JPH0570750A - Conductive adhesive - Google Patents

Conductive adhesive

Info

Publication number
JPH0570750A
JPH0570750A JP23035391A JP23035391A JPH0570750A JP H0570750 A JPH0570750 A JP H0570750A JP 23035391 A JP23035391 A JP 23035391A JP 23035391 A JP23035391 A JP 23035391A JP H0570750 A JPH0570750 A JP H0570750A
Authority
JP
Japan
Prior art keywords
conductive adhesive
conductive
filler
microcapsule
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23035391A
Other languages
Japanese (ja)
Inventor
Hitoaki Date
仁昭 伊達
Makoto Usui
誠 臼居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23035391A priority Critical patent/JPH0570750A/en
Publication of JPH0570750A publication Critical patent/JPH0570750A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Abstract

PURPOSE:To provide a high-reliability conductive adhesive which is made conductive by dispersing metallic particles in the base of the adhesive and can import a stable electric resistance to the desired area without forming an electrical connection among the adjoining patterns. CONSTITUTION:A microencapsulated conductive adhesive is made by dispersing a microencapsulated conductive filler, prepared by forming a metallic plating 11 on the surface of a resin ball 10 and forming an electrical insulating polymer 12 around the external surface of the metallic plating 11, in a one-pack adhesive.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、接着剤の主剤中に金属
粒子を分散させて導電性を持たせた導電性接着剤に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive adhesive in which metal particles are dispersed in a base material of an adhesive to give conductivity.

【0002】[0002]

【従来の技術】従来より、半導体製造工程における半導
体装置等の接着に関し、接着面での導電性を必要とする
場合は、はんだ付けや溶接により接着を行っていた。し
かし、はんだ付け又は溶接等による接着は、接合時の耐
熱性の問題からその適応素材が限定されてしまう。
2. Description of the Related Art Heretofore, regarding the bonding of semiconductor devices and the like in the semiconductor manufacturing process, when conductivity on the bonding surface is required, the bonding is performed by soldering or welding. However, as for the adhesion by soldering or welding, the applicable material is limited due to the problem of heat resistance at the time of joining.

【0003】これに対して、合成樹脂を主体としたバイ
ンダと、金属粉を主体とした導電性フィラーとからなる
有機と無機の複合体である導電性接着剤を使用した接着
は、接着工法、適用素材、使用方法等において広範な適
用性を有している。導電性接着剤の適用素材及びその用
途の例としては、従来はんだ付けができなかったエポキ
シ、フェノール樹脂等のプラスチック類の導電接着、液
晶表示管に使用するネサガラスの接着、マイクロモータ
に使うリン青銅とカーボンブラシの接着、そして水晶振
動子、sdcメータ等のリード線接着等がある。
On the other hand, adhesion using a conductive adhesive which is an organic-inorganic composite composed of a binder mainly composed of synthetic resin and a conductive filler mainly composed of metal powder is carried out by a bonding method, It has wide applicability in applied materials and usage. Examples of applicable materials for conductive adhesives and their uses include conductive bonding of epoxy and phenolic resin plastics that could not be soldered conventionally, bonding of Nesa glass used for liquid crystal display tubes, phosphor bronze used for micromotors. Adhesion of carbon brushes and lead wires of crystal oscillators and sdc meters.

【0004】半導体産業における最近の発展は特にめざ
ましく、次々にIC、LSIが開発され、量産化されて
いる。これら半導体素子(シリコンウェーハ)のリード
フレームへの接着には、従来Au−Sn共晶による方法
がとられていたが、低コスト化、生産性向上を目的とし
て、主剤にエポキシ樹脂を用い、これに導電フィラーと
して銀粉を混練した導電性接着剤が多用されるようにな
ってきた。
Recent developments in the semiconductor industry are particularly remarkable, and ICs and LSIs are successively developed and mass-produced. Conventionally, a method using an Au-Sn eutectic has been used to bond these semiconductor elements (silicon wafers) to the lead frame, but an epoxy resin is used as a main component for the purpose of cost reduction and productivity improvement. In addition, a conductive adhesive obtained by kneading silver powder as a conductive filler has been widely used.

【0005】この導電性接着剤の主剤には、上記エポキ
シ樹脂が多用されているが、これ以外にポリイミド系、
フェノール系、ポリエステル系等も一部使用されてい
る。一方、導電フィラーには金、銀、銅等の金属の微粉
末や無定形カーボン、グラファイト粉が用いられ、その
ほか、一部ではあるが、金属酸化物も使用されている。
しかし、この中で、価格、信頼性、実績等から、銀粉が
最も多く使用されている。
The above-mentioned epoxy resin is often used as the main component of this conductive adhesive.
Phenol-based and polyester-based are also partially used. On the other hand, as the conductive filler, fine powder of metal such as gold, silver and copper, amorphous carbon and graphite powder are used, and in addition, metal oxide is also used, although it is a part.
However, of these, silver powder is most often used because of its price, reliability, and track record.

【0006】[0006]

【発明が解決しようとする課題】以上のように導電性接
着剤は、従来のはんだ付けや溶接に比べると様々な面で
メリットがあるが、例えば、この導電性接着剤を半導体
素子と部品搭載用パターン間の接着に用いる場合につい
ては問題がある。従来の導電性接着剤中の導電性微粒子
の量と、絶縁抵抗及び導電性の関係を図7に示す。図中
実線は導電性微粒子の量と絶縁抵抗の関係を示し、破線
は導電性微粒子の量と導電性の関係を示している。
As described above, the conductive adhesive has advantages in various aspects as compared with the conventional soldering and welding. For example, this conductive adhesive is mounted on a semiconductor element and parts. There is a problem when it is used for adhesion between working patterns. FIG. 7 shows the relationship between the amount of conductive fine particles in a conventional conductive adhesive and the insulation resistance and conductivity. In the figure, the solid line shows the relationship between the amount of conductive fine particles and insulation resistance, and the broken line shows the relationship between the amount of conductive fine particles and conductivity.

【0007】図7から明らかなように、導電性接着剤中
の導電性微粒子の量が増加すると絶縁抵抗が低くなり、
隣接するパターン同士が導通してしまう可能性が高くな
る。逆に、導電性微粒子の量を少なくすると、半導体素
子と部品搭載用パターン間の良好な導通が確保できなく
なる。即ち、導電性接着剤中の導電性微粒子の量を大量
に使用することにより厳密な導通抵抗を得る必要のある
半導体素子と基板との接着においては導電性接着剤を使
用できないという問題がある。
As is clear from FIG. 7, as the amount of conductive fine particles in the conductive adhesive increases, the insulation resistance decreases,
There is a high possibility that adjacent patterns will be electrically connected to each other. On the contrary, if the amount of the conductive fine particles is reduced, it becomes impossible to secure good conduction between the semiconductor element and the component mounting pattern. That is, there is a problem that the conductive adhesive cannot be used for bonding the semiconductor element and the substrate, which require a strict conduction resistance by using a large amount of the conductive fine particles in the conductive adhesive.

【0008】また、導電性微粒子として一般に用いられ
ている銀は、半導体素子側バンプと基板側パッドの間に
挟まれて導通点となる。しかし、図8に示すように、基
板側パッド1と半導体素子側バンプ2が銀フィラー7を
有する導電性接着剤3で接着される場合、接着圧力が低
いと銀フィラー7が塑性変形せず、基板側パッド1及び
半導体素子側バンプ2とそれぞれ接触点6、5で接触す
る点接触となり、良好な導通が得られず信頼性に欠ける
という問題もある。
Further, silver, which is generally used as the conductive fine particles, is sandwiched between the bumps on the semiconductor element side and the pads on the substrate side to serve as conduction points. However, as shown in FIG. 8, when the substrate-side pad 1 and the semiconductor element-side bump 2 are bonded with the conductive adhesive 3 having the silver filler 7, the silver filler 7 does not plastically deform when the bonding pressure is low, There is also a problem that good contact cannot be obtained and reliability is lacked due to point contact with the substrate side pad 1 and the semiconductor element side bump 2 at contact points 6 and 5, respectively.

【0009】本発明の目的は、隣接するパターン同士が
導通することなく、必要な部分に安定した導通抵抗が得
られる信頼性の高い導電性接着剤を提供することにあ
る。
An object of the present invention is to provide a highly reliable conductive adhesive which can obtain a stable conduction resistance in a necessary portion without the adjacent patterns being electrically connected to each other.

【0010】[0010]

【課題を解決するための手段】導電性微粒子の表面を絶
縁性の樹脂でコーティングしたマイクロカプセル型導電
フィラーを接着剤の主剤中に分散させた導電性接着剤を
半導体素子の寸法大又は基板全面に塗布した後、半導体
素子とパターン間の導通すべき部分に圧力をかけてマイ
クロカプセルのコーティング層(殻)を破壊して導電性
微粒子を露出させて導通をとり、隣接するパターン間に
はマイクロカプセル化された導電性微粒子のままで存在
させて絶縁性を保つことによって解決される。
[Means for Solving the Problems] A conductive adhesive in which a microcapsule-type conductive filler in which the surface of conductive fine particles is coated with an insulating resin is dispersed in a base material of an adhesive has a large size of a semiconductor element or the entire surface of a substrate. After applying it to the semiconductor element, pressure is applied to the part between the semiconductor element and the pattern to be electrically connected to break the coating layer (shell) of the microcapsule to expose the conductive fine particles to establish the electrical connection, and the micropattern is provided between the adjacent patterns. This is solved by allowing the encapsulated conductive fine particles to remain as they are and maintaining the insulating property.

【0011】例えば、導電性微粒子表面を絶縁性の樹脂
で被覆したマイクロカプセルをエポキシ樹脂などの接着
剤の主剤中に均一に分散させた導電性接着剤を用いる
と、導電性微粒子が増加しても絶縁抵抗は一定のまま
で、隣接するパターン間は絶縁が保たれる。ただし、導
電性微粒子の粒径が0.5μm〜50μmであること、
及びマイクロカプセルの殻物質の厚さが2μm以下であ
ることの2条件を満足させることが望ましい。マイクロ
カプセルの粒径が50μm以上であると、微細パターン
に用いた場合隣接するパターン間の絶縁が保てなくなる
可能性がでてくるからであり、又殻物質の膜厚が厚いと
導通抵抗が高くなる可能性がでてくる。
For example, when a conductive adhesive in which microcapsules whose surface is coated with an insulating resin is uniformly dispersed in a base material of an adhesive such as an epoxy resin is used, the conductive fine particles increase. Insulation resistance remains constant, and insulation is maintained between adjacent patterns. However, the particle size of the conductive fine particles is 0.5 μm to 50 μm,
It is desirable to satisfy the two conditions that the thickness of the shell material of the microcapsules is 2 μm or less. This is because if the particle size of the microcapsules is 50 μm or more, the insulation between adjacent patterns may not be maintained when used in a fine pattern, and if the thickness of the shell material is large, the conduction resistance will increase. There is a possibility that it will become higher.

【0012】また、半導体素子側バンプ2と基板側パッ
ド1の接触点が小さいという問題は、樹脂製のボールを
核とし、その樹脂ボールの表面を金属でメッキしたもの
を導電性微粒子として用いることにより解決できる。樹
脂ボールの形状は、球形又は擬似球形であることが望ま
しい。図1に本発明によるマイクロカプセル型導電フィ
ラーを有する導電性接着剤の接着状態を示す。導電性微
粒子の核が樹脂であるため、金属に比べると、はるかに
塑性変形し易く、低圧力でも塑性変形して図1に示すよ
うに接触面積を大きくとれるからである。さらに、樹脂
は比重が小さいので接着剤の主剤中の導電性微粒子の分
散性も向上するからである。
The problem that the contact point between the semiconductor element-side bump 2 and the substrate-side pad 1 is small is that a resin ball is used as a core and the surface of the resin ball is plated with metal as conductive fine particles. Can be solved by The shape of the resin ball is preferably spherical or pseudo-spherical. FIG. 1 shows a bonded state of a conductive adhesive having a microcapsule type conductive filler according to the present invention. Since the core of the conductive fine particles is resin, it is much more easily plastically deformed as compared with metal, and plastically deforms even at a low pressure to allow a large contact area as shown in FIG. Furthermore, since the resin has a small specific gravity, the dispersibility of the conductive fine particles in the base material of the adhesive is also improved.

【0013】[0013]

【作用】本発明によれば、隣接するパターン同士が導通
してしまうこともなく、必要な部分に安定した導通抵抗
の得られる半導体素子の接着を行うことができる。
According to the present invention, it is possible to bond a semiconductor element having a stable conduction resistance to a necessary portion without causing conduction between adjacent patterns.

【0014】[0014]

【実施例】本発明の一実施例による導電性接着剤を図2
乃至図6を用いて説明する。図2は、本実施例の導電性
接着剤に使用されるマイクロカプセル型導電フィラーの
作製方法のフローチャートである。図3はチタネート系
カップリング剤の処理方法のフローチャートである。
FIG. 2 shows a conductive adhesive according to an embodiment of the present invention.
It will be described with reference to FIGS. FIG. 2 is a flowchart of a method for producing a microcapsule type conductive filler used in the conductive adhesive of this example. FIG. 3 is a flowchart of the method for treating the titanate coupling agent.

【0015】図2及び図3を用いて本実施例の導電性接
着剤の製造方法を以下に示す。まず、図3のフローチャ
ートを用いてチタネート系カップリング剤の処理方法を
説明する。導電性微粒子としては、粒径7.4μmのポ
リスチレンの表面に金メッキを施したもの(以下「ポリ
スチレン表面金メッキ」という。)を用いた。
A method of manufacturing the conductive adhesive of this embodiment will be described below with reference to FIGS. 2 and 3. First, the method of treating the titanate coupling agent will be described with reference to the flowchart of FIG. As the conductive fine particles, those having a surface of polystyrene having a particle diameter of 7.4 μm plated with gold (hereinafter referred to as “polystyrene surface gold plating”) were used.

【0016】エタノール100ml(図3(a))中
に、このポリスチレン表面金メッキ5gを加え(同図
(b))、さらに、ポリスチレン表面金メッキの分散剤
としてチタネート系カップリング剤(味の素社製)0.
1gを加える(同図(c))。このエタノール溶液に、
周波数45kHz、15分間の超音波分散処理(同図
(d))を施した後、撹拌し(同図(e))、次いでエ
タノールを蒸発させる(同図(f))ことによりチタネ
ート系カップリング剤処理したポリスチレン表面金メッ
キ5gが作製される(同図(g))。
5 g of this polystyrene surface gold plating was added to 100 ml of ethanol (FIG. 3 (a)) (FIG. 3 (b)), and a titanate coupling agent (manufactured by Ajinomoto Co.) as a dispersant for the polystyrene surface gold plating was added. .
1 g is added ((c) in the same figure). In this ethanol solution,
After the ultrasonic dispersion treatment (at the same figure (d)) for 15 minutes at a frequency of 45 kHz, the mixture was stirred (at the same figure (e)), and then ethanol was evaporated (at the same figure (f)) to perform titanate coupling. 5 g of polystyrene surface gold plating treated with the agent is produced (FIG. 9 (g)).

【0017】次に図2のフローチャートを用いて本実施
例の導電性接着剤に使用されるマイクロカプセル型導電
フィラーの作製方法を説明する。ジクロロエタン15m
lにビスフェノールA型エポキシ樹脂(BPA)7gを
溶解させ(図2(h))、さらに、図3のフローチャー
トに従って作製されたチタネート系カップリング剤処理
したポリスチレン表面金メッキ5g(同図(g))を加
えて油相を作製する。この油相を周波数45kHzで1
5分間の超音波分散を行い(同図(i))、凝集してい
るポリスチレン表面金メッキを油相中に均一に分散させ
る。
Next, a method for producing the microcapsule type conductive filler used in the conductive adhesive of this embodiment will be described with reference to the flow chart of FIG. Dichloroethane 15m
7 g of bisphenol A type epoxy resin (BPA) was dissolved in 1 (FIG. 2 (h)), and 5 g of polystyrene surface gold plating treated with a titanate coupling agent prepared according to the flowchart of FIG. 3 (FIG. 2 (g)). To prepare an oil phase. This oil phase 1 at a frequency of 45 kHz
Ultrasonic dispersion is performed for 5 minutes ((i) in the same figure), and the agglomerated polystyrene surface gold plating is uniformly dispersed in the oil phase.

【0018】次に、水370ml中にポリビニルアルコ
ール(PVA)20gと乳化剤2g、テトラエチレンペ
ンタミン(TEPA)10gを溶解させ水相を作製する
(同図(j))。次に、ホモジナイザで水相を7000
rpmで撹拌して乳化させながら,水相中に油相を徐々
に滴下し、ポリスチレン表面金メッキの表面に油相が存
在するサスペンジョンを作製する(同図(k))。この
サスペンジョンを60℃に保ちつつ、スリーワンモータ
(撹拌モータ)で180rpmで6時間撹拌する(同図
(l))。
Then, 20 g of polyvinyl alcohol (PVA), 2 g of an emulsifier and 10 g of tetraethylenepentamine (TEPA) are dissolved in 370 ml of water to prepare an aqueous phase (FIG. 2 (j)). Next, the aqueous phase is 7000
While stirring and emulsifying at rpm, the oil phase is gradually dropped into the water phase to prepare a suspension in which the oil phase is present on the surface of the polystyrene surface gold plating (FIG. 2 (k)). While maintaining this suspension at 60 ° C., the suspension is agitated by a three-one motor (agitation motor) at 180 rpm for 6 hours ((l) in the same figure).

【0019】このようにしてポリスチレン表面金メッキ
の表面にBPAとTEPAの反応物である絶縁性のポリ
マ層が厚さ0.1μm形成されたマイクロカプセル型導
電フィラーができあがる。これを水相から分離し(同図
(m))、乾燥(同図(n))することにより本実施例
のマイクロカプセル型導電フィラーの作製が終了する
(同図(o))。
In this manner, a microcapsule type conductive filler having an insulating polymer layer, which is a reaction product of BPA and TEPA, having a thickness of 0.1 μm is formed on the surface of polystyrene surface gold plating. The preparation of the microcapsule-type conductive filler of the present example is completed by separating this from the aqueous phase ((m) in the figure) and drying ((n) in the figure) ((o) in the figure).

【0020】上記作製方法により作製されたマイクロカ
プセル型導電フィラーを図4に示す。直径7.4μmの
ポリスチレン製の樹脂ボール10の表面に、厚さ500
〓の金属メッキ(ポリスチレン表面金メッキ)層11が
形成され、金属メッキ層11の外側表面に、BPAとT
EPAの反応物である絶縁性のポリマ層12が厚さ0.
1μm形成されている。
FIG. 4 shows the microcapsule type conductive filler manufactured by the above manufacturing method. On the surface of a polystyrene resin ball 10 having a diameter of 7.4 μm, a thickness of 500
A metal plating (polystyrene surface gold plating) layer 11 of 〓 is formed, and BPA and T are formed on the outer surface of the metal plating layer 11.
The insulating polymer layer 12, which is a reaction product of EPA, has a thickness of 0.
It is formed with a thickness of 1 μm.

【0021】このように、本実施例の導電性接着剤に用
いる導電性微粒子は、ポリスチレン表面金メッキの表面
を絶縁性の有機物でコーティングしたことに特徴を有す
る。次に、一液型接着剤、例えば粘度18000cps
のエポキシ性接着剤に、上記マイクロカプセル型導電フ
ィラーの作製方法で作製されたマイクロカプセル型導電
フィラーを重量比で75%(体積比で7%)混入するこ
とにより、マイクロカプセル型導電性接着剤が作製され
る。一液型接着剤は、粘度が200,000cps以下
であれば本実施例に用いることができる。また、マイク
ロカプセル型導電フィラーの主剤に対する含有量は、体
積比で1〜60%以下であればよい。
As described above, the conductive fine particles used in the conductive adhesive of this embodiment are characterized in that the surface of the polystyrene surface gold plating is coated with an insulating organic substance. Next, a one-part adhesive, for example a viscosity of 18000 cps
By mixing 75% by weight ratio (7% by volume ratio) of the microcapsule-type conductive filler produced by the above-mentioned method for producing the microcapsule-type conductive filler into the epoxy adhesive of 1. Is created. The one-pack type adhesive can be used in this example as long as the viscosity is 200,000 cps or less. Further, the content of the microcapsule type conductive filler with respect to the main component may be 1 to 60% or less by volume ratio.

【0022】次に、本実施例によるマイクロカプセル型
導電性接着剤の絶縁性等の性能を測定した結果について
説明する。作製したマイクロカプセル型導電性接着剤を
30μmの厚さで半導体基板上に均一に塗布し、実験用
に作製したガラスチップを一接続点あたり10gの圧力
で熱圧着して接着した。
Next, the results of measuring the performance such as insulation of the microcapsule type conductive adhesive according to this embodiment will be described. The prepared microcapsule type conductive adhesive was uniformly applied to a semiconductor substrate with a thickness of 30 μm, and the glass chip prepared for an experiment was bonded by thermocompression bonding at a pressure of 10 g per connection point.

【0023】図5に、本実施例のマイクロカプセル型導
電性接着剤を用いて基板とガラスチップを接着した図を
示す。同図(a)は半導体基板パターンを示す。同図
(b)は実験用ガラスチップのパターンを示している。
パッド数は32、電極間隔は100μmである。同図
(c)は半導体基板とガラスチップを接着した状態を示
している。本実施例によるマイクロカプセル型導電性接
着剤の導電性を評価するため、同図(c)においてAで
示す区間の導通抵抗を測定した。また本実施例によるマ
イクロカプセル型導電性接着剤の絶縁性を評価するた
め、同図(c)中Bで示す区間の絶縁抵抗を測定した。
FIG. 5 shows a diagram in which the substrate and the glass chip are bonded using the microcapsule type conductive adhesive of this embodiment. FIG. 3A shows a semiconductor substrate pattern. FIG. 3B shows the pattern of the experimental glass chip.
The number of pads is 32 and the electrode interval is 100 μm. FIG. 3C shows a state in which the semiconductor substrate and the glass chip are bonded together. In order to evaluate the conductivity of the microcapsule type conductive adhesive according to this example, the conduction resistance in the section indicated by A in FIG. Further, in order to evaluate the insulating property of the microcapsule type conductive adhesive according to the present example, the insulation resistance in the section indicated by B in FIG.

【0024】測定結果は、フィラーの混入量が75wt
%という大量使用にも関わらず、隣接するパターン間は
1011Ω以上という良好な絶縁性を示した。また、導通
抵抗は、一接続点当り約0.1Ω以下という良好な導電
性を示した。次に、本実施例によるマイクロカプセル型
導電性接着剤を用いて接着した基板とガラスチップの接
合状態について述べる。
The measurement result shows that the filler content is 75 wt.
%, A good insulating property of 10 11 Ω or more was exhibited between the adjacent patterns despite the large amount of use. Further, the conduction resistance showed a good conductivity of about 0.1Ω or less per one connection point. Next, the bonding state of the glass chip and the substrate bonded with the microcapsule type conductive adhesive according to this example will be described.

【0025】接着した基板とガラスチップの断面を観察
することにより、基板とガラスチップに対するマイクロ
カプセル型フィラーの接続状態を観察した。観察結果を
図6に示す。図6は、本実施例のマイクロカプセル型フ
ィラーの塑性変形の様子を示す図である。ガラスチップ
(半導体素子)側バンプ2と基板側パッド1のパターン
間に存在するマイクロカプセル型導電フィラーは、塑性
変形し、充分な接触面積を持っていることが確認され
た。
By observing the cross sections of the bonded substrate and glass chip, the connection state of the microcapsule type filler to the substrate and glass chip was observed. The observation result is shown in FIG. FIG. 6 is a diagram showing a state of plastic deformation of the microcapsule type filler of this example. It was confirmed that the microcapsule type conductive filler existing between the patterns of the bumps 2 on the glass chip (semiconductor element) side and the pads 1 on the substrate side was plastically deformed and had a sufficient contact area.

【0026】また、本実施例の導電性微粒子をポリスチ
レン表面金メッキから銀メッキに変えても、隣り合うパ
ターン間の絶縁を保つことができることも確認された。 [比較例1]本実施例で用いたマイクロカプセル型導電
フィラーのかわりに、絶縁性の樹脂によるコーティング
をしていないポリスチレン表面金メッキだけの導電フィ
ラーを用いて導電性接着剤を作製して比較した。その結
果、ボンディング後のチップとパターン間に存在する導
電フィラーは、塑性変形して充分な接触面積を保ってい
たが、隣り合うパターン間はいずれも導通してしまっ
た。
It was also confirmed that the insulation between adjacent patterns can be maintained even if the conductive fine particles of this embodiment are changed from gold plating on polystyrene surface to silver plating. [Comparative Example 1] Instead of the microcapsule-type conductive filler used in this example, a conductive adhesive prepared by using only gold plating on a polystyrene surface not coated with an insulating resin was prepared and compared. .. As a result, the conductive filler existing between the chip and the pattern after bonding was plastically deformed to maintain a sufficient contact area, but the adjacent patterns were electrically connected.

【0027】[比較例2]本実施例で用いたマイクロカ
プセル型導電フィラーのかわりに、銀粉のフィラーを用
い、それ以外は本実施例と同一の条件で実験を行ったと
ころ、隣接するパターン間は絶縁性を保っていたが、ボ
ンディング後のチップとパターン間に存在する銀フィラ
ーは、塑性変形せず充分な接触面積を持つことができ
ず、導電性における信頼性がないことが確認された。
又、導電性接着剤作製後、自然放置するとマイクロカプ
セル型フィラーが沈降していた。
Comparative Example 2 An experiment was conducted under the same conditions as in this example except that a silver powder filler was used in place of the microcapsule type conductive filler used in this example, and that between adjacent patterns. Was insulating, but the silver filler existing between the chip and the pattern after bonding was not plastically deformed and could not have a sufficient contact area, confirming that the conductivity is not reliable. ..
In addition, after the conductive adhesive was prepared, the microcapsule type filler was settled when it was left to stand naturally.

【0028】[0028]

【発明の効果】以上の通り、本発明によれば、隣接する
パターン同士が導通してしまうこともなく、必要な部分
に安定した導通抵抗の得られる接着をすることができ
る。
As described above, according to the present invention, the adjacent patterns can be adhered to each other at a necessary portion so that a stable conduction resistance can be obtained without the adjacent patterns being electrically connected to each other.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるマイクロカプセル型導電フィラー
を有する導電性接着剤の接着状態を示す図である。
FIG. 1 is a view showing a bonded state of a conductive adhesive having a microcapsule type conductive filler according to the present invention.

【図2】本発明の一実施例によるマイクロカプセル型導
電フィラーの作製方法のフローチャートである。
FIG. 2 is a flowchart of a method for producing a microcapsule type conductive filler according to an embodiment of the present invention.

【図3】本発明の一実施例によるチタネート系カップリ
ング剤の処理方法のフローチャートである。
FIG. 3 is a flowchart of a method for treating a titanate coupling agent according to an embodiment of the present invention.

【図4】本発明の一実施例によるマイクロカプセル型導
電フィラーを示す図である。
FIG. 4 is a view showing a microcapsule type conductive filler according to an embodiment of the present invention.

【図5】本実施例の導電性接着剤を用いて基板とガラス
チップを接着した図である。
FIG. 5 is a diagram in which a substrate and a glass chip are bonded together using the conductive adhesive of this example.

【図6】本実施例のマイクロカプセル型フィラーの塑性
変形の様子を示す図である。
FIG. 6 is a diagram showing a state of plastic deformation of the microcapsule type filler of the present embodiment.

【図7】従来の導電性接着剤の導電性微粒子と、絶縁抵
抗及び導電性の関係を示す図である。
FIG. 7 is a diagram showing a relationship between conductive fine particles of a conventional conductive adhesive, insulation resistance, and conductivity.

【図8】従来の低接着圧力下での銀フィラーを有する導
電性接着剤の接着状態を示す図である。
FIG. 8 is a diagram showing a bonded state of a conventional conductive adhesive having a silver filler under a low bonding pressure.

【符号の説明】[Explanation of symbols]

1…基板側パッド 2…半導体素子側バンプ 3…導電性接着剤 4…マイクロカプセル型導電フィラー 5…接触点 6…接触点 7…銀フィラー 10…樹脂ボール 11…金属メッキ層 12…絶縁性のポリマ層 DESCRIPTION OF SYMBOLS 1 ... Substrate side pad 2 ... Semiconductor element side bump 3 ... Conductive adhesive 4 ... Microcapsule type conductive filler 5 ... Contact point 6 ... Contact point 7 ... Silver filler 10 ... Resin ball 11 ... Metal plating layer 12 ... Insulating Polymer layer

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 樹脂ボール表面に金属メッキを施したメ
ッキ層を形成し、前記メッキ層の表面に均一に絶縁性樹
脂層をコーティングしたマイクロカプセル型導電フィラ
ーを主剤中に分散させたことを特徴とする導電性接着
剤。
1. A microcapsule-type conductive filler in which a metal-plated plating layer is formed on the surface of a resin ball, and the surface of the plating layer is uniformly coated with an insulating resin layer is dispersed in a main agent. And conductive adhesive.
【請求項2】 請求項1記載の導電性接着剤において、 前記樹脂ボールは、熱可塑性樹脂により形成されたこと
を特徴とする導電性接着剤。
2. The conductive adhesive according to claim 1, wherein the resin balls are formed of a thermoplastic resin.
【請求項3】 請求項1又は2記載の導電性接着剤にお
いて、 前記マイクロカプセル型導電フィラーの前記メッキ層の
厚さは、500オングストローム以上であることを特徴
とする導電性接着剤。
3. The conductive adhesive according to claim 1, wherein the plating layer of the microcapsule-type conductive filler has a thickness of 500 angstroms or more.
【請求項4】 請求項1乃至3のいずれかに記載の導電
性接着剤において、 前記マイクロカプセル型導電フィラーの前記メッキ層の
材料は、金又は銀であることを特徴とする導電性接着
剤。
4. The conductive adhesive according to claim 1, wherein a material of the plating layer of the microcapsule type conductive filler is gold or silver. ..
【請求項5】 請求項1乃至4のいずれかに記載の導電
性接着剤において、 前記樹脂ボールの形状は、球形又は擬似球形であること
を特徴とする導電性接着剤。
5. The conductive adhesive according to claim 1, wherein the resin ball has a spherical shape or a pseudo-spherical shape.
【請求項6】 請求項1乃至5のいずれかに記載の導電
性接着剤において、 前記樹脂ボールの粒径は、0.5〜50μmであること
を特徴とする導電性接着剤。
6. The conductive adhesive according to claim 1, wherein the resin balls have a particle size of 0.5 to 50 μm.
【請求項7】 請求項1乃至6のいずれかに記載の導電
性接着剤において、 前記絶縁性樹脂層の膜厚は、2μm以下であることを特
徴とする導電性接着剤。
7. The conductive adhesive according to claim 1, wherein the thickness of the insulating resin layer is 2 μm or less.
【請求項8】 請求項1乃至7のいずれかに記載の導電
性接着剤において、 前記主剤の粘度は、200,000cps以下であるこ
とを特徴とする導電性接着剤。
8. The conductive adhesive according to claim 1, wherein the base material has a viscosity of 200,000 cps or less.
【請求項9】 請求項1乃至8のいずれかに記載の導電
性接着剤において、 前記マイクロカプセル型導電フィラーの前記主剤に対す
る含有量は、体積比で1〜60%以下であることを特徴
とする導電性接着剤。
9. The conductive adhesive according to claim 1, wherein the content of the microcapsule-type conductive filler with respect to the main component is 1 to 60% or less by volume. Conductive adhesive that does.
JP23035391A 1991-09-10 1991-09-10 Conductive adhesive Withdrawn JPH0570750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23035391A JPH0570750A (en) 1991-09-10 1991-09-10 Conductive adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23035391A JPH0570750A (en) 1991-09-10 1991-09-10 Conductive adhesive

Publications (1)

Publication Number Publication Date
JPH0570750A true JPH0570750A (en) 1993-03-23

Family

ID=16906532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23035391A Withdrawn JPH0570750A (en) 1991-09-10 1991-09-10 Conductive adhesive

Country Status (1)

Country Link
JP (1) JPH0570750A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790237A (en) * 1993-07-29 1995-04-04 Hitachi Chem Co Ltd Circuit-connecting material and connection of circuit using the connecting material
WO2000045430A1 (en) * 1999-01-29 2000-08-03 Matsushita Electric Industrial Co., Ltd. Electronic parts mounting method and device therefor
KR100313766B1 (en) * 1999-12-30 2001-11-15 구자홍 Method and conductive powder struture of anisotropic conductive powder
JP2003234017A (en) * 1993-07-29 2003-08-22 Hitachi Chem Co Ltd Circuit connecting material and circuit connecting method using the same
JP2007162019A (en) * 1993-07-29 2007-06-28 Hitachi Chem Co Ltd Circuit connecting material and method for connecting circuit using the same
JP2007173810A (en) * 2005-12-21 2007-07-05 Palo Alto Research Center Inc Contact structure
US7492434B2 (en) 2005-08-04 2009-02-17 Nec Lcd Technologies, Ltd. Display device having an anisotropic-conductive adhesive film
WO2009054386A1 (en) 2007-10-22 2009-04-30 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
JP2009246078A (en) * 2008-03-31 2009-10-22 Fujitsu Ltd Circuit substrate and method for manufacturing it
GB2462169A (en) * 2008-07-01 2010-02-03 Bonding Ltd De Thermoexpandable microspheres with conductive coating
US7846547B2 (en) 2003-08-19 2010-12-07 Sony Corporation Insulation-coated conductive particle
US8124232B2 (en) 2007-10-22 2012-02-28 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
JPWO2019176549A1 (en) * 2018-03-16 2021-02-04 ジヤトコ株式会社 Control device and control method for continuously variable transmission
WO2022004070A1 (en) * 2020-07-02 2022-01-06 株式会社村田製作所 Piezoelectric oscillator
WO2022004071A1 (en) * 2020-07-02 2022-01-06 株式会社村田製作所 Piezoelectric oscillator

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234017A (en) * 1993-07-29 2003-08-22 Hitachi Chem Co Ltd Circuit connecting material and circuit connecting method using the same
JP2007162019A (en) * 1993-07-29 2007-06-28 Hitachi Chem Co Ltd Circuit connecting material and method for connecting circuit using the same
JPH0790237A (en) * 1993-07-29 1995-04-04 Hitachi Chem Co Ltd Circuit-connecting material and connection of circuit using the connecting material
JP4539644B2 (en) * 1993-07-29 2010-09-08 日立化成工業株式会社 Circuit connection material and circuit connection method using the connection material
US7683482B2 (en) 1999-01-29 2010-03-23 Panasonic Corporation Electronic component unit
WO2000045430A1 (en) * 1999-01-29 2000-08-03 Matsushita Electric Industrial Co., Ltd. Electronic parts mounting method and device therefor
US8007627B2 (en) 1999-01-29 2011-08-30 Panasonic Corporation Electronic component mounting method and apparatus
KR100313766B1 (en) * 1999-12-30 2001-11-15 구자홍 Method and conductive powder struture of anisotropic conductive powder
US7846547B2 (en) 2003-08-19 2010-12-07 Sony Corporation Insulation-coated conductive particle
US7492434B2 (en) 2005-08-04 2009-02-17 Nec Lcd Technologies, Ltd. Display device having an anisotropic-conductive adhesive film
JP2007173810A (en) * 2005-12-21 2007-07-05 Palo Alto Research Center Inc Contact structure
WO2009054386A1 (en) 2007-10-22 2009-04-30 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
US8124232B2 (en) 2007-10-22 2012-02-28 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
JP2009246078A (en) * 2008-03-31 2009-10-22 Fujitsu Ltd Circuit substrate and method for manufacturing it
GB2462169A (en) * 2008-07-01 2010-02-03 Bonding Ltd De Thermoexpandable microspheres with conductive coating
JPWO2019176549A1 (en) * 2018-03-16 2021-02-04 ジヤトコ株式会社 Control device and control method for continuously variable transmission
WO2022004070A1 (en) * 2020-07-02 2022-01-06 株式会社村田製作所 Piezoelectric oscillator
WO2022004071A1 (en) * 2020-07-02 2022-01-06 株式会社村田製作所 Piezoelectric oscillator

Similar Documents

Publication Publication Date Title
KR100290993B1 (en) Semiconductor device, wiring board for mounting semiconductor and method of production of semiconductor device
JPH0570750A (en) Conductive adhesive
US20030008133A1 (en) Anisotropic conductive film and method of fabricating the same for ultra-fine pitch COG application
US8846142B2 (en) Conductive particle, anisotropic conductive interconnection material that uses the conductive particle, and method for producing the conductive particle
JPH04332404A (en) Anisotropic conductive material and connection of integrated circuit element using it
JPH03112011A (en) Anisotropic conductive material, anisotropic adhesive, electrically connecting method of the adhesive applied electrode, and electric circuit substrate formed thereby
US6080443A (en) Method for production of microcapsule type conductive filler
JP4191567B2 (en) Connection structure using conductive adhesive and method for manufacturing the same
KR20030081451A (en) Bumpless semiconductor device
JPH0346774A (en) Anisotropic conductive adhesive, method of electrical connection between electrodes using such adhesive, and electric circuit base formed in such method
JP2906612B2 (en) Microcapsule type conductive adhesive and bonding method
US6255138B1 (en) Process for producing microencapsulated electroconductive filler
JPH04362104A (en) Method for coating metallic particle with polymer
JP2970720B2 (en) Microcapsule type conductive adhesive and method for producing the same
JP5444699B2 (en) Conductive particles for anisotropic conductive adhesive, anisotropic conductive adhesive, method for producing conductive particles for anisotropic conductive adhesive, semiconductor device
JPS63122133A (en) Electrically connecting method for semiconductor chip
EP0539211B1 (en) Method for production of microcapsule type conductive filler
JP3458707B2 (en) Mounting unit
JPS6353805A (en) Anisotropic conducting material and mounting of semiconductor device using the same
JPH087658A (en) Anisotropic conductive adhesive film
US6737108B2 (en) Microcapsulating conductive metal particles with polymerized monomers
JP3148008B2 (en) Method of connecting substrate and chip using conductive adhesive
JPH11219982A (en) Conductive particle and anisotropic conductive adhesive agent provided therewith
JP3422243B2 (en) Resin film
JP4378788B2 (en) IC chip connection method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203