TWI327151B - Processes for producing resin particles and anisotropically electroconductive adhesive - Google Patents

Processes for producing resin particles and anisotropically electroconductive adhesive Download PDF

Info

Publication number
TWI327151B
TWI327151B TW92135723A TW92135723A TWI327151B TW I327151 B TWI327151 B TW I327151B TW 92135723 A TW92135723 A TW 92135723A TW 92135723 A TW92135723 A TW 92135723A TW I327151 B TWI327151 B TW I327151B
Authority
TW
Taiwan
Prior art keywords
raw material
material liquid
polymerization initiator
temperature
resin
Prior art date
Application number
TW92135723A
Other languages
Chinese (zh)
Other versions
TW200418884A (en
Inventor
Shinichi Hayashi
Ryoji Kojima
Original Assignee
Sony Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002364922A external-priority patent/JP2004196889A/en
Priority claimed from JP2002364923A external-priority patent/JP3954485B2/en
Application filed by Sony Chemicals Corp filed Critical Sony Chemicals Corp
Publication of TW200418884A publication Critical patent/TW200418884A/en
Application granted granted Critical
Publication of TWI327151B publication Critical patent/TWI327151B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0221Insulating particles having an electrically conductive coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0233Deformable particles

Description

1327151 玖、發明說明: 【發明所屬之技術領域】 本發明係關於樹脂粒子之製造技術,尤其與異向導電 性接著劑之導電性粒子所使用之樹脂粒子之製造技術有關 【先前技術】 以往之樹脂粒子製造方法,係將具有二乙烯基苯等單 體之油相成分分散於水性成分中’再使被分散單體油滴硬 化(如參照特開2000 - 5371 0號)。 又’亦有以金屬被覆樹脂粒子之金屬塗覆粒子當作異 向導電性薄膜之導電性粒子使用,此種導電性粒子與由金 屬粒子組成之導電性粒子比較時其粒徑精密度高,同時在 低負載下呈現接近彈性體之舉動,故將導電性粒子夾在連 接端子間時可受擠壓而變形,使連接端子與導電性粒子之 觸面積變大,並使連接端子間之導通電阻值變小(如參 日3 . 丄 ‘,,、.谷雅弘等其他2名、「導電微粒子之電氣特性評價 」回路貫裝學會遠、1997年、Vol. 12,No. 7,p507-508) ο ^但習知之製造方法所製造之樹脂粒子被擠壓成壓縮變 60%以上時,樹脂粒子常被破壞,且習知之製造 方法所製造之樹脂粒子其強度無法超過i2〇〇pa。 因此,本發明以製造機械性強度高之樹脂粒子為目的 1327151 【發明内容】 本發明者等針對硬化樹脂粒子原料液之條件進行探討 ,其結果得知,當硬化原料液之加熱溫度高時樹脂粒子強 度減低。 加熱溫度過低時*不引 應但加熱時間會極端延長, 起聚合反應,就算引起聚合反 使生產效率變差《本發明者等 就加熱溫度之最適範圍再行探討,其結果得知, 以添加於 原料液中聚合起始劑之丨小時半衰溫度以下之溫度、更佳 為以聚合起始劑之1M、時半衰溫度以下之溫度加熱原料液 時’可製得機械性強度高之樹脂粒子。 依據上述見解所完成之本發明之樹脂粒子製造方法, 係將含有聚合起始劑與自由基聚合性物質之原料液加熱處 理’使該自由基聚合性物質聚合以形成由該原料液之硬化 物所構成之樹脂粒子,其特徵在於:設加& i小時該聚合 起始劑後該聚合起始劑分解一半之溫度為1小時半衰溫: ,則該加熱處理在該原料液之溫度為丨小時半衰溫度以下 進行。 。 孤又 本發明之樹脂粒子製造方法中,兮L丄 衣也乃忒T,該加熱處理中該原料 液之升溫速度為rc/分鐘以上。 上述本發明之樹脂粒子製造方法中,該自由基聚合性 物質為(甲基)丙烤酸g旨。 上述本發明之樹脂粒子製造方法中,該自由基聚入性 物質為具有胺甲酸乙醋鍵之(尹基)丙烯酸醋。 〇 1327151 該原料液含有2 上述本發明之樹脂粒子製造方法中 種以上之自由基聚合性物質。 上述本發明之樹脂粒子製造方法中,該原料液含有 由(甲基)丙稀酸胺甲酸乙㈣成之第1種自由基聚合性物 質、及化學構造中無胺甲酸乙醋鍵之(甲基) 成之第2種自由基聚合性物質雙方。 不赞明之呉向導電性接著劑之製造方法,係將含 有聚合起始劑與自由基聚合性物質之原料液加熱處理,使 該自由基聚合性物質聚合而形成由該原料液之硬化物所構 成之樹脂粒子以製造樹脂粒子,在該樹脂粒子表面形成導 電層以製造導電性粒子’再將該導電性粒子分散於接著材 料中而製成異向導電性接著劑,其特徵在於: 設加熱1小時該聚合起始劑後該聚合起始劑分解一半 之溫度為1小時半衰溫度,則上述加熱處理在上述原料液 之溫度為1小時半衰溫度以下進行。 又,本發明之樹脂粒子製造方法,係加熱處理含有聚 合起始劑與自由基聚合性物質之原料液,使該自由基聚合 性物質聚合而形成由該原料液之硬化物所構成之樹脂粒子 ’其特徵在於: 設加熱1G小時該聚合起始劑後該聚合起始劑分解一半 之恤度為10小時半衰溫度,則該加熱處理在該原料液之溫 度為10小時半衰溫度以下進行。 上述本發明之樹脂粒子製造方法中,該加熱處理中該 原料液之升溫速度為rc/分鐘以上。 7151 上述本發明之樹脂粒子製造方法中,該自由基聚合性 物質為(甲基)丙烯酸醋。 上述本發明之樹脂粒子製造方法中,該自由基聚合性 物質為具有胺甲酸乙酯鍵之(甲基)丙烯酸酯。 上述本發明之樹脂粒子製造方法中,該原料液含有2 種以上之自由基聚合性物質。 上述本發明之樹脂粒子製造方法中,該原料液含有: 由(甲基)丙烯酸胺甲酸乙㈣成之帛丨種自由基聚合性物 質、及化學構造中無胺f酸乙輯之(甲基)丙烯酸醋所構 成之第2種自由基聚合性物質雙方。 入’不贫明之異 有聚合起始劑與自由基聚合性物質之原料液加熱處理,使 该自由基聚合性物質聚合而形成由該原料液之硬化物所構 成之樹脂粒子以製造樹脂粒子’在該樹脂粒子表面 =以製造導電性粒子’再將該導電性粒子分散於接著材 '4中而製成異向導電性接著劑,其特徵在於: 設加熱10小時該聚合起始劑後該聚合起始劑分 之溫度為10小時半衰溫度,則該加熱處 溫度為10小時半衰溫度以下進行。 液之 X於本發明,所謂(甲基)丙烯酸醋係指丙 斑 甲基丙稀酸酯雙方。 一 不發月由於具備上述構成’於 合起始劑之!小時半衰溫度 藉由以低於 “ 度進仃加熱處理,可傕 仔樹知粒子之強度變高。 j使 1327151 A 10小時半衰溫度較1小時半衰溫度為低溫,以低於聚 合起始劑之10小時半衰溫度之溫度進行加熱時,製得樹脂 子之強度更问,但加熱溫度愈低則原料液硬化所需時間 愈長。 因此,欲以良好效率生產實用上具有充分強度之樹脂 粒:時,使原料液之溫度為1〇小時半衰溫度以上Μ小時 半衰溫度以下即可。 在樹脂粒子表面形成導電層以製造導電性粒子,將該 導電性粒子分散於接著材料中而製成異向導電性接著劑, 將該異向導電性接著劑夾在配線板或液晶面板之連接端子 間時,則導電性粒子被夾在連接端子間。 #如上述,依本發明所製造之樹脂粒子其強度高,故就 异施加負載使被夹在連接端子間之導電性粒子大量變形, 但樹脂粒子仍不會破壞。因& ’使用依本發明所製造之導 電性粒子’能夠使連接端子與導電性粒子之接觸面積非常 大’而提高連接端子間之導電性。 【實施方式】 著劑之製造方法之一例 以下就本發明之異向導電性接 詳細說明。 添加既定重量之聚合起始劑於自由基聚合性物質、 甲酸乙酿鍵之第1種(甲基)丙稀酸醋…種自由 1合劑)中,以製作原料液。 視需要添加界 以對原料液親和性低之溶劑為主成分1327151 发明Invention Description: [Technical Field] The present invention relates to a technique for producing resin particles, and more particularly to a technique for producing resin particles used for conductive particles of an anisotropic conductive adhesive. [Prior Art] In the method for producing a resin particle, an oil phase component having a monomer such as divinylbenzene is dispersed in an aqueous component, and the dispersed monomer oil droplet is hardened (see, for example, JP-A No. 2000-5371). Further, the metal coated particles of the metal-coated resin particles are used as the conductive particles of the anisotropic conductive film, and the conductive particles have a high particle size precision when compared with the conductive particles composed of the metal particles. At the same time, the action of approaching the elastic body is exhibited under a low load, so that the conductive particles can be squeezed and deformed when sandwiched between the connection terminals, so that the contact area between the connection terminal and the conductive particles becomes large, and the connection between the connection terminals is made. The resistance value becomes small (for example, see Japanese 3. 丄',,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -508) ο ^ However, when the resin particles produced by the conventional manufacturing method are extruded to have a compression change of 60% or more, the resin particles are often destroyed, and the resin particles produced by the conventional manufacturing method cannot exceed the strength of i2〇〇pa. . In the present invention, the inventors of the present invention have studied the conditions of the raw material liquid for curing the resin particles, and as a result, it has been found that when the heating temperature of the hardening raw material liquid is high, the resin is obtained. The particle strength is reduced. When the heating temperature is too low*, the heating time is extremely prolonged, and the polymerization reaction is caused, and even if the polymerization is caused, the production efficiency is deteriorated. The inventors have discussed the optimum range of the heating temperature, and as a result, When the raw material liquid is heated at a temperature lower than the half-life temperature of the polymerization initiator in the raw material liquid, more preferably at a temperature of 1 M or less than the half-life temperature of the polymerization initiator, 'the mechanical strength can be high. Resin particles. According to the above-described findings, the method for producing a resin particle of the present invention comprises heating a raw material liquid containing a polymerization initiator and a radical polymerizable substance to polymerize the radical polymerizable substance to form a cured product from the raw material liquid. The resin particles are characterized in that the temperature at which the polymerization initiator is decomposed by half after the polymerization initiator is 1 hour and half-life is set: and the temperature of the heat treatment at the raw material liquid is It is carried out below the half-life temperature. . In the method for producing a resin particle of the present invention, the 兮L coat is also 忒T, and the temperature increase rate of the raw material liquid in the heat treatment is rc/min or more. In the method for producing a resin particle of the present invention, the radical polymerizable substance is (meth)propionic acid. In the above method for producing a resin particle of the present invention, the radically-engaging substance is (yin-based) acrylic vinegar having an urethane formate bond. 〇 1327151 The raw material liquid contains two or more kinds of radically polymerizable substances in the above-described method for producing a resin particle of the present invention. In the method for producing a resin particle according to the present invention, the raw material liquid contains a first radical polymerizable substance derived from (meth)acrylic acid amide (4), and a chemical structure having no amine formate ethyl acetate bond (A) Base) The second type of radical polymerizable substance. In the method for producing a conductive adhesive, the raw material liquid containing a polymerization initiator and a radical polymerizable substance is heat-treated, and the radical polymerizable substance is polymerized to form a cured product of the raw material liquid. The resin particles are formed to form resin particles, and a conductive layer is formed on the surface of the resin particles to produce conductive particles. The conductive particles are dispersed in the adhesive material to form an anisotropic conductive adhesive, which is characterized in that heating is performed. The temperature at which the polymerization initiator is decomposed by half after the polymerization initiator is 1 hour half-life temperature, and the heat treatment is carried out at a temperature of the raw material liquid of 1 hour or less. Further, in the method for producing a resin particle of the present invention, a raw material liquid containing a polymerization initiator and a radical polymerizable substance is heat-treated, and the radical polymerizable substance is polymerized to form a resin particle composed of a cured product of the raw material liquid. 'It is characterized in that: when the polymerization initiator is heated for 1 G hours, the polymerization initiator is decomposed by half, and the half-life is 10 hours. The heat treatment is performed under the temperature of the raw material liquid for 10 hours and half-life. . In the method for producing a resin particle of the present invention, the temperature increase rate of the raw material liquid in the heat treatment is rc/min or more. In the method for producing a resin particle of the present invention, the radical polymerizable substance is (meth)acrylic acid vinegar. In the method for producing a resin particle of the present invention, the radical polymerizable substance is a (meth) acrylate having an urethane bond. In the method for producing a resin particle of the present invention, the raw material liquid contains two or more kinds of radical polymerizable substances. In the method for producing a resin particle according to the present invention, the raw material liquid contains: a radically polymerizable substance derived from (meth)acrylic acid amide (4), and a chemical structure having no amine f acid (methyl) A second type of radically polymerizable substance composed of acrylic vinegar. The raw material liquid of the polymerization initiator and the radically polymerizable substance are heat-treated, and the radical polymerizable substance is polymerized to form resin particles composed of a cured product of the raw material liquid to produce resin particles. The surface of the resin particle = the conductive particle is produced and the conductive particle is dispersed in the adhesive material 4 to form an anisotropic conductive adhesive, which is characterized in that the polymerization initiator is heated for 10 hours. The polymerization initiator is at a temperature of 10 hours and a half-life, and the temperature at the heating is 10 hours or less. The liquid X is in the present invention, and the term "(meth)acrylic acid vinegar" means both sides of the propyl methacrylate. If you don't have a month, you have the above composition. The hourly half-life temperature is higher than the "degree of heat", and the strength of the particles can be increased. j makes 13151151 A 10 hour half-life temperature is lower than 1 hour half-life temperature, lower than polymerization. When the temperature of the 10 hour half-life temperature of the starting agent is heated, the strength of the resin is more desirable, but the lower the heating temperature, the longer the time required for the raw material liquid to harden. Therefore, it is practical to have sufficient strength to produce with good efficiency. Resin particle: When the temperature of the raw material liquid is 1 hr or less, the half-life temperature is equal to or less than the half-life temperature of the hour. A conductive layer is formed on the surface of the resin particle to produce conductive particles, and the conductive particle is dispersed in the bonding material. When an anisotropic conductive adhesive is formed in the middle, and the anisotropic conductive adhesive is interposed between the connection terminals of the wiring board or the liquid crystal panel, the conductive particles are sandwiched between the connection terminals. Since the resin particles produced have high strength, the conductive particles sandwiched between the connection terminals are largely deformed by application of a different load, but the resin particles are not destroyed. The conductive particles produced can have a very large contact area between the connection terminals and the conductive particles, and the conductivity between the connection terminals can be improved. [Embodiment] An example of a method for producing a coating agent is as follows. A predetermined amount of a polymerization initiator is added to a radical polymerizable substance or a first type of (meth)acrylic acid vinegar of a formic acid bond to prepare a raw material liquid. Adding a solvent with a low affinity for the raw material liquid as a main component

