch eine Mehrzahl von vorzugsweise baumartigen Strömungskanalnetzen enthalten, die von unterschiedlichen Fluiden mit unterschiedlichen physikalischen Eigenschaften, insbesondere Wärmetransporteigenschaften durchströmt werden können.
Das die Strömungskanäle durchströmende Fluid kann vorzugsweise während des Durchströmens der Strömungskanäle auch seinen Aggregatzustand ändern, insbesondere von der flüssigen in die gasförmige Phase übergehen, also verdampfen und seiner Umgebung so Wärme entziehen, oder umgekehrt, von der gasförmigen in die flüssige Phase übergehen, also kondensieren, und auf diese Weise seiner Umgebung Wärme zuführen. Vorzugsweise können diese Phasenübergänge in verschiedenen Bereichen des Netzes von Strömungskanälen 2 auch zeitlich nebeneinander ablaufen. Beispielsweise kann das Fluid in den Verteilerkanälen 6 verdampfen und in den Sammlerkanälen kondensieren oder, umgekehrt, in den Verteilerkanälen 6 kondensieren und in den Sammlerkanälen verdampfen, je nachdem, welche Zonen 5 zu kühlen oder zu erwärmen sind. Bei anderen Ausführungsformen kann eine Verdampfung in einem Teil der Zonen 5 ablaufen, während eine Kondensation in einem anderen Teil der Zonen 5 stattfindet.
Die in den Figuren 1 und 2 gezeigte baumartige Struktur von Verteilerkanälen 6 ist so ausgestaltet, dass sie das Fluid, welches in den wenigstens einen Einlass 3 in das Netz von Strömungskanälen 2 eintritt, in der vom Anwender gewünschten Weise so in dem Netz von Strömungskanälen 2 verteilt, dass die einzelnen zu temperierenden Zonen 5 gleichmäßig oder in Abhängigkeit von der Stärke der in ihrem Bereich befindlichen Wärmesenken oder Wärmequellen von dem Fluid durchströmt, überströmt oder unterströmt werden.
Wie in den Figuren 1 und 2 gezeigt, sind die baumartigen Strukturen des Netzes in zwei Ebenen mit dem Vorteil verbunden, dass die Strömungskanäle sehr fle- xibel nach Maßgabe der jeweiligen Anforderungen der zugrundeliegenden Anwendung verlaufen können, wogegen bei einer Anordnung in nur einer Ebene sich Beschränkungen durch die Unmöglichkeit von sich kreuzenden Strömungskanälen 2 ergeben würden.
Vorzugsweise sind in einigen der zu temperierenden Zonen 5 auf wenigstens einer Seite der Wärmeleitplatte 1 in den Figuren nicht gezeigte Wärmekontaktflächen vorgesehen, die durch ihre Form, Anordnung oder durch ihre Materialbeschaffenheit zur Herstellung eines wärmeleitenden Kontakts der Wärmeleit- platte 1 mit einer Wärmesenke oder mit einer Wärmequelle eingerichtet sind. Derartige Wärmekontaktflächen können vorzugsweise entsprechend geformte, insbesondere geschliffene, in den Figuren nicht gezeigte Flächen innerhalb oder außerhalb einer der beiden im Wesentlichen parallelen äußeren Wandflächen der Wärmeleitplatte 1 sein, die so geformt und angeordnet sind, dass sie eine wärmeleitende Kontaktierung der Wärmeleitplatte 1 mit entsprechenden Kontaktflächen der Wärmesenken oder Wärmequellen unterstützen.
