WO2012018123A1 - Anisotropic conductive adhesive film and curing agent - Google Patents

Anisotropic conductive adhesive film and curing agent Download PDF

Info

Publication number
WO2012018123A1
WO2012018123A1 PCT/JP2011/067977 JP2011067977W WO2012018123A1 WO 2012018123 A1 WO2012018123 A1 WO 2012018123A1 JP 2011067977 W JP2011067977 W JP 2011067977W WO 2012018123 A1 WO2012018123 A1 WO 2012018123A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
adhesive film
anisotropic conductive
formula
conductive adhesive
Prior art date
Application number
PCT/JP2011/067977
Other languages
French (fr)
Japanese (ja)
Inventor
章 大谷
圭介 福本
Original Assignee
旭化成イーマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成イーマテリアルズ株式会社 filed Critical 旭化成イーマテリアルズ株式会社
Priority to CN201180038913.7A priority Critical patent/CN103081236B/en
Priority to JP2012527790A priority patent/JP5373973B2/en
Priority to KR1020137001516A priority patent/KR101456396B1/en
Publication of WO2012018123A1 publication Critical patent/WO2012018123A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/687Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin

Definitions

  • the present invention relates to an anisotropic conductive adhesive film having excellent low-temperature connectivity and excellent peel strength reliability in electrical connection of fine patterns, a method for producing a connection structure using the same, and a curing agent.
  • An anisotropic conductive adhesive film is a film in which conductive particles are dispersed in an insulating adhesive, in other words, connection between a liquid crystal display and an IC chip or TCP (Tape Carrier Package), FPC (Flexible Printed Circuit) and It is a connection member that is used to easily connect to TCP or FPC and printed wiring board. For example, it is widely used for connection between liquid crystal display of notebook personal computer or mobile phone and control IC. Recently, it is also used for flip chip mounting in which an IC chip is directly mounted on a printed circuit board or a flexible wiring board.
  • An anisotropic conductive adhesive film is mainly made of a thermosetting binder resin from the viewpoint of connection reliability.
  • An epoxy resin is mainly used as the curable resin, and tertiary amines or imidazoles which are anionic polymerization type curing agents are mainly used as the curing agent. Furthermore, it is known to enhance storage stability by macroencapsulating tertiary amines or imidazoles.
  • a cationic curing agent has been proposed as a curing agent that can be cured at a lower temperature than such an anionic polymerization curing agent (Patent Document 1).
  • a method (Patent Document 2) in which a stabilizer is blended in order to achieve both low-temperature curability and storage stability is known.
  • Patent Documents 3 and 4 Furthermore, there has been proposed a method for reducing the influence of impurity ions by using an organic boron compound as a counter ion of a cationic curing agent in a cationic curable resin composition.
  • the problem to be solved by the present invention is to provide a highly reliable anisotropic conductive adhesive film that is excellent in low-temperature connectivity and hardly deteriorates in peel strength in electrical connection between opposing wiring circuits. is there.
  • Another object of the present invention is to provide a cationic curing agent having both storage stability and low temperature curability.
  • an anisotropic conductive adhesive film having excellent low-temperature connectivity and peel strength reliability can be obtained by the following composition, and make the present invention. It came.
  • the present invention is as follows.
  • Q is a substituted or unsubstituted naphthylmethyl group, and the sum of Hammett constants of 1 to 5 substituents of A is ⁇ 0.3 to 0.
  • Anisotropic conductive adhesive film is a substituted or unsubstituted naphthylmethyl group, and the sum of Hammett constants of 1 to 5 substituents of A is ⁇ 0.3 to 0.
  • Q is a substituted or unsubstituted benzyl group, and the sum of Hammett constants of 1 to 5 substituents of A is 0 to +0.5.
  • Direction conductive adhesive film is a substituted or unsubstituted benzyl group, and the sum of Hammett constants of 1 to 5 substituents of A is 0 to +0.5.
  • A represents the general formula (4): ⁇ In Formula (4), R 1 is a methyl group, an acetyl group, a phenoxycarbonyl group, a benzyloxycarbonyl group, a benzoyl group or a 9-fluorenylcarbonyl group, and R 2 and R 3 are hydrogen, halogen, Or an alkyl group having 1 to 6 carbon atoms. ⁇ The anisotropic conductive adhesive film as described in [1] which is group represented by these.
  • R 1 is an acetyl group, a phenoxycarbonyl group, a benzyloxycarbonyl group, or a benzoyl group
  • R 2 and R 3 are hydrogen or a methyl group, Anisotropic conductive adhesive film.
  • Q represents the general formula (3): ⁇ In Formula (3), R 5 is hydrogen, methyl, methoxy or halogen.
  • R 5 is hydrogen, methyl, methoxy or halogen.
  • connection structure including a step of heating and pressurizing a pair of electronic circuit boards having a corresponding electrode arrangement through the anisotropic conductive adhesive film according to any one of [1] to [13] Manufacturing method.
  • An anisotropic conductive film comprising an organic binder having an epoxy group, a cation generator and conductive particles, wherein the epoxy group reaction rate at 80 ° C. for 10 seconds is less than 10%, and 140 ° C.
  • the present invention has an effect that, in electrical connection between opposing circuits, the low-temperature connectivity is excellent and the peel strength is hardly lowered. Moreover, the cationic hardening
  • an anisotropic conductive film including an organic binder having an epoxy group, a cation generator, and conductive particles, the epoxy group reaction rate at 80 ° C. for 10 seconds is less than 10%, and An anisotropic conductive adhesive film having an epoxy group reaction rate of 80% or more at 140 ° C. for 10 seconds.
  • the epoxy group reaction rate at 80 ° C. for 10 seconds is preferably less than 10%, more preferably less than 5%, still more preferably less than 2%.
  • the storage stability is good and it is difficult to be affected by heat at the time of temporary attachment to a circuit board.
  • the epoxy group reaction rate at 140 ° C. for 10 seconds is preferably 80% or more, more preferably 85% or more, still more preferably 90% or more, and particularly preferably 95% or more.
  • the epoxy group reaction rate at 140 ° C. for 10 seconds is 80% or more, the connection resistance value and the peel strength are good, and the reliability after connection is also stabilized.
  • the epoxy group reaction rate can be measured by measuring the epoxy group absorbance ratio by the FT-IR method.
  • One embodiment of the present invention is an organic binder containing a cationically polymerizable substance; 0.01 to 15 parts by mass of the general formula (1) with respect to 100 parts by mass of the organic binder containing the cationically polymerizable substance: ⁇ In Formula (1), A is a substituted phenyl group, Q is a substituted or unsubstituted naphthylmethyl group or a substituted or unsubstituted benzyl group, and R 4 is an alkyl group having 1 to 6 carbon atoms. , And Y ⁇ represents the general formula (2): [In Formula (2), X is respectively independently fluorine, chlorine, or bromine. ] An anion represented by ⁇ An anisotropic conductive adhesive film containing 0.1 to 20% by volume of conductive particles with respect to the total volume of the organic binder containing the cationic polymerizable substance.
  • A is a phenyl group having 1 to 5 substituents, and the sum of Hammett constants of the 1 to 5 substituents is ⁇ 0.3 to 0, Q is preferably a substituted or unsubstituted naphthylmethyl group.
  • A is a phenyl group having 1 to 5 substituents, and the sum of Hammett constants of the 1 to 5 substituents is 0 to +0.5, and Q is preferably a substituted or unsubstituted benzyl group.
  • Hammett's rule is a 1935 L.S. method for discussing quantitatively the effect of substituents on the reaction or equilibrium of benzene derivatives.
  • P. A rule of thumb proposed by Hammett which is widely accepted today.
  • the Hammett constant determined by Hammett's rule includes a ⁇ p value and a ⁇ m value, and these values can be found in many general books. For example, J. et al. A. Dean ed., “Lange's Handbook of Chemistry”, 12th edition, 1979 (McGraw-Hill) or “Chemical Domain”, No. 122, pages 96-103, 1979 (Nankodo), Chem. Rev. 1991, Vol. 91, pages 165-195.
  • each substituent is limited or explained by Hammett's substituent constant.
  • each substituent is limited to only a substituent having a known value that can be found in the above-mentioned book. It is not to be understood that it should be understood that the values also include substituents that would fall within the range when measured according to Hammett's law, even though the values are not described in the literature.
  • the Hammett constant When the Hammett constant is negative, it indicates that the substituent is an electron donating substituent.
  • Q is a substituted or unsubstituted naphthylmethyl group, and the phenyl group substituent Hammett
  • the sum of the Hammett constants is more preferably ⁇ 0.27 to 0, and even more preferably ⁇ 0.25 to 0.
  • the Hammett constant When the Hammett constant is positive, it indicates that the substituent is an electron-withdrawing substituent.
  • Q is a substituted or unsubstituted benzyl group, and the Hammett constant of the substituent of the phenyl group When the sum is 0 to +0.5, it is possible to achieve both good cation generation and appropriate storage stability.
  • the sum of the Hammett constants is preferably 0 to +0.4, more preferably 0 to +0.35, and even more preferably 0 to +0.30.
  • the sum of Hammett constants of these substituents is preferably in the range of ⁇ 0.2 to +0.2. It is more preferably in the range of ⁇ 0.15 to +0.15, and further preferably in the range of ⁇ 0.1 to +0.1. When it is in the range of ⁇ 0.2 to +0.2, it is preferable because both cation generation and storage stability can be achieved.
  • One embodiment of the present invention is an organic binder containing a cationic polymerizable substance; 0.01 to 15 parts by mass of the following general formula (5) with respect to 100 parts by mass of the organic binder component containing the cationic polymerizable substance:
  • R 1 represents a methyl group, an acetyl group, a phenoxycarbonyl group, a benzyloxycarbonyl group, a benzoyl group, or a 9-fluorenylcarbonyl group
  • R 2 and R 3 represent hydrogen, halogen, or An alkyl group having 1 to 6 carbon atoms
  • R 4 is an alkyl group having 1 to 6 carbon atoms
  • Q is the following general formula (3):
  • R 5 is hydrogen, methyl, methoxy or halogen
  • Y ⁇ represents the following general formula (2): [In Formula (2),
  • the cation generator used in the present invention may have any structure as long as it is represented by the above general formula (1) or (5), but generates a cation species at 50 ° C. or higher from the viewpoint of storage stability. Is preferred.
  • the cation species generated by the thermal decomposition of the cation generator of the present invention may have any structure as long as the reactivity with the cationic polymerizable substance is sufficient, but benzyl cation species, ⁇ -naphthyl cation species, ⁇ -Naphthyl cation species or acyl cation species are preferred. From the viewpoint of connection formation, it is preferable that at least one species is an acyl cation species. Furthermore, it is particularly preferable that the cation species to be generated are at least two or more containing an acyl cation species.
  • the counter anion of the cation generator may have the structure of the formula (2), but a fluorine compound is particularly preferable from the viewpoint of impurity ions.
  • the content of the cation generator in the anisotropic conductive adhesive film of the present invention is 0.01 to 15 parts by mass, preferably 0.5 to 100 parts by mass with respect to 100 parts by mass of the organic binder containing the cationic polymerizable substance. 5 parts by mass.
  • the content of the cation generator is less than 0.01 parts by mass, the curing becomes insufficient, sufficient electrical connectivity cannot be obtained, and when the content of the cation generator exceeds 15 parts by mass, storage is performed. Sex is reduced.
  • the cation scavenger used in the present invention may have any structure as long as it reacts with a cation species generated by thermal decomposition of the cation generator, but a thiourea compound, 4-alkylthiophenol compound, and 4-hydroxy One or more selected from the group consisting of phenyl-dialkylsulfonium salts are preferred.
  • Examples of the cation scavenger are shown below.
  • Examples of the thiourea compound include ethylene thiourea, N, N′-dibutylthiourea, and trimethylthiourea.
  • Examples of the 4-alkylthiophenol compound include 4-methylthiophenol, 4-ethylthiophenol, 4-butylthiophenol and the like.
  • Examples of the 4-hydroxyphenyldialkylsulfonium salt include 4-hydroxyphenyldimethylsulfonium methyl sulfate, 4-hydroxyphenyl-dibutylsulfonium methyl sulfate, and the like.
  • the content of the cation scavenger in the anisotropic conductive adhesive film of the present invention is 0.1 to 20 parts by mass with respect to 100 parts by mass of the cation generator.
  • the content of the cation scavenger is 0.5 to 10 parts by mass with respect to 100 parts by mass of the cation generator.
  • the content of the cation scavenger is less than 0.1 parts by mass, the connection reliability is lowered, and when it exceeds 20 parts by mass, the connectivity is lowered.
  • the conductive particles contained in the anisotropic conductive adhesive film of the present invention is 0.1 to 20% by volume, preferably 0.5 to 15% by volume, based on the total volume of the organic binder. Preferably, it is 1 to 10% by volume.
  • the conductive particles are metal particles such as gold, silver, copper, nickel, silver, lead, tin, or alloys made thereof, such as particles such as solder and silver-copper alloys, conductive particles such as carbon, and conductive materials thereof.
  • the surface is coated with a conductive material using glass, ceramics, or plastic particles, which are conductive particles or non-conductive particles, as nuclei. Particles obtained by metal plating on plastic particles are particularly preferable because they have excellent connection reliability due to elastic deformation.