I3271M 面活性劑與t八工^ a 、阿刀女定劑等添加劑以製作介質液,再將上 迷原枓液分嵛 文於此&quot;質液中,即形成原料液之液滴。 圖1 a中之絲肤q c 唬35表示原料液之液滴33被分散在介質 液31中之懸浮液。 下d 7原料液中之聚合起始劑之1 ]、時半衰溫度以 或10小時半衰溫度以下之溫度為設定溫度,將 懸洋液35以/八Μ e /刀鐘以上之升溫速度加熱,並升溫至設 定溫度後維持該、、w 〇/凰又下,第1種(曱基)丙烯酸酯發生自由 基聚合使液潘q q 硬化’而形成由丙烯酸樹脂構成之樹脂粒 、料液中除含有第1種(甲基)丙稀酸酯外並含有 自由基聚。性物質之具有胺曱酸乙酯鍵之第2種(甲基)丙 烯酸酯時,第1、货〇 _ , 第2種(曱基)丙烯酸酯因加熱共聚而使 液滴33硬化。 圖1b中之符號30表示液滴33硬化所得之樹脂粒子。 由&quot;質液31中濾取樹脂粒子30,將樹脂粒子30水洗 以洗去質液而得乾淨之樹脂粒子30。 其次,在樹脂粒子3〇表面形成導電層。例如以無電解 電鍍法等在秘脂粒+ 3G《面形成鎳、冑後,#於該錄膜表面 貫施鍍金,形成由鎳及金構成之 層。圖2 表示形成導電層36狀態之導電性粒子。 其-人,此合接著性樹脂(例如熱固性樹脂之環氧樹脂) 、硬化該環氧樹脂之硬化劑、及用來調整黏度之有機溶劑 ,製作糊狀接著材料。 將上述導電性粒子37分散於此接著材料中以製造糊狀 1327151 異向導電性接著劑後,使該異向導電性接著劑成形為膜狀 。圖3中之符號39表示由成形為膜狀之異向導電性接著劑 所構成之接著薄膜,導電性粒子3 7係分散於接著材料3 8 中。 其次’就使用依本發明製造方法所製作之接著薄膜39 以製造電氣裝置之步驟作說明。如圖4a所示,上述接著薄 膜39配置於2片配線板41、45之間。在各配線板41、45 之表面配置金屬配線,並以該金屬配線之一部分構成各連 接端子43、47,以配線板41、45之連接端子43、47配置 面夾持接著薄膜39。 以此狀態將配線板41、4 5熱壓時,因加熱使接著薄膜 39之接著材料38軟化’而加壓使連接端子43、47排播軟 化之接著材料38,則分散於接著材料38之導電性粒子37 被夾在連接端子43、47間。 以此狀態再繼續進行緊壓時,如圖4b所示導電性粒子 37被壓縮變形。由於以本發明所得導電性粒子37之樹脂 粒子30之強度高,就算緊壓導電性粒子37使樹脂粒子3〇 之壓縮變形率為50%〜60%以上,樹脂粒子3〇仍不會破壞 ,故連接端子43、47與導電層36之接觸面積變成非常大 〇 再繼續加熱時’以導電性粒子37被連接端子43、47 夾入狀態下,熱固性樹脂聚合使接著材料38硬化,而使配 線板41、45固定。 圖4c中之符號40表示2片配線板41、45被硬化之接 12 1327151 者材料38連接而成之電氣裝置。於此電氣裝置 =41'45藉由硬化之接著材料⑽形成機械性連接,同 時透過導電性粒子37而形成電氣性連接。如上述 = 粒子:Π與連接端子43、47之接觸面積㈣大,故電= 置40之線路可靠性高。 '裝 (實施例) 細說明。 之1小時半衰溫 以下就本發明之樹脂粒子製造方法詳 首先’本發明者等著眼於聚合起始劑 度而進行實驗。 〈實施例A1〜A7&gt; 此合第1種(甲基)丙稀酸酯之丙稀酸胺曱酸乙酿(共榮 社化學股份有限公司製、商品名「AH6〇〇」)25重量份了與 第2種(甲基)丙烯酸醋之丨,6-己二醇二丙烯酸酯75重量 份而構成樹脂材料’對該樹脂材料1 0 0重量份,分別添力 如下表1所示配合量之偶氮腈化合物為聚合起始劑製作原 料液°聚合起始劑配合量與1小時半衰溫度記載於下列表 1。又,併列聚合起始劑之10小時半衰溫度供參考。 表1 :樹脂粒子之製造條件及其試驗結果 聚合條件 試驗結果 聚合溫度 聚合起始劑 升溫速度 斷裂負載 斷裂 強度(Pa) ΓΟ 1小時半 配合量 α/分鐘 (ιηΝ) 壓缩率 衰期rc) (重量份) ) (%) 實施例A1 40 67 1.00 0.5 61.4 70 2034 實施例A2 58 67 0. 05 0.5 48.7 66 1628 實施例A3 58 67 1.00 3.0 92.9 73 3263 實施例A4 37 47 1.00 0.5 54.3 67 1859 — 實施例A5 ~40 67 1 1.00 3.0 107.7 82 3695 實施例A6 58 67 1.00 0.5 33.0 59 1148 實施例A7 58 67 2. 50 0.5 30.5 56 1096 13 又 5 於上祝丨主 人 、 』表1中,使用於實施例A1〜A3、A5〜A7之 始劑為2,2,_偶氮雙(24二曱基戊腈)(和光純藥 ^ &quot;•伤有限公司製、商品名「v _ 」),而使用於實施 4之聚合起始劑為2, 2, _偶氮雙(4 -曱氧基_ 2, 4 _二 戊腈)(和光純藥工業股份有限公司製、商品名「V _ 7〇 」)。此等均為自由基聚合起始劑。 與原料液親和性低之溶劑係使用蒸館水,將蒸傲水、 界面活性劍夕^ 十一烧基苯項酸鈉、與高分子分散安定劑之 聚乙:醇以1500 : 1 : 10之重量比例混合,製成介質液。 ^ i力上述原料液於此介質液中,用均質機以機械性攪 拌使原料液分散於此介f液。搜拌條件為均質機旋轉次數 l〇〇〇〇rPm,攪拌時間i分鐘。 熱處理步驟以上列纟1中所記載於「聚合溫度」與「 升,皿速度」之溫度條件進行。在此,將懸浮液放入槽中進 行加熱處理’在槽底與懸浮液液面之大約中間位置測定懸 浮液之溫度。 ~ 〔壓縮斷裂試驗〕 使用微壓縮試驗機(島津製作所股份有限公司製、商品 名「MCTM- 200」),就上述以實施例A1〜A7之製造方法製 成之樹脂粒子30,進行壓縮斷裂試驗。 圖7中之符號為表示以壓縮斷裂試驗所測定粒徑位移 與負載之關係之曲線圖,由此曲線圖求取樹脂粒子3〇斷裂 時之斷裂位移與斷裂負載。 設塵縮斷裂試驗前樹脂粒子3〇之粒徑為d、斷裂負載 S,再由下列 為P、斷裂位移為r,由下列式⑴求得強度 式C2)求得斷裂壓縮率c。 式⑴ 式(2) S= 2. 8 XP / (冗 d2) C= r / d x loo 斷裂負載、強度、斷裂壓縮率均記載於上列M中。 &amp;由上列表1可知,以實施例A1〜Μ之製造方法製成之 粒子,其斷裂壓縮率均超過咖,而強度或斷裂負載 亦足夠大。 其中,將除聚合起始劑配合量以外之條件均相同之實 施例A2與實施例A6、八7作比較時,實施例A6、a?之斷裂 壓縮率未達6G%,但實施例A2之斷裂壓縮率超過6()%,且 實施例A2之斷裂負載與強度值亦大。 由此可知,對樹脂材 料100 份之聚合起始劑配合量未達丨Μ份時,尤其 對Μ鈿材料10 〇重量份之聚合起始劑配合量為〇. 5重量份 以下時,強度變高,壓縮變形率亦變大。 又,將除升溫速度以外之條件均相同之實施例A1與實 施例A5作比較時,升溫速度為Kc/分鐘以上之實施例a5 比起升溫速度未達rc/分鐘之實施例A1其強度非常大, 且實施例A5之斷裂壓縮率超過8〇%。由此可知,使升溫速 度為1°C /分鐘以上時,可得強度更高之樹脂粒子。 在如上述實施例A1〜A7之樹脂粒子表面形成導電層 36製成導電性粒子37 ’將該導電性粒子37分散於接著材 料中時,即得異向導電性接著劑。 (實施例) 1327151 其次,本發明者等著眼於聚合起始劑之1〇小時半衰〇 度而進行實驗。 Λ 〈實施例B1〜B3&gt; 混合第1種(甲基)丙烯酸酯之丙烯酸胺甲酸乙酿(共 社化學股份有限公司製、商品名r AH6〇〇」)25重量份、、第 2種(曱基)丙烯酸酯之16—己二醇二丙烯酸 , ㈡f 3室篁份 為樹脂材料,對該樹脂材料1〇〇重量份,分別添加如下 2所示配合量之偶氮腈化合物為聚合起始劑製作原料液。 聚合起始劑配合量與1 〇小時半衰溫度記載於下列表2。又 ’併列聚合起始劑之1小時半衰溫度供參考。 : _脂粒子之製造條件及其試驗結果 聚合條件 聚合溫度 (°C) 聚合起始劑 ο 試驗結果I3271M surfactant and t 8 workers ^ a, A knife female agent and other additives to make the medium liquid, and then the upper sputum sputum liquid in this "quot; in the liquid, that is, the formation of liquid droplets. The silk layer q c 唬 35 in Fig. 1 a indicates that the liquid droplets 33 of the raw material liquid are dispersed in the medium liquid 31. 1), the half-life temperature of the lower d 7 raw material liquid or the temperature below the half-life temperature of 10 hours is the set temperature, and the temperature of the suspension liquid 35 is / Μ e / knives or more After heating and raising the temperature to a set temperature, the w 〇/ phoenix is maintained, and the first (mercapto) acrylate undergoes radical polymerization to cure the liquid pan qq to form a resin granule and a liquid material composed of an acrylic resin. In addition to containing the first (meth) acrylate, it contains free radicals. When the second substance (meth) acrylate having an amine decanoate bond is used as the substance, the first (product) _ and the second (fluorenyl) acrylate are cured by heating copolymerization. Reference numeral 30 in Fig. 1b denotes resin particles obtained by hardening the droplets 33. The resin particles 30 are filtered from the &quot;quality liquid 31, and the resin particles 30 are washed with water to wash away the nucleating liquid to obtain clean resin particles 30. Next, a conductive layer was formed on the surface of the resin particles. For example, in the case of electroless plating or the like, in the form of nickel and ruthenium on the surface of the lipogranule + 3G, the surface of the film is subjected to gold plating to form a layer composed of nickel and gold. Fig. 2 shows conductive particles in a state in which the conductive layer 36 is formed. It is a human, an adhesive resin (for example, an epoxy resin of a thermosetting resin), a hardener for curing the epoxy resin, and an organic solvent for adjusting the viscosity to prepare a paste-like material. The conductive particles 37 are dispersed in the subsequent material to produce a paste-like 1327151 anisotropic conductive adhesive, and then the anisotropic conductive adhesive is formed into a film shape. Reference numeral 39 in Fig. 3 denotes a film formed of an anisotropic conductive adhesive formed into a film shape, and the conductive particles 37 are dispersed in the adhesive material 38. Next, the step of manufacturing the electrical device using the adhesive film 39 produced by the manufacturing method of the present invention will be described. As shown in Fig. 4a, the above-mentioned adhesive film 39 is disposed between the two wiring boards 41 and 45. Metal wiring is disposed on the surface of each of the wiring boards 41 and 45, and each of the connection terminals 43 and 47 is formed by one of the metal wirings, and the film 39 is sandwiched between the connection terminals 43 and 47 of the wiring boards 41 and 45. When the wiring boards 41 and 45 are hot-pressed in this state, the bonding material 38, 47 is softened by heating, and the connecting terminals 43, 47 are discharged to soften the bonding material 38, and then dispersed in the bonding material 38. The conductive particles 37 are sandwiched between the connection terminals 43, 47. When the pressing is continued in this state, the electroconductive particles 37 are compression-deformed as shown in Fig. 4b. Since the strength of the resin particles 30 of the conductive particles 37 obtained by the present invention is high, even if the conductive particles 37 are pressed so that the compression deformation ratio of the resin particles 3 is 50% to 60% or more, the resin particles 3 are not broken. Therefore, when the contact areas of the connection terminals 43, 47 and the conductive layer 36 become extremely large, when the heating is continued, the conductive particles 37 are sandwiched by the connection terminals 43, 47, and the thermosetting resin is polymerized to cure the adhesive material 38, thereby wiring. The plates 41, 45 are fixed. Reference numeral 40 in Fig. 4c denotes an electric device in which two wiring boards 41, 45 are hardened and connected to a material 38 of a material. Here, the electrical device = 41'45 is mechanically joined by the cured material (10), and is electrically connected through the conductive particles 37. As described above = particle: 接触 and the contact area (4) of the connection terminals 43, 47 are large, so the circuit of the electric=40 is highly reliable. 