Die Figur 3 zeigt in schematischer Weise ein bevorzugtes Ausführungsbeispiel einer erfindungsgemäßen Wärmeleitplatte 1 , deren Einzelheiten in der als Exp- losionsdarstellung ausgeführten Figur 4, bestehend aus den Teilfiguren 4a, 4b, 4c, 4d und 4e dargestellt sind. Diese Wärmeleitplatte 1 besteht aus der in Figur 4e gezeigten Bodenplatte 419, aus den darüber angeordneten, in den Figuren 4b, 4c und 4d gezeigten Platten 417, 414 und 412, wobei die Platte 417 die Kanalplatte, die Platte 414 die Schichtwechselplatte und die Platte 412 die Vertei- lerplatte ist, und aus der in der Figur 4a gezeigten Deckplatte 407, auf die der Anschlussflansch 401 mit den Anschluss-Stutzen 402 und 403 aufgesetzt ist.
Das Fluid durchströmt die Wärmeleitplatte 1 in einem Netz von Strömungskanälen mit wenigstens einem Einlass 408 und wenigstens einem Auslass 409 für das Fluid. Die Strömungskanäle 411 , 416 sind in der Wärmeleitplatte 407, 412, 414, 417 und 419 derart angeordnet, dass ein Fluid, welches an dem wenigstens einen Einlass 408 in das Netz von Strömungskanälen einströmt, eine An- ordnung von zu temperierenden Zonen der Wärmeleitplatte 1 durchströmen und anschließend an dem wenigstens einen Auslass 409 aus dem Netz von Strömungskanälen ausströmen kann. Die Strömungskanäle 411 , 416 sind in wenigstens zwei Ebenen 412 in Fig. 4b und 417 in Fig. 4d übereinander angeordnet. Das Netz von Strömungskanälen umfasst eine in wenigstens einer ersten Ebene angeordnete, baumartige Struktur von Verteilerkanälen 411 , die von dem wenigstens einen Einlass 409 in das Netz von Strömungskanälen ausgehend, ein Fluid zu den zu temperierenden Zonen der Wärmeleitplatte 1 leiten. Das Netz von Strömungskanälen umfasst eine in wenigstens einer zweiten Ebene ange- ordnete baumartige Struktur von Sammelkanälen 416, die ein Fluid in den zu temperierenden Zonen der Wärmeleitplatte 1 aus den Verteilerkanälen 411 aufnehmen und zu dem wenigstens einen Auslass 409 aus dem Netz von Strömungskanälen leiten. Das Fluid fließt dabei von dem Anschluss-Stutzen 403 des Anschluss-Flansches 401 über den Auslass 405 des Anschluss-Flansches 401 durch den Einlass 408 der Deckplatte in den Verteilerkanal 411 der Verteilerplatte. An den Enden des Verteilerkanals 411 tritt das Fluid durch die Ausnehmungen 415 der Schichtwechselplatte 414 in die Sammelkanäle 416 ein, von wo es durch die Ausneh- mungen 413, 410 und 409 über den Auslass 404 des Anschluss-Flansches 401 und durch den Anschluss-Stutzen 402 aus der Wärmeleitplatte 1 austritt. Die einzelnen Teilplatten sind vorzugsweise an den Ausnehmungen 406 und 418 miteinander verschraubt.

Claims

Patentansprüche
Wärmeleitplatte (1) mit einem Netz von Strömungskanälen (2), wenigstens einem Einlass (3) und wenigstens einem Auslass (4) für ein Fluid, wobei die Strömungskanäle (2) derart angeordnet sind, dass ein Fluid, welches an dem wenigstens einen Einlass (3) in das Netz von Strömungskanälen (2) einströmt, eine Anordnung von zu temperierenden Zonen (5) der Wärmeleitplatte (1) durchströmen und anschließend an dem wenigstens einen Auslass (4) aus dem Netz von Strömungskanälen ausströmen kann, dadurch gekennzeichnet, dass
- die Strömungskanale (2) in wenigstens zwei Ebenen übereinander angeordnet sind,
- das Netz von Strömungskanälen (2) eine in wenigstens einer ersten Ebene angeordnete, baumartige Struktur von Verteilerkanälen (6) um- fasst, die von dem wenigstens einen Einlass (3) in das Netz von Strömungskanälen (2) ausgehend ein Fluid zu den zu temperierenden Zonen (5) der Wärmeleitplatte (1) leiten, und dass
- das Netz von Strömungskanälen (2) eine in wenigstens einer zweiten Ebene angeordnete, baumartige Struktur von Sammelkanälen (7) um- fasst, die ein Fluid in den zu temperierenden Zonen (5) der Wärmeleitplatte (1) aus den Verteilerkanälen (6) aufnehmen und zu dem wenigstens einem Auslass (4) aus dem Netz von Strömungskanälen (2) leiten.
Wärmeleitplatte (1) nach Anspruch 1 , dadurch gekennzeichnet, dass in wenigstens einigen der zu temperierenden Zonen (5) auf wenigstens einer Seite der Wärmeleitplatte (1) Wärmekontaktflächen vorgesehen sind, die durch ihre Form, Anordnung oder ihre Materialbeschaffenheit zur Herstellung eines wärmeleitenden Kontakts der Wärmeleitplatte (1) mit einer Wärmesenke oder mit einer Wärmequelle eingerichtet sind. Wärmeleitplatte (1) nach Anspruch 2, dadurch gekennzeichnet, dass die Wärmekontaktflächen einer von wenigstens zwei Gruppen von Wärmekontaktflächen angehören, die gegeneinander und gegenüber der restlichen Wärmeleitplatte (1) elektrisch isoliert aber wenigstens mit der restlichen Wärmeleitplatte (1) gut wärmeleitend verbunden sind.
Wärmeleitplatte (1) nach Anspruch 3, dadurch gekennzeichnet, dass die Wärmekontaktflächen innerhalb einer Gruppe untereinander elektrisch leitend verbunden sind.
Wärmeleitplatte (1) nach Anspruch 2, dadurch gekennzeichnet, dass wenigstens eine Wärmekontaktfläche mit einer Wärmesenke oder mit einer Wärmequelle über eine zwischen der wenigstens einen Wärmekontaktfläche und einer Wärmesenke oder einer Wärmequelle angeordneten elektrisch isolierenden Wärmeleitfolie oder elektrisch isolierenden Wärmeleitpaste in einem wärmeleitenden Kontakt steht.
Wärmeleitplatte (1) nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass Strukturen zur Anbringung von Befestigungsmitteln vorgesehen sind, mit deren Hilfe wenigstens eine Wärmekontaktfläche an eine Wärmesenke oder an eine Wärmequelle angepresst werden kann.
Wärmeleitplatte (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Strömungskanäle (2) wenigstens teilweise aus einem elektrisch isolierenden aber gut wärmeleitenden Material gebildet sind.
Verfahren zum Transport von Wärme, bei dem eine Wärmeleitplatte (1) nach einem der vorhergehenden Ansprüche verwendet wird.
Verfahren nach Anspruch 8, bei dem ein elektrochemischer Energiespeicher temperiert wird, indem seine elektrischen Kontakte in einem wärme- leitenden Kontakt mit einer Wärmeleitplatte (1) nach einem der Ansprüche 1 bis 5 gebracht werden.
Elektrochemischer Energiespeicher, der mit Hilfe eines Verfahrens nach Anspruch 9 temperiert wird.
Elektrochemischer Energiespeicher mit elektrischen Kontakten, von denen wenigstens einige mit wenigstens einer Wärmeleitplatte (1) nach einem der Ansprüche 1 bis 7 in wärmeleitendem Kontakt stehen.
Elektrochemischer Energiespeicher nach Anspruch 11 mit einer Mehrzahl von elektrochemischen Zellen, dessen elektrische Kontakte über elektrisch leitfähige Strukturen wenigstens einer Wärmeleitplatte (1) derart verbunden sind, dass die elektrochemischen Zellen zu einer Reihen- und/oder Parallelschaltung von Zellen zusammengeschaltet sind.
PCT/EP2011/003828 2010-08-12 2011-07-29 Wärmeleitplatte mit einem netz von strömungskanälen, verfahren zum transport von wärme und elektrochemischer energiespeicher WO2012019719A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013523515A JP2013535840A (ja) 2010-08-12 2011-07-29 流路のネットワークを有する熱伝導板、熱輸送方法、電気化学エネルギー貯蔵装置
CN2011800394101A CN103069642A (zh) 2010-08-12 2011-07-29 具有流通道的网的导热板,输送热量的方法和电化学能量储存器
EP11748264.6A EP2603948A1 (de) 2010-08-12 2011-07-29 Wärmeleitplatte mit einem netz von strömungskanälen, verfahren zum transport von wärme und elektrochemischer energiespeicher
KR1020137005952A KR20130097745A (ko) 2010-08-12 2011-07-29 유동 채널들의 네트워크를 가진 열 전도성 플레이트, 열 전달 방법 및 전기 화학적 에너지 저장기
US13/814,880 US20130196207A1 (en) 2010-08-12 2011-07-29 Thermally conductive plate having a network of flow channels, method for transport of heat and electrochemical energy store

