WO2012017794A1 - マイクロホンユニット - Google Patents

マイクロホンユニット Download PDF

Info

Publication number
WO2012017794A1
WO2012017794A1 PCT/JP2011/066057 JP2011066057W WO2012017794A1 WO 2012017794 A1 WO2012017794 A1 WO 2012017794A1 JP 2011066057 W JP2011066057 W JP 2011066057W WO 2012017794 A1 WO2012017794 A1 WO 2012017794A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
mounting portion
microphone unit
opening
space
Prior art date
Application number
PCT/JP2011/066057
Other languages
English (en)
French (fr)
Inventor
岳司 猪田
堀邊 隆介
史記 田中
修志 梅田
Original Assignee
船井電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 船井電機株式会社 filed Critical 船井電機株式会社
Priority to US13/813,206 priority Critical patent/US20130136292A1/en
Priority to EP11814424.5A priority patent/EP2592844A1/en
Publication of WO2012017794A1 publication Critical patent/WO2012017794A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/04Structural association of microphone with electric circuitry therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/021Casings; Cabinets ; Supports therefor; Mountings therein incorporating only one transducer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/38Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means in which sound waves act upon both sides of a diaphragm and incorporating acoustic phase-shifting means, e.g. pressure-gradient microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2869Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones

Definitions

  • the present invention relates to a microphone unit having a function of converting an input sound into an electric signal and outputting it.
  • an input signal is converted into an electrical signal and output to a voice communication device such as a mobile phone or a transceiver, an information processing system using a technique for analyzing input voice such as a voice authentication system, or a recording device.
  • a voice communication device such as a mobile phone or a transceiver
  • an information processing system using a technique for analyzing input voice such as a voice authentication system, or a recording device.
  • a microphone unit having a function to perform this is applied, and various microphone units have been developed (see, for example, Patent Documents 1 to 3).
  • the differential microphone unit can exhibit excellent far-field noise suppression performance when used as a close-up microphone. For this reason, the differential microphone unit is useful in, for example, a cellular phone application that requires a function as a close-talking microphone.
  • devices on which microphone units are mounted tend to be smaller and thinner, and there is a strong demand for smaller and thinner microphone units.
  • a configuration of the differential microphone unit for example, as shown in Patent Documents 1 and 2, an opening that connects the first sound guide space and the outside, and a communication between the second sound guide space and the outside are provided. It is preferable that the opening to be provided is provided on the same outer surface of the casing constituting the microphone unit. With this configuration, the microphone unit can be reduced in size and thickness, and the configuration of the sound guide space (not the sound guide space of the microphone unit) provided in the device in which the microphone unit is mounted can be simplified. (It can be made small and thin).
  • the differential microphone unit has such a configuration, it is difficult to make the first sound introduction space and the second sound introduction space have the same shape. If the same shape cannot be obtained, it is difficult to match the frequency characteristics of the two. If the frequency characteristic when the sound wave propagates through the first sound guide space and the frequency characteristic when the sound wave propagates through the second sound guide space differ from each other, the present applicant The knowledge that the problem that the suppression performance cannot be obtained occurs. That is, in the differential microphone unit aiming at miniaturization as described above, there arises a problem that good far noise suppression performance cannot be obtained in a wide frequency band, and it is important to eliminate this problem.
  • An acoustic resistance member such as that found in the microphone unit of Patent Document 2 may be arranged in the first sound introduction space and / or the second sound introduction space, thereby adjusting the frequency characteristics to eliminate the above-described problem. Conceivable.
  • an acoustic resistance member for example, felt or the like is used
  • a MEMS (Micro Electro Mechanical System) chip as an electroacoustic conversion element that converts a sound signal into an electric signal based on vibration of a diaphragm.
  • MEMS Micro Electro Mechanical System
  • the microphone unit disclosed in Patent Document 3 is not a differential microphone unit. In this microphone unit, it is not necessary to match the frequency characteristics of the space facing one surface of the diaphragm with the frequency characteristics of the space facing the other surface of the diaphragm, and the above-described problem does not occur.
  • an object of the present invention is to provide a high-quality microphone unit that can obtain a good far-field noise suppression performance in a wide frequency band and can be miniaturized.
  • a microphone unit includes a microphone including an electroacoustic transducer that converts a sound signal into an electrical signal based on vibrations of a diaphragm, and a housing that houses the electroacoustic transducer.
  • the first sound guide space guides a sound wave from the outside to one surface of the diaphragm via a first opening formed on the outer surface of the casing, and the second sound guide space.
  • the microphone unit of this configuration is capable of applying sound pressure to one surface of the diaphragm by the first sound introduction space, and applying sound pressure to the other surface of the diaphragm by the second sound introduction space, Functions as a differential microphone unit.
  • a cross-sectional area reduction portion that locally reduces the cross-sectional area of the sound path is provided in the second sound guide space whose volume is usually small. For this reason, it is possible to bring the frequency characteristic (resonance frequency) when sound waves propagate through the first sound introduction space close to the frequency characteristic (resonance frequency) when propagating through the second sound introduction space.
  • this structure approximates the frequency characteristic when a sound wave propagates through two sound guide spaces by devising the structure of the housing. For this reason, “failure of the electroacoustic transducer due to dust generation” is unlikely to occur when the acoustic resistance member is used to bring the frequency characteristics close to each other when sound waves propagate through two sound guide spaces.
  • the second sound introduction space has a shape different from that of the first sound introduction space, and the first opening and the second opening are the same in the casing.
  • a structure formed on the outer surface is preferable.
  • the cross-sectional area reduction portion may be formed using a plurality of through holes. According to this configuration, it is possible to divide a region where sound waves cannot pass into a plurality of small regions and disperse them into a region used as a sound path (sound path cross section) immediately before the cross-sectional area reduction portion is provided. Yes, it is easy to obtain a high-performance microphone unit.
  • the housing includes a mounting portion on which the electroacoustic conversion element is mounted, and a cover that is placed on the mounting portion and covers the electroacoustic conversion element.
  • the first mounting portion opening covered on the electroacoustic transducer mounted thereon, the second mounting portion opening formed on the same plane as the first mounting portion opening, and the first A mounting portion internal space that connects the mounting portion opening and the second mounting portion opening, and the cover has a storage space for storing the electroacoustic transducer placed on the mounting portion, A first through hole having one end connected to the receiving space and the other end connected to the outside, and a second end connected to the second mounting portion opening and the other end connected to the outside without connecting to the receiving space.
  • the first opening is obtained by the first through-hole
  • the second opening is obtained by the second through-hole
  • the first sound guide space is formed between the first through-hole and the first through-hole.
  • the second sound guide space includes the second through hole, the first mounting portion opening, the second mounting portion opening, and the mounting portion internal space.
  • the mounting portion may be provided with the cross-sectional area reduction portion. According to this configuration, the structure of the differential microphone unit is not complicated, and the differential microphone unit can be easily manufactured.
  • the second mounting portion opening includes a plurality of openings provided so that a total area is smaller than a cross-sectional area of the second through-hole, and the cross-sectional area reducing portion is A plurality of through holes that form the plurality of openings may be used. According to this configuration, it is possible to match the frequency characteristics when the sound wave propagates through the two sound guide spaces only by adjusting the configuration of the second mounting portion opening provided in the mounting portion, which is favorable in a wide frequency band. It is possible to simplify the structure of a microphone unit that exhibits excellent far-field noise suppression performance.
  • an electrical circuit unit that processes an electrical signal obtained from the electroacoustic transducer may be accommodated in the first sound guide space.
  • the electric circuit unit can be provided outside the housing, but this configuration makes it easier to handle the microphone unit.
  • the present invention it is possible to provide a high-quality microphone unit that can obtain a good far-field noise suppression performance in a wide frequency band and can be miniaturized.
  • FIG. 1 is a schematic perspective view showing an external configuration of a microphone unit according to a first embodiment. Sectional view at the position AA in FIG. 1A The top view of the 1st flat plate which comprises the mounting part with which the microphone unit of 1st Embodiment is provided. The top view of the 2nd flat plate which constitutes the mounting part with which the microphone unit of a 1st embodiment is provided. The top view of the 3rd flat plate which constitutes the mounting part with which the microphone unit of a 1st embodiment is provided.
  • FIG. 3 is a schematic plan view illustrating a configuration of a cover included in the microphone unit according to the first embodiment, and is a view of the cover as viewed from above.
  • FIG. 3 is a schematic plan view illustrating a configuration of a cover included in the microphone unit according to the first embodiment, and is a view of the cover as viewed from above.
  • FIG. 2 is a schematic plan view showing a configuration of a cover included in the microphone unit of the first embodiment, and is a view of the cover as viewed from below.
  • 1 is a schematic cross-sectional view illustrating a configuration of a MEMS chip included in a microphone unit according to a first embodiment.
  • 1 is a block diagram showing the configuration of a microphone unit according to a first embodiment.
  • FIG. 3 is a schematic plan view of the mounting unit included in the microphone unit of the first embodiment when viewed from above, and shows a state in which the MEMS chip and the ASIC are mounted In the microphone unit according to the first embodiment, a graph showing frequency characteristics when only one of the first sound introduction space and the second sound introduction space is used.
  • the top view of the 1st flat plate which constitutes the mounting part with which the microphone unit of a 2nd embodiment is provided.
  • the top view of the 2nd flat plate which constitutes the mounting part with which the microphone unit of a 2nd embodiment is provided.
  • the top view of the 3rd flat plate which constitutes the mounting part with which the microphone unit of a 2nd embodiment is provided.
  • FIG. 10A Schematic plan view of the mounting part of a previously developed microphone unit as seen from above A graph showing the relationship between the sound pressure P and the distance R from the sound source Diagram showing the directional characteristics of a previously developed microphone unit A graph showing frequency characteristics when only one of the first sound introduction space and the second sound introduction space is used in a previously developed microphone unit.
  • FIGS. 10A, 10B, and 10C are diagrams showing the configuration of a previously developed microphone unit
  • FIG. 10A is a schematic perspective view showing an external configuration
  • FIG. 10B is a cross-sectional view at the BB position in FIG. 10A
  • FIG. It is a schematic top view at the time of seeing the mounting part with which the microphone unit of prior development is equipped from the top.
  • FIG. 10C the members mounted on the mounting portion are indicated by broken lines.
  • the previously developed microphone unit 100 includes a MEMS (Micro Electro Mechanical System) chip 103 and a rectangular parallelepiped housing formed by a mounting portion 101 and a cover 102.
  • An ASIC (Application Specific Integrated Circuit) 104 is accommodated.
  • the MEMS chip 103 has a diaphragm 103a and functions as an electroacoustic transducer that converts a sound signal into an electric signal based on the vibration of the diaphragm 103a. Further, the ASIC 104 performs an amplification process on the electric signal extracted from the MEMS chip 103.
  • a first mounting portion opening 101a having a substantially circular shape and a second mounting having a substantially rectangular shape (substantially stadium shape) are formed on the upper surface of the mounting portion 101 constituting the casing of the microphone unit 100.
  • the MEMS chip 103 is mounted on the mounting portion 101 so as to cover the first mounting portion opening 101a.
  • Two openings 102a and 102b having the same shape (substantially rectangular shape or substantially stadium shape) and the same area are formed on the upper surface of the cover 102 constituting the casing of the microphone unit 100.
  • the first opening 102 a is disposed near one end in the longitudinal direction of the microphone unit 100
  • the second opening 102 b is disposed near the other end in the longitudinal direction of the microphone unit 100, and both are symmetrical with respect to the center of the microphone unit 100. Is arranged.
  • a first sound guide for guiding sound waves from the outside to the upper surface of the diaphragm 103a of the MEMS chip 103 through the first opening 102a is provided in the housing constituted by the mounting portion 101 and the cover 102.
  • a space SP1 and a second sound introduction space SP2 for guiding sound waves from the outside to the lower surface of the diaphragm 103a of the MEMS chip 103 are formed through the second opening 102b. That is, the microphone unit 100 is configured as a differential microphone unit.
  • the MEMS chip 103 and the ASIC 104 are disposed in the first sound guide space SP1.
  • the MEMS chip 103 By arranging the MEMS chip 103 in the first sound guide space SP1, the first sound guide space SP1 and the second sound guide space SP2 are partitioned. Further, in the microphone unit 100, the propagation time of the sound from which the external sound reaches the upper surface of the diaphragm 103a from the first opening 102a, and the sound of the sound from which the external sound reaches the lower surface of the diaphragm 103a from the second opening 102b.
  • FIG. 11 is a graph showing the relationship between the sound pressure P and the distance R from the sound source.
  • the sound wave attenuates as it travels through a medium such as air, and the sound pressure (the intensity and amplitude of the sound wave) decreases.
  • the sound pressure is inversely proportional to the distance from the sound source, and the relationship between the sound pressure P and the distance R can be expressed by the following equation (1).
  • the sound pressure is abruptly attenuated at the position close to the sound source (left side of the graph), and gradually decreases as the distance from the sound source is increased (right side of the graph). That is, the sound pressure transmitted to two positions (R1 and R2 or R3 and R4) that are separated from the sound source by ⁇ d is greatly attenuated at R1 to R2 where the distance from the sound source is small (P1- P2) is not so attenuated at R3 to R4 where the distance from the sound source is large (P3-P4).
  • FIG. 12 is a diagram showing the directivity characteristics of a previously developed microphone unit.
  • the microphone unit 100 is assumed to have the same posture as shown in FIG. 10B. If the distance between the sound source and the microphone unit 100 is constant, the sound pressure applied to the diaphragm 103a becomes maximum when the sound source is in the direction of 0 ° or 180 ° in FIG. This is because the sound wave emitted from the sound source reaches the upper surface of the diaphragm 103a via the first opening 102a, and the distance that the sound wave emitted from the sound source reaches the lower surface of the vibration plate 103a via the second opening 102b. This is because the difference between and is the largest.
  • the sound pressure applied to the diaphragm 103a is minimized (almost 0). This is because the sound wave emitted from the sound source reaches the upper surface of the diaphragm 103a from the first opening 102a and the distance that the sound wave emitted from the sound source reaches the lower surface of the vibration plate 103a from the second opening 102b. This is because the difference is almost zero.
  • the microphone unit 100 is highly sensitive to sound waves incident from directions of 0 ° and 180 °, and is sensitive to sound waves incident from directions of 90 ° and 270 °. Functions as a low bidirectional microphone unit.
  • the characteristics of the microphone unit 100 will be described assuming that the microphone unit 100 is used as a close-up microphone.
  • the sound pressure of the target sound emitted in the vicinity of the microphone unit 100 is greatly attenuated between the first opening 102a and the second opening 102b. For this reason, a big difference arises between the sound pressure transmitted to the upper surface of the diaphragm 103a and the sound pressure transmitted to the lower surface of the diaphragm 103a.
  • the background noise is located farther from the sound source than the target sound, and hardly attenuates between the first opening 102a and the second opening 102b. For this reason, the sound pressure difference between the sound pressure transmitted to the upper surface of the diaphragm 103a and the sound pressure transmitted to the lower surface of the diaphragm 103a is very small.