  • Plastic particles include epoxy resin, styrene resin, silicone resin, acrylic resin, polyolefin resin, melamine resin, benzoguanamine resin, urethane resin, phenol resin, polyester resin, crosslinked divinylbenzene, NBR, SBR, and other polymers. Species or a combination of two or more nuclei can be used. These plastic particles may contain an inorganic substance such as silicon oxide. By forming Ni plating on these plastic particles by a method such as electroless plating, conductive particles can be obtained, and it is also possible to form a metal layer other than Ni such as gold on the Ni plating. .
  • the surface of the core is coated with an insulating material, and when pressed, the internal conductive particles eliminate the insulating layer on the surface and allow contact with the connected circuit. It is valid. When such conductive particles are used, it is easy to prevent a short circuit between adjacent terminals, and it can also be used in the case of a connected circuit having a narrow terminal interval.
  • the particle size of the conductive particles is preferably from 0.1 to 20 ⁇ m, more preferably from 1 to 10 ⁇ m, and even more preferably from 2 to 8 ⁇ m. If the particle size is less than 0.1 ⁇ m, the connection is likely to be unstable due to variations in the surface roughness of the connected terminals, and if it exceeds 20 ⁇ m, a short circuit between adjacent terminals is likely to occur.
  • the standard deviation of the average particle diameter of the conductive particles is preferably as small as possible, preferably 50% or less of the average particle diameter, more preferably 20% or less, still more preferably 10% or less, and particularly preferably 5% or less.
  • a known method such as a Coulter counter can be used for the measurement of the average particle diameter of the conductive particles.
  • insulating particles may be used in combination as long as the connection resistance is not impaired.
  • the conductive particles may be localized in the thickness direction of the anisotropic conductive adhesive film by a method of laminating a plurality of layers.
  • a known method can be used, but a solvent evaporation method, a spray drying method, a coacervation method, and an interfacial polymerization method are preferably used.
  • the cationically polymerizable substance in the organic binder component is an acid polymerizable or acid curable substance, such as an epoxy resin, polyvinyl ether, or polystyrene.
  • the cationic polymerizable substance may be used alone or in combination of two or more.
  • an epoxy resin is preferable.
  • the epoxy resin is preferably a compound having two or more epoxy groups in one molecule. Specifically, a compound having a glycidyl ether group, a glycidyl ester group or an alicyclic epoxy group, a compound obtained by epoxidizing a double bond in the molecule, or a compound having two or more of these substituents is more preferable. Furthermore, a resorcinol type epoxy resin may be used to improve environmental resistance.
  • the organic binder component is composed of a binder resin and a cationic polymerizable substance
  • the binder resin that can be mixed with the cationic polymerizable substance is a thermoplastic resin, a thermosetting resin reactive with an epoxy resin, or the like.
  • Thermoplastic resins that can be mixed with cationically polymerizable substances are compatible with cationically polymerizable substances such as phenoxy resin, polyvinyl acetal resin, polyvinyl butyral resin, alkylated cellulose resin, polyester resin, acrylic resin, urethane resin, and polyethylene terephthalate resin. It is resin with.
  • a resin having a polar group such as a hydroxyl group or a carboxyl group is preferable because of excellent compatibility with the cationic polymerizable resin.
  • the cationically polymerizable substance functions as an organic binder component together with the binder resin after being polymerized or cured by a cation.
  • the organic binder component used in the present invention can further contain other components.
  • other components include insulating particles, fillers, softeners, accelerators, anti-aging agents, colorants, flame retardants, thixotropic agents, coupling agents, and ion trapping agents.
  • these maximum diameters are preferably less than the average particle diameter of the conductive particles.
  • the coupling agent a ketimine group, vinyl group, acrylic group, amino group, epoxy group, or isocyanate group-containing silane coupling agent is preferable from the viewpoint of improving adhesiveness.
  • the content of other components is preferably 50 parts by mass or less, more preferably 20% by mass or less, relative to the organic binder component.
  • a solvent When mixing an organic binder and components such as a cation generator, a cation scavenger and conductive particles, a solvent can be used as necessary.
  • the solvent include methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, ethyl acetate, butyl acetate, ethylene glycol monoalkyl ether acetate, propylene glycol monoalkyl ether acetate, and the like.
  • the anisotropic conductive adhesive film of the present invention may be a single layer film or a film in which a plurality of films are laminated. When laminating a plurality of films, it is also possible to laminate films that do not contain conductive particles.
  • a coating liquid is prepared by previously mixing conductive particles, a cation generator, an organic binder, and, if necessary, a cation scavenger in a solvent, and then a separator. It can be produced by applying the coating liquid on the top by applicator coating or the like and volatilizing the solvent in an oven.
  • a laminating method is preferable.
  • a method of laminating using a heat roll is exemplified.
  • the temperature of the hot roll is preferably lower than the temperature at which the cation generator generates cationic species.
  • separator used for the anisotropic conductive adhesive film examples include films of polyethylene, polypropylene, polystyrene, polyester, PET, PEN, nylon, vinyl chloride, polyvinyl alcohol, and the like.
  • Preferred resins for the protective film include polypropylene and PET.
  • the separator is preferably subjected to surface treatment such as fluorine treatment, Si treatment or alkyd treatment.
  • the film thickness of the separator is preferably 20 ⁇ m or more and 100 ⁇ m or less.
  • the anisotropic conductive adhesive film of the present invention is slit to a desired width and wound in a reel shape as necessary.
  • the anisotropic conductive adhesive film of the present invention can be suitably used for connection between a liquid crystal display and TCP, TCP and FPC, FPC and printed wiring board, or flip chip mounting in which an IC chip is directly mounted on a substrate.
  • a manufacturing method of a connection structure using an anisotropic conductive adhesive film includes a step of heating and pressurizing a pair of electronic circuit boards having a corresponding electrode arrangement through the anisotropic conductive adhesive film of the present invention.
  • a circuit board such as a glass substrate in which a circuit and an electrode are formed by ITO wiring or metal wiring or the like, and a position where the electrode of the circuit board is paired
  • a circuit member such as an IC chip on which electrodes are formed is prepared, and the anisotropic conductive adhesive film of the present invention is attached to a position where the circuit member is arranged on the circuit board, and then the circuit board and the circuit member are respectively attached.
  • the electrodes may be connected by thermocompression bonding after aligning the positions of the electrodes so as to form a pair.
  • the heating and pressing conditions are preferably, for example, heating and pressing at a temperature of 30 ° C. to 80 ° C. and a pressure of 0.1 MPa to 1 MPa for 0.5 seconds to 3 seconds.
  • thermocompression bonding is performed at a temperature range of 120 ° C. or higher and 180 ° C. or lower (more preferably 130 ° C. or higher and 170 ° C. or lower, most preferably 140 ° C. or higher and 160 ° C. or lower). It is preferable to heat and pressurize in the pressure range below (more preferably 0.5 MPa to 40 MPa) for 3 seconds to 15 seconds (more preferably 4 seconds to 12 seconds).
  • the temperature difference is more preferably 100 ° C. or less, and even more preferably 70 ° C. or less.
  • the temperature difference between the substrates can be measured by placing thermocouples on the opposing connection substrates.
  • Example 1 30 g of alicyclic epoxy resin composed of 1,2,3,4-butanetetracarboxylic acid and 3-cyclohexaneoxide-1-methanol ester, 15 g of bisphenol A liquid epoxy resin, 3,4-epoxycyclohexylmethyl-3, 5 g of 4-epoxycyclohexanecarboxylate and 50 g of phenoxy resin having an average molecular weight of 25,000 were dissolved in a mixed solvent of toluene-ethyl acetate (1 to 1) to obtain a solution having a solid content of 50%.
  • the resin component 100 in terms of solid mass ratio, 4-benzyloxycarbonyloxyphenyl-o-methylbenzylmethylsulfonium, tetrakis (pentafluorophenyl) borate and N, N′-diethylthiourea were added so that the total was 2, and benzoguanamine
  • Example 2 Aside from using 4-acetyloxyphenyl-benzyl-methylsulfonium tetrakis (pentafluorophenyl) borate in place of 4-benzyloxycarbonyloxyphenyl-o-methylbenzylmethylsulfonium tetrakis (pentafluorophenyl) borate in Example 1 Obtained an anisotropic conductive film in the same manner as in Example 1.
  • Example 3 Instead of 4-benzyloxycarbonyloxyphenyl-o-methylbenzylmethylsulfonium tetrakis (pentafluorophenyl) borate in Example 1, 4-benzoyloxyphenyl-o-methylbenzyl-methylsulfonium tetrakis (pentafluorophenyl) borate was used. An anisotropic conductive film was obtained in the same manner as in Example 1 except that it was used.
  • Example 4 Instead of 4-benzyloxycarbonyloxyphenyl-o-methylbenzylmethylsulfonium tetrakis (pentafluorophenyl) borate in Example 1, 4-phenoxycarbonyloxyphenyl-benzyl-methylsulfonium tetrakis (pentafluorophenyl) borate was used. Except for the above, an anisotropic conductive film was obtained in the same manner as in Example 1.
  • Example 5 Instead of 4-benzyloxycarbonyloxyphenyl-o-methylbenzyl-methylsulfonium tetrakis (pentafluorophenyl) borate in Example 1, 4-methoxyphenyl- ⁇ -naphthylmethylmethylsulfonium tetrakis (pentafluorophenyl) borate is used. Then, an anisotropic conductive film was obtained in the same manner as in Example 1 except that 4-hydroxyphenyldimethylsulfonium methyl sulfate was used in place of N, N′-diethylthiourea.
  • Example 6 In place of 4-benzyloxycarbonyloxyphenyl-o-methylbenzyl-methylsulfonium tetrakis (pentafluorophenyl) borate in Example 1, 4-acetyloxyphenylbenzylmethylsulfonium tetrakis (pentafluorophenyl) borate was used, and bisphenol was used. An anisotropic conductive film was obtained in the same manner as in Example 1 except that 15 g of resorcin type epoxy resin was used instead of 15 g of A type liquid epoxy resin.
  • Example 7 4-acetyloxy 2-methylphenylbenzylmethylsulfonium tetrakis (pentafluorophenyl) borate was used in place of 4-benzyloxycarbonyloxyphenyl-o-methylbenzyl-methylsulfonium tetrakis (pentafluorophenyl) borate in Example 1
  • An anisotropic conductive film was obtained in the same manner as in Example 1 except that.
  • An anisotropic conductive film with a width of 2 mm is temporarily pasted on a polycarbonate film substrate (surface resistance 200 ⁇ / sq) with a thickness of 200 ⁇ m on which an indium oxide-zinc oxide (IZO) thin film is formed on the entire surface, and a 2.5 mm width crimping head After pressing at 50 ° C., 0.3 MPa and 3 seconds, the polyethylene terephthalate base film is peeled off.
  • IZO indium oxide-zinc oxide
  • a flexible printed wiring board (material polyimide resin, thickness 25 ⁇ m) having 200 circuits composed of gold-plated copper wiring (gold plating thickness 0.3 ⁇ m) having a wiring width of 80 ⁇ m, a wiring pitch of 150 ⁇ m and a thickness of 18 ⁇ m was temporarily connected to the peeling surface. Thereafter, pressure is applied by pressure at 130 ° C., 8 seconds, and 0.9 MPa using a 1.5 mm wide pressure bonding head. After crimping, the resistance value between adjacent terminals is measured with a four-terminal resistance meter to obtain the connection resistance value.
  • the pressure-bonded flexible printed wiring board is cut into a width of 10 mm, and the 90 ° peel strength is measured using an Instron. The pulling speed was 50 mm / min. The measured value is the peel strength. Judgment criteria are shown below. ⁇ : The peel strength is 700 g / cm or more ⁇ : The peel strength is 500 g / cm or more and less than 700 g / cm ⁇ : The peel strength is less than 500 g / cm
  • the pressure-bonded printed wiring board is held at 85 ° C. and 85% relative humidity for 100 hours, and then subjected to a cycle test ( ⁇ 40 ° C., 100 ° C., 30 minutes each, 1 hour 1 cycle) for 100 cycles, and then 25 After leaving at 1 ° C. for 1 hour, the peel strength is measured.
  • the criteria for environmental resistance are shown below.
  • the peel strength is 70% or more of the initial value
  • The peel strength is 50% or more and less than 70% of the initial value
  • The peel strength is less than 50% of the initial value
  • the anisotropic conductive film is put in a sealed container and stored at 25 ° C. for 2 weeks, and then the peel strength is measured.
  • the criteria for storage stability are shown below.
  • the peel strength is 70% or more of the initial value
  • The peel strength is 50% or more and less than 70% of the initial value
  • The peel strength is less than 50% of the initial value
  • reaction rate measurement The epoxy group reaction rate is measured by the epoxy group absorbance ratio by the FT-IR method.
  • a 2 mm wide, 20 mm long anisotropic conductive adhesive film formed on a film substrate is sandwiched between 30 ⁇ m thick Teflon (registered trademark) tapes, and a pressure heating head with a width of 2.5 mm is used for 10 seconds, 0.
  • a sample pressed at 3 MPa is prepared.
  • FT-IR measurement is performed before and after pressure bonding, and the epoxy group reaction rate is calculated from the absorbance ratio before and after pressure bonding.
  • the methyl group absorption intensity is used as an internal standard, and the reaction rate is calculated by the following formula.
  • Reaction rate (%) (1 ⁇ ((a / b) / (A / B))) ⁇ 100
  • Table 2 shows the sum of Hammett constants of the substituents of the phenyl group in the above formula (1).
  • the examples using the present invention have a lower decrease in peel strength after storage and a lower decrease in peel strength after the environmental resistance test than in the comparative example, and good connection resistance. Show.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesive Tapes (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Abstract

An anisotropic conductive adhesive film which comprises: an organic binder that contains a cationically polymerizable substance; 0.01 to 15 parts by mass of a cation generator represented by general formula (1) per 100 parts by mass of the organic binder; and 0.1 to 20vol% of conductive particles relative to the whole volume of the organic binder. In general formula (1), Q, A, R4 and Y- are each as defined in the description.

Description

異方導電性接着フィルムおよび硬化剤Anisotropic conductive adhesive film and curing agent
 本発明は、微細パターンの電気的接続において、低温接続性に優れると共に、剥離強度の信頼性に優れた異方導電性接着フィルム、それを用いた接続構造体の製造方法、および硬化剤に関する。 The present invention relates to an anisotropic conductive adhesive film having excellent low-temperature connectivity and excellent peel strength reliability in electrical connection of fine patterns, a method for producing a connection structure using the same, and a curing agent.
 異方導電性接着フィルムは、絶縁性接着剤中に導電性粒子を分散させたフィルム、換言すれば、液晶ディスプレイとICチップ若しくはTCP(Tape Carrier Package)との接続、FPC(Flexible Printed Circuit)とTCPとの接続、又はFPCとプリント配線板との接続を簡便に行うために使用される接続部材であり、例えば、ノート型パソコン又は携帯電話の液晶ディスプレイと制御ICとの接続用として広範に用いられ、最近では、ICチップを直接プリント基板又はフレキシブル配線板に搭載するフリップチップ実装にも用いられている。 An anisotropic conductive adhesive film is a film in which conductive particles are dispersed in an insulating adhesive, in other words, connection between a liquid crystal display and an IC chip or TCP (Tape Carrier Package), FPC (Flexible Printed Circuit) and It is a connection member that is used to easily connect to TCP or FPC and printed wiring board. For example, it is widely used for connection between liquid crystal display of notebook personal computer or mobile phone and control IC. Recently, it is also used for flip chip mounting in which an IC chip is directly mounted on a printed circuit board or a flexible wiring board.
 一方、この分野では近年、接続される基板の薄型化、大型化が進み、接続時の温度差による反りを緩和するため、低温で接続する要求が高まっている。 On the other hand, in this field, in recent years, the substrate to be connected has been made thinner and larger, and the demand for connection at a low temperature is increasing in order to alleviate the warp caused by the temperature difference at the time of connection.
 異方導電性接着フィルムは、接続信頼性の点から主として熱硬化型のバインダー樹脂が用いられている。硬化性樹脂としてエポキシ樹脂が、硬化剤としては、アニオン重合型硬化剤である三級アミン又はイミダゾール類が主として用いられる。更に、三級アミン類又はイミダゾール類をマクロカプセル化することにより保存安定性を高めることが知られている。このようなアニオン重合型硬化剤より低温で硬化できる硬化剤としてカチオン型硬化剤が提案されている(特許文献1)。また、低温硬化性と保存性を両立するために安定剤を配合する方法(特許文献2)が公知である。さらに、カチオン硬化性樹脂組成物においてカチオン硬化剤のカウンターイオンを有機ホウ素化合物にすることにより、不純物イオンの影響を低減する方法が提案されている(特許文献3及び4)。 An anisotropic conductive adhesive film is mainly made of a thermosetting binder resin from the viewpoint of connection reliability. An epoxy resin is mainly used as the curable resin, and tertiary amines or imidazoles which are anionic polymerization type curing agents are mainly used as the curing agent. Furthermore, it is known to enhance storage stability by macroencapsulating tertiary amines or imidazoles. A cationic curing agent has been proposed as a curing agent that can be cured at a lower temperature than such an anionic polymerization curing agent (Patent Document 1). In addition, a method (Patent Document 2) in which a stabilizer is blended in order to achieve both low-temperature curability and storage stability is known. Furthermore, there has been proposed a method for reducing the influence of impurity ions by using an organic boron compound as a counter ion of a cationic curing agent in a cationic curable resin composition (Patent Documents 3 and 4).
特許第3907217号公報Japanese Patent No. 3907217 特許第3589422号公報Japanese Patent No. 3589422 特開2008-303167号公報JP 2008-303167 A 特開2010-132614号公報JP 2010-132614 A
 しかしながら、これらカチオン硬化剤を用いた場合でも、低温接続性と剥離強度の信頼性を両立することは困難であり、吸湿状態で保持した場合に剥離強度が低下し易いという課題があった。 However, even when these cationic curing agents are used, it is difficult to achieve both low temperature connectivity and peel strength reliability, and there has been a problem that the peel strength tends to decrease when held in a hygroscopic state.
 本発明が解決しようとする課題は、相対する配線回路同士の電気的接続において、低温接続性に優れると共に、剥離強度の低下が起こり難い高信頼性の異方導電性接着フィルムを提供することである。また、保存性と低温硬化性を両立したカチオン硬化剤を提供することである。 The problem to be solved by the present invention is to provide a highly reliable anisotropic conductive adhesive film that is excellent in low-temperature connectivity and hardly deteriorates in peel strength in electrical connection between opposing wiring circuits. is there. Another object of the present invention is to provide a cationic curing agent having both storage stability and low temperature curability.
 本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、下記組成により低温接続性、剥離強度信頼性に優れる異方導電性接着フィルムが得られることを見出し、本発明をなすに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that an anisotropic conductive adhesive film having excellent low-temperature connectivity and peel strength reliability can be obtained by the following composition, and make the present invention. It came.
 即ち、本発明は、下記の通りである。 That is, the present invention is as follows.
 [1] カチオン重合性物質を含む有機バインダー;
該カチオン重合性物質を含む有機バインダー100質量部に対して、0.01~15質量部の一般式(1):
Figure JPOXMLDOC01-appb-C000007
{式(1)中、Qは、置換若しくは無置換ナフチルメチル基又は置換若しくは無置換ベンジル基であり、Aは、1~5個の置換基を有するフェニル基であり、Qが置換若しくは無置換ナフチルメチル基であるときには該1~5個の置換基のハメット定数の和は-0.3~0であり、Qが置換若しくは無置換ベンジル基であるときには該1~5個の置換基のハメット定数の和は0~+0.5であり、Rは炭素数1~6のアルキル基であり、そしてYは、一般式(2):
Figure JPOXMLDOC01-appb-C000008
[式(2)中、Xは、それぞれ独立して、フッ素、塩素又は臭素である。]で表されるアニオンである。}で表されるカチオン発生剤;及び
該カチオン重合性物質を含む有機バインダーの全体積に対して、0.1~20体積%の導電性粒子;
を含む異方導電性接着フィルム。
[1] An organic binder containing a cationically polymerizable substance;
0.01 to 15 parts by mass of the general formula (1) with respect to 100 parts by mass of the organic binder containing the cationic polymerizable substance:
Figure JPOXMLDOC01-appb-C000007
{In Formula (1), Q is a substituted or unsubstituted naphthylmethyl group or a substituted or unsubstituted benzyl group, A is a phenyl group having 1 to 5 substituents, and Q is substituted or unsubstituted When it is a naphthylmethyl group, the sum of Hammett constants of the 1 to 5 substituents is -0.3 to 0, and when Q is a substituted or unsubstituted benzyl group, the Hammett of the 1 to 5 substituents The sum of the constants is 0 to +0.5, R 4 is an alkyl group having 1 to 6 carbon atoms, and Y is a general formula (2):
Figure JPOXMLDOC01-appb-C000008
[In Formula (2), X is respectively independently fluorine, chlorine, or bromine. ] An anion represented by And 0.1 to 20% by volume of conductive particles based on the total volume of the organic binder containing the cationic polymerizable substance;
An anisotropic conductive adhesive film comprising:
 [2] 式(1)において、Qは置換若しくは無置換ナフチルメチル基であり、Aの1~5個の置換基のハメット定数の和は-0.3~0である、[1]に記載の異方導電性接着フィルム。 [2] In Formula (1), Q is a substituted or unsubstituted naphthylmethyl group, and the sum of Hammett constants of 1 to 5 substituents of A is −0.3 to 0. Anisotropic conductive adhesive film.
 [3] 式(1)において、Qは置換若しくは無置換ベンジル基であり、Aの1~5個の置換基のハメット定数の和は0~+0.5である、[1]に記載の異方導電性接着フィルム。 [3] In Formula (1), Q is a substituted or unsubstituted benzyl group, and the sum of Hammett constants of 1 to 5 substituents of A is 0 to +0.5. Direction conductive adhesive film.
 [4] 式(1)において、Aは、一般式(4):
Figure JPOXMLDOC01-appb-C000009
{式(4)中、Rは、メチル基、アセチル基、フェノキシカルボニル基、ベンジルオキシカルボニル基、ベンゾイル基又は9-フルオレニルカルボニル基であり、そしてR及びRは、水素、ハロゲン又は炭素数1~6のアルキル基である。}で表される基である、[1]に記載の異方導電性接着フィルム。
[4] In the formula (1), A represents the general formula (4):
Figure JPOXMLDOC01-appb-C000009
{In Formula (4), R 1 is a methyl group, an acetyl group, a phenoxycarbonyl group, a benzyloxycarbonyl group, a benzoyl group or a 9-fluorenylcarbonyl group, and R 2 and R 3 are hydrogen, halogen, Or an alkyl group having 1 to 6 carbon atoms. } The anisotropic conductive adhesive film as described in [1] which is group represented by these.
 [5] 式(4)において、Rは、アセチル基、フェノキシカルボニル基、ベンジルオキシカルボニル基又はベンゾイル基であり、そしてR及びRは水素又はメチル基である、[4]に記載の異方導電性接着フィルム。 [5] In the formula (4), R 1 is an acetyl group, a phenoxycarbonyl group, a benzyloxycarbonyl group, or a benzoyl group, and R 2 and R 3 are hydrogen or a methyl group, Anisotropic conductive adhesive film.
 [6] 式(1)において、Qは、一般式(3):
Figure JPOXMLDOC01-appb-C000010
{式(3)中、Rは、水素、メチル、メトキシ又はハロゲンである。}で表される置換若しくは無置換ベンジル基、α-ナフチルメチル基又はβ-ナフチルメチル基である、[1]~[5]のいずれか1項に記載の異方導電性接着フィルム。
[6] In the formula (1), Q represents the general formula (3):
Figure JPOXMLDOC01-appb-C000010
{In Formula (3), R 5 is hydrogen, methyl, methoxy or halogen. } The anisotropic conductive adhesive film according to any one of [1] to [5], which is a substituted or unsubstituted benzyl group, α-naphthylmethyl group, or β-naphthylmethyl group represented by:
 [7] 式(3)においてRは水素又はメチルである、[6]に記載の異方導電性接着フィルム。 [7] The anisotropic conductive adhesive film according to [6], wherein R 5 in formula (3) is hydrogen or methyl.
 [8] 式(1)においてRはメチル基である、[1]~[7]のいずれか1項に記載の異方導電性接着フィルム。 [8] The anisotropic conductive adhesive film according to any one of [1] to [7], wherein R 4 in formula (1) is a methyl group.
 [9] 式(2)においてXはフッ素である、[1]~[8]のいずれか1項に記載の異方導電性接着フィルム。 [9] The anisotropic conductive adhesive film according to any one of [1] to [8], wherein X in the formula (2) is fluorine.
 [10] 前記カチオン発生剤より発生するカチオン種と反応するカチオン捕捉剤を前記カチオン発生剤の100質量部に対して0.1~20質量部含む、[1]~[9]のいずれか1項に記載の異方導電性接着フィルム。 [10] Any one of [1] to [9], comprising 0.1 to 20 parts by mass of a cation scavenger that reacts with a cation species generated from the cation generator, relative to 100 parts by mass of the cation generator. An anisotropic conductive adhesive film according to item.
 [11] 前記カチオン捕捉剤は、チオ尿素化合物、4-アルキルチオフェノール化合物及び4-ヒドロキシフェニル-ジアルキルスルホニウム塩から成る群から選択される1種以上である、[10]に記載の異方導電性接着フィルム。 [11] The anisotropic conductivity according to [10], wherein the cation scavenger is at least one selected from the group consisting of a thiourea compound, a 4-alkylthiophenol compound, and a 4-hydroxyphenyl-dialkylsulfonium salt. Adhesive film.
 [12] 前記カチオン発生剤より発生するカチオン種が、少なくとも2種以上である、[1]~[11]のいずれか1項に記載の異方導電性接着フィルム。 [12] The anisotropic conductive adhesive film according to any one of [1] to [11], wherein the cation species generated from the cation generator is at least two or more.
 [13] 前記有機バインダーはレゾルシン型エポキシ樹脂を含む、[1]~[12]のいずれか1項に記載の異方導電性接着フィルム。 [13] The anisotropic conductive adhesive film according to any one of [1] to [12], wherein the organic binder includes a resorcin type epoxy resin.
 [14] 対応する電極配置を有する一対の電子回路基板を[1]~[13]のいずれか1項に記載の異方導電性接着フィルムを介して加熱及び加圧する工程を含む、接続構造体の製造方法。 [14] A connection structure including a step of heating and pressurizing a pair of electronic circuit boards having a corresponding electrode arrangement through the anisotropic conductive adhesive film according to any one of [1] to [13] Manufacturing method.
 [15] [14]に記載の製造方法により得られた接続構造体。 [15] A connection structure obtained by the manufacturing method according to [14].
 [16] 一般式(1):
Figure JPOXMLDOC01-appb-C000011
{式(1)中、Qは、置換若しくは無置換ナフチルメチル基又は置換若しくは無置換ベンジル基であり、Aは、1~5個の置換基を有するフェニル基であり、Qが置換若しくは無置換ナフチルメチル基であるときには該1~5個の置換基のハメット定数の和は-0.3~0であり、Qが置換若しくは無置換ベンジル基であるときには該1~5個の置換基のハメット定数の和は0~+0.5であり、Rは炭素数1~6のアルキル基であり、そしてYは、一般式(2):
Figure JPOXMLDOC01-appb-C000012
[式(2)中、Xは、それぞれ独立して、フッ素、塩素又は臭素である。]で表されるアニオンである。}で表されるカチオン発生剤。
[16] General formula (1):
Figure JPOXMLDOC01-appb-C000011
{In Formula (1), Q is a substituted or unsubstituted naphthylmethyl group or a substituted or unsubstituted benzyl group, A is a phenyl group having 1 to 5 substituents, and Q is substituted or unsubstituted When it is a naphthylmethyl group, the sum of Hammett constants of the 1 to 5 substituents is -0.3 to 0, and when Q is a substituted or unsubstituted benzyl group, the Hammett of the 1 to 5 substituents The sum of the constants is 0 to +0.5, R 4 is an alkyl group having 1 to 6 carbon atoms, and Y is a general formula (2):
Figure JPOXMLDOC01-appb-C000012
[In Formula (2), X is respectively independently fluorine, chlorine, or bromine. ] An anion represented by } The cation generator represented by these.
 [17] エポキシ基を有する有機バインダー、カチオン発生剤及び導電性粒子を含む異方導電性フィルムであって、80℃、10秒でのエポキシ基反応率が10%未満であり、かつ140℃、10秒でのエポキシ基反応率が80%以上である異方導電性接着フィルム。 [17] An anisotropic conductive film comprising an organic binder having an epoxy group, a cation generator and conductive particles, wherein the epoxy group reaction rate at 80 ° C. for 10 seconds is less than 10%, and 140 ° C. An anisotropic conductive adhesive film having an epoxy group reaction rate of 80% or more in 10 seconds.
 本発明は、相対する回路同士の電気的接続において、低温接続性に優れると共に、剥離強度の低下が起こり難いという効果を奏する。また、保存性と低温硬化性を両立したカチオン硬化剤を提供することができる。 The present invention has an effect that, in electrical connection between opposing circuits, the low-temperature connectivity is excellent and the peel strength is hardly lowered. Moreover, the cationic hardening | curing agent which made the preservability and low-temperature curability compatible can be provided.
 以下、本発明について具体的に説明する。 Hereinafter, the present invention will be specifically described.
 本発明の一実施形態は、エポキシ基を有する有機バインダー、カチオン発生剤、導電性粒子を含む異方導電性フィルムにおいて、80℃、10秒におけるエポキシ基反応率が10%未満であり、かつ、140℃、10秒におけるエポキシ基反応率が80%以上である異方導電性接着フィルムである。 In one embodiment of the present invention, an anisotropic conductive film including an organic binder having an epoxy group, a cation generator, and conductive particles, the epoxy group reaction rate at 80 ° C. for 10 seconds is less than 10%, and An anisotropic conductive adhesive film having an epoxy group reaction rate of 80% or more at 140 ° C. for 10 seconds.
 80℃、10秒におけるエポキシ基反応率は10%未満が好ましく、5%未満がより好ましく、2%未満が更に好ましい。80℃、10秒におけるエポキシ基反応率が10%未満の場合、保存安定性が良好であり、また、回路基板への仮貼り付け時の熱の影響を受け難く、好ましい。 The epoxy group reaction rate at 80 ° C. for 10 seconds is preferably less than 10%, more preferably less than 5%, still more preferably less than 2%. When the epoxy group reaction rate at 80 ° C. for 10 seconds is less than 10%, the storage stability is good and it is difficult to be affected by heat at the time of temporary attachment to a circuit board.
 140℃、10秒におけるエポキシ基反応率は80%以上であることが好ましく、85%以上であることがより好ましく、90%以上であることが更に好ましく、95%以上であることが特に好ましい。140℃、10秒におけるエポキシ基反応率が80%以上である場合、接続抵抗値、剥離強度が良好であり、接続後の信頼性も安定化するため好ましい。 The epoxy group reaction rate at 140 ° C. for 10 seconds is preferably 80% or more, more preferably 85% or more, still more preferably 90% or more, and particularly preferably 95% or more. When the epoxy group reaction rate at 140 ° C. for 10 seconds is 80% or more, the connection resistance value and the peel strength are good, and the reliability after connection is also stabilized.
 エポキシ基反応率の測定は、エポキシ基吸光度比をFT-IR法により測定することができる。 The epoxy group reaction rate can be measured by measuring the epoxy group absorbance ratio by the FT-IR method.
 本発明の一実施形態は、カチオン重合性物質を含む有機バインダー;該カチオン重合性物質を含む有機バインダー100質量部に対して、0.01~15質量部の一般式(1):
Figure JPOXMLDOC01-appb-C000013
{式(1)中、Aは、置換フェニル基であり、Qは、置換若しくは無置換ナフチルメチル基又は置換若しくは無置換ベンジル基であり、Rは、炭素数1~6のアルキル基であり、そしてYは、一般式(2):
Figure JPOXMLDOC01-appb-C000014
[式(2)中、Xは、それぞれ独立して、フッ素、塩素又は臭素である。]で表されるアニオンである。}で表されるカチオン発生剤;及び
 該カチオン重合性物質を含む有機バインダーの全体積に対して、0.1~20体積%の導電性粒子を含む異方導電性接着フィルムである。
One embodiment of the present invention is an organic binder containing a cationically polymerizable substance; 0.01 to 15 parts by mass of the general formula (1) with respect to 100 parts by mass of the organic binder containing the cationically polymerizable substance:
Figure JPOXMLDOC01-appb-C000013
{In Formula (1), A is a substituted phenyl group, Q is a substituted or unsubstituted naphthylmethyl group or a substituted or unsubstituted benzyl group, and R 4 is an alkyl group having 1 to 6 carbon atoms. , And Y represents the general formula (2):
Figure JPOXMLDOC01-appb-C000014
[In Formula (2), X is respectively independently fluorine, chlorine, or bromine. ] An anion represented by } An anisotropic conductive adhesive film containing 0.1 to 20% by volume of conductive particles with respect to the total volume of the organic binder containing the cationic polymerizable substance.
 また、上記式(1)において、Aは、1~5個の置換基を有するフェニル基であり、該1~5個の置換基のハメット定数の和は、-0.3~0であり、そしてQは、置換若しくは無置換ナフチルメチル基であることが好ましい。 In the above formula (1), A is a phenyl group having 1 to 5 substituents, and the sum of Hammett constants of the 1 to 5 substituents is −0.3 to 0, Q is preferably a substituted or unsubstituted naphthylmethyl group.
 また、上記式(1)において、Aは、1~5個の置換基を有するフェニル基であり、該1~5個の置換基のハメット定数の和は、0~+0.5であり、そしてQは置換若しくは無置換ベンジル基であることが好ましい。 In the above formula (1), A is a phenyl group having 1 to 5 substituents, and the sum of Hammett constants of the 1 to 5 substituents is 0 to +0.5, and Q is preferably a substituted or unsubstituted benzyl group.
 ハメット則は、ベンゼン誘導体の反応又は平衡に及ぼす置換基の影響を定量的に論ずるために1935年L.P.Hammettにより提唱された経験則であるが、これは今日広く妥当性が認められている。ハメット則に求められたハメット定数にはσp値とσm値があり、これらの値は多くの一般的な成書に見出すことができる。例えば、J.A.Dean編、「Lange’s Handbook of Chemistry」第12版,1979年(McGraw-Hill)又は「化学の領域」増刊,122号,96~103頁,1979年(南光堂)、Chem.Rev.,1991年,91巻,165~195ページなどに詳述されている。 Hammett's rule is a 1935 L.S. method for discussing quantitatively the effect of substituents on the reaction or equilibrium of benzene derivatives. P. A rule of thumb proposed by Hammett, which is widely accepted today. The Hammett constant determined by Hammett's rule includes a σp value and a σm value, and these values can be found in many general books. For example, J. et al. A. Dean ed., “Lange's Handbook of Chemistry”, 12th edition, 1979 (McGraw-Hill) or “Chemical Domain”, No. 122, pages 96-103, 1979 (Nankodo), Chem. Rev. 1991, Vol. 91, pages 165-195.
 なお、本発明において各置換基をハメットの置換基定数により限定したり、説明したりするが、各置換基は、上記の成書で見出せる、文献既知の値がある置換基にのみ限定されるという意味ではなく、その値が文献に記載されていなくてもハメット則に基づいて測定した場合にその範囲内に包まれるであろう置換基も含むことを理解されたい。 In the present invention, each substituent is limited or explained by Hammett's substituent constant. However, each substituent is limited to only a substituent having a known value that can be found in the above-mentioned book. It is not to be understood that it should be understood that the values also include substituents that would fall within the range when measured according to Hammett's law, even though the values are not described in the literature.
 ハメット定数が負の場合、置換基は電子供与性置換基であることを示しており、上記式(1)において、Qが置換又は無置換ナフチルメチル基であり、そしてフェニル基の置換基のハメット定数の和が-0.3~0であるときに、良好なカチオン発生性と適度な保存安定性の両立が可能である。該ハメット定数の和は、-0.27~0の場合がより好ましく、-0.25~0の場合が更に好ましい。 When the Hammett constant is negative, it indicates that the substituent is an electron donating substituent. In the above formula (1), Q is a substituted or unsubstituted naphthylmethyl group, and the phenyl group substituent Hammett When the sum of the constants is −0.3 to 0, it is possible to achieve both good cation generation and appropriate storage stability. The sum of the Hammett constants is more preferably −0.27 to 0, and even more preferably −0.25 to 0.
 ハメット定数が正の場合、置換基は電子吸引性置換基であることを示しており、上記式(1)において、Qが置換又は無置換ベンジル基であり、そしてフェニル基の置換基のハメット定数の和が0~+0.5であるとき、良好なカチオン発生性と適度な保存安定性の両立が可能である。該ハメット定数の和は、0~+0.4の場合が好ましく、0~+0.35の場合がより好ましく、0~+0.30の場合がさらに好ましい。 When the Hammett constant is positive, it indicates that the substituent is an electron-withdrawing substituent. In the above formula (1), Q is a substituted or unsubstituted benzyl group, and the Hammett constant of the substituent of the phenyl group When the sum is 0 to +0.5, it is possible to achieve both good cation generation and appropriate storage stability. The sum of the Hammett constants is preferably 0 to +0.4, more preferably 0 to +0.35, and even more preferably 0 to +0.30.
 また、上記式(1)において、Qで表される置換基が、置換ベンジル基の場合、それら置換基のハメット定数の和が、-0.2~+0.2の範囲にあることが好ましく、-0.15~+0.15の範囲にあることがより好ましく、-0.1~+0.1の範囲にあることが更に好ましい。-0.2~+0.2の範囲にある場合、カチオン発生性と保存安定性の両立が可能であり好ましい。 In the above formula (1), when the substituent represented by Q is a substituted benzyl group, the sum of Hammett constants of these substituents is preferably in the range of −0.2 to +0.2. It is more preferably in the range of −0.15 to +0.15, and further preferably in the range of −0.1 to +0.1. When it is in the range of −0.2 to +0.2, it is preferable because both cation generation and storage stability can be achieved.
 より詳細には、後述される表2に記載されたフェニル基の置換基のハメット定数の和を参照されたい。 For more details, refer to the sum of Hammett constants of the substituents of the phenyl group described in Table 2 described later.
 本発明の一実施形態は、カチオン重合性物質を含む有機バインダー;該カチオン重合性物質を含む有機バインダー成分100質量部に対して、0.01~15質量部の下記一般式(5):
Figure JPOXMLDOC01-appb-C000015
{式(5)中、Rは、メチル基、アセチル基、フェノキシカルボニル基、ベンジルオキシカルボニル基、ベンゾイル基又は9-フルオレニルカルボニル基であり、R及びRは、水素、ハロゲン又は炭素数1~6のアルキル基であり、Rは、炭素数1~6のアルキル基であり、Qは、下記一般式(3):
Figure JPOXMLDOC01-appb-C000016
(式(3)中、Rは、水素、メチル、メトキシ又はハロゲンである。)で表される基、α-ナフチルメチル基又はβ-ナフチルメチル基であり、そしてYは、下記一般式(2):
Figure JPOXMLDOC01-appb-C000017
[式(2)中、Xは、それぞれ独立して、フッ素、塩素又は臭素である。]で表されるアニオンである。}で表されるカチオン発生剤;及び該カチオン重合性物質を含む有機バインダーの全体積に対して、0.1~20体積%の導電性粒子を含む異方導電性接着フィルムである。
One embodiment of the present invention is an organic binder containing a cationic polymerizable substance; 0.01 to 15 parts by mass of the following general formula (5) with respect to 100 parts by mass of the organic binder component containing the cationic polymerizable substance:
Figure JPOXMLDOC01-appb-C000015
{In Formula (5), R 1 represents a methyl group, an acetyl group, a phenoxycarbonyl group, a benzyloxycarbonyl group, a benzoyl group, or a 9-fluorenylcarbonyl group, and R 2 and R 3 represent hydrogen, halogen, or An alkyl group having 1 to 6 carbon atoms, R 4 is an alkyl group having 1 to 6 carbon atoms, and Q is the following general formula (3):
Figure JPOXMLDOC01-appb-C000016
(In the formula (3), R 5 is hydrogen, methyl, methoxy or halogen), an α-naphthylmethyl group or a β-naphthylmethyl group, and Y represents the following general formula (2):
Figure JPOXMLDOC01-appb-C000017
[In Formula (2), X is respectively independently fluorine, chlorine, or bromine. ] An anion represented by } An anisotropic conductive adhesive film containing 0.1 to 20% by volume of conductive particles with respect to the total volume of the organic binder containing the cation polymerizable substance.
<カチオン発生剤>
 本発明に用いるカチオン発生剤は、上記一般式(1)または(5)で示されるものであれば、いかなる構造でもよいが、保存安定性の点から、50℃以上でカチオン種を発生するものが好ましい。
<Cation generator>
The cation generator used in the present invention may have any structure as long as it is represented by the above general formula (1) or (5), but generates a cation species at 50 ° C. or higher from the viewpoint of storage stability. Is preferred.
 本発明のカチオン発生剤の熱分解により発生するカチオン種としては、カチオン重合性物質との反応性が充分であれば、どのような構造でもよいが、ベンジルカチオン種、α-ナフチルカチオン種、β-ナフチルカチオン種又はアシルカチオン種が好ましい。接続形成性の点から、少なくとも1種がアシルカチオン種であることが好ましい。さらに、発生するカチオン種がアシルカチオン種を含む少なくとも2種以上であることが特に好ましい。 The cation species generated by the thermal decomposition of the cation generator of the present invention may have any structure as long as the reactivity with the cationic polymerizable substance is sufficient, but benzyl cation species, α-naphthyl cation species, β -Naphthyl cation species or acyl cation species are preferred. From the viewpoint of connection formation, it is preferable that at least one species is an acyl cation species. Furthermore, it is particularly preferable that the cation species to be generated are at least two or more containing an acyl cation species.
 カチオン発生剤の対アニオンとしては、式(2)の構造を有していればよいが、不純物イオンの観点からフッ素化合物であることが特に好ましい。 The counter anion of the cation generator may have the structure of the formula (2), but a fluorine compound is particularly preferable from the viewpoint of impurity ions.
 本発明の異方導電性接着フィルム中のカチオン発生剤の含有量は、カチオン重合性物質を含む有機バインダー100質量部に対して0.01~15質量部であり、好ましくは、0.5~5質量部である。カチオン発生剤の含有量が0.01質量部未満である場合、硬化が不十分になり、充分な電気的接続性が得られず、カチオン発生剤の含有量が15質量部を超える場合、保存性が低下する。 The content of the cation generator in the anisotropic conductive adhesive film of the present invention is 0.01 to 15 parts by mass, preferably 0.5 to 100 parts by mass with respect to 100 parts by mass of the organic binder containing the cationic polymerizable substance. 5 parts by mass. When the content of the cation generator is less than 0.01 parts by mass, the curing becomes insufficient, sufficient electrical connectivity cannot be obtained, and when the content of the cation generator exceeds 15 parts by mass, storage is performed. Sex is reduced.
<カチオン捕捉剤>
 本発明に用いるカチオン捕捉剤は、カチオン発生剤の熱分解により発生するカチオン種と反応するものであれば、いかなる構造のものでもよいが、チオ尿素化合物、4-アルキルチオフェノール化合物、及び4-ヒドロキシフェニル-ジアルキルスルホニウム塩から成る群から選択される1種以上であることが好ましい。
<Cation scavenger>
The cation scavenger used in the present invention may have any structure as long as it reacts with a cation species generated by thermal decomposition of the cation generator, but a thiourea compound, 4-alkylthiophenol compound, and 4-hydroxy One or more selected from the group consisting of phenyl-dialkylsulfonium salts are preferred.
 以下にカチオン捕捉剤の具体例を示す。チオ尿素化合物としては、エチレンチオ尿素、N,N’-ジブチルチオ尿素、トリメチルチオ尿素などが挙げられる。4-アルキルチオフェノール化合物としては、4-メチルチオフェノール、4-エチルチオフェノール、4-ブチルチオフェノールなどが挙げられる。4-ヒドロキシフェニルジアルキルスルホニウム塩としては、4-ヒドロキシフェニルジメチルスルホニウム メチルサルフェート、4-ヒドロキシフェニル-ジブチルスルホニウム メチルサルフェートなどが挙げられる。 Specific examples of the cation scavenger are shown below. Examples of the thiourea compound include ethylene thiourea, N, N′-dibutylthiourea, and trimethylthiourea. Examples of the 4-alkylthiophenol compound include 4-methylthiophenol, 4-ethylthiophenol, 4-butylthiophenol and the like. Examples of the 4-hydroxyphenyldialkylsulfonium salt include 4-hydroxyphenyldimethylsulfonium methyl sulfate, 4-hydroxyphenyl-dibutylsulfonium methyl sulfate, and the like.
 本発明の異方導電性接着フィルム中のカチオン捕捉剤の含有量は、カチオン発生剤100質量部に対して、0.1~20質量部である。 The content of the cation scavenger in the anisotropic conductive adhesive film of the present invention is 0.1 to 20 parts by mass with respect to 100 parts by mass of the cation generator.
 好ましくは、カチオン捕捉剤の含有量は、カチオン発生剤100質量部に対して0.5~10質量部である。カチオン捕捉剤の含有量が0.1質量部未満である場合は、接続信頼性が低下し、20質量部を超える場合は、接続性が低下する。 Preferably, the content of the cation scavenger is 0.5 to 10 parts by mass with respect to 100 parts by mass of the cation generator. When the content of the cation scavenger is less than 0.1 parts by mass, the connection reliability is lowered, and when it exceeds 20 parts by mass, the connectivity is lowered.
<導電性粒子>
 本発明の異方導電性接着フィルムに含まれる導電性粒子は、有機バインダーの全体積に対して、0.1~20体積%であり、好ましくは、0.5~15体積%であり、更に好ましくは、1~10体積%である。導電性粒子の含有量が、20体積%を超える場合は、隣接する端子間の絶縁性が不十分になり、0.1体積%未満である場合は、接続性が低下する。導電性粒子は、金、銀、銅、ニッケル、銀、鉛、錫などの金属粒子、またはそれらから成る合金、例えば、はんだ、銀銅合金等の粒子、カーボンなどの導電性粒子、それらの導電性粒子または非導電性粒子であるガラス、セラミックス、プラスティック粒子を核として表面に導電性材料を被覆したものである。プラスティック粒子に金属めっきした粒子は弾性変形により接続信頼性に優れるため、特に好ましい。
<Conductive particles>
The conductive particles contained in the anisotropic conductive adhesive film of the present invention is 0.1 to 20% by volume, preferably 0.5 to 15% by volume, based on the total volume of the organic binder. Preferably, it is 1 to 10% by volume. When the content of the conductive particles exceeds 20% by volume, the insulation between adjacent terminals becomes insufficient, and when the content is less than 0.1% by volume, the connectivity decreases. The conductive particles are metal particles such as gold, silver, copper, nickel, silver, lead, tin, or alloys made thereof, such as particles such as solder and silver-copper alloys, conductive particles such as carbon, and conductive materials thereof. The surface is coated with a conductive material using glass, ceramics, or plastic particles, which are conductive particles or non-conductive particles, as nuclei. Particles obtained by metal plating on plastic particles are particularly preferable because they have excellent connection reliability due to elastic deformation.
 プラスティック粒子としては、エポキシ樹脂、スチレン樹脂、シリコーン樹脂、アクリル樹脂、ポリオレフィン樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ウレタン樹脂、フェノール樹脂、ポリエステル樹脂、ジビニルベンゼン架橋体、NBR、SBR等のポリマーの中から1種又は2種以上組み合わせた核を用いることができる。これらプラスティック粒子には酸化ケイ素等の無機物を含有していてもよい。これらのプラスティック粒子に無電解めっき等の手法でNiめっきを形成し、導電性粒子を得ることができる、また、Niめっき上に更に金等のNi以外の金属層を形成することも可能である。さらに、導電性粒子を核とし、この核の表面を絶縁材料で被覆し、圧着した時に内部の導電性粒子が表面の絶縁層を排除し、被接続回路との接触を行えるようにしたものも有効である。このような導電性粒子を用いた場合、隣接する端子間の短絡を防ぎ易く、端子間隔の狭い被接続回路の場合にも使用できる。 Plastic particles include epoxy resin, styrene resin, silicone resin, acrylic resin, polyolefin resin, melamine resin, benzoguanamine resin, urethane resin, phenol resin, polyester resin, crosslinked divinylbenzene, NBR, SBR, and other polymers. Species or a combination of two or more nuclei can be used. These plastic particles may contain an inorganic substance such as silicon oxide. By forming Ni plating on these plastic particles by a method such as electroless plating, conductive particles can be obtained, and it is also possible to form a metal layer other than Ni such as gold on the Ni plating. . Furthermore, with conductive particles as the core, the surface of the core is coated with an insulating material, and when pressed, the internal conductive particles eliminate the insulating layer on the surface and allow contact with the connected circuit. It is valid. When such conductive particles are used, it is easy to prevent a short circuit between adjacent terminals, and it can also be used in the case of a connected circuit having a narrow terminal interval.
 導電性粒子の粒径は、0.1~20μmであることが好ましく、1~10μmであることがより好ましく、2~8μmであることがさらに好ましい。粒径が0.1μm未満である場合、被接続端子の表面粗さのバラツキに影響され接続が不安定になり易く、また、20μmを超える場合は、隣接する端子間の短絡が起こり易くなる。導電性粒子の平均粒径の標準偏差は小さいほど好ましく、平均粒径の50%以下が好ましく、より好ましくは20%以下、更に好ましくは10%以下、特に好ましくは5%以下である。導電性粒子の平均粒径測定は、コールターカウンター等の既知の方法を用いることができる。隣接する端子間の短絡を防止するため、接続抵抗を損なわない範囲内で絶縁粒子を併用してもよい。 The particle size of the conductive particles is preferably from 0.1 to 20 μm, more preferably from 1 to 10 μm, and even more preferably from 2 to 8 μm. If the particle size is less than 0.1 μm, the connection is likely to be unstable due to variations in the surface roughness of the connected terminals, and if it exceeds 20 μm, a short circuit between adjacent terminals is likely to occur. The standard deviation of the average particle diameter of the conductive particles is preferably as small as possible, preferably 50% or less of the average particle diameter, more preferably 20% or less, still more preferably 10% or less, and particularly preferably 5% or less. For the measurement of the average particle diameter of the conductive particles, a known method such as a Coulter counter can be used. In order to prevent a short circuit between adjacent terminals, insulating particles may be used in combination as long as the connection resistance is not impaired.
 また、短絡を防止するため、複数層を積層する方法等により、導電性粒子を異方導電性接着フィルムの厚み方向に局在化させても構わない。 Further, in order to prevent a short circuit, the conductive particles may be localized in the thickness direction of the anisotropic conductive adhesive film by a method of laminating a plurality of layers.
 保存安定性を高めるために、有機バインダー成分中のカチオン発生剤を予めマイクロカプセル化することも有効である。マイクロカプセル化する方法としては、既知の方法を用いることができるが、溶剤蒸発法、スプレードライ法、コアセルベーション法、界面重合法を用いるのが好ましい。 In order to enhance storage stability, it is also effective to pre-encapsulate the cation generator in the organic binder component. As a method for microencapsulation, a known method can be used, but a solvent evaporation method, a spray drying method, a coacervation method, and an interfacial polymerization method are preferably used.
<カチオン重合性物質を含む有機バインダー>
 有機バインダー成分中のカチオン重合性物質は、酸重合性、または、酸硬化性の物質であり、例えば、エポキシ樹脂、ポリビニルエーテル、ポリスチレンなどである。前記カチオン重合性物質は、単独で使用するか、又は2種以上併用してもよい。
<Organic binder containing cationically polymerizable substance>
The cationically polymerizable substance in the organic binder component is an acid polymerizable or acid curable substance, such as an epoxy resin, polyvinyl ether, or polystyrene. The cationic polymerizable substance may be used alone or in combination of two or more.
 前記カチオン重合性物質としては、エポキシ樹脂が好ましい。エポキシ樹脂は、1分子中に2個以上のエポキシ基を有する化合物が好ましい。具体的には、グリシジルエーテル基、グリシジルエステル基、脂環式エポキシ基を有する化合物、分子内の二重結合をエポキシ化した化合物、それらの置換基を2個以上有する化合物がより好ましい。さらに、耐環境性を向上するため、レゾルシン型エポキシ樹脂を用いてもよい。 As the cationic polymerizable substance, an epoxy resin is preferable. The epoxy resin is preferably a compound having two or more epoxy groups in one molecule. Specifically, a compound having a glycidyl ether group, a glycidyl ester group or an alicyclic epoxy group, a compound obtained by epoxidizing a double bond in the molecule, or a compound having two or more of these substituents is more preferable. Furthermore, a resorcinol type epoxy resin may be used to improve environmental resistance.
 本発明において有機バインダー成分は、バインダー樹脂とカチオン重合性物質から成るが、カチオン重合性物質と混合可能なバインダー樹脂は、熱可塑性樹脂、エポキシ樹脂と反応性のある熱硬化性樹脂などである。カチオン重合性物質と混合可能な熱可塑性樹脂は、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、アルキル化セルロース樹脂、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、ポリエチレンテレフタレート樹脂等、カチオン重合性物質に相溶性のある樹脂である。これらの樹脂の中、水酸基、カルボキシル基等の極性基を有する樹脂は、カチオン重合性樹脂との相溶性に優れるため好ましい。また、カチオン重合性物質は、カチオンにより重合もしくは、硬化して前記バインダー樹脂とともに有機バインダー成分として機能する。 In the present invention, the organic binder component is composed of a binder resin and a cationic polymerizable substance, and the binder resin that can be mixed with the cationic polymerizable substance is a thermoplastic resin, a thermosetting resin reactive with an epoxy resin, or the like. Thermoplastic resins that can be mixed with cationically polymerizable substances are compatible with cationically polymerizable substances such as phenoxy resin, polyvinyl acetal resin, polyvinyl butyral resin, alkylated cellulose resin, polyester resin, acrylic resin, urethane resin, and polyethylene terephthalate resin. It is resin with. Among these resins, a resin having a polar group such as a hydroxyl group or a carboxyl group is preferable because of excellent compatibility with the cationic polymerizable resin. The cationically polymerizable substance functions as an organic binder component together with the binder resin after being polymerized or cured by a cation.
<その他の成分>
 本発明に用いられる有機バインダー成分には、更に、その他の成分を含有することができる。その他の成分としては、絶縁粒子、充填剤、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤、イオントラップ剤等が挙げられる。絶縁粒子及び充填剤等の固形の成分の場合、これらの最大径は導電性粒子の平均粒径未満であることが好ましい。カップリング剤としては、ケチミン基、ビニル基、アクリル基、アミノ基、エポキシ基又はイソシアネート基含有シランカップリング剤が、接着性の向上の点から好ましい。
<Other ingredients>
The organic binder component used in the present invention can further contain other components. Examples of other components include insulating particles, fillers, softeners, accelerators, anti-aging agents, colorants, flame retardants, thixotropic agents, coupling agents, and ion trapping agents. In the case of solid components such as insulating particles and fillers, these maximum diameters are preferably less than the average particle diameter of the conductive particles. As the coupling agent, a ketimine group, vinyl group, acrylic group, amino group, epoxy group, or isocyanate group-containing silane coupling agent is preferable from the viewpoint of improving adhesiveness.
 その他の成分の含有量は、好ましくは、有機バインダー成分に対して50質量部以下であり、更に好ましくは20質量%以下である。 The content of other components is preferably 50 parts by mass or less, more preferably 20% by mass or less, relative to the organic binder component.
 有機バインダーとカチオン発生剤、カチオン捕捉剤及び導電性粒子などの成分とを混合する場合、必要に応じて、溶剤を用いることができる。溶剤としては、例えば、メチルエチルケトン、メチルイソブチルケトン、トルエン、キシレン、酢酸エチル、酢酸ブチル、エチレングリコールモノアルキルエーテルアセテート、プロピレングリコールモノアルキルエーテルアセテート等が挙げられる。 When mixing an organic binder and components such as a cation generator, a cation scavenger and conductive particles, a solvent can be used as necessary. Examples of the solvent include methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, ethyl acetate, butyl acetate, ethylene glycol monoalkyl ether acetate, propylene glycol monoalkyl ether acetate, and the like.
<異方導電性接着フィルム>
 本発明の異方導電性接着フィルムは、単層のフィルムであっても、複数のフィルムを積層したフィルムであってもよい。複数のフィルムを積層する場合、導電性粒子を含まないフィルムを積層することも可能である。
<Anisotropic conductive adhesive film>
The anisotropic conductive adhesive film of the present invention may be a single layer film or a film in which a plurality of films are laminated. When laminating a plurality of films, it is also possible to laminate films that do not contain conductive particles.
 異方導電性接着フィルムの製造方法としては、予め、導電性粒子、カチオン発生剤、有機バインダー、及び必要に応じてカチオン捕捉剤を溶剤中で混合して塗工液を調製し、次にセパレーター上にアプリケーター塗装等により前記塗工液を塗工して、オーブン中で溶剤を揮発させることにより製造できる。 As a method for producing an anisotropic conductive adhesive film, a coating liquid is prepared by previously mixing conductive particles, a cation generator, an organic binder, and, if necessary, a cation scavenger in a solvent, and then a separator. It can be produced by applying the coating liquid on the top by applicator coating or the like and volatilizing the solvent in an oven.
 複数層を積層する場合は、ラミネート法が好ましい。ラミネートする場合は、熱ロールを用いてラミネートする方法等が例示される。熱ロールを用いてラミネートする場合、熱ロールの温度は、カチオン発生剤がカチオン種を発生する温度より低い温度であることが好ましい。 When laminating a plurality of layers, a laminating method is preferable. In the case of laminating, a method of laminating using a heat roll is exemplified. When laminating using a hot roll, the temperature of the hot roll is preferably lower than the temperature at which the cation generator generates cationic species.
 異方導電性接着フィルムに用いられるセパレーターとしては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリエステル、PET、PEN、ナイロン、塩化ビニル、ポリビニルアルコールなどのフィルムが例示される。好ましい保護フィルム用の樹脂としては、ポリプロピレン、PETなどが挙げられる。該セパレーターはフッ素処理、Si処理、アルキド処理等の表面処理を行っていることが好ましい。セパレーターの膜厚は、20μm以上100μm以下が好ましい。 Examples of the separator used for the anisotropic conductive adhesive film include films of polyethylene, polypropylene, polystyrene, polyester, PET, PEN, nylon, vinyl chloride, polyvinyl alcohol, and the like. Preferred resins for the protective film include polypropylene and PET. The separator is preferably subjected to surface treatment such as fluorine treatment, Si treatment or alkyd treatment. The film thickness of the separator is preferably 20 μm or more and 100 μm or less.
 本発明の異方導電性接着フィルムは、必要に応じ、所望の幅にスリットされ、リール状に巻き取られる。 The anisotropic conductive adhesive film of the present invention is slit to a desired width and wound in a reel shape as necessary.
 本発明の異方導電性接着フィルムは、液晶ディスプレイとTCP、TCPとFPC、FPCとプリント配線基板との接続、又はICチップを直接基板に実装するフリップチップ実装に好適に用いることができる。 The anisotropic conductive adhesive film of the present invention can be suitably used for connection between a liquid crystal display and TCP, TCP and FPC, FPC and printed wiring board, or flip chip mounting in which an IC chip is directly mounted on a substrate.
<異方導電性接着フィルムを用いた接続方法及び接続構造体>
 異方導電性接着フィルムを用いた接続構造体の製造方法は、対応する電極配置を有する一対の電子回路基板を本発明の異方導電性接着フィルムを介して加熱及び加圧する工程を含む。例えば、本発明の異方導電性接着フィルムを用いた接続方法としては、ITO配線又は金属配線等によって回路と電極を形成したガラス基板等の回路基板と、回路基板の電極と対を成す位置に電極を形成したICチップ等の回路部材とを準備し、回路基板上の回路部材を配置する位置に、本発明の異方導電性接着フィルムを貼り付け、次に、回路基板と回路部材をそれぞれの電極が互いに対を成すように位置を合わせた後、熱圧着して接続する方法が挙げられる。
<Connection method and connection structure using anisotropic conductive adhesive film>
A manufacturing method of a connection structure using an anisotropic conductive adhesive film includes a step of heating and pressurizing a pair of electronic circuit boards having a corresponding electrode arrangement through the anisotropic conductive adhesive film of the present invention. For example, as a connection method using the anisotropic conductive adhesive film of the present invention, a circuit board such as a glass substrate in which a circuit and an electrode are formed by ITO wiring or metal wiring or the like, and a position where the electrode of the circuit board is paired A circuit member such as an IC chip on which electrodes are formed is prepared, and the anisotropic conductive adhesive film of the present invention is attached to a position where the circuit member is arranged on the circuit board, and then the circuit board and the circuit member are respectively attached. The electrodes may be connected by thermocompression bonding after aligning the positions of the electrodes so as to form a pair.
 異方導電性接着フィルムの貼付け時に、セパレーターを剥離するために、加熱及び加圧することができる。加熱及び加圧の条件は、例えば、30℃以上80℃以下の温度、0.1MPa以上1MPa以下の圧力で0.5秒以上3秒以下に亘って加熱及び加圧することが好ましい。 When applying the anisotropic conductive adhesive film, it can be heated and pressurized in order to peel off the separator. The heating and pressing conditions are preferably, for example, heating and pressing at a temperature of 30 ° C. to 80 ° C. and a pressure of 0.1 MPa to 1 MPa for 0.5 seconds to 3 seconds.
 接続における熱圧着は、120℃以上180℃以下(より好ましくは130℃以上170℃以下、最も好ましくは140℃以上160℃以下)の温度範囲で、回路部材面積に対して、0.1MPa以上50MPa以下(より好ましくは0.5MPa以上40MPa以下)の圧力範囲で、3秒以上15秒以下(より好ましくは4秒以上12秒以下)の間、加熱及び加圧することが好ましい。 The thermocompression bonding is performed at a temperature range of 120 ° C. or higher and 180 ° C. or lower (more preferably 130 ° C. or higher and 170 ° C. or lower, most preferably 140 ° C. or higher and 160 ° C. or lower). It is preferable to heat and pressurize in the pressure range below (more preferably 0.5 MPa to 40 MPa) for 3 seconds to 15 seconds (more preferably 4 seconds to 12 seconds).
 相対する接続基板の温度差を120℃以下にして接続することが好ましく、温度差が100℃以下であることがより好ましく、70℃以下であることが更に好ましい。
 各基板の温度差は、相対する接続基板上にそれぞれ熱電対を乗せて測定することができる。
It is preferable to connect the opposing connection substrates with a temperature difference of 120 ° C. or less, the temperature difference is more preferably 100 ° C. or less, and even more preferably 70 ° C. or less.
The temperature difference between the substrates can be measured by placing thermocouples on the opposing connection substrates.
 前記の温度範囲、圧力範囲、貼付又は熱圧着時間、及び基板間の温度差を保つことにより、高い接続信頼性が得られると共に、耐熱性の低い基板の接続に有利であり、基板の反りが抑制でき、かつ工程時間の短縮に有利な回路基板の電気的接続を提供できる。 By maintaining the above temperature range, pressure range, sticking or thermocompression bonding time, and temperature difference between the substrates, high connection reliability can be obtained, and it is advantageous for the connection of the substrate having low heat resistance, and the warpage of the substrate is reduced. It is possible to provide electrical connection of a circuit board that can be suppressed and that is advantageous for shortening the process time.
 以下、本発明を実施例によりさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
実施例1
 1,2,3,4-ブタンテトラカルボン酸と3-シクロヘキサンオキシド-1―メタノールのエステルから成る脂環式エポキシ樹脂30g、ビスフェノールA型液状エポキシ樹脂15g、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート5g、平均分子量25,000のフェノキシ樹脂50gをトルエン-酢酸エチルの混合溶剤(1対1)に溶解し、固形分50%の溶液を得た。
Example 1
30 g of alicyclic epoxy resin composed of 1,2,3,4-butanetetracarboxylic acid and 3-cyclohexaneoxide-1-methanol ester, 15 g of bisphenol A liquid epoxy resin, 3,4-epoxycyclohexylmethyl-3, 5 g of 4-epoxycyclohexanecarboxylate and 50 g of phenoxy resin having an average molecular weight of 25,000 were dissolved in a mixed solvent of toluene-ethyl acetate (1 to 1) to obtain a solution having a solid content of 50%.
 4-ベンジルオキシカルボニルオキシフェニル-o-メチルベンジルメチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレート100質量部、N,N’-ジエチルチオ尿素5質量部となるように配合し、γ-ブチロラクトンに溶解して、50質量部の溶液とした。固形質量比で樹脂成分100、4-ベンジルオキシカルボニルオキシフェニル-o-メチルベンジルメチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレート及びN,N’-ジエチルチオ尿素の合計が2となるように配合し、さらにベンゾグアナミン樹脂を核とする粒子の表面に0.2μm厚のニッケル層を設け、そのニッケル層の外側に0.03μm厚の金層を設けた平均粒径3.2μmの導電性粒子を有機バインダーの全体積に対して、3体積%となるように配合し、分散させて分散液を得た。その後、厚さ50μmのポリエチレンテレフタレートフィルム上に前記分散液を塗布して、40℃で送風乾燥し、膜厚20μmの異方導電性接着フィルムを得た。 4-Benzyloxycarbonyloxyphenyl-o-methylbenzylmethylsulfonium tetrakis (pentafluorophenyl) borate 100 parts by mass, N, N′-diethylthiourea 5 parts by mass, dissolved in γ-butyrolactone, The solution was 50 parts by mass. The resin component 100 in terms of solid mass ratio, 4-benzyloxycarbonyloxyphenyl-o-methylbenzylmethylsulfonium, tetrakis (pentafluorophenyl) borate and N, N′-diethylthiourea were added so that the total was 2, and benzoguanamine Conductive particles having an average particle diameter of 3.2 μm, in which a nickel layer having a thickness of 0.2 μm is provided on the surface of particles having a resin core and a gold layer having a thickness of 0.03 μm provided on the outside of the nickel layer, are combined with the whole organic binder. It mix | blended and distributed so that it might become 3 volume% with respect to a product, and obtained the dispersion liquid. Thereafter, the dispersion was applied onto a polyethylene terephthalate film having a thickness of 50 μm and blown and dried at 40 ° C. to obtain an anisotropic conductive adhesive film having a thickness of 20 μm.
実施例2
 実施例1の4-ベンジルオキシカルボニルオキシフェニル-o-メチルベンジルメチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレートに換えて、4-アセチルオキシフェニル-ベンジル-メチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレートを使用した以外は、実施例1と同様にして異方導電性フィルムを得た。
Example 2
Aside from using 4-acetyloxyphenyl-benzyl-methylsulfonium tetrakis (pentafluorophenyl) borate in place of 4-benzyloxycarbonyloxyphenyl-o-methylbenzylmethylsulfonium tetrakis (pentafluorophenyl) borate in Example 1 Obtained an anisotropic conductive film in the same manner as in Example 1.
実施例3
 実施例1の4-ベンジルオキシカルボニルオキシフェニル-o-メチルベンジルメチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレートに換えて、4-ベンゾイルオキシフェニル-o-メチルベンジル-メチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレートを使用した以外は、実施例1と同様にして異方導電性フィルムを得た。
Example 3
Instead of 4-benzyloxycarbonyloxyphenyl-o-methylbenzylmethylsulfonium tetrakis (pentafluorophenyl) borate in Example 1, 4-benzoyloxyphenyl-o-methylbenzyl-methylsulfonium tetrakis (pentafluorophenyl) borate was used. An anisotropic conductive film was obtained in the same manner as in Example 1 except that it was used.
実施例4
 実施例1の4-ベンジルオキシカルボニルオキシフェニル-o-メチルベンジルメチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレートに換えて、4-フェノキシカルボニルオキシフェニル-ベンジル-メチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレートを使用した以外は、実施例1と同様にして異方導電性フィルムを得た。
Example 4
Instead of 4-benzyloxycarbonyloxyphenyl-o-methylbenzylmethylsulfonium tetrakis (pentafluorophenyl) borate in Example 1, 4-phenoxycarbonyloxyphenyl-benzyl-methylsulfonium tetrakis (pentafluorophenyl) borate was used. Except for the above, an anisotropic conductive film was obtained in the same manner as in Example 1.
実施例5
 実施例1の4-ベンジルオキシカルボニルオキシフェニル-o-メチルベンジル-メチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレートに換えて、4-メトキシフェニル-β-ナフチルメチルメチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレートを使用し、N,N’-ジエチルチオ尿素に換えて、4-ヒドロキシフェニルジメチルスルホニウム メチルサルフェートを使用した以外は、実施例1と同様にして異方導電性フィルムを得た。
Example 5
Instead of 4-benzyloxycarbonyloxyphenyl-o-methylbenzyl-methylsulfonium tetrakis (pentafluorophenyl) borate in Example 1, 4-methoxyphenyl-β-naphthylmethylmethylsulfonium tetrakis (pentafluorophenyl) borate is used. Then, an anisotropic conductive film was obtained in the same manner as in Example 1 except that 4-hydroxyphenyldimethylsulfonium methyl sulfate was used in place of N, N′-diethylthiourea.
実施例6
 実施例1の4-ベンジルオキシカルボニルオキシフェニル-o-メチルベンジル-メチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレートに換えて、4-アセチルオキシフェニルベンジルメチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレートを使用し、ビスフェノールA型液状エポキシ樹脂15gに換えて、レゾルシン型エポキシ樹脂15gを使用した以外は、実施例1と同様にして異方導電性フィルムを得た。
Example 6
In place of 4-benzyloxycarbonyloxyphenyl-o-methylbenzyl-methylsulfonium tetrakis (pentafluorophenyl) borate in Example 1, 4-acetyloxyphenylbenzylmethylsulfonium tetrakis (pentafluorophenyl) borate was used, and bisphenol was used. An anisotropic conductive film was obtained in the same manner as in Example 1 except that 15 g of resorcin type epoxy resin was used instead of 15 g of A type liquid epoxy resin.
実施例7
 実施例1の4-ベンジルオキシカルボニルオキシフェニル-o-メチルベンジル-メチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレートに換えて、4-アセチルオキシ2-メチルフェニルベンジルメチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレートを使用した以外は、実施例1と同様にして異方導電性フィルムを得た。
Example 7
4-acetyloxy 2-methylphenylbenzylmethylsulfonium tetrakis (pentafluorophenyl) borate was used in place of 4-benzyloxycarbonyloxyphenyl-o-methylbenzyl-methylsulfonium tetrakis (pentafluorophenyl) borate in Example 1 An anisotropic conductive film was obtained in the same manner as in Example 1 except that.
比較例1
 実施例1の4-ベンジルオキシカルボニルオキシフェニル-o-メチルベンジルメチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレートに換えて、p-ヒドロキシフェニル-ベンジル-メチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレートを使用し、N,N’-ジエチルチオ尿素を配合しないこと以外は実施例1と同様にして異方導電性フィルムを得た。
Comparative Example 1
In place of 4-benzyloxycarbonyloxyphenyl-o-methylbenzylmethylsulfonium tetrakis (pentafluorophenyl) borate in Example 1, p-hydroxyphenyl-benzyl-methylsulfonium tetrakis (pentafluorophenyl) borate was used, and N An anisotropic conductive film was obtained in the same manner as in Example 1 except that no N'-diethylthiourea was added.
比較例2
 実施例1の4-ベンジルオキシカルボニルオキシフェニル-o-メチルベンジルメチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレートに換えて、4-メトキシカルボニルオキシフェニル-ベンジル-メチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレートを使用し、N,N’-ジエチルチオ尿素を配合しないこと以外は実施例1と同様にして異方導電性フィルムを得た。
Comparative Example 2
Instead of 4-benzyloxycarbonyloxyphenyl-o-methylbenzylmethylsulfonium tetrakis (pentafluorophenyl) borate in Example 1, 4-methoxycarbonyloxyphenyl-benzyl-methylsulfonium tetrakis (pentafluorophenyl) borate was used. An anisotropic conductive film was obtained in the same manner as in Example 1 except that N, N′-diethylthiourea was not blended.
比較例3
 実施例1の4-ベンジルオキシカルボニルオキシフェニル-o-メチルベンジルメチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレートに換えて、4-ベンジルオキシカルボニルオキシフェニル-o-メチルベンジルメチルスルホニウム ヘキサフルオロホスフェートを使用した以外は実施例1と同様にして異方導電性フィルムを得た。
Comparative Example 3
Except for using 4-benzyloxycarbonyloxyphenyl-o-methylbenzylmethylsulfonium hexafluorophosphate in place of 4-benzyloxycarbonyloxyphenyl-o-methylbenzylmethylsulfonium tetrakis (pentafluorophenyl) borate in Example 1. Obtained an anisotropic conductive film in the same manner as in Example 1.
比較例4
 実施例1の4-ベンジルオキシカルボニルオキシフェニル-o-メチルベンジル-メチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレートに換えて、4-ヒドロキシフェニル-α-ナフチルメチル-メチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレートを使用した以外は、実施例1と同様にして異方導電性フィルムを得た。
Comparative Example 4
Instead of 4-benzyloxycarbonyloxyphenyl-o-methylbenzyl-methylsulfonium tetrakis (pentafluorophenyl) borate in Example 1, 4-hydroxyphenyl-α-naphthylmethyl-methylsulfonium tetrakis (pentafluorophenyl) borate was used. An anisotropic conductive film was obtained in the same manner as in Example 1 except that it was used.
比較例5
 実施例1の4-ベンジルオキシカルボニルオキシフェニル-o-メチルベンジル-メチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレートに換えて、4-アセチルオキシフェニル-α-ナフチルメチル-メチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレートを使用した以外は、実施例1と同様にして異方導電性フィルムを得た。
Comparative Example 5
Instead of 4-benzyloxycarbonyloxyphenyl-o-methylbenzyl-methylsulfonium tetrakis (pentafluorophenyl) borate in Example 1, 4-acetyloxyphenyl-α-naphthylmethyl-methylsulfonium tetrakis (pentafluorophenyl) borate An anisotropic conductive film was obtained in the same manner as in Example 1 except that was used.
比較例6
 実施例1の4-ベンジルオキシカルボニルオキシフェニル-o-メチルベンジルメチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレートに換えて、4-シアノフェニル-ベンジル-メチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレートとした以外は、実施例1と同様にして異方導電性フィルムを得た。
Comparative Example 6
Except for replacing 4-benzyloxycarbonyloxyphenyl-o-methylbenzylmethylsulfonium tetrakis (pentafluorophenyl) borate of Example 1 with 4-cyanophenyl-benzyl-methylsulfonium tetrakis (pentafluorophenyl) borate, An anisotropic conductive film was obtained in the same manner as in Example 1.
(接続抵抗値測定方法)
 全面に酸化インジウム-酸化亜鉛(IZO)の薄膜を形成した厚み200μmのポリカーボネートフィルム基板(表面抵抗200Ω/sq)上に幅2mmの異方導電性フィルムを仮貼りし、2.5mm幅の圧着ヘッドを用いて50℃、0.3MPa及び3秒間で加圧した後、ポリエチレンテレフタレートのベースフィルムを剥離する。剥離面へ、配線幅80μm、配線ピッチ150μm及び厚み18μmの金めっき銅配線(金めっき厚み0.3μm)から成る回路200本を有するフレキシブルプリント配線板(材質ポリイミド樹脂、厚み25μm)を仮接続した後、1.5mm幅の圧着ヘッドを用いて、130℃、8秒及び0.9MPaで加圧して圧着する。圧着後、隣接端子間の抵抗値を四端子法の抵抗計で測定し、接続抵抗値とする。
(Connection resistance measurement method)
An anisotropic conductive film with a width of 2 mm is temporarily pasted on a polycarbonate film substrate (surface resistance 200 Ω / sq) with a thickness of 200 μm on which an indium oxide-zinc oxide (IZO) thin film is formed on the entire surface, and a 2.5 mm width crimping head After pressing at 50 ° C., 0.3 MPa and 3 seconds, the polyethylene terephthalate base film is peeled off. A flexible printed wiring board (material polyimide resin, thickness 25 μm) having 200 circuits composed of gold-plated copper wiring (gold plating thickness 0.3 μm) having a wiring width of 80 μm, a wiring pitch of 150 μm and a thickness of 18 μm was temporarily connected to the peeling surface. Thereafter, pressure is applied by pressure at 130 ° C., 8 seconds, and 0.9 MPa using a 1.5 mm wide pressure bonding head. After crimping, the resistance value between adjacent terminals is measured with a four-terminal resistance meter to obtain the connection resistance value.
(剥離強度)
 圧着したフレキシブルプリント配線板を幅10mmに切断し、インストロンを用いて90°ピール強度を測定する。引っ張り速度50mm/分で行った。測定値を剥離強度とする。判定基準を以下に示す。
 α:剥離強度が700g/cm以上のもの
 β:剥離強度が500g/cm以上700g/cm未満のもの
 γ:剥離強度が500g/cm未満のもの
(Peel strength)
The pressure-bonded flexible printed wiring board is cut into a width of 10 mm, and the 90 ° peel strength is measured using an Instron. The pulling speed was 50 mm / min. The measured value is the peel strength. Judgment criteria are shown below.
α: The peel strength is 700 g / cm or more β: The peel strength is 500 g / cm or more and less than 700 g / cm γ: The peel strength is less than 500 g / cm
(耐環境試験後剥離強度)
 圧着したプリント配線板を85℃及び85%相対湿度の環境下で100時間保持し、次いで、サイクル試験(-40℃、100℃、各30分、1サイクル1時間)100サイクルを行い、その後25℃で1時間放置後、前記剥離強度を測定する。
 耐環境性の判定基準を以下に示す。
 α:剥離強度が初期値の70%以上であるもの
 β:剥離強度が初期値の50%以上70%未満であるもの
 γ:剥離強度が初期値の50%未満であるもの
(Peel strength after environmental resistance test)
The pressure-bonded printed wiring board is held at 85 ° C. and 85% relative humidity for 100 hours, and then subjected to a cycle test (−40 ° C., 100 ° C., 30 minutes each, 1 hour 1 cycle) for 100 cycles, and then 25 After leaving at 1 ° C. for 1 hour, the peel strength is measured.
The criteria for environmental resistance are shown below.
α: The peel strength is 70% or more of the initial value β: The peel strength is 50% or more and less than 70% of the initial value γ: The peel strength is less than 50% of the initial value
(保存安定性)
 異方導電性フィルムを密閉容器に入れ、25℃で2週間保存した後、前記剥離強度を測定する。保存安定性の判定基準を以下に示す。
 α:剥離強度が初期値の70%以上であるもの
 β:剥離強度が初期値の50%以上70%未満であるもの
 γ:剥離強度が初期値の50%未満であるもの
(Storage stability)
The anisotropic conductive film is put in a sealed container and stored at 25 ° C. for 2 weeks, and then the peel strength is measured. The criteria for storage stability are shown below.
α: The peel strength is 70% or more of the initial value β: The peel strength is 50% or more and less than 70% of the initial value γ: The peel strength is less than 50% of the initial value
(反応率測定)
 エポキシ基反応率の測定は、エポキシ基吸光度比をFT-IR法により測定する。フィルム基材上に形成された2mm幅、20mm長の異方導電性接着フィルムを30μm厚みのテフロン(登録商標)テープに挟み込み、幅2.5mmの加圧加熱ヘッドを用いて10秒、0.3MPaで圧着したサンプルを作製する。圧着前後のFT-IR測定を行い、圧着前後の吸光度比よりエポキシ基反応率を算出する。エポキシ基の吸光度比の算出方法は、内部標準としてメチル基吸収強度を用い、以下の計算式で反応率を算出する。
(Reaction rate measurement)
The epoxy group reaction rate is measured by the epoxy group absorbance ratio by the FT-IR method. A 2 mm wide, 20 mm long anisotropic conductive adhesive film formed on a film substrate is sandwiched between 30 μm thick Teflon (registered trademark) tapes, and a pressure heating head with a width of 2.5 mm is used for 10 seconds, 0. A sample pressed at 3 MPa is prepared. FT-IR measurement is performed before and after pressure bonding, and the epoxy group reaction rate is calculated from the absorbance ratio before and after pressure bonding. As a method for calculating the absorbance ratio of the epoxy group, the methyl group absorption intensity is used as an internal standard, and the reaction rate is calculated by the following formula.
 反応率(%)=(1-((a/b)/(A/B)))×100
 A:圧着前のエポキシ基吸収強度
 B:圧着前のメチル基吸収強度
 a:圧着後のエポキシ基吸収強度
 b:圧着後のメチル基吸収強度
Reaction rate (%) = (1 − ((a / b) / (A / B))) × 100
A: Epoxy group absorption strength before pressure bonding B: Methyl group absorption strength before pressure bonding a: Epoxy group absorption strength after pressure bonding b: Methyl group absorption strength after pressure bonding
 140℃、10秒でのエポキシ基反応率
 α:80%以上であるもの
 β:50%以上80%未満であるもの
 γ:50%未満であるもの
Epoxy group reaction rate at 140 ° C. for 10 seconds α: 80% or more β: 50% or more and less than 80% γ: Less than 50%
 80℃、10秒でのエポキシ基反応率
 α:10%未満であるもの
 β:10%以上20%未満であるもの
 γ:20%以上であるもの
Epoxy group reaction rate at 80 ° C. for 10 seconds α: Less than 10% β: More than 10% but less than 20% γ: More than 20%
 以上の結果を表1に示す。また、上記式(1)におけるフェニル基の置換基のハメット定数の和を表2に示す。 The results are shown in Table 1. Table 2 shows the sum of Hammett constants of the substituents of the phenyl group in the above formula (1).
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 上記表1からも明らかなように、本発明を用いる実施例は、比較例に比べ、保存後の剥離強度低下が少なく、かつ、耐環境試験後の剥離強度低下も低く、良好な接続抵抗を示す。 As is clear from Table 1 above, the examples using the present invention have a lower decrease in peel strength after storage and a lower decrease in peel strength after the environmental resistance test than in the comparative example, and good connection resistance. Show.

Claims (17)

  1.  カチオン重合性物質を含む有機バインダー;
     該カチオン重合性物質を含む有機バインダー100質量部に対して、0.01~15質量部の一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    {式(1)中、Qは、置換若しくは無置換ナフチルメチル基又は置換若しくは無置換ベンジル基であり、Aは、1~5個の置換基を有するフェニル基であり、Qが置換若しくは無置換ナフチルメチル基であるときには該1~5個の置換基のハメット定数の和は-0.3~0であり、Qが置換若しくは無置換ベンジル基であるときには該1~5個の置換基のハメット定数の和は0~+0.5であり、Rは炭素数1~6のアルキル基であり、そしてYは、一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、Xは、それぞれ独立して、フッ素、塩素又は臭素である。]で表されるアニオンである。}で表されるカチオン発生剤;及び
     該カチオン重合性物質を含む有機バインダーの全体積に対して、0.1~20体積%の導電性粒子;
    を含む異方導電性接着フィルム。
    An organic binder comprising a cationically polymerizable substance;
    0.01 to 15 parts by mass of the general formula (1) with respect to 100 parts by mass of the organic binder containing the cationic polymerizable substance:
    Figure JPOXMLDOC01-appb-C000001
    {In Formula (1), Q is a substituted or unsubstituted naphthylmethyl group or a substituted or unsubstituted benzyl group, A is a phenyl group having 1 to 5 substituents, and Q is substituted or unsubstituted When it is a naphthylmethyl group, the sum of Hammett constants of the 1 to 5 substituents is -0.3 to 0, and when Q is a substituted or unsubstituted benzyl group, the Hammett of the 1 to 5 substituents The sum of the constants is 0 to +0.5, R 4 is an alkyl group having 1 to 6 carbon atoms, and Y is a general formula (2):
    Figure JPOXMLDOC01-appb-C000002
    [In Formula (2), X is respectively independently fluorine, chlorine, or bromine. ] An anion represented by And 0.1 to 20% by volume of conductive particles based on the total volume of the organic binder containing the cationic polymerizable substance;
    An anisotropic conductive adhesive film comprising:
  2.  式(1)において、Qは置換若しくは無置換ナフチルメチル基であり、Aの1~5個の置換基のハメット定数の和は-0.3~0である、請求項1に記載の異方導電性接着フィルム。 The anisotropic structure according to claim 1, wherein in formula (1), Q is a substituted or unsubstituted naphthylmethyl group, and the sum of Hammett constants of 1 to 5 substituents of A is -0.3 to 0. Conductive adhesive film.
  3.  式(1)において、Qは置換若しくは無置換ベンジル基であり、Aの1~5個の置換基のハメット定数の和は0~+0.5である、請求項1に記載の異方導電性接着フィルム。 The anisotropic conductive material according to claim 1, wherein in formula (1), Q is a substituted or unsubstituted benzyl group, and the sum of Hammett constants of 1 to 5 substituents of A is 0 to +0.5. Adhesive film.
  4.  式(1)において、Aは、一般式(4):
    Figure JPOXMLDOC01-appb-C000003
    {式(4)中、Rは、メチル基、アセチル基、フェノキシカルボニル基、ベンジルオキシカルボニル基、ベンゾイル基又は9-フルオレニルカルボニル基であり、そしてR及びRは、水素、ハロゲン又は炭素数1~6のアルキル基である。}で表される基である、請求項1に記載の異方導電性接着フィルム。
    In the formula (1), A represents the general formula (4):
    Figure JPOXMLDOC01-appb-C000003
    {In the formula (4), R 1 is a methyl group, an acetyl group, a phenoxycarbonyl group, a benzyloxycarbonyl group, a benzoyl group or a 9-fluorenylcarbonyl group, and R 2 and R 3 are hydrogen, halogen, Or an alkyl group having 1 to 6 carbon atoms. } The anisotropic conductive adhesive film of Claim 1 which is group represented by these.
  5.  式(4)において、Rは、アセチル基、フェノキシカルボニル基、ベンジルオキシカルボニル基又はベンゾイル基であり、そしてR及びRは水素又はメチル基である、請求項4に記載の異方導電性接着フィルム。 In the formula (4), R 1 is an acetyl group, a phenoxycarbonyl group, a benzyloxycarbonyl group or a benzoyl group, and R 2 and R 3 is hydrogen or a methyl group, different Hoshirubeden of claim 4 Adhesive film.
  6.  式(1)において、Qは、一般式(3):
    Figure JPOXMLDOC01-appb-C000004
    {式(3)中、Rは、水素、メチル基、メトキシ基又はハロゲンである。}で表される置換若しくは無置換ベンジル基、α-ナフチルメチル基又はβ-ナフチルメチル基である、請求項1または4または5に記載の異方導電性接着フィルム。
    In the formula (1), Q is the general formula (3):
    Figure JPOXMLDOC01-appb-C000004
    {In Formula (3), R 5 is hydrogen, a methyl group, a methoxy group, or a halogen. The anisotropic conductive adhesive film according to claim 1, 4 or 5, which is a substituted or unsubstituted benzyl group, α-naphthylmethyl group or β-naphthylmethyl group represented by
  7.  式(3)においてRは水素又はメチル基である、請求項6に記載の異方導電性接着フィルム。 The anisotropic conductive adhesive film according to claim 6, wherein R 5 in formula (3) is hydrogen or a methyl group.
  8.  式(1)においてRはメチル基である、請求項6または7に記載の異方導電性接着フィルム。 The anisotropic conductive adhesive film according to claim 6 or 7, wherein R 4 in formula (1) is a methyl group.
  9.  式(2)においてXはフッ素である、請求項6~8のいずれか1項に記載の異方導電性接着フィルム。 The anisotropic conductive adhesive film according to any one of claims 6 to 8, wherein X in the formula (2) is fluorine.
  10.  前記カチオン発生剤より発生するカチオン種と反応するカチオン捕捉剤を前記カチオン発生剤の100質量部に対して0.1~20質量部含む、請求項1~5のいずれか1項に記載の異方導電性接着フィルム。 The diffusing agent according to any one of claims 1 to 5, comprising a cation scavenger that reacts with a cation species generated from the cation generator, in an amount of 0.1 to 20 parts by mass with respect to 100 parts by mass of the cation generator. Direction conductive adhesive film.
  11.  前記カチオン捕捉剤は、チオ尿素化合物、4-アルキルチオフェノール化合物及び4-ヒドロキシフェニル-ジアルキルスルホニウム塩から成る群から選択される1種以上である、請求項10に記載の異方導電性接着フィルム。 The anisotropic conductive adhesive film according to claim 10, wherein the cation scavenger is at least one selected from the group consisting of a thiourea compound, a 4-alkylthiophenol compound and a 4-hydroxyphenyl-dialkylsulfonium salt.
  12.  前記カチオン発生剤より発生するカチオン種が、少なくとも2種以上である、請求項1~5のいずれか1項に記載の異方導電性接着フィルム。 The anisotropic conductive adhesive film according to any one of claims 1 to 5, wherein at least two kinds of cation species generated from the cation generator are used.
  13.  前記有機バインダーはレゾルシン型エポキシ樹脂を含む、請求項1~5のいずれか1項に記載の異方導電性接着フィルム。 6. The anisotropic conductive adhesive film according to claim 1, wherein the organic binder contains a resorcin type epoxy resin.
  14.  対応する電極配置を有する一対の電子回路基板を請求項1~5のいずれか1項に記載の異方導電性接着フィルムを介して加熱及び加圧する工程を含む、接続構造体の製造方法。 A method for manufacturing a connection structure, comprising a step of heating and pressurizing a pair of electronic circuit boards having corresponding electrode arrangements through the anisotropic conductive adhesive film according to any one of claims 1 to 5.
  15.  請求項14に記載の製造方法により得られた接続構造体。 A connection structure obtained by the manufacturing method according to claim 14.
  16.  一般式(1):
    Figure JPOXMLDOC01-appb-C000005
    {式(1)中、Qは、置換若しくは無置換ナフチルメチル基又は置換若しくは無置換ベンジル基であり、Aは、1~5個の置換基を有するフェニル基であり、Qが置換若しくは無置換ナフチルメチル基であるときには該1~5個の置換基のハメット定数の和は-0.3~0であり、Qが置換若しくは無置換ベンジル基であるときには該1~5個の置換基のハメット定数の和は0~+0.5であり、Rは炭素数1~6のアルキル基であり、そしてYは、一般式(2):
    Figure JPOXMLDOC01-appb-C000006
    [式(2)中、Xは、それぞれ独立して、フッ素、塩素又は臭素である。]で表されるアニオンである。}で表されるカチオン発生剤。
    General formula (1):
    Figure JPOXMLDOC01-appb-C000005
    {In Formula (1), Q is a substituted or unsubstituted naphthylmethyl group or a substituted or unsubstituted benzyl group, A is a phenyl group having 1 to 5 substituents, and Q is substituted or unsubstituted When it is a naphthylmethyl group, the sum of Hammett constants of the 1 to 5 substituents is -0.3 to 0, and when Q is a substituted or unsubstituted benzyl group, the Hammett of the 1 to 5 substituents The sum of the constants is 0 to +0.5, R 4 is an alkyl group having 1 to 6 carbon atoms, and Y is a general formula (2):
    Figure JPOXMLDOC01-appb-C000006
    [In Formula (2), X is respectively independently fluorine, chlorine, or bromine. ] An anion represented by } The cation generator represented by these.
  17.  エポキシ基を有する有機バインダー、カチオン発生剤及び導電性粒子を含む異方導電性フィルムであって、80℃、10秒でのエポキシ基反応率が10%未満であり、かつ140℃、10秒でのエポキシ基反応率が80%以上である異方導電性接着フィルム。 An anisotropic conductive film comprising an organic binder having an epoxy group, a cation generator and conductive particles, wherein the epoxy group reaction rate at 80 ° C. for 10 seconds is less than 10%, and at 140 ° C. for 10 seconds. An anisotropic conductive adhesive film having an epoxy group reaction rate of 80% or more.
PCT/JP2011/067977 2010-08-06 2011-08-05 Anisotropic conductive adhesive film and curing agent WO2012018123A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180038913.7A CN103081236B (en) 2010-08-06 2011-08-05 Anisotropic conductive adhesive film and curing agent
JP2012527790A JP5373973B2 (en) 2010-08-06 2011-08-05 Anisotropic conductive adhesive film and curing agent
KR1020137001516A KR101456396B1 (en) 2010-08-06 2011-08-05 Anisotropic conductive adhesive film and curing agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010176883 2010-08-06
JP2010-176883 2010-08-06

Publications (1)

Publication Number Publication Date
WO2012018123A1 true WO2012018123A1 (en) 2012-02-09

Family

ID=45559618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067977 WO2012018123A1 (en) 2010-08-06 2011-08-05 Anisotropic conductive adhesive film and curing agent

Country Status (5)

Country Link
JP (1) JP5373973B2 (en)
KR (1) KR101456396B1 (en)
CN (1) CN103081236B (en)
TW (1) TWI424041B (en)
WO (1) WO2012018123A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229314A (en) * 2012-03-30 2013-11-07 Sekisui Chem Co Ltd Conductive material, connection structure, and method for manufacturing connection structure
JP2014031451A (en) * 2012-08-03 2014-02-20 Asahi Kasei E-Materials Corp Thermal cation generator composition, thermosetting composition, and anisotropic conductive connection material
JP2015164103A (en) * 2014-02-28 2015-09-10 住友金属鉱山株式会社 Conductive paste for multilayer ceramic capacitor internal electrode and production method thereof, and multilayer ceramic capacitor
JPWO2015046333A1 (en) * 2013-09-27 2017-03-09 株式会社ダイセル Adhesive composition for semiconductor lamination
US10189781B2 (en) 2013-09-25 2019-01-29 Asahi Kasei E-Materials Corporation Onium salt and composition comprising the same
US10964440B2 (en) 2016-02-22 2021-03-30 Dexerials Corporation Anisotropic conductive film
KR20220058949A (en) 2019-12-13 2022-05-10 데쿠세리아루즈 가부시키가이샤 Adhesive composition, adhesive film and bonded structure
KR20230153475A (en) 2021-06-03 2023-11-06 데쿠세리아루즈 가부시키가이샤 Adhesive compositions, adhesive films, bonded structures and methods for producing bonded structures
KR20240010091A (en) 2016-02-22 2024-01-23 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101712703B1 (en) * 2014-07-18 2017-03-06 삼성에스디아이 주식회사 Adhesive composition, anisotropic conductive film and the semiconductor device using thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000336109A (en) * 1999-05-26 2000-12-05 Nippon Soda Co Ltd Catalyst composition and curable composition
JP2002161146A (en) * 2000-11-24 2002-06-04 Asahi Kasei Corp Anisotropically conductive film
JP2010132614A (en) * 2008-12-05 2010-06-17 Sony Chemical & Information Device Corp New sulfonium borate complex

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000046315A1 (en) * 1999-02-08 2000-08-10 Hitachi Chemical Co., Ltd. Adhesive, electrode-connecting structure, and method of connecting electrodes
JP2002363506A (en) * 2001-05-29 2002-12-18 Three M Innovative Properties Co Ultraviolet activating adhesive film
TWI327151B (en) * 2002-12-17 2010-07-11 Sony Chemicals Corp Processes for producing resin particles and anisotropically electroconductive adhesive
KR100662175B1 (en) * 2004-12-31 2006-12-27 제일모직주식회사 Anisotropic Conductive Adhesive Material Containing Oxetane Comepounds
JP2008303167A (en) * 2007-06-07 2008-12-18 Sony Chemical & Information Device Corp New sulfonium borate complex
TWI529186B (en) * 2009-11-05 2016-04-11 日立化成股份有限公司 Thermopolymerization initiator system and adhesive composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000336109A (en) * 1999-05-26 2000-12-05 Nippon Soda Co Ltd Catalyst composition and curable composition
JP2002161146A (en) * 2000-11-24 2002-06-04 Asahi Kasei Corp Anisotropically conductive film
JP2010132614A (en) * 2008-12-05 2010-06-17 Sony Chemical & Information Device Corp New sulfonium borate complex

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229314A (en) * 2012-03-30 2013-11-07 Sekisui Chem Co Ltd Conductive material, connection structure, and method for manufacturing connection structure
JP2014031451A (en) * 2012-08-03 2014-02-20 Asahi Kasei E-Materials Corp Thermal cation generator composition, thermosetting composition, and anisotropic conductive connection material
US10189781B2 (en) 2013-09-25 2019-01-29 Asahi Kasei E-Materials Corporation Onium salt and composition comprising the same
JPWO2015046333A1 (en) * 2013-09-27 2017-03-09 株式会社ダイセル Adhesive composition for semiconductor lamination
US10047257B2 (en) 2013-09-27 2018-08-14 Daicel Corporation Adhesive agent composition for multilayer semiconductor
JP2015164103A (en) * 2014-02-28 2015-09-10 住友金属鉱山株式会社 Conductive paste for multilayer ceramic capacitor internal electrode and production method thereof, and multilayer ceramic capacitor
US10964440B2 (en) 2016-02-22 2021-03-30 Dexerials Corporation Anisotropic conductive film
KR20240010091A (en) 2016-02-22 2024-01-23 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film
KR20220058949A (en) 2019-12-13 2022-05-10 데쿠세리아루즈 가부시키가이샤 Adhesive composition, adhesive film and bonded structure
KR20230153475A (en) 2021-06-03 2023-11-06 데쿠세리아루즈 가부시키가이샤 Adhesive compositions, adhesive films, bonded structures and methods for producing bonded structures

Also Published As

Publication number Publication date
CN103081236B (en) 2016-03-09
CN103081236A (en) 2013-05-01
JPWO2012018123A1 (en) 2013-10-28
KR101456396B1 (en) 2014-10-31
KR20130041121A (en) 2013-04-24
TWI424041B (en) 2014-01-21
TW201217481A (en) 2012-05-01
JP5373973B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5373973B2 (en) Anisotropic conductive adhesive film and curing agent
TWI654264B (en) Conductive paint and method for manufacturing shielding package using the same
KR101391696B1 (en) Anisotropic conductive composition and film
CN101775259A (en) Anti-static heat-resistant polyimide adhesive tape
JP2015167106A (en) Anisotropic conductive film, and connection structure
JP5760702B2 (en) Adhesive composition for electronic device and adhesive sheet for electronic device
JP2002097443A (en) Adhesive composition, circuit-connecting material using the same, and connected body
JP2003049145A (en) Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the same
JP3589422B2 (en) Anisotropic conductive film
JP6326867B2 (en) Connection structure manufacturing method and connection structure
JP2002327162A (en) Anisotropically conductive adhesive composition, method for connecting circuit terminal and connection structure of the circuit terminal
KR102098758B1 (en) Circuit connection material
JP2012097226A (en) Anisotropically electroconductive adhesive film and connection structure
JP2005197032A (en) Anisotropic conductive film
JP7462408B2 (en) Adhesive composition, adhesive film, and connection structure
JP2009001661A (en) Adhesive and bonded body
JP2012146881A (en) Circuit board with hardening agent
KR101189622B1 (en) Anisotropic conductive adhesive comprising anthracene type epoxy resin and circuit connection structure using the same
JP5577599B2 (en) Production method of film adhesive for circuit connection
JP5046581B2 (en) Adhesive for circuit connection
JP2004352785A (en) Anisotropic electroconductive adhesive
JP2006291220A (en) Anisotropically conductive adhesive and anisotropically conductive adhesive film
KR20020089870A (en) Anisotropic Conductive Film Including Silicon Intermediate
JP2012099404A (en) Anisotropic conductive film and connection structure
WO2016163226A1 (en) Anisotropic conductive film and connecting method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180038913.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814748

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012527790

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20137001516

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814748

Country of ref document: EP

Kind code of ref document: A1