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010034082.0 2010-08-12
DE201010034082 DE102010034082A1 (de) 2010-08-12 2010-08-12 Wärmeleitplatte mit einem Netz von Strömungskanälen, Verfahren zum Transport von Wärme und elektrochemischer Energiespeicher

Publications (1)

Publication Number Publication Date
WO2012019719A1 true WO2012019719A1 (de) 2012-02-16

Family

ID=44509170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/003828 WO2012019719A1 (de) 2010-08-12 2011-07-29 Wärmeleitplatte mit einem netz von strömungskanälen, verfahren zum transport von wärme und elektrochemischer energiespeicher

Country Status (7)

Country Link
US (1) US20130196207A1 (de)
EP (1) EP2603948A1 (de)
JP (1) JP2013535840A (de)
KR (1) KR20130097745A (de)
CN (1) CN103069642A (de)
DE (1) DE102010034082A1 (de)
WO (1) WO2012019719A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150144314A1 (en) * 2013-11-22 2015-05-28 Ford Global Technologies, Llc Coupling for electric vehicle battery pack

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014203846A1 (de) 2014-03-03 2015-09-03 MAHLE Behr GmbH & Co. KG Anordnung mit einer elektrischen Komponente und einem Wärmetauscher
CN109195406B (zh) * 2018-08-28 2020-04-10 中国科学院理化技术研究所 一种热沉装置
US20230413471A1 (en) * 2022-06-17 2023-12-21 Frore Systems Inc. Mems based cooling systems having an integrated spout

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008034869A1 (de) 2008-07-26 2009-06-18 Daimler Ag Batterie mit mehreren einen Zellenverbund bildenden Batteriezellen
DE102008014155A1 (de) * 2008-03-14 2009-09-17 Magna Steyr Fahrzeugtechnik Ag & Co. Kg Modulares Batteriesystem mit Kühlsystem
DE102008027293A1 (de) 2008-06-06 2009-12-10 Behr Gmbh & Co. Kg Vorrichtung zur Kühlung einer Fahrzeugbatterie
DE102008034868A1 (de) 2008-07-26 2010-01-28 Daimler Ag Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte zum Temperieren der Batterie
DE102008034885A1 (de) * 2008-07-26 2010-01-28 Daimler Ag Kühlvorrichtung für eine Batterie mit mehreren Batteriezellen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100658715B1 (ko) * 2004-10-28 2006-12-15 삼성에스디아이 주식회사 전지 모듈
KR100937902B1 (ko) * 2005-10-21 2010-01-21 주식회사 엘지화학 전지팩 냉각 시스템
KR100948003B1 (ko) * 2006-02-27 2010-03-18 주식회사 엘지화학 우수한 냉각 효율성의 중대형 전지팩
JP2007242266A (ja) * 2006-03-06 2007-09-20 Canon Inc 燃料電池装置、および燃料電池の運転方法
KR100938626B1 (ko) * 2006-12-30 2010-01-22 주식회사 엘지화학 냉매 유량의 분배 균일성이 향상된 중대형 전지팩 케이스
US8263250B2 (en) * 2007-06-18 2012-09-11 Tesla Motors, Inc. Liquid cooling manifold with multi-function thermal interface
US8231996B2 (en) * 2008-02-15 2012-07-31 Atieva Usa, Inc Method of cooling a battery pack using flat heat pipes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008014155A1 (de) * 2008-03-14 2009-09-17 Magna Steyr Fahrzeugtechnik Ag & Co. Kg Modulares Batteriesystem mit Kühlsystem
DE102008027293A1 (de) 2008-06-06 2009-12-10 Behr Gmbh & Co. Kg Vorrichtung zur Kühlung einer Fahrzeugbatterie
DE102008034869A1 (de) 2008-07-26 2009-06-18 Daimler Ag Batterie mit mehreren einen Zellenverbund bildenden Batteriezellen
DE102008034868A1 (de) 2008-07-26 2010-01-28 Daimler Ag Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte zum Temperieren der Batterie
DE102008034885A1 (de) * 2008-07-26 2010-01-28 Daimler Ag Kühlvorrichtung für eine Batterie mit mehreren Batteriezellen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150144314A1 (en) * 2013-11-22 2015-05-28 Ford Global Technologies, Llc Coupling for electric vehicle battery pack
US11028947B2 (en) * 2013-11-22 2021-06-08 Ford Global Technologies, Llc Coupling for electric vehicle battery pack