  • the microphone unit 100 Since the difference in sound pressure of background noise received by the diaphragm 103a is very small, the sound pressure of background noise is almost canceled by the diaphragm 103a. On the other hand, since the sound pressure difference of the target sound received by the diaphragm 103a is large, the sound pressure of the target sound is not canceled by the diaphragm 103a. For this reason, the signal obtained by the vibration of the diaphragm 103a can be regarded as the signal of the target sound from which the background noise is removed. That is, when the microphone unit 100 is used as a close-up microphone, the microphone unit 100 exhibits excellent far-field noise suppression performance.
  • FIG. 13 is a graph showing frequency characteristics when only one of the first sound introduction space and the second sound introduction space is used in a microphone unit developed in advance.
  • the horizontal axis (logarithmic axis) is the frequency
  • the vertical axis is the output of the microphone.
  • a graph (a) indicated by a solid line shows a case where sound waves are incident only from the first opening 102a of the microphone unit 100 (that is, only the first sound guide space SP1 is used). The frequency characteristics are shown.
  • a graph (b) indicated by a broken line shows a case where sound waves are incident only from the second opening 102b of the microphone unit 100 (that is, when only the second sound introduction space SP2 is used). The frequency characteristics are shown.
  • the sound source position is a constant position in the 180 ° direction of FIG. Further, when obtaining data of each frequency, the sound pressure of the sound wave emitted from the sound source is the same.
  • the microphone unit 100 is required to exhibit a good far-field noise suppression performance at all frequencies in the use frequency range (for example, 100 Hz to 10 kHz).
  • the far noise suppression performance is deeply related to the above-described bidirectionality.
  • the microphone unit 100 is required to exhibit bidirectionality as shown in FIG. 12 at all frequencies in the use frequency range. .
  • the graph (a) and the graph (b) maintain a constant output difference up to a frequency of about 100 Hz to 7 kHz.
  • the frequency exceeds 7 kHz the above-described output difference is not constant, and when the frequency exceeds 8 kHz, the magnitude of the output value is reversed between the graph (a) and the graph (b). . That is, in the previously developed microphone unit 100, the balance between the frequency characteristics when sound waves propagate through the first sound guide space SP1 and the frequency characteristics when propagated through the second sound guide space SP2 is broken in the high frequency range.
  • the target bi-directionality cannot be obtained, and good far-field noise suppression performance cannot be obtained.
  • the microphone unit 100 guides external sound to the upper surface of the diaphragm 103a for the purpose of facilitating miniaturization and thinning of a device (device having a voice input function such as a mobile phone) in which the microphone unit 100 is mounted.
  • the first opening 102a for the purpose and the second opening 102b for guiding the external sound to the lower surface of the diaphragm 103a are provided on the same surface (the upper surface of the cover 102).
  • the first sound guide space SP1 and the second sound guide space SP2 must be different shapes.
  • the MEMS chip 103 housed in the housing (and ASIC in the case where the ASIC is housed in the housing as a separate body from the MEMS chip) needs to be housed in one of the sound guide spaces SP1 and SP2. It is difficult to make the volume of the sound guide space the same.
  • the MEMS chip 103 is accommodated on the first sound guide space SP1 side, and the volume of the first sound guide space SP1 is larger than that of the second sound guide space SP2.
  • the two sound guide spaces SP1 and SP2 have different frequency characteristics due to the unbalance of the shapes of the first sound guide space SP1 and the second sound guide space SP2 as described above. It is considered a thing. This is considered to cause the above-described problem that good far-field noise suppression performance cannot be obtained on the high frequency side.
  • the frequency characteristics of the first sound guide space SP1 and the second sound guide space SP2 are matched (closed) to solve the above problem. It is aimed at.
  • a method using an acoustic resistance member is also conceivable as a method of matching frequency characteristics when sound waves propagate through the two sound guide spaces SP1 and SP2.
  • the acoustic resistance member is usually made of felt or the like, there is a concern that dust enters the MEMS chip 103 or the like. For this reason, in order to prevent such a dust problem from occurring, according to the present invention, the frequency characteristics when sound waves propagate through the two sound guide spaces SP1 and SP2 are matched by improving the structure of the microphone unit 100.
  • FIGS. 1A and 1B are diagrams showing a configuration of the microphone unit according to the first embodiment
  • FIG. 1A is a schematic perspective view showing an external configuration
  • FIG. 1B is a cross-sectional view taken along a line AA in FIG. 1A.
  • the microphone unit 1 according to the first embodiment is mounted on the mounting unit 11 on which the MEMS chip 13 and the ASIC 14 are mounted, and covers the MEMS chip 13 and the ASIC 14.
  • a cover 12 The mounting portion 11 and the cover 12 constitute a housing 10 of the microphone unit 1, and the housing 10 has a substantially rectangular parallelepiped shape.
  • the length of the casing 10 in the longitudinal direction is 7 mm
  • the length in the lateral direction (corresponding to the direction perpendicular to the paper surface in FIG. 1B) is 4 mm
  • the thickness is 1.5 mm.
  • this size is merely an example, and of course, the size of the microphone unit of the present invention is not limited to this.
  • the mounting portion 11 is formed by stacking a third flat plate 113, a second flat plate 112, and a first flat plate 111 in this order from bottom to top.
  • Each flat plate is joined using, for example, an adhesive or an adhesive sheet.
  • 2A, 2B and 2C are schematic plan views showing three flat plates constituting the mounting portion provided in the microphone unit of the first embodiment, FIG. 2A is a top view of the first flat plate, and FIG. 2B is a second flat plate.
  • FIG. 2C is a top view of the third flat plate.
  • the three flat plates 111, 112, and 113 constituting the mounting portion 11 are all provided in a substantially rectangular shape in plan view, and the vertical and horizontal sizes when viewed in plan view, And the thickness is substantially the same size.
  • the length in the longitudinal direction (lateral direction) of each flat plate is 7 mm
  • the length in the lateral direction (vertical direction) is 4 mm
  • the thickness is 0.2 mm.
  • the material of the flat plates 111 to 113 constituting the mounting portion 11 is not particularly limited, but a known material used as a substrate material is preferably used, and for example, FR-4, ceramics, polyimide film, or the like is used.
  • the first flat plate 111 is provided with a through hole 111a having a substantially circular shape in plan view in the vicinity of the center (exactly, a position slightly shifted to one side in the longitudinal direction (left side in FIG. 2A)). It has been. Further, the first flat plate 111 has a substantially circular shape 3 in plan view arranged at a predetermined interval in the short side direction (upper and lower direction in FIG. 2A) near one end in the longitudinal direction (close to the left end in FIG. 2A). Two through holes 111b, 111c, and 111d are provided. The three through holes 111b to 111d are formed so that their centers are located on one straight line parallel to the short direction. In the present embodiment, any of the through holes 111a to 111d has a cross-sectional diameter of 0.5 mm.
  • the second flat plate 112 is provided with a through hole 112a having a substantially rectangular shape in plan view (the upper surface and the lower surface have the same shape and size).
  • the through hole 112a having a substantially rectangular shape in plan view includes four through holes 111a to 111d provided in the first flat plate 111 in a state where the second flat plate 112 is overlapped with the first flat plate 111. Is provided.
  • the four through holes 111a to 111d provided in the first flat plate 111 are indicated by broken lines so that the relationship between the first flat plate 111 and the second flat plate 112 can be easily understood.
  • the 3rd flat plate 113 is a flat plate in which the through-hole is not formed, as shown in FIG. 2C.
  • the first flat plate 111, the second flat plate 112, and the third flat plate 113 configured as described above are bonded together, the first mounting portion opening 15 obtained by the through hole 111a and the three through holes 111b, 111c, and 111d.
  • the mounting portion 11 formed with three second mounting portion openings 16 obtained by the above, and a mounting portion internal space 17 that connects the first mounting portion opening 15 and the second mounting portion openings 16 (there are three). Is obtained (see FIG. 1B).
  • the mounting unit 11 is obtained by bonding three flat plates.
  • the configuration of the mounting unit 11 is not limited to this configuration, and the mounting unit 11 may be configured by one flat plate. You may comprise with several flat plates different from three.
  • the shape of the mounting portion 11 is not limited to a plate shape.
  • the mounting portion 11 that is not plate-shaped is configured by a plurality of members, a member that is not a flat plate may be included in the members that configure the mounting portion 11.
  • the shapes of the first mounting portion opening 15, the second mounting portion opening 16 (there are three), and the mounting portion inner space 17 formed in the mounting portion 11 are not limited to the configuration of the present embodiment, and may be changed as appropriate. Is possible.
  • FIGS. 3A and 3B are schematic plan views showing the configuration of the cover included in the microphone unit according to the first embodiment.
  • FIG. 3A shows the cover viewed from above
  • FIG. 3B shows the cover viewed from below.
  • the cover 12 has a substantially rectangular parallelepiped shape (see also FIG. 1A).
  • the length of the cover 12 in the longitudinal direction (left-right direction in FIGS. 3A and 3B) and the short direction (vertical direction in FIGS. 3A and 3B) are the same as the length of the mounting portion 11 in the longitudinal direction and the short direction, respectively. is there.
  • the length in the longitudinal direction is 7 mm
  • the length in the lateral direction is 4 mm.
  • the cover 12 has a thickness of 0.9 mm.
  • the cover 12 has one through hole 121 (in the present invention) having a substantially rectangular shape (substantially stadium shape) in plan view on one end side in the longitudinal direction (right side in FIGS. 3A and 3B).
  • An example of the first through-hole is provided.
  • one through hole 122 (an example of the second through hole of the present invention) having the same shape and size as the through hole 121 is provided on the other end side of the cover 12 (left side in FIGS. 3A and 3B). Yes.
  • the two through holes 121 and 122 are substantially symmetrically arranged with respect to the center of the cover 122.
  • the cross section of the two through holes 121 and 122 has a length of 2 mm in the longitudinal direction (vertical direction in FIGS. 3A and 3B) and a length of 0.5 mm in the short direction (the horizontal direction in FIGS. 3A and 3B). It is said that.
  • the through-hole 122 has three second mounting portion openings 16 formed in the mounting portion 11 at one end (lower end) of the cover 12 placed on the mounting portion 11 (see FIG. 1B). The position is adjusted so that it overlaps (connects) with.
  • FIG. 3A in order to facilitate understanding of the relationship between the through hole 122 and the second mounting portion opening 16 when the cover 12 is placed on the mounting portion 11, 3 formed on the mounting portion 11. Two second mounting portion openings 16 are indicated by broken lines.
  • the through-hole 121 provided in the one end side of the cover 12 and the through-hole 122 provided in the other end side of the cover 12 are formed so that the distance between the centers may be 4 mm or more and 6 mm or less. . As will be described later, these through holes 121 and 122 are used as sound wave input portions. If the center-to-center distance is too large, the phase difference between the sound waves that reach the upper and lower surfaces of the diaphragm 134 (provided in the MEMS chip 13) increases, and the microphone characteristics deteriorate (noise suppression performance decreases). In order to suppress such a situation, the center distance is preferably 6 mm or less.
  • the distance between the centers is preferably 4 mm or more. .
  • the cover 12 is formed with a concave portion 123 (in the present embodiment, the depth is 0.7 mm) as viewed from below when viewed from below.
  • the recess 123 is provided so as to overlap with a through hole 121 provided on one end side in the longitudinal direction of the cover 12 (right end side in FIG. 3B), and the recess 123 and the through hole 121 are connected to each other.
  • the recess 123 is provided so as not to overlap with the through hole 122 provided on the other end side in the longitudinal direction of the cover 12 (left end side in FIG. 3B). That is, the recess 123 is not connected to the through hole 122.
  • the material which comprises the cover 12 can be set as resin, such as LCP (Liquid Crystal Polymer; liquid crystal polymer) and PPS (polyphenylene sulfide).
  • resin such as LCP (Liquid Crystal Polymer; liquid crystal polymer) and PPS (polyphenylene sulfide).
  • a metal filler such as stainless steel or carbon may be mixed into the resin constituting the cover 12.
  • the material constituting the cover 12 may be a substrate material such as FR-4 or ceramics.
  • the MEMS chip 13 mounted on the mounting unit 11 is an example of an electroacoustic conversion element that converts a sound signal into an electric signal based on vibration of a diaphragm in the present invention.
  • the MEMS chip 13 made of a silicon chip is a small condenser microphone chip manufactured using a semiconductor manufacturing technique.
  • FIG. 4 is a schematic cross-sectional view showing the configuration of the MEMS chip provided in the microphone unit of the first embodiment.
  • the MEMS chip 13 has a substantially rectangular parallelepiped shape, and includes an insulating base substrate 131, a fixed electrode 132, an insulating intermediate substrate 133, and a diaphragm 134.
  • the base substrate 131 is formed with a through hole 131a having a substantially circular shape in plan view at the center thereof.
  • the plate-like fixed electrode 132 is disposed on the base substrate 131, and a plurality of through holes 132a having a small diameter (about 10 ⁇ m in diameter) are formed.
  • the intermediate substrate 133 is disposed on the fixed electrode 132, and similarly to the base substrate 131, a through hole 133 a having a substantially circular shape in plan view is formed at the center thereof.
  • the vibration plate 134 disposed on the intermediate substrate 133 is a thin film that vibrates in response to sound pressure (vibrates in the vertical direction in FIG. 4. Also, in the present embodiment, a substantially circular portion vibrates), and has a conductive property. To form one end of the electrode.
  • the fixed electrode 132 and the diaphragm 134 which are arranged to face each other so as to have a substantially parallel relationship with a gap Gp due to the presence of the intermediate substrate 133, form a capacitor.
  • the diaphragm 134 vibrates due to the arrival of sound waves, the capacitance formed by the fixed electrode 132 and the diaphragm 134 changes its capacitance because the distance between the electrodes varies. As a result, the sound wave (sound signal) incident on the MEMS chip 13 can be extracted as an electric signal.
  • the lower surface of the diaphragm 134 is caused by the presence of the through holes 131 a formed in the base substrate 131, the plurality of through holes 132 a formed in the fixed electrode 132, and the through holes 133 a formed in the intermediate substrate 133.
  • the side also communicates with the outside (outside the MEMS chip 13) space.
  • the configuration of the MEMS chip 13 is not limited to the configuration of the present embodiment, and the configuration may be changed as appropriate.
  • the diaphragm 134 is above the fixed electrode 132, but in a reverse relationship (relationship where the diaphragm is below and the fixed electrode is above), A MEMS chip may be configured.
  • the ASIC 14 is an integrated circuit that amplifies an electrical signal that is extracted based on a change in capacitance of the MEMS chip 13 (derived from vibration of the diaphragm 134).
  • the ASIC 14 is an example of the electric circuit unit of the present invention.
  • the ASIC 14 includes a charge pump circuit 141 that applies a bias voltage to the MEMS chip 13.
  • the charge pump circuit 141 boosts (for example, about 6 to 10 V) the power supply voltage VDD (for example, about 1.5 to 3 V) and applies a bias voltage to the MEMS chip 13.
  • the ASIC 14 also includes an amplifier circuit 142 that detects a change in capacitance in the MEMS chip 13.
  • the electrical signal amplified by the amplifier circuit 142 is output from the ASIC 14.
  • FIG. 5 is a block diagram showing the configuration of the microphone unit of the first embodiment.
  • FIG. 6 is a schematic plan view of the mounting unit included in the microphone unit according to the first embodiment as viewed from above, and shows a state where the MEMS chip and the ASIC are mounted.
  • the MEMS chip 13 is mounted on the mounting unit 11 in a posture (see FIG. 1B) in which the diaphragm 134 is substantially parallel to the upper surface (mounting surface) 11a of the mounting unit 11. Then, the MEMS chip 13 is mounted on the mounting portion 11 so as to cover the first mounting portion opening 15 (see FIG. 1B) formed on the upper surface 11a of the mounting portion 11.
  • the ASIC 14 is disposed adjacent to the MEMS chip 13.
  • the MEMS chip 13 and the ASIC 14 are mounted on the mounting portion 11 by die bonding and wire bonding. Specifically, the MEMS chip 13 is mounted on the mounting portion 11 so that a gap is not formed between the bottom surface of the MEMS chip 13 and the upper surface 11a of the mounting portion 11 by a die bond material (for example, an epoxy resin-based adhesive or a silicone resin-based adhesive). It is joined to the upper surface 11a. By joining in this way, a situation in which sound leaks from a gap formed between the upper surface 11a of the mounting portion 11 and the bottom surface of the MEMS chip 13 does not occur. As shown in FIG. 6, the MEMS chip 13 is electrically connected to the ASIC 14 by wires 20 (preferably gold wires).
  • wires 20 preferably gold wires
  • the bottom surface of the ASIC 14 facing the upper surface 11a of the mounting portion 11 is bonded to the upper surface 11a of the mounting portion 11 by a die bond material (not shown).
  • the ASIC 14 is electrically connected to each of a plurality of electrode terminals 21 a, 21 b, 21 c formed on the upper surface 11 a of the mounting portion 11 by wires 20.
  • the electrode terminal 21a is a power supply terminal for inputting power supply voltage (VDD)
  • the electrode terminal 21b is an output terminal for outputting an electric signal amplified by the amplifier circuit 142 of the ASIC 14
  • the electrode terminal 21c is a GND terminal for ground connection. It is.
  • external connection electrode pads 22 are formed on the lower surface 11b of the mounting portion 11 (the back surface of the mounting surface 11a).
  • the external connection electrode pads 22 include a power electrode pad 22a, an output electrode pad 22b, and a GND electrode pad 22c (see FIG. 5).
  • the power supply terminal 21a provided on the upper surface 11a of the mounting portion 11 is electrically connected to the power supply electrode pad 22a via a wiring (including through wiring) (not shown) formed in the mounting portion 11.
  • the output terminal 21b provided on the upper surface 11a of the mounting part 11 is electrically connected to the output electrode pad 22b via a wiring (including through wiring) (not shown) formed in the mounting part 11.
  • the GND terminal 21c provided on the upper surface 11a of the mounting portion 11 is electrically connected to the GND electrode pad 20c via a wiring (including through wiring) (not shown) formed in the mounting portion 11.
  • the through wiring can be formed by a through hole via generally used in substrate manufacture.
  • the MEMS chip 13 and the ASIC 14 are mounted by wire bonding.
  • the MEMS chip 13 and the ASIC 14 may be flip-chip mounted.
  • electrodes are formed on the lower surfaces of the MEMS chip 13 and the ASIC 14, and corresponding electrode pads are disposed on the upper surface of the mounting portion 11, and these connections are made by a wiring pattern formed on the mounting portion 11.
  • the cover 12 is placed on the mounting portion 11 on which the MEMS chip 13 and the ASIC 14 are mounted so that the concave portion 123 accommodates the MEMS chip 13 and the ASIC 14.
  • the mounting unit 11 and the cover 12 are joined so as to be hermetically sealed (for example, an adhesive or an adhesive sheet is used)
  • the microphone unit 1 including the MEMS chip 13 and the ASIC 14 in the housing 10 is obtained. can get.
  • the microphone unit 1 is formed using a through hole 121 and a housing space (concave portion) 123 provided in the cover 12, and is obtained by the first opening 18 (through hole 121).
  • a first sound introduction space SP1 for guiding sound waves from the outside is formed on the upper surface of the diaphragm 134.
  • a through hole 122 provided in the cover 12 a first mounting part opening 15 provided in the mounting part 11, three second mounting part openings 16 and a mounting part internal space 17 are provided.
  • the first sound guide space SP1 and the second sound guide space SP2 are partitioned by the MEMS chip 13 accommodated in the first sound guide space SP1. That is, the microphone unit 1 is configured as a differential microphone unit.
  • the propagation distance of the sound from which the external sound reaches the diaphragm 134 through the first sound guide space SP1 through the first opening 18 and the external sound are the second so that the propagation time of the sound reaching the diaphragm 134 is equal. It is preferable that the sound propagation distance from the opening 19 to the diaphragm 134 through the second sound guide space SP2 is substantially equal, and the microphone unit 1 of the present embodiment is configured as such. ing.
  • the microphone unit 1 configured as described above exhibits excellent far-field noise suppression performance, similar to the previously developed microphone unit 100 described above.
  • the prior-developed microphone unit 100 has a problem that the far-field noise suppression performance deteriorates in the high frequency band, but the microphone unit 1 of the present embodiment has solved this problem. This will be described below.
  • the first sound guide space SP1 and the second sound guide space SP2 are different in shape and volume. This is the same as the previously developed microphone unit 100. However, in the microphone unit 1, the configuration of the mounting unit 11 on which the MEMS chip 13 is mounted is different from the configuration of the previously developed microphone unit 100. Due to this difference, the microphone unit 1 exhibits good far-field noise suppression performance even in a high frequency band.
  • the volume of the first sound guide space SP1 is about 5 mm 3
  • the volume of the second sound guide space SP2 has a 2 mm 3.
  • the inventors of the present application bring the resonance frequencies of the two sound guide spaces SP1 and SP2 close to each other by improving the structure of the conventional microphone unit 100, whereby the sound wave propagates through the first sound guide space SP1. Is considered to be matched with the frequency characteristic when propagating through the second sound guide space SP2. Note that the frequency characteristics when the sound wave propagates through the two sound guide spaces SP1 and SP2 by the structural improvement of the conventional configuration are matched because of the influence of the dust (generated from the acoustic resistance member) described above. It is considered to provide a microphone unit that is unlikely to break down.
  • the first sound guide space SP1 is considered to behave in the same manner as a known Helmholtz resonator because of its shape. For this reason, it is considered that the resonance frequency fr of the first sound guide space SP1 is given by the following equation (2).
  • Cv is the speed of sound
  • S is the area of the first opening 18 (cross-sectional area of the through hole 121)
  • Lp is the thickness of the through hole 121 provided in the cover 12 (hole length)
  • V is the volume of the accommodation space 123.
  • the resonance frequency of the first sound guide space SP1 is at least one of the volume of the accommodation space 123, the area of the first opening 18, and the thickness of the through hole 121. It turns out that it fluctuates by fluctuating.
  • the resonance frequency cannot be simply expressed by the equation (2).
  • the following improvements can be made in improving the conventional microphone unit 100. I found it good. That is, in the second sound guide space SP2 (inside away from the second opening 19), the cross-sectional area of the sound path cross section substantially orthogonal to the traveling direction of the sound wave is locally reduced compared to before and after the second sound guide space SP2. It was found that if the cross-sectional area reduction part is provided, the frequency characteristics (resonance frequency) when the sound wave propagates through the two sound guide spaces SP1 and SP2 can be made closer.
  • the cross-sectional area reduction part AR is provided in the mounting part 11. More specifically, the cross-sectional area reduction part AR uses three through holes 111b, 111c, and 111d (see FIG. 2A) that form the three second mounting part openings 16 provided in the mounting part 11. As described above, the second mounting portion opening 16 is composed of three openings. The total of these areas (areas of the openings) is the cross-sectional area of the front position (that is, the through hole provided in the cover 12). 122 (cross-sectional area). For this reason, in the second sound guide space SP2, the cross-sectional area (sound path cross-sectional area) of the cross section substantially orthogonal to the traveling direction of the sound wave is small at the position where the second mounting portion opening 16 is provided.
  • the second mounting portion opening 16 (there are three) is obtained by the through holes 111b, 111c, and 111d formed in the first flat plate 111 constituting the mounting portion 11, and in the microphone unit 1,
  • the sound path cross-sectional area is reduced by the length (thickness) of these through holes 111b to 111d (that is, locally).
  • the microphone unit 1 of the present embodiment has a configuration in which a cross-sectional area reduction unit AR that locally reduces the sound path cross-sectional area is provided in the second sound guide space SP2 by improving the second mounting portion opening. It has become.
  • the resonance frequency of the second sound guide space SP2 can be made lower than that of the microphone unit 100 developed in advance, and can be matched with the resonance frequency of the first sound guide space SP1. It became.
  • the resonance frequencies of the first sound guide space SP1 and the second sound guide space SP2 can be brought close to each other and the frequency characteristics of both can be matched, and the microphone unit 1 can be used in a high frequency band (in a wide frequency band). It shows good far-field noise suppression performance.
  • FIG. 7 is a graph showing the frequency characteristics when only one of the first sound introduction space and the second sound introduction space is used in the microphone unit of the first embodiment.
  • FIG. 7 is a graph similar to FIG. 13 described above, and the frequency characteristics are obtained by the same method as in FIG.
  • a graph (a) indicated by a solid line shows frequency characteristics when only the first sound guide space SP1 of the microphone unit 1 is used
  • a graph (b) indicated by a broken line indicates the second characteristic of the microphone unit 1.
  • the frequency characteristic when only the sound guide space SP2 is used is shown.
  • the second mounting portion opening 16 is configured by three openings.
  • the present invention is not limited to this configuration.
  • the number of openings constituting the second mounting portion opening 16 may be appropriately changed. May be one or a plurality different from three. It should be noted that if the number of openings constituting the second mounting portion opening 16 is increased too much, problems such as deterioration in workability during manufacturing may occur, and it is preferable that the number is not excessively increased.
  • the shape of the second mounting portion opening 16 can also be changed as appropriate within a range that satisfies the purpose of reducing the cross-sectional area (sound path cross-sectional area) of the cross section substantially orthogonal to the traveling direction of the sound wave.
  • the microphone unit of the second embodiment has the same configuration as the microphone unit 1 of the first embodiment except for the configuration of the mounting portion 11. Only different points will be described below. In addition, about the part which is common in 1st Embodiment, the same code
  • FIGS. 8A, 8B, and 8C are schematic plan views showing three flat plates that constitute a mounting portion included in the microphone unit of the second embodiment
  • FIG. 8A is a top view of the first flat plate
  • FIG. 8B is a second flat plate
  • FIG. 8C is a top view of the third flat plate.
  • the mounting portion 11 is formed by the three flat plates 111, 112, and 113 as in the case of the first embodiment. Further, the shapes, sizes, and materials of the three flat plates 111, 112, and 113 constituting the mounting portion 11 are the same as those in the first embodiment.
  • the first flat plate 111 is provided with a through hole 111a having a substantially circular shape in plan view in the vicinity of the center thereof. Further, the first flat plate 111 is provided with a through-hole 111b ′ having a substantially rectangular shape (substantially stadium shape) in plan view near one end in the longitudinal direction (near the left end in FIG. 8A).
  • the cross-section of the substantially rectangular through-hole 111b ′ in plan view has a length in the longitudinal direction (vertical direction in FIG. 8A) of 2 mm and a length in the lateral direction (horizontal direction in FIG. 8A) of 0.5 mm. ing.
  • This is the same size as the cross-section of the through-hole 122 provided in the cover 12, and in this respect, unlike the configuration of the first embodiment, the same configuration as the microphone unit 100 (see FIGS. 10A to 10C) developed in advance. It is.
  • the second flat plate 112 is provided with a through-hole 112a having a substantially rectangular shape in plan view (the upper surface and the lower surface have the same shape and size).
  • the through hole 112a having a substantially rectangular shape in plan view has a substantially circular through hole 111a and a substantially rectangular shape in plan view provided in the first flat plate 111 in a state where the second flat plate 112 is overlapped with the first flat plate 111.
  • the through hole 111b ′ is provided so as to be included in the region.
  • through holes 111a and 111b ′ provided in the first flat plate 111 are indicated by broken lines so that the relationship between the first flat plate 111 and the second flat plate 112 can be easily understood.
  • the third flat plate 113 is formed with two protrusions 113a provided at a predetermined interval in the short direction.
  • the two protrusions 113a may be provided integrally with the third flat plate 113, or may be provided as another member with the third flat plate 113. In the case of using another member, the protrusion 113a may be fixed to the third flat plate 113 using, for example, an adhesive.
  • the broken line in FIG. 8C indicates the through hole 112 a provided in the second flat plate 112 that is superimposed on the third flat plate 113.
  • the two protrusions 113a are surrounded by a through hole 112a provided in the second flat plate 112 in a state where the third flat plate 113 and the second flat plate 112 are overlapped.
  • Mounting portion opening 16 (which is one unlike the first embodiment) and a mounting portion inner space 17 connecting the first mounting portion opening 15 and the second mounting portion opening 16 are formed. Is obtained.
  • FIG. 9 is a cross-sectional view of a mounting portion included in the microphone unit of the second embodiment.
  • the height of the protrusion 113 a provided on the third flat plate 113 is the same as the thickness of the second flat plate 112. Therefore, in a state where the three flat plates 111 to 113 are bonded together, the protrusion 113a contacts the lower surface of the first flat plate 111 as shown in FIG. Due to the presence of the protrusion 113a, the cross-sectional area (sound path cross-sectional area) of the cross section substantially orthogonal to the traveling direction of the sound wave is locally reduced in the mounting portion internal space 17 formed in the mounting portion 11.
  • the cross-sectional area reduction portion AR is not formed by using the second mounting portion opening 16, but the cross-sectional area is reduced by the protrusion 113 a provided in the mounting portion internal space 17. Part AR is obtained.
  • the amount by which the sound path cross-sectional area is reduced can be adjusted by the vertical length of projection 113a (the vertical length in FIG. 8C), and the lateral length of projection 113a ( The range in which the sound path cross-sectional area is locally reduced can be adjusted by the length in the left-right direction in FIG. 8C. These lengths may be appropriately determined by experiments or the like with the purpose of matching the frequency characteristics of the first sound guide space SP1 and the second sound guide space SP2 in mind.
  • the cross-sectional area reduction portion AR is formed using a plurality of through holes. This is because the three spaces formed by dividing the mounting portion internal space 17 by the two protruding portions 113a can be regarded as through holes, respectively.
  • the resonance frequency of the second sound guide space SP2 can be lowered as compared with the case of the microphone unit 100 developed in advance, and as a result, the first sound guide space SP1 and the second guide space SP2 are reduced. It is possible to make the resonance frequency close to the sound space SP2 and to match the frequency characteristics of both. For this reason, also in the microphone unit of the present embodiment, a good far noise suppression performance can be obtained in a wide frequency band.
  • the shape of the protrusion 113a is not limited to the configuration of the present embodiment, and may be a different shape as long as the cross-sectional area reduction portion AR can be obtained.
  • the number of the protrusions 113a can be changed as appropriate.
  • the position of the protrusion 113a may be shifted from the configuration of the present embodiment within the range of the purpose of obtaining the cross-sectional area reduction part AR.
  • the microphone unit shown in the above embodiment is an exemplification of the present invention, and the scope of application of the present invention is not limited to the embodiment described above. That is, various modifications may be made to the above-described embodiment without departing from the object of the present invention.
  • the configuration in which the cross-sectional area reduction portion AR is formed using the second mounting portion opening 16 of the mounting portion 11 on which the MEMS chip 13 is mounted has been described.
  • the cross-sectional area reduction part AR may be provided using the part opening 15.
  • the mounting area 11 is provided with the cross-sectional area reduction part AR.
  • the cross-sectional area reduction part may be provided on the cover 12.
  • the MEMS chip 13 and the ASIC 14 are configured as separate chips.
  • the integrated circuit mounted on the ASIC 14 is formed monolithically on the silicon substrate on which the MEMS chip 13 is formed. It doesn't matter. That is, the MEMS chip 13 and the ASIC 14 may be integrally formed.
  • the ASIC 14 is accommodated in the housing 10. However, the ASIC 14 may be provided outside the housing 10.
  • the electroacoustic transducer that converts sound pressure into an electrical signal is the MEMS chip 13 formed by using a semiconductor manufacturing technique.
  • the present invention is limited to this configuration. Not the purpose.
  • the electroacoustic conversion element may be a condenser microphone using an electret film.
  • a so-called condenser microphone is employed as the configuration of the electroacoustic conversion element (corresponding to the MEMS chip 13 of the present embodiment) included in the microphone unit.
  • the present invention can also be applied to a microphone unit that employs a configuration other than a condenser microphone.
  • the present invention can also be applied to a microphone unit employing an electrodynamic (dynamic), electromagnetic (magnetic), or piezoelectric microphone.
  • the microphone unit of the present invention includes a voice communication device such as a mobile phone and a transceiver, and a voice processing system (a voice authentication system, a voice recognition system, a command generation system, an electronic dictionary, a translation system) that employs a technique for analyzing input voice. Suitable for recording equipment, amplifier systems (loudspeakers), microphone systems, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

 マイクロホンユニット1は、振動板134の振動に基づいて音信号を電気信号に変換する電気音響変換素子13と、電気音響変換素子13を収容する筐体10と、を備える。筐体10には、電気音響変換素子13が収容される第1の導音空間SP1と、振動板134によって第1の導音空間SP1と仕切られる第2の導音空間SP2と、が設けられる。第2の導音空間SP2の第2の開口19から離れた内部側には、その前後に比べて、音波の進行方向に略直交する音道断面の断面積を局所的に小さくする断面積縮小部ARが設けられている。

Description

マイクロホンユニット
 本発明は、入力音を電気信号に変換して出力する機能を備えたマイクロホンユニットに関する。
 従来、例えば、携帯電話やトランシーバ等の音声通信機器、音声認証システム等の入力された音声を解析する技術を利用した情報処理システム、或いは録音機器等に、入力音を電気信号に変換して出力する機能を備えたマイクロホンユニットが適用されており、種々のマイクロホンユニットが開発されている(例えば特許文献1~3参照)。
 従来のマイクロホンユニットの中には、例えば特許文献1や2に示されるように、振動板をその両面に加わる音圧の差によって振動させて音信号を電気信号に変換するタイプのマイクロホンユニットがある。以下においては、このタイプのマイクロホンユニットのことを差動マイクロホンユニットと表現することがある。
 差動マイクロホンユニットは、接話マイクとして使用する場合に優れた遠方ノイズ抑圧性能を発揮し得る。このため、例えば、接話マイクとしての機能が要求される携帯電話機用途等において、差動マイクロホンユニットは有用である。
特開2009-188943号公報 特開2005-295278号公報 特開2008-219435号公報
 ところで、差動マイクロホンユニットには、振動板の一方の面(第1の面)に外部から音波を導く第1の導音空間と、振動板の他方の面(第1の面の裏面)に外部から音波を導く第2の導音空間と、が備えられる。近年においては、マイクロホンユニットが搭載される機器が小型化や薄型化される傾向にあり、マイクロホンユニットに対しても小型化や薄型化の要求が強い。このため、差動マイクロホンユニットの構成としては、例えば特許文献1や2に示されるように、第1の導音空間と外部とを連通する開口と、第2の導音空間と外部とを連通する開口とが、マイクロホンユニットを構成する筐体の同一外面に設けられるのが好ましい。このように構成することで、マイクロホンユニットの小型・薄型化が可能となり、また、それが搭載される機器内に設けられる導音空間(マイクロホンユニットの導音空間ではない)の構成を単純とできる(小型・薄型化が可能となる)。
 しかし、差動マイクロホンユニットをこのような構成とすると、第1の導音空間と第2の導音空間との形状を同一形状とするのが難しくなる。そして、同一形状が得られない場合、両者の周波数特性を一致させるのが困難となる。本出願人は、音波が第1の導音空間を伝播するときの周波数特性と、音波が第2の導音空間を伝播するときの周波数特性とが異なると、広い周波数帯域で良好な遠方ノイズ抑圧性能を得ることができないといった問題が発生するという知見を得ている。すなわち、上記の小型化を狙った差動マイクロホンユニットでは、広い周波数帯域で良好な遠方ノイズ抑圧性能を得ることができないといった問題が生じ、これを解消することが重要となる。
 特許文献2のマイクロホンユニットに見られるような音響抵抗部材を第1の導音空間及び/又は第2の導音空間に配置し、これによって周波数特性を調整して上述の問題を解消することも考えられる。しかしながら、音響抵抗部材(例えばフェルト等が使用される)が用いられる構成では、例えば、振動板の振動に基づいて音信号を電気信号に変換する電気音響変換素子としてMEMS(Micro Electro Mechanical System)チップを用いるような場合に、音響抵抗部材から発生するダストによって電気音響変換素子が故障しやすいといった問題が発生する。
 なお、特許文献3に開示されるマイクロホンユニットは差動マイクロホンユニットではない。このマイクロホンユニットでは、振動板の一方の面に面する空間の周波数特性と、振動板の他方の面に面する空間の周波数特性とを一致させる必要がなく、上述したような問題は生じない。
 以上の点に鑑みて、本発明の目的は、広い周波数帯域で良好な遠方ノイズ抑圧性能を得ることが可能であると共に、小型化が可能な高品質のマイクロホンユニットを提供することである。
 上記目的を達成するために本発明のマイクロホンユニットは、振動板の振動に基づいて音信号を電気信号に変換する電気音響変換素子と、前記電気音響変換素子を収容する筐体と、を備えるマイクロホンユニットであって、前記筐体には、前記電気音響変換素子が収容される第1の導音空間と、前記振動板によって前記第1の導音空間と仕切られる第2の導音空間と、が設けられ、前記第1の導音空間は、前記筐体の外面に形成される第1の開口を介して前記振動板の一方の面に外部から音波を導き、前記第2の導音空間は、前記筐体の外面に形成される第2の開口を介して前記振動板の他方の面に外部から音波を導き、前記第2の導音空間の前記第2の開口から離れた内部側には、その前後に比べて、音波の進行方向に略直交する音道断面の断面積を局所的に小さくする断面積縮小部が設けられていることを特徴としている。
 本構成のマイクロホンユニットは、第1の導音空間によって振動板の一方の面に音圧を加え、第2の導音空間によって振動板の他方の面に音圧を加えることが可能であり、差動マイクロホンユニットとして機能する。そして、電気音響変換素子が収容されないために通常は体積が小さくなる第2の導音空間に、局所的に音道断面積を小さくする断面積縮小部を設ける構成となっている。このために、音波が第1の導音空間を伝播するときの周波数特性(共振周波数)と第2の導音空間を伝播するときの周波数特性(共振周波数)を近づけることが可能となっている。その結果、本構成によると、広い周波数帯域で良好な遠方ノイズ抑圧性能を示すマイクロホンユニットを得ることが可能となっている。なお、本構成は、筐体の構造を工夫することによって音波が2つの導音空間を伝播するときの周波数特性を近づけるものである。このため、音響抵抗部材を用いて音波が2つの導音空間を伝播するときの周波数特性を近づける場合に懸念される「ダスト発生による電気音響変換素子の故障」が起り難い。
 上記構成のマイクロホンユニットにおいて、前記第2の導音空間は、前記第1の導音空間とは異なる形状を有し、前記第1の開口と前記第2の開口とは、前記筐体の同一外面に形成される構成とするのが好ましい。本構成のように、2つの導音空間の形状が異なる場合、2つの導音空間の周波数特性の差によって差動マイクロホンユニットの遠方ノイズ抑圧性能が低下し易い。しかし、上述の断面積縮小部を設けた効果により、広い周波数帯域で良好な遠方ノイズ抑圧性能を示すマイクロホンユニットが得られる。また、本構成では、第1の導音空間と外部とを連通する第1の開口と、第2の導音空間と外部とを連通する第2の開口とが筐体の同一外面に設けられるために、小型化・薄型化に有利である。
 上記構成のマイクロホンユニットにおいて、前記断面積縮小部は、複数の貫通孔を用いて形成されていることとしてよい。本構成によれば、断面積縮小部が設けられる直前位置において音道として用いられる領域(音道断面)に対して、音波が通過できない領域を複数の小さな領域に分けて分散させることが可能であり、高性能のマイクロホンユニットを得やすい。
 上記構成のマイクロホンユニットにおいて、前記筐体は、前記電気音響変換素子を搭載する搭載部と、前記搭載部上に載置されて前記電気音響変換素子を覆うカバーと、からなって、前記搭載部には、その上に搭載される前記電気音響変換素子に覆われる第1の搭載部開口と、前記第1の搭載部開口と同一面に形成される第2の搭載部開口と、前記第1の搭載部開口と前記第2の搭載部開口とをつなぐ搭載部内空間と、が設けられ、前記カバーには、前記搭載部上に載置される前記電気音響変換素子を収容する収容空間と、一端が前記収容空間とつながるとともに他端が外部へとつながる第1の貫通孔と、前記収容空間につながることなく、一端が前記第2の搭載部開口とつながるとともに他端が外部につながる第2の貫通孔と、が設けられ、前記第1の開口は前記第1の貫通孔によって得られ、前記第2の開口は前記第2の貫通孔によって得られ、前記第1の導音空間が、前記第1の貫通孔と前記収容空間とを用いて形成されており、前記第2の導音空間が、前記第2の貫通孔と、前記第1の搭載部開口と、前記第2の搭載部開口と、前記搭載部内空間と、を用いて形成されており、前記搭載部に前記断面積縮小部が設けられていることとしてもよい。本構成によれば、差動マイクロホンユニットの構造が複雑とならず、差動マイクロホンユニットを容易に製造することが可能になる。
 上記構成のマイクロホンユニットにおいて、前記第2の搭載部開口は、前記第2の貫通孔の断面積よりも合計の面積が小さくなるように設けられる複数の開口からなり、前記断面積縮小部は、前記複数の開口を形成する複数の貫通孔を用いてなることとしてもよい。本構成によれば、搭載部に設ける第2の搭載部開口の構成を調整するだけで、音波が2つの導音空間を伝播するときの周波数特性を合わせることが可能となり、広い周波数帯域で良好な遠方ノイズ抑圧性能を示すマイクロホンユニットの構造を簡易なものとできる。
 上記構成のマイクロホンユニットにおいて、前記第1の導音空間内に、前記電気音響変換素子から得られる電気信号を処理する電気回路部が収容されていることとしてもよい。例えば、電気回路部は筐体外に設けることも可能であるが、本構成の方がマイクロホンユニットの取り扱いが容易となる。
 本発明によれば、広い周波数帯域で良好な遠方ノイズ抑圧性能を得ることが可能であると共に、小型化が可能な高品質のマイクロホンユニットを提供できる。
第1実施形態のマイクロホンユニットの外観構成を示す概略斜視図 図1AのA-A位置における断面図 第1実施形態のマイクロホンユニットが備える搭載部を構成する第1平板の上面図 第1実施形態のマイクロホンユニットが備える搭載部を構成する第2平板の上面図 第1実施形態のマイクロホンユニットが備える搭載部を構成する第3平板の上面図 第1実施形態のマイクロホンユニットが備えるカバーの構成を示す概略平面図で、カバーを上から見た図 第1実施形態のマイクロホンユニットが備えるカバーの構成を示す概略平面図で、カバーを下から見た図 第1実施形態のマイクロホンユニットが備えるMEMSチップの構成を示す概略断面図 第1実施形態のマイクロホンユニットの構成を示すブロック図 第1実施形態のマイクロホンユニットが備える搭載部を上から見た場合の概略平面図で、MEMSチップ及びASICが搭載された状態を示す図 第1実施形態のマイクロホンユニットにおいて、第1の導音空間と第2の導音空間とのうち、いずれか一方のみを用いた場合の周波数特性を示すグラフ 第2実施形態のマイクロホンユニットが備える搭載部を構成する第1平板の上面図 第2実施形態のマイクロホンユニットが備える搭載部を構成する第2平板の上面図 第2実施形態のマイクロホンユニットが備える搭載部を構成する第3平板の上面図 第2実施形態のマイクロホンユニットが備える搭載部の断面図 先行開発のマイクロホンユニットの外観構成を示す概略斜視図 図10AのB-B位置における断面図 先行開発のマイクロホンユニットが備える搭載部を上から見た場合の概略平面図 音圧Pと音源からの距離Rとの関係を示すグラフ 先行開発のマイクロホンユニットの指向特性を示す図 先行開発のマイクロホンユニットにおいて、第1の導音空間と第2の導音空間とのうち、いずれか一方のみを用いた場合の周波数特性を示すグラフ
 以下、本発明が適用されたマイクロホンユニットの実施形態について、図面を参照しながら詳細に説明する。ただし、本発明の理解を容易とするために、本出願人が先に開発したマイクロホンユニット(以下、先行開発のマイクロホンユニットという)の構成と、その問題点について先に説明しておく。
(先行開発のマイクロホンユニット)
 図10A、図10B及び図10Cは、先行開発のマイクロホンユニットの構成を示す図で、図10Aは外観構成を示す概略斜視図、図10Bは図10AのB-B位置における断面図、図10Cは先行開発のマイクロホンユニットが備える搭載部を上から見た場合の概略平面図である。なお、図10Cにおいては搭載部に搭載される部材を破線で示している。
 図10A、図10B及び図10Cに示すように、先行開発のマイクロホンユニット100は、搭載部101とカバー102とによって形成される略直方体状の筐体内に、MEMS(Micro Electro Mechanical System)チップ103及びASIC(Application Specific Integrated Circuit)104が収容された構成となっている。MEMSチップ103は、振動板103aを有し、この振動板103aの振動に基づいて音信号を電気信号に変換する電気音響変換素子として機能する。また、ASIC104は、MEMSチップ103から取り出される電気信号の増幅処理を行う。
 マイクロホンユニット100の筐体を構成する搭載部101の上面には、図10Cに示すように、略円形状の第1の搭載部開口101aと、略長方形状(略スタジアム形状)の第2の搭載部開口101bと、が設けられる。MEMSチップ103は、第1の搭載部開口101aを覆うように搭載部101に搭載される。
 マイクロホンユニット100の筐体を構成するカバー102の上面には、同一形状(略長方形状或いは略スタジアム形状と言える)且つ同面積の2つの開口102a、102bが形成されている。第1の開口102aはマイクロホンユニット100の長手方向の一端部寄りに、第2の開口102bはマイクロホンユニット100の長手方向の他端部寄りに配置され、両者はマイクロホンユニット100の中心に対して対称配置されている。
 搭載部101及びカバー102で構成される筐体内には、図10Bに示すように、第1の開口102aを介してMEMSチップ103の振動板103aの上面に外部から音波を導く第1の導音空間SP1と、第2の開口102bを介してMEMSチップ103の振動板103aの下面に外部から音波を導く第2の導音空間SP2と、が形成されている。すなわち、マイクロホンユニット100は差動マイクロホンユニットとして構成されている。
 なお、MEMSチップ103及びASIC104は、第1の導音空間SP1内に配置されている。第1の導音空間SP1にMEMSチップ103が配置されることによって、第1の導音空間SP1と第2の導音空間SP2とは仕切られる。また、マイクロホンユニット100においては、外部音が第1の開口102aから振動板103aの上面へと至る音の伝播時間と、外部音が第2の開口102bから振動板103aの下面へと至る音の伝播時間とが等しくなるよう、外部音が第1の開口102aから振動板103aの上面へと至る音の伝播距離と、外部音が第2の開口102bから振動板103aの下面へと至る音の伝播距離とはほぼ等しくなるように設けられている。
 このように構成される先行開発のマイクロホンユニット100の特性について説明する。説明に先立って、音波の性質について説明しておく。図11は、音圧Pと音源からの距離Rとの関係を示すグラフである。図11に示すように、音波は、空気等の媒質中を進行するにつれて減衰し、音圧(音波の強度・振幅)が低下する。音圧は、音源からの距離に反比例し、音圧Pと距離Rとの関係は、以下の式(1)のように表せる。なお、式(1)におけるkは比例定数である。
P=k/R  (1)
 図11及び式(1)から明らかなように、音圧は音源に近い位置では急激に減衰(グラフの左側)し、音源から離れるほどなだらかに減衰(グラフの右側)する。すなわち、音源からの距離がΔdだけ離れた2つの位置(R1とR2、又は、R3とR4)に伝達される音圧は、音源からの距離が小さいR1からR2においては大きく減衰する(P1-P2)が、音源からの距離が大きいR3からR4においてはあまり減衰しない(P3-P4)。
 図12は、先行開発のマイクロホンユニットの指向特性を示す図である。なお、図12においては、マイクロホンユニット100の姿勢は図10Bに示すのと同姿勢を想定している。音源とマイクロホンユニット100との距離が一定であれば、音源が図12における0°又は180°の方向にある時に、振動板103aに加わる音圧が最大となる。これは、音源から発せられた音波が第1の開口102aを経て振動板103aの上面に至る距離と、音源から発せられた音波が第2の開口102bを経て振動板103aの下面へと至る距離との差が最も大きくなるからである。また、音源が図12における90°又は270°の方向にある時に振動板103aに加わる音圧が最小(ほぼ0)になる。これは、音源から発せられた音波が第1の開口102aから振動板103aの上面に至る距離と、音源から発せられた音波が第2の開口102bから振動板103aの下面へと至る距離との差がほぼ0となるからである。
 すなわち、図12に示すように、マイクロホンユニット100は、0°及び180°の方向から入射される音波に対して感度が高く、90°及び270°の方向から入射される音波に対して感度が低い両指向性のマイクロホンユニットとして機能する。
 ここで、マイクロホンユニット100を接話マイクとして使用する場合を想定して、マイクロホンユニット100の特性を説明する。
 マイクロホンユニット100の近傍で発せられる目的音の音圧は、第1の開口102aと第2の開口102bとの間で大きく減衰する。このため、振動板103aの上面に伝達される音圧と振動板103aの下面に伝達される音圧との間には大きな差が生じる。一方、背景雑音は目的音に比べて音源が遠い位置にあり、第1の開口102aと第2の開口102bとの間ではほとんど減衰しない。このため、振動板103aの上面に伝達される音圧と、振動板103aの下面に伝達される音圧との間の音圧差は非常に小さくなる。
 振動板103aにて受音される背景雑音の音圧差は非常に小さいために、背景雑音の音圧は振動板103aにてほぼ打ち消される。これに対して、振動板103aにて受音される上記目的音の音圧差は大きいために、上記目的音の音圧は振動板103aで打ち消されない。このため、振動板103aの振動によって得られた信号は、背景雑音が除去された上記目的音の信号であると見なせる。すなわち、マイクロホンユニット100は接話マイクとして使用した場合に、優れた遠方ノイズ抑圧性能を発揮する。
 しかしながら、本出願人は、先行開発のマイクロホンユニット100は次のような問題を有するという知見を得ている。以下、この問題点について説明する。
 図13は、先行開発のマイクロホンユニットにおいて、第1の導音空間と第2の導音空間とのうち、いずれか一方のみを用いた場合の周波数特性を示すグラフである。図13において、横軸(対数軸)は周波数、縦軸はマイクロホンの出力である。また、図13において、実線で示すグラフ(a)は、マイクロホンユニット100の第1の開口102aのみから音波が入射するようにした場合(すなわち第1の導音空間SP1のみを用いた場合)における周波数特性を示している。また、図13において、破線で示すグラフ(b)は、マイクロホンユニット100の第2の開口102bのみから音波が入射するようにした場合(すなわち第2の導音空間SP2のみを用いた場合)における周波数特性を示している。
 なお、図13のデータを得るにあたって、音源位置は、図12の180°方向の一定位置としている。また、各周波数のデータを得るに際して、音源から発せられる音波の音圧は同一としている。
 当然ながら、マイクロホンユニット100は、その使用周波数範囲(例えば100Hz~10kHz)の全ての周波数において、良好な遠方ノイズ抑圧性能を発揮することが求められる。遠方ノイズ抑圧性能は上述の両指向性と深く関係している。そして、使用周波数範囲において良好な遠方ノイズ抑圧性能が得られるためには、マイクロホンユニット100は、その使用周波数範囲の全ての周波数において、図12に示すような両指向性を発揮することが求められる。
 このことを言い換えると、図12の180°方向に配置した音源からマイクロホンユニット100に音波を入射する場合、その使用周波数範囲において、図13のグラフ(a)とグラフ(b)とは、周波数が変化しても一定の出力差を維持することが求められる。なお、一定の出力差は、音源から第1の開口102aまでの距離と、音源から第2の開口102bまでの距離とが異なるために発生する。
 図13に示す実験結果では、100Hz~7kHz程度の周波数までは、グラフ(a)とグラフ(b)とが一定の出力差を維持している。しかし、7kHzを超えた辺りから、上述の出力差が一定ではなくなり、8kHzを越えたところでグラフ(a)とグラフ(b)との間で出力値の大小の逆転も見られるようになっている。すなわち、先行開発のマイクロホンユニット100では、音波が第1の導音空間SP1を伝播するときの周波数特性と第2の導音空間SP2を伝播するときの周波数特性のバランスが高周波数域において崩れるため、狙いの両指向性が得られず、良好な遠方ノイズ抑圧性能を得られないといった問題が生じる。
 マイクロホンユニット100は、それが搭載される機器(携帯電話機等の音声入力機能を備える機器)の小型化や薄型化を実現し易くする目的等のために、外部音を振動板103aの上面に導くための第1の開口102aと、外部音を振動板103aの下面に導くための第2の開口102bと、を同一面(カバー102の上面)に設ける構成となっている。しかし、このような構成を採用するために、マイクロホンユニット100において、第1の導音空間SP1と第2の導音空間SP2とは異なる形状とせざるを得なくなっている。
 また、筐体内に収容されるMEMSチップ103(ASICをMEMSチップと別体として筐体内に収容する場合はASICも)はいずれかの導音空間SP1、SP2に収容される必要があり、2つの導音空間の体積を同一とするのは困難である。なお、マイクロホンユニット100においては、MEMSチップ103は第1の導音空間SP1側に収容され、第1の導音空間SP1の方が第2の導音空間SP2よりも体積が大きくなっている。
 以上のような、第1の導音空間SP1と第2の導音空間SP2との形状のアンバラスが原因となって、2つの導音空間SP1、SP2は異なる周波数特性を有するようになっているものと考えられる。そして、このことが原因となって、上述した、高周波数側で良好な遠方ノイズ抑圧性能を得られないといった問題が生じているものと考えられる。
 本発明は、先行開発のマイクロホンユニット100の構造を改良することで、上述の第1の導音空間SP1と第2の導音空間SP2との周波数特性を合わせ(近づけ)、上記問題を解消することを狙ったものである。なお、音波が2つの導音空間SP1、SP2を伝播するときの周波数特性を合わせる手法としては音響抵抗部材を用いる手法も考えられる。しかし、音響抵抗部材は通常フェルト等で構成されるために、MEMSチップ103へのダストの入り込み等が懸念される。このため、このようなダストの問題が生じないように、本発明はマイクロホンユニット100の構造改良によって、音波が2つの導音空間SP1、SP2を伝播するときの周波数特性を合わせることとした。
(本発明の第1実施形態のマイクロホンユニット)
 図1A及び図1Bは、第1実施形態のマイクロホンユニットの構成を示す図で、図1Aは外観構成を示す概略斜視図、図1Bは図1AのA-A位置における断面図である。図1A及び図1Bに示すように、第1実施形態のマイクロホンユニット1は、MEMSチップ13とASIC14とを搭載する搭載部11と、搭載部11上に載置されてMEMSチップ13及びASIC14を覆うカバー12と、を備える。搭載部11とカバー12とはマイクロホンユニット1の筐体10を構成し、筐体10の形状は略直方体形状となっている。
 なお、本実施形態では、筐体10の長手方向(図1Bの左右方向が該当)の長さは7mm、短手方向(図1Bの紙面と垂直な方向が該当)の長さは4mm、厚み方向(図1Bの上下方向が該当)の長さは1.5mmとなっている。ただし、このサイズはあくまでも一例であり、当然ながら、本発明のマイクロホンユニットのサイズは、これに限定されない。また、以下においてもサイズに関する開示があるが、サイズはあくまでも一例であることを断っておく。
 搭載部11は、図1Bに示すように、第3平板113、第2平板112、第1平板111を、この順に下から上へと積み重ねてなる。各平板同士は、例えば接着剤や接着シート等を用いて接合される。図2A、図2B及び図2Cは、第1実施形態のマイクロホンユニットが備える搭載部を構成する3つの平板を示す概略平面図で、図2Aは第1平板の上面図、図2Bは第2平板の上面図、図2Cは第3平板の上面図である。
 図2A、図2B及び図2Cに示すように、搭載部11を構成する3つの平板111、112、113はいずれも平面視略長方形状に設けられ、平面視した場合の縦・横のサイズ、及び、厚みは略同一のサイズとなっている。なお、本実施形態では、各平板の長手方向(横方向)の長さは7mm、短手方向(縦方向)の長さは4mm、厚みは0.2mmとなっている。搭載部11を構成する平板111~113の材料は特に限定されるものではないが、基板材料として用いられる公知の材料が好適に使用され、例えばFR-4、セラミックス、ポリイミドフィルム等が用いられる。
 第1平板111には、図2Aに示すように、その中心近傍(正確には長手方向の一方側(図2Aの左側)に少しずれた位置)に平面視略円形状の貫通孔111aが設けられている。また、第1平板111には、その長手方向の一端寄り(図2Aの左端寄り)に、短手方向(図2Aの上下方向が該当)に所定間隔をあけて並ぶ平面視略円形状の3つの貫通孔111b、111c、111dが設けられている。3つの貫通孔111b~111dは、それらの各中心が短手方向に平行な1つの直線上に位置するように形成されている。なお、本実施形態では、いずれの貫通孔111a~111dも、その断面の直径は0.5mmとされている。
 第2平板112には、図2Bに示すように、平面視略長方形状の貫通孔112a(その上面及び下面は同形状・同サイズである)が設けられている。平面視略長方形状の貫通孔112aは、第2平板112が第1平板111と重ね合わされた状態で、第1平板111に設けられる4つの貫通孔111a~111dが、その領域内に含まれるように設けられている。なお、図2Bにおいては、第1平板111と第2平板112との関係について理解が容易となるように、第1平板111に設けられる4つの貫通孔111a~111dを破線で示している。
 第3平板113は、図2Cに示すように、貫通孔が形成されていない平板となっている。このように構成される第1平板111、第2平板112、及び第3平板113を貼り合わせると、貫通孔111aによって得られる第1の搭載部開口15と、3つの貫通孔111b、111c、111dによって得られる3つの第2の搭載部開口16と、第1の搭載部開口15と第2の搭載部開口16(3つある)とをつなぐ搭載部内空間17と、が形成された搭載部11が得られる(図1B参照)。
 なお、搭載部11には電極パッドや電気配線が形成されているが、これらについては後述する。また、本実施形態では搭載部11を3つの平板を貼り合わせて得る構成としているが、搭載部11の構成はこの構成に限定されず、搭載部11は1つの平板で構成しても構わないし、3つとは異なる複数の平板で構成しても構わない。また、搭載部11の形状は板状に限定されない。板状でない搭載部11を複数の部材で構成する場合には、搭載部11を構成する部材の中に平板ではない部材が含まれて良い。更に、搭載部11に形成される第1の搭載部開口15、第2の搭載部開口16(3つある)、及び搭載部内空間17の形状は本実施形態の構成に限定されず、適宜変更可能である。
 図3A及び図3Bは、第1実施形態のマイクロホンユニットが備えるカバーの構成を示す概略平面図で、図3Aはカバーを上から見た状態を示し、図3Bはカバーを下から見た状態を示す。カバー12は、その外形が略直方体形状に設けられる(図1Aも参照)。カバー12の長手方向(図3A及び図3Bにおいて左右方向)及び短手方向(図3A及び図3Bにおいて上下方向)の長さは、それぞれ搭載部11の長手方向及び短手方向の長さと同一である。詳細には、本実施形態では、長手方向の長さは7mm、短手方向の長さは4mmとしている。また、カバー12の厚みは0.9mmとしている。
 図3A及び図3Bに示すように、カバー12には、その長手方向の一端側(図3A及び図3Bの右側)に平面視略長方形状(略スタジアム形状)の1つの貫通孔121(本発明の第1の貫通孔の一例)が設けられている。また、カバー12の他端側(図3A及び図3Bの左側)には貫通孔121と同形状・同サイズの1つの貫通孔122(本発明の第2の貫通孔の一例)が設けられている。2つの貫通孔121、122は、カバー122の中心に対して略対称配置となっている。2つの貫通孔121、122の断面は、その長手方向(図3A及び図3Bの上下方向)の長さが2mm、短手方向(図3A及び図3Bの左右方向)の長さが0.5mmとされている。
 なお、貫通孔122は、カバー12が搭載部11に載置された状態において、その一方端(下端)が、搭載部11に形成される3つの第2の搭載部開口16(図1B参照)と重なる(つながる)ように、その位置が調整されている。図3Aにおいては、カバー12が搭載部11に載置された場合における、貫通孔122と第2の搭載部開口16との関係の理解を容易とするために、搭載部11に形成される3つの第2の搭載部開口16を破線で示している。
 また、カバー12の一端側に設けられる貫通孔121と、カバー12の他端側に設けられる貫通孔122とは、それらの中心間距離が4mm以上6mm以下となるように形成されるのが好ましい。後述のように、これらの貫通孔121、122は音波の入力部として使用される。上記中心間距離が広すぎると、振動板134(MEMSチップ13に備えられる)の上面と下面に到達する音波の位相差が大きくなってマイク特性が低下(ノイズ抑圧性能が低下)してしまう。このような事態を抑制するために、上記中心間距離は6mm以下とするのが好ましい。また、上記中心間距離が狭すぎると、振動板134の上面と下面に加わる音圧の差が小さくなって振動板134の振幅が小さくなり、ASIC14から出力される電気信号のSNR(Signal to Noise Ratio)が悪くなる。このような事態を抑制するために、上記中心間距離は4mm以上とするのが好ましい。。
 また、カバー12には、下側から見た場合に平面視略長方形状の凹部123(本実施形態では、その深さは0.7mmとされている)が形成されている。この凹部123は、カバー12の長手方向の一端側(図3Bの右端側)に設けられる貫通孔121と重なるように設けられており、凹部123と貫通孔121とはつながった状態となっている。一方、凹部123は、カバー12の長手方向の他端側(図3Bの左端側)に設けられる貫通孔122とは重ならないように設けられている。すなわち、凹部123は貫通孔122とはつながっていない。
 カバー12を構成する材料については、例えばLCP(Liquid Crystal Polymer;液晶ポリマ)やPPS(polyphenylene sulfide;ポリフェニレンスルファイド)等の樹脂とすることができる。なお、樹脂に導電性を持たせるため、ステンレス等の金属フィラーやカーボンが、カバー12を構成する樹脂に混入されるようにしても構わない。また、カバー12を構成する材料は、FR-4等、セラミックス等の基板材料としても構わない。
 搭載部11に搭載されるMEMSチップ13は、本発明における、振動板の振動に基づいて音信号を電気信号に変換する電気音響変換素子の一例である。シリコンチップからなるMEMSチップ13は、半導体製造技術を用いて製造される小型のコンデンサ型マイクロホンチップである。
 図4は、第1実施形態のマイクロホンユニットが備えるMEMSチップの構成を示す概略断面図である。図4に示すように、MEMSチップ13は、その外形は略直方体形状であり、絶縁性のベース基板131と、固定電極132と、絶縁性の中間基板133と、振動板134と、を備える。
 ベース基板131には、その中央部に平面視略円形状の貫通孔131aが形成されている。板状の固定電極132はベース基板131の上に配置され、複数の小径(直径10μm程度)の貫通孔132aが形成されている。中間基板133は固定電極132の上に配置され、ベース基板131と同様に、その中央部に平面視略円形状の貫通孔133aが形成されている。中間基板133の上に配置される振動板134は、音圧を受けて振動する(図4において上下方向に振動する。また、本実施形態では略円形部分が振動する)薄膜で、導電性を有して電極の一端を形成している。中間基板133の存在によって隙間Gpをあけて互いに略平行な関係となるように対向配置される、固定電極132と振動板134とはコンデンサを形成している。
 固定電極132と振動板134とによって形成されるコンデンサは、音波の到来により振動板134が振動すると、電極間距離が変動するために静電容量が変化する。この結果、MEMSチップ13に入射した音波(音信号)を電気信号として取り出せる。MEMSチップ13においては、ベース基板131に形成される貫通孔131a、固定電極132に形成される複数の貫通孔132a、及び中間基板133に形成される貫通孔133aの存在により、振動板134の下面側も外部(MEMSチップ13外部)の空間と連通している。
 なお、MEMSチップ13の構成は、本実施形態の構成に限定されるものではなく、適宜、その構成が変更されても構わない。例えば、本実施形態では振動板134の方が固定電極132よりも上となっているが、これとは逆の関係(振動板が下で、固定電極が上となる関係)となるように、MEMSチップが構成されても構わない。
 ASIC14は、MEMSチップ13の静電容量の変化(振動板134の振動に由来する)に基づいて取り出される電気信号を増幅処理する集積回路である。なお、ASIC14は本発明の電気回路部の一例である。図5に示すように、ASIC14は、MEMSチップ13にバイアス電圧を印加するチャージポンプ回路141を備える。チャージポンプ回路141は、電源電圧VDD(例えば1.5~3V程度)を昇圧(例えば6~10V程度)して、MEMSチップ13にバイアス電圧を印加する。また、ASIC14は、MEMSチップ13における静電容量の変化を検出するアンプ回路142を備える。アンプ回路142で増幅された電気信号はASIC14から出力される。なお、図5は、第1実施形態のマイクロホンユニットの構成を示すブロック図である。
 ここで、主に図6を参照して、マイクロホンユニット1における、MEMSチップ13とASIC14の位置関係及び電気的な接続関係について説明しておく。なお、図6は、第1実施形態のマイクロホンユニットが備える搭載部を上から見た場合の概略平面図で、MEMSチップ及びASICが搭載された状態を示す図である。
 MEMSチップ13は、振動板134が搭載部11の上面(搭載面)11aに対して略平行となる姿勢(図1B参照)で搭載部11に搭載される。そして、MEMSチップ13は、搭載部11の上面11aに形成される第1の搭載部開口15(図1B参照)を覆うように、搭載部11に搭載される。ASIC14は、MEMSチップ13に隣り合うように配置される。
 MEMSチップ13及びASIC14は、搭載部11にダイボンディング及びワイヤボンディングにより実装されている。詳細には、MEMSチップ13は図示しないダイボンド材(例えばエポキシ樹脂系やシリコーン樹脂系の接着剤等)によって、その底面と搭載部11の上面11aとの間に隙間ができないように、搭載部11の上面11aに接合されている。このように接合することにより、搭載部11の上面11aとMEMSチップ13の底面との間にできる隙間から音が漏れ込むという事態が発生しないようになっている。また、図6に示すように、MEMSチップ13はASIC14に、ワイヤ20(好ましくは金線)によって電気的に接続されている。
 ASIC14は、図示しないダイボンド材によって搭載部11の上面11aと対向する底面が、搭載部11の上面11aに接合されている。図6に示すように、ASIC14は、ワイヤ20によって搭載部11の上面11aに形成される複数の電極端子21a、21b、21cのそれぞれと電気的に接続されている。電極端子21aは電源電圧(VDD)入力用の電源用端子で、電極端子21bはASIC14のアンプ回路142で増幅処理された電気信号を出力する出力端子で、電極端子21cはグランド接続用のGND端子である。
 搭載部11の下面(搭載面11aの裏面)11bには、図1Bに示すように外部接続用電極パッド22が形成されている。外部接続用電極パッド22には、電源用電極パッド22a、出力用電極パッド22b、GND用電極パッド22c(図5参照)が含まれる。搭載部11の上面11aに設けられる電源端子21aは搭載部11に形成される図示しない配線(貫通配線含む)を介して電源用電極パッド22aに電気的に接続される。搭載部11の上面11aに設けられる出力端子21bは搭載部11に形成される図示しない配線(貫通配線含む)を介して出力用電極パッド22bに電気的に接続される。搭載部11の上面11aに設けられるGND端子21cは搭載部11に形成される図示しない配線(貫通配線含む)を介してGND用電極パッド20cに電気的に接続される。貫通配線については基板製造で一般的に使用されるスルーホールビアにより形成が可能である。
 また、本実施形態においては、MEMSチップ13及びASIC14がワイヤボンディング実装される構成としたが、MEMSチップ13及びASIC14はフリップチップ実装しても勿論構わない。この場合、MEMSチップ13およびASIC14の下面に電極を形成し、これに対応する電極パッドを搭載部11の上面に配置し、これらの結線は搭載部11上に形成された配線パターンにより行う。
 MEMSチップ13及びASIC14を搭載した搭載部11の上に、凹部123がMEMSチップ13及びASIC14を収容するようにカバー12が載置される。そして、搭載部11とカバー12とが気密封止されるように接合(例えば接着剤や接着シートが使用される)されると、筐体10内にMEMSチップ13及びASIC14を備えるマイクロホンユニット1が得られる。
 マイクロホンユニット1の筐体10内には、図1Bに示すように、カバー12に設けられる貫通孔121及び収容空間(凹部)123を用いて形成され、第1の開口18(貫通孔121によって得られる)を介して振動板134の上面に外部から音波を導く第1の導音空間SP1が形成されている。また、筐体10内には、カバー12に設けられる貫通孔122と、搭載部11に設けられる第1の搭載部開口15、3つの第2の搭載部開口16及び搭載部内空間17と、を用いて形成され、第2の開口19(貫通孔122によって得られる)を介して振動板134の下面に外部から音波を導く第2の導音空間SP2が形成されている。第1の導音空間SP1と第2の導音空間SP2とは、第1の導音空間SP1に収容されるMEMSチップ13によって仕切られている。すなわち、マイクロホンユニット1は差動マイクロホンユニットとして構成されている。
 なお、外部音が第1の開口18から第1の導音空間SP1を経て振動板134へと至る音の伝播時間と、外部音が第2の開口19から第2の導音空間SP2を経て振動板134へと至る音の伝播時間が等しくなるよう、外部音が第1の開口18から第1の導音空間SP1を経て振動板134へと至る音の伝播距離と、外部音が第2の開口19から第2の導音空間SP2を経て振動板134へと至る音の伝播距離とはほぼ等しくなるように設計するのが好ましく、本実施形態のマイクロホンユニット1は、そのように構成されている。
 以上のように構成されるマイクロホンユニット1は、上述した先行開発のマイクロホンユニット100と同様に優れた遠方ノイズ抑圧性能を示す。そして、先行開発のマイクロホンユニット100では、高周波数帯域において遠方ノイズ抑圧性能が劣化するといった問題があったが、本実施形態のマイクロホンユニット1では、この問題が解消されている。以下、これについて説明する。
 本実施形態のマイクロホンユニット1においては、第1の導音空間SP1と第2の導音空間SP2とは、その形状が異なるとともに体積が異なっている。この点は、先行開発のマイクロホンユニット100と同様である。しかし、マイクロホンユニット1は、MEMSチップ13を搭載する搭載部11の構成が先行開発のマイクロホンユニット100の構成と異なっている。そして、この違いにより、マイクロホンユニット1は、高周波数帯域においても良好な遠方ノイズ抑圧性能を発揮するようになっている。
 なお、本実施形態では、第1の導音空間SP1の体積は約5mmであり、第2の導音空間SP2の体積は2mmとなっている。
 上述のように、先行開発のマイクロホンユニット100において高周波数側で良好な遠方ノイズ抑圧性能が得られないのは、音波が第1の導音空間SP1を伝播するときの周波数特性と第2の導音空間SP2を伝播するときの周波数特性とが異なることが原因になっているものと考えられた。すなわち、音波が2つの導音空間SP1、SP2を伝播するときの周波数特性を合わせることにより、高周波数側においても良好な遠方ノイズ抑圧性能が得られるものと考えられた。
 そこで、本出願の発明者らは、従来のマイクロホンユニット100の構造改良によって、2つの導音空間SP1、SP2の共振周波数を近づけ、それにより、音波が第1の導音空間SP1を伝播するときの周波数特性と第2の導音空間SP2を伝播するときの周波数特性とを合わせることを考えた。なお、従来の構成の構造改良によって音波が2つの導音空間SP1、SP2を伝播するときの周波数特性を合わせることとしたのは、上述したダスト(音響抵抗部材から発生する)の影響でMEMSチップが故障するといった事態が発生し難いマイクロホンユニットを提供することを考慮するものである。
 第1の導音空間SP1は、その形状から公知のヘルムホルツ共鳴器と同様に振舞うものと考えられる。このため、第1の導音空間SP1の共振周波数frは、以下の式(2)で与えられるものと考えられる。なお、式(2)において、Cvは音速、Sは第1の開口18の面積(貫通孔121の断面積)、Lpはカバー12に設けられる貫通孔121の厚み(孔の長さ)、ΔLは開口端補正、Vは収容空間123の容積である。
Figure JPOXMLDOC01-appb-M000001
 式(2)からわかるように、第1の導音空間SP1の共振周波数は、収容空間123の容積、第1の開口18の面積、及び貫通孔121の厚みのうち、少なくともいずれか1つを変動させることによって変動することがわかる。一方、第2の導音空間SP2は、その形状がヘルムホルツ共鳴器とは全く異なると考えられるために、その共振周波数は単純に式(2)で表すことはできないものと考えられる。
 上記式(2)と、マイクロホンユニットの小型化の要請や製造しやすさ等とを考慮しながら鋭意研究を行った結果、従来のマイクロホンユニット100を改良するにあたって、次のような改良を行えば良いことがわかった。すなわち、第2の導音空間SP2内(第2の開口19から離れた内部側)に、その前後に比べて、音波の進行方向に略直交する音道断面の断面積を局所的に小さくする断面積縮小部を設ければ、音波が2つの導音空間SP1、SP2を伝播するときの周波数特性(共振周波数)を近づけられることがわかった。
 なお、この検討を行うにあたって、2つの導音空間SP1、SP2の共振周波数が低くなり過ぎない(少なくとも10kHzより低くならない)ことを前提とした。これは、2つの導音空間SP1、SP2の共振周波数が低くなりすぎると、使用周波数範囲でマイクロホンの周波数特性が平坦とならず、マイクロホンユニット1の性能が低下するからである。
 本実施形態のマイクロホンユニット1においては、この断面積縮小部ARは搭載部11に設けられている。より具体的には、断面積縮小部ARは、搭載部11に設けられる3つの第2の搭載部開口16を形成する3つの貫通孔111b、111c、111d(図2A参照)を用いてなる。上述のように、第2の搭載部開口16は3つの開口からなるが、これらの各面積(各開口の面積)の合計は、その手前位置の断面積(すなわち、カバー12に設けられる貫通孔122の断面積)よりも小さくなっている。このために、第2の導音空間SP2においては、この第2の搭載部開口16が設けられる位置において、音波の進行方向に略直交する断面の断面積(音道断面積)が小さくなる。
 第2の搭載部開口16(3つある)は、上述のように、搭載部11を構成する第1平板111に形成される貫通孔111b、111c、111dによって得られるもので、マイクロホンユニット1においては、これらの貫通孔111b~111dの長さ(厚み)分だけ(すなわち局所的に)音道断面積が縮小されるようになっている。
 先行開発のマイクロホンユニット100では、第2の搭載部開口101bは1つのみ設けられるとともに第1の開口102bと同形状・同サイズとされており(図10A~図10C参照)、第2の導音空間SP2内に音道断面積を局所的に縮小するという構成は採用されていなかった。この点、本実施形態のマイクロホンユニット1では、第2の搭載部開口の改良によって、第2の導音空間SP2内に音道断面積を局所的に縮小する断面積縮小部ARが設けられる構成となっている。これにより、図7に示すように、第2の導音空間SP2の共振周波数を先行開発のマイクロホンユニット100の場合よりも下げて、第1の導音空間SP1の共振周波数と合わせ込むことが可能となった。その結果、第1の導音空間SP1と第2の導音空間SP2との共振周波数を近づけ、両者の周波数特性を合わせることが可能となり、マイクロホンユニット1は高周波数帯域でも(広い周波数帯域で)良好な遠方ノイズ抑圧性能を示すものとなっている。
 ここで、図7は、第1実施形態のマイクロホンユニットにおいて、第1の導音空間と第2の導音空間とのうち、いずれか一方のみを用いた場合の周波数特性を示すグラフである。図7は、上述した図13と同様のグラフであり、周波数特性は図13と同様の手法で得たものである。図7において、実線で示すグラフ(a)は、マイクロホンユニット1の第1の導音空間SP1のみを用いた場合における周波数特性を示し、破線で示すグラフ(b)は、マイクロホンユニット1の第2の導音空間SP2のみを用いた場合における周波数特性を示している。
 なお、断面積縮小部ARによって、どの程度断面積を縮小するか、及び、どの程度の範囲に亘って断面積を縮小するかは、第1の導音空間SP1と第2の導音空間SP2との周波数特性を合わせるという目的を念頭において、実験等によって適宜決定すればよい。
 また、本実施形態では、第2の搭載部開口16が3つの開口からなる構成としているが、この構成に限定される趣旨ではない。音波の進行方向に略直交する断面の断面積(音道断面積)を小さくするという目的を満たす範囲において、第2の搭載部開口16を構成する開口の数は適宜変更して構わず、場合によっては1つでも構わないし、3つとは異なる複数であっても構わない。なお、第2の搭載部開口16を構成する開口の数をあまり多くすると製造時の作業性を悪くする等の問題が生じる場合があり、あまり多くしすぎないのが好ましい。また、第2の搭載部開口16の形状も、音波の進行方向に略直交する断面の断面積(音道断面積)を小さくするという目的を満たす範囲において適宜変更可能である。
(本発明の第2実施形態のマイクロホンユニット)
 第2実施形態のマイクロホンユニットは、搭載部11の構成を除いて第1実施形態のマイクロホンユニット1と同一の構成となっている。以下、異なる点についてのみ説明する。なお、第1実施形態と共通する部分については同一の符号を付して説明する。
 図8A、図8B及び図8Cは、第2実施形態のマイクロホンユニットが備える搭載部を構成する3つの平板を示す概略平面図で、図8Aは第1平板の上面図、図8Bは第2平板の上面図、図8Cは第3平板の上面図である。図8A、図8B及び図8Cからわかるように、搭載部11が3つの平板111、112、113によって形成される点は第1実施形態の場合と同様である。また、搭載部11を構成する3つの平板111、112、113の形状、サイズ、及び材質についても第1実施形態の場合と同様である。
 第1平板111には、第1実施形態の場合と同様に、その中心近傍に平面視略円形状の貫通孔111aが設けられている。また、第1平板111には、その長手方向の一端寄り(図8Aの左端寄り)に平面視略長方形状(略スタジアム形状)の貫通孔111b´が設けられている。この平面視略長方形状の貫通孔111b´の断面は、その長手方向(図8Aの上下方向)の長さが2mm、短手方向(図8Aの左右方向)の長さが0.5mmとされている。これは、カバー12に設けられる貫通孔122の断面と同サイズであり、この点、第1実施形態の構成とは異なり、先行開発のマイクロホンユニット100(図10A~図10C参照)と同様の構成である。
 第2平板112には、図8Bに示すように、平面視略長方形状の貫通孔112a(その上面及び下面は同形状・同サイズである)が設けられている。平面視略長方形状の貫通孔112aは、第2平板112が第1平板111と重ね合わされた状態で、第1平板111に設けられる平面視略円形状の貫通孔111a及び平面視略長方形状の貫通孔111b´が、その領域内に含まれるように設けられている。なお、図8Bにおいては、第1平板111と第2平板112との関係について理解が容易となるように、第1平板111に設けられる貫通孔111a、111b´を破線で示している。
 第3平板113には、図8Cに示すように、短手方向に所定の間隔をおいて設けられる2つの突起部113aが形成されている。この2つの突起部113aは、第3平板113と一体的に設けられても構わないし、第3平板113とは他部材として設けられても構わない。他部材とされる場合には、突起部113aは、例えば接着剤等を用いて第3平板113に固定されればよい。図8Cにおける破線は、第3平板113に重ねられる第2平板112に設けられる貫通孔112aを示している。これからわかるように、第3平板113と第2平板112とを重ねた状態で、2つの突起部113aは、第2平板112に設けられる貫通孔112aに囲い込まれる。
 このように構成される第1平板111、第2平板112、及び第3平板113を貼り合わせると、貫通孔111aによって得られる第1の搭載部開口15と、貫通孔111b´によって得られる第2の搭載部開口16(第1実施形態と異なり1つである)と、第1の搭載部開口15と第2の搭載部開口16とをつなぐ搭載部内空間17と、が形成された搭載部11が得られる。
 図9は、第2実施形態のマイクロホンユニットが備える搭載部の断面図である。図9に示されるように、第3平板113に設けられる突起部113aの高さは第2平板112の厚みと同一となっている。このために、3つの平板111~113を貼り合わせた状態において、突起部113aは図9に示すように第1平板111の下面と当接する。この突起部113aの存在により、搭載部11に形成される搭載部内空間17においては、音波の進行方向に略直交する断面の断面積(音道断面積)が局所的に縮小されることになる。
 すなわち、第2実施形態のマイクロホンユニットにおいては、第2の搭載部開口16を利用して断面積縮小部ARが形成されるのではなく、搭載部内空間17に設けられる突起部113aによって断面積縮小部ARが得られる構成となっている。図8Cを参照して、突起部113aの縦方向の長さ(図8Cにおいて上下方向の長さ)によって音道断面積を小さくする量を調整でき、また、突起部113aの横方向の長さ(図8Cにおいて左右方向の長さ)によって、音道断面積を局所的に縮小する範囲を調整できる。そして、これらの長さは、第1の導音空間SP1と第2の導音空間SP2との周波数特性を合わせるという目的を念頭において、実験等によって適宜決定すればよい。
 なお、この構成の場合も、図9を参照すればわかるように、断面積縮小部ARは複数の貫通孔を用いて形成されていると言える。搭載部内空間17を2つの突起部113aで区切ることによってできる3つの空間は、それぞれ貫通孔と見なすことができるからである。
 本実施形態の場合も、第2の導音空間SP2の共振周波数を先行開発のマイクロホンユニット100の場合よりも下げることが可能であり、その結果、第1の導音空間SP1と第2の導音空間SP2との共振周波数を近づけ、両者の周波数特性を合わせることが可能である。このため、本実施形態のマイクロホンユニットにおいても、広い周波数帯域で良好な遠方ノイズ抑圧性能を得られる。
 なお、突起部113aの形状は本実施形態の構成に限定されず、断面積縮小部ARが得られるものであれば、勿論別の形状としても構わない。また、突起部113aの数も勿論適宜変更可能である。更に、断面積縮小部ARを得るという目的の範囲内で、突起部113aの位置を本実施形態の構成からずらして良いのも当然である。
(その他)

 以上の実施形態で示したマイクロホンユニットは本発明の例示であり、本発明の適用範囲は、以上に示した実施形態に限定されるものではない。すなわち、本発明の目的を逸脱しない範囲で、以上に示した実施形態について種々の変更を行っても構わない。
 例えば、以上に示した実施形態では、MEMSチップ13が搭載される搭載部11の第2の搭載部開口16を利用して断面積縮小部ARを形成する構成を示したが、第1の搭載部開口15を用いて断面積縮小部ARを設ける構成としてもよい。また、以上の第1実施形態及び第2実施形態はいずれも搭載部11に断面積縮小部ARを設けることとしたが、断面積縮小部はカバー12に設ける構成としても構わない。
 また、以上に示した実施形態では、MEMSチップ13とASIC14とは別チップで構成したが、ASIC14に搭載される集積回路はMEMSチップ13を形成するシリコン基板上にモノリシックで形成するものであっても構わない。すなわち、MEMSチップ13とASIC14とは一体的に形成しても構わない。また、以上に示した実施形態では、ASIC14を筐体10内に収容する構成としているが、ASIC14は筐体10外に設けられるようにしても構わない。
 また、以上に示した実施形態では、音圧を電気信号に変換する電気音響変換素子が、半導体製造技術を利用して形成されるMEMSチップ13である構成としたが、この構成に限定される趣旨ではない。例えば、電気音響変換素子はエレクトレット膜を使用したコンデンサマイクロホン等であっても構わない。
 また、以上の実施形態では、マイクロホンユニットが備える電気音響変換素子(本実施形態のMEMSチップ13が該当)の構成として、いわゆるコンデンサ型マイクロホンを採用した。しかし、本発明はコンデンサ型マイクロホン以外の構成を採用したマイクロホンユニットにも適用できる。例えば、動電型(ダイナミック型)、電磁型(マグネティック型)、圧電型等のマイクロホン等が採用されたマイクロホンユニットにも本発明は適用できる。
 本発明のマイクロホンユニットは、例えば携帯電話、トランシーバ等の音声通信機器や、入力された音声を解析する技術を採用した音声処理システム(音声認証システム、音声認識システム、コマンド生成システム、電子辞書、翻訳機、音声入力方式のリモートコントローラ等)、或いは録音機器やアンプシステム(拡声器)、マイクシステムなどに好適である。
 1 マイクロホンユニット
 10 筐体
 11 搭載部
 12 カバー
 13 MEMSチップ(電気音響変換素子)
 14 ASIC(電気回路部)
 15 第1の搭載部開口
 16 第2の搭載部開口
 17 搭載部内空間
 18 第1の開口
 19 第2の開口
 111b、111c、111d 複数の貫通孔(断面積縮小部を形成する)
 121 貫通孔(第1の貫通孔)
 122 貫通孔(第2の貫通孔)
 123 凹部・収容空間
 134 振動板
 AR 断面積縮小部
 SP1 第1の導音空間
 SP2 第2の導音空間

Claims (6)

  1.  振動板の振動に基づいて音信号を電気信号に変換する電気音響変換素子と、前記電気音響変換素子を収容する筐体と、を備えるマイクロホンユニットであって、
     前記筐体には、前記電気音響変換素子が収容される第1の導音空間と、前記振動板によって前記第1の導音空間と仕切られる第2の導音空間と、が設けられ、
     前記第1の導音空間は、前記筐体の外面に形成される第1の開口を介して前記振動板の一方の面に外部から音波を導き、
     前記第2の導音空間は、前記筐体の外面に形成される第2の開口を介して前記振動板の他方の面に外部から音波を導き、
     前記第2の導音空間の前記第2の開口から離れた内部側には、その前後に比べて、音波の進行方向に略直交する音道断面の断面積を局所的に小さくする断面積縮小部が設けられている、マイクロホンユニット。
  2.  前記第2の導音空間は、前記第1の導音空間とは異なる形状を有し、
     前記第1の開口と前記第2の開口とは、前記筐体の同一外面に形成される、請求項1に記載のマイクロホンユニット。
  3.  前記断面積縮小部は、複数の貫通孔を用いて形成されている、請求項1又は2に記載のマイクロホンユニット。
  4.  前記筐体は、前記電気音響変換素子を搭載する搭載部と、前記搭載部上に載置されて前記電気音響変換素子を覆うカバーと、からなって、
     前記搭載部には、その上に搭載される前記電気音響変換素子に覆われる第1の搭載部開口と、前記第1の搭載部開口と同一面に形成される第2の搭載部開口と、前記第1の搭載部開口と前記第2の搭載部開口とをつなぐ搭載部内空間と、が設けられ、
     前記カバーには、前記搭載部上に載置される前記電気音響変換素子を収容する収容空間と、一端が前記収容空間とつながるとともに他端が外部へとつながる第1の貫通孔と、前記収容空間につながることなく、一端が前記第2の搭載部開口とつながるとともに他端が外部につながる第2の貫通孔と、が設けられ、
     前記第1の開口は前記第1の貫通孔によって得られ、前記第2の開口は前記第2の貫通孔によって得られ、
     前記第1の導音空間が、前記第1の貫通孔と前記収容空間とを用いて形成されており、
     前記第2の導音空間が、前記第2の貫通孔と、前記第1の搭載部開口と、前記第2の搭載部開口と、前記搭載部内空間と、を用いて形成されており、
     前記搭載部に前記断面積縮小部が設けられている、請求項1から3のいずれかに記載のマイクロホンユニット。
  5.  前記第2の搭載部開口は、前記第2の貫通孔の断面積よりも合計の面積が小さくなるように設けられる複数の開口からなり、
     前記断面積縮小部は、前記複数の開口を形成する複数の貫通孔を用いてなる、請求項4に記載のマイクロホンユニット。
  6.  前記第1の導音空間内に、前記電気音響変換素子から得られる電気信号を処理する電気回路部が収容されている、請求項1から5のいずれかに記載のマイクロホンユニット。
PCT/JP2011/066057 2010-08-02 2011-07-14 マイクロホンユニット WO2012017794A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/813,206 US20130136292A1 (en) 2010-08-02 2011-07-14 Microphone unit
EP11814424.5A EP2592844A1 (en) 2010-08-02 2011-07-14 Microphone unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010173288A JP5636795B2 (ja) 2010-08-02 2010-08-02 マイクロホンユニット
JP2010-173288 2010-08-02

Publications (1)

Publication Number Publication Date
WO2012017794A1 true WO2012017794A1 (ja) 2012-02-09

Family

ID=45559301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066057 WO2012017794A1 (ja) 2010-08-02 2011-07-14 マイクロホンユニット

Country Status (5)

Country Link
US (1) US20130136292A1 (ja)
EP (1) EP2592844A1 (ja)
JP (1) JP5636795B2 (ja)
TW (1) TW201230823A (ja)
WO (1) WO2012017794A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102008374B1 (ko) * 2012-08-03 2019-10-23 삼성전자주식회사 휴대용 단말기의 입력장치
PL2869598T3 (pl) * 2013-10-30 2019-01-31 Svantek Sp. Z O.O. Urządzenie do pomiaru poziomu dźwięku
DE102013223359A1 (de) * 2013-11-15 2015-05-21 Robert Bosch Gmbh Leiterplatte für die 2nd-Level-Montage eines Mikrofonbauteils und Mikrofonmodul mit einer derartigen Leiterplatte
TW201612678A (en) * 2014-09-26 2016-04-01 3R Semiconductor Technology Inc Electronic device with dust protecting function and method for fabricating electronic device with dust protecting function
TWI539831B (zh) * 2014-12-05 2016-06-21 財團法人工業技術研究院 微機電麥克風封裝
CN111787472B (zh) * 2020-08-28 2022-03-22 歌尔光学科技有限公司 发声结构、音频设备和头戴显示设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005295278A (ja) 2004-03-31 2005-10-20 Hosiden Corp マイクロホン装置
JP2008219435A (ja) 2007-03-02 2008-09-18 Citizen Electronics Co Ltd コンデンサマイクロホン。
WO2009034786A1 (ja) * 2007-09-10 2009-03-19 Hosiden Corporation コンデンサマイクロホン
JP2009188943A (ja) 2008-02-08 2009-08-20 Funai Electric Co Ltd マイクロホンユニット
WO2010013602A1 (ja) * 2008-07-30 2010-02-04 船井電機株式会社 差動マイクロホン
WO2010013603A1 (ja) * 2008-07-30 2010-02-04 船井電機株式会社 マイクロホンユニットおよびそれを備える携帯電話機
JP2010136132A (ja) * 2008-12-05 2010-06-17 Funai Electric Co Ltd 音声入力装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7501703B2 (en) * 2003-02-28 2009-03-10 Knowles Electronics, Llc Acoustic transducer module
US7233679B2 (en) * 2003-09-30 2007-06-19 Motorola, Inc. Microphone system for a communication device
JP2009044600A (ja) * 2007-08-10 2009-02-26 Panasonic Corp マイクロホン装置およびその製造方法
JP5128919B2 (ja) * 2007-11-30 2013-01-23 船井電機株式会社 マイクロフォンユニット及び音声入力装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005295278A (ja) 2004-03-31 2005-10-20 Hosiden Corp マイクロホン装置
JP2008219435A (ja) 2007-03-02 2008-09-18 Citizen Electronics Co Ltd コンデンサマイクロホン。
WO2009034786A1 (ja) * 2007-09-10 2009-03-19 Hosiden Corporation コンデンサマイクロホン
JP2009188943A (ja) 2008-02-08 2009-08-20 Funai Electric Co Ltd マイクロホンユニット
WO2010013602A1 (ja) * 2008-07-30 2010-02-04 船井電機株式会社 差動マイクロホン
WO2010013603A1 (ja) * 2008-07-30 2010-02-04 船井電機株式会社 マイクロホンユニットおよびそれを備える携帯電話機
JP2010136132A (ja) * 2008-12-05 2010-06-17 Funai Electric Co Ltd 音声入力装置

Also Published As

Publication number Publication date
EP2592844A1 (en) 2013-05-15
JP5636795B2 (ja) 2014-12-10
TW201230823A (en) 2012-07-16
JP2012034257A (ja) 2012-02-16
US20130136292A1 (en) 2013-05-30

Similar Documents

Publication Publication Date Title
JP5636796B2 (ja) マイクロホンユニット
JP5834383B2 (ja) マイクロホンユニット及びそれを備えた音声入力装置
JP5434798B2 (ja) マイクロホンユニット、及び、それを備えた音声入力装置
JP5325554B2 (ja) 音声入力装置
JP5691181B2 (ja) マイクロホンユニット、及び、それを備えた音声入力装置
JP5502313B2 (ja) マイクロホンユニット
JP5325555B2 (ja) マイクロホンユニット
JP5481852B2 (ja) マイクロホンユニット及びそれを備えた音声入力装置
US20140233756A1 (en) Sound input device
JP2010187076A (ja) マイクロホンユニット
JP5636795B2 (ja) マイクロホンユニット
WO2010090070A1 (ja) マイクロホンユニット
JP2011124748A (ja) マイクロホンユニット
JP5515700B2 (ja) マイクロホンユニット
JP5419254B2 (ja) マイクロホンユニット
JP5166007B2 (ja) マイクロフォンユニットおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814424

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011814424

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13813206

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE