JPH04362104A - Method for coating metallic particle with polymer - Google Patents

Method for coating metallic particle with polymer

Info

Publication number
JPH04362104A
JPH04362104A JP3136466A JP13646691A JPH04362104A JP H04362104 A JPH04362104 A JP H04362104A JP 3136466 A JP3136466 A JP 3136466A JP 13646691 A JP13646691 A JP 13646691A JP H04362104 A JPH04362104 A JP H04362104A
Authority
JP
Japan
Prior art keywords
monomer
particles
fine particles
oil phase
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3136466A
Other languages
Japanese (ja)
Other versions
JP3092971B2 (en
Inventor
Hitoaki Date
仁昭 伊達
Makoto Usui
誠 臼居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP03136466A priority Critical patent/JP3092971B2/en
Publication of JPH04362104A publication Critical patent/JPH04362104A/en
Application granted granted Critical
Publication of JP3092971B2 publication Critical patent/JP3092971B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/2949Coating material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Polymerisation Methods In General (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PURPOSE:To completely coat the surfaces of metallic particles with a polymer relating to the formation of a conductive adhesive and more specifically a microcapsule type conductive filler. CONSTITUTION:This method consists in the procedure subjecting the metallic particles 1 to a surface treatment with a coupling agent, then dispersing the metallic particles 1 into an org. solvent dissolving a monomer to form a homopolymer and a polymn. initiator to form an oil phase, adding this oil phase to a water phase consisting of an emulsifier and thickener dissolved in water to form a suspension, and acting heat and/or catalyst on this suspension to polymerize the monomer thereby forming the homopolymer films 2 on the surfaces of the metallic particles, or subjecting the metallic particles 1 to the surface treatment with the coupling agent, then dispersing the metallic particles 1 into the org. solvent dissolving a monomer A to form the copolymer to form an oil phase, adding this oil phase to the water phase consisting of another monomer B, an emulsifier and thickener dissolved in the water to form the suspension, and acting the heat and/or catalyst on this suspension to polymerize the monomer, thereby forming the copolymer films on the surface of the metallic particles 1.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はマイクロカプセル型導電
フィラーの作製技術に関する。近年、はんだ接合に代わ
る接合技術として、接着剤の樹脂中に金属粒子を分散さ
せた導電性接着剤への要求が高まっている。なかでも金
属微粒子表面を絶縁性の樹脂で被覆したマイクロカプセ
ル型導電フィラーを金属粒子のかわりに使用すると様々
なメリットが期待できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for producing a microcapsule type conductive filler. In recent years, there has been an increasing demand for conductive adhesives in which metal particles are dispersed in adhesive resin as a bonding technique to replace solder bonding. Among these, various benefits can be expected if microcapsule-type conductive filler, in which the surface of metal fine particles is coated with an insulating resin, is used instead of metal particles.

【0002】合成樹脂を主体としたバインダと、金属粉
を主体とした導電性フィラーとからなる有機と無機の複
合体である導電性接着剤を使用すれば、接着工法、適用
素材、使用方法などにおいて広範な適用性を有している
。たとえば、適用素材として、従来はんだ付けができな
かったエポキシ樹脂、フェノール樹脂などプラスチック
類の導電接着、液晶表示管に使用するネサガラスの接着
、マイクロモータに使うリン青銅とカーボンブラシとの
接着、水晶振動子などのリード線接着などに欠くことの
できない材料である。
[0002] If a conductive adhesive, which is an organic and inorganic composite consisting of a binder mainly made of synthetic resin and a conductive filler mainly made of metal powder, is used, the adhesive method, applicable materials, usage methods, etc. It has wide applicability in For example, applicable materials include conductive adhesion of plastics such as epoxy resins and phenolic resins that cannot be soldered in the past, adhesion of Nesa glass used in liquid crystal display tubes, adhesion of phosphor bronze and carbon brushes used in micro motors, and crystal vibration. It is an indispensable material for bonding lead wires, etc.

【0003】特に半導体工業における最近の発展はめざ
ましく、次々にIC,LSI が開発され、量産化され
続けている。これらの半導体チップのリードフレームヘ
の接着には、従来Au −Si 共晶による方法がとら
れていたが、低コスト化、生産性向上を目的として、エ
ポキシ樹脂に銀粉を混練した導電性接着剤が多用される
ようになってきた。
Recent developments in the semiconductor industry in particular have been remarkable, with ICs and LSIs being developed and mass-produced one after another. Traditionally, Au-Si eutectic was used to bond these semiconductor chips to lead frames, but in order to reduce costs and improve productivity, conductive adhesives made by mixing silver powder into epoxy resin have been used. has become widely used.

【0004】この電導性接着剤の樹脂バインダには、一
般的にエポキシ樹脂が用いられているが、これ以外には
ポリイミド系、フェノール系、ポリエステル系の樹脂も
一部使用されている。一方、導電フィラーには金、銀、
銅などの金属の微粉末や無定形カーボン、グラファイト
粉が用いられ、そのほか、一部ではあるが、金属酸化物
も使用されている。しかし、価格、信頼性、実績などか
ら、銀粉が最も多く使用されている。
[0004] Epoxy resin is generally used as the resin binder of this conductive adhesive, but other resins such as polyimide, phenol, and polyester are also used in some cases. On the other hand, conductive fillers include gold, silver,
Fine powder of metals such as copper, amorphous carbon, and graphite powder are used, and in some cases, metal oxides are also used. However, silver powder is most commonly used due to its price, reliability, and track record.

【0005】導電性接着剤は従来のはんだ付けや溶接に
比べると多様な利点を有するが、問題がないわけではな
い。たとえば、この導電性接着剤をICまたはLSIチ
ップと基板のパターンとの間に用いた場合を考えてみる
。図5のグラフに示すように、導電性接着剤の導電性微
粒子の量が増加すると、絶縁抵抗が低くなって隣接する
パターン同士が導通をとる可能性が大きくなる。逆に、
導電性微粒子の量が少なくなると、チップとパターンと
の間の導通が満足できなくなる。すなわち、導電性接着
剤に使用する導電性微粒子の量を厳密に制御しなければ
ならない。この問題を解決するには、導電性微粒子の表
面を絶縁性の樹脂で被覆したマイクロカプセル型導電フ
ィラーを接着剤中に分散させ、これを基板上にチップの
寸法大または基板全面に塗布した後、チップとパターン
との間に圧力をかけて、カプセルの被覆層を破壊して導
通をとり、チップによって押圧されないパターン相互間
はカプセル化された導電性微粒子のまま残るので、絶縁
を保つことができる。
Although conductive adhesives have various advantages over conventional soldering and welding, they are not without problems. For example, consider a case where this conductive adhesive is used between an IC or LSI chip and a pattern on a substrate. As shown in the graph of FIG. 5, as the amount of conductive fine particles in the conductive adhesive increases, the insulation resistance decreases and the possibility that adjacent patterns are electrically connected increases. vice versa,
When the amount of conductive fine particles decreases, the conductivity between the chip and the pattern becomes unsatisfactory. That is, the amount of conductive fine particles used in the conductive adhesive must be strictly controlled. To solve this problem, a microcapsule-type conductive filler, which is made by coating the surface of conductive particles with an insulating resin, is dispersed in an adhesive, and this is applied to the substrate, either to the size of the chip or to the entire surface of the substrate. , pressure is applied between the chip and the pattern to break the coating layer of the capsule and establish continuity, and between the patterns that are not pressed by the chip, encapsulated conductive particles remain, so insulation can be maintained. can.

【0006】このように、マイクロカプセル型導電フィ
ラーは大きな利点を持っており、使用する絶縁性の樹脂
には熱可塑性、熱硬化性などが考えられる。しかし、現
在主として行われている金属微粒子を被覆するスプレー
ドライ法は、樹脂を溶剤に溶解させて噴霧乾燥させるが
、これによっては金属微粒子の表面を完全には被覆でき
ないこと、および熱可塑性樹脂しか使用できないという
問題がある。
[0006] As described above, the microcapsule type conductive filler has great advantages, and the insulating resin used may be thermoplastic or thermosetting. However, in the spray-drying method currently used to coat fine metal particles, resin is dissolved in a solvent and then spray-dried, but this method cannot completely coat the surface of fine metal particles, and only thermoplastic resins can be used. The problem is that it cannot be used.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、金属
微粒子表面を絶縁性の樹脂で完全に被覆することができ
、さらに、熱可塑性樹脂でも熱硬化性樹脂でも被覆する
ことが可能な金属微粒子の被覆方法を提供することにあ
る。
[Problems to be Solved by the Invention] An object of the present invention is to provide a metal particle whose surface can be completely coated with an insulating resin, and which can also be coated with either a thermoplastic resin or a thermosetting resin. An object of the present invention is to provide a method for coating fine particles.

【0008】[0008]

【課題を解決するための手段】上記課題は、金属微粒子
をカップリング剤で表面処理した後、この金属微粒子を
ホモポリマを形成すべきモノマと重合開始剤とを溶解し
た有機溶剤に分散させて油相とし、この油相を、乳化剤
と増粘剤とを水に溶解した水相に加えて金属微粒子を懸
濁させた乳濁液を形成し、この乳濁液に熱および/また
は触媒を作用させてモノマを重合させ、金属微粒子の表
面ホモポリマ膜を形成することを特徴とする、金属微粒
子の被覆方法、および金属微粒子をカップリング剤で表
面処理した後、この金属微粒子を、コポリマを形成すべ
きモノマAを溶解した有機溶剤に分散させて油相とし、
この油相を、他のモノマBと乳化剤と増粘剤とを水に溶
解した水相に加えて金属微粒子を懸濁させた乳濁液を形
成し、この乳濁液に熱および/または触媒を作用させて
モノマを重合させ、金属微粒子の表面にコポリマ膜を形
成することを特徴とする、金属微粒子の被覆方法によっ
て解決することができる。
[Means for Solving the Problem] The above object is to treat the surface of fine metal particles with a coupling agent, and then disperse the fine metal particles in an organic solvent in which a monomer and a polymerization initiator to form a homopolymer are dissolved. This oil phase is added to an aqueous phase in which an emulsifier and a thickener are dissolved in water to form an emulsion in which fine metal particles are suspended, and this emulsion is subjected to heat and/or a catalyst. A method for coating metal fine particles is characterized in that the monomer is polymerized to form a homopolymer film on the surface of the metal fine particles, and after the metal fine particles are surface-treated with a coupling agent, the metal fine particles are coated with a copolymer to form a copolymer. Dispersing monomer A in an organic solvent to form an oil phase,
This oil phase is added to an aqueous phase in which other monomer B, an emulsifier, and a thickener are dissolved in water to form an emulsion in which fine metal particles are suspended, and this emulsion is heated and/or catalyzed. This problem can be solved by a method for coating metal fine particles, which is characterized by polymerizing monomers by causing a copolymer to form a copolymer film on the surface of the metal fine particles.

【0009】[0009]

【作用】あらかじめカップリング処理した金属微粒子表
面に均一に1種類または多種類のモノマを存在させ、こ
れをホモポリマまたはコポリマに重合させると、金属微
粒子を完全に被覆することができ、しかも、モノマの選
択により熱可塑性樹脂でも熱硬化性樹脂でも被覆可能と
なり、上記課題を解決できる。例えば、アクリルモノマ
を金属粒子表面でラジカル重合させると熱可塑性樹脂が
得られ、エポキシモノマとアミンとを反応させると熱硬
化性樹脂が得られる。
[Function] If one type or multiple types of monomer is uniformly present on the surface of metal fine particles that have been subjected to coupling treatment in advance, and this is polymerized into a homopolymer or copolymer, the metal fine particles can be completely covered, and moreover, the monomer Depending on the selection, it can be coated with either thermoplastic resin or thermosetting resin, and the above problem can be solved. For example, when an acrylic monomer is radically polymerized on the surface of a metal particle, a thermoplastic resin is obtained, and when an epoxy monomer and an amine are reacted, a thermosetting resin is obtained.

【0010】1種類のモノマを使用して、ホモポリマに
重合させる場合は、モノマと開始剤とを溶解した有機溶
剤に、カップリング剤で表面処理した金属微粒子を分散
させた油相を、乳化剤と増粘剤とを溶解した水相に滴下
して乳濁液を作製する。この乳濁液に熱などを加えるこ
とにより、モノマを金属微粒子表面上でその場で重合さ
せて金属微粒子を被覆する。また、2種類のモノマを使
用する場合は、1つのモノマを溶解させた有機溶剤に、
カップリング剤で表面処理した金属微粒子を分散させた
油相を、別のモノマ、乳化剤、増粘剤を溶解した水相に
滴下して乳濁液を作製する。この乳濁液に熱などを加え
ることにより、金属微粒子表面で2つのモノマを界面重
合させて金属微粒子を被覆することができる。
When polymerizing a homopolymer using one type of monomer, an oil phase in which fine metal particles surface-treated with a coupling agent are dispersed in an organic solvent in which the monomer and an initiator are dissolved is mixed with an emulsifier. An emulsion is prepared by dropping the mixture into an aqueous phase in which a thickener is dissolved. By applying heat or the like to this emulsion, the monomer is polymerized on the surface of the metal fine particles on the spot, thereby coating the metal fine particles. In addition, when using two types of monomers, one monomer is dissolved in an organic solvent,
An emulsion is prepared by dropping an oil phase in which fine metal particles surface-treated with a coupling agent are dispersed into an aqueous phase in which other monomers, an emulsifier, and a thickener are dissolved. By applying heat or the like to this emulsion, the two monomers can be interfacially polymerized on the surface of the metal fine particles to coat the metal fine particles.

【0011】金属微粒子の粒径が、0.1μm未満では
微粒子が凝集し易く、30μmを超えると沈降分離して
しまう。従って、微粒子は、凝集しても30μmを超え
る粒子となってはならない。カップリング剤の重量が金
属微粒子の重量の0.1重量%未満ではカップリング効
果が十分でなく、4重量%を超えると、カップリング剤
が単分子層を形成せず、微粒子表面からモノマが離脱し
易くなる。水相については、粘度が、20cps 未満
では金属微粒子が沈降凝集して、大きな凝集体がそのま
ま被覆されてしまう。また5000cps を超えると
、攪拌が困難であり、また重合後の微粒子の分離が困難
となる。また水相に乳化剤を加えないときは、金属微粒
子および有機溶剤を含む油相との乳化が行われないので
、金属微粒子に完全な被覆層が形成されない。
[0011] If the particle size of the metal fine particles is less than 0.1 μm, the fine particles tend to aggregate, and if it exceeds 30 μm, they will settle and separate. Therefore, even if the fine particles aggregate, they should not become particles larger than 30 μm. If the weight of the coupling agent is less than 0.1% by weight of the metal fine particles, the coupling effect will not be sufficient, and if it exceeds 4% by weight, the coupling agent will not form a monomolecular layer and the monomer will be removed from the surface of the fine particles. It becomes easier to leave. Regarding the aqueous phase, if the viscosity is less than 20 cps, the metal fine particles will settle and coagulate, and large aggregates will be coated as they are. Moreover, if it exceeds 5000 cps, stirring becomes difficult and separation of fine particles after polymerization becomes difficult. Further, when an emulsifier is not added to the aqueous phase, emulsification between the metal fine particles and the oil phase containing the organic solvent is not performed, so that a complete coating layer is not formed on the metal fine particles.

【0012】なお乳濁液の作成には、1000〜100
00rpmで攪拌しながら有機溶液を滴下することが好
ましく、この乳濁液を50〜250rpmで攪拌しなが
ら重合反応させることが好ましい。またモノマの量は金
属微粒子の表面に0.05μmの膜が作成可能である量
以上に使用することが好ましい。
[0012] To prepare the emulsion, 1000 to 100
It is preferable to add the organic solution dropwise while stirring at 50 to 250 rpm, and it is preferable to carry out the polymerization reaction while stirring the emulsion at 50 to 250 rpm. Further, it is preferable that the amount of the monomer used be at least an amount that can form a film of 0.05 μm on the surface of the metal fine particles.

【0013】以下に実施例により説明するが、本発明は
これによって限定されるものではない。
[0013] The present invention will be explained below with reference to Examples, but the present invention is not limited thereto.

【実施例】実施例1 1.マイクロカプセル型導電フィラーの作製材料金属微
粒子:銀粉(粒径0.3〜0.5μm、福田金属製)カ
ップリング剤:チタネート系カップリング剤(味の素製
) モノマA:ビスフェノールA型エポキシ樹脂(BPA、
油化シェルエポキシ製) モノマB:テトラエチレンペンタミン(TEPA、和光
純薬製) 乳化剤:ポリオキシエチレンアルキルフェニルエーテル
(花王製) 増粘剤:ポリビニルアルコール(PVA、和光純薬製)
[Example] Example 1 1. Materials for preparing microcapsule type conductive filler Metal fine particles: Silver powder (particle size 0.3 to 0.5 μm, manufactured by Fukuda Metals) Coupling agent: Titanate coupling agent (manufactured by Ajinomoto) Monomer A: Bisphenol A type epoxy resin (BPA) ,
Monomer B: Tetraethylene pentamine (TEPA, manufactured by Wako Pure Chemical Industries) Emulsifier: Polyoxyethylene alkyl phenyl ether (manufactured by Kao) Thickener: Polyvinyl alcohol (PVA, manufactured by Wako Pure Chemical Industries)

【0014】2.マイクロカプセル型導電フィラーの作
製 2.1  銀粉のカップリング剤処理 エタノール70mlにチタネート系カップリング剤0.
1g、銀粉5gを加え、これをスターラで10分間攪拌
した。次に、この溶液を60℃に昇温してエタノールを
乾燥させることにより、金属微粒子表面のカップリング
剤処理を行った。 2.2  油相の作製 ジクロロエタン15mlにモノマ BPA10gを溶解
させ、上記銀粉5gを加えて油相を作製した。 2.3  銀粉の分散 油相を25〜45Hzで10分間超音波照射を行い銀粉
を充分に分散させた。 2.4  水相の作製 水 370mlに乳化剤1.5g、増粘剤 PVA25
g、モノマTEPA10gを溶解させて水相を作製した
。 2.5  乳濁液の作製 水相をホモジナイザ(フリッチュジャパン製)で 70
00rpmで攪拌しながら、油相を徐々に滴下し、乳濁
液を作製した。 2.6  界面重合反応 この懸濁液をスリーワンモータで150rpmで攪拌し
ながら60℃に昇温して7時間反応を続けた。 2.7  分  離 乳濁液からマイクロカプセル型導電フィラーを濾過分離
し、その断面を観察したところ図1のように0.1μm
程度の薄いポリマ層が形成されていることが確認できた
2. Preparation of microcapsule-type conductive filler 2.1 Coupling agent treatment of silver powder Add 0.0 ml of titanate coupling agent to 70 ml of ethanol.
1 g of silver powder and 5 g of silver powder were added thereto, and the mixture was stirred with a stirrer for 10 minutes. Next, the surface of the metal fine particles was treated with a coupling agent by heating this solution to 60° C. and drying the ethanol. 2.2 Preparation of oil phase 10 g of monomer BPA was dissolved in 15 ml of dichloroethane, and 5 g of the above silver powder was added to prepare an oil phase. 2.3 Dispersion of silver powder The oil phase was irradiated with ultrasonic waves at 25 to 45 Hz for 10 minutes to fully disperse the silver powder. 2.4 Preparation of aqueous phase 370ml water, 1.5g emulsifier, thickener PVA25
g, 10 g of monomer TEPA was dissolved to prepare an aqueous phase. 2.5 Preparation of emulsion Prepare the aqueous phase using a homogenizer (manufactured by Fritsch Japan) at 70°C.
While stirring at 00 rpm, the oil phase was gradually added dropwise to prepare an emulsion. 2.6 Interfacial Polymerization Reaction This suspension was heated to 60° C. while stirring at 150 rpm using a three-one motor, and the reaction was continued for 7 hours. 2.7 minutes The microcapsule-type conductive filler was filtered and separated from the weaning emulsion, and its cross section was observed to have a diameter of 0.1 μm as shown in Figure 1.
It was confirmed that a somewhat thin polymer layer was formed.

【0015】3.導電性接着剤の作製および塗布3.1
  絶縁性 マイクロカプセル型導電フィラー5gを接着剤樹脂の 
BPA3.5gに分散させて導電性接着剤を作製した。 図2に示すように、インジウムスズ酸化物(ITO)導
電膜を設けた2枚のガラス板の間に、この導電性接着剤
を塗布して、軽く挟み合せて、2つのITO導電膜間に
直流5Vを印加したところ、1011Ωcmの絶縁を示
した。
3. Preparation and application of conductive adhesive 3.1
Add 5g of insulating microcapsule type conductive filler to adhesive resin.
A conductive adhesive was prepared by dispersing it in 3.5 g of BPA. As shown in Figure 2, this conductive adhesive is applied between two glass plates provided with indium tin oxide (ITO) conductive films, and the two glass plates are lightly sandwiched together to generate a DC voltage of 5V between the two ITO conductive films. was applied, it showed an insulation of 1011 Ωcm.

【0016】3.2  導通性 上記導電性接着剤を塗布した2枚のガラス板に面圧力4
kgを加えて、マイクロカプセルの被覆層を破壊したと
ころ、ガラス板間は導通状態となった。さらに、このガ
ラス板間の断面を走査電子顕微鏡で表面状態を観察した
ところ、図3に示すように、マイクロカプセルの被覆層
が破壊されて金属とITOとが接合されていることが確
認された。
3.2 Conductivity Two glass plates coated with the above conductive adhesive were subjected to a surface pressure of 4
When the coating layer of the microcapsules was destroyed by adding 1.5 kg, conduction was established between the glass plates. Furthermore, when the surface condition of the cross section between the glass plates was observed using a scanning electron microscope, it was confirmed that the coating layer of the microcapsules was destroyed and the metal and ITO were bonded together, as shown in Figure 3. .

【0017】実施例2 実施例1の銀粉を、あらかじめ銀で表面を被覆した銅微
粒子(平均粒径4〜8μm、田中貴金属製)に変えたこ
と以外は実施例1と同一の材料、方法で金属微粒子を被
覆し、これを使用して導電性を試験した。実施例1と同
一の結果が得られ、金属微粒子が絶縁性の樹脂で被覆さ
れていることが確認できた。
Example 2 The same materials and methods were used as in Example 1, except that the silver powder in Example 1 was replaced with copper fine particles (average particle size 4 to 8 μm, manufactured by Tanaka Kikinzoku Co., Ltd.) whose surface was coated with silver in advance. Metal fine particles were coated and used to test conductivity. The same results as in Example 1 were obtained, and it was confirmed that the metal fine particles were coated with an insulating resin.

【0018】実施例3 実施例1の水相の作製において、モノマTEPAを加え
ず、かつ油相の作製において、モノマBPAの代りにホ
モモノマのメチルメタクリレート(和光純薬製)10g
と重合開始剤の過酸化ベンゾイル(和光純薬製)0.1
gを加えたこと以外は、実施例1と同様に行って、マイ
クロカプセル型導電フィラーを作製した。実施例1と同
一の結果が得られた。
Example 3 In the preparation of the aqueous phase in Example 1, the monomer TEPA was not added, and in the preparation of the oil phase, 10 g of homomonomer methyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of the monomer BPA.
and polymerization initiator benzoyl peroxide (manufactured by Wako Pure Chemical Industries, Ltd.) 0.1
A microcapsule type conductive filler was produced in the same manner as in Example 1 except that g was added. The same results as in Example 1 were obtained.

【0019】比較例1 カップリング剤を使用しないこと以外は実施例1と同一
の方法で金属微粒子の被覆を試みたところ、図4に示す
ように、被覆されていない部分が存在した。
Comparative Example 1 When coating with metal fine particles was attempted in the same manner as in Example 1 except that no coupling agent was used, there were uncovered portions as shown in FIG.

【0020】比較例2 増粘剤を使用しないこと以外は、実施例1と同一の方法
で金属微粒子の被覆を試みたところ、沈降凝集してしま
い、微粒子としての被覆はできなかった。
Comparative Example 2 When an attempt was made to coat fine metal particles in the same manner as in Example 1, except that no thickener was used, the particles settled and agglomerated, and coating as fine particles could not be achieved.

【0021】比較例3 乳化剤を使用しないこと以外は、実施例1と同一の方法
で金属微粒子の被覆を試みたところ、油層と水相とが乳
化しないので、充分に被覆することができなかった。
Comparative Example 3 An attempt was made to coat fine metal particles in the same manner as in Example 1, except that no emulsifier was used, but sufficient coating could not be achieved because the oil layer and water phase did not emulsify. .

【0022】[0022]

【発明の効果】本発明の方法によって、ポリマ樹脂層で
被覆したマイクロカプセル型導電フィラーは、接着剤樹
脂に分散させて、チップとパターンとの間に塗布し、押
圧することによってカプセルの殻を形成するポリマ被覆
層を破壊して、チップとパターンとの間に導通をとり、
他方隣接するパターン間の絶縁を保つことができる。そ
して、乳濁重合によるので、モノマを選択するだけで、
熱硬化性でも熱可塑性の樹脂でも金属微粒子を被覆する
ことができる。
Effects of the Invention According to the method of the present invention, the microcapsule-type conductive filler coated with a polymer resin layer is dispersed in an adhesive resin, applied between a chip and a pattern, and pressed to form a capsule shell. The polymer coating layer to be formed is destroyed to create electrical continuity between the chip and the pattern.
On the other hand, insulation between adjacent patterns can be maintained. And since it is based on emulsion polymerization, just select the monomer,
Metal fine particles can be coated with either thermosetting or thermoplastic resin.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明によって被覆されたマイクロカプセル型
導電フィラーの断面図である。
FIG. 1 is a cross-sectional view of a microcapsule-type conductive filler coated according to the present invention.

【図2】マイクロカプセル型導電フィラーを分散させた
接着剤を2枚の導電性基板の間に塗布した状態を示す断
面図である。
FIG. 2 is a cross-sectional view showing a state in which an adhesive in which microcapsule-type conductive filler is dispersed is applied between two conductive substrates.

【図3】図2に示すマイクロカプセル型導電フィラーを
導通状態とした断面図である。
FIG. 3 is a cross-sectional view of the microcapsule-type conductive filler shown in FIG. 2 in a conductive state.

【図4】不完全に被覆されたマイクロカプセル型導電フ
ィラーの断面図である。
FIG. 4 is a cross-sectional view of an incompletely coated microencapsulated conductive filler.

【図5】被覆されていない導電性微粒子の量に対する、
絶縁抵抗および導電性の関係を示すグラフである。
FIG. 5: The amount of uncoated conductive fine particles
It is a graph showing the relationship between insulation resistance and conductivity.

【符号の説明】[Explanation of symbols]

1…金属微粒子 2…ポリマ被覆層 3…接着剤樹脂 4…ITO導電膜 5…ガラス板 1...Metal fine particles 2...Polymer coating layer 3...Adhesive resin 4...ITO conductive film 5...Glass plate

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  金属微粒子をカップリング剤で表面処
理した後、この金属微粒子を、ホモポリマを形成すべき
モノマと重合開始剤とを溶解した有機溶剤に分散させて
油相とし、この油相を、乳化剤と増粘剤とを水に溶解し
た水相に加えて金属微粒子が懸濁する乳濁液を形成し、
この乳濁液に熱および/または触媒を作用させてモノマ
を重合させ、金属微粒子の表面にホモポリマ膜を形成す
ることを特徴とする、金属微粒子の被覆方法。
Claim 1: After surface-treating fine metal particles with a coupling agent, the fine metal particles are dispersed in an organic solvent in which monomers to form a homopolymer and a polymerization initiator are dissolved to form an oil phase. , an emulsifier and a thickener are added to an aqueous phase in which an emulsifier and a thickener are dissolved in water to form an emulsion in which fine metal particles are suspended;
A method for coating fine metal particles, which comprises applying heat and/or a catalyst to the emulsion to polymerize a monomer to form a homopolymer film on the surface of the fine metal particles.
【請求項2】  金属微粒子をカップリング剤で表面処
理した後、この金属微粒子を、コポリマを形成すべきモ
ノマAを溶解した有機溶剤に分散させて油相とし、この
油相を、他のモノマBと乳化剤と増粘剤とを水に溶解し
た水相に加えて金属微粒子が懸濁する乳濁液を形成し、
この乳濁液に熱および/または触媒を作用させモノマを
重合させ、金属微粒子の表面にコポリマ膜を形成するこ
とを特徴とする、金属微粒子の被覆方法。
2. After surface-treating the metal fine particles with a coupling agent, the metal fine particles are dispersed in an organic solvent in which monomer A to form a copolymer is dissolved to form an oil phase, and this oil phase is mixed with other monomers. B, an emulsifier, and a thickener are added to an aqueous phase in which an emulsifier and a thickener are dissolved in water to form an emulsion in which fine metal particles are suspended;
A method for coating fine metal particles, which comprises applying heat and/or a catalyst to the emulsion to polymerize a monomer, thereby forming a copolymer film on the surface of the fine metal particles.
【請求項3】  金属微粒子の粒径を0.1〜30μm
の範囲とする、請求項1または2記載の方法。
[Claim 3] The particle size of the metal fine particles is 0.1 to 30 μm.
3. The method according to claim 1 or 2, wherein the method is within the range of .
【請求項4】  カップリング剤の量を金属微粒子の重
量の0.1〜4重量%の範囲とする、請求項1または2
記載の方法。
4. Claim 1 or 2, wherein the amount of the coupling agent is in the range of 0.1 to 4% by weight based on the weight of the metal fine particles.
Method described.
【請求項5】  増粘剤を加えた水相の粘度を20〜5
000cps の範囲とする、請求項1または2記載の
方法。
[Claim 5] The viscosity of the aqueous phase to which the thickener has been added is 20 to 5.
3. The method according to claim 1 or 2, wherein the range is 000 cps.
【請求項6】  30μm以上の金属微粒子凝集体が存
在しない、請求項1または2記載の方法。
6. The method according to claim 1 or 2, wherein no metal fine particle aggregates of 30 μm or more are present.
JP03136466A 1991-06-07 1991-06-07 Polymer coating method for metal fine particles Expired - Lifetime JP3092971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03136466A JP3092971B2 (en) 1991-06-07 1991-06-07 Polymer coating method for metal fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03136466A JP3092971B2 (en) 1991-06-07 1991-06-07 Polymer coating method for metal fine particles

Publications (2)

Publication Number Publication Date
JPH04362104A true JPH04362104A (en) 1992-12-15
JP3092971B2 JP3092971B2 (en) 2000-09-25

Family

ID=15175774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03136466A Expired - Lifetime JP3092971B2 (en) 1991-06-07 1991-06-07 Polymer coating method for metal fine particles

Country Status (1)

Country Link
JP (1) JP3092971B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0539211A2 (en) * 1991-10-24 1993-04-28 Fujitsu Limited Method for production of microcapsule type conductive filler
EP0676424A1 (en) * 1994-04-11 1995-10-11 Xerox Corporation Conductive polymeric composite particles and processes thereof
EP0783177A1 (en) * 1991-10-24 1997-07-09 Fujitsu Limited Method for the production of a microcapsule type conductive filler
JP2002280601A (en) * 2000-06-08 2002-09-27 Showa Denko Kk Semiconductor light emitting element
US7291393B2 (en) 2001-09-14 2007-11-06 Sekisui Chemical Co., Ltd. Coated conductive particle coated conductive particle manufacturing method anisotropic conductive material and conductive connection structure
WO2011030621A1 (en) * 2009-09-14 2011-03-17 ソニーケミカル&インフォメーションデバイス株式会社 Light-reflective anisotropic electroconductive adhesive agent and light-emitting device
JP2015509139A (en) * 2011-12-15 2015-03-26 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Selective coating of exposed copper on silver-plated copper
CN105728299A (en) * 2014-12-26 2016-07-06 住友橡胶工业株式会社 Surface-modified metal and method for modifying metal surface
WO2018008693A1 (en) * 2016-07-07 2018-01-11 デクセリアルズ株式会社 Insulated particles, insulated particles production method, particle-containing composition, and anisotropic conductive adhesive
US9981073B2 (en) 2015-08-03 2018-05-29 Sumitomo Rubber Industries, Ltd. Surface-modified metal and method for modifying metal surface
US10556040B2 (en) 2015-08-27 2020-02-11 Sumitomo Rubber Industries, Ltd. Surface-modified metal and method for modifying metal surface
US10835644B2 (en) 2013-10-18 2020-11-17 Sumitomo Rubber Industries, Ltd. Surface-modified metal and method for modifying metal surface

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513168U (en) * 1991-05-31 1993-02-23 ダイワ精工株式会社 Electric reel for fishing

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0539211A2 (en) * 1991-10-24 1993-04-28 Fujitsu Limited Method for production of microcapsule type conductive filler
EP0539211A3 (en) * 1991-10-24 1994-03-16 Fujitsu Ltd
EP0783177A1 (en) * 1991-10-24 1997-07-09 Fujitsu Limited Method for the production of a microcapsule type conductive filler
EP0676424A1 (en) * 1994-04-11 1995-10-11 Xerox Corporation Conductive polymeric composite particles and processes thereof
JP2002280601A (en) * 2000-06-08 2002-09-27 Showa Denko Kk Semiconductor light emitting element
US7291393B2 (en) 2001-09-14 2007-11-06 Sekisui Chemical Co., Ltd. Coated conductive particle coated conductive particle manufacturing method anisotropic conductive material and conductive connection structure
WO2011030621A1 (en) * 2009-09-14 2011-03-17 ソニーケミカル&インフォメーションデバイス株式会社 Light-reflective anisotropic electroconductive adhesive agent and light-emitting device
JP2011057917A (en) * 2009-09-14 2011-03-24 Sony Chemical & Information Device Corp Light-reflective, anisotropic, electroconductive adhesive, and light-emitting device
JP2015509139A (en) * 2011-12-15 2015-03-26 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Selective coating of exposed copper on silver-plated copper
US10835644B2 (en) 2013-10-18 2020-11-17 Sumitomo Rubber Industries, Ltd. Surface-modified metal and method for modifying metal surface
CN105728299A (en) * 2014-12-26 2016-07-06 住友橡胶工业株式会社 Surface-modified metal and method for modifying metal surface
JP2016123491A (en) * 2014-12-26 2016-07-11 住友ゴム工業株式会社 Surface-modified metal and method for modifying metal surface
US10251980B2 (en) 2014-12-26 2019-04-09 Sumitomo Rubber Industries, Ltd. Surface-modified metal and method for modifying metal surface
US9981073B2 (en) 2015-08-03 2018-05-29 Sumitomo Rubber Industries, Ltd. Surface-modified metal and method for modifying metal surface
US10556040B2 (en) 2015-08-27 2020-02-11 Sumitomo Rubber Industries, Ltd. Surface-modified metal and method for modifying metal surface
WO2018008693A1 (en) * 2016-07-07 2018-01-11 デクセリアルズ株式会社 Insulated particles, insulated particles production method, particle-containing composition, and anisotropic conductive adhesive
JP2018006278A (en) * 2016-07-07 2018-01-11 デクセリアルズ株式会社 Insulated coated particles, method for producing insulated coated particles, particle-containing composition, and anisotropic conductive adhesive
CN109313952A (en) * 2016-07-07 2019-02-05 迪睿合株式会社 Insulation-coated particle, the manufacturing method of insulation-coated particle, composition and anisotropically conducting adhesive containing particle

Also Published As

Publication number Publication date
JP3092971B2 (en) 2000-09-25

Similar Documents

Publication Publication Date Title
CN1304510C (en) Anisotropic-electroconductive adhesive, circuit connection method and structure using the same
JP4387175B2 (en) Coated conductive particles, anisotropic conductive material, and conductive connection structure
US6576081B2 (en) Adhesive, bonding method and assembly of mounting substrate
KR100597391B1 (en) Insulated Conductive Particles and an Anisotropic Conductive Adhesive Film containing the Particles
JPH04362104A (en) Method for coating metallic particle with polymer
EP1973119A2 (en) Anisotropic conductive film and adhesion method thereof
JP4863490B2 (en) Insulating conductive fine particles and anisotropic conductive film containing the same
CA2460045A1 (en) Coated conductive particle, coated conductive particle manufacturing method, anisotropic conductive material, and conductive connection structure
JPH03112011A (en) Anisotropic conductive material, anisotropic adhesive, electrically connecting method of the adhesive applied electrode, and electric circuit substrate formed thereby
JP2005149764A (en) Covered conductive particle, anisotropic conductive material, and conductive connection structure
JP5060692B2 (en) Anisotropic conductive material
JP2013171656A (en) Anisotropic conductive connection material, connection structure, method for manufacturing the same, and connection method
JP2009259804A (en) Coated conductive particulate, anisotropic conductive material, and conductive connection structure
JPH0570750A (en) Conductive adhesive
JP2002363255A (en) Latent curing agent, method for producing latent curing agent and adhesive
JP3455871B2 (en) Method for producing microcapsule type conductive filler
JP2906612B2 (en) Microcapsule type conductive adhesive and bonding method
WO2015178482A1 (en) Adhesive agent and connection structure
JP2970720B2 (en) Microcapsule type conductive adhesive and method for producing the same
JPH087658A (en) Anisotropic conductive adhesive film
JP5796232B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
JP7235611B2 (en) Conductive materials and connecting structures
JP2004164910A (en) Anisotropic conductive adhesive
KR102674579B1 (en) Conductive particles having insulating particles, method for producing conductive particles having insulating particles, electrically conductive material, and bonded structure
JP7312108B2 (en) Conductive Particles with Insulating Particles, Method for Producing Conductive Particles with Insulating Particles, Conductive Material, and Connection Structure

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080728

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 11

EXPY Cancellation because of completion of term