JP4539644B2 - Circuit connection material and circuit connection method using the connection material - Google Patents

Circuit connection material and circuit connection method using the connection material Download PDF

Info

Publication number
JP4539644B2
JP4539644B2 JP2006318904A JP2006318904A JP4539644B2 JP 4539644 B2 JP4539644 B2 JP 4539644B2 JP 2006318904 A JP2006318904 A JP 2006318904A JP 2006318904 A JP2006318904 A JP 2006318904A JP 4539644 B2 JP4539644 B2 JP 4539644B2
Authority
JP
Japan
Prior art keywords
circuit connection
sulfonium salt
circuit
conductive particles
connection material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006318904A
Other languages
Japanese (ja)
Other versions
JP2007162019A (en
Inventor
貢 藤縄
功 塚越
共久 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2006318904A priority Critical patent/JP4539644B2/en
Publication of JP2007162019A publication Critical patent/JP2007162019A/en
Application granted granted Critical
Publication of JP4539644B2 publication Critical patent/JP4539644B2/en
Expired - Lifetime legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、2つの回路基板を互いに接着するとともに、同じ回路基板上にある隣接回路を短絡させることなく、2つの回路基板の互いに向き合う導体間を電気的に導通させることのできる回路接続材料及びその接続材料を用いた接続方法に関するものである。   The present invention provides a circuit connecting material capable of electrically connecting two mutually facing conductors of two circuit boards without bonding two circuit boards to each other and short-circuiting adjacent circuits on the same circuit board. The present invention relates to a connection method using the connection material.

2つの回路基板を互いに接着するとともに、2つの回路基板の互いに向き合う導体間を、回路を短絡させることなく電気的に導通させることのできる、回路接続材料としては、ウレタン系、ポリエステル系、アクリル系などの熱可塑性物質や、エポキシ系、シリコーン系などの熱硬化性物質を含む接着成分中に、導電性粒子を分散させたものが知られている(例えば、特許文献1、2参照)。   Circuit connection materials that can bond two circuit boards to each other and electrically connect the two circuit boards facing each other without short-circuiting the circuit are urethane, polyester, and acrylic. A material in which conductive particles are dispersed in an adhesive component containing a thermoplastic material such as epoxy, or a thermosetting material such as epoxy or silicone is known (see, for example, Patent Documents 1 and 2).

接着成分が熱硬化性物質であるとき、その熱硬化性物質を硬化させるための硬化剤又は触媒としては、エポキシ樹脂に対してアニオン重合型硬化剤である第3アミンやイミダゾール類が主として用いられる。第3アミン類やイミダゾール類を配合したエポキシ樹脂は160℃〜200℃程度の中温で、数10秒〜数時間程度の加熱により硬化するために可使時間が比較的長い。さらに、第3アミンやイミダゾール類をマイクロカプセル可することにより可使時間が延長されることが知られている(例えば、特許文献3参照)。   When the adhesive component is a thermosetting substance, as the curing agent or catalyst for curing the thermosetting substance, tertiary amines and imidazoles which are anionic polymerization type curing agents are mainly used for epoxy resins. . Epoxy resins containing tertiary amines and imidazoles are cured at a medium temperature of about 160 ° C. to 200 ° C. by heating for about several tens of seconds to several hours, so that the pot life is relatively long. Further, it is known that the pot life can be extended by microcapsuling a tertiary amine or imidazole (see, for example, Patent Document 3).

上記アニオン重合型硬化剤のほか、カチオン重合型硬化剤がある。カチオン重合型硬化剤としては、エネルギー線照射により樹脂を硬化させる感光性オニウム塩、例えば、芳香族ジアゾニウム塩、芳香族スルホニウム塩などが知られている。またエネルギー線照射以外に、加熱によっても活性化してエポキシ樹脂を硬化させるものとして、脂肪族スルホニウム塩が知られている(例えば、特許文献4、5参照)。
特開昭52−59889号公報 特開昭55−164007号公報 特開平4−314724号号公報 特開昭57−102922号公報 特開昭58−198532号公報
In addition to the above anionic polymerization type curing agent, there is a cationic polymerization type curing agent. As the cationic polymerization type curing agent, a photosensitive onium salt that cures a resin by energy ray irradiation, for example, an aromatic diazonium salt, an aromatic sulfonium salt, or the like is known. In addition to energy ray irradiation, aliphatic sulfonium salts are known as those that are activated by heating to cure the epoxy resin (see, for example, Patent Documents 4 and 5).
JP 52-59889 A JP 55-164007 A JP-A-4-314724 JP-A-57-102922 JP 58-198532 A

イミダゾール類などを硬化剤とする接着成分を用いた回路接続材料で回路基板上の導体間を電気的に導通させる際、接続時間を例えば、15秒に限定すると、140℃以下の加熱温度では接続部の信頼性が不十分であった。そして140℃以上とすると、ポリカーボネートのように軟化点が低い熱可塑性材料を用いた基板に対しては、熱的ダメージを与えるという問題があった。   When electrically connecting between conductors on a circuit board with a circuit connecting material using an adhesive component such as imidazole as a curing agent, the connection time is limited to, for example, 15 seconds. The reliability of the part was insufficient. When the temperature is 140 ° C. or higher, there is a problem of causing thermal damage to a substrate using a thermoplastic material having a low softening point such as polycarbonate.

さらに、接続時間を5秒に限定すると、200℃以下の接続温度では接続部の信頼性が不十分であり、接続温度を200℃以上とすると、回路基板の熱膨張等により接続部のずれ等が生じるという問題があった。   Furthermore, if the connection time is limited to 5 seconds, the reliability of the connection portion is insufficient at a connection temperature of 200 ° C. or less, and if the connection temperature is 200 ° C. or more, the connection portion may be displaced due to thermal expansion of the circuit board. There was a problem that occurred.

また、回路接続材料で回路基板上の導体間を電気的に導通させるには、接続部の厚みを、接続材料中の導電性粒子の直径以下にする必要があり、用いた硬化剤とカチオン重合性物質を含む組成物との反応性及び該組成物の流動性の調節が重要となる。流動性が悪いと、接続不良となる。   In addition, in order to electrically connect between conductors on the circuit board with the circuit connecting material, the thickness of the connecting portion needs to be equal to or smaller than the diameter of the conductive particles in the connecting material. It is important to adjust the reactivity with the composition containing the active substance and the fluidity of the composition. Poor fluidity results in poor connection.

芳香族ジアゾニウム塩を硬化剤とする接着成分は、回路基板が、エネルギー線を透過しないので使用できない。また、脂肪族スルホニウム塩を硬化剤とするものも、イミダゾール類などを硬化剤とするものと同様の問題がある。   An adhesive component having an aromatic diazonium salt as a curing agent cannot be used because the circuit board does not transmit energy rays. Also, those using aliphatic sulfonium salts as curing agents have the same problems as those using imidazoles as curing agents.

本発明は、互いに向き合う回路基板同士の導体間を接続するとき、接続時間が10秒〜20秒と限定した場合でも、耐熱性に劣る基板に対しても熱的ダメージを与えることのないように、140℃以下の比較的低温の加熱条件で硬化でき、さらに接続時間を短く限定した、5秒でも接続部のずれ等が少なく、200℃以下の比較的中温の加熱条件で硬化でき、室温で10時間以上の可使時間を有し、接続時に接着剤成分が十分に流動し良好な接続性を有する回路接続材料を提供することを目的とするものである。   In the present invention, when connecting between conductors of circuit boards facing each other, even if the connection time is limited to 10 seconds to 20 seconds, thermal damage is not caused even to a substrate having poor heat resistance. It can be cured under relatively low temperature heating conditions of 140 ° C. or lower, and the connection time is limited to a short time. An object of the present invention is to provide a circuit connecting material having a pot life of 10 hours or more and having a good connectivity by allowing the adhesive component to flow sufficiently during connection.

