WO2012019398A1 - 上行控制信令发送、上行解调参考信号的承载方法及装置 - Google Patents

上行控制信令发送、上行解调参考信号的承载方法及装置 Download PDF

Info

Publication number
WO2012019398A1
WO2012019398A1 PCT/CN2010/079084 CN2010079084W WO2012019398A1 WO 2012019398 A1 WO2012019398 A1 WO 2012019398A1 CN 2010079084 W CN2010079084 W CN 2010079084W WO 2012019398 A1 WO2012019398 A1 WO 2012019398A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
uplink control
control signaling
ofdm symbols
slot
Prior art date
Application number
PCT/CN2010/079084
Other languages
English (en)
French (fr)
Inventor
杨维维
梁春丽
戴博
喻斌
朱鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020127033867A priority Critical patent/KR101428357B1/ko
Priority to EP10855819.8A priority patent/EP2530895A4/en
Priority to US13/581,320 priority patent/US9350575B2/en
Priority to JP2013523463A priority patent/JP2013539269A/ja
Priority to RU2012146852/08A priority patent/RU2532722C2/ru
Priority to BR112012027161-0A priority patent/BR112012027161B1/pt
Priority to MX2012012065A priority patent/MX2012012065A/es
Publication of WO2012019398A1 publication Critical patent/WO2012019398A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to a transmission technology for uplink control signaling, and in particular, to a method and a device for transmitting uplink control signaling in a carrier aggregation system, and a method and a device for carrying an uplink demodulation reference signal when uplink control signaling is transmitted.
  • Background technique
  • the codeword sent by the originator can not only detect errors but also have certain error correction capability.
  • the receiver decoder After receiving the codeword, the receiver decoder first checks the error condition. If the error correction capability of the codeword is within, the error correction is automatically performed. If there are many errors, the error correction capability of the codeword is exceeded, but the error can be detected. Then, the receiving end sends a decision signal to the sending end through the feedback channel, and requests the originating end to resend the information.
  • Orthogonal Frequency Division Multiplex OFDM
  • ACK/NACK Acknowledged / Non-acknowledged
  • control signaling is used to indicate the correct/error of the transmission, so as to determine whether it is needed. Retransmission.
  • FIG. 1 is a schematic structural diagram of a basic frame structure in an LTE system according to the related art. As shown in FIG. 1, FIG. 1 shows an LTE system.
  • Basic frame structure the frame structure is divided into five levels of radio frame, half frame, sub-frame, time slot and symbol, wherein one radio frame has a length of 10 ms, and one radio frame is composed of two fields, each field The length is 5ms, one field consists of 5 subframes, each subframe has a length of 1ms, and one subframe consists of two time slots, each of which has a length of 0.5ms.
  • one slot contains seven uplink/downlink symbols of length 66.7 s, wherein the cyclic prefix length of the first symbol is 5.21 ⁇ ⁇ , and the cyclic prefix length of the other six symbols is 4.69 s.
  • one slot contains six uplink/downlink symbols of length 66.7 s, wherein the cyclic prefix length of each symbol is 16.67 ⁇ ⁇ .
  • an ACK/NACK message is sent on a Physical Downlink Shared Channel (PDSCH), when the user equipment (UE, User Equipment) does not have a Physical Uplink Shared Channel (PUSCH) , is sent on the Physical Uplink Control Channel (PUCCH).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the LTE system defines a plurality of PUCCH formats, including PUCCH format 1/1 a/lb and format 2/2a/2b, where format 1 is used to send a scheduling request (SR, Scheduling Request) signal of the UE, format la And lb are respectively used to feed back a 1-bit ACK/NACK message and a 2-bit ACK/NACK message, and format 2 is used to transmit channel state information (CSI, Channel States Information), where CSI includes channel quality information (CQI, Channel Quality) Information ), Precoding matrix indicator (PMI, Precoding matrix indicator) and rank indication information (RI, Rank Indication), format 2a is used to send CSI and 1-bit ACK/NACK message, format 2b is used to send CSI information and 2 bits.
  • the ACK/NACK message, format 2a/2b is only used for scenarios where the cyclic prefix is a regular cyclic prefix.
  • the UE In the LTE system, in the frequency division duplex (FDD) system, since the uplink and downlink subframes are corresponding, when the PDSCH contains only one transport block, the UE needs to feed back 1-bit ACK/NACK. The message, when the PDSCH contains two transport blocks, the UE needs to feed back 2-bit ACK/NACK messages, in the Time Division Duplex (TDD) system, because the uplink and downlink subframes are not corresponding, that is, The ACK/NACK message corresponding to the multiple downlink subframes needs to be sent on the PUCCH channel of one uplink subframe, where the downlink subframe set corresponding to the uplink subframe constitutes a bundling window.
  • TDD Time Division Duplex
  • the basic idea of the method is to use the ACK/NACK of the transport block corresponding to each downlink subframe that needs to be fed back in the uplink subframe. The message is logically ANDed. If a downlink subframe has 2 transport blocks, the UE needs to feed back a 2-bit ACK/NACK message. If each subframe has only one transport block, the UE should feed back a 1-bit ACK/NACK message.
  • a method of multiplexing with channel selection the basic idea of which is to use different PUCCH channels and different modulation symbols on the channel to indicate different feedback states of downlink subframes that need to be fed back in the uplink subframe. If there are multiple transport blocks on the downlink subframe, the ACK/NACK fed back by the multiple transport blocks of the downlink subframe is logically AND (also called spatial bundling), then channel selection is performed, and then sent using PUCCH formatlb.
  • uplink reference signals there are two kinds of uplink reference signals: one is an uplink demodulation reference signal (DM RS, Demodulation Reference Signal); one is an uplink measurement reference signal (SRS), and the DM RS is in the frequency domain.
  • DM RS uplink demodulation reference signal
  • SRS uplink measurement reference signal
  • CS Cyclic Shift
  • the LTE-A Long Term Evolution Advanced
  • CA Carrier Aggregation
  • LTE-A uses carrier aggregation technology
  • the UE when the UE configures 4 downlink component carriers, The UE needs to feed back the ACK/NACK of the four downlink component carriers. If the UE needs to feed back the ACK/NACK of each codeword in the case of Multiple Input Multiple Output (MIMO), when the UE configures 4 downlink component carriers, the UE needs to feed back 8 ACK/NACKs.
  • MIMO Multiple Input Multiple Output
  • ACK/NACK message feedback For LTE-A terminals: If up to 4-bit ACK/NACK messages are supported, channel selection multiplexing method is used; if feedback of more than 4 bits ACK/NACK messages is supported, use The method of Discrete Fourier Transform Extended Orthogonal Frequency Division Multiplexing (DFT-s-OFDM) structure does not of course exclude other uplink control signaling using DFT-s-OFDM structure transmission. However, the current LTE-A system does not provide a specific method for transmitting uplink control signaling using the DFT-s-OFDM structure and the position and number of uplink reference signals in the structure. Summary of the invention
  • the main purpose of the present invention is to provide a method and an apparatus for transmitting uplink control signaling, and a method and a device for carrying an uplink demodulation reference signal when uplink control signaling is sent, which effectively solves uplink control signaling.
  • a method for transmitting uplink control signaling includes:
  • OFDM Orthogonal Frequency Division Multiplexing
  • performing channel coding on the uplink control signaling is specifically:
  • the code is coded by a tail-biting convolutional code method with a constraint length of 7 and a code rate of 1/3; otherwise, the code is coded by a linear block code.
  • the coded length is related to whether two time slots in one subframe carry the same information. Specifically, when two time slots in one subframe carry the same information, the uplink control signaling code The subsequent length is 12xQm; otherwise, the encoded length is 24xQm, where Qm is the corresponding modulation order.
  • the scrambling of the uplink control signaling is specifically:
  • the modulo 2 operation is performed to obtain a scrambled sequence; wherein the scrambling code sequence is composed of a pseudo-random sequence; preferably Modulating the uplink control signaling is specifically:
  • the modulated uplink control signaling is modulated by a QPSK modulation scheme.
  • performing time domain extension on the uplink control signaling is specifically:
  • the orthogonal sequence is a Discrete Cosine Transform (DFT) sequence, or a Walsh sequence, or a constant envelope zero autocorrelation (CAZAC, Const Amplitude Zero Auto Corelation) sequence, or a DFT sequence, a Walsh sequence, or a spread sequence of a CAZAC sequence; the length of the orthogonal sequence is used to carry uplinks in one time slot The number of OFDM symbols that control signaling.
  • DFT Discrete Cosine Transform
  • CDAZAC constant envelope zero autocorrelation
  • CAZAC Const Amplitude Zero Auto Corelation
  • performing precoding transformation on the uplink control signaling is specifically:
  • the OFDM symbol used for carrying the uplink control signaling is an OFDM symbol except for the OFDM symbol occupied by the uplink reference signal in one subframe.
  • the method further includes:
  • the uplink control signaling and the SRS are carried in one subframe, the uplink control signaling or the uplink demodulation reference signal is not carried on the last OFDM symbol of the second slot of the subframe.
  • the uplink control signaling is ACK/NACK information or channel state information (CSI, Channel State Information) of the uplink feedback.
  • CSI Channel State Information
  • a method for carrying a demodulation reference signal when transmitting uplink control signaling includes: The demodulation reference signal is carried on k OFDM symbols per slot.
  • the method further includes:
  • the demodulation reference signal is carried on the k OFDM symbols of each time slot, specifically: in the subframe of the normal cyclic prefix, the three demodulation reference signals in each time slot are respectively carried in the second , the third, the sixth OFDM symbol; or respectively carried on the 0th, 3rd, 6th OFDM symbols; or respectively carried on the 1st, 3rd, 5th OFDM symbols;
  • the two demodulation reference signals in each slot are respectively carried on the 0th and 5th OFDM symbols; or are respectively carried on the 0th, 6th OFDM symbols. Or, respectively, carried on the first and fifth OFDM symbols; or, respectively, on the second and third OFDM symbols; or, respectively, on the second and fifth OFDM symbols;
  • two demodulation reference signals in each slot are respectively carried on the 0th and 5th OFDM symbols; or are respectively carried on the 0th, 4th OFDM symbols. Or, respectively, carried on the second, third OFDM symbol; or, respectively, carried on the first or fourth OFDM symbol; or, respectively, carried on the second, fifth OFDM symbol;
  • one demodulation reference signal in each slot is carried on the second OFDM symbol; or, is carried on the third OFDM symbol.
  • the OFDM symbols in each slot are numbered starting from 0.
  • the method further includes:
  • the demodulation reference signals carried on the respective OFDM symbols are the same sequence, or are extended by time domain.
  • the sequence is a computer generated self-generated constant envelope zero autocorrelation (CG-CAZAC, Computer generated-Const Amplitude Zero Auto Corelation) sequence ⁇ 'J.
  • An uplink transmitting apparatus for responding to a message, comprising: a pre-processing unit, a mapping unit, and a transmitting unit;
  • a pre-processing unit configured to perform pre-processing on uplink control signaling
  • mapping unit configured to map the pre-processed uplink control signaling to an OFDM symbol used for carrying uplink control signaling
  • a sending unit configured to send the uplink control signaling.
  • the pre-processing unit further includes a channel coding sub-unit, a scrambling sub-unit, a modulation sub-unit, a time-domain extension sub-unit, and a pre-coding transformation sub-unit;
  • a channel coding subunit configured to perform channel coding on the uplink control signaling
  • a scrambling unit configured to scramble the channel-coded uplink control signaling
  • a modulation sub-unit configured to modulate the scrambled uplink control signaling
  • time domain extension subunit configured to perform time domain extension on the modulated uplink control signaling
  • precoding transformation subunit configured to perform precoding transformation on the uplink control signaling after the time domain extension
  • the precoding transformation subunit further performs precoding transformation on the modulated uplink control signaling; the time domain extension subunit further performs time domain extension on the uplink control signaling after precoding transformation. .
  • the channel coding sub-unit further encodes the bite-tailed convolutional code with a constraint length of 7 and a code rate of 1/3 when the number of bits of the uplink control signaling is greater than 11 bits; Encoding is performed in a linear block code manner.
  • the length of the coded is related to whether two time slots in one subframe carry the same information. Specifically, when two time slots in one subframe carry the same information, the uplink control signaling is encoded. The length is 12xQm; otherwise, the encoded length is 24xQm, where Qm is the corresponding modulation order.
  • the scrambling subunit further adds the scrambling code sequence and the encoded uplink control signaling sequence, and then performs a modulo 2 operation to obtain a scrambled sequence.
  • the code sequence consists of a pseudo-random sequence.
  • the modulation subunit further modulates the uplink control signaling after the addition of the QPSK modulation scheme.
  • the time domain extension subunit further extends the processed uplink control signaling sequence to an OFDM symbol for carrying uplink control signaling by using an orthogonal sequence;
  • the orthogonal sequence is a DFT sequence, or A Walsh sequence, or a CAZAC sequence, or a DFT sequence, a Walsh sequence, or a spread sequence of a CAZAC sequence;
  • the length of the orthogonal sequence is the number of OFDM symbols used to carry uplink control signaling in one slot.
  • the precoding transform subunit further performs a DFT operation on an uplink control signaling sequence on an OFDM symbol used for carrying uplink control signaling.
  • the OFDM symbol used for carrying the uplink control signaling is an OFDM symbol except for the OFDM symbol occupied by the uplink reference signal in one subframe.
  • the mapping unit does not carry uplink control signaling or uplink demodulation reference on the last OFDM symbol of the second time slot of the subframe when the uplink control signaling and the SRS are carried in one subframe. signal.
  • the uplink control signaling is ACK/NACK response information or CSI of uplink feedback.
  • a bearer for demodulating a reference signal when transmitting uplink control signaling includes:
  • the bearer unit is configured to carry the uplink demodulation reference signal on the k OFDM symbols of each time slot.
  • the carrying unit further,
  • the three demodulation reference signals in each slot are respectively carried On the 2nd, 3rd, 6th OFDM symbols; or respectively carried on the 0th, 3rd, 6th OFDM symbols; or respectively carried on the 1st, 3rd, 5th OFDM symbols;
  • the two demodulation reference signals in each slot are respectively carried on the 0th, 5th OFDM symbols; or are respectively carried in the 0th, 6th OFDM symbols. Or; respectively, carried on the first, fifth OFDM symbol; or, respectively, carried on the second, third OFDM symbol; or, respectively, carried on the second, fifth OFDM symbol;
  • two demodulation reference signals in each slot are respectively carried on the 0th, 5th OFDM symbols; or, respectively, carried in the 0th, 4th OFDM symbol Or; respectively, carried on the second, third OFDM symbol; or, respectively, carried on the first or fourth OFDM symbol; or, respectively, carried on the second, fifth OFDM symbol;
  • one demodulation reference signal in each slot is carried on the second OFDM symbol; or, is carried on the third OFDM symbol.
  • the OFDM symbols in each slot are numbered starting from 0.
  • the demodulation reference signals of the respective bearers are the same sequence, or are sequences extended by time domain; the sequence is CG. -CAZAC sequence.
  • the uplink control information to be sent can be smoothly carried on the uplink by the method for transmitting the uplink control signaling designed by the present invention.
  • the specific method for transmitting the uplink control signaling using the DFT-s-OFDM structure and the carrying method of the uplink demodulation reference signal in the structure are effectively solved by using the technical solution of the present invention.
  • FIG. 1 is a schematic structural diagram of a basic frame structure in an LTE system according to related art
  • FIG. 2 is a schematic structural diagram of a precoding process using a tail biting convolutional code method according to the present invention
  • FIG. 3 is a schematic diagram of preprocessing according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic diagram of preprocessing according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic diagram of preprocessing according to Embodiment 4 of the present invention.
  • Embodiment 8 is a schematic diagram of preprocessing according to Embodiment 6 of the present invention.
  • Embodiment 9 is a schematic diagram of preprocessing according to Embodiment 7 of the present invention.
  • FIG. 10 is a schematic diagram of preprocessing according to Embodiment 8 of the present invention.
  • FIG. 11 is a schematic diagram of preprocessing according to Embodiment 9 of the present invention.
  • Embodiment 12 is a schematic diagram of preprocessing according to Embodiment 10 of the present invention.
  • FIG. 13 is a schematic diagram of preprocessing according to Embodiment 11 of the present invention.
  • FIG. 16 is a schematic diagram of preprocessing according to Embodiment 14 of the present invention.
  • FIG. 17 is a schematic diagram of preprocessing according to Embodiment 15 of the present invention.
  • Embodiment 16 of the present invention is a schematic diagram of preprocessing according to Embodiment 16 of the present invention.
  • FIG. 19 is a schematic structural diagram of a device for transmitting an uplink control signaling according to the present invention
  • FIG. 20 is a schematic structural diagram of a bearer device for uplink demodulation reference signals when an uplink control signaling is transmitted according to the present invention.
  • the embodiment of the present invention uses the ACK/NACK response information as an example to illustrate that after the ACK/NACK response information requiring uplink feedback in one subframe is greater than 4 bits, the design of the present invention is The ACK/NACK response information can be successfully carried in the corresponding OFDM symbol in the uplink subframe, so that the uplink feedback can be smoothly performed.
  • the present invention mainly transmits an ACK/NACK message in a DFT-s-OFDM structure.
  • the ACK/NACK message is pre-processed and mapped to N OFDM symbols (refer to an intra-subframe ACK/NACK message).
  • the number of OFDM symbols occupied is transmitted, where the value of N is related to the type of the cyclic prefix and the number of OFDM symbols occupied by the uplink reference signal, and the mapped OFDM symbol position is related to the position of the uplink reference signal.
  • the pre-processing of the ACK/NACK message refers to one of the following two methods: mode one, performing channel coding, scrambling, modulation, time domain spreading, and precoding transformation in sequence; mode two, performing channel coding in sequence , scrambling, modulation, precoding transformation, and time domain expansion.
  • the process of channel coding is: when the number of bits of the ACK/NACK message ⁇ , . . ⁇ that needs to be fed back is greater than 11 bits, the bit length of the constraint length shown in Figure 2 is 7 and the bit rate is 1/3.
  • the convolutional code method is used for encoding; in Figure 2, the signal to be encoded is represented, D is the modulator, 4 is the encoded signal, @ is the interleaving process; in the figure, it is only an exemplary channel coding diagram; the number of bits is less than or equal to 11
  • the bit time is encoded by a linear block code method.
  • the specific coding mode of the linear block code is:
  • indicates the signaling of the feedback, the basic sequence is shown in Table 1 or Table 2 below. May preclude the base sequence in form after the row permutation basic sequence with Table 1 or Table 2, of course, does not exclude other forms of base sequence.
  • time domain extension refers to the use of orthogonal sequences to extend the encoded sequence to the OFDM symbol occupied by the ACK/NACK message in the subframe, and the orthogonal sequence can use the DFT
  • the sequence may also use a Walsh sequence, or a CAZAC sequence, or an extended sequence of each of the above sequences.
  • the length of the sequence is equal to the number of OFDM symbols occupied by the ACK/NACK message in one slot. If the length of the sequence is smaller than the number of OFDM symbols occupied by the ACK/NACK message, any one or more of the sequences may be combined with the original sequence. The sequence length after the combination is satisfied and the number of OFDM symbols occupied by the ACK/NACK message is the same.
  • the precoding transform refers to performing a DFT operation on a modulation sequence on an OFDM symbol.
  • the value of N and the type of cyclic prefix used by the system and the number of OFDM symbols occupied by the uplink reference signal (demodulation reference signal (DM RS) and measurement reference signal (SRS)) are: According to the system, the cyclic prefix is used. The type of the OFDM symbol of the current time slot can be obtained, and the number of OFDM symbols occupied by the uplink reference signal in the time slot can be obtained, and the number of OFDM symbols occupied by the ACK/NACK message in one time slot can be obtained, thereby The number N of OFDM symbols occupied by the ACK/NACK message in one subframe is obtained.
  • DM RS demodulation reference signal
  • SRS measurement reference signal
  • the number of OFDM symbols occupied by the uplink demodulation reference signal in one slot is 3 or 2 or 1, and the number of OFDM symbols occupied by the uplink measurement reference signal is 1.
  • the mapped OFDM symbol position is related to the position of the uplink reference signal, which means that the preprocessed ACK/NACK message is mapped on the OFDM symbol except the position of the uplink reference signal.
  • the number of OFDM symbols occupied by the uplink demodulation reference signal in each slot is 3 or 2
  • the three demodulation reference signals are respectively carried on the second, third, and sixth OFDM symbols of each slot; or They are respectively carried on the 0th, 3rd, and 6th OFDM symbols; or, respectively, on the 1st, 3rd, and 5th OFDM symbols, on the 3 OFDM symbols.
  • the demodulation reference signal may be the same sequence, or it may be obtained by a time domain extension of a sequence.
  • the two demodulation reference signals are respectively carried on the 0th and 5th OFDM symbols of each slot; or, respectively, carried in the 0, on the 6th OFDM symbol; or, respectively, carried on the 1st, 5th OFDM symbols; or, respectively, carried on the 2nd, 3rd OFDM symbols; or, respectively carried in the 2nd On the 5th OFDM symbol; the demodulation reference signals on the 2 OFDM symbols may be the same sequence, or may be obtained by extending a sequence through time domain; for extending the cyclic prefix.
  • the number of OFDM symbols occupied by the uplink demodulation reference signal in each time slot is 2 or 1;
  • the two demodulation reference signals are respectively carried on the 0th and 5th OFDM symbols of each slot; or, respectively, carried in the 0, on the 4th OFDM symbol; or, respectively, carried on the 2nd, 3rd OFDM symbol; or, respectively, carried on the 1st, 4th OFDM symbol; or, respectively carried in the 2nd
  • the demodulation reference signals on the two OFDM symbols may be the same sequence, or may be obtained by time-domain spreading of one sequence; wherein if the uplink demodulation reference signal occupies the OFDM symbols The number is 1, then the one demodulation reference signal is carried on the second OFDM symbol of each slot; or, on the third OFDM symbol;
  • the OFDM symbols in each slot are numbered starting from 0;
  • the sequence used by the above demodulation reference signal is a CG-CAZAC sequence
  • the last OFDM symbol of the second time slot of each subframe is not used to carry the ACK/NACK message or the demodulation reference signal.
  • each slot has one uplink demodulation reference signal, and the other is that each slot has two uplink demodulation reference signals.
  • Example 16 shows the case where there are 3 demodulation reference signals for each slot.
  • 3 to 18 are merely exemplary illustrations of preprocessing of ACK/NACK response information.
  • the OFDM symbol number starts from 0 in the embodiment.
  • the ACK/NACK message to be sent is ⁇ .. ⁇ ; the system uses the regular cyclic prefix; there is no need to send the SRS; the number of OFDM symbols occupied by the DM RS is 2, and the number of OFDM symbols is not continuously distributed in each slot.
  • the ACK/NACK message to be transmitted is C ⁇ q, .. ⁇ , because the number of bits of the ACK/NACK message to be transmitted is 8 bits and each slot carries different control information, then the linear block code is used. Encoded, and the encoded sequence length is 48, the encoded sequence is b 0 , b v ,...b A1 , and the scrambled modulated sequence is ⁇ ,... ⁇ ; because each slot is within The number of OFDM symbols is 7. The number of OFDM symbols occupied by the DM RS is 2 and there is no SRS transmission. Then, the number of OFDM symbols occupied by the ACK/NACK message in each slot is 5, so the Walsh sequence is expanded into a table. The orthogonal sequence shown in 4, then the orthogonal sequence is shown in Table 4: Sequence index orthogonal sequence [ 0) ... W (W S P F UCCH -1)]
  • the ACK/NACK message to be sent is ⁇ .. ⁇ ; the system uses the extended cyclic prefix; there is no need to send the SRS; the number of OFDM symbols occupied by the DM RS is 1, and is distributed in the second of each time slot. OFDM symbol, as shown in Figure 4; each slot carries a different control letter
  • the pre-processing method of the foregoing mode 2 is used.
  • the ACK/NACK message to be transmitted is C ⁇ q, .. ⁇ , because the number of bits of the ACK/NACK message to be transmitted is 8 bits and each slot carries different control information, then the linear block code is used. Encoded, and the length after encoding is 48, the encoded sequence is H ... 7 , and the sequence after modulation is a , .. ⁇ because the number of OFDM symbols in each slot is 6, DM RS The number of OFDM symbols occupied is 1 and there is no SRS transmission, and the number of OFDM symbols occupied by the ACK/NACK message in each slot is 5, and 0 ) , 2 1 , ... 2 11 and 2 12 , 2 13 ,...
  • Precoding separately to obtain ⁇ ; ⁇ ;,... ⁇ and ⁇ , ⁇ ,... ⁇ select an orthogonal sequence in Table 5 [w(0) ⁇ ⁇ ;, ⁇ ; , ... ⁇ and , ⁇ ,... respectively perform time domain expansion, mapping on the 0th, 1st, 3rd, 4th, and 5th OFDM symbols of each slot.
  • the ACK/NACK message to be transmitted is C ⁇ q, .. ⁇ , because the number of bits of the ACK/NACK message to be transmitted is 8 bits and each slot carries different control information, then the linear block code is used.
  • Encoded and the encoded sequence length is 48, and the encoded sequence is b 0 , b v , ... b A1 , and the sequence after modulation is 2 after scrambling. , ⁇ ,... ⁇ ; Because the number of OFDM symbols occupied by ACK/NACK messages in OFDM within each slot is 5, the number of OFDM symbols occupied by ACK/NACK messages in slotl is 4, so the Walsh sequence will be Repeat to 5, then the orthogonal sequence is shown in Table 4.
  • the orthogonal sequence [ ⁇ (0) ... (3)] performs 2; 2 , 2; 3 , ...
  • the ACK/NACK message to be sent is ⁇ .. ⁇ ; the system uses the extended cyclic prefix; the SRS needs to be sent; the number of OFDM symbols occupied by the DM RS is 1, and is continuously distributed in the second of each slot.
  • the pretreatment method of the foregoing mode 2 is used.
  • the ACK/NACK message to be transmitted is C ⁇ q, .. ⁇ , because the number of bits of the ACK/NACK message to be transmitted is 8 bits and each slot carries different control information, then ⁇ Coding with a linear block code, and the encoded sequence length is 48, the encoded sequence is b 0 , b v , ... b A1 , and the sequence after modulation is 2 after scrambling. , ⁇ ,... ⁇ ; Because the number of OFDM symbols occupied by ACK/NACK messages in OFDM within each slot is 5, the number of OFDM symbols occupied by ACK/NACK messages in slotl is 4, so the Walsh sequence will be Repeat to 5, then the orthogonal sequence is shown in Table 4.
  • the orthogonal sequence [ ⁇ (0) ... (3)] extends 2; 2 , 2; 3 , ... 2; 3 in time domain, and maps on the 0th, 1st, 3rd, and 4th OFDM symbols of slot1.
  • the pilot sequence is mapped onto the second OFDM symbol.
  • the ACK/NACK message that needs to be sent is 0. , ⁇ .. ⁇ encoding, because the number of bits of the ACK/NACK message to be transmitted is 8 bits and each slot carries different control information, then the code is encoded with a linear block code, and the length after encoding is 48, encoding H ... is the sequence of 7, after the scrambled sequence modulated a, .. ⁇ because the number of OFDM symbols per slot is 7, the number of OFDM symbols occupied by the DM RS is not 2 and SRS transmission, then the number of OFDM symbols occupied by the ACK/NACK message in each slot is 5, and 0 ) , 2 1 , ... 2 11 and 2 12 , 2 13 , ... are respectively precoded.
  • the ACK/NACK message to be transmitted is C ⁇ q, .. ⁇ , because the number of bits of the ACK/NACK message to be transmitted is 8 bits and each slot carries different control information, then the linear block code is used. Coding, and the length after encoding is 48, the encoded sequence is H ... 7 , and the sequence after modulation is a, .. ⁇ because the number of OFDM symbols in each slot is 6, DM RS The number of OFDM symbols occupied is 2 and there is no SRS transmission, then the number of OFDM symbols occupied by the ACK/NACK message in each slot is 4, and 0 ) , 2 1 , ..
  • the ACK/NACK message to be transmitted is C ⁇ q, .. ⁇ , because the number of bits of the ACK/NACK message to be transmitted is 8 bits and each slot carries different control information, then the linear block code is used. Encoded, and the length after encoding is 48, and the encoded sequence is H... 7 . After scrambling, the modulated sequence is a , .. ⁇ because the number of OFDM symbols in each slot is
  • the number of OFDM symbols occupied by the DM RS is 2 and there is SRS transmission, then the number of OFDM symbols occupied by the ACK/NACK message in slotO is 5, and the number of OFDM symbols occupied by the ACK/NACK message in slotl Is 5, ⁇ ... ⁇ and ⁇ , ⁇ ,... are precoded separately to get ⁇ ;, ⁇ ;,... ⁇ and ⁇ , ⁇ ,... ⁇ , select an orthogonal sequence [w(O) ... in Table 5... w(4)] divides ⁇ ; ⁇ ;,... ⁇ and ⁇ ,...
  • the ACK/NACK message to be transmitted is C ⁇ q, .. ⁇ , because the number of bits of the ACK/NACK message to be transmitted is 8 bits and each slot carries different control information, then ⁇ Coding with a linear block code, and the length after encoding is 48, the encoded sequence is H... 7 , and the sequence after modulation is a, .. ⁇ because each OFDM symbol in the slot The number is
  • the ACK/NACK message that needs to be sent is 0. , ⁇ .. ⁇ encoding, because the number of bits of the ACK/NACK message to be transmitted is 8 bits and each slot carries different control information, then the code is encoded with a linear block code, and the length after encoding is 48, encoding After the sequence is H... 7 , the sequence after modulation is a , .. ⁇ because the number of OFDM symbols in each slot is
  • the number of OFDM symbols occupied by the DM RS is 2 and there is no SRS transmission. Then, the number of OFDM symbols occupied by the ACK/NACK message in each slot is 5, and 0 ) , 2 1 , ... 2 11 And 2 12 , 2 13 ,... separately precode to obtain ⁇ ; ⁇ ;,... ⁇ and ⁇ , ⁇ ,... ⁇ , select an orthogonal sequence in Table 5 [w(0) ⁇ ⁇ will ⁇ ;, ⁇ ;,... ⁇ and, ⁇ ,...
  • the ACK/NACK message to be sent is ⁇ .. ⁇ ; the system uses the extended cyclic prefix; there is no need to send the SRS; the number of OFDM symbols occupied by the DM RS is 2, and is continuously distributed in the second of each slot.
  • the ACK/NACK message to be transmitted is C ⁇ q, .. ⁇ , because the number of bits of the ACK/NACK message to be transmitted is 8 bits and each slot carries different control information, then the linear block code is used. Coding, and the length after encoding is 48, the encoded sequence is H ... 7 , and the sequence after modulation is a, .. ⁇ because the number of OFDM symbols in each slot is 6, DM RS The number of OFDM symbols occupied is 2 and there is no SRS transmission, then the number of OFDM symbols occupied by the ACK/NACK message in each slot is 4, and 0 ) , 2 1 , ..
  • the ACK/NACK message to be transmitted is C ⁇ q, .. ⁇ , because the number of bits of the ACK/NACK message to be transmitted is 8 bits and each slot carries different control information, then the linear block code is used. Encoded, and the length after encoding is 48, and the encoded sequence is H... 7 . After scrambling, the modulated sequence is a , .. ⁇ because the number of OFDM symbols in each slot is 7, DM RS The number of OFDM symbols occupied by the OFDM symbol is 2, and the number of OFDM symbols occupied by the ACK/NACK message in slot 0 is 5, and the number of OFDM symbols occupied by the ACK/NACK message in slot 1 is 4. ⁇ ... ⁇ and ⁇ , ⁇ ,...
  • ⁇ ;, ⁇ ;,... ⁇ and ⁇ , ⁇ ,... ⁇ select an orthogonal sequence in Table 5 [w(O) ... w(4) ]
  • is time-domain extended, mapped on the 0th, 1st, 4th, 5th, and 6th OFDM symbols of slotO; in Table 3, select an orthogonal sequence [ w (0) ⁇ > 3)] 2; 2 , 2; 3 , ... 2; 3 is time-domain extended, mapped on the 0th, 1st, 4th, and 5th OFDM symbols of slot1, and maps the pilot sequence to the 2nd of each slot.
  • pilots on 2 OFDM symbols can pass each
  • the ACK/NACK message to be transmitted is C ⁇ q, .. ⁇ , because the number of bits of the ACK/NACK message to be transmitted is 8 bits and each slot carries different control information, then the linear block code is used. Encoding, and the length after encoding is 48, the encoded sequence is H ... 7 , and the sequence after modulation is a, .. ⁇ because the number of OFDM symbols in each slot is
  • the number of OFDM symbols occupied by the DM RS is 2 and there is SRS transmission, then the number of OFDM symbols occupied by the ACK/NACK message in slotO is 4, and the number of OFDM symbols occupied by the ACK/NACK message in slotl Is 4; ⁇ ... ⁇ and ⁇ , ⁇ ,... are precoded separately to get ⁇ ;, ⁇ ;,... ⁇ and ⁇ , ⁇ ,... ⁇ , select an orthogonal sequence [w(O) ... in Table 3...
  • the ACK/NACK message to be sent is ⁇ .. ⁇ ; the system uses the regular cyclic prefix; there is no need to send the SRS; the number of OFDM symbols occupied by the DM RS is 3, and the number of OFDM symbols is not continuously distributed in each slot.
  • the 0 ⁇ 8 message to be sent is 0. , 0 1 , ... 0 7 encoding, because the number of bits of the ACK/NACK message to be transmitted is 8 bits and each slot carries different control information, then the linear block code is used for encoding, and the encoded sequence length Is 48, and the encoded sequence is b. , b, ..b 47 ,
  • the sequence after scrambling modulation is 2. , ⁇ ... ⁇ ; Since the number of OFDM symbols in each slot is 7, the number of OFDM symbols occupied by the DM RS is 3 and there is no SRS transmission, then the OFDM symbol occupied by the ACK/NACK message in each slot The number is 4, and . and ⁇ 12 , ⁇ 13 ,...
  • the ACK/NACK message that needs to be sent is 0. , ⁇ .. ⁇ encoding, because the number of bits of the ACK/NACK message to be transmitted is 8 bits and each slot carries different control information, then the linear block code is used for encoding, and the encoded sequence length is 48, encoding
  • the sequence after the m is m, and the sequence after modulation by force perturbation is Q,...e 23 ; because each slot is OFDM
  • the number of OFDM symbols occupied by the ACK/NACK message is 4, and the number of OFDM symbols occupied by the ACK/NACK message in slotl is 4, and ⁇ ... and ⁇ , ⁇ ,...
  • the ACK/NACK message that needs to be sent is C ⁇ q, .. ⁇ , because it needs to be sent.
  • the number of bits of the ACK/NACK message is 8 bits and each slot carries different control information, then the code is encoded by the linear block code, and the length of the encoded sequence is 48, and the sequence after encoding is b 0 , b v ,. ..b A1 , the sequence after modulation is 2 after scrambling. , ⁇ ,... ⁇ ; because each slot is within OFDM
  • the number of OFDM symbols occupied by the ACK/NACK message is 4, and the number of OFDM symbols occupied by the ACK/NACK message in slotl is 4, and ⁇ ... and ⁇ , ⁇ ,... are respectively precoded to obtain ⁇ ; ⁇ ;,... ⁇ and ⁇ , ⁇ ,... ⁇ , select an orthogonal sequence k0) ...
  • the ACK/NACK message to be transmitted is C ⁇ q, .. ⁇ , because the number of bits of the ACK/NACK message to be transmitted is 8 bits and each slot carries different control information, then the linear block code is used. Encoded, and the encoded sequence length is 48, and the encoded sequence is b 0 , b v , ... b A1 , and the sequence after modulation is 2 after scrambling. , ⁇ ,... ⁇ ; Because the number of OFDM symbols occupied by ACK/NACK messages in OFDM within each slot is 4, ACK/NACK in slotl The number of OFDM symbols occupied by the information is 4, and ⁇ ... and ⁇ , ⁇ ,...
  • the sequence k0) ... w(3)] expands the time domain extension of ⁇ ;, ⁇ ;,... ⁇ , mapping on the 0th, 1st, 4th, and 5th OFDM symbols of slotO, and selecting an orthogonal sequence in Table 3 [ w(O) ⁇ 3)] 2; 2 , 2; 3 ,... 2; 3 is time-domain extended, mapped on the 0th, 1st, 4th, 5th OFDM symbols of slot1, will be pilot
  • the sequence is mapped to the 2nd, 3rd, and 6th OFDM symbols of slotO.
  • the pilots on the 3 OFDM symbols of slotO can pass the pilot sequence on each OFDM symbol.
  • the time domain extension is constructed.
  • FIG. 19 is a schematic structural diagram of a device for transmitting an uplink control signaling according to the present invention.
  • the apparatus for transmitting uplink control signaling of the present invention includes a pre-processing unit 190, a mapping unit 191, and a transmitting unit 192;
  • the pre-processing unit 190 is configured to perform pre-processing on the uplink control signaling of the uplink feedback, and the mapping unit 191 is configured to map the pre-processed uplink control signaling to the OFDM symbol used for carrying the uplink control signaling;
  • the sending unit 192 is configured to send the uplink control signaling.
  • the pre-processing unit 190 further includes a channel coding sub-unit, a scrambling sub-unit, a modulation sub-unit, a time-domain extension sub-unit, and a pre-coding transformation sub-unit;
  • a channel coding subunit configured to perform channel coding on the uplink control signaling
  • a scrambling subunit configured to perform scrambling on the channel-coded uplink control signaling
  • a modulation subunit configured to modulate the scrambled uplink control signaling
  • time domain extension subunit configured to perform time domain extension on the modulated uplink control signaling
  • precoding transformation subunit configured to perform precoding transformation on the uplink control signaling after the time domain extension
  • the precoding transformation subunit further performs precoding transformation on the modulated uplink control signaling; the time domain extension subunit further performs time domain extension on the uplink control signaling after precoding transformation. .
  • the channel coding sub-unit further encodes the bite-tailed convolutional code with a constraint length of 7 and a code rate of 1/3 when the number of bits of the uplink control signaling is greater than 11 bits; otherwise, the linear block code is used.
  • the length of the coded is related to whether two time slots in one subframe carry the same information. Specifically, when two time slots in one subframe carry the same information, the uplink control signaling is encoded. The length is 12xQm; otherwise, the encoded length is 24xQm, where Qm is the corresponding modulation order.
  • the scrambling subunit further uses the scrambling code sequence and the encoded uplink control signaling sequence to add, and then performs a modulo 2 operation to obtain a scrambled sequence; wherein the scrambling code sequence is pseudo-coded.
  • a random sequence consists of.
  • the modulation subunit further modulates the uplink control signaling after the addition of the QPSK modulation scheme.
  • the time domain extension subunit further extends the processed uplink control signaling sequence to an OFDM symbol for carrying uplink control signaling by using an orthogonal sequence;
  • the orthogonal sequence is a DFT sequence or a Walsh sequence or a CAZAC sequence.
  • a spreading sequence of each sequence where the length of the orthogonal sequence is the number of OFDM symbols used to carry uplink control signaling in one time slot.
  • the precoding transform subunit further performs a DFT operation on the uplink control signaling sequence on the OFDM symbol used for carrying the uplink control signaling.
  • the OFDM symbol used for carrying the uplink control signaling is a sub-frame except for the uplink reference signal.
  • the mapping unit 191 does not carry uplink control signaling on the last OFDM symbol of the second slot of the subframe.
  • FIG. 20 is a schematic structural diagram of a device for carrying an uplink demodulation reference signal when an uplink control signaling is sent according to the present invention.
  • the bearer device for uplink demodulation reference signal when the uplink control signaling is sent by the present invention includes a bearer unit 200. And for carrying the uplink demodulation reference signal on k OFDM symbols of each slot.
  • the three demodulation reference signals in each slot are carried on the second, third, and sixth OFDM symbols of each slot; or, the 0th, Third, on the sixth OFDM symbol; or, in the first, third, and fifth OFDM symbols, in the subframe of the normal cyclic prefix, the two demodulation reference signals in each slot are bearers.
  • the two demodulation reference signals in each slot are bearers.
  • two demodulation reference signals in each slot are carried on the 0th, 5th OFDM symbols of each slot; or, 0th, 4th OFDM On the symbol; or, on the 2nd, 3rd OFDM symbol; or, on the 1st, 4th OFDM symbol; or, on the 2nd, 5th OFDM symbol;
  • one demodulation reference signal in each slot is carried on the second OFDM symbol of each time slot; or, on the third OFDM symbol;
  • the demodulation reference signals carried on each OFDM symbol are the same sequence, or are extended by time domain.
  • the sequence is a CG-CAZAC sequence.
  • FIG. 19 and FIG. 20 is designed to implement the foregoing method for transmitting uplink control signaling and the method for carrying uplink demodulation reference signals when uplink control signaling is sent.
  • the implementation functions of the above processing units can be understood by referring to the related description of the foregoing methods.
  • the functions of the various processing units in the figures may be implemented by a program running on a processor or by a specific logic circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明公开了一种上行控制信令的发送方法,包括:对上行控制信令分别进行信道编码、加扰、调制、时域扩展和预编码变换,或分别进行信道编码、加扰、调制、预编码变换和时域扩展后,映射到用于承载所述上行控制信令的正交频分复用(OFDM)符号上发送。本发明同时公开了一种上行控制信令发送时解调参考信号的承载方法,包括:将上行解调参考信号承载于子帧中的k个OFDM符号上。本发明还公开了分别实现上述方法的装置。本发明的技术方案有效地解决了上行控制信令采用DFT-s-OFDM结构发送的问题。

Description

上行控制信令发送、 上行解调参考信号的承载方法及装置 技术领域
本发明涉及上行控制信令的发送技术, 尤其涉及一种载波聚合系统中 上行控制信令的发送方法及装置, 以及上行控制信令发送时上行解调参考 信号的承载方法及装置。 背景技术
在混合自动请求重传(HARQ , Hybrid Automatic Repeat Request )方式 中, 发端发送的码字, 不仅能够检错, 而且还具有一定的纠错能力。 接收 端译码器收到码字后, 首先检验错误情况, 如果在码字的纠错能力以内, 则自动进行糾错, 如果错误很多, 超过了码字的糾错能力, 但能检测错误 出来, 则接收端通过反馈信道给发端发一个判决信号, 要求发端重发信息。 在正交频分复用( OFDM, Orthogonal Frequency Division Multiplex )系统中, 通过正确 /错误应答 ( ACK/NACK, Acknowledged / Non-acknowledged )控 制信令来表示传输正确 /错误, 以此来判断是否需要重传。
长期演进( LTE, Long Term Evolution ) 系统是第三代伙伴组织的重要 计划, 图 1为根据相关技术 LTE系统中基本帧结构的结构示意图, 如图 1 所示, 图 1示出了 LTE系统中基本帧结构, 帧结构分为无线帧、 半帧、 子 帧、 时隙和符号五个等级, 其中, 一个无线帧的长度为 10ms, —个无线帧 由两个半帧组成, 每个半帧的长度为 5ms, —个半帧由 5个子帧组成, 每 个子帧的长度为 1ms,—个子帧由两个时隙构成,每个时隙的长度为 0.5ms。
当 LTE系统釆用常规循环前缀时, 一个时隙包含 7个长度为 66.7 s的 上 /下行符号, 其中, 第一个符号的循环前缀长度为 5.21μδ, 其他 6个符号 的循环前缀长度为 4.69 s。 当 LTE系统釆用扩展循环前缀时, 一个时隙包含 6个长度为 66.7 s的 上 /下行符号, 其中, 每个符号的循环前缀长度均为 16.67μδ
在 LTE 的下行 HARQ 中, 在物理下行共享信道 ( PDSCH, Physical Downlink Shared Channel )上发送 ACK/NACK消息, 当用户设备( UE, User Equipment ) 没有物理上行共享信道 ( PUSCH , Physical Uplink Shared Channel ) 时, 是在物理上行控制信道 ( PUCCH, Physical Uplink Control Channel )上发送的。 LTE系统定义了多种 PUCCH格式( PUCCH format ), 包括 PUCCH format 1/1 a/lb和 format 2/2a/2b, 其中 format 1用来发送 UE 的调度请求( SR, Scheduling Request )信号, format la和 lb分别用来反馈 1比特的 ACK/NACK消息和 2比特的 ACK/NACK消息 , format 2用来发送 信道状态信息(CSI, Channel States Information ), 其中, CSI包括信道质量 信息 (CQI, Channel Quality Information ), 预编码矩阵指示信息 (PMI, Precoding matrix indicator )以及秩指示信息 ( RI, Rank Indication ), format 2a 用来发送 CSI和 1比特的 ACK/NACK消息, format2b用来发送 CSI信息和 2比特的 ACK/NACK消息, format 2a/2b只用于循环前缀为常规循环前缀的 场景。
在 LTE系统中, 在频分双工 ( FDD, Frequency Division Duplex ) 系统 中, 由于上下行子帧是——对应的, 所以当 PDSCH只包含一个传输块时, UE要反馈 1比特的 ACK/NACK消息, 当 PDSCH包含两个传输块时, UE 要反馈 2比特的 ACK/NACK消息,在时分双工( TDD, Time Division Duplex ) 系统中, 由于上下行子帧的不是——对应的, 也就是说多个下行子帧对应 的 ACK/NACK消息需要在一个上行子帧的 PUCCH信道上发送, 其中上行 子帧对应的下行子帧集合组成了绑定窗口( bundling window )。 ACK/NACK 消息的发送方法有两种: 一种是绑定(bundling )方法, 该方法的基本思想 是将需要在该上行子帧反馈的各个下行子帧对应的传输块的 ACK/NACK 消息进行逻辑与运算, 如果一个下行子帧有 2个传输块, UE要反馈 2比特 的 ACK/NACK消息, 如果各个子帧只有一个传输块, UE要反馈 1比特的 ACK/NACK 消息; 另一种是信道选择复用 (multiplexing with channel selection )方法, 该方法的基本思想是利用不同的 PUCCH信道和该信道上 不同的调制符号来表示需要在该上行子帧反馈的下行子帧的不同反馈状 态, 如果下行子帧上有多个传输块, 那么先将下行子帧的多个传输块反馈 的 ACK/NACK进行逻辑与 (也叫作 spatial bundling )后再进行信道选择, 然后使用 PUCCH formatlb发送。
在 LTE系统中, 有 2种上行参考信号: 一种是上行解调参考信号( DM RS , Demodulation Reference Signal ); 一种是上行测量参考信号 (SRS , Sounding reference signal ), DM RS由频域上的一条序列构成, 该序列为参 考信号序列的一个循环移位( CS, Cyclic Shift ) , 不同的 PUCCH格式对应 的 DM RS结构不同; SRS是周期发送的, 如果 ACK/NACK消息和 SRS同 时发送, ACK/NACK消息釆用截短结构发送, 也就是每个子帧的第二个时 隙的最后一个符号上不用来承载 ACK/NACK消息, 如果 CSI和 SRS同时 发送, 只发送 CSI。
为 了 满足高级国 际 电信联盟 ( ITU-Advanced , International Telecommunication Union-Advanced ) 的要求, 作为 LTE的演进标准的高级 长期演进( LTE-A, Long Term Evolution Advanced ) 系统需要支持更大的系 统带宽(最高可达 100MHz ), 并需要后向兼容 LTE现有的标准。 在现有的 LTE系统的基础上, 可以将 LTE系统的带宽进行合并来获得更大的带宽, 这种技术称为载波聚合(CA, Carrier Aggregation )技术, 该技术能够提高 IMT-Advance系统的频谱利用率、緩解频谱资源紧缺,进而优化频谱资源的 利用。
当 LTE-A釆用了载波聚合技术时, 当 UE配置了 4个下行分量载波时, UE 需要反馈这 4 个下行分量载波的 ACK/NACK。 如果在多输入多输出 ( MIMO, Multiple Input Multiple Output )情况下, UE需要反馈每个码字 的 ACK/NACK, 则当 UE配置了 4个下行分量载波时, UE需要反馈 8个 ACK/NACK。 目前关于 ACK/NACK消息反馈的结论是: 对于 LTE-A的终 端来说: 如果最多支持 4比特 ACK/NACK消息, 使用信道选择复用方法; 如果支持大于 4比特 ACK/NACK消息的反馈,使用离散傅立叶变换扩展的 正交频分复用 (DFT-s-OFDM )结构的方法, 当然也没有排除其他上行控制 信令釆用 DFT-s-OFDM结构发送。 但是目前 LTE-A系统没有给出上行控制 信令釆用 DFT-s-OFDM结构的发送具体方法以及该结构下上行参考信号的 位置和个数。 发明内容
有鉴于此, 本发明的主要目的在于提供一种上行控制信令的发送方法 及装置, 以及, 上行控制信令发送时上行解调参考信号的承载方法及装置, 有效地解决了上行控制信令釆用 DFT-s-OFDM结构发送的问题。
为达到上述目的, 本发明的技术方案是这样实现的:
一种上行控制信令的发送方法, 包括:
对上行控制信令分别进行信道编码、 加扰、 调制、 时域扩展和预编码 变换, 或分别进行信道编码、 加扰、 调制、 预编码变换和时域扩展后, 映 射到用于承载所述上行控制信令的正交频分复用 ( OFDM , Orthogonal Frequency Division Multiplexing )符号上发送。
优选地, 对所述上行控制信令进行信道编码具体为:
所述上行控制信令的比特数大于 11比特时, 釆用约束长度为 7、 码率 为 1/3的咬尾卷积码方式进行编码; 否则釆用线性分组码方式进行编码。其 中, 编码后的长度和一个子帧内的两个时隙是否承载相同的信息有关, 具 体地, 一个子帧内的两个时隙承载相同的信息时, 所述上行控制信令编码 之后的长度是 12xQm; 否则, 编码后的长度是 24xQm, 其中 Qm是对应的 调制阶数。
优选地, 对所述上行控制信令进行加扰具体为:
利用扰码序列与编码后的所述上行控制信令序列相加后, 再进行对 2 取模的运算, 得到加扰后的序列; 其中, 所述扰码序列由伪随机序列构成; 优选地, 对所述上行控制信令进行调制具体为:
釆用 QPSK调制方式对加扰后的所述上行控制信令进行调制。
优选地, 对所述上行控制信令进行时域扩展具体为:
利用正交序列将处理后的所述上行控制信令序列扩展到用于承载上行 控制信令的 OFDM符号上;所述正交序列为离散傅里叶变换( DFT, Discrete Cosine Transform )序列,或 Walsh序列,或恒包络零自相关( CAZAC , Const Amplitude Zero Auto Corelation )序列, 或 DFT序列、 Walsh序列或 CAZAC 序列的扩展序列; 所述正交序列的长度为一个时隙内用于承载上行控制信 令的 OFDM符号个数。
优选地, 对所述上行控制信令进行预编码变换具体为:
对用于承载上行控制信令的 OFDM符号上的上行控制信令序列进行 DFT操作。
优选地, 所述用于承载上行控制信令的 OFDM符号为一个子帧内除上 行参考信号所占的 OFDM符号之外的 OFDM符号。
优选地, 所述方法还包括:
所述上行控制信令与 SRS承载于一个子帧中时, 子帧的第二个时隙的 最后一个 OFDM符号上不承载上行控制信令或上行解调参考信号。
优选地,所述上行控制信令为上行反馈的 ACK/NACK信息或信道状态 信息 ( CSI, Channel State Information )。
一种上行控制信令发送时解调参考信号的承载方法, 包括: 将解调参考信号承载于每个时隙的 k个 OFDM符号上。
优选地, 所述方法还包括:
在正常循环前缀的子帧中, k=2或 k=3;
在扩展循环前缀的子帧中, k=2或 k=l。
优选地,将解调参考信号承载于每个时隙的 k个 OFDM符号上具体为: 在正常循环前缀的子帧中, 每个时隙内的 3 个解调参考信号分别承载 于第 2个, 第 3个, 第 6个 OFDM符号上; 或分别承载于第 0个, 第 3个, 第 6个 OFDM符号上; 或分别承载于第 1个, 第 3个, 第 5个 OFDM符号 上;
在正常循环前缀的子帧中, 每个时隙内的 2个解调参考信号分别承载 于第 0个,第 5个 OFDM符号上;或者,分别承载于第 0个,第 6个 OFDM 符号上; 或者, 分别承载于第 1个, 第 5个 OFDM符号上; 或者, 分别承 载于第 2个,第 3个 OFDM符号上;或者,分别承载于第 2个,第 5个 OFDM 符号上;
在扩展循环前缀的子帧中, 每个时隙内的 2个解调参考信号分别承载 于第 0个,第 5个 OFDM符号上;或者,分别承载于第 0个,第 4个 OFDM 符号上; 或者, 分别承载于第 2个, 第 3个 OFDM符号上; 或者, 分别承 载于第 1个或者第 4个 OFDM符号上; 或者, 分别承载于第 2个, 第 5个 OFDM符号上;
在扩展循环前缀中, 每个时隙内的 1 个解调参考信号承载于第 2 个 OFDM符号上; 或者, 承载于第 3个 OFDM符号上。
其中 , 每个时隙内的 OFDM符号从 0开始编号。
优选地, 所述方法还包括:
所述上行解调参考信号所占的 OFDM 符号个数为两个以上时, 各个 OFDM符号上承载的解调参考信号为相同的序列, 或者为经时域扩展的序 列; 所述的序列为计算机自生成恒包络零自相关 (CG-CAZAC , Computer generated-Const Amplitude Zero Auto Corelation )序歹 'J。
一种应答消息的上行发送装置, 包括预处理单元、 映射单元和发送单 元; 其中,
预处理单元, 用于对上行控制信令进行预处理;
映射单元, 用于将预处理后的上行控制信令映射到用于承载上行控制 信令的 OFDM符号上;
发送单元, 用于发送所述上行控制信令。
优选地, 所述预处理单元进一步包括信道编码子单元、 加扰子单元、 调制子单元、 时域扩展子单元和预编码变换子单元; 其中,
信道编码子单元, 用于对所述上行控制信令进行信道编码;
加扰子单元, 用于对信道编码后的所述上行控制信令进行加扰; 调制子单元, 用于对加扰后的所述上行控制信令进行调制;
时域扩展子单元, 用于对调制后的所述上行控制信令进行时域扩展; 预编码变换子单元, 用于对时域扩展后的所述上行控制信令进行预编 码变换。
优选地, 所述预编码变换子单元进一步对调制后的所述上行控制信令 进行预编码变换; 所述时域扩展子单元再对预编码变换后的所述上行控制 信令进行时域扩展。
优选地, 所述信道编码子单元进一步在所述上行控制信令的比特数大 于 11比特时, 釆用约束长度为 7、 码率为 1/3的咬尾卷积码方式进行编码; 否则釆用线性分组码方式进行编码。 其中, 编码后的长度和一个子帧内的 两个时隙是否承载相同的信息有关, 具体地, 一个子帧内的两个时隙承载 相同的信息时, 所述上行控制信令编码之后的长度是 12xQm; 否则, 编码 后的长度是 24xQm, 其中 Qm是对应的调制阶数。 优选地, 所述加扰子单元进一步利用扰码序列和编码后的所述上行控 制信令序列相加后, 再进行对 2取模的运算, 得到加扰后的序列; 其中, 所述扰码序列由伪随机序列构成。
优选地, 所述调制子单元进一步釆用 QPSK调制方式对加 4尤后的所述 上行控制信令进行调制。
优选地, 所述时域扩展子单元进一步利用正交序列将处理后的所述上 行控制信令序列扩展到用于承载上行控制信令的 OFDM符号上; 所述正交 序列为 DFT序列, 或 Walsh序列, 或 CAZAC序列, 或 DFT序列、 Walsh 序列或 CAZAC序列的扩展序列;所述正交序列的长度为一个时隙内用于承 载上行控制信令的 OFDM符号个数。
优选地, 所述预编码变换子单元进一步对用于承载上行控制信令的 OFDM符号上的上行控制信令序列进行 DFT操作。
优选地, 所述用于承载上行控制信令的 OFDM符号为一个子帧内除上 行参考信号所占的 OFDM符号之外的 OFDM符号。
优选地, 所述映射单元在所述上行控制信令与 SRS承载于一个子帧中 时, 在子帧的第二个时隙的最后一个 OFDM符号上不承载上行控制信令或 上行解调参考信号。
优选地,所述上行控制信令为上行反馈的 ACK/NACK应答信息或 CSI。 一种上行控制信令发送时解调参考信号的承载装置, 包括:
承载单元, 用于将上行解调参考信号承载于每个时隙的 k个 OFDM符 号上。
优选地, 在正常循环前缀的子帧中, k=2或 k=3;
在扩展循环前缀的子帧中, k=2或 k=l ;
所述承载单元进一步地,
在正常循环前缀的子帧中, 将每个时隙内的 3 个解调参考信号分别承 载于第 2个, 第 3个, 第 6个 OFDM符号上; 或分别承载于第 0个, 第 3 个, 第 6个 OFDM符号上; 或分别承载于第 1个, 第 3个, 第 5个 OFDM 符号上;
在正常循环前缀的子帧中, 将每个时隙内的 2个解调参考信号分别承 载于第 0个,第 5个 OFDM符号上;或者,分别承载于第 0个,第 6个 OFDM 符号上; 或者, 分别承载于第 1个, 第 5个 OFDM符号上; 或者, 分别承 载于第 2个,第 3个 OFDM符号上;或者,分别承载于第 2个,第 5个 OFDM 符号上;
在扩展循环前缀的子帧中, 将每个时隙内的 2个解调参考信号分别承 载于第 0个,第 5个 OFDM符号上;或者,分别承载于第 0个,第 4个 OFDM 符号上; 或者, 分别承载于第 2个, 第 3个 OFDM符号上; 或者, 分别承 载于第 1个或者第 4个 OFDM符号上; 或者, 分别承载于第 2个, 第 5个 OFDM符号上;
在扩展循环前缀中, 将每个时隙内的 1个解调参考信号承载于第 2个 OFDM符号上; 或者, 承载于第 3个 OFDM符号上。
其中 , 每个时隙内的 OFDM符号从 0开始编号。
优选地,所述上行解调参考信号所占的 OFDM符号个数为两个以上时, 各个承载的解调参考信号为相同的序列, 或者为经时域扩展的序列; 所述 的序列为 CG-CAZAC序列。
本发明中, 当需要发送的上行控制信令是通过 DFT-s-OFDM结构发送 时, 通过本发明设计的对上行控制信令的发送方法, 能将待发送的上行控 制信息顺利承载于上行子帧中的相应 OFDM符号中。 使用本发明的技术方 案有效解决了上行控制信令釆用 DFT-s-OFDM结构发送的具体方法以及该 结构下上行解调参考信号的承载方法。 附图说明
图 1为根据相关技术 LTE系统中基本帧结构的结构示意图;
图 2为本发明利用咬尾卷积码方式进行预编码处理的结构示意图; 图 3为本发明实施例一的预处理示意图;
图 4为本发明实施例二的预处理示意图;
图 5为本发明实施例三的预处理示意图;
图 6为本发明实施例四的预处理示意图;
图 7为本发明实施例五的预处理示意图;
图 8为本发明实施例六的预处理示意图;
图 9为本发明实施例七的预处理示意图;
图 10为本发明实施例八的预处理示意图;
图 11为本发明实施例九的预处理示意图;
图 12为本发明实施例十的预处理示意图;
图 13为本发明实施例十一的预处理示意图;
图 14为本发明实施例十二的预处理示意图;
图 15为本发明实施例十三的预处理示意图;
图 16为本发明实施例十四的预处理示意图;
图 17为本发明实施例十五的预处理示意图;
图 18为本发明实施例十六的预处理示意图;
图 19为本发明上行控制信令的发送装置的组成结构示意图; 图 20为本发明上行控制信令发送时上行解调参考信号的承载装置的组 成结构示意图。 具体实施方式
本发明的实施方式以 ACK/NACK应答信息为例说明, 当在一个子帧内 需要上行反馈的 ACK/NACK应答信息大于 4比特之后,通过本发明设计的 对 ACK/NACK应答信息的编码方式, 能将待反馈的 ACK/NACK应答信息 顺利承载于上行子帧中的相应 OFDM符号中, 从而顺利进行上行反馈。
为使本发明的目的、 技术方案和优点更加清楚明白, 以下举实施例并 参照附图, 对本发明进一步详细说明。
本发明主要是将 ACK/NACK消息釆用 DFT-s-OFDM结构进行发送, 具体地, 将 ACK/NACK消息进行预处理后映射到 N个 OFDM符号 (指的 是一个子帧内 ACK/NACK消息所占的 OFDM符号个数)上发送, 其中 N 的值和系统釆用循环前缀的类型和上行参考信号所占的 OFDM符号个数有 关, 映射的 OFDM符号位置和上行参考信号的位置有关。
本发明中, 对 ACK/NACK消息预处理是指以下两种方式中的一种: 方式一, 依次进行信道编码、 加扰、 调制、 时域扩展和预编码变换; 方式二, 依次进行信道编码、 加扰、 调制、 预编码变换和时域扩展。 其中信道编码的过程是: 当需要反馈的 ACK/NACK消息 ΟοΑ,,. ^的 比特数 Μ大于 11比特时, 釆用图 2所示的约束长度为 7 , 码率为 1/3的咬 尾卷积码方式进行编码; 图 2 中, 表示待编码信号, D表示调制器, 4 表示编码后信号, @表示交织处理; 图中, 仅是示例性的信道编码示意图; 比特数 Μ小于等于 11比特时釆用线性分组码方式进行编码,线性分组码的 具体编码方式是: 基本序列的长度对多个反馈信息进行编码具体为: ^ =∑(0„ ' mod,,s),„) mod 2 ' 其中, i=0、 1、 2 B-1 , H.A— i表示编码后 的比特序列, B表示编码后的长度, 如果子帧中两个时隙承载相同的信息, 那么 B=12xQm, 如果两个时隙承载不同的信息, 那么 B=2x l2x Qm ( Qm 表示调制阶数), N表示基本序列的长度, M„表示基本序列 n中编号为 i 的值, C^ O^. ^表示反馈的信令, 基本序列如下表 1或者表 2所示, 基本 序列也可以釆用表 1或者表 2的基本序列进行行置换后的形式, 当然不排 除其他形式的基本序列。
Figure imgf000014_0001
6'!Ι\[ 8'!w Lilm 9'!w ξ1Μ tl-m !
86£6雕 ΪΟΖ OAV 表 1
Figure imgf000015_0001
表 2
其中,加扰的过程是用扰码序列 c。,Cl,...,Cii1和编码后的序列 , ,..., i相 加后对 2 进行取模运算, 得到加扰后的序列 q0,qi ,...,qB_x ; 即 q, = mod((Ci 2)(i = 0,1,...5-1) , 扰码序列是由伪随机序列构成, 初始值是 cinit =(L"s/2」 + l).(2N u+l).216+" 其中, 调制方式釆用 QPSK, 调制后的序列为 ρ。, .2^(^ = 2) ; 其中, 时域扩展是指使用正交序列将编码后的序列扩展到 ACK/NACK 消息在子帧中所占的 OFDM符号上,正交序列可以釆用 DFT序列, 也可以 釆用 Walsh序列, 也可以釆用 CAZAC序列, 或上述各序列的扩展序列。序 列的长度等于一个时隙内 ACK/NACK消息所占的 OFDM符号个数, 如果 序列的长度小于 ACK/NACK消息所占的 OFDM符号个数, 可以将序列中 任何一个或者多个和原始序列组合满足组合后的序列长度和 ACK/NACK 消息所占的 OFDM符号个数相同。
其中, 预编码变换是指对 OFDM符号上的调制序列进行 DFT操作。
N 的值和系统釆用的循环前缀的类型和上行参考信号 (解调参考信号 ( DM RS )和测量参考信号( SRS ) )所占的 OFDM符号个数相关是指: 根 据系统釆用循环前缀的类型可以得到当前时隙的 OFDM符号个数, 减去时 隙内上行参考信号所占的 OFDM 符号个数, 就可以得到一个时隙内 ACK/NACK 消息所占的 OFDM 符号个数, 从而可以得到一个子帧内 ACK/NACK消息所占的 OFDM符号个数 N。
其中一个时隙内上行解调参考信号所占的 OFDM符号个数是 3或者 2 或者 1 , 上行测量参考信号所占的 OFDM符号个数是 1。
映射的 OFDM符号位置和上行参考信号的位置有关是指, 将预处理后 的 ACK/NACK消息映射在除上行参考信号位置之外的 OFDM符号上。
对于常规循环前缀。 每个时隙内上行解调参考信号所占的 OFDM符号 个数是 3或者 2,
其中如果上行解调参考信号所占的 OFDM符号个数是 3 , 那么这 3个 解调参考信号分别承载在每个时隙的第 2个, 第 3个, 第 6个 OFDM符号 上; 或者, 分别承载在第 0个, 第 3个, 第 6个 OFDM符号上; 或者, 分 别承载在第 1个, 第 3个, 第 5个 OFDM符号上, 这 3个 OFDM符号上的 解调参考信号可以是相同的序列, 也可能是一条序列经过时域扩展得到的。 其中如果上行解调参考信号所占的 OFDM符号个数是 2, 那么这 2个 解调参考信号分别承载在每个时隙的第 0个,第 5个 OFDM符号上; 或者, 分别承载在第 0个, 第 6个 OFDM符号上; 或者, 分别承载在第 1个, 第 5个 OFDM符号上; 或者, 分别承载在第 2个, 第 3个 OFDM符号上; 或 者, 分别承载在第 2个, 第 5个 OFDM符号上; 这 2个 OFDM符号上的解 调参考信号可以是相同的序列, 也可能是一条序列经过时域扩展得到的; 对于扩展循环前缀。 每个时隙内上行解调参考信号所占的 OFDM符号 个数是 2或者 1 ;
其中如果上行解调参考信号所占的 OFDM符号个数是 2, 那么这 2个 解调参考信号分别承载在每个时隙的第 0个,第 5个 OFDM符号上; 或者, 分别承载在第 0个, 第 4个 OFDM符号上; 或者, 分别承载在第 2个, 第 3个 OFDM符号上; 或者, 分别承载在第 1个, 第 4个 OFDM符号上; 或 者, 分别承载在第 2个, 第 5个 OFDM符号上, 这 2个 OFDM符号上的解 调参考信号可以是相同的序列, 也可能是一条序列经过时域扩展得到的; 其中如果上行解调参考信号所占的 OFDM符号个数是 1 , 那么这 1个 解调参考信号是承载在每个时隙的第 2个 OFDM符号上; 或者, 第 3个 OFDM符号上;
其中, 每个时隙内的 OFDM符号从 0开始编号;
上述的解调参考信号使用的序列是 CG-CAZAC序列;
如果同时需要发送上行测量参考信号, 那么每个子帧的第二个时隙的 最后一个 OFDM符号上不用来承载 ACK/NACK消息或者解调参考信号。
下面结合实施例进一步阐述本发明技术方案的实质。 其中, 实施例一 至实施例十二中, 除了实施例二是每个 slot有 1个上行解调参考信号, 其 他为每个时隙 (slot )有 2个上行解调参考信号的情形。 实施例十三至实施 例十六为每个 slot有 3 个解调参考信号的情形。 图 3 至图 18 仅为对 ACK/NACK应答信息的预处理的示例性的说明。实施例中 OFDM符号编号 从 0开始。
实施例一
假设需要发送的 ACK/NACK 消息是^^..^; 系统釆用常规循环前 缀; 不需要发送 SRS; DM RS所占的 OFDM符号个数是 2, 且不连续分布 在每个时隙的第 1 个和第 5 个 OFDM 符号上, DM RS 的序列是 ru a v(n)(n = 0,l,...ll) , 如图 3所示; 每个 slot上承载不同的控制信息, 线性分组 码釆用表 1所示的基本序列; 正交码釆用 Walsh序列, 如表 3所示, 调制 阶数 Qm=2; 釆用前述方式二的预处理方式。
Figure imgf000018_0001
表 3
对需要发送的 ACK/NACK消息是 C^q,..^进行编码,因为需要发送的 ACK/NACK消息的比特数 8比特且每个 slot上承载不同的控制信息, 那么 釆用线性分组码进行编码, 且编码后的序列长度是 48, 编码后的序列为 b0,bv,...bA1 , 经过加扰调制后的序列为 ρ^β,...^; 因为每个 slot内 OFDM符 号个数是 7, DM RS所占的 OFDM符号个数是 2且没有 SRS发送, 那么每 个 slot内的 ACK/NACK消息所占的 OFDM符号个数是 5, 所以将 Walsh 序列扩展成表 4所示的正交序列, 那么正交序列如表 4所示: 序列索引 正交序列[ 0) … W(WS P F UCCH-1)]
0 [1 1 1 1 1]
1 [1 -1 1 -1 -1]
2 [1 -1 -1 1 1]
3 [1 1 -1 -1 -1]
表 4
将0),21,...211和212,213,... 分别进行预编码得到2;,2;,...2;1和2;2,2;3,... 3, 在表 4中选择一个正交序列 [w(o) … ^将^;^;,…^和 ,^,… 分别进 行时域扩展, 映射在每个 slot的第 0, 2, 3, 4 , 6个 OFDM符号上, 将导 频序列映射到每个 slot的第 1, 5个 OFDM符号上, 2个 OFDM符号上的 导频可以通过每个 OFDM符号上的导频序列都是 (《)(« = 0,1,...11)构成, 或 者在表 5 (或者表 6) 中选择一个正交序歹 ij[w(0) w(l)] r^(n)(« = 0,l,...ll)¾ 行时或扩展构成。
Figure imgf000019_0001
表 6
实施例二
假设需要发送的 ACK/NACK 消息是^^..^; 系统釆用扩展循环前 缀; 不需要发送 SRS; DM RS所占的 OFDM符号个数是 1, 且分布在每个 时隙的第 2个 OFDM符号上, 如图 4所示; 每个 slot上承载不同的控制信 息, 线性分组码釆用表 1所示的基本序列; 正交码釆用 Walsh序列, 如表 7 所示, 调制阶 ¾ Qm=2; 釆用前述方式二的预处理方式。
Figure imgf000020_0001
表 7
对需要发送的 ACK/NACK消息是 C^q,..^进行编码,因为需要发送的 ACK/NACK消息的比特数 8比特且每个 slot上承载不同的控制信息, 那么 釆用线性分组码进行编码,且编码后的长度是 48,编码后的序列为 H ... 7 , 经过加扰后调制后的序列为 a ,..^^ 因为每个 slot内 OFDM符号个数是 6, DM RS所占的 OFDM符号个数是 1且没有 SRS发送, 那么每个 slot内 的 ACK/NACK消息所占的 OFDM符号个数是 5 ,将0),21,...211和212,213,... 分别进行预编码得到^;^;,…^和^,^,…^ , 在表 5 中选择一个正交序列 [w(0) ··· ^将^;,^;,…^和 ,^,… 分别进行时域扩展, 映射在每个 slot的第 0, 1 , 3 , 4 , 5个 OFDM符号上。 将导频序列 r («)(« = 0,l,...l l)映 射到每个 slot的第 2个 OFDM符号上。
实施例三
假设需要发送的 ACK/NACK 消息是^^..^ ; 系统釆用常规循环前 缀; 需要发送 SRS; DM RS所占的 OFDM符号个数是 2, 且不连续分布在 每个时隙的第 1个和第 5个 OFDM符号上, 如图 5所示; 每个 slot上承载 不同的控制信息, 线性分组码釆用表 1所示的基本序列; 正交码釆用 Walsh 序列, 如表 3所示, 调制阶 ¾ Qm=2; 釆用前述方式二的预处理方式。 对需要发送的 ACK/NACK消息是 C^q,..^进行编码,因为需要发送的 ACK/NACK消息的比特数 8比特且每个 slot上承载不同的控制信息, 那么 釆用线性分组码进行编码, 且编码后的序列长度是 48 , 编码后的序列为 b0,bv,...bA1 , 经过加扰后调制后的序列为 2。,^,...^ ; 因为每个 slot 内 OFDM 内的 ACK/NACK消息所占的 OFDM符号个数是 5 , slotl内 ACK/NACK消 息所占的 OFDM符号个数是 4,所以将 Walsh序列重复到 5 ,那么正交序列 如表 4所示。
将 βο, βρ ..^和 β12,β13,...β23 分别进行预编码得到 和 ρ;2,ρ;3,...ρ;3 , 在表 4中选择一个正交序列 [w(o) … w(4)]将 ρ;, ρ;,… ρ„进行时 域扩展, 映射在 slotO的第 0, 2, 3 , 4 , 6个 OFDM符号上, 在表 3中选 择一个正交序列[^(0) … (3)]将2;2,2;3,...2;3进行时域扩展, 映射在 slotl的 第 0, 2, 3 , 4个 OFDM符号上, 将导频序列映射到每个 slot的第 1 , 5个 OFDM符号上, 2个 OFDM符号上的导频可以通过每个 OFDM符号上的导 频序列都是 Γ„^( )(" = 0,1,...11)构成, 或者在表 7 中选择一个正交序列
[w(0) w(l)]将 ra e v(")(" = 0,1,...11)进行时 i或扩展构成。
实施例四
假设需要发送的 ACK/NACK 消息是^^..^ ; 系统釆用扩展循环前 缀; 需要发送 SRS; DM RS所占的 OFDM符号个数是 1 , 且连续分布在每 个时隙的第 2个 OFDM符号上, 如图 6所示; 每个 slot上承载不同的控制 信息, 线性分组码釆用表 1所示的基本序列; 正交码釆用 Walsh序列, 如 表 3所示, 调制阶 ¾ Qm=2; 釆用前述方式二的预处理方式。
对需要发送的 ACK/NACK消息是 C^q,..^进行编码,因为需要发送的 ACK/NACK消息的比特数 8比特且每个 slot上承载不同的控制信息, 那么 釆用线性分组码进行编码, 且编码后的序列长度是 48 , 编码后的序列为 b0,bv,...bA1 , 经过加扰后调制后的序列为 2。,^,...^ ; 因为每个 slot 内 OFDM 内的 ACK/NACK消息所占的 OFDM符号个数是 5 , slotl内 ACK/NACK消 息所占的 OFDM符号个数是 4,所以将 Walsh序列重复到 5 ,那么正交序列 如表 4所示。
将 βο , βρ ..^和 β12,β13,… 分别进行预编码得到 0:,H 和 ρ;2,ρ;3,...ρ;3 , 在表 4中选择一个正交序列 [w(o) … w(4)]将 ρ;, ρ;,… ρ„进行时 域扩展, 映射在 slotO的第 0, 1 , 2, 4 , 5个 OFDM符号上, 在表 3中选 择一个正交序列[^(0) … (3)]将2;2,2;3,...2;3进行时域扩展, 映射在 slotl的 第 0, 1 , 3 , 4个 OFDM符号上, 将导频序列映射到第 2个 OFDM符号上。
实施例五
假设需要发送的 ACK/NACK 消息是^^..^ ; 系统釆用常规循环前 缀; 不需要发送 SRS; DM RS所占的 OFDM符号个数是 2 , 且不连续分布 在每个时隙的第 0个和第 6个 OFDM符号上, 如图 7所示; 每个 slot上承 载不同的控制信息,线性分组码釆用表 1所示的基本序列;正交码釆用 DFT 序列, 如表 5所示, 调制阶 ¾ Qm=2; 釆用前述方式二的预处理方式。
对需要发送的 ACK/NACK 消息是 0。,^..^进行编码, 因为需要发送的 ACK/NACK消息的比特数 8比特且每个 slot上承载不同的控制信息, 那么 釆用线性分组码进行编码,且编码后的长度是 48,编码后的序列为 H... 7 , 经过加扰后调制后的序列为 a ,..^^ 因为每个 slot内 OFDM符号个数是 7, DM RS所占的 OFDM符号个数是 2且没有 SRS发送, 那么每个 slot内 的 ACK/NACK消息所占的 OFDM符号个数是 5 ,将0),21,...211和212,213,... 分别进行预编码得到^;^;,…^和^,^,…^ , 在表 5 中选择一个正交序列 [w(0) ··· ^将^;,^;,…^和 ,^,… 分别进行时域扩展, 映射在每个 slot的第 1 , 2 , 3 , 4 , 5个 OFDM符号上, 将导频序列映射到每个 slot的 第 0, 6个 OFDM符号上, 2个 OFDM符号上的导频可以通过每个 OFDM 符号上的导频序列都是 r («)(« = 0,l,...l l)构成,或者在表 5中选择一个正交序 列 [w(0) w(l)]将 ra e v(w)(w = 0,1,...11)进行时或扩展构成。
实施例六
假设需要发送的 ACK/NACK 消息是^^..^ ; 系统釆用扩展循环前 缀; 不需要发送 SRS; DM RS所占的 OFDM符号个数是 2 , 且不连续分布 在每个时隙的第 0个和第 5个 OFDM符号上, 如图 8所示; 每个 slot上承 载不同的控制信息,线性分组码釆用表 1所示的基本序列;正交码釆用 Walsh 序列, 如表 3所示, 调制阶 ¾ Qm=2; 釆用前述方式二的预处理方式。
对需要发送的 ACK/NACK消息是 C^q,..^进行编码,因为需要发送的 ACK/NACK消息的比特数 8比特且每个 slot上承载不同的控制信息, 那么 釆用线性分组码进行编码,且编码后的长度是 48 ,编码后的序列为 H ... 7 , 经过加扰后调制后的序列为 a ,..^^ 因为每个 slot内 OFDM符号个数是 6, DM RS所占的 OFDM符号个数是 2且没有 SRS发送, 那么每个 slot内 的 ACK/NACK消息所占的 OFDM符号个数是 4,将0),21,.. 和212,213,...223 分别进行预编码得到^;^;,…^和^,^,…^ , 在表 3 中选择一个正交序列 [w(0) · · · ¼ 3)]将2;,2;,...2;1和2;2,2;3,...2;3分别进行时域扩展,映射在每个81(^ 的第 1 , 2 , 3 , 4个 OFDM符号上, 将导频序列映射到每个 slot的第 0, 5 个 OFDM符号上, 2个 OFDM符号上的导频可以通过每个 OFDM符号上 的导频序列都是 Γ„^ (Μ)(Μ = 0,1,...11)构成, 或者在表 7 中选择一个正交序列
[w(0) w(l)]将 ra e v(w)(" = 0,1,...11)进行时 i或扩展构成。
实施例七
假设需要发送的 ACK/NACK 消息是^^..^ ; 系统釆用常规循环前 缀; 需要发送 SRS; DM RS所占的 OFDM符号个数是 2, 且不连续分布在 每个时隙的第 1个和第 7个 OFDM符号上, 如图 9所示; 每个 slot上承载 不同的控制信息, 线性分组码釆用表 1所示的基本序列; 正交码釆用 DFT 序列, 如表 7所示, 调制阶 ¾ Qm=2; 釆用前述方式二的预处理方式。
对需要发送的 ACK/NACK消息是 C^q,..^进行编码,因为需要发送的 ACK/NACK消息的比特数 8比特且每个 slot上承载不同的控制信息, 那么 釆用线性分组码进行编码,且编码后的长度是 48,编码后的序列为 H... 7 , 经过加扰后调制后的序列为 a ,..^^ 因为每个 slot内 OFDM符号个数是
7, DM RS所占的 OFDM符号个数是 2且有 SRS发送, 那么 slotO 内的 ACK/NACK消息所占的 OFDM符号个数是 5 , slotl内的 ACK/NACK消息 所占的 OFDM符号个数是 5 , 将^^…^和^,^,… 分别进行预编码得 到^;,^;,…^和^,^,…^ , 在表 5 中选择一个正交序列 [w(O) … w(4)]将 ^;^;,…^和 ,^,… 分别进行时域扩展, 映射在每个 slot的第 1 , 2, 3 , 4 , 5个 OFDM符号上, 将导频序列映射到每个 slot的第 0, 6个 OFDM 符号上, 2个 OFDM符号上的导频可以通过每个 OFDM符号上的导频序列 都是 = 0, 1, ...11)构成, 或者在表 5 中选择一个正交序列 [W(0) w(l)]将 ru a v (n)(n = 0,1,...11)进行时 i或扩展构成。
实施例八
假设需要发送的 ACK/NACK 消息是^^..^ ; 系统釆用扩展循环前 缀; 需要发送 SRS; DM RS所占的 OFDM符号个数是 2, 且不连续分布在 每个时隙的第 0个和第 5个 OFDM符号上,如图 10所示; 每个 slot上承载 不同的控制信息, 线性分组码釆用表 1所示的基本序列; 正交码釆用 Walsh 序列, 如表 3所示, 调制阶 ¾ Qm=2; 釆用前述方式二的预处理方式。
对需要发送的 ACK/NACK消息是 C^q,..^进行编码,因为需要发送的 ACK/NACK消息的比特数 8比特且每个 slot上承载不同的控制信息, 那么 釆用线性分组码进行编码,且编码后的长度是 48,编码后的序列为 H... 7 , 经过加扰后调制后的序列为 a ,..^^ 因为每个 slot内 OFDM符号个数是
6, DM RS所占的 OFDM符号个数是 2且没有 SRS发送, 那么每个 slot内 的 ACK/NACK消息所占的 OFDM符号个数是 4,将0),21,.. 和212,213,...223 分别进行预编码得到^;^;,…^和^,^,…^ , 在表 3 中选择一个正交序列 [w(0) ··· ¼ 3)]将2;,2;,...2;1和2;2,2;3,...2;3分别进行时域扩展,映射在每个81(^ 的第 1 , 2 , 3 , 4 个 OFDM符号上, 将导频序列映射到每个 slot的第 0, 5 个 OFDM符号上, 2个 OFDM符号上的导频可以通过每个 OFDM符号上 的导频序列都是 Γ„^ (Μ)(Μ = 0,1,...11)构成, 或者在表 7 中选择一个正交序列
[w(0) w(l)]将 ra e v(w)(" = 0,1,...11)进行时 i或扩展构成。
实施例九
假设需要发送的 ACK/NACK 消息是^^..^ ; 系统釆用常规循环前 缀; 不需要发送 SRS; DM RS所占的 OFDM符号个数是 2 , 且连续分布在 每个时隙的第 2个和第 3个 OFDM符号上,如图 11所示; 每个 slot上承载 不同的控制信息, 线性分组码釆用表 1所示的基本序列; 正交码釆用 DFT 序列, 如表 7所示, 调制阶 ¾ Qm=2; 釆用前述方式二的预处理方式。
对需要发送的 ACK/NACK 消息是 0。,^..^进行编码, 因为需要发送的 ACK/NACK消息的比特数 8比特且每个 slot上承载不同的控制信息, 那么 釆用线性分组码进行编码,且编码后的长度是 48,编码后的序列为 H... 7 , 经过加扰后调制后的序列为 a ,..^^ 因为每个 slot内 OFDM符号个数是
7, DM RS所占的 OFDM符号个数是 2且没有 SRS发送, 那么每个 slot内 的 ACK/NACK消息所占的 OFDM符号个数是 5 ,将0),21,...211和212,213,... 分别进行预编码得到^;^;,…^和^,^,…^ , 在表 5 中选择一个正交序列 [w(0) ··· ^将^;,^;,…^和 ,^,… 分别进行时域扩展, 映射在每个 slot的第 0 , 1 , 4 , 5 , 6个 OFDM符号上, 将导频序列映射到每个 slot的 第 2 , 3个 OFDM符号上, 2个 OFDM符号上的导频可以通过每个 OFDM 符号上的导频序列都是 r («)(« = 0,l,...l l)构成,或者在表 7中选择一个正交序 列 [w(0) w(l)]将 ra e v(w)(w = 0,1,...11)进行时或扩展构成。
实施例十
假设需要发送的 ACK/NACK 消息是^^..^ ; 系统釆用扩展循环前 缀; 不需要发送 SRS; DM RS所占的 OFDM符号个数是 2 , 且连续分布在 每个时隙的第 2个和第 3个 OFDM符号上,如图 12所示; 每个 slot上承载 不同的控制信息, 线性分组码釆用表 1所示的基本序列; 正交码釆用 Walsh 序列, 如表 7所示, 调制阶 ¾ Qm=2; 釆用前述方式二的预处理方式。
对需要发送的 ACK/NACK消息是 C^q,..^进行编码,因为需要发送的 ACK/NACK消息的比特数 8比特且每个 slot上承载不同的控制信息, 那么 釆用线性分组码进行编码,且编码后的长度是 48 ,编码后的序列为 H ... 7 , 经过加扰后调制后的序列为 a ,..^^ 因为每个 slot内 OFDM符号个数是 6, DM RS所占的 OFDM符号个数是 2且没有 SRS发送, 那么每个 slot内 的 ACK/NACK消息所占的 OFDM符号个数是 4,将0),21,.. 和212,213,...223 分别进行预编码得到^;^;,…^和^,^,…^ , 在表 3 中选择一个正交序列 [w(0) · · · ¼ 3)]将2;,2;,...2;1和2;2,2;3,...2;3分别进行时域扩展,映射在每个81(^ 的第 0, 1 , 4 , 5个 OFDM符号上, 将导频序列映射到每个 slot的第 2 , 3 个 OFDM符号上, 2个 OFDM符号上的导频可以通过每个 OFDM符号上 的导频序列都是 Γ„^ (Μ)(Μ = 0,1,...11)构成, 或者在表 7 中选择一个正交序列
[w(0) w(l)]将 ra e v(w)(" = 0,1,...11)进行时 i或扩展构成。
实施例十一
假设需要发送的 ACK/NACK 消息是^^..^ ; 系统釆用常规循环前 缀; 需要发送 SRS; DM RS所占的 OFDM符号个数是 2, 且连续分布在每 个时隙的第 2个和第 3个 OFDM符号上,如图 13所示;每个 slot上承载不 同的控制信息, 线性分组码釆用表 1所示的基本序列; 正交码釆用 DFT序 列和 Walsh序列, 如表 7和表 3所示, 调制阶数 Qm=2; 釆用前述方式二的 预处理方式。
对需要发送的 ACK/NACK消息是 C^q,..^进行编码,因为需要发送的 ACK/NACK消息的比特数 8比特且每个 slot上承载不同的控制信息, 那么 釆用线性分组码进行编码,且编码后的长度是 48,编码后的序列为 H... 7 , 经过加扰后调制后的序列为 a ,..^^ 因为每个 slot内 OFDM符号个数是 7, DM RS所占的 OFDM符号个数是 2且有 SRS发送, 那么 slotO 内的 ACK/NACK消息所占的 OFDM符号个数是 5 , slotl内的 ACK/NACK消息 所占的 OFDM符号个数是 4, 将^^…^和^,^,… 分别进行预编码得 到^;,^;,…^和^,^,…^ , 在表 5 中选择一个正交序列 [w(O) … w(4)]将 ^ …^进行时域扩展, 映射在 slotO的第 0, 1 , 4 , 5 , 6个 OFDM符号 上;在表 3中选择一个正交序列 [w(0) ··· > 3)]将2;2,2;3,...2;3进行时域扩展, 映射在 slotl的第 0, 1 , 4 , 5个 OFDM符号上, 将导频序列映射到每个 slot的第 2, 3个 OFDM符号上, 2个 OFDM符号上的导频可以通过每个 OFDM符号上的导频序列都是 r («)(« = 0,l,...l l)构成, 或者在表 7中选择一 个正交序列 [w(0) w(l)]将 ra e v(w)(" = 0,l,...l l)进行时域扩展构成。
实施例十二
假设需要发送的 ACK/NACK 消息是^^..^ ; 系统釆用扩展循环前 缀; 需要发送 SRS; DM RS所占的 OFDM符号个数是 2, 且连续分布在每 个时隙的第 2个和第 3个 OFDM符号上,如图 14所示;每个 slot上承载不 同的控制信息, 线性分组码釆用表 1 所示的基本序列; 正交码釆用 Walsh 序列,如表 7和表 8所示,调制阶数 Qm=2; 釆用前述方式二的预处理方式。 表 6 DFT序列 [w(0) … w(2)]
Figure imgf000028_0001
表 8
对需要发送的 ACK/NACK消息是 C^q,..^进行编码,因为需要发送的 ACK/NACK消息的比特数 8比特且每个 slot上承载不同的控制信息, 那么 釆用线性分组码进行编码,且编码后的长度是 48,编码后的序列为 H ... 7 , 经过加扰后调制后的序列为 a ,..^^ 因为每个 slot内 OFDM符号个数是
6, DM RS所占的 OFDM符号个数是 2且有 SRS发送, 那么 slotO 内的 ACK/NACK消息所占的 OFDM符号个数是 4, slotl内的 ACK/NACK消息 所占的 OFDM符号个数是 4; 将^^…^和^,^,… 分别进行预编码得 到^;,^;,…^和^,^,…^ , 在表 3 中选择一个正交序列 [w(O) … w(3)] ^;,^;,…^进行时域扩展, 映射在 slotO的第 0, 1 , 4 , 5个 OFDM符号上; 在表 8中选择一个正交序列 [w(O) ··· ^(2)]将2;2,2;3,... 3进行时域扩展, 映 射在 slotl的第 0, 1 , 4个 OFDM符号上, 将导频序列映射到每个 slot的第 2, 3个 OFDM符号上, 2个 OFDM符号上的导频可以通过每个 OFDM符 号上的导频序列都是 r («)(« = 0,l,...l l)构成,或者在表 7中选择一个正交序列
[w(0) w(l)]将 ra e v(w)(" = 0,1,...11)进行时 i或扩展构成。
实施例十三
假设需要发送的 ACK/NACK 消息是^^..^ ; 系统釆用常规循环前 缀; 不需要发送 SRS; DM RS所占的 OFDM符号个数是 3 , 且不连续分布 在每个时隙的第 0个, 第 3个和第 6个 OFDM符号上, DM RS的序列是 , v(n)(n = 0,l,...U), 如图 15所示; 每个 slot上承载不同的控制信息, 线性分 组码采用表 1所示的基本序列; 正交码釆用 Walsh序列, 如表 3所示, 调 制阶数 Qm=2; 釆用前述方式二的预处理方式。
对需要发送的入0^八 消息是0。,01,...07进行编码,因为需要发送的 ACK/NACK消息的比特数 8比特且每个 slot上承载不同的控制信息, 那么 采用线性分组码进行编码, 且编码后的序列长度是 48, 编码后的序列为 b。,b、 ..b47 , 经过加扰调制后的序列为 2。,^...^; 因为每个 slot内 OFDM符 号个数是 7, DM RS所占的 OFDM符号个数是 3且没有 SRS发送, 那么每 个 slot内的 ACK/NACK消息所占的 OFDM符号个数是 4, 将 . 和 ρ1213,… 分别进行预编码得到 ;,… ^和 , ,… , 在表 3中选择一个 正交序列 [w(o) ··· w(3)]将 ρ;,ρ;,… ρ^ορ;2,ρ;3,...ρΒ分别进行时域扩展, 映射 在每个 slot的第 1, 2, 4 , 5个 OFDM符号上, 将导频序列映射到每个 slot 的第 0, 3, 6个 OFDM符号上, 3个 OFDM符号上的导频可以通过每个 OFDM符号上的导频序列都是 r («)(« = 0,l,...ll)构成, 或者在表 6中选择一 个正交序列 [w(0) ... ¼ 2)]将,- (")(" = 0,1,...11)进行时域扩展构成。
实施例十四
假设需要发送的 ACKNACK 消息是^^..^; 系统釆用常规循环前 缀; 需要发送 SRS; DM RS所占的 OFDM符号个数是 3, 且不连续分布在 每个时隙的第 0, 3, 6个 OFDM符号上, 如图 16所示; 每个 slot上承载不 同的控制信息, 线性分组码采用表 1 所示的基本序列; 正交码采用 Walsh 序列, 如表 3所示, 调制阶数(^=2; 釆用前述方式二的预处理方式。
对需要发送的 ACK/NACK消息是 0。,^..^进行编码,因为需要发送的 ACK/NACK消息的比特数 8比特且每个 slot上承载不同的控制信息, 那么 采用线性分组码进行编码, 且编码后的序列长度是 48, 编码后的序列为 m , 经过力口扰后调制后的序列为 ,Q,...e23; 因为每个 slot 内 OFDM 内的 ACK/NACK消息所占的 OFDM符号个数是 4, slotl内 ACK/NACK消 息所占的 OFDM符号个数是 4, 将^^… 和^,^,… 分别进行预编码 得到^;,^;,…^和^,^,…^ , 在表 3中选择一个正交序列 k0) … w(3)]将 ^ …^进行时域扩展, 映射在 slotO的第 1 , 2 , 4, 5个 OFDM符号上, 在表 3 中选择一个正交序列 [w(0) ··· 3)]将2;2,2;3,...2;3进行时域扩展, 映 射在 slotl的第 1 , 2, 4, 5个 OFDM符号上, 将导频序列映射到 slotO的第 0, 3 , 6个 OFDM符号上, slotl的第 0, 3个 OFDM符号上, slotO的 3个 OFDM 符号上的导频可以通过每个 OFDM 符号上的导频序列都是 r (")(" = 0,1,...11)构成, 或者在表 6 中选择一个正交序列 [w(0) ... w(2)] r («)(« = o,l,...l l)进行时域扩展构成, slotl的 2个 OFDM符号上的导频可以 通过每个 OFDM符号上的导频序列都是 (《)(« = 0,1,...11)构成, 或者在表 7 中选择一个正交序列 [w(0) w(l)]将 r (w)(" = 0,l,...l l)进行时域扩展构成。
实施例十五
假设需要发送的 ACK/NACK 消息是^^..^ ; 系统釆用扩展循环前 缀; 不需要发送 SRS; DM RS所占的 OFDM符号个数是 3 , 且部分连续分 布在每个时隙的第 2, 3 , 6个 OFDM符号上, 如图 17所示; 每个 slot上承 载不同的控制信息,线性分组码釆用表 1所示的基本序列;正交码釆用 Walsh 序列, 如表 3所示, 调制阶 ¾ Qm=2; 釆用前述方式二的预处理方式。
对需要发送的 ACK/NACK消息是 C^q,..^进行编码,因为需要发送的
ACK/NACK消息的比特数 8比特且每个 slot上承载不同的控制信息, 那么 釆用线性分组码进行编码, 且编码后的序列长度是 48 , 编码后的序列为 b0,bv,...bA1 , 经过加扰后调制后的序列为 2。,^,...^ ; 因为每个 slot 内 OFDM 内的 ACK/NACK消息所占的 OFDM符号个数是 4, slotl内 ACK/NACK消 息所占的 OFDM符号个数是 4, 将^^… 和^,^,… 分别进行预编码 得到^;,^;,…^和^,^,…^ , 在表 3中选择一个正交序列 k0) … w(3)]将 ^;,^;,…^进行时域扩展, 映射在 slotO的第 0, 1 , 4, 5个 OFDM符号上, 在表 3 中选择一个正交序列 [w(0) ··· 3)]将2;2,2;3,...2;3进行时域扩展, 映 射在 slotl的第 0, 1 , 4, 5个 OFDM符号上, 将导频序列映射到 slotO的第 2, 3 , 6个 OFDM符号上, slotl的第 2 , 3 , 6个 OFDM符号上, slotO的 3 个 OFDM 符号上的导频可以通过每个 OFDM 符号上的导频序列都是 r («)(" = 0,l,...l l)构成, 或者在表 6 中选择一个正交序列 [W(0) ... w(2)]将 r («)(« = 0,l,...l l)进行时域扩展构成, slotl的 3个 OFDM符号上的导频可以 通过每个 OFDM符号上的导频序列都是 (《)(« = 0,1,...11)构成, 或者在表 6 中选择一个正交序列 [w(0) ... w(2)]将 r (")(" = 0,l,...l l)进行时域扩展构成。
实施例十六
假设需要发送的 ACK/NACK 消息是^^..^ ; 系统釆用扩展循环前 缀; 需要发送 SRS; DM RS所占的 OFDM符号个数是 3 , 且部分连续分布 在每个时隙的第 2, 3 , 6个 OFDM符号上, 如图 18所示; 每个 slot上承载 不同的控制信息, 线性分组码釆用表 1所示的基本序列; 正交码釆用 Walsh 序列, 如表 3所示, 调制阶 ¾ Qm=2; 釆用前述方式二的预处理方式。
对需要发送的 ACK/NACK消息是 C^q,..^进行编码,因为需要发送的 ACK/NACK消息的比特数 8比特且每个 slot上承载不同的控制信息, 那么 釆用线性分组码进行编码, 且编码后的序列长度是 48 , 编码后的序列为 b0,bv,...bA1 , 经过加扰后调制后的序列为 2。,^,...^ ; 因为每个 slot 内 OFDM 内的 ACK/NACK消息所占的 OFDM符号个数是 4, slotl内 ACK/NACK消 息所占的 OFDM符号个数是 4, 将^^… 和^,^,… 分别进行预编码 得到^;,^;,…^和^,^,…^ , 在表 3中选择一个正交序列 k0) … w(3)]将 ^;,^;,…^进行时域扩展, 映射在 slotO的第 0, 1 , 4, 5个 OFDM符号上, 在表 3 中选择一个正交序列 [w(O) ··· 3)]将2;2,2;3,...2;3进行时域扩展, 映 射在 slotl的第 0, 1 , 4, 5个 OFDM符号上, 将导频序列映射到 slotO的第 2, 3 , 6个 OFDM符号上, slotl的第 2 , 3个 OFDM符号上, slotO的 3个 OFDM 符号上的导频可以通过每个 OFDM 符号上的导频序列都是 r («)(" = 0,l,... l l)构成, 或者在表 6 中选择一个正交序列 [W(0) ... w(2)]将 r («)(« = o,l,... l l)进行时域扩展构成, slotl的 2个 OFDM符号上的导频可以 通过每个 OFDM符号上的导频序列都是 (《)(« = 0,1,...11)构成, 或者在表 7 中选择一个正交序列 [w(0) w(l)]将 r (w)(" = 0,l,... l l)进行时域扩展构成。
本发明的上述各实施例中, 如果釆用前述的方式一的预处理方式, 也 能实现上述技术方案。 由于其所实现的细节基本相同, 本发明不再赘述其 细节。
图 19 为本发明上行控制信令的发送装置的组成结构示意图, 如图 19 所示, 本发明上行控制信令的发送装置包括预处理单元 190、 映射单元 191 和发送单元 192; 其中,
预处理单元 190, 用于对上行反馈的上行控制信令进行预处理; 映射单元 191 ,用于将预处理后的上行控制信令映射到用于承载上行控 制信令的 OFDM符号上;
发送单元 192 , 用于发送所述上行控制信令。
预处理单元 190进一步包括信道编码子单元、 加扰子单元、 调制子单 元、 时域扩展子单元和预编码变换子单元; 其中,
信道编码子单元, 用于对所述上行控制信令进行信道编码;
加扰子单元, 用于对信道编码后的所述上行控制信令进行加扰; 调制子单元, 用于对加扰后的所述上行控制信令进行调制;
时域扩展子单元, 用于对调制后的所述上行控制信令进行时域扩展; 预编码变换子单元, 用于对时域扩展后的所述上行控制信令进行预编 码变换。
优选地, 所述预编码变换子单元进一步对调制后的所述上行控制信令 进行预编码变换; 所述时域扩展子单元再对预编码变换后的所述上行控制 信令进行时域扩展。
上述信道编码子单元进一步在所述上行控制信令的比特数大于 11比特 时, 釆用约束长度为 7、 码率为 1/3的咬尾卷积码方式进行编码; 否则釆用 线性分组码方式进行编码。 其中, 编码后的长度和一个子帧内的两个时隙 是否承载相同的信息有关, 具体地, 一个子帧内的两个时隙承载相同的信 息时, 所述上行控制信令编码之后的长度是 12xQm; 否则, 编码后的长度 是 24xQm, 其中 Qm是对应的调制阶数。
上述加扰子单元进一步利用扰码序列和编码后的所述上行控制信令序 列相加后, 再进行对 2取模的运算, 得到加扰后的序列; 其中, 所述扰码 序列由伪随机序列构成。
上述调制子单元进一步釆用 QPSK调制方式对加 4尤后的所述上行控制 信令进行调制。
上述时域扩展子单元进一步利用正交序列将处理后的所述上行控制信 令序列扩展到用于承载上行控制信令的 OFDM 符号上; 所述正交序列为 DFT序列或 Walsh序列或 CAZAC序列, 或上述各序列的扩展序列, 所述 正交序列的长度为一个时隙内用于承载上行控制信令的 OFDM符号个数。
上述预编码变换子单元进一步对用于承载上行控制信令的 OFDM符号 上的上行控制信令序列进行 DFT操作。
上述用于承载上行控制信令的 OFDM符号为一个子帧内除上行参考信 号所占的 OFDM符号之外的 OFDM符号。
上述映射单元 191在所述上行控制信令与 SRS承载于一个子帧中时, 在子帧的第二个时隙的最后一个 OFDM符号上不承载上行控制信令。
其中, 上行控制信令为 ACK/NACK应答信息或信道状态信息 CSI。 图 20为本发明上行控制信令发送时上行解调参考信号的承载装置的组 成结构示意图, 如图 20所示, 本发明上行控制信令发送时上行解调参考信 号的承载装置包括承载单元 200,用于将上行解调参考信号承载于每个时隙 的 k个 OFDM符号上。
其中, 在正常循环前缀的子帧中, k=2或 k=3;
在扩展循环前缀的子帧中, k=l或 k=2。
在正常循环前缀的子帧中, 每个时隙内的 3 个解调参考信号是承载在 每个时隙的第 2个, 第 3个, 第 6个 OFDM符号上; 或者, 第 0个, 第 3 个, 第 6个 OFDM符号上; 或者, 第 1个, 第 3个, 第 5个 OFDM符号上 在正常循环前缀的子帧中, 每个时隙内的 2个解调参考信号是承载在 每个时隙的第 0个, 第 5个 OFDM符号上; 或者, 第 0个, 第 6个 OFDM 符号上;或者,第 1个,第 5个 OFDM符号上;或者,第 2个,第 3个 OFDM 符号上;
在扩展循环前缀的子帧中, 每个时隙内的 2个解调参考信号是承载在 每个时隙的第 0个, 第 5个 OFDM符号上; 或者, 第 0个, 第 4个 OFDM 符号上;或者,第 2个,第 3个 OFDM符号上;或者,第 1个,第 4个 OFDM 符号上; 或者, 第 2个, 第 5个 OFDM符号上;
在扩展循环前缀中, 每个时隙内的 1 个解调参考信号是承载在每个时 隙的第 2个 OFDM符号上; 或者, 第 3个 OFDM符号上;
其中, 上述上行解调参考信号所占的 OFDM符号个数是两个以上时, 每个 OFDM符号上承载的解调参考信号为相同的序列, 或者为经时域扩展 的序列, 所述的序列是 CG-CAZAC序列。
本领域技术人员应当理解, 本发明图 19及图 20所示的装置分别是为 实现前述的上行控制信令的发送方法, 以及上行控制信令发送时上行解调 参考信号的承载方法而设计的, 上述各处理单元的实现功能可参照前述方 法的相关描述而理解。 图中的各处理单元的功能可通过运行于处理器上的 程序而实现, 也可通过具体的逻辑电路而实现。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种上行控制信令的发送方法, 其特征在于, 所述方法包括: 对上行控制信令分别进行信道编码、 加扰、 调制、 时域扩展和预编码 变换, 或分别进行信道编码、 加扰、 调制、 预编码变换和时域扩展后, 映 射到用于承载所述上行控制信令的正交频分复用 (OFDM )符号上发送。
2、 根据权利要求 1所述的方法, 其特征在于, 对所述上行控制信令进 行信道编码具体为:
所述上行控制信令的比特数大于 11比特时, 釆用约束长度为 7、 码率 为 1/3的咬尾卷积码方式进行编码; 否则釆用线性分组码方式进行编码。
3、 根据权利要求 2所述的方法, 其特征在于, 所述方法还包括: 一个子帧内的两个时隙承载相同的信息时, 所述上行控制信令编码之 后的长度是 12xQm; 否则, 编码后的长度是 24xQm, 其中 Qm是对应的调 制阶数。
4、 根据权利要求 1所述的方法, 其特征在于, 对所述上行控制信令进 行力口扰具体为:
利用扰码序列与编码后的所述上行控制信令序列相加后, 再进行对 2 取模的运算, 得到加扰后的序列; 其中, 所述扰码序列由伪随机序列构成;
5、 根据权利要求 1所述的方法, 其特征在于, 对所述上行控制信令进 行调制具体为:
釆用四相相移键控(QPSK )调制方式对加扰后的所述上行控制信令序 列进行调制。
6、 根据权利要求 1所述的方法, 其特征在于, 对所述上行控制信令进 行时域扩展具体为:
利用正交序列将处理后的所述上行控制信令序列扩展到用于承载上行 控制信令的 OFDM符号上; 所述正交序列为离散傅里叶变换( DFT )序列, 或 Walsh序列, 或恒包络零自相关 ( CAZAC )序列, 或 DFT序列、 Walsh 序列或 CAZAC序列的扩展序列;所述正交序列的长度为一个时隙内用于承 载上行控制信令的 OFDM符号个数。
7、 根据权利要求 1所述的方法, 其特征在于, 对所述上行控制信令进 行预编码变换具体为:
对用于承载上行控制信令的 OFDM符号上的上行控制信令序列进行 DFT操作。
8、 根据权利要求 1所述的方法, 其特征在于, 所述用于承载上行控制 信令的 OFDM符号为一个子帧内除上行参考信号所占的 OFDM符号之外的 OFDM符号。
9、 根据权利要求 8所述的方法, 其特征在于, 所述方法还包括: 所述上行控制信令与上行测量参考信号 (SRS )承载于一个子帧中时, 子帧的第二个时隙的最后一个 OFDM符号上不承载上行控制信令或上行解 调参考信号。
10、 根据权利要求 1、 8或 9所述的方法, 其特征在于, 所述上行控制 信令为上行反馈的正确 /错误应答(ACK/NACK ) 信息或信道状态信息
( CSI )。
11、 一种上行控制信令发送时解调参考信号的承载方法, 其特征在于, 所述方法包括:
将解调参考信号承载于每个时隙的 k个 OFDM符号上。
12、 根据权利要求 11所述的方法, 其特征在于, 所述方法还包括: 在正常循环前缀的子帧中, k=2或 k=3;
在扩展循环前缀的子帧中, k=2或 k=l。
13、 根据权利要求 11所述的方法, 其特征在于, 将解调参考信号承载 于每个时隙的 k个 OFDM符号上具体为: 在正常循环前缀的子帧中, 每个时隙内的 3 个解调参考信号分别承载 于第 2个, 第 3个, 第 6个 OFDM符号上; 或分别承载于第 0个, 第 3个, 第 6个 OFDM符号上; 或分别承载于第 1个, 第 3个, 第 5个 OFDM符号 上;
在正常循环前缀的子帧中, 每个时隙内的 2个解调参考信号分别承载 于第 0个,第 5个 OFDM符号上;或者,分别承载于第 0个,第 6个 OFDM 符号上; 或者, 分别承载于第 1个, 第 5个 OFDM符号上; 或者, 分别承 载于第 2个,第 3个 OFDM符号上;或者,分别承载于第 2个,第 5个 OFDM 符号上;
在扩展循环前缀的子帧中, 每个时隙内的 2个解调参考信号分别承载 于第 0个,第 5个 OFDM符号上;或者,分别承载于第 0个,第 4个 OFDM 符号上; 或者, 分别承载于第 2个, 第 3个 OFDM符号上; 或者, 分别承 载于第 1个,第 4个 OFDM符号上;或者,分别承载于第 2个,第 5个 OFDM 符号上;
在扩展循环前缀中, 每个时隙内的 1 个解调参考信号承载于第 2 个 OFDM符号上; 或者, 承载于第 3个 OFDM符号上。
其中 , 每个时隙内的 OFDM符号从 0开始编号。
14、 根据权利要求 11所述的方法, 其特征在于, 所述方法还包括: 所述上行解调参考信号所占的 OFDM 符号个数为两个以上时, 各个 OFDM符号上承载的解调参考信号为相同的序列, 或者为经时域扩展的序 列; 所述的序列为计算机生成恒包络零自相关 (CG-CAZAC )序列.
15、 一种应答消息的上行发送装置, 其特征在于, 所述装置包括预处 理单元、 映射单元和发送单元; 其中,
预处理单元, 用于对上行控制信令进行预处理;
映射单元, 用于将预处理后的上行控制信令映射到用于承载上行控制 信令的 OFDM符号上;
发送单元, 用于发送所述上行控制信令。
16、 根据权利要求 15所述的装置, 其特征在于, 所述预处理单元进一 步包括信道编码子单元、 加扰子单元、 调制子单元、 时域扩展子单元和预 编码变换子单元; 其中,
信道编码子单元, 用于对所述上行控制信令进行信道编码;
加扰子单元, 用于对信道编码后的所述上行控制信令进行加扰; 调制子单元, 用于对加扰后的所述上行控制信令进行调制;
时域扩展子单元, 用于对调制后的所述上行控制信令进行时域扩展; 预编码变换子单元, 用于对时域扩展后的所述上行控制信令进行预编 码变换。
17、 根据权利要求 16所述的装置, 其特征在于, 所述预编码变换子单 元进一步对调制后的所述上行控制信令进行预编码变换; 所述时域扩展子 单元再对预编码变换后的所述上行控制信令进行时域扩展。
18、 根据权利要求 16或 17所述的装置, 其特征在于, 所述信道编码 子单元进一步在所述上行控制信令的比特数大于 11比特时, 釆用约束长度 为 7、 码率为 1/3的咬尾卷积码方式进行编码; 否则釆用线性分组码方式进 行编码; 其中, 一个子帧内的两个时隙承载相同的信息时, 所述上行控制 信令编码之后的长度是 12xQm; 否则, 编码后的长度是 24xQm, 其中 Qm 是对应的调制阶数。。
19、 根据权利要求 16或 17所述的装置, 其特征在于, 所述加扰子单 元进一步利用扰码序列和编码后的所述上行控制信令序列相加后, 再进行 对 2取模的运算, 得到加扰后的序列; 其中, 所述扰码序列由伪随机序列 构成。
20、 根据权利要求 16或 17所述的装置, 其特征在于, 所述调制子单 元进一步釆用 QPSK调制方式对加扰后的所述上行控制信令进行调制。
21、 根据权利要求 16或 17所述的装置, 其特征在于, 所述时域扩展 子单元进一步利用正交序列将处理后的所述上行控制信令序列扩展到用于 承载上行控制信令的 OFDM符号上; 所述正交序列为 DFT序列, 或 Walsh 序列, 或 CAZAC序列, 或 DFT序列、 Walsh序列或 CAZAC序列的扩展序 列; 所述正交序列的长度为一个时隙内用于承载上行控制信令的 OFDM符 号个数。
22、 根据权利要求 16或 17所述的装置, 其特征在于, 所述预编码变 换子单元进一步对用于承载上行控制信令的 OFDM符号上的上行控制信令 序列进行 DFT操作。
23、 根据权利要求 15所述的装置, 其特征在于, 所述用于承载上行控 制信令的 OFDM符号为一个子帧内除上行参考信号所占的 OFDM符号之外 的 OFDM符号。
24、 根据权利要求 23所述的装置, 其特征在于, 所述映射单元在所述 上行控制信令与 SRS承载于一个子帧中时, 在子帧的第二个时隙的最后一 个 OFDM符号上不承载上行控制信令或上行解调参考信号。
25、 根据权利要求 15、 16、 17、 23或 24所述的装置, 其特征在于, 所述上行控制信令为上行反馈的 ACK/NACK应答信息或 CSI信息。
26、 一种上行控制信令发送时解调参考信号的承载装置, 其特征在于, 所述装置包括:
承载单元, 用于将上行解调参考信号承载于每个时隙的 k个 OFDM符 号上。
27、 根据权利要求 26所述的装置, 其特征在于, 在正常循环前缀的子 帧中, k=2或 k=3;
在扩展循环前缀的子帧中, k=2或 k=l ; 所述承载单元进一步地,
在正常循环前缀的子帧中, 将每个时隙内的 3 个解调参考信号分别承 载于第 2个, 第 3个, 第 6个 OFDM符号上; 或分别承载于第 0个, 第 3 个, 第 6个 OFDM符号上; 或分别承载于第 1个, 第 3个, 第 5个 OFDM 符号上;
在正常循环前缀的子帧中, 将每个时隙内的 2个解调参考信号分别承 载于第 0个,第 5个 OFDM符号上;或者,分别承载于第 0个,第 6个 OFDM 符号上; 或者, 分别承载于第 1个, 第 5个 OFDM符号上; 或者, 分别承 载于第 2个,第 3个 OFDM符号上;或者,分别承载于第 2个,第 5个 OFDM 符号上;
在扩展循环前缀的子帧中, 将每个时隙内的 2个解调参考信号分别承 载于第 0个,第 5个 OFDM符号上;或者,分别承载于第 0个,第 4个 OFDM 符号上; 或者, 分别承载于第 2个, 第 3个 OFDM符号上; 或者, 分别承 载于第 1个或者第 4个 OFDM符号上; 或者, 分别承载在第 2个, 第 5个 OFDM符号上;
在扩展循环前缀中, 将每个时隙内的 1个解调参考信号承载于第 2个 OFDM符号上; 或者, 承载于第 3个 OFDM符号上。
其中 , 每个时隙内的 OFDM符号从 0开始编号。
28、 根据权利要求 26所述的装置, 其特征在于, 所述上行解调参考信 号所占的 OFDM符号个数为两个以上时, 各个承载的解调参考信号为相同 的序列, 或者为经时域扩展的序列; 所述的序列为 CG-CAZAC序列。
PCT/CN2010/079084 2010-08-12 2010-11-24 上行控制信令发送、上行解调参考信号的承载方法及装置 WO2012019398A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020127033867A KR101428357B1 (ko) 2010-08-12 2010-11-24 업링크 제어 시그널링의 송신, 업링크 복조 참조 신호의 적재 방법 및 장치
EP10855819.8A EP2530895A4 (en) 2010-08-12 2010-11-24 METHOD AND APPARATUS FOR UPLINK CONTROL SIGNAL TRANSMISSION AND METHOD AND APPARATUS FOR UPLINK DEMODULATION REFERENCE RECOVERY
US13/581,320 US9350575B2 (en) 2010-08-12 2010-11-24 Method and apparatus for transmitting uplink control signaling and bearing uplink demodulation reference signal
JP2013523463A JP2013539269A (ja) 2010-08-12 2010-11-24 アップリンク制御シグナル送信方法、アップリンク送信装置及びアップリンク復調基準信号搬送装置
RU2012146852/08A RU2532722C2 (ru) 2010-08-12 2010-11-24 Способ и устройство для передачи управляющих сигналов канала восходящей связи и переноса опорного сигнала демодуляции канала восходящей связи
BR112012027161-0A BR112012027161B1 (pt) 2010-08-12 2010-11-24 Método para transmissão de sinalização de controle de ligação ascendente, e aparelho de transmissão para sinalização de controle de ligação ascendente
MX2012012065A MX2012012065A (es) 2010-08-12 2010-11-24 Metodo y aparato para transmitir señalizacion de control de enlace ascendente y soportar señal de referencia de desmodulacion de enlace ascendente.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010255033.2 2010-08-12
CN201010255033.2A CN101902301B (zh) 2010-08-12 2010-08-12 上行控制信令发送、上行解调参考信号的承载方法及装置

Publications (1)

Publication Number Publication Date
WO2012019398A1 true WO2012019398A1 (zh) 2012-02-16

Family

ID=43227528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079084 WO2012019398A1 (zh) 2010-08-12 2010-11-24 上行控制信令发送、上行解调参考信号的承载方法及装置

Country Status (9)

Country Link
US (1) US9350575B2 (zh)
EP (1) EP2530895A4 (zh)
JP (1) JP2013539269A (zh)
KR (1) KR101428357B1 (zh)
CN (1) CN101902301B (zh)
BR (1) BR112012027161B1 (zh)
MX (1) MX2012012065A (zh)
RU (1) RU2532722C2 (zh)
WO (1) WO2012019398A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016519538A (ja) * 2013-05-15 2016-06-30 華為技術有限公司Huawei Technologies Co.,Ltd. 信号伝送方法、装置、通信システム、端末、及び基地局
CN111010891A (zh) * 2017-06-23 2020-04-14 Idac控股公司 在未许可频谱中具有限制的传输

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102469607B (zh) * 2010-11-09 2014-01-22 上海贝尔股份有限公司 上行探测参考信号的触发和传输方法及其设备
WO2012116184A2 (en) * 2011-02-23 2012-08-30 Zte Corporation Multiple aperiodic channel state information transmission on pusch
CN102739382A (zh) * 2011-03-25 2012-10-17 北京新岸线无线技术有限公司 无线通信系统中解调导频的调整方法及系统
CN102739374B (zh) * 2011-04-12 2017-02-01 中兴通讯股份有限公司 一种载波聚合下确认信息的反馈方法、用户设备和系统
CN103733717B (zh) * 2011-08-12 2018-06-12 瑞典爱立信有限公司 决定是否发送上行链路传输的方法和用户设备
CN103312438B (zh) * 2012-03-12 2018-09-28 中兴通讯股份有限公司 上行信息发送方法及装置
CN104871624A (zh) * 2013-01-08 2015-08-26 富士通株式会社 解调参考信号的配置、映射方法、信道估计方法和装置
CN109347608B (zh) * 2013-01-23 2023-08-22 北京璟石知识产权管理有限公司 一种信息配置的方法、设备及系统
EP2987287B1 (en) * 2013-04-15 2018-04-04 Huawei Technologies Co., Ltd. Methods and nodes for using precoding in a wirless communication network
EP2999282B1 (en) 2013-06-17 2017-10-11 Huawei Technologies Co., Ltd. Uplink control information transmission method, user equipment and base station
CN105634665B (zh) * 2014-11-06 2019-05-24 电信科学技术研究院 数据发送方法、接收方法和装置
US9634807B2 (en) * 2014-12-02 2017-04-25 Nxp Usa, Inc. Joint user detection apparatus
US9930654B2 (en) * 2015-03-17 2018-03-27 Motorola Mobility Llc Method and apparatus for scheduling user equipment uplink transmissions on an unlicensed carrier
US10148326B2 (en) * 2015-07-06 2018-12-04 Qualcomm Incorporated Methods and apparatus for extended receiver processing time
EP4113924A1 (en) 2015-09-25 2023-01-04 Innovative Technology Lab Co., Ltd. Method for configuring dm-rs for v2x
KR102443053B1 (ko) * 2015-10-30 2022-09-14 삼성전자주식회사 무선 통신 시스템에서 데이터 송수신 방법 및 장치
CN106961408B (zh) * 2016-01-11 2020-04-24 中兴通讯股份有限公司 一种上行信号发送方法和装置
CN106992847B (zh) 2016-01-20 2021-01-26 中兴通讯股份有限公司 上行数据发送、接收方法、装置、终端及基站
CN107026719B (zh) * 2016-01-29 2021-02-23 华为技术有限公司 信号传输方法和通信设备
CN109417411B (zh) * 2016-06-30 2022-08-05 松下电器(美国)知识产权公司 发送装置以及发送方法
CN106793105B (zh) * 2016-08-26 2018-08-10 北京展讯高科通信技术有限公司 上行控制信息的传输方法、装置和用户终端
WO2018126650A1 (zh) * 2017-01-06 2018-07-12 华为技术有限公司 一种发送上行信号的方法及终端
CN109428846B (zh) * 2017-08-25 2023-12-08 华为技术有限公司 一种信号传输的方法、设备及系统
CN109586870B (zh) * 2017-09-29 2022-04-29 中兴通讯股份有限公司 上行信息、上行解调参考信号的发送、接收方法及装置
US10623224B2 (en) 2018-05-14 2020-04-14 At&T Intellectual Property I, L.P. Conveying modulation and coding information for an uplink data transmission
US12010054B2 (en) 2019-01-09 2024-06-11 Nec Corporation DMRS transmission
CN113316963A (zh) * 2019-01-11 2021-08-27 株式会社Ntt都科摩 由用户设备、基站执行的方法以及用户设备和基站
US20200374066A1 (en) * 2019-05-20 2020-11-26 Telefonaktiebolaget Lm Ericsson (Publ) Control Signaling Structure
US11950237B2 (en) * 2019-09-24 2024-04-02 Qualcomm Incorporated Sequence based physical uplink control channel transmission
KR20220101473A (ko) * 2021-01-11 2022-07-19 삼성전자주식회사 무선 통신 시스템에서 제어 채널 전송을 위한 장치 및 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132387A (zh) * 2007-08-15 2008-02-27 中兴通讯股份有限公司 用于通信系统的控制信令及其参考信号的发射方法
US20080084815A1 (en) * 2006-10-06 2008-04-10 Interdigital Technology Corporation Method and apparatus of control signaling
CN101286970A (zh) * 2008-05-16 2008-10-15 中兴通讯股份有限公司 在物理上行共享信道中秩指示信令的发送方法
CN101296021A (zh) * 2007-04-28 2008-10-29 华为技术有限公司 多信道复用传输方法与装置
CN101505293A (zh) * 2009-03-13 2009-08-12 华为技术有限公司 上行控制信道数据的处理方法及装置
WO2010068047A2 (en) * 2008-12-11 2010-06-17 Lg Electronics Inc. Method and apparatus for transmitting reference signal performed by relay station in wireless communication system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100689382B1 (ko) 2003-06-20 2007-03-02 삼성전자주식회사 직교분할다중화방식을 기반으로 하는이동통신시스템에서의 송신장치 및 방법
EP1774678A4 (en) * 2004-08-03 2011-01-05 Agency Science Tech & Res METHOD FOR TRANSMITTING A DIGITAL DATA STREAM, TRANSMITTER, METHOD FOR RECEIVING A DIGITAL DATA STREAM AND RECEIVER
KR101106297B1 (ko) * 2005-12-23 2012-01-18 삼성전자주식회사 Ofdm 심볼의 주파수 호핑 방법
US8228782B2 (en) 2006-12-22 2012-07-24 Lg Electronics Inc. Sequence generation and transmission method based on time and frequency domain transmission unit
KR101350134B1 (ko) * 2007-04-26 2014-01-08 엘지전자 주식회사 기준신호 전송 방법
JP2009302880A (ja) * 2008-06-13 2009-12-24 Fujitsu Ltd 上りリンク制御チャネル多重方法及びこれを適用する移動体通信システム
KR101037520B1 (ko) * 2008-12-02 2011-05-26 주식회사 팬택 광대역 무선통신시스템에서 스크램블링 코드 생성 방법 및 그 장치
US8340676B2 (en) * 2009-06-25 2012-12-25 Motorola Mobility Llc Control and data signaling in heterogeneous wireless communication networks
US9203584B2 (en) * 2009-11-02 2015-12-01 Qualcomm Incorporated TDM-FDM relay backhaul channel for LTE advanced
WO2011096646A2 (en) * 2010-02-07 2011-08-11 Lg Electronics Inc. Method and apparatus for transmitting downlink reference signal in wireless communication system supporting multiple antennas
US9654265B2 (en) * 2010-04-08 2017-05-16 Qualcomm Incorporated Systems, apparatus and methods to facilitate transmission of acknowledgement signals in wireless communication systems
US9100954B2 (en) * 2010-07-07 2015-08-04 Lg Electronics Inc. Method for transmitting response information in a wireless communication system, and apparatus for same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080084815A1 (en) * 2006-10-06 2008-04-10 Interdigital Technology Corporation Method and apparatus of control signaling
CN101296021A (zh) * 2007-04-28 2008-10-29 华为技术有限公司 多信道复用传输方法与装置
CN101132387A (zh) * 2007-08-15 2008-02-27 中兴通讯股份有限公司 用于通信系统的控制信令及其参考信号的发射方法
CN101286970A (zh) * 2008-05-16 2008-10-15 中兴通讯股份有限公司 在物理上行共享信道中秩指示信令的发送方法
WO2010068047A2 (en) * 2008-12-11 2010-06-17 Lg Electronics Inc. Method and apparatus for transmitting reference signal performed by relay station in wireless communication system
CN101505293A (zh) * 2009-03-13 2009-08-12 华为技术有限公司 上行控制信道数据的处理方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2530895A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016519538A (ja) * 2013-05-15 2016-06-30 華為技術有限公司Huawei Technologies Co.,Ltd. 信号伝送方法、装置、通信システム、端末、及び基地局
US10070464B2 (en) 2013-05-15 2018-09-04 Huawei Technologies Co., Ltd. Signal transmission method, apparatus, communications system, terminal, and base station
CN111010891A (zh) * 2017-06-23 2020-04-14 Idac控股公司 在未许可频谱中具有限制的传输
CN111010891B (zh) * 2017-06-23 2024-01-26 交互数字专利控股公司 用于上行链路传输的时间资源分配的wtru及方法
US11889551B2 (en) 2017-06-23 2024-01-30 Interdigital Patent Holdings, Inc. Transmission with restrictions in unlicensed spectrum

Also Published As

Publication number Publication date
CN101902301A (zh) 2010-12-01
KR20130044242A (ko) 2013-05-02
CN101902301B (zh) 2018-11-20
MX2012012065A (es) 2012-11-22
BR112012027161B1 (pt) 2021-06-01
RU2532722C2 (ru) 2014-11-10
EP2530895A1 (en) 2012-12-05
US20120320872A1 (en) 2012-12-20
KR101428357B1 (ko) 2014-08-07
RU2012146852A (ru) 2014-05-20
US9350575B2 (en) 2016-05-24
EP2530895A4 (en) 2014-03-05
JP2013539269A (ja) 2013-10-17
BR112012027161A2 (pt) 2017-07-11

Similar Documents

Publication Publication Date Title
WO2012019398A1 (zh) 上行控制信令发送、上行解调参考信号的承载方法及装置
US9456440B2 (en) Method and device for providing control information for uplink transmission in wireless communication system supporting uplink multi-antenna transmission
JP6298017B2 (ja) 無線通信システムにおける制御情報送信方法及び装置
US9042335B2 (en) Method and apparatus for performing HARQ in a wireless communication system
AU2011280441B2 (en) Apparatus for transmitting an uplink signal and method thereof
CA2801007C (en) Multiplexing control and data information from a user equipment in mimo transmission mode
KR101922463B1 (ko) 상향링크 다중입력 다중출력을 지원하는 이동 통신 시스템을 위한 상향링크 전송 장치 및 방법
CN107925997B (zh) 一种上行控制信息的发送方法、接收方法及相关装置
WO2011062384A2 (ko) 다중 안테나 시스템에서 harq 수행 방법 및 장치
US8995537B2 (en) Method and apparatus for transmitting uplink control information in a wireless communication system
KR20120124448A (ko) 무선 기지국, 사용자 장비 및 그 방법들
US9148261B2 (en) Method and apparatus for performing a HARQ in a wireless communication system
WO2014180185A1 (zh) 数据发送、接收方法、数据发送及接收端
WO2011098047A1 (zh) 实现半持续调度业务或类似半持续调度业务的方法及设备
WO2012022140A1 (zh) 正确错误应答在物理上行控制信道上的反馈方法及系统
KR101799595B1 (ko) 무선 통신 시스템에서 harq 수행 방법 및 장치
JP2013098952A (ja) 移動通信システム、基地局装置、移動局装置および通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855819

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13581320

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010855819

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010855819

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/012065

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2012146852

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012027161

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20127033867

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013523463

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112012027161

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121023