'Installation (Example) Detailed description. In the first half of the half-temperature, the method for producing the resin particles of the present invention is as follows. First, the present inventors conducted an experiment focusing on the polymerization initiator. <Examples A1 to A7> 25 parts by weight of the first (meth) acrylate of acrylic acid amide (manufactured by Kyoeisha Chemical Co., Ltd., trade name "AH6") In combination with the second (meth)acrylic acid vinegar, 75 parts by weight of 6-hexanediol diacrylate to form a resin material, the weight of each of the resin materials is 10 parts by weight, as shown in Table 1 below. The azonitrile compound is used as a polymerization initiator to prepare a raw material liquid. The amount of the polymerization initiator and the one-hour half-life temperature are shown in Table 1 below. Further, the 10-hour half-life temperature of the side-by-side polymerization initiator is for reference. Table 1: Manufacturing conditions of resin particles and test results of polymerization conditions Test results Polymerization temperature Polymerization initiator heating rate breaking load breaking strength (Pa) ΓΟ 1 hour and a half compounding amount α/min (ιηΝ) Compressibility rate rc) ( Parts by weight)) (%) Example A1 40 67 1.00 0.5 61.4 70 2034 Example A2 58 67 0. 05 0.5 48.7 66 1628 Example A3 58 67 1.00 3.0 92.9 73 3263 Example A4 37 47 1.00 0.5 54.3 67 1859 — Example A5 ~ 40 67 1 1.00 3.0 107.7 82 3695 Example A6 58 67 1.00 0.5 33.0 59 1148 Example A7 58 67 2. 50 0.5 30.5 56 1096 13 Also 5 in the upper master, 』 in Table 1, used in The starting agents of Examples A1 to A3 and A5 to A7 are 2,2,-azobis(24-mercapto valeronitrile) (manufactured by Wako Pure Chemicals Co., Ltd., trade name "v _"), The polymerization initiator used in the implementation 4 is 2, 2, azobis(4-oxooxy-2,4-divaleronitrile) (manufactured by Wako Pure Chemical Industries, Ltd., trade name "V _ 7" 〇"). These are all free radical polymerization initiators. The solvent with low affinity with the raw material liquid is steamed in the water, and the steaming water, the interface active Sinister eleven-sodium benzoate sodium, and the polymer dispersion stabilizer are: 1500 : 1 : 10 The weight ratio is mixed to prepare a medium liquid. ^ i force the above raw material liquid in the medium liquid, and mechanically stir the homogenizer to disperse the raw material liquid. The mixing condition is the number of rotations of the homogenizer l〇〇〇〇rPm, and the stirring time is i minutes. The heat treatment step is carried out in the temperature conditions of "polymerization temperature" and "liter, vessel speed" described in the above paragraph 1. Here, the suspension is placed in a tank for heat treatment. The temperature of the suspension is measured at about the middle of the bottom of the tank and the level of the suspension. ~ [Compression fracture test] The resin particles 30 produced by the above-described production methods of Examples A1 to A7 were subjected to a compression fracture test using a micro compression tester (manufactured by Shimadzu Corporation, trade name "MCTM-200"). . The symbol in Fig. 7 is a graph showing the relationship between the particle diameter displacement and the load measured by the compression fracture test, and the graph shows the fracture displacement and the fracture load when the resin particles are broken. Before the dust-shrinkage test, the particle size of the resin particles 3 is d, the breaking load S, and the following is P, the fracture displacement is r, and the breaking formula c2 is obtained from the following formula (1). Formula (1) Formula (2) S = 2. 8 XP / (redundant d2) C= r / d x loo The breaking load, strength, and fracture compression ratio are all described in the above column M. &amp; As can be seen from the above Table 1, the particles produced by the production methods of Examples A1 to Μ have a breaking compression ratio exceeding that of coffee, and the strength or breaking load is also large enough. In the case where Example A2 having the same conditions except for the amount of the polymerization initiator was the same as those of Examples A6 and VIII, the breaking compression ratio of Example A6 and a? was less than 6 G%, but Example A2 The fracture compression ratio exceeded 6 (%), and the fracture load and strength values of Example A2 were also large. Therefore, when the amount of the polymerization initiator in the resin component is less than 5% by weight, the amount of the polymerization initiator is preferably 〇. 5 parts by weight or less. High, the compression deformation rate also becomes larger. Further, when Example A1 having the same conditions except for the temperature increase rate was compared with Example A5, Example a5 having a temperature increase rate of Kc/min or more was inferior to Example A1 having a temperature increase rate of less than rc/min. Large, and the breaking compression ratio of Example A5 exceeded 8〇%. From this, it is understood that when the temperature increase rate is 1 ° C /min or more, resin particles having higher strength can be obtained. When the conductive layer 37 is formed on the surface of the resin particles as in the above Examples A1 to A7 to form the conductive particles 37', the conductive particles 37 are dispersed in the subsequent material to obtain an anisotropic conductive adhesive. (Example) 1327151 Next, the inventors of the present invention conducted an experiment focusing on the half-time decay of the polymerization initiator. 〈Examples B1 to B3&gt; 25 parts by weight of the second type of (meth) acrylate (manufactured by Kyosha Chemical Co., Ltd., trade name r AH6〇〇), and the second type (the second type)曱-) acrylate 16-hexanediol diacrylic acid, (2) f 3 chamber 篁 part is a resin material, and the amount of the azonitrile compound as shown in the following 2 is added to the resin material in an amount of 1 part by weight. Preparation of raw material liquid. The blending initiator blending amount and the 1 〇 hour half-life temperature are shown in Table 2 below. Further, the one-hour half-life temperature of the side-by-side polymerization initiator is for reference. : _ Fat particle manufacturing conditions and test results Polymerization conditions Polymerization temperature (°C) Polymerization initiator ο Test results