本発明者らは、2つの回路基板上の、互いに向き合う回路導体間を140℃以下の加熱では60秒以内で、140〜200℃の加熱では30秒以内で接続できかつ室温では不活性な接続材料について鋭意検討した結果、ベンジル基を有する芳香族スルホニウム塩より選択された感熱性スルホニウム塩を用いることにより上記目的が達成されることを見出し、本発明を完成したものである。   The present inventors can connect the circuit conductors facing each other on two circuit boards within 60 seconds when heated at 140 ° C. or less, within 30 seconds when heated at 140 to 200 ° C., and inactive at room temperature. As a result of intensive studies on the materials, the inventors have found that the above object can be achieved by using a heat-sensitive sulfonium salt selected from an aromatic sulfonium salt having a benzyl group, and have completed the present invention.

本発明は、カチオン重合性物質及びポリマー類を含む組成物100重量部に対して下記の芳香族スルホニウム塩を0.5〜10重量部を配合した接着成分に、導電性粒子を分散したことを特徴とする回路接続材料である。 The present invention is an aromatic sulfonium salt of the following with respect to 100 parts by weight of the composition containing the mosquito thione polymerizable substance and polymers in adhesive component blended with 0.5 to 10 parts by weight of that, by dispersing conductive particles A circuit connection material characterized by the following.

発明における芳香族スルホニウム塩、化1で示されるスルホニウム塩であって、化1中RがR及びRよりも電子吸引性の高い基である。
Aromatic sulfonium salts of the present invention is a sulfonium salt represented by Formula 1, Formula 1 wherein R 1 is Ru high group Der electron withdrawing than R 2 and R 3.

Figure 0004539644

化1中、R、R及びRは、置換又は非置換の基であり、互いに同じでも異なっていてもよく、Yは、非求核性陰イオンである。
Figure 0004539644

In Formula 1, R 1 , R 2 and R 3 are substituted or unsubstituted groups, which may be the same or different from each other, and Y is a non-nucleophilic anion.

本発明の接続部材は、熱的にダメージをうけやすい基板に、熱的ダメージを与えない比較的低温域でも互いに向き合う回路導体間の接続可能であり、また、中温域では短時間で確実な接続ができる。   The connecting member of the present invention can connect between circuit conductors facing each other even in a relatively low temperature range that does not cause thermal damage to a substrate that is easily damaged by heat, and can be reliably connected in a short time in the middle temperature range. Can do.

本発明は、カチオン重合性物質を含む組成物100重量部に対して化2で示されるスルホニウム塩を0.5〜10重量部を配合した接着成分に、導電性粒子を分散したことを特徴とする回路接続材である。

Figure 0004539644

化2中、R、R及びRは、置換又は非置換の基であり、互いに同じでも異なっていてもよく、Yは、非求核性陰イオンである。 The present invention is characterized in that conductive particles are dispersed in an adhesive component containing 0.5 to 10 parts by weight of a sulfonium salt represented by Chemical Formula 2 with respect to 100 parts by weight of a composition containing a cationic polymerizable substance. It is a circuit connection material.
Figure 0004539644

In Chemical Formula 2, R 1 , R 2 and R 3 are substituted or unsubstituted groups, which may be the same or different from each other, and Y is a non-nucleophilic anion.

としては、カチオン重合の開始剤として推定されるベンジルカチオンを発生させるために、電子吸引性の基、例えば、ニトロソ基、カルボニル基、カルボキシル基、シアノ基、トリアルキルアンモニウム基、フルオロメチル基などが好ましく、R及びRとしては、電子供与性の基、例えば、アミノ基、水酸基、メチル基などが好ましい。Yは、非求核性陰イオンであればよく、例えば、ヘキサフルオロアルセネート(AsF)、ヘキサクロロアンチモネート(SbCl)、ヘキサフルオロホスフェート(PF)、テトラフルオロボレート(BF)が挙げられる。 R 1 is an electron-withdrawing group such as a nitroso group, a carbonyl group, a carboxyl group, a cyano group, a trialkylammonium group, a fluoromethyl group, in order to generate a benzyl cation presumed as an initiator for cationic polymerization. R 2 and R 3 are preferably electron donating groups such as an amino group, a hydroxyl group, and a methyl group. Y may be a non-nucleophilic anion, for example, hexafluoroarsenate (AsF 6 ), hexachloroantimonate (SbCl 6 ), hexafluorophosphate (PF 6 ), tetrafluoroborate (BF 4 ). Can be mentioned.

これらのスルホニウム塩は140℃以下の温度で活性化し、カチオン重合を引き起こすことができ、かつ室温(25℃)においてカチオン重合性物質の存在下で、10時間以上経過後の反応性接着剤の粘度が、初期粘度の2倍以下である。また、これらのスルホニウム塩は必要に応じて溶解可能な各種溶媒(例えば酢酸エチル)に溶解して使用できる。スルホニウム塩の配合量は、接着成分100重量部に対して0.05〜10重量部とする。接着成分100重量部に対して、1.5〜5重量部とするのが特に好ましい。配合量が多いと、電食の原因となりやすく、また、硬化反応が爆発的に進行するので望ましくない。   These sulfonium salts are activated at a temperature of 140 ° C. or lower, can cause cationic polymerization, and the viscosity of the reactive adhesive after 10 hours or more in the presence of a cationic polymerizable substance at room temperature (25 ° C.). Is not more than twice the initial viscosity. Further, these sulfonium salts can be used by dissolving them in various solvents (for example, ethyl acetate) which can be dissolved if necessary. The compounding quantity of a sulfonium salt shall be 0.05-10 weight part with respect to 100 weight part of adhesive components. The amount is particularly preferably 1.5 to 5 parts by weight with respect to 100 parts by weight of the adhesive component. A large amount is undesirable because it tends to cause electrolytic corrosion, and the curing reaction proceeds explosively.

接着成分中に分散させる導電性粒子としては、加熱加圧又は単なる加圧により変形するものが好ましい。導電性粒子が変形することにより、接続時に回路との接触面積が増加し、接続信頼性が向上し、回路の厚みや平坦性のばらつき、回路が突起したものとそうでないものが混在しているときでも、良好な接続が行える。この変形は、導電性粒子自体が変形するもの、導電性粒子が凝集体を形成していて、接続時に凝集状態を変えるものいずれでもよい。   The conductive particles dispersed in the adhesive component are preferably those that are deformed by heating or pressing or simply pressing. The deformation of the conductive particles increases the contact area with the circuit at the time of connection, improving the connection reliability, variation in the thickness and flatness of the circuit, and a mixture of protrusions and those that are not. Sometimes a good connection can be made. This deformation may be either one in which the conductive particles themselves are deformed or one in which the conductive particles form an aggregate and change the aggregated state at the time of connection.

導電性粒子としては、Au、Ag、Ni、Cu、Sb、Sn、はんだなどの金属粒子や、カーボンなど導電性を有する物質の粒子、これらの粒子又は非導電性のガラス、セラミックス、プラスチック粒子を核として表面に他の導電性材料を被覆したものがある。更に、導電性粒子を核とし、この核の表面を絶縁層で被覆し、加圧したときに内部の核が絶縁層を破って接触するようにしたものも有効である。このような導電性粒子を用いると、加圧方向に直角方向の絶縁性が確保され、回路間の狭い細線回路の接続に極めて有効である。導電性粒子の粒径は、回路中で隣接する線間距離よりも小さくないと、隣接回路間を短絡させる。また、接続時の加圧により変形して、横に拡がることも考慮して、導電性粒子の粒径は1〜18μmであるのが好ましい。必要により、絶縁粒子を、導電性粒子間の接触を妨げない程度に併用してもよい。   Examples of the conductive particles include metal particles such as Au, Ag, Ni, Cu, Sb, Sn, and solder, particles of a conductive material such as carbon, these particles, or non-conductive glass, ceramics, and plastic particles. Some cores have a surface coated with another conductive material. Furthermore, it is also effective to use conductive particles as nuclei and coat the surface of these nuclei with an insulating layer so that when pressed, the inner nuclei break the insulating layer and come into contact. When such conductive particles are used, insulation in a direction perpendicular to the pressurizing direction is secured, and it is extremely effective for connecting narrow thin circuit between circuits. If the particle size of the conductive particles is not smaller than the distance between adjacent lines in the circuit, the adjacent circuits are short-circuited. Moreover, it is preferable that the particle diameter of electroconductive particle is 1-18 micrometers considering that it deform | transforms by the pressurization at the time of a connection and spreads sideways. If necessary, insulating particles may be used in combination so as not to prevent contact between the conductive particles.

導電性粒子の配合量は、接着時に、加圧方向にのみ導電性を生ずる程度とするのが好ましい。回路中で、隣接する線間距離や導電性粒子の径によって異なるが、接着成分に対して、0.05〜20体積%の範囲、好ましくは、0.1〜15体積%、より好ましくは、0.2〜10体積%とする。20体積%をこえると、透明性が悪化し、接続する回路の位置合わせが困難となる。0.05体積%より少ないと導電性を得られない。   The blending amount of the conductive particles is preferably set so as to produce conductivity only in the pressing direction at the time of bonding. In the circuit, although it varies depending on the distance between adjacent lines and the diameter of the conductive particles, it is in the range of 0.05 to 20% by volume, preferably 0.1 to 15% by volume, more preferably, with respect to the adhesive component. 0.2 to 10% by volume. If it exceeds 20% by volume, the transparency deteriorates and it becomes difficult to align the circuits to be connected. If it is less than 0.05% by volume, conductivity cannot be obtained.

接着成分の100℃における溶融粘度が、1〜1,000Pa・s、特に、10〜1,000Pa・sである場合に、接着成分がよく流動して接続厚みが導電性粒子の径よりも小さくなる。1,000Pa・s以上であると、流動性が悪く接続厚みが導電性粒子の径よりも厚くなり接続性が悪い。1〜10Pa・sの範囲であるときには、初期に圧力を小さくし、接着成分がある程度硬化してから圧力を高めるなどの注意が必要となる。1Pa・s以下では、流動しすぎて成着成分が接続部外に流れ出し、接続部分に保持されにくく、信頼性が悪くなる。溶融粘度の調整については、後述する。   When the melt viscosity of the adhesive component at 100 ° C. is 1 to 1,000 Pa · s, particularly 10 to 1,000 Pa · s, the adhesive component flows well and the connection thickness is smaller than the diameter of the conductive particles. Become. If it is 1,000 Pa · s or more, the fluidity is poor and the connection thickness is thicker than the diameter of the conductive particles, resulting in poor connectivity. When the pressure is in the range of 1 to 10 Pa · s, it is necessary to take care such that the pressure is initially reduced and the pressure is increased after the adhesive component is cured to some extent. If it is 1 Pa · s or less, it flows too much and the deposition component flows out of the connecting portion and is difficult to be held in the connecting portion, resulting in poor reliability. The adjustment of the melt viscosity will be described later.

接着成分中のスルホニウム塩をマイクロカプセル化すると接着成分の貯蔵安定性がよくなる。カチオン重合性物質とスルホニウム塩とが貯蔵中に互いに接触しないためである。マイクロカプセル化する方法は、溶剤蒸発法、スプレードライ法、コアセルベーション法、界面重合法、などとくに制限はない。マイクロカプセルの粒径は小さいほうがよく、スルホニウム塩は疎水性であるので、界面重合法によるのが好ましい。   When the sulfonium salt in the adhesive component is microencapsulated, the storage stability of the adhesive component is improved. This is because the cationically polymerizable substance and the sulfonium salt do not come into contact with each other during storage. The method for microencapsulation is not particularly limited, such as solvent evaporation, spray drying, coacervation, and interfacial polymerization. The microcapsules should have a small particle size, and the sulfonium salt is hydrophobic, so that the interfacial polymerization method is preferred.

接着成分中、カチオン重合性物質としては、エポキシ樹脂、ポリビニルエーテル、ポリスチレンなどがあり、これらは、単独で用いてもよく、併用してもよい。また、他のポリマーや重量平均分子量3000以下の固形樹脂と混合して用いることもできる。   Among the adhesive components, examples of the cationically polymerizable substance include an epoxy resin, polyvinyl ether, and polystyrene. These may be used alone or in combination. Moreover, it can also be used by mixing with other polymers or solid resins having a weight average molecular weight of 3000 or less.

前記カチオン重合性物質のうち、エポキシ樹脂がもっとも好適である。エポキシ樹脂は、1分子中に2個以上のエポキシ基を有する化合物であり、例えば、エピクロルヒドリンとビスフェノールA又はビスフェノールFなどから誘導されるビスフェノール型エポキシ樹脂や、ポリグリシジルエーテル、ポリグリシジルエステル、脂還式エポキシ樹脂などが挙げられる。   Of the cationically polymerizable substances, an epoxy resin is most preferable. The epoxy resin is a compound having two or more epoxy groups in one molecule. For example, a bisphenol type epoxy resin derived from epichlorohydrin and bisphenol A or bisphenol F, polyglycidyl ether, polyglycidyl ester, fat reductant. An epoxy resin etc. are mentioned.

カチオン重合性物質と混合可能なポリマーとしては、ポリビニルアセタール、フェノキシ樹脂、ポリエチレンテレフタレート、ポリウレタンなどや、塩化ビニル、オレフィン、エチレン系アイオノマー、ポリアミド系などのポリマー類がある。フィルム形成性や溶融時の流動性、樹脂相互の溶解性を考慮して、これらのポリマーの分子量は10,000以上80,000以下が好ましい。また、水酸基(OH基)やカルボキシル基(COOH基)などの極性基を有すると、エポキシ樹脂との相溶性が向上し均一な外観や特性を有するフィルムが得られ、かつ、エポキシ基との反応性を有するので好ましい。   Examples of the polymer that can be mixed with the cationic polymerizable substance include polyvinyl acetal, phenoxy resin, polyethylene terephthalate, polyurethane, and polymers such as vinyl chloride, olefin, ethylene ionomer, and polyamide. In consideration of film formability, fluidity at the time of melting, and solubility between resins, the molecular weight of these polymers is preferably 10,000 or more and 80,000 or less. In addition, when having a polar group such as a hydroxyl group (OH group) or a carboxyl group (COOH group), compatibility with the epoxy resin is improved, and a film having a uniform appearance and characteristics can be obtained, and reaction with the epoxy group. It is preferable because of its properties.

重量平均分子量3000以下の固形樹脂としては、ロジンやテルペンなどの天然物系樹脂、脂肪族、脂環族、芳香族、クマロン・インデン・スチレン系などの重合系樹脂、フェノール樹脂やキシレン樹脂などの縮合系樹脂など、及び、これらの変性体や誘導体がある。重量平均分子量3000以下の固形樹脂は、粘着性や接着性などの調整する必要がある場合に、単独で、又は、混合して用いる。   Examples of solid resins having a weight average molecular weight of 3000 or less include natural resins such as rosin and terpene, aliphatic, alicyclic, aromatic, polymer resins such as coumarone, indene and styrene, phenol resins and xylene resins. There are condensed resins, etc., and modified products and derivatives thereof. The solid resin having a weight average molecular weight of 3000 or less is used alone or in combination when it is necessary to adjust the tackiness or adhesiveness.

前記化2で表されるスルホニウム塩は常温で安定であり、かつカチオン重合性物質を110℃〜140℃では10〜60秒、130℃〜200℃では1〜30秒の加熱で活性化して硬化する。さらに接着成分の溶融粘度を100℃で1〜1,000Pa・sにすることで、0.5〜5MPaの加圧により接着成分の好適な流動が得られ、導電性粒子を介した回路導体間の接続が得られる。したがって、粘着成分の常温での保存安定性がよく、かつ基板材料に熱的なダメージを与えることなく粘着硬化でき、回路の接続が得られる。   The sulfonium salt represented by Chemical Formula 2 is stable at room temperature, and the cationic polymerizable substance is activated and cured by heating at 110 ° C. to 140 ° C. for 10 to 60 seconds and 130 ° C. to 200 ° C. for 1 to 30 seconds. To do. Furthermore, by setting the melt viscosity of the adhesive component to 1 to 1,000 Pa · s at 100 ° C., a suitable flow of the adhesive component is obtained by pressurization of 0.5 to 5 MPa, and between the circuit conductors via the conductive particles Connection is obtained. Therefore, the adhesive component has good storage stability at room temperature, can be cured by adhesion without thermally damaging the substrate material, and circuit connection can be obtained.

以下、実施例で、より詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, although an Example demonstrates in detail, this invention is not limited to this.

実施例1
ビスフェノールA型液状エポキシ樹脂(油化シェル株式会社、商品名エピコート828を使用)50g、平均分子量25,000、水酸基含有量6%のフェノキシ樹脂(ユニオンカーバイト株式会社、商品名PKHAを使用)50gを、重量比でトルエン対酢酸エチル1対1の混合溶剤に溶解して、固形分40%の溶液とした。
Example 1
50 g of bisphenol A type liquid epoxy resin (Oka Shell Co., Ltd., using trade name Epicoat 828), 50 g of phenoxy resin (Union Carbide Co., Ltd., using trade name PKHA) having an average molecular weight of 25,000 and a hydroxyl group content of 6% Was dissolved in a mixed solvent of toluene and ethyl acetate in a weight ratio of 1: 1 to obtain a solution having a solid content of 40%.

ポリスチレンを核とする粒子の表面に、厚み0.2μmのニッケル層を設け、このニッケル層の外側に、厚み0.02μmの金層を設け、平均粒径10μm、比重2.0の導電性粒子を製造した。   A nickel layer having a thickness of 0.2 μm is provided on the surface of particles having polystyrene as a core, and a gold layer having a thickness of 0.02 μm is provided outside the nickel layer, and conductive particles having an average particle diameter of 10 μm and a specific gravity of 2.0. Manufactured.

p−アセトキシフェニルベンジルメチルスルホニウム塩を酢酸エチルに溶解して、50重量%溶液とした。   p-Acetoxyphenylbenzylmethylsulfonium salt was dissolved in ethyl acetate to give a 50% by weight solution.

固形重量比で樹脂成分100、p−アセトキシフェニルベンジルメチルスルホニウム塩2となるように配合し、更に、導電性粒子を2体積%配合分散させ、厚み80μmのフッ素樹脂フィルムに塗布し、室温で送風乾燥して、厚み25μmの回路接続材料を得た。
The resin component 100 in solid weight ratio, and blended so that p- acetoxy-phenylene behenate emissions Gilles methyl sulfonium salt 2, further conductive particles is 2 vol% blend dispersion was applied to the fluororesin film having a thickness of 80 [mu] m, at room temperature The circuit connection material having a thickness of 25 μm was obtained.

実施例2
p−アセトキシフェニルベンジルメチルスルホニウム塩に代えて、p−メトキシカルボニルオキシフェニルベンジルエチルスルホニウム塩を使用したほかは、実施例1と同様にして回路接続材料を得た。
Example 2
A circuit connecting material was obtained in the same manner as in Example 1 except that p-methoxycarbonyloxyphenylbenzylethylsulfonium salt was used instead of p-acetoxyphenylbenzylmethylsulfonium salt.

実施例3
p−アセトキシフェニルベンジルメチルスルホニウム塩に代えて、p−ヒドロキシフェニルベンジルメチルスルホニウム塩を使用したほかは、実施例1と同様にして回路接続材料を得た。
Example 3
A circuit connecting material was obtained in the same manner as in Example 1 except that p-hydroxyphenylbenzylmethylsulfonium salt was used instead of p-acetoxyphenylbenzylmethylsulfonium salt.

実施例4
p−アセトキシフェニルベンジルメチルスルホニウム塩に代えて、p−ヒドロキシフェニル−p−ニトロベンジルメチルスルホニウム塩を使用したほかは、実施例1と同様にして回路接続材料を得た。
Example 4
A circuit connection material was obtained in the same manner as in Example 1 except that p-hydroxyphenyl-p-nitrobenzylmethylsulfonium salt was used instead of p-acetoxyphenylbenzylmethylsulfonium salt.

実施例5
p−アセトキシフェニルベンジルメチルスルホニウム塩の配合量を0.2重量部としたほかは、実施例1と同様にして回路接続材料を得た。
Example 5
A circuit connecting material was obtained in the same manner as in Example 1 except that the amount of p-acetoxyphenylbenzylmethylsulfonium salt was 0.2 parts by weight.

実施例6
p−アセトキシフェニルベンジルメチルスルホニウム塩の配合量を10重量部としたほかは、実施例1と同様にして回路接続材料を得た。
Example 6
A circuit connecting material was obtained in the same manner as in Example 1 except that the amount of p-acetoxyphenylbenzylmethylsulfonium salt was 10 parts by weight.

実施例7
ビスフェノールA型液状エポキシ樹脂に代えて、脂環式エポキシ樹脂(ダイセル化学工業株式会社、商品名セロキサイド2021を使用)を使用したほかは、実施例1と同様にして回路用接続材料を得た。
Example 7
A connection material for a circuit was obtained in the same manner as in Example 1 except that an alicyclic epoxy resin (using Daicel Chemical Industries, Ltd., trade name Celoxide 2021) was used instead of the bisphenol A liquid epoxy resin.

実施例8
ビスフェノールA型液状エポキシ樹脂に代えて、ビスフェノールA型固形エポキシ樹脂(油化シェルエポキシ株式会社、商品名エピコート1001を使用)を使用したほかは、実施例1と同様にして回路用接続材料を得た。
Example 8
A circuit connection material was obtained in the same manner as in Example 1 except that bisphenol A type solid epoxy resin (Oilized Shell Epoxy Co., Ltd., using trade name Epicoat 1001) was used instead of bisphenol A type liquid epoxy resin. It was.

参考例9
ビスフェノールA型液状エポキシ樹脂に代えて、アクリル樹脂(昭和高分子株式会社、商品名リポキシSD−1509を使用)を使用したほかは、実施例1と同様にして回路接続材料を得た。
Reference Example 9
A circuit connection material was obtained in the same manner as in Example 1 except that an acrylic resin (Showa Polymer Co., Ltd., trade name Lipoxy SD-1509 was used) was used instead of the bisphenol A liquid epoxy resin.

実施例10
導電性粒子の量を0.5体積%としたほかは実施例1と同様にして回路接続材料を得た。
Example 10
A circuit connection material was obtained in the same manner as in Example 1 except that the amount of conductive particles was changed to 0.5% by volume.

実施例11
導電性粒子の量を5体積%としたほかは、実施例1と同様にして回路接続材料を得た。
Example 11
A circuit connection material was obtained in the same manner as in Example 1 except that the amount of the conductive particles was changed to 5% by volume.

実施例12
導電性粒子の径を3μmとしたほかは、実施例1と同様にして回路接続材料を得た。
Example 12
A circuit connecting material was obtained in the same manner as in Example 1 except that the diameter of the conductive particles was 3 μm.

実施例13
導電性粒子を、平均単粒径2μm、凝集粒径10μmのニッケル粒子に代えたほかは実施例1と同様にして回路接続材料を得た。
Example 13
A circuit connecting material was obtained in the same manner as in Example 1 except that the conductive particles were replaced with nickel particles having an average single particle size of 2 μm and an aggregate particle size of 10 μm.

実施例14
導電性粒子を、平均単粒径2μm、凝集粒径10μmのニッケル粒子を0.5体積%とし、粒径2μmのシリカ粒子を0.5体積%加えたほかは実施例1同様にして回路接続材料を得た。
Example 14
Circuit connection was made in the same manner as in Example 1 except that conductive particles were 0.5% by volume of nickel particles having an average single particle size of 2 μm and an aggregated particle size of 10 μm, and 0.5% by volume of silica particles having a particle size of 2 μm were added. Obtained material.

実施例15
ビスフェノールA型液状エポキシ樹脂(エピコート828)を70gとし、フェノキシ樹脂(ユニオンカーバイト株式会社、商品名PKHAを使用)に代えかつ配合量を30gとしたほかは実施例1と同様にして回路接続材料を得た。
Example 15
Circuit connection material as in Example 1, except that 70 g of bisphenol A type liquid epoxy resin (Epicoat 828) was used instead of phenoxy resin (Union Carbide Co., Ltd., trade name PKHA was used) and the blending amount was 30 g. Got.

実施例16
p−アセトキシフェニルベンジルメチルスルホニウム塩10重量部、メタクリル酸メチル16重量部、スチレン16重量部、エチレングリコールジメタクリレート8重量部、アゾ化合物0.05重量部(和光純薬株式会社製V−60、V−40各0.025重量部)をA成分とし、水200重量部、ドデシルベンゼンスルフォン酸ナトリウム0.2重量部、ポリビニルアルコール0.125重量部をB成分とし、チッ素雰囲気の密封容器中60℃で、4時間撹拌し、乾燥してスルホニウム塩をマイクロカプセル化した。以下実施例1と同様にして回路接続材料を得た。
Example 16
10 parts by weight of p-acetoxyphenylbenzylmethylsulfonium salt, 16 parts by weight of methyl methacrylate, 16 parts by weight of styrene, 8 parts by weight of ethylene glycol dimethacrylate, 0.05 parts by weight of azo compound (V-60 manufactured by Wako Pure Chemical Industries, Ltd. V-40 each 0.025 part by weight) as component A, water 200 parts by weight, sodium dodecylbenzenesulfonate 0.2 part by weight, polyvinyl alcohol 0.125 part by weight as component B, in a nitrogen atmosphere sealed container The mixture was stirred at 60 ° C. for 4 hours and dried to microencapsulate the sulfonium salt. Thereafter, a circuit connecting material was obtained in the same manner as in Example 1.

参考例17
p−アセトキシフェニルベンジルメチルスルホニウム塩に代えて、p−ヒドロキシフェニルジメチルスルホニウム塩(ベンジル基のないスルホニウム塩)を使用したほかは、実施例1と同様にして回路接続材料を得た。
Reference Example 17
A circuit connecting material was obtained in the same manner as in Example 1 except that p-hydroxyphenyldimethylsulfonium salt (sulfonium salt having no benzyl group) was used instead of p-acetoxyphenylbenzylmethylsulfonium salt.

比較例1
p−アセトキシフェニルベンジルメチルスルホニウム塩に代えて、1−シアノエチル−2−メチルイミダゾールを使用したほかは、実施例1と同様にして回路接続材料を得た。
Comparative Example 1
A circuit connecting material was obtained in the same manner as in Example 1 except that 1-cyanoethyl-2-methylimidazole was used in place of the p-acetoxyphenylbenzylmethylsulfonium salt.

比較例2
導電性粒子を配合しないほかは、実施例1と同様にして回路接続材料を得た。
Comparative Example 2
A circuit connection material was obtained in the same manner as in Example 1 except that the conductive particles were not blended.

実施例18
導電性粒子の径が20μmを用いたほかは、実施例1と同様にして回路接続材料を得た。
Example 18
A circuit connection material was obtained in the same manner as in Example 1 except that the diameter of the conductive particles was 20 μm.

実施例19
ビスフェノールA型液状エポキシ樹脂(エピコート828)を20gとし、フェノキシ樹脂(PKHA)を80gとしたほかは実施例1と同様にして回路接続材料を得た。
Example 19
A circuit connecting material was obtained in the same manner as in Example 1 except that 20 g of bisphenol A type liquid epoxy resin (Epicoat 828) and 80 g of phenoxy resin (PKHA) were used.

DSCの測定
以上得られた回路接続材料を3mg(±0.1mg)秤りとり、密閉式アルミパン中で昇温速度10℃/分でDSCを測定した。用いた分析計は、デュポン社製TA2000である。
Measurement of DSC 3 mg (± 0.1 mg) of the circuit connection material obtained above was weighed, and DSC was measured in a sealed aluminum pan at a heating rate of 10 ° C./min. The analyzer used is TA2000 manufactured by DuPont.

溶融粘度の測定
実施例1、15、19で、ビスフェノールA型液状エポキシ樹脂(エピコート828)とフェノキシ樹脂(PKHA)を溶剤に溶解せず250℃近辺で溶融し、均一に混合した後、10g程度を分取し、徐々に冷却し、100℃での粘度を測定した。このとき硬化剤、導電性粒子は配合しなかった。測定に用いた装置は(株)レスカ製デジタル粘度計HU−8である。
Measurement of Melt Viscosity In Examples 1, 15 and 19, bisphenol A type liquid epoxy resin (Epicoat 828) and phenoxy resin (PKHA) were not dissolved in a solvent but were melted around 250 ° C. and mixed uniformly, and about 10 g. Was collected, cooled gradually, and the viscosity at 100 ° C. was measured. At this time, a curing agent and conductive particles were not blended. The apparatus used for the measurement is a digital viscometer HU-8 manufactured by Resuka Co., Ltd.

回路の接続
実施例1〜19、比較例1〜2の回路接続材料を用いてライン幅100μm、ピッチ200μm、厚み35μmの銅回路を250本有するフレキシブル回路板(FPC)と、全面に酸化インジウム(ITO)の薄層を形成(表面抵抗40Ω/□)した、厚み0.5mmのポリカーボネート板(ASTM D648、1.86MPaでの熱変形温度140℃)とを、130℃、1.5MPaで20秒間加熱加圧して幅3mmにわたり接続した。このとき、あらかじめポリカーボネート板上に、回路用接続材料の接着剤面を貼り付け後、70℃、0.5MPa、5秒間加熱加圧して仮接続し、その後フッ素樹脂フィルムを剥離してFPCと接着した。また、ライン幅100μm、ピッチ200μm厚み35μmの銅回路を250本有するFPCとITOの薄層形成したガラス(表面抵抗20Ω/□)とを、160℃、1.5MPaで10秒間加熱加圧して幅3mmにわたり接続した。このとき上記と同様にITOガラス上に仮接続を行った。
Circuit connection A flexible circuit board (FPC) having 250 copper circuits having a line width of 100 μm, a pitch of 200 μm, and a thickness of 35 μm using the circuit connection materials of Examples 1 to 19 and Comparative Examples 1 and 2, and indium oxide ( A 0.5 mm thick polycarbonate plate (ASTM D648, heat distortion temperature 140 ° C. at 1.86 MPa) having a thin layer of ITO (surface resistance 40 Ω / □) was formed at 130 ° C. and 1.5 MPa for 20 seconds. It was heated and pressed to connect over a width of 3 mm. At this time, after pasting the adhesive surface of the circuit connection material on the polycarbonate plate in advance, 70 ° C., 0.5 MPa, heating and pressurizing for 5 seconds to temporarily connect, and then peeling the fluororesin film and bonding to the FPC did. In addition, FPC having 250 copper circuits with a line width of 100 μm, a pitch of 200 μm and a thickness of 35 μm and glass with a thin layer of ITO (surface resistance 20 Ω / □) were heated and pressed at 160 ° C. and 1.5 MPa for 10 seconds. Connected over 3 mm. At this time, temporary connection was made on the ITO glass in the same manner as described above.

接続抵抗の測定
回路の接続後、接続部を含むFPCの隣接回路間の抵抗値を、初期と、85℃、85%RHの高温高湿下に500時間保持した後にマルチメータで測定した。
Measurement of connection resistance After connection of the circuit, the resistance value between adjacent circuits of the FPC including the connection portion was measured with a multimeter after being initially held at a high temperature and high humidity of 85 ° C. and 85% RH for 500 hours.

保存安定性
回路接続材料を配合溶液のままで、溶剤が揮発しないように密封して、25℃に放置し、溶液粘度が2倍になった時間を調べた。
Storage stability The circuit connection material was kept as a compound solution, sealed so that the solvent would not evaporate, and allowed to stand at 25 ° C., and the time when the solution viscosity doubled was examined.

接続厚みの測定
ITOの薄層を形成した基板とFPCの厚みをマイクロメータによりあらかじめ測定しておき、回路接続材料により接続後厚みを測定し、接続厚みを算出した。
Measurement of connection thickness The thickness of the substrate on which the ITO thin layer was formed and the FPC were measured in advance with a micrometer, the thickness after connection was measured with a circuit connection material, and the connection thickness was calculated.

これらの測定結果を表1及び表2に示す。この結果から、以下のことがわかる。   These measurement results are shown in Tables 1 and 2. From this result, the following can be understood.

各実施例について、DSCのピーク温度は、100〜120℃であり、参考例17及び比較例1のそれよりも10〜20℃低い。特に、実施例7の接着剤は、DSCのピーク温度が、実施例1のそれよりも10℃低く、接続抵抗の上昇も見られず、良好な接続が得られている。また、各実施例について、初期の抵抗値は、参考例17及び比較例1のそれよりも著しく低く、高温高湿下に保持した後の接続抵抗の上昇も見られないか、小さい値である。参考例17,比較例1は反応不足であったためと考える。実施例8の接続材料は、DSCのピーク温度が120℃と高く、接続抵抗の上昇も若干大きくなっている。この理由は、固形エポキシ樹脂を用いたので、反応性が若干低下したためと考えられる。比較例2は導電性粒子がないので、初期の抵抗も高く、接続抵抗の上昇も著しい。実施例18は導電性粒子が20μmと大きいため、2体積%では接続部の導電性粒子数が少なくなったため、若干高い抵抗値となった。導電性粒子として、平均単粒径2μmで凝集径10μmのニッケル粒子を用いた実施例10の接続材料も、実施例1の接続材料と同様に、良好な接続がえられている。ニッケル粒子と粒径2μmのシリカ粒子を体積比で1対1で混合したものを配合した実施例11の接着剤も、実施例1と同様に良好な接続が得られ、特に、ニッケル粒子の間にシリカ粒子が存在して、隣接回路との絶縁性を良好にしていることがわかった。実施例1及び実施例15の接続材料は、100℃の溶融粘度が1〜1,000Pa・sの範囲内にあり、接続厚みも導電性粒子の粒径以下になっているが、実施例19の接続材料は、溶融粘度が高く、接着成分が十分に流動する前に硬化してしまい、接続厚みが導電性粒子の粒径よりも大きくなった。そのため、接続抵抗は大きくなり、上昇も著しかった。実施例1、5、6及び16の接着剤溶液について、25℃で長期間放置したところ、実施例1の溶液は3ヵ月後に、実施例5の溶液は6ヵ月後に、実施例6の溶液は1か月後に、それぞれ、粘度が2倍になった。実施例16はマイクロカプセル化することにより保存性がのびて3ヵ月から6ヵ月となっている。
About each Example, the peak temperature of DSC is 100-120 degreeC, and it is 10-20 degreeC lower than that of the reference example 17 and the comparative example 1. FIG. In particular, the adhesive of Example 7 has a DSC peak temperature that is 10 ° C. lower than that of Example 1 and does not show an increase in connection resistance, thus providing good connection. Further, for each example, the initial resistance value is significantly lower than that of Reference Example 17 and Comparative Example 1, and the increase in connection resistance after holding under high temperature and high humidity is not observed or is a small value. . It is considered that Reference Example 17 and Comparative Example 1 were insufficient in reaction. In the connection material of Example 8, the peak temperature of DSC is as high as 120 ° C., and the increase in connection resistance is slightly large. The reason for this is considered to be that the reactivity was slightly lowered because a solid epoxy resin was used. Since Comparative Example 2 has no conductive particles, the initial resistance is high and the connection resistance is remarkably increased. In Example 18, since the conductive particles were as large as 20 μm, the number of conductive particles in the connection portion was reduced at 2% by volume, and thus the resistance value was slightly high. Similar to the connection material of Example 1, the connection material of Example 10 using nickel particles having an average single particle diameter of 2 μm and an aggregation particle size of 10 μm as the conductive particles is also excellent in connection. The adhesive of Example 11 in which nickel particles and silica particles having a particle diameter of 2 μm are mixed at a volume ratio of 1: 1 can also provide good connection as in Example 1, and in particular, between the nickel particles. It was found that silica particles were present in the surface to improve the insulation from the adjacent circuit. In the connection materials of Example 1 and Example 15, the melt viscosity at 100 ° C. is in the range of 1 to 1,000 Pa · s, and the connection thickness is not more than the particle diameter of the conductive particles. The connection material had a high melt viscosity and was cured before the adhesive component sufficiently flowed, and the connection thickness was larger than the particle diameter of the conductive particles. As a result, the connection resistance increased and the rise was significant. The adhesive solutions of Examples 1, 5, 6 and 16 were allowed to stand at 25 ° C. for a long time. The solution of Example 1 was after 3 months, the solution of Example 5 was after 6 months, and the solution of Example 6 was After one month, the viscosity doubled respectively. In Example 16, the preservability is extended by microencapsulation, which is 3 to 6 months.

Figure 0004539644
Figure 0004539644

Figure 0004539644
Figure 0004539644

Claims (9)

カチオン重合性物質及びポリマー類を含む組成物100重量部に対して芳香族スルホニウム塩を、0.05〜10重量部配合した接着成分に、導電性粒子を分散した回路接続材料であって、
前記カチオン重合性物質が、エポキシ樹脂であり、
前記ポリマー類が、フェノキシ樹脂であり、
前記芳香族スルホニウム塩が下記一般式(1)で示されるスルホニウム塩である、回路接続材料。
Figure 0004539644
〔式(1)中、R、水素原子であり、Rは、メチル基であり、Rは、水酸基、−OCOCH又は−OCOOCHであり、Yは、非求核性陰イオンであり、ヘキサフルオロアルセネート(AsF)、ヘキサクロロアンチモネート(SbCl)、ヘキサフルオロホスフェート(PF)又はテトラフルオロボレート(BF)である。〕
A circuit connection material in which conductive particles are dispersed in an adhesive component containing 0.05 to 10 parts by weight of an aromatic sulfonium salt with respect to 100 parts by weight of a composition containing a cationic polymerizable substance and polymers,
The cationically polymerizable substance is an epoxy resin;
The polymers are phenoxy resins;
A circuit connecting material, wherein the aromatic sulfonium salt is a sulfonium salt represented by the following general formula (1).
Figure 0004539644
Wherein (1), R 1 is water atom, R 2 is methyl group, R 3 represents a hydroxyl group, an -OCOCH 3 or -OCOOCH 3, Y - is a non-nucleophilic Anion, hexafluoroarsenate (AsF 6 ), hexachloroantimonate (SbCl 6 ), hexafluorophosphate (PF 6 ) or tetrafluoroborate (BF 4 ). ]
前記芳香族スルホニウム塩が、感熱性スルホニウム塩である、請求項1に記載の回路接続材料。   The circuit connection material according to claim 1, wherein the aromatic sulfonium salt is a heat-sensitive sulfonium salt. 前記導電性粒子が、導電性を示す物質の粒子、非導電性物質の表面を導電性材料で被覆した粒子及び導電性粒子の表面を絶縁物質で被覆した粒子のうちから選択されたものであることを特徴とする請求項1又は2に記載の回路接続材料。   The conductive particles are selected from particles of a substance exhibiting conductivity, particles having a non-conductive substance coated with a conductive material, and particles having a conductive particle surface coated with an insulating substance. The circuit connection material according to claim 1 or 2, wherein 前記接着成分中に、前記導電性粒子が0.05〜20体積%含まれることを特徴とする請求項1〜3のいずれか一項に記載の回路接続材料。   The circuit connection material according to claim 1, wherein 0.05 to 20% by volume of the conductive particles are contained in the adhesive component. 前記導電性粒子の粒子径が、1〜18μmの範囲であることを特徴とする請求項1〜4のいずれか一項に記載の回路接続材料。   The circuit connection material according to any one of claims 1 to 4, wherein a particle diameter of the conductive particles is in a range of 1 to 18 µm. 前記接着成分の100℃における溶融粘度が1〜1,000Pa・sであることを特徴とする請求項1〜5のいずれか一項に記載の回路接続材料。   The circuit connection material according to claim 1, wherein the adhesive component has a melt viscosity at 100 ° C. of 1 to 1,000 Pa · s. カチオン重合性物質及びポリマー類を含む組成物100重量部に対して芳香族スルホニウム塩を、0.05〜10重量部配合した接着成分に、導電性粒子を分散した回路接続材料を、互いに向き合う2つの回路導体間に挾み、それぞれの回路導体を有する配線板の裏から加熱、加圧して積層一体化する回路の接続方法であって、
前記カチオン重合性物質が、エポキシ樹脂であり、
前記ポリマー類が、フェノキシ樹脂であり、
前記芳香族スルホニウム塩が下記一般式(1)で示されるスルホニウム塩である、回路の接続方法。
Figure 0004539644
〔式(1)中、R、水素原子であり、Rは、メチル基であり、Rは、水酸基、−OCOCH又は−OCOOCHであり、Yは、非求核性陰イオンであり、ヘキサフルオロアルセネート(AsF)、ヘキサクロロアンチモネート(SbCl)、ヘキサフルオロホスフェート(PF)又はテトラフルオロボレート(BF)である。〕
A circuit connection material in which conductive particles are dispersed in an adhesive component in which 0.05 to 10 parts by weight of an aromatic sulfonium salt is blended with 100 parts by weight of a composition containing a cationic polymerizable substance and polymers faces each other 2 A circuit connection method that is sandwiched between two circuit conductors and is laminated and integrated by heating and pressing from the back of the wiring board having each circuit conductor,
The cationically polymerizable substance is an epoxy resin;
The polymers are phenoxy resins;
The circuit connection method, wherein the aromatic sulfonium salt is a sulfonium salt represented by the following general formula (1).
Figure 0004539644
Wherein (1), R 1 is water atom, R 2 is methyl group, R 3 represents a hydroxyl group, an -OCOCH 3 or -OCOOCH 3, Y - is a non-nucleophilic Anion, hexafluoroarsenate (AsF 6 ), hexachloroantimonate (SbCl 6 ), hexafluorophosphate (PF 6 ) or tetrafluoroborate (BF 4 ). ]
前記芳香族スルホニウム塩が、感熱性スルホニウム塩である、請求項に記載の回路の接続方法。 The circuit connection method according to claim 7 , wherein the aromatic sulfonium salt is a heat-sensitive sulfonium salt. 加熱、加圧する条件が温度110〜140℃、圧力0.5MPa〜5MPa、時間10〜60秒の範囲であることを特徴とする請求項又はに記載の回路の接続方法。 The circuit connection method according to claim 7 or 8 , wherein the heating and pressurizing conditions are a temperature of 110 to 140 ° C, a pressure of 0.5 MPa to 5 MPa, and a time of 10 to 60 seconds.
JP2006318904A 1993-07-29 2006-11-27 Circuit connection material and circuit connection method using the connection material Expired - Lifetime JP4539644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006318904A JP4539644B2 (en) 1993-07-29 2006-11-27 Circuit connection material and circuit connection method using the connection material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18651193 1993-07-29
JP2006318904A JP4539644B2 (en) 1993-07-29 2006-11-27 Circuit connection material and circuit connection method using the connection material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17631294A Division JP3907217B2 (en) 1993-07-29 1994-07-28 Circuit connection material and circuit connection method using the connection material

Publications (2)

Publication Number Publication Date
JP2007162019A JP2007162019A (en) 2007-06-28
JP4539644B2 true JP4539644B2 (en) 2010-09-08

Family

ID=38245283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006318904A Expired - Lifetime JP4539644B2 (en) 1993-07-29 2006-11-27 Circuit connection material and circuit connection method using the connection material

Country Status (1)

Country Link
JP (1) JP4539644B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111556A (en) * 2009-11-27 2011-06-09 Hitachi Chem Co Ltd Adhesive composition, circuit connecting material, connector and connection method of circuit member, and semiconductor device
JP2010199087A (en) * 2010-05-11 2010-09-09 Sony Chemical & Information Device Corp Anisotropic conductive film and manufacturing method therefor, and junction body and manufacturing method therefor
JP5561199B2 (en) * 2011-02-17 2014-07-30 日立化成株式会社 Adhesive composition, circuit connection material, connection body, method for manufacturing the same, and semiconductor device
JP6007022B2 (en) 2012-08-06 2016-10-12 デクセリアルズ株式会社 Circuit connection material
JP6244109B2 (en) * 2013-05-31 2017-12-06 東京応化工業株式会社 Resist composition, compound, polymer compound, and resist pattern forming method
JP2016108461A (en) * 2014-12-08 2016-06-20 信越化学工業株式会社 Adhesive, die-bonding material composed of the adhesive, conductive connection method using the adhesive, optical semiconductor device obtained by the method

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5259889A (en) * 1975-11-13 1977-05-17 Seiko Epson Corp Sticking conductivity anisotropy
JPS55164007A (en) * 1979-06-08 1980-12-20 Kawasaki Steel Corp Measuring method of wall deposition of shaft portion within blast furnace
JPS57102922A (en) * 1980-12-17 1982-06-26 Asahi Denka Kogyo Kk Thermosetting composition
JPS58198532A (en) * 1982-05-17 1983-11-18 Asahi Denka Kogyo Kk Curable composition
JPS63162779A (en) * 1986-12-19 1988-07-06 ヘンケル・コマンデイトゲゼルシヤフト・アウフ・アクテイーン Adhesive system and its use
JPH01204982A (en) * 1988-02-12 1989-08-17 Toagosei Chem Ind Co Ltd Adhesive composition
JPH01309206A (en) * 1988-06-06 1989-12-13 Hitachi Chem Co Ltd Adhesive composite for circuit connection
JPH02180975A (en) * 1989-01-04 1990-07-13 Toshiba Chem Corp Quartz vibrator
JPH02232215A (en) * 1989-01-16 1990-09-14 Ciba Geigy Ag Aromatic aliphatic sulfonium salt and its use
JPH04314391A (en) * 1991-04-12 1992-11-05 Hitachi Chem Co Ltd Adhesive for fabricating printed circuit board by additive process
JPH04314724A (en) * 1991-04-12 1992-11-05 Asahi Chem Ind Co Ltd Curative for epoxy resin
WO1992020754A1 (en) * 1991-05-16 1992-11-26 Minnesota Mining And Manufacturing Company Epoxide-based adhesive
JPH0547212A (en) * 1991-08-21 1993-02-26 Oki Electric Ind Co Ltd Single-fluid type conductive adhesive
JPH0570750A (en) * 1991-09-10 1993-03-23 Fujitsu Ltd Conductive adhesive
JPH05132505A (en) * 1991-04-08 1993-05-28 Ciba Geigy Ag Thermosetting composition
JPH05171084A (en) * 1991-12-20 1993-07-09 Nippon Soda Co Ltd Resist resin composition for chemical plating
JPH0673348A (en) * 1992-08-25 1994-03-15 Toray Ind Inc Tab tape with adhesive
JPH06116366A (en) * 1992-10-08 1994-04-26 Sumitomo Electric Ind Ltd Adhesive composition for flexible printed wiring board
JPH07179572A (en) * 1991-02-18 1995-07-18 Siemens Ag Coating or adhering method for electronic device and module
JP3907217B2 (en) * 1993-07-29 2007-04-18 日立化成工業株式会社 Circuit connection material and circuit connection method using the connection material

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5259889A (en) * 1975-11-13 1977-05-17 Seiko Epson Corp Sticking conductivity anisotropy
JPS55164007A (en) * 1979-06-08 1980-12-20 Kawasaki Steel Corp Measuring method of wall deposition of shaft portion within blast furnace
JPS57102922A (en) * 1980-12-17 1982-06-26 Asahi Denka Kogyo Kk Thermosetting composition
JPS58198532A (en) * 1982-05-17 1983-11-18 Asahi Denka Kogyo Kk Curable composition
JPS63162779A (en) * 1986-12-19 1988-07-06 ヘンケル・コマンデイトゲゼルシヤフト・アウフ・アクテイーン Adhesive system and its use
JPH01204982A (en) * 1988-02-12 1989-08-17 Toagosei Chem Ind Co Ltd Adhesive composition
JPH01309206A (en) * 1988-06-06 1989-12-13 Hitachi Chem Co Ltd Adhesive composite for circuit connection
JPH02180975A (en) * 1989-01-04 1990-07-13 Toshiba Chem Corp Quartz vibrator
JPH02232215A (en) * 1989-01-16 1990-09-14 Ciba Geigy Ag Aromatic aliphatic sulfonium salt and its use
JPH07179572A (en) * 1991-02-18 1995-07-18 Siemens Ag Coating or adhering method for electronic device and module
JPH05132505A (en) * 1991-04-08 1993-05-28 Ciba Geigy Ag Thermosetting composition
JPH04314724A (en) * 1991-04-12 1992-11-05 Asahi Chem Ind Co Ltd Curative for epoxy resin
JPH04314391A (en) * 1991-04-12 1992-11-05 Hitachi Chem Co Ltd Adhesive for fabricating printed circuit board by additive process
WO1992020754A1 (en) * 1991-05-16 1992-11-26 Minnesota Mining And Manufacturing Company Epoxide-based adhesive
JPH0547212A (en) * 1991-08-21 1993-02-26 Oki Electric Ind Co Ltd Single-fluid type conductive adhesive
JPH0570750A (en) * 1991-09-10 1993-03-23 Fujitsu Ltd Conductive adhesive
JPH05171084A (en) * 1991-12-20 1993-07-09 Nippon Soda Co Ltd Resist resin composition for chemical plating
JPH0673348A (en) * 1992-08-25 1994-03-15 Toray Ind Inc Tab tape with adhesive
JPH06116366A (en) * 1992-10-08 1994-04-26 Sumitomo Electric Ind Ltd Adhesive composition for flexible printed wiring board
JP3907217B2 (en) * 1993-07-29 2007-04-18 日立化成工業株式会社 Circuit connection material and circuit connection method using the connection material

Also Published As

Publication number Publication date
JP2007162019A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
JP3907217B2 (en) Circuit connection material and circuit connection method using the connection material
KR930002935B1 (en) Composition for circuit connection method for connection using the same and connected structure of semiconductor chips
CN102448255B (en) Method for connecting electronic part and joined structure
JP4539644B2 (en) Circuit connection material and circuit connection method using the connection material
KR101488050B1 (en) Anisotropic electroconductive film, and process for producing connection structure using the same
JP2011236427A (en) Anisotropic electroconductive adhesive sheet and coupling structure
CN101669258A (en) Method for connecting conductor, member for connecting conductor, connecting structure and solar cell module
KR20110089812A (en) Anisotropic electroconductive film
KR101391696B1 (en) Anisotropic conductive composition and film
JP3419436B2 (en) Anisotropic conductive adhesive film
JP3651624B2 (en) Circuit connection member
JP3589422B2 (en) Anisotropic conductive film
JP4228652B2 (en) Circuit connection material and circuit connection method using the connection material
JPH11130841A (en) Epoxy resin composition, adhesive, composition for circuit connection and film using the same
JP4993877B2 (en) Anisotropic conductive adhesive sheet and finely connected structure
JP2005194413A (en) Adhesive film for circuit connection and circuit connection structure
JP3753470B2 (en) Anisotropic conductive adhesive
JP2008308682A (en) Circuit connection material
JP2007053107A (en) Film circuit connection material
JP2500826B2 (en) Anisotropic conductive film
JP2009001661A (en) Adhesive and bonded body
JP4766943B2 (en) CIRCUIT ADHESIVE SHEET AND METHOD FOR MANUFACTURING THE SAME
JP2005197032A (en) Anisotropic conductive film
JP6472702B2 (en) Anisotropic conductive film, connection method, and joined body
JP3046081B2 (en) Anisotropic conductive film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term