Also Published As

Publication number Publication date
JP2013535840A (ja) 2013-09-12
DE102010034082A1 (de) 2012-02-16
EP2603948A1 (de) 2013-06-19
CN103069642A (zh) 2013-04-24
KR20130097745A (ko) 2013-09-03
US20130196207A1 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
DE102008059952B4 (de) Batterie mit mehreren parallel und/oder seriell miteinander elektrisch verschalteten Batteriezellen und einer Kühlvorrichtung und Verwendung einer Batterie
DE102011109286B4 (de) Batteriesatz
DE102011118686B4 (de) Batterie mit aktiv gekühlter Stromschiene, Verfahren zur Kühlung der Stromschiene, Verwendung der Batterie, Fahrzeug und Stromschiene
DE102011107075B4 (de) Batteriemodul
DE102014001975A1 (de) Batterie für ein Kraftfahrzeug, Kraftfahrzeug und Verfahren zur Herstellung einer Batterie für ein Kraftfahrzeug
DE112016003876T5 (de) Wärmetauscher für zweiseitige Kühlung
WO2011057815A1 (de) Batteriegehäuse zur aufnahme von elektrochemischen energiespeichereinrichtungen
WO2013006878A1 (de) Kühl-/heiz-vorrichtung
DE102011084536B4 (de) Kühleinrichtung für einen elektrischen Energiespeicher und Energiespeichervorrichtung
EP2564462A1 (de) Batterie mit einer kühlplatte und kraftfahrzeug mit einer entsprechenden batterie
DE102013218489A1 (de) Batteriemodul und Batteriepack
EP2603948A1 (de) Wärmeleitplatte mit einem netz von strömungskanälen, verfahren zum transport von wärme und elektrochemischer energiespeicher
DE102012218082A1 (de) Trägerelement für eine elektrische Energiespeicherzelle mit Kühlkanälen mit einem nicht kreisförmigen Querschnitt, elektrischer Energiespeicher und Herstellverfahren für ein Trägerelement
EP3328678A1 (de) Traktionsbatterie für ein kraftfahrzeug mit einer kühlvorrichtung
EP2994295B1 (de) Wärmeleitfähige kunststoffbauteile mit erhöhter wärmeleitung in dickenrichtung
DE102011080975A1 (de) Batteriemodul mit Luftkühlung sowie Kraftfahrzeug
DE102010029079A1 (de) Kühlvorrichtung und Verfahren zum Herstellen einer Kühlvorrichtung
DE102017221347A1 (de) Hybridbauteil mit Temperierraum
DE112015001249B4 (de) Thermoelektrische Anordnung und Verfahren zum Zusammensetzen einer thermoelektrischen Anordnung
AT520154B1 (de) Akkumulator
DE102014202549A1 (de) Elektrische Energiespeichereinrichtung und Verfahren zum Entwärmen einer elektrischen Energiespeichereinrichtung
EP2697843A1 (de) Akkupack mit einer kühlvorrichtung
DE102016123697A1 (de) Druckeinrichtung für eine leistungselektronische Schalteinrichtung, Schalteinrichtung und Anordnung hiermit
DE102015217790A1 (de) Anordnung zur Kühlung von Batteriezellen eines Antriebsenergiespeichers eines Kraftfahrzeuges
DE102020008153A1 (de) Leistungselektronisches System mit einer Schalteinrichtung und mit einer Flüssigkeitskühleinrichtung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180039410.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11748264

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523515

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011748264

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137005952

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13814880

Country of ref document: US