比較例B2Comparative example B2

'8f期 小衰 半P 配合量 (重量份) 升溫速度 rc/分鐘 ) 斷裂負載 (mN) 率 裂縮} 斷壓(% 30 1* - 5 15'8f period small fading half P compounding amount (parts by weight) heating rate rc/min) breaking load (mN) rate cracking} breaking pressure (% 30 1* - 5 15

7075 2 9 8 5 強 4 0 3 3 0 5 2 2 36ΪΤ ο 11 954896 又’於上列表2中,使用於實施例Μ、B3、及後述比 較例Bl、B2之聚合起始劑為2,2,-偶氮雙(2,4 -二曱基戊 腈)(和光純藥工業股份有限公司製、商品名「V _ 65」), 而使用於實施例B2之聚合起始劑為2, 2,-偶氮雙(4 -甲 氧基-2, 4 -二曱基戊腈)(和光純藥工業股份有限公司製、 商品名「V-70j )。此等均為自由基聚合起始劑。 與原料液親和性低之溶劑使用蒸餾水,將蒸館水、界 16 1327151 面活性劑之十二院基苯績㈣、與高分子分散安定劑之聚 乙浠醇以1500:1:10之重量比例混合,製成介質液。 添加上述原料液於此介質液中,用均質機以機械性攪 拌使原料液分散於此介質液1拌條件為均f機旋轉次數 lOOOOrpm,攪拌時間1分鐘。 熱處理步驟以上列表2中所記載於「聚合溫度」與「 升溫速度」之溫度條件進行。在此,耗浮液放人槽中進 :加熱處,里,在槽底與懸浮液液面之大約中間位置測定懸 限公司製、商品 B3之製造方法製 使用微壓縮試驗機(島津製作所股份有 名「MCTM- 200」),就上述以實施例β1〜 成之樹脂粒子30,進行壓縮斷裂試驗。 圖7中之符號為表示以壓縮斷裂試驗所測定粒徑位移 與負載之關係之曲線圖’由此曲線圖求取樹脂粒子3〇斷裂 時之斷裂位移與斷裂負載。 設壓縮斷裂試驗前樹脂粒子3〇之粒徑為d、斷裂負載 為P、斷裂位矛多4 r,φ下列式⑴求得強度s,再由下列 式(2)求得斷裂壓縮率c。 式⑴ S=2.8 xp / (7r d2) 式(2)............C= r / d X 100 中 斷裂負載、強度、斷裂壓縮率均記載於上列表 &lt;比較例Bl、B2&gt; 叹變聚合 之 、 :k、只π W相|5J條件裝 树脂粒子為比較例Μ,除改變聚合起始劑配合量以外 他均與實施例B2相同條件製成之樹脂粒子為比較例犯 以上述實施例Β1〜Β3相同條件求取斷裂負載、斷㈣縮率 強度’其結果記載於上列表2中。 由上列表2可知,以實施例β1〜β3之製造方法製成之 樹脂粒子30’其斷裂負載大’強度超過i2〇〇pa,且斷裂壓 ,率亦㈣_,故確認依本發明之製造方法製成 粒子30’罐時之變形量大,且不易被擠 。 尤其,升溫速度為3.(TC/分鐘之實施例B3 i i B1 B2,其強度、斷裂負載、斷裂壓縮率均大 升溫速度為1。(: /分鐘以上時,可得變形量更大, 度大之樹脂粒子。 比起實施 ,可知使 且破壞強 另一方面1比1()小時半衰溫度為高之溫度進行加熱 處理之比較例B卜B2’不僅其斷裂壓縮率低而均未達6〇% ’其強度亦均未達湖Pa,且斷裂負載亦較實施例 為低。 士由此可確認,使加熱處理溫度低於聚合起始劑之1〇小 時半裒溫度時,可得強度非常高,且變形率大之樹脂粒子 °在此種樹脂粒子表面形成導電I 36冑成導電性粒子π 將e玄導電性粒+ 37分散於接著材料中日寺,即得異向導電 性接著劑。 又使用於上述各實施例之聚合起始劑之種類,其1 小時半衰溫度、1〇小時半衰溫度,及所使用實施例與比較 例記載於下列表3供參考。 1327151 小時半衰溫度、10小時半衰溫 度,及使用之實施^與例 聚合起始劑種類 1小時半衰溫度 CC) 〇·7 - 平又m wj、吋千农溫度 (°〇 使用之實施例 使用之比較例 VDD V70 bi ~47 51 ^0 A1 - A3、A5 - A7 ' Bl &gt; B3 A4、B2 B1 'B2 表3 :聚合起始劑種類、 (實施例) /以上,就用機械性授拌將原料液分散於介質液時之情 形加以說明,但本發明並不限定於此。 乂下說明本發明之其他例之異向導電性接著劑製造 方法。 圖5中之符號1 〇表示使用於本發明之樹脂粒子製造裝 $之—例。樹脂粒子製造裝置1〇具有乳化槽2〇、介質液 槽原料液槽12。乳化槽2〇具有外筒21與内筒22, °亥=筒22以存有間隙的方式插人外筒21中,而外筒21與 筒22之兩端用蓋部27、28予以液密封閉。 料、、在原料液槽12配置原料液,在介質液槽11配置與原 環液親和性低之介質液。介質液槽11連接循環泵,起動循 ^ ’丨質液槽11之介質液被送入内筒22之内部空間 送入—方面,原料液槽12連接氮氣筒,由氮氣筒將氮氣 '原料液槽12時’因氮氣之壓力使原料液由原料液槽 丄2壓φ , ’送入外筒21與内筒22間之空間25。 原料液使用與上述實施例所用者相同之原料液。 1327151 夕/、有胺甲酸乙酯鍵之第丨種(甲基)丙烯酸酯,其黏度 大多比不具有胺甲酸乙醋鍵之其他(甲基)丙烯酸酯為高, :單錢用第!種(曱基)丙烯酸醋_,構成内筒22之多孔 貝暝有%會被塞住,但原料液添加第2種(甲基)丙烯酸酯 之、、。果,使原料液黏度減低,故送入外筒21與内筒22間 之二間25之原料液壓力,若高於在内部空間26流動之介 質液壓力時,原料液會通過構成内筒22之多孔質膜之細孔 而庄入質液中,並形成液滴而分散於介質液中(膜乳化 法)。 圖6表示該狀態之乳化槽20之截面圖’圖中之符號 35表示原料液32之液滴33分散於介質液31之狀態之懸 浮液。邊將原料液注入介質液中,邊起動循環泵,使通過 内部空間26之介質液31送回介質液槽U,同時使送回之 介質液31再度通過内部空間26,由於介質液31在液滴33 增加之情形下循環,故液滴33之密度升高。 當該液滴3 3之密度達到既定密度時,停止介質液31 之循環及注入原料液32,將懸浮液35由乳化槽20取出, 移入加熱槽。此懸浮液3 5以聚合起始劑之1小時半衰溫度 以下之溫度’或以聚合起始劑之1 0小時半衰溫度以下之溫 度加熱時,液滴33中之第1種及第2種(甲基)丙烯酸酯聚 合使液滴3 3硬化,形成如圖1 b所示之樹脂粒子。 於上述膜乳化法,液滴33之粒徑變成與多孔質膜之細 孔么相€之大小’故多孔質膜使用如SPG(Shirasu Porous Glass)膜般之細孔徑分布極窄之膜時,液滴33之粒徑分布 20 1327151 亦’4乍,結果可得粒徑均勻之樹脂粒子3 〇。 在此樹脂粒子表面形成導電層36,製成圖2所示導電 性粒子3 7後’將該導電性粒子3 7分散於接著材料中即 得異向導電性接著劑。 &lt;其他實施例&gt; 添加於原料液中之聚合起始劑,可使用上述實施例之 2’2偶氮雙(2, 4 -二甲基戊腈)、2, 2,-偶氮雙(4_甲氧 基—2’4_二甲基戊腈)以外之偶氮腈化合物。 例如可使用2,2,-偶氮雙(2 -甲基丙腈)、2,2,_偶氮 雙(2 -曱基丁腈)、偶氮雙(環己基_ j腈)、卜〔 (1-氰基-1-曱乙基)偶氮基〕甲醯胺。又,22,—偶 ,雙(2 -甲基丙腈)之1〇小時半衰溫度a 65它、2 2,-偶 虱雙(2 -甲基丁腈)之1〇小時半衰溫度為%、】,1,—偶 氮雙(環己基-1-腈)之1()小時半衰溫度$啊、卜〔 (1-氰基-1-甲乙基)偶氮基〕甲醯胺之1〇小時半衰溫 度為104°C。 又,聚合起始劑除偶氮腈化合物以外,亦可使用各種 有機過氧化物等。 使用於聚合起始劑之有機過氧化物,可舉例如過氧化 異丁醯(49. Γ〇、α,α,雙(新癸酿過氧化)二異丙基笨 (54, 1 c )、對異丙基過氧化新癸酸酯(55 〇它)、二正丙基 過氧化二碳酸6|(57.7。〇、〔異丙基過氧化二碳_(56.2 C)、雙二級丁基過氧化二碳酸酯(57 4〇c ) 甲基丁基過氧化新癸酸酯(57 5。〇)、雙(4_三級丁基環己 21 1327151 基)過氧化二碳酸酯(57.5t )、;ι —環己基_丨_甲乙基過氧 化新癸酸醋(58. 6。〇、二-2 -乙氧乙基過氧化二碳酸酿 (59.1C)、二(2_乙氧己基過氧化)二碳酸酯(59.n)、三 級己基過氧化新癸酸醋(62· 8。〇、二曱氧丁基過氧化新: 酸酉日(63. 9t )、三級丁基過氧化新癸酸酯(64. 8&lt;t )、三級 己基過虱化特戊酸酯(71. 3°C )、三級丁基過氧化特戊酸酯 (72.7°C)、3,5,5_過氧化三甲基己醯(76 8&lt;t)、過氧化辛 醯⑺.代)、過氧化月桂酿(79 5t)、過氧化硬脂酿(8〇3 〇、U’3,3-㈤甲基丁基過氧化—2_乙基己酸醋(84.4 C)、過氡化琥珀醯(87_(TC)、2,5_ 二甲基 _ 2,5_ 二(2- 乙基己醯過氧化)己烷(83.4。〇、三級己基過氧化_ 2_乙 基己酸酿(90.ΓΟ、4_甲基過氧化二笨甲醯(89 3。〇、二 級丁基過氧化-2-乙基己酸败rc)、過氧化二苯甲醢 (92.0C )、三級丁基過氧化異丁醯(96 4&lt;&gt;c )、1,1雙(三 級丁基過氧化)2-甲基環己烧⑴24。〇、!,卜雙(三級: 基過氧化)-3’ 3’ 5 -三甲基環己院(1〇5.代)、i i _雙(三 級己基過氧化)環己院⑽.代卜以—^三級丁基㈣ 化MW-三甲基環己炫⑽.代)等。又,括號内溫度 表不各聚合起始劑之1小時半衰溫度。 又,過氧化異丁酿之10小時半衰溫度4 32· 7°C、a α =(新癸酿過乳化)二異丙基苯之1()小時半衰溫度為 •對異丙基過氧化新癸酸醋之1G小時半衰溫度為 r、&quot;7正丙基過钱二碳酸醋之1G小時半衰溫度為 異丙基過乳化二碳酸s旨之1Q小時半衰溫度為 22 ^271517075 2 9 8 5 Strong 4 0 3 3 0 5 2 2 36ΪΤ ο 11 954896 Also, in the above Table 2, the polymerization initiators used in Examples Μ, B3, and Comparative Examples B1 and B2 described later are 2, 2 - azobis(2,4-dimercapto valeronitrile) (manufactured by Wako Pure Chemical Industries, Ltd., trade name "V _ 65"), and the polymerization initiator used in Example B2 was 2, 2 ,-Azobis(4-methoxy-2,4-dimercaptophthalonitrile) (manufactured by Wako Pure Chemical Industries, Ltd., trade name "V-70j". These are all free radical polymerization initiators. The solvent with low affinity with the raw material liquid is distilled water, and the 12-base benzene (4) of the steaming water, the boundary 16 1327151 surfactant, and the polyethylene glycol of the polymer dispersion stabilizer are 1500:1:10. The mixture is mixed in a weight ratio to prepare a medium liquid. The above raw material liquid is added to the medium liquid, and the raw material liquid is dispersed by the homogenizer by mechanical stirring. The mixing condition is the number of rotations of the machine, and the stirring time is 1 minute. The heat treatment step is carried out under the temperature conditions of "polymerization temperature" and "heating rate" described in the above Table 2. Here, the floating liquid is placed in the tank: the heating place, and the manufacturing method of the product B3 is used in the middle of the tank bottom and the liquid level of the suspension. The micro-compression test machine is used. The known "MCTM-200") was subjected to a compression fracture test in the above-described resin particles 30 of Example β1. The symbol in Fig. 7 is a graph showing the relationship between the particle diameter displacement and the load measured by the compression fracture test. From this graph, the fracture displacement and the fracture load at the time of breaking of the resin particles 3〇 were obtained. The particle size of the resin particles 3 为 before the compression fracture test is d, the breaking load is P, the breaking position is 4 r, the φ is obtained by the following formula (1), and the breaking compression ratio c is obtained by the following formula (2). Formula (1) S=2.8 xp / (7r d2) Formula (2)............C= r / d X 100 The fracture load, strength, and fracture compression ratio are all described in the above list &lt; Comparative Example B1, B2 &gt; singly polymerized: k, only π W phase | 5J conditional resin particle was a comparative example, except that the amount of the polymerization initiator was changed, and the resin was prepared under the same conditions as in Example B2. In the comparative example, the particle was subjected to the same conditions as in the above Examples Β1 to Β3, and the breaking load and the breaking strength were measured. The results are shown in the above Table 2. As is apparent from the above Table 2, the resin particles 30' produced by the production methods of the examples β1 to β3 have a large breaking load, the strength exceeds i2〇〇pa, and the breaking pressure is also (4), so that the manufacturing method according to the present invention is confirmed. The amount of deformation when the particles are 30' cans is large and is not easily squeezed. In particular, the temperature rise rate is 3. (TC/min. Example B3 ii B1 B2, the strength, the breaking load, and the fracture compression ratio are both large and the temperature increase rate is 1. (: /min or more, the amount of deformation is larger, degree Large resin particles. Compared with the above, it is known that the damage is strong and the other side is 1 to 1 (), and the half-life temperature is high. The comparative example B B2' not only has a low fracture compression rate but does not reach 6〇% 'the strength is not up to the lake Pa, and the breaking load is also lower than that of the example. It can be confirmed that the heat treatment temperature is lower than the temperature of the polymerization initiator for one and a half hours. The resin particles having a very high strength and a high deformation ratio form a conductive I 36 on the surface of the resin particles, and become conductive particles π. The e-conductive particles + 37 are dispersed in the material of the Japanese temple, that is, the anisotropic conductivity is obtained. Further, the types of polymerization initiators used in the above respective examples, the one-hour half-life temperature, the one-hour half-life temperature, and the examples and comparative examples used are described in the following Table 3 for reference. Half-life temperature, 10-hour half-life temperature, and For the implementation of the example and the polymerization initiator type 1 hour half-life temperature CC) 〇·7 - flat and m wj, 吋 农 温度 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( A1 - A3, A5 - A7 ' Bl &gt; B3 A4, B2 B1 'B2 Table 3: The type of polymerization initiator, (Example) / above, the case where the raw material liquid is dispersed in the medium liquid by mechanical mixing Although the present invention is not limited thereto, a method for producing an anisotropic conductive adhesive according to another example of the present invention will be described. The symbol 1 in Fig. 5 indicates that the resin particle used in the present invention is manufactured. For example, the resin particle manufacturing apparatus 1 has an emulsification tank 2 and a medium liquid tank raw material tank 12. The emulsification tank 2 has an outer cylinder 21 and an inner cylinder 22, and the chamber 22 is inserted into the outer cylinder in a gap manner. In the case of 21, both ends of the outer cylinder 21 and the cylinder 22 are hermetically sealed by the lid portions 27 and 28. The material liquid is disposed in the raw material liquid tank 12, and the medium liquid tank 11 is disposed to have a low affinity with the original liquid liquid. The medium liquid tank 11 is connected to the circulation pump, and the medium liquid which starts the circulation of the liquid tank 11 is sent into the inner space of the inner cylinder 22 In the feeding aspect, the raw material liquid tank 12 is connected to the nitrogen gas cylinder, and the nitrogen gas is used as the raw material liquid tank 12 when the raw material liquid is pressed from the raw material liquid tank φ2 by the pressure of the nitrogen gas, and is sent to the outer cylinder 21 and the inner cylinder. 22 spaces 25. The raw material liquid uses the same raw material liquid as that used in the above examples. 1327151 夕/, the urethane ethyl ester bond of the third species (meth) acrylate, the viscosity is mostly less than the amine formate B The other (meth) acrylate of the vinegar bond is high, and the first type (mercapto) acryl vinegar _, the porous shell of the inner tube 22 is blocked, but the raw material liquid is added to the second type. (meth) acrylate, . If the viscosity of the raw material liquid is reduced, the pressure of the raw material liquid fed to the two chambers 25 between the outer cylinder 21 and the inner cylinder 22 is higher than the pressure of the medium liquid flowing in the inner space 26, and the raw material liquid passes through the inner cylinder 22 The pores of the porous membrane are placed in the nucleus, and droplets are formed and dispersed in the medium solution (membrane emulsification method). Fig. 6 is a cross-sectional view showing the emulsification tank 20 in this state. The reference numeral 35 in the figure indicates a suspension in which the liquid droplets 33 of the raw material liquid 32 are dispersed in the medium liquid 31. While injecting the raw material liquid into the medium liquid, the circulation pump is started, and the medium liquid 31 passing through the internal space 26 is sent back to the medium liquid tank U, and the returned medium liquid 31 passes through the internal space 26 again, because the medium liquid 31 is in the liquid. When the drop 33 is increased, it circulates, so the density of the droplet 33 rises. When the density of the droplets 3 3 reaches a predetermined density, the circulation of the medium liquid 31 is stopped and the raw material liquid 32 is injected, and the suspension 35 is taken out from the emulsification tank 20 and transferred to the heating tank. When the suspension 35 is heated at a temperature below the one-half half-life temperature of the polymerization initiator or at a temperature below the half-life of the polymerization initiator for 10 hours, the first and second droplets 33 Polymerization of the (meth) acrylate hardens the droplets 3 3 to form resin particles as shown in Fig. 1b. In the above membrane emulsification method, the particle diameter of the droplets 33 becomes the size of the pores of the porous membrane, so that the porous membrane uses a membrane having a narrow pore size distribution such as a SPG (Shirasu Porous Glass) membrane. The particle size distribution 20 1327151 of the droplets 33 is also '4 乍, and as a result, the resin particles having a uniform particle diameter of 3 〇 can be obtained. The conductive layer 36 is formed on the surface of the resin particles to form the conductive particles 37 shown in Fig. 2, and the conductive particles 37 are dispersed in the adhesive material to obtain an anisotropic conductive adhesive. &lt;Other Embodiments&gt; The polymerization initiator added to the raw material liquid can be used as the 2'2 azobis(2,4-dimethylvaleronitrile), 2,2,-azo double of the above examples. An azonitrile compound other than (4-methoxy-2'4-dimethylvaleronitrile). For example, 2,2,-azobis(2-methylpropionitrile), 2,2,-azobis(2-mercaptobutyronitrile), azobis(cyclohexyl-j nitrile), or (1-Cyano-1-indenyl)azo]carbamamine. Also, 22,-even, bis(2-methylpropionitrile) 1 〇 half-life temperature a 65 It, 2 2,- even bis (2-methylbutyronitrile) 1 〇 half-life temperature is %,],1,-azobis(cyclohexyl-1-carbonitrile) 1 () hour half-life temperature $ ah, Bu [(1-cyano-1-methylethyl)azo]carbamamine The half-life temperature of 1 hour is 104 °C. Further, as the polymerization initiator, various organic peroxides and the like may be used in addition to the azonitrile compound. The organic peroxide used in the polymerization initiator may, for example, be isobutyl sulfoxide (49. Γ〇, α, α, bis (new oxidized peroxy) diisopropyl phenyl (54, 1 c ), For isopropyl peroxy neodecanoate (55 〇 it), di-n-propyl peroxydicarbonate 6|(57.7. 〇, [isopropyl peroxydicarbon _ (56.2 C), di-secondary butyl Peroxydicarbonate (57 4〇c) methyl butyl peroxy neodecanoate (57 5 〇), bis (4 _ ternary butyl cyclohexyl 21 1327151 yl) peroxydicarbonate (57.5t );; ι - cyclohexyl _ 丨 _ methyl ethyl peroxy neodecanoic acid vinegar (58. 6. 〇, di-2-ethoxyethyl peroxy dicarbonate (59.1C), two (2 - ethoxyhexyl) Peroxy)dicarbonate (59.n), tertiary hexylperoxy neodecanoic acid vinegar (62·8. 〇, dioxobutyl peroxide peroxidation: acid glutinous day (63. 9t), tertiary butyl Peroxy neodecanoate (64. 8 &lt; t ), tertiary hexyl peroxylated pivalate (71. 3 ° C), tertiary butyl peroxypivalate (72.7 ° C), 3, 5,5_trimethylhexyl peroxide (76 8 &lt; t), octyl peroxide (7). generation), peroxide laurel 79 5t), oxidized stearin (8〇3 〇, U'3,3-(penta)methyl butyl peroxy-2-ethylhexanoic acid vinegar (84.4 C), over-baked amber 醯 (87_(TC) ), 2,5-dimethyl- 2,5-bis(2-ethylhexyl peroxy)hexane (83.4. 〇, tertiary hexyl peroxy _ 2_ethylhexanoic acid (90. ΓΟ, 4_) Methylperoxide diazepam (89 3. 〇, secondary butyl peroxy-2-ethylhexanoic acid rc), benzoic acid peroxide (92.0C), tertiary butyl peroxyisobutyl hydrazine (96 4 &lt;&gt;c ), 1,1 double (tertiary butyl peroxidation) 2-methylcyclohexene (1)24. 〇, !, Bu double (third stage: base peroxidation)-3' 3' 5 - Trimethylcyclohexyl (1〇5. generation), ii _ double (three-stage hexyl peroxide) cyclohexyl (10). Substituting -^ tertiary butyl (tetra) MW-trimethylcyclohexyl (10) In addition, the temperature in the brackets does not have a one-hour half-life temperature of each polymerization initiator. Also, the 10-hour half-life temperature of the isobutylene peroxide is 4 32· 7 ° C, a α = (new 癸Brewed emulsified) Diisopropylbenzene 1 () hour half-life temperature • 1% hour isopropyl peroxidic neodecanoic acid vinegar half-life temperature r, &quot;7 positive Yl money from dicarbonate vinegar 1G hours half-life temperature is too emulsified di s 1Q purpose of isopropyl hours half-life temperature of 22 ^ 27151

44. 5°C 45. 8°C 46. 4°C 53. 2°C 54. 6°C 59. 4°C 4〇.5:C、二三級丁基過氧化二碳酸酷之ι〇小時半衰溫度為 4〇·5(:、I’1,3,3 —四甲基丁基過氧化新癸酸酯之1〇小時 半衰溫度A 4〇· rc、雙(4_三級丁基環己基)過氧化二碳 酸酿之ίο小時半衰溫度4 40 8t:、卜環己基卜甲乙 基過氧化新癸酸酯之10小時半衰溫度為4i rc、二-2_ 乙氧乙基過氧化二碳酸酿之10小時半衰溫度^ 43 n、 二(2。-乙氧己基過氧化)二碳酸醋之1〇小時半衰溫度為 •6C、二級己基過氧化新癸酸醋之1G小時半衰溫度為 二甲氧丁基過氧化新癸酸醋之1G小時半衰溫度為 三級丁基過氧化新癸酸醋之10小時半衰溫度為 三級己基過氧化特戊酸醋之10小時半衰溫度為 三級丁基過氧化特戊酸酿之10小時半衰溫度為 U广過氧化三甲基己醯之1〇小時半衰溫度為 過减辛醯之10小時半衰溫度為61. 5t、過氧 化月桂醯之1 〇小時丰爭#成 j旰牛哀/皿度A 6UC、過氧化硬脂醯之 2匕其农皿度為62.4C、1,1,3,3—四甲基丁基過氧化 酸醋之10小時半衰溫度為65.rC、過氧化 ㈣之1。小時半衰溫度為65.吖、2,5_二甲:氧2化5琥 二心乙基己酿過氧化)己…〇小時半衰 , 、三級己基過氧化7 A ^ ^ ^ 69 / 2'乙基己酸醋之10小時半衰溫度為 .、f基過氧化二苯甲醯之1〇 7〇.6〇C . ^ ju 〇 叮干农/皿度為 一,及丁基過氧化_2_乙基己酸醋之ι〇 /皿度為72. 1 °C、過氧化_芏帀s ’ 又 μ。。、:級丁笑二甲之1〇小時半衰溫度為 一,丁基過乳化異丁醒之10 *時半衰溫度為 23 1327151 M —雙(三級丁基過氧化)2甲美产 時半衰溫度為83.2〇C、1丨_ 一纟土衣疋之1〇小 -三甲基環己院之Η)小時半衰溫度為86.)= 三,己基過氧化)環己燒之1〇小時半衰溫度為8;ι-雙( M—雙(三級丁基過氧化)_ 3 、 時半衰溫度為90.(TC。 -甲基環己统之U)小 添加於原料液中之自由基聚合性物質之種類並無特別 二可使用具有丙稀醯基、甲基丙歸酿基、乙婦 用丙基㈣體及/或寡聚物,此等可單獨或2種以上現合: “使用於原料液之自由基聚合性物質之具體例,可舉例 如苯乙烯、二乙烯基苯等乙烯化合物、14 丁二醇二丙烯 齩s曰、1,6 -己二醇二丙烯酸酯、19_壬二醇二丙烯酸酯 、1’10 _癸二醇二丙烯酸酯、新戊基乙二醇二丙烯酸酯、 羥基新戊馱新戊一醇二丙烯酸酯、四甲撐二醇二丙烯酸酯 、三丙二醇二丙烯酸酯、三烴曱基丙烷三丙烯酸酯等丙烯 酉文酉曰丁 一醇二甲基丙稀酸醋、1,6 -己二醇二甲基 丙烯酸酯、1,9_壬二醇二甲基丙烯酸酯、新戊二醇二甲基 丙烯酸酯等曱基丙烯酸酯,環氧丙烯酸酯、丙烯酸胺甲酸 乙酶、聚醋丙烯酸酯、聚醚丙烯酸酯等聚合性寡聚物。 第1種(甲基)丙烯酸酯之種類並無特別限定,其構造 中之官能基(丙烯醯基)數或胺曱酸乙酯鍵數亦無特別限定 添加於原料液中之第2種(曱基)丙烯酸酯之種類亦無 24 1327151 特別限定,但考慮與第丨種(甲基)丙烯酸酯間之高度聚合 性時,使用具有2個以上官能基之多官能基丙烯酸酯較好 ’如1,4 丁二醇二丙烯酸酯、1,6 -己二醇二丙烯酸酯、 1,9 -壬二醇二丙烯酸酯、11〇_癸二醇二丙烯酸酯、新戊 二醇二丙烯酸酯、羥基新戊酸新戊二醇二丙烯酸酯、四甲 撐二醇二丙烯酸酯、三丙二醇二丙烯酸酯、三烴曱基丙烷 三丙烯酸酯等丙烯酸酯,1,4_ 丁二醇二甲基丙烯酸酯、 1’6 -己一醇二曱基丙烯酸酯、丨,9_壬二醇二曱基丙烯酸 酿、新戊二醇二甲基丙烯酸酯等甲基丙烯酸酯。 以上,就添加不具有胺甲酸乙酯鍵之第2種(甲基)丙 烯酸醋於具有胺甲酸乙酷鍵之帛1種(甲基)丙稀酸S旨時加 以說明,但本發明不限定於此,亦可將上述乙烯化合物或 聚合性寡聚物等之(甲基)丙烯酸酯以外之自由基聚合性物 質添加於第1種(甲基)丙烯酸酯中。又,亦可將2種以上 之具有胺甲酸乙酯鍵之第丨種(甲基)丙烯酸酯同時包含於 原料液中。 加於原料液中之高分子分散安定劑亦不限定為聚乙 烯醇,亦可使用如聚乙烯吡咯烷酮、聚乙烯乙醯胺、聚乙 烯烷基醚等。高分子分散安定劑之添加量亦無特別限定, 但對介質液100重量份添加0.3重量份以上、1〇重量份 以下較好。 構成導電層36之導電材料無特別限制,可使用除錄以 外之金、銅等各種金屬材料,及碳等金屬以外之導電材料 。又,導電層36之形成方法亦不限定於無電解電鍍法可 25 1327151 使用浸潰電鍍法等各種方法。 依據本發明,可製得強度高、變形量大之樹脂粒子。 在此種樹脂粒子表面形成導電層而製成導電性粒子,將該 導電性:子分散於接著材料而製成異向導電性接著劑,使 用該接著劑來連接連接端i本 逆莰鲕于時夾在連接端子之導電性粒 ::就算其樹脂粒子變形至壓縮變形率超㉟6〇%程度,樹 r子仍不會破壞,而能使連接端子與導電性粒子之接觸 面積變大。 【圖式簡單說明】 (一)圖式部分 圖1 a、圖1 b係說明本發明之製造樹脂粒子步驟之截 面圖。 圖2係說明本發明所製造之導電性粒子。 圖3係說明使用本發明之導電性粒子而構成之異向導 電性接著劑之一例。 圖4a、圖4b及圖4c係說明使用異向導電性接著劑來 連接配線板之步驟。 圖5係說明使用於本發明之樹脂粒子製造裝置之一例 〇 圓6係顯示原料液注入介質液狀態之乳化槽之截面圖 〇 圓7係顯示以斷裂壓縮試驗所測定粒徑位移與負載之 關係之曲線圖。 26 1327151 (二)元件代表符號 10 樹脂粒子製造裝置 11 介質液槽 12 原料液槽 15、16 管線 20 乳化槽 21 外筒 22 内筒 25 外筒21與内筒22間之空間 26 内筒22之内部空間 27、28 蓋部 30 樹脂粒子 31 介質液 32 原料液 33 原料液之液滴 35 懸浮液 36 導電層 37 導電性粒子 38 接著材料 39 接著薄膜 40 電氣裝置 41 ' 45 配線板 43、47 連接端子 2744. 5°C 45. 8°C 46. 4°C 53. 2°C 54. 6°C 59. 4°C 4〇.5: C, two or three butyl peroxydicarbonate The half-life temperature is 4〇·5(:, I'1,3,3-tetramethylbutyl peroxy neodecanoate 1 〇 half-life temperature A 4〇· rc, double (4_3 Butylcyclohexyl)peroxydicarbonate ίο hour half-life temperature 4 40 8t:, epoxide hexyl methethyl peroxy neodecanoate 10 hour half-life temperature is 4i rc, di-2_ ethoxyethyl The half-life temperature of the peroxydicarbonate is 10 hours, the temperature is 43 n, the bis(2.-ethoxyhexyl peroxy) dicarbonate is 1 hour, the half-life temperature is 6C, and the second-stage hexyl peroxide is used. 1G hour half-life temperature is dimethoxybutyl peroxy neodymium vinegar 1G hour half-life temperature is three-stage butyl peroxidic neodecanoic acid vinegar 10 hours half-life temperature is three-stage hexyl peroxy-pivalic acid vinegar The 10-hour half-life temperature is 3 hours of butyl peroxypivalic acid. The half-life temperature is U-peroxidized trimethylhexanide. The half-life temperature is 10 hours and half-life of the reduction. The temperature is 61.5 t, the peroxide laurel 1 1 〇 丰 丰争# into j 旰 哀 / / A degree of A 6UC, oxidized stearin 2 匕 its agricultural dish is 62.4C, 1,1,3,3-tetramethyl butyl peroxy vinegar 10 hours and a half The decay temperature is 65.rC, and the peroxidation (4) is 1. The half-life temperature is 65. 吖, 2,5-dimethyl: oxygen 2, 5 succinyl ethyl hexanoate has been oxidized) The 10-hour half-life temperature of the third-stage hexyl peroxide over 7 A ^ ^ ^ 69 / 2 'ethylhexanoic acid vinegar is 1. f7〇.6〇C. ^ ju 〇 of f-based peroxybenzidine.叮 农 农 / 皿 皿 , , , , , 丁基 丁基 丁基 丁基 丁基 丁基 丁基 丁基 丁基 丁基 丁基 丁基 丁基 丁基 丁基 丁基 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 . ,: Ding Xiao Di dimethyl 1 hour, half-life temperature is one, butyl emulsified butyl ketone 10 * when the half-life temperature is 23 1327151 M - double (tri-butyl peroxide) 2 A US time The half-life temperature is 83.2 〇C, 1 丨 _ 纟 纟 纟 〇 - - - 三 三 三 三 Η Η Η Η Η Η Η Η Η Η Η Η Η Η Η 小时 小时 小时 小时 小时 小时 小时 小时 小时 小时 小时 小时 小时 小时 小时 小时The half-life temperature is 8-double (M-double (tertiary butyl peroxy) _ 3 , the half-life temperature is 90. (TC. -M of methylcyclohexene) is added to the raw material liquid The type of the radical polymerizable substance is not particularly limited, and an acrylonitrile group, a methyl propyl group, a propyl group, and/or an oligomer may be used. These may be used alone or in combination of two or more. In the following, specific examples of the radical polymerizable substance used in the raw material liquid include vinyl compounds such as styrene and divinylbenzene, 14 butanediol dipropylene oxime, and 1,6-hexanediol. Acrylate, 19-decanediol diacrylate, 1'10-nonanediol diacrylate, neopentyl glycol diacrylate, hydroxypivala neopentyl diacrylate, tetramethylene glycol Dipropylene Acrylate, tripropylene glycol diacrylate, trihydrocarbyl propane triacrylate, etc., such as propylene tert-butyl dimethyl acrylate, 1,6-hexanediol dimethacrylate, 1, 9-decanediol dimethacrylate, neopentyl glycol dimethacrylate and other mercapto acrylates, epoxy acrylate, acrylamide carbamide, polyester acrylate, polyether acrylate, etc. The type of the first (meth) acrylate is not particularly limited, and the number of functional groups (acryloyl groups) or the number of amine citrate bonds in the structure is not particularly limited to be added to the raw material liquid. The type of the two kinds of (mercapto) acrylates is not particularly limited to 24 1327151. However, when considering the high degree of polymerizability with the third group (meth) acrylate, the use of polyfunctional acrylate having two or more functional groups is more preferable. Good 'such as 1,4 butanediol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, 11〇-nonanediol diacrylate, neopentyl glycol Acrylate, hydroxypivalic acid neopentyl glycol diacrylate, tetramethylene glycol Acrylates such as acrylate, tripropylene glycol diacrylate, trihydrocarbyl propane triacrylate, 1,4-butanediol dimethacrylate, 1'6-hexanol dimercapto acrylate, hydrazine, 9_ a methacrylic acid ester such as decanediol dimercaptoacrylic acid styrene or neopentyl glycol dimethacrylate. In addition, a second (meth)acrylic acid vinegar having no urethane linkage is added to have a urethane formic acid. Although one type of (meth)acrylic acid S is described as a cool bond, the present invention is not limited thereto, and the (meth) acrylate such as the above-mentioned vinyl compound or polymerizable oligomer may be free. The base polymerizable substance is added to the first (meth) acrylate. Further, two or more kinds of sulfonate (meth) acrylate having an urethane bond may be simultaneously contained in the raw material liquid. The polymer dispersion stabilizer added to the raw material liquid is not limited to polyvinyl alcohol, and examples thereof include polyvinylpyrrolidone, polyvinylacetamide, and polyethylene alkyl ether. The amount of the polymer dispersion stabilizer to be added is not particularly limited. However, it is preferably added in an amount of 0.3 part by weight or more and 1 part by weight or less based on 100 parts by weight of the medium liquid. The conductive material constituting the conductive layer 36 is not particularly limited, and various metal materials such as gold and copper other than those recorded, and conductive materials other than metals such as carbon can be used. Further, the method of forming the conductive layer 36 is not limited to the electroless plating method. 25 1327151 Various methods such as a dip plating method are used. According to the present invention, resin particles having high strength and large deformation amount can be obtained. A conductive layer is formed on the surface of the resin particle to form conductive particles, and the conductive: sub-dispersion is dispersed in the adhesive material to form an anisotropic conductive adhesive, and the adhesive is used to connect the connection end i. Conductive particles sandwiched between the terminals: Even if the resin particles are deformed to a degree of compression deformation exceeding 356%, the tree r will not be broken, and the contact area between the connection terminals and the conductive particles will be increased. BRIEF DESCRIPTION OF THE DRAWINGS (1) Schematic portion Fig. 1a and Fig. 1b are cross-sectional views showing the steps of producing a resin particle of the present invention. Fig. 2 is a view showing conductive particles produced by the present invention. Fig. 3 is a view showing an example of an isoconductive adhesive which is formed by using the conductive particles of the present invention. 4a, 4b, and 4c illustrate the steps of connecting the wiring board using an anisotropic conductive adhesive. Fig. 5 is a cross-sectional view showing an example of a resin particle producing apparatus used in the present invention, in which a circle 6 shows an emulsion tank in which a raw material liquid is injected into a medium, and a circle 7 shows a relationship between a particle diameter displacement and a load measured by a fracture compression test. The graph. 26 1327151 (2) Component symbol 10 Resin particle manufacturing apparatus 11 Medium tank 12 Raw material tank 15, 16 Line 20 Emulsification tank 21 Outer cylinder 22 Inner cylinder 25 Space between outer cylinder 21 and inner cylinder 22 Inner cylinder 22 Internal space 27, 28 Cover portion 30 Resin particles 31 Dielectric liquid 32 Raw material liquid 33 Liquid material liquid droplets 35 Suspension 36 Conductive layer 37 Conductive particles 38 Next material 39 Next film 40 Electrical device 41 '45 Wiring board 43, 47 connection Terminal 27

Claims (1)

1327151 ^-第92135723號翻專利申請案申請專利範圍劃線修正本(2010.4) 拾、申請專利範圍: %正本 1 *種树脂粒子之製造方法,係加熱處理具有聚合起始 劑與自由基聚合性物質之原料液,使該自由基聚合性物質 聚合而形成由該原料液之硬化物所構成之樹脂粒子;其特 徵在於: *亥自由基聚合性物質係由具有胺甲酸乙酯鍵之(甲基) 丙烯酸酯構成; 设加熱1小時該聚合起始劑後該聚合起始劑分解至一 半之溫度為1小時半衰溫度; 則該加熱處理係在原料液之溫度為該1小時半衰溫度 以下進行。 2 ·如申請專利範圍第1項之樹脂粒子之製造方法,其 中’該加熱處理中原料液之升溫速度為1^/分鐘以上。 3 ·如申請專利範圍第1項之樹脂粒子之製造方法,其 中’該自由基聚合性物質係由(甲基)丙烯酸酯構成。 4 ·如申請專利範圍第1項之樹脂粒子之製造方法,其 中’在该原料液中含有2種以上之自由基聚合性物質。 5 .如申請專利範圍第1項之樹脂粒子之製造方法,其 中’在該原料液中含有:由(甲基)丙烯酸胺甲酸乙酯構成 之第1種自由基聚合性物質、及由化學構造中不具有胺甲 酸乙醋鍵之(曱基)丙烯酸酯構成之第2種自由基聚合性物 質兩者。 6 · —種異向導電性接著劑之製造方法,係加熱處理具 28 聚合起始劑與自由基聚合性物質之原料液,使該自由基 合性物質聚合而形成由該原料液之硬化物所構成之樹脂 1子乂製w枒月曰粒子’在該樹脂粒子表面形成導電層以製 :導電性粒子’再使該導電性粒子分散於接著材料而製成 、向導電性接著劑;其特徵在於: 該自由基聚合性物質係由具有胺甲酸乙酯鍵之(甲基) 丙烯酸酯構成; “认力…1小時该聚合起始劑後該聚合起始劑分解至一 半之溫度為1小時半衰溫度; 則3亥加熱處理係在該原料液之溫度為1小時半衰溫度 以下進行。 7.一種樹脂粒子之製造方法,係加熱處理具有聚合起 始劑與自由基聚合性物質之原料液,使該自由基聚合性物 質聚口而形成由該原料液之硬化物所構成之樹脂粒子;豆 特徵在於: Μ 該自由基聚合性物質係由具有胺曱酸乙酯鍵之(曱基) 丙稀酸酯構成; …' 10小時該聚合起始劑後該聚合起始劑分解至一 半之溫度為1 〇小時半衰溫度; 則該加熱處理係在該原料液之溫度為丨〇小時半衰溫度 以下進行。 又 8 .如申請專利範圍第7項之樹脂粒子之製造方法,其 中,該加熱處理中該原料液之升溫速度為丨t /分鐘以上。 9 .如申請專利範圍第7項之樹脂粒子之製造方法, 29 1327151 ’、^自由基也合性物質係由(甲基)丙烯酸酯構成。 〇 ·⑹申明專利範圍帛7項之樹脂粒子之製造方法, '、中,在該原料液中含右 τ 3有2種以上之自由基聚合性物質。 11 ·如申.晴專利餘图结, 好丄 j乾圍第7項之樹脂粒子之製造方法, 其中,在該原料液Φ人女. ,、 3有.由(甲基)丙缔酸胺甲酸乙酯構 成之第1種自由基聚人μ此併 表13 ^物質、及在化學構造中不具有胺 曱酸乙S旨鍵之(甲其、;&quot; 日鍵^甲基)丙締酸自旨構成之第2種自由基聚合性 物質兩者。 12. -種異向導電性接著劑之製造方法係加熱處理 具有聚合起始劑與自由基聚合性物質之原料液,使該自由 ,聚合性物質聚合而形成由該原料液之硬化物所構成之樹 脂粒子以製造樹脂粒子,在該樹脂粒子表面形成導電層以 製造導電性粒子,再使料電性粒子分散於接著材料中而 製成異向導電性接著劑;其特徵在於: 該自由基聚合性物質係由具有胺甲酸乙酯鍵之(曱基 丙烯酸酯構成; ι 設加熱10小時該聚合起始劑後該聚合起始劑分解至一 半之溫度為1 〇小時半衰溫度; 則該加熱處理係在該原料液之溫度為丨〇小時半衰田 度以下進行。 H 拾壹、圓式: 如次頁 301327151 ^-No. 92135723 Patent application patent application line correction (2010.4) Pickup, patent application range: % original 1 * Manufacturing method of resin particles, heat treatment with polymerization initiator and radical polymerization a raw material liquid of the substance, which polymerizes the radical polymerizable substance to form a resin particle composed of a cured product of the raw material liquid; characterized in that: *Her radical polymerizable substance is composed of a urethane bond (A) Base) acrylate composition; set the heating initiator for 1 hour after the polymerization initiator to decompose to half of the temperature is 1 hour half-life temperature; then the heat treatment is at the temperature of the raw material liquid for the 1 hour half-life temperature The following is done. (2) The method for producing a resin particle according to the first aspect of the invention, wherein the heating rate of the raw material liquid in the heat treatment is 1 μ/min or more. 3. The method for producing a resin particle according to the first aspect of the invention, wherein the radical polymerizable substance is composed of (meth) acrylate. 4. The method for producing a resin particle according to the first aspect of the invention, wherein the raw material liquid contains two or more kinds of radical polymerizable substances. 5. The method for producing a resin particle according to the first aspect of the invention, wherein the raw material liquid contains: a first radical polymerizable substance composed of ethyl methacrylate, and a chemical structure Both of the second radical polymerizable substances composed of (mercapto) acrylate having no urethane formate bond. (6) A method for producing an anisotropic conductive adhesive, which is a raw material liquid of a polymerization initiator and a radical polymerizable substance, and polymerizes the radically-derived substance to form a cured product of the raw material liquid The resin 1 is made of a resin, and a conductive layer is formed on the surface of the resin particle to form a conductive particle, and the conductive particle is dispersed in a bonding material to form a conductive adhesive; The method is characterized in that: the radical polymerizable substance is composed of a (meth) acrylate having a urethane bond; "recognition... After 1 hour of the polymerization initiator, the polymerization initiator is decomposed to half the temperature is 1 The hourly half-life temperature; the 3H heat treatment is performed at a temperature below the one-half half-life temperature of the raw material liquid. 7. A method for producing a resin particle, which comprises a polymerization initiator and a radical polymerizable substance by heat treatment. a raw material liquid which is formed by agglomerating the radical polymerizable material to form a resin particle composed of a cured product of the raw material liquid; the bean is characterized in that: the radical polymerizable substance has an amine The acid ethyl ester bond (mercapto) acrylate structure; ... '10 hours after the polymerization initiator, the polymerization initiator is decomposed to half the temperature is 1 〇 hour half-life temperature; then the heat treatment is in The method of producing a resin particle according to the seventh aspect of the invention, wherein the temperature increase rate of the raw material liquid in the heat treatment is 丨t /min or more. 9. The method for producing resin particles according to item 7 of the patent application, 29 1327151 ', the radically conjugated substance is composed of (meth) acrylate. 〇·(6) Declaring the resin range of the patent range 帛7 In the production method, ', in the raw material liquid, there are two or more types of radical polymerizable substances in the right τ 3 . 11 · For example, the patent of the patent of the Japanese patent, the resin particles of the seventh item a manufacturing method, wherein, in the raw material liquid Φ人女, , 3 has the first kind of radical composed of ethyl (meth)propionic acid amide, which is composed of the same substance, and in the chemical There is no amine bismuth sulphate in the structure. And "the Japanese key ^methyl) propionate is the second type of radically polymerizable substance. 12. The method for producing an anisotropic conductive adhesive is a polymerization initiator having a polymerization initiator The raw material liquid of the radically polymerizable substance is polymerized to form a resin particle composed of a cured product of the raw material liquid to produce resin particles, and a conductive layer is formed on the surface of the resin particle to produce conductive particles. Further, the electrically conductive particles are dispersed in the adhesive material to form an anisotropic conductive adhesive; wherein the radically polymerizable material is composed of a thiol acrylate bond; After 10 hours of the polymerization initiator, the polymerization initiator is decomposed to half the temperature at a half-life of 1 hour; then the heat treatment is carried out at a temperature below the half-life of the raw material liquid. H 壹, round: as the next page 30
TW92135723A 2002-12-17 2003-12-17 Processes for producing resin particles and anisotropically electroconductive adhesive TWI327151B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002364922A JP2004196889A (en) 2002-12-17 2002-12-17 Process for producing resin particle and process for producing anisotropic conductive adhesive
JP2002364923A JP3954485B2 (en) 2002-12-17 2002-12-17 Method for producing anisotropic conductive adhesive

Publications (2)

Publication Number Publication Date
TW200418884A TW200418884A (en) 2004-10-01
TWI327151B true TWI327151B (en) 2010-07-11

Family

ID=32599270

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92135723A TWI327151B (en) 2002-12-17 2003-12-17 Processes for producing resin particles and anisotropically electroconductive adhesive

Country Status (2)

Country Link
TW (1) TWI327151B (en)
WO (1) WO2004055058A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI424041B (en) * 2010-08-06 2014-01-21 Asahi Kasei E Materials Corp Anisotropic conductive film and a hardening agent

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689087B2 (en) * 1989-07-04 1994-11-09 積水化成品工業株式会社 Method for producing urethane-acrylic elastic fine particles
JPH059220A (en) * 1991-06-28 1993-01-19 Nippon Oil & Fats Co Ltd Polymerization of glycidyl (meth)acrylate
JP3169255B2 (en) * 1992-02-26 2001-05-21 電気化学工業株式会社 Method for producing copolymer
JP3007255B2 (en) * 1994-02-16 2000-02-07 積水化成品工業株式会社 Method for producing high molecular weight styrenic polymer particles
JP3373094B2 (en) * 1994-10-28 2003-02-04 積水化学工業株式会社 Elastic fine particles, method for producing the same, and elastic conductive fine particles
JP2002033022A (en) * 2000-07-13 2002-01-31 Mitsui Takeda Chemicals Inc Conductive multilayer structure resin particle and anisotropic conductive adhesive using it
JP2002163930A (en) * 2000-11-27 2002-06-07 Natoko Kk Conductive particle, conductive adhesion paste, and anisotropic conductivity adhesion film
JP4642286B2 (en) * 2001-08-01 2011-03-02 早川ゴム株式会社 Synthetic resin fine particles, conductive fine particles, and anisotropic conductive material composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI424041B (en) * 2010-08-06 2014-01-21 Asahi Kasei E Materials Corp Anisotropic conductive film and a hardening agent

Also Published As

Publication number Publication date
TW200418884A (en) 2004-10-01
WO2004055058A1 (en) 2004-07-01

Similar Documents

Publication Publication Date Title
JP5360798B2 (en) Resin particles, conductive particles, and anisotropic conductive adhesive using the same
KR100650284B1 (en) Polymer Particles and Conductive Particles Having Enhanced Conducting Properties and an Anisotropic Conductive Packaging Materials Containing the Same
KR102208591B1 (en) Anisotropic-conductive-film manufacturing method and anisotropic conductive film
JP4669905B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
KR100667374B1 (en) Polymer Particles for Anisotropic Conductive Packaging Materials, Conductive Particles and an Anisotropic Conductive Packaging Materials Containing the Same
TW201012894A (en) Anisotropic electroconductive adhesive and method for manufacturing connected structure using the anisotropic electroconductive adhesive
TW201022300A (en) Polymer particle, conductive particle, anisotropic conductive material and connection structure
US20100206623A1 (en) Nonconductive adhesive composition and film and methods of making
TWI527874B (en) Anisotropic conductive film, composition for the same and semiconductor device
JP2014081928A (en) Conductive particle for touch panel, conductive material for touch panel, and connection structure for touch panel
TWI327151B (en) Processes for producing resin particles and anisotropically electroconductive adhesive
JP2019114552A (en) Base particle, conductive particle, conductive material, and connection structure
JP2003313304A (en) Conductive fine particle, its manufacturing method and bonding material for electronic component
TW201318487A (en) Adhesive composition, film-like adhesive, adhesive sheet, circuit-connected body, method for connecting circuit component, use of adhesive composition, use of film-like adhesive and use of adhesive sheet
JPH04362104A (en) Method for coating metallic particle with polymer
KR100637763B1 (en) Insulated conductive ball for anisotropic electric connection and its method of preparation and products using the same
CN105070351A (en) Flexible conductive microballoon and applications thereof
JP3954485B2 (en) Method for producing anisotropic conductive adhesive
JP2004196889A (en) Process for producing resin particle and process for producing anisotropic conductive adhesive
KR101403863B1 (en) Anisotropic conductive film
CN103706315B (en) A kind of conductive micro-balloons preparation method being applicable to conductive material
JP2005327510A (en) Conductive fine particle and anisotropic conductive material
CN107615466A (en) Manufacture method, electroconductive particle, conducting film and the connection structural bodies of connection structural bodies
KR100719807B1 (en) Insulated conductive particle composition with anisotropic conduction and anisotropic conductive film using the same
JP3725859B2 (en) Method for producing conductive particles

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent