WO2012017183A1 - Support a couche diffusante pour dispositif a diode electroluminescente organique, dispositif electroluminescent organique comportant un tel support - Google Patents

Support a couche diffusante pour dispositif a diode electroluminescente organique, dispositif electroluminescent organique comportant un tel support Download PDF

Info

Publication number
WO2012017183A1
WO2012017183A1 PCT/FR2011/051874 FR2011051874W WO2012017183A1 WO 2012017183 A1 WO2012017183 A1 WO 2012017183A1 FR 2011051874 W FR2011051874 W FR 2011051874W WO 2012017183 A1 WO2012017183 A1 WO 2012017183A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffusing
layer
binder
values
diffusing layer
Prior art date
Application number
PCT/FR2011/051874
Other languages
English (en)
Inventor
Jean-Luc Allano
Marie-Virginie Ehrensperger
Sylvie Abensour
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to US13/814,428 priority Critical patent/US8890133B2/en
Priority to JP2013523653A priority patent/JP2013536551A/ja
Priority to CN2011800422718A priority patent/CN103081158A/zh
Priority to EP11757383.2A priority patent/EP2601695A1/fr
Priority to KR20137005652A priority patent/KR20130097744A/ko
Publication of WO2012017183A1 publication Critical patent/WO2012017183A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/45Inorganic continuous phases
    • C03C2217/452Glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/365Coating different sides of a glass substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • Y10T428/249969Of silicon-containing material [e.g., glass, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • Y10T428/24997Of metal-containing material

Definitions

  • the present invention relates to a support for an organic light-emitting diode device. It relates more particularly to a support for an organic light-emitting diode device comprising a transparent glass substrate coated with a diffusing layer, and such a device.
  • OLED Organic Light Emitting Diodes
  • OLED comprises a material, or a stack of materials, electroluminescent (s) organic (s), and is framed by two electrodes, one of the electrodes, called lower, generally the anode being constituted by that associated with a glass substrate and the other electrode, said upper, usually the cathode, being arranged on the organic electroluminescent system.
  • OLED is a device that emits light by electroluminescence using the recombination energy of holes injected from the anode and electrons injected from the cathode.
  • the front and rear emission devices that is to say with both a lower (semi) transparent electrode and an upper (semi) transparent electrode.
  • the invention relates to OLED devices emitting from the rear and possibly also from the front.
  • An OLED usually finds its application in a display screen or more recently in a lighting device.
  • the light extracted from the OLED is a "white” light emitting in some or all wavelengths of the spectrum. It must be so in a homogeneous way.
  • Lambertian emission that is to say obeying Lambert's law, being characterized by a photometric luminance equal in all directions.
  • An OLED nevertheless has a low light extraction efficiency: the ratio between the light that actually leaves the glass substrate and that emitted by the electroluminescent materials is relatively low, of the order of 0.25.
  • Document FR2937467 discloses in particular an OLED device whose mineral glass substrate comprises, on the main face opposite to that carrying the first electrode, a diffusing layer comprising a mineral binder and diffusing particles dispersed in the binder, as well as particles dispersed in the binder and absorbing ultraviolet (UV) radiation in the wavelength range of 325 to 400 nm.
  • a diffusing layer comprising a mineral binder and diffusing particles dispersed in the binder, as well as particles dispersed in the binder and absorbing ultraviolet (UV) radiation in the wavelength range of 325 to 400 nm.
  • the binder is obtained from a glass frit, potassium silicate, sodium or lithium.
  • the diffusing particles are alumina or else BaSO 4 , ZrO 2, SiO 2 or CaCO 3
  • the proportion of the binder is of the order of 30 to 70% of the total weight of the diffusing layer, and the proportion of diffusing particles is of the order of 25 to 60% of the total weight of the layer, and the proportion of particles absorbing UV radiation is between 2 to 15% of the total weight of the layer.
  • a preferred example of a diffusing and anti-UV layer with a thickness of 1 ⁇ is as follows:
  • the diffusing layer is applied against the substrate by screen printing or any other suitable technique such as by coating, by dip-coating, by spraying.
  • the diffusing function of this layer allows a "re-mixing" of the colors forming the white light, which makes it possible to extract a much more homogeneous light.
  • the aim of the invention is, in particular, to achieve a robust OLED device without sacrificing the optical performance of the OLED (in particular the light extraction and / or the limitation of the colorimetric variation as a function of the observation angle of the selected emitted light polychromatic, especially white) or improve them, nor cause difficulties of realization.
  • Another important goal is to make it possible to manufacture such a device that is compatible with the manufacturing process of the OLED device.
  • the present invention proposes for this purpose a support for an organic light-emitting diode device successively comprising a transparent mineral glass substrate provided with first and second main faces. opposed, the substrate being coated (directly) on its second face with a diffusing layer which comprises a binder (essentially) inorganic and scattering elements dispersed in the binder, the vitreous binder comprising between 40% to 60% by weight of oxide of bismuth B12O3 including these values, or even between 45% and 58% by weight of bismuth oxide B12O3 including these values, the proportion of vitreous binder is at least 20% of the total weight of the diffusing layer.
  • the appropriate proportion of bismuth oxide in the diffusing layer according to the invention guarantees enhanced chemical resistance.
  • the diffusing layer according to the invention is resistant to these different chemical treatments that the substrate undergoes during the production of OLED, unlike conventional frits. .
  • the vitreous binder may be what the skilled person calls an enamel or a glass frit.
  • the diffusing layer according to the invention makes it possible:
  • the diffusing layer preferably has a main outer surface in the open air.
  • the substrate according to the invention is considered laid horizontally, with its first face facing downwards and its second face, opposite the first face, facing upwards; the meanings of the expressions “above” and “below” are thus to be considered in relation to this orientation.
  • the terms “above” and “below” do not necessarily mean that the two elements are arranged in contact with each other.
  • index refers to the optical refractive index, measured at the wavelength of 590 nm.
  • the chemical resistance of the diffusing layer of vitreous material according to the invention may be accentuated by the fact that the binder has a composition of water-soluble oxides which is weak.
  • the water-soluble oxides in particular the alkaline oxides of sodium and potassium type, preferably have a content of less than 15% by weight and even more preferably less than 5%.
  • the vitreous binder of the diffusing layer (monolayer or multilayer) according to the invention comprises, by weight:
  • the binder according to the invention may preferably comprise between 5 and 30% by weight of ZnO including these values and preferably between 10 and 25% by weight of ZnO including these values.
  • the chemical resistance is further enhanced by the combined action of these two oxides in their specific ranges.
  • Said diffusing layer according to the invention (single layer or multilayer) preferably has a thickness (total) between 1 ⁇ and 50 ⁇ by including these values, or even between 5 ⁇ and 30 ⁇ including these values.
  • the diffusing elements preferably have a characteristic dimension comparable to or greater than the wavelength of the light in the vitreous medium, which corresponds to dimensions of between a few hundred nanometers and a few microns.
  • the diffusing elements according to the invention may comprise porosities in volume (therefore in the layer) or even on the surface.
  • the diffusing elements may comprise diffusing particles, in particular of material of index different from the index of the substrate, preferably in a proportion of less than 60% of the total weight of the layer, and possibly volume or even surface porosities.
  • the porosities are naturally present in the diffusing layer while ad hoc scattering particles are added. Closed porosities promote volume diffusion. Open porosities promote surface diffusion.
  • the porosities arise for example from the cooking (elimination) of the organic medium.
  • the porosities are large, larger than 500 nm.
  • diffusing element As another diffusing element according to the invention, mention may be made of crystals, such as, for example, zircon or baddeleyite crystals naturally present in the diffusing layer.
  • the diffusing elements according to the invention may comprise mineral diffusing particles, in particular chosen from one or more of the following particles: particles of alumina, zirconia ZrO 2, silica S102 , titanium oxide TiO 2 or CaCO 3 , of BaSO 4 .
  • a diffusing layer according to the invention with a binder (essentially) mineral and preferably by diffusing (essentially) mineral elements (in particular with at least 80% of mineral diffusing elements including mineral particles, crystals, porosities) present a very good temperature resistance, particularly at about 400 ° C, so as not to be degraded during the manufacturing process of the entire OLED.
  • the proportion of vitreous binder according to the invention is between 40 and 80% of the total weight of the diffusing layer including these values, in particular between 50 and 75% by including these values, and the proportion of the diffusing particles chosen.
  • in alumina is between 20% and 60% including these values, especially between 25 and 50% of the total weight of the layer including these values.
  • the diffusing layer according to the invention may have a rough external surface, which is rough, with a roughness parameter defined by a roughness parameter Ra greater than 500 nm, or even at 900 nm over a length of analysis of 200 ⁇ .
  • the roughness of the substrate is characterized by the well known roughness parameter Ra which is the arithmetic average deviation of the profile, reflecting the average amplitude.
  • a mechanical profilometer such as the DEKTAK device from VEECO is chosen.
  • the substrate coated with this diffusing layer according to the invention can have a light transmission (TL) of at least 50% and a blur (that is to say the ratio TL / TD where TD is the diffuse transmission) of at least 80% or even 90%.
  • TL light transmission
  • blur that is to say the ratio TL / TD where TD is the diffuse transmission
  • the glass substrate may have a conventional index between 1, 4 and 1, 6 or be high index so index greater than or equal to 1.7.
  • the glass substrate is for example of thickness between 0.7 and 6 mm depending on the applications, preferably between 0.7 and 3 mm including these values. It can be a clear, extraclear glass.
  • the bare substrate has a TL of at least 80% or even 90%.
  • the support according to the invention may comprise several diffusing layers in particular based on said vitreous bismuth oxide binder each having a diffusion or even different chemical resistance:
  • At least the last diffusing layer must be chemically resistant. Below one can optionally choose a "classic" diffusing layer, especially based on zinc borate frit.
  • a first diffusing layer comprises between 40% and 60% by weight of bismuth oxide B12O3 including these values
  • a second diffusing layer of vitreous material comprises between 45% and 58% by weight of Bi 2 O 3 bismuth oxide including these values.
  • the diffusing layer (monolayer or multilayer with a binder, whether distinct or not, and diffuse or distinct scattering elements) is preferably directly on the second face of the substrate.
  • the first transparent electrode in the form of a layer (s), is deposited on the first face of the substrate;
  • an organic electroluminescent system in particular an organic coating, preferably a polychromatic visible radiation emitting system, and a second electrode, in the form of a layer (s), and deposited on the organic system. (s) opposite the first electrode; a second electrode, in the form of a layer (s), is deposited on the organic system (s) opposite the first electrode.
  • the present invention also relates to the use of a support with a diffusing layer defined as above, as a support in an organic light-emitting diode device for lighting (especially general).
  • the diffusing layer according to the invention constitutes a particularly chemically resistant layer while providing a significant gain of extraction of the light emerging from the diffusing OLED device according to the invention.
  • Another advantage provided by the diffusing layer according to the invention is to further reduce the colorimetric variations perceived by an observer facing the diffusing OLED device according to the invention.
  • the OLED may preferably output a spectrum of polychromatic light, in particular white.
  • white light several methods are possible: compound mixing (red, green, blue emission) in a single layer, stacking of three organic structures (red, green, blue emission) or two organic structures (yellow and yellow). blue), a series of three adjacent organic structures (red, green, blue emission).
  • the colorimetric variation V c is evaluated, for example with a spectrophotometer, as a function of the angle of observation. That is, the length of the path (of various shapes, such as a straight line or an arc of a circle), in the CIE XYZ 1931 color diagram, between the spectrum emitted at 0 ° and the spectrum emitted at 75 °, this every 5 °.
  • the colorimetric coordinates for each angle spectrum ⁇ are expressed as the pair of coordinates (x (0,); y (0i)) in the CIE XYZ 1931 colorimetric diagram.
  • the length of the path V c i for the device according to the invention between the spectrum emitted at 0 ° and the spectrum emitted at 75 °, and passing through the intermediate angles with a pitch of 5 °, can therefore be calculated using the formula following known:
  • the length of the path must be as short as possible.
  • a second path length Vc2 of identically, Vc1A / c2 is obtained which is less than or equal to 0.25 or even 0.2 and even 0.1, and preferably Vc2 is less than or equal to 10 -1 ;
  • a third path length Vc3 is defined identically and Vc1A / c3 is obtained less than or equal to 0.9 or even 0.7, and even 0.5 and preferably Vc3 less than or equal to 10 -1
  • the diffusing layer is deposited on the second face before a deposit of the first electrode on the first face;
  • said diffusing layer is deposited from a glass frit, preferably with an organic medium, by screen printing and the glass frit is melted to form the vitreous binder and preferably in the presence of diffusing elements comprising diffusing particles.
  • the chemical resistance is obtained by the action of the bismuth oxide in its specific range.
  • this chemical resistance makes it possible to use the substrate coated with the diffusing layer in methods of manufacturing the OLED device as already seen: during various cleanings, in particular cleaning the substrate before depositing the first electrode;
  • the substrates must primarily support manual or automated cleaning procedures in baths. These cleaning procedures must rid the substrates of all traces of organic or inorganic matter as well as any trace of particles before the deposition of the organic electroluminescent system. Each substrate therefore passes successively in contact with basic and acidic detergent solutions with intermediate rinsing between each step. The cleaning power is also often accentuated by the presence of detergents and / or ultrasound and / or by the use of a temperature close to about 40 ° C.
  • An example of a bath chain can thus consist of:
  • Each bath is regulated at a temperature of at least 30 to 40 ° C and the detergent baths previously named one and two, can be equipped with ultrasonic source which facilitates the renewal of the active solution and increases cleaning efficiency.
  • the fifth bath may have a higher frequency ultrasonic source for the purpose of removing solid particles or fibers.
  • FIG. 1 shows a schematic sectional view of an OLED according to the invention
  • FIG. 2a shows a SEM and tilt view at a magnification of 1000 of a diffusing layer according to the invention with a vitreous bismuth oxide binder with 30% alumina and large porosities;
  • FIG. 2b shows a SEM view in section and tilt at a magnification of 5000 of a diffusing layer according to the invention with a vitreous bismuth oxide binder with 30% alumina and large porosities;
  • FIG. 3 shows a top SEM view at a magnification of 1000 of a diffusing layer according to the invention with a vitreous bismuth oxide binder with 30% alumina and large porosities;
  • FIG. 4 shows a SEM view in section and tilt at a magnification of 1000 of a diffusing layer according to the invention with a vitreous bismuth oxide binder with porosities and without adding scattering particles.
  • OLED illustrated schematically and not to scale in FIG. 1, comprises successively: a transparent substrate 10 with a diffusing layer 2 according to the invention,
  • a second electroconductive coating 13 which forms a second electrode facing the organic layer and preferably forming a reflective or semi-reflecting surface intended to return the light emitted by the organic layer to the opposite direction, that of the transparent substrate 10.
  • the transparent substrate 10 is of thickness adapted to the desired final application (lighting device).
  • the glass is of standard composition or may be a so-called glass known as "extra-clear" because conferring a minimized light absorption.
  • the substrate 10 comprises, according to its largest dimensions, a first face 10a and a second opposite face 10b, the first face comprising the first electrode 11, while the opposite second face 10b is provided with the diffusing layer 2.
  • the diffusing layer 2 is attached to the substrate 10 by screen printing or any other suitable technique such as by coating, by dip-coating, by spraying.
  • the diffusing layer 2 comprises a vitreous binder 20 and diffusing elements 21.
  • the diffusing layer 2 preferably contains a proportion of 30% by total weight of the layer of the diffusing particles of alumina 21 of size of the order of 600 nm.
  • the proportion of glassy binder is about 70% by total weight of layer 2.
  • the vitreous binder comprises between 40% and 60% by weight of B12O3 bismuth oxide including these values, or even between 45% and 58% by weight of B12O3 bismuth oxide including these values.
  • compositions of the glassy binder diffusing layer are given in Table 1 (in% by weight of the glassy binder)
  • Example 1 is an example according to the invention, the comparative example is a layer with a vitreous binder with a high content of B12O3 and ZnO and without B12O3, this comparative diffusing layer containing, like the layer of Example 1, a proportion 30% by total weight of the layer of alumina diffusing particles.
  • Each of these two examples has undergone a whole set of tests (treatments) with acids (used for example for the etching of electrode), with the bases (serving for example for the withdrawal of a mask of resin or for the 1 1
  • the commercial detergents of the cleaning baths are employed at the volume dilutions listed in Table 2.
  • the Franklab Neutrax detergent consists of a mixture of organic acids such as acetic acid and sequestering agents, the 1% dilution of which gives the medium a moderate acidic pH of approximately 4.
  • Franklab detergent TFD66 is a low foaming alkaline detergent that contains sequestering agents and gives a pH of about 1 1 by 4% dilution.
  • RBS 2% is a basic alkaline solution which is a mixture of ionic and nonionic detergents + phosphates and polyphosphates with a volume concentration of 2%, ie having a ph of the order of 1 1.
  • test is carried out by immersing in the bath specified in the column on the left a test tube 4 cm wide and 7 cm high and 2 mm thick, each test tube being immersed at 80% of its height in the bath. specimen consisting solely of the substrate coated with the scattering layer of approximately 15 ⁇ .
  • Level N3 significant degradation with color change such as iridescence, bleaching, or matting
  • TL light transmission
  • TD diffuse transmission
  • Example 1 By the matrix with bismuth oxide (example 1) the levels of the light transmission TL and the diffuse transmission (TD) remain in the desired range for extraction on the air side. As shown in Table 2, the layers of Example 1 comprising bismuth oxide accept 10 min immersion at 25 ° C or 40 ° C in the following baths:
  • acid ph 4 hydrochloric acid, sulfuric acid, phosphoric acid;
  • Example 1 have a reinforced strength compared to the layers of the comparative example during immersion 10 minutes in the following baths:
  • an example 1a it is a diffusing layer with a binder of composition identical to Example 1 and without addition of scattering particles.
  • the porosities (and the crystals) form diffusing elements.
  • FIG. 2a shows a SEM view in section and tilt at a magnification of 1000 (20 ⁇ scale in the view) of the scattering layer of example 1.
  • FIG. 2b shows a SEM view in section and tilt at a magnification of 5000 (5 ⁇ scale in the view) of the scattering layer 2 of example 1.
  • a porosity of micron size is shown and the particles of alumina 21 are also observed.
  • FIG. 3 shows a SEM view from above at a magnification of 5000 (20 ⁇ scale in the view) of the diffusing layer 2 of example 1.
  • the surface roughness is easily observable.
  • FIG. 4 shows an SEM view in section and tilt at a magnification of 1000 of a diffusing layer 2 according to the invention with a vitreous binder 20 with bismuth oxide with porosities 22 and without the addition of diffusing particles, corresponding in example 1a.
  • the porosities are smaller and the surface smoother.
  • the manufacture of the diffusion layer with enhanced chemical resistance can be carried out according to various industrial processes and preferably by screen printing. Dough
  • the screen printing paste will be constituted in mass proportions between 10 and 50% of a silkscreen medium which will serve as a vehicle for the particles to pass through the application screen.
  • This medium can be organic, consisting of alcohols, glycols, esters, terpineol which, combined with fine mineral particles such as fumed silica or cellulose ethers, gives threshold fluid properties to the dough.
  • the combustion of the organic medium generates the porosities.
  • the paste used is prepared, for example, by dispersing a glass frit in a conventional screen-printing medium composed of a mixture of glycols such as the medium 80840 sold by the company Ferro.
  • the rheological characteristics for the use of the dough by screen printing are optimized by the use of fumed silica or cellulose ethers.
  • the solid fraction (forming the vitreous binder) is a glass frit with a high proportion of bismuth oxide as already indicated which confers the chemical resistance of the layer.
  • the mashing of the constituents takes place at high speed in planetary mixers, disk dispersers.
  • Low speed systems can also be used in addition, either before or after the high speed operation. These low-speed systems consist of agitator-type kneader, drummer or bottles with beads that are placed for several hours on agitators with rolls driven at low speeds of a few revolutions per minute. The quality of the dough is appreciated by the absence of grains or aggregates using an Egman gauge.
  • the depositing machines can be of reduced format of electronic type (EKRA, DEK) or of industrial size (THIEME) as for the flat glass.
  • the screens will be made of textile mesh (example: polyester) or metallic.
  • the masks may be made of photoresist or metal foils.
  • Topping tools and squeegee will be polymer, carbon or metal.
  • the deposited thicknesses are between 10 and 100 m on a glass substrate. The control of the thickness is first ensured by the choice of the mesh of the screen and its tension.
  • Control of the thickness is also ensured by the adjustments of the distance between the screen and the substrate as well as the pressures and the speeds of displacement applied to the doctor blade.
  • the thicknesses will be controlled using a Rodenstock laser optical bench between a coated zone or not.
  • the deposits are dried at a temperature of the order of 100 to 150 ° C in an infrared or UV radiation tunnel depending on the nature of the medium used.
  • the deposition of the diffusing layer may also be carried out by means other than screen printing: for example by roll coating, dip coating, knife coating ), spray deposition, spin coating ("spin coating") or deposition by vertical topping ("flow coating”).
  • the changes in the powder-to-liquid ratios and the use of additive is used to adapt the rheology of the composition to the chosen deposition mode. Two different deposition modes can be used successively to make a stack of similar layers or different compositions or gradient of one or more components.
  • the furnaces employed can be dynamic with transport on rollers as for automotive rear window baking or preferably static with positioning on metal plates or glass-ceramic for maintaining the flatness of the substrate.
  • the cooking temperature is above 580 ° C.
  • the electronics sector commonly uses clean room substrates with or without layers that must primarily support manual cleaning procedures or automated baths. These cleaning procedures must rid the substrates of all traces of organic or mineral matter as well as particles. The substrates thus successively pass steps in contact with basic and acidic detergent solutions with intermediate rinses. The cleaning power is accentuated by the presence of detergents, ultrasounds and a temperature often close to 40 ° C.
  • composition rich in bismuth oxide of the diffusing vitreous layer according to the invention gives it a high resistance in these aggressive media such as the abovementioned baths.
  • a vitreous layer of the comparative example developed according to the same production process is completely destroyed under the same cleaning conditions.
  • Example 1 by adding the diffusing layer of Example 1 (Examples A1 and A1 bis and A1 ter).
  • a first organic light-emitting diode is used for lighting called Orbeos® sold by OSRAM and providing a white light.
  • a second organic light-emitting diode is therefore used for lighting called Lumiotec® sold by LUMIOTEC and providing a white light.
  • a third organic light-emitting diode is used for the lighting is called Lumiblade® sold by the company PHILIPS and providing a white light.
  • the extraction gain is defined as the relative increase in the amount of light extracted, i.e., the ratio between the difference in the amount of light emitted by the device with and without the solution of the invention (addition of the scattering layer), and the amount of light emitted by the device without solution. To measure it, it is therefore a question of comparing the total luminous flux coming out of an OLED without solution and that coming out of an OLED with solution. To ensure that the entire flow is collected in both cases, the two OLEDs are one by one, in a known manner, placed inside an integrating sphere.
  • the gain is approximately 40% for the examples with comparative diffusing layers (REF 2 and REF 2ter) or scattering layers according to Example 1 (A1 and A1 ter), 40% by compared to diodes without diffusing plastic film (REF 1 and REF 1 ter).
  • the gain is approximately 25% for the examples with diffusing layers according to the invention without diffusing particles, made according to Example 1 bis 25% with respect to the diodes without diffusing plastic film (REF 1 and REF 1 ter).
  • Table 4 lists the lengths of the optical paths Vc1 to Vc3 for the aforementioned examples REF1 to A1 ter.
  • the angular colorimetric variation is therefore much lower with a diffusing layer and in particular with the diffusing layer according to the invention, thus ensuring a much more homogeneous white light.
  • the diffusing layer according to the invention on the substrate makes it possible at the same time to increase the extraction gain of the OLED, to reduce the colorimetric variations of the emitted light so as to provide a more homogeneous light and to be chemically and thermally resistant.

Abstract

L'invention concerne - un support pour dispositif à diode électroluminescente organique (1) comportant successivement un substrat transparent (10), en verre minéral, pourvu de première et deuxième faces principales opposées (10a, 10b), le substrat (10) étant revêtu sur sa deuxième face (10b) d'une couche diffusante (2) qui comprend un liant minéral (20) vitreux et des éléments diffusants (21, 22) dispersés dans le liant, ce liant vitreux (20) comprend entre 40% et 60% en poids d'oxyde de bismuth B12O3 en incluant ces valeurs, voire entre 45% et 58% en poids d'oxyde de bismuth B12O3 en incluant ces valeurs, et la proportion du liant vitreux est d'au moins 20% du poids total de la couche diffusante; - l'utilisation de ce support avec une couche diffusante comme support dans un dispositif à diode électroluminescente organique (1) pour l'éclairage; - un dispositif à diode électroluminescente organique comportant un tel support.

Description

SUPPORT A COUCHE DIFFUSANTE POUR DISPOSITIF
A DIODE ELECTROLUMINESCENTE ORGANIQUE, DISPOSITIF ELECTROLUMINESCENT ORGANIQUE COMPORTANT UN TEL SUPPORT
La présente invention concerne un support pour dispositif à diode électroluminescente organique. Elle concerne plus particulièrement un support pour dispositif à diode électroluminescente organique comportant un substrat transparent en verre revêtu d'une couche diffusante, et un tel dispositif.
L'OLED (OLED pour « Organic Light Emitting Diodes » en anglais) comporte un matériau, ou un empilement de matériaux, électroluminescent(s) organique(s), et est encadrée par deux électrodes, l'une des électrodes, dite inférieure, généralement l'anode, étant constituée par celle associée à un substrat verrier et l'autre électrode, dite supérieure, généralement la cathode, étant agencée sur le système électroluminescent organique.
L'OLED est un dispositif qui émet de la lumière par électroluminescence en utilisant l'énergie de recombinaison de trous injectés depuis l'anode et d'électrons injectés depuis la cathode.
Il existe différentes configurations d'OLED :
- les dispositifs à émission par l'arrière (« bottom émission » en anglais), c'est-à-dire avec une électrode inférieure (semi) transparente et une électrode supérieure réfléchissante ;
- les dispositifs à émission par l'avant (« top émission » en anglais), c'est-à- dire avec une électrode supérieure (semi) transparente et une électrode inférieure réfléchissante ;
- les dispositifs à émission par l'avant et l'arrière, c'est-à-dire avec à la fois une électrode inférieure (semi) transparente et une électrode supérieure (semi) transparente.
L'invention a trait aux dispositifs OLED à émission par l'arrière et éventuellement aussi par l'avant.
Une OLED trouve généralement son application dans un écran de visualisation ou plus récemment dans un dispositif d'éclairage. Pour un système d'éclairage, du type lampe, la lumière extraite de l'OLED est une lumière « blanche » en émettant dans certaines, voire toutes les longueurs d'onde du spectre. Elle doit l'être en outre de manière homogène. On parle à ce sujet plus précisément d'une émission lambertienne, c'est-à-dire obéissant à la loi de Lambert en étant caractérisée par une luminance photométrique égale dans toutes les directions.
Une OLED présente néanmoins une faible efficacité d'extraction de lumière : le rapport entre la lumière qui sort effectivement du substrat verrier et celle émise par les matériaux électroluminescents est relativement faible, de l'ordre de 0,25.
Ce phénomène s'explique notamment par la réflexion de la lumière au sein du substrat verrier du fait de la différence d'indice entre le verre du substrat (n=1 ,5) et l'air extérieur au dispositif (n=1 ).
Par ailleurs, on a constaté que la variation colorimétrique en fonction de l'angle de l'observation dépend très fortement de la nature de l'empilement des matériaux électroluminescents organiques et des électrodes utilisées. Les exigences en termes d'homogénéité de l'éclairement pour une utilisation du dispositif électroluminescent comme source d'éclairage notamment, peuvent ainsi ne pas être atteintes.
Il est donc recherché des solutions pour améliorer l'efficacité d'une OLED, à savoir augmenter le gain en extraction tout en fournissant une lumière blanche et la plus homogène possible. On entend par homogène dans la suite de la description, une homogénéité en intensité, en couleur et dans l'espace.
On s'intéresse ici aux solutions relatives au substrat verrier, au niveau de l'interface verre-air, qui font appel à l'optique géométrique.
On connaît notamment du document FR2937467 un dispositif OLED dont le substrat en verre minéral comporte sur la face principale opposée à celle portant la première électrode, une couche diffusante comprenant un liant minéral et des particules diffusantes dispersées dans le liant, ainsi que des particules dispersées dans le liant et absorbant le rayonnement ultra-violet (UV) dans le domaine de longueur d'onde de 325 à 400 nm.
Le liant est obtenu à partir d'une fritte de verre, du silicate de potassium, sodium ou lithium. Les particules diffusantes sont de l'alumine ou encore BaSO4, ZrÛ2, S1O2 ou CaCO3
La proportion du liant est de l'ordre de 30 à 70% du poids total de la couche diffusante, et la proportion des particules diffusantes est de l'ordre de 25 à 60 % du poids total de la couche, et la proportion de particules absorbant le rayonnement UV est entre 2 à 15 % du poids total de la couche.
Un exemple préféré de couche diffusante et anti-UV d'épaisseur 1 1 μιτι est la suivante :
- 52 % de fritte de verre fondue;
- 40% d'alumine ;
- 8% de particules absorbant le rayonnement UV, de préférence 4% de ΤΊΟ2 et 4% de ZnO.
La couche diffusante est rapportée contre le substrat par sérigraphie ou toute autre technique adaptée telle que par enduction, par imprégnation en solution (« dip-coating »), par pulvérisation...
La fonction diffusante de cette couche permet un « re-mélange » des couleurs formant la lumière blanche, ce qui permet d'extraire une lumière beaucoup plus homogène.
Cela permet aussi de diminuer les variations colorimétriques perçues par un observateur face au dispositif.
Toutefois on a constaté que le taux de rebut de ce dispositif OLED était significatif.
Le but que se fixe l'invention est en particulier de parvenir à réaliser un dispositif OLED robuste sans sacrifier les performances optiques de l'OLED (en particulier l'extraction de lumière et/ou la limitation de la variation colorimétrique en fonction de l'angle d'observation de la lumière émise choisie polychromatique, notamment blanche) voire les améliorer, ni engendrer des difficultés de réalisation.
Un autre but important est de permettre de fabriquer un tel dispositif qui soit compatible avec le procédé de fabrication du dispositif OLED.
La présente invention propose à cet effet un support pour dispositif à diode électroluminescente organique comportant successivement un substrat transparent, en verre minéral, pourvu de première et deuxième faces principales opposées, le substrat étant revêtu (directement) sur sa deuxième face d'une couche diffusante qui comprend un liant (essentiellement) minéral et des éléments diffusants dispersés dans le liant, le liant vitreux comprenant entre 40% à 60% en poids d'oxyde de bismuth B12O3 en incluant ces valeurs, voire entre 45 % et 58% en poids d'oxyde de bismuth B12O3 en incluant ces valeurs, la proportion du liant vitreux est d'au moins 20% du poids total de la couche diffusante.
La proportion adaptée d'oxyde de bismuth dans la couche diffusante selon l'invention (mono couche ou multicouche) garantit une résistance chimique renforcée.
Or dans le cadre de la fabrication d'OLEDs, interviennent différentes étapes susceptibles de dégrader la couche diffusante :
- nettoyage du substrat (utilisation classique des solvants organiques (éthanol, acétone ou d'une solution basique (généralement soude) ;
- gravure de la première électrode (la plus proche du substrat) sur la première face ;
- éventuellement élimination d'une résine servant à définir les motifs à graver utilisation classique des solvants organiques (éthanol, acétone...) ou d'une solution basique (généralement soude).
De manière surprenante, de part le choix de son liant, à fort taux d'oxyde de bismuth, la couche diffusante selon l'invention résiste à ces différents traitements chimiques que subit le substrat durant la réalisation de l'OLED, contrairement aux frittes classiques.
Le liant vitreux peut être ce que l'homme du métier nomme un émail ou une fritte de verre fondue.
Ainsi, la couche diffusante selon l'invention permet :
- de conserver l'extraction de la lumière de l'OLED ;
- d'être compatible avec les différentes étapes de process de fabrication d'une OLED.
La couche diffusante présente de préférence une surface externe principale à l'air libre. Dans toute la description, le substrat selon l'invention est considéré posé horizontalement, avec sa première face orientée vers le bas et sa deuxième face, opposée à la première face, orientée vers le haut ; les sens des expressions « au-dessus » et « en-dessous » est ainsi à considérer par rapport à cette orientation. A défaut de stipulation spécifique, les expressions « au-dessus » et « en-dessous » ne signifient pas nécessairement que les deux éléments sont disposés au contact l'un de l'autre.
Les termes « inférieur » et « supérieur » sont utilisés ici en référence à ce positionnement.
Dans toute la description, le terme « indice » fait référence à l'indice optique de réfraction, mesuré à la longueur d'onde de 590 nm.
La résistance chimique de la couche diffusante de matériau vitreux selon l'invention peut être accentuée par le fait que le liant présente une composition en oxydes hydrosolubles qui est faible. Les oxydes hydrosolubles, notamment les oxydes alcalins de type sodium et potassium, ont de préférence une teneur inférieure à 15% en poids et encore plus préférentiellement inférieure à 5%.
De manière avantageuse, le liant vitreux de la couche diffusante (mono couche ou multicouche) selon l'invention, comporte en poids :
- entre 0 % et 10 % et de préférence entre 0 et 5 % de SiO2,
- entre 0 % et 5 % et de préférence entre 0 et 1 % d'AI2O3,
- entre 8 % et 25 % et de préférence entre 10 et 22 % de B2O3,
- entre 0 % et 10 % et de préférence entre 0 et 5 % de CaO,
- entre 0 % et 20 % et de préférence entre 0 et 15 % de BaO,
- entre 0 % et 5 % et de préférence entre 0 et 3 % de Li2O,
- entre 0 % et 10 % et de préférence entre 0 et 5 % de Na2O,
- entre 0 % et 5 % et de préférence entre 0 et 3 % de K2O,
- entre 0 % et 5 % et de préférence entre 0 et 4 % de ZrO2,
- entre 0 % et 5 % de SrO,
- entre 0 % et 5 % deLa2O3,
en incluant ces valeurs dans les plages. Le liant selon l'invention peut comporter de préférence entre 5 et 30% en poids de ZnO en incluant ces valeurs et de préférence entre 10 et 25% en poids de ZnO en incluant ces valeurs.
La résistance chimique est encore renforcée par l'action combinée de ces deux oxydes dans leurs plages spécifiques.
Ladite couche diffusante selon l'invention (mono couche ou multicouche) présente, de préférence, une épaisseur (totale) entre 1 μιτι et 50 μιτι en incluant ces valeurs, voire entre 5 μιτι et 30 μιτι en incluant ces valeurs.
Les éléments diffusants ont de préférence une dimension caractéristique comparable ou supérieure à la longueur d'onde de la lumière dans le milieu vitreux, ce qui correspond à des dimensions comprises entre quelques centaines de nanomètres et quelques microns.
Les éléments diffusants selon l'invention peuvent comprendre des porosités en volume (donc dans la couche) voire en surface.
Les éléments diffusants peuvent comprendre des particules diffusantes, notamment de matière d'indice différent à l'indice du substrat, de préférence en proportion inférieure à 60% du poids total de la couche, et éventuellement des porosités en volume voire en surface.
Les porosités sont naturellement présentes dans la couche diffusante tandis qu'on rajoute des particules diffusantes ad hoc. Les porosités fermées favorisent la diffusion volumique. Les porosités ouvertes favorisent la diffusion surfacique.
Les porosités découlent par exemple de la cuisson (élimination) du médium organique.
En présence des particules diffusantes notamment de taille supérieure à 50 nm, les porosités sont grandes, de taille supérieure à 500 nm.
Comme autre élément diffusant selon l'invention on peut citer des cristaux, comme par exemple des cristaux de zircon ou de baddeleyite, naturellement présents dans la couche diffusante.
Les éléments diffusants selon l'invention peuvent comprendre des particules diffusantes minérales, notamment choisies parmi l'une ou plusieurs des particules suivantes : des particules d'alumine, de zircone ZrÛ2, de silice S1O2, d'oxyde de titane TiO2 ou de CaCO3, de BaSO4. Une couche diffusante selon l'invention avec un liant (essentiellement) minéral et de préférence par des éléments diffusants (essentiellement) minéraux (notamment avec au moins 80 % d'éléments diffusants minéraux notamment incluant des particules minérales, des cristaux, des porosités) présente une très bonne tenue en température, en particulier à environ 400°C, de manière à ne pas être dégradée lors du procédé de fabrication de l'ensemble de l'OLED.
Dans une conception préférée, la proportion du liant vitreux selon l'invention est entre 40 et 80 % du poids total de la couche diffusante en incluant ces valeurs, notamment entre 50 et 75% en incluant ces valeurs, et la proportion des particules diffusantes choisies en alumine est entre 20% et 60% en incluant ces valeurs, notamment entre 25 et 50% du poids total de la couche en incluant ces valeurs.
Pour favoriser la diffusion de surface, la couche diffusante selon l'invention peut présenter une surface externe principale à l'air libre qui est rugueuse, de rugosité définie par un paramètre de rugosité Ra supérieur 500 nm, voire à 900 nm sur une longueur d'analyse de 200 μιτι.
La rugosité du substrat est caractérisée par le paramètre de rugosité bien connu Ra qui est l'écart moyen arithmétique du profil, traduisant l'amplitude moyenne.
On choisit par exemple un profilomètre mécanique tel que l'appareil DEKTAK de la société VEECO.
Pour favoriser l'extraction de lumière, le substrat revêtu de cette couche diffusante selon l'invention peut présenter une transmission lumineuse (TL) d'au moins 50% et un flou (c'est-à-dire le rapport TL/TD où TD est la transmission diffuse) d'au moins 80%, voire 90%.
Le substrat en verre peut présenter un indice classique compris entre 1 ,4 et 1 ,6 ou être haut indice donc d'indice supérieur ou égal à 1 ,7. Le substrat en verre est par exemple d'épaisseur comprise entre 0,7 et 6 mm en fonction des applications, de préférence entre 0,7 et 3 mm en incluant ces valeurs. Il peut s'agir d'un verre clair, extraclair. Par exemple le substrat nu présente une TL d'au moins 80% voire 90%. Le support selon l'invention peut comporter plusieurs couches diffusantes notamment à base dudit liant vitreux à base d'oxyde de bismuth présentant chacune une diffusion voire de tenue chimique différente :
- par suppression et/ou ou changement de nature des particules diffusantes ;
- -et /ou par changement de concentration des particules diffusantes.
Au moins la dernière couche diffusante doit être résistance chimiquement. En-dessous on peut éventuellement choisir une couche diffusante « classique », notamment à base de fritte zinc borate.
Il est par exemple possible de réaliser un gradient de diffusion avec une diminution progressive de l'indice en deux étapes (deux couches ou plus), ou plus, entre le substrat et l'air.
Toutefois, il est possible qu'au moins deux couches de matériau vitreux ne présentent pas la même proportion d'oxyde de bismuth B12O3 tout en restant dans la plage de l'invention.
Il est ainsi possible qu'une première couche diffusante comprenne entre 40 % et 60 % en poids d'oxyde de bismuth B12O3 en incluant ces valeurs, et qu'une deuxième couche diffusante de matériau vitreux (plus éloignée du substrat) comprenne entre 45 % et 58 % en poids d'oxyde de bismuth Bi2O3 en incluant ces valeurs.
Par ailleurs, la couche diffusante (mono ou multicouche avec un liant distinct ou non, et des éléments diffusants distincts ou non) est de préférence directement sur la deuxième face du substrat.
Pour la fabrication de l'OLED :
- la première électrode transparente, sous forme de couche(s) est déposée sur la première face du substrat ;
- au-dessus de la première électrode un système électroluminescent organique, notamment un revêtement organique, système émetteur d'un rayonnement dans le visible de préférence polychromatique, et une deuxième électrode, sous forme de couche(s), et déposée sur le système organique(s) à l'opposé de la première électrode ; - une deuxième électrode, sous forme de couche(s), est déposée sur le système organique(s) à l'opposé de la première électrode.
La présente invention se rapporte aussi à l'utilisation d'un support avec une couche diffusante défini tel que précédemment, comme support dans un dispositif à diode électroluminescente organique pour l'éclairage (notamment général).
La couche diffusante selon l'invention constitue une couche particulièrement résistante chimiquement tout en fournissant un gain significatif d'extraction de la lumière sortant du dispositif OLED diffusante selon l'invention.
Un autre avantage procuré par la couche diffusante selon l'invention est de diminuer encore les variations colorimétriques perçues par un observateur face au dispositif OLED diffusante selon l'invention.
L'OLED peut de préférence émettre en sortie un spectre de lumière polychromatique, notamment blanche. Pour produire de la lumière blanche, plusieurs méthodes sont possibles notamment : mélange de composés (émission rouge, vert, bleu) dans une seule couche, empilement de trois structures organiques (émission rouge, vert, bleu) ou de deux structures organiques (jaune et bleu), série de trois structures organiques adjacentes (émission rouge, vert, bleu).
Pour apprécier la dépendance angulaire de la couleur (notamment pour une lumière polychromatique) une fois l'OLED réalisée, on évalue, par exemple avec un spectrophotomètre, la variation colorimétrique Vc en fonction de l'angle d'observation, c'est-à-dire la longueur du chemin (de formes diverses comme une droite ou un arc de cercle), dans le diagramme colorimétrique CIE XYZ 1931 , entre le spectre émis à 0° et le spectre émis à 75°, ceci tous les 5°. Les coordonnées colorimétriques pour chaque spectre d'angle Θ, sont exprimées par le couple de coordonnées (x(0,);y(0i)) dans le diagramme colorimétrique CIE XYZ 1931 .
La longueur du chemin Vci pour le dispositif selon l'invention entre le spectre émis à 0° et le spectre émis à 75°, et passant par les angles intermédiaires avec un pas de 5°, peut être donc calculée en utilisant la formule suivante connue :
Figure imgf000012_0001
La longueur du chemin doit être la plus courte possible.
Ainsi :
- pour un premier dispositif à diode électroluminescente organique de référence différencié par l'absence de couche diffusante (ou tout autre élément diffusant rajouté comme un film plastique diffusant collé sur le verre) sur la deuxième face, on définit une deuxième longueur de chemin Vc2 de manière identique, on obtient Vc1A/c2 inférieur ou égal à 0,25 voire à 0,2 et même à 0,1 , et de préférence Vc2 est inférieure ou égale à 10"1 ;
- et/ou pour un deuxième dispositif à diode électroluminescente organique avec une couche diffusante sur la deuxième face différenciée par couche diffusante ave un liant vitreux sans oxyde de bismuth, on définit une troisième longueur de chemin Vc3 de manière identique et on obtient Vc1A/c3 inférieur ou égal à 0,9 voire à 0,7, et même à 0,5 et de préférence Vc3 inférieure ou égal à 10"1
Dans un exemple de fabrication du support tel que définie précédemment,
- la couche diffusante est déposée sur la deuxième face avant un dépôt de la première électrode sur la première face ;
- ladite couche diffusante est déposée à partir d'une fritte de verre, de préférence avec un médium organique, par sérigraphie et la fritte de verre est fondue pour former le liant vitreux et de préférence en présence des éléments diffusants comportant des particules diffusantes.
Comme déjà mentionné, la résistance chimique est obtenue par l'action de l'oxyde de bismuth dans sa plage spécifique.
En particulier, cette résistance chimique permet d'utiliser le substrat revêtu de la couche diffusante dans des procédés de fabrication du dispositif OLED comme déjà vu : - pendant différents nettoyages notamment nettoyage du substrat avant dépôt de la première électrode ;
- pendant l'étape de gravure chimique de la première électrode déposée de préférence après la couche diffusante.
Les substrats doivent supporter en premier lieu des procédures de nettoyage manuel ou automatisé en bains. Ces procédures de nettoyage doivent débarrasser les supports de toute trace de matière organique ou minérale ainsi que toute trace de particules avant le dépôt du système électroluminescent organique. Chaque substrat passe donc successivement au contact de solutions détergentes basiques et acides avec des rinçages intermédiaires entre chaque étape. Le pouvoir nettoyant est en outre souvent accentué par la présence de détergents et/ou d'ultra-sons et/ou par l'utilisation d'une température proche d'environ 40 °C.
Un exemple de chaîne de bains peut être ainsi constituée de :
- un premier bain d'une solution d'eau désionisée avec détergent alcalin destinée à dissoudre les matières organiques déposées ou condensées en surface, puis
- un second bain de rinçage à l'eau dure destinée à rincer et éliminer d'éventuelles traces de détergent alcalin, puis
- un troisième bain d'une solution d'eau désionisée avec détergent acide destinée à dissoudre d'éventuels polluants comme des sels de matières minérales ou des oxydes métalliques, puis
- un quatrième bain d'eau dure destiné à rincer et éliminer d'éventuelles traces de détergent acide, puis
- un cinquième et sixième bains d'eau déminéralisée pour éliminer d'éventuels sels minéraux provenant du quatrième bain d'eau dure et bien connus comme responsables de traces en particulier sur des substrats en verre.
Chaque bain est régulé à une température d'au moins 30 à 40°C et les bains de détergence dénommés précédemment un et deux, peuvent être équipés de source ultrasonique qui facilite le renouvèlement de la solution active et accroît l'efficacité du nettoyage. Le cinquième bain peut posséder une source ultrasonique de fréquence plus élevée dans l'objectif d'éliminer des particules solides ou des fibres.
Cet exemple de chaîne destinée au nettoyage de substrats avant dépôt d'une (ou des) couche(s) diffusantes selon l'invention et peut être utilisé pour le nettoyage de ladite (ou desdits) couche(s) de matériaux vitreux :
- avant tout dépôt d'une couche ou empilement supplémentaire (couche extractrice côté OLED, première électrode etc) côté première face ;
- ou après dépôt d'une couche ou d'un empilement supplémentaire côté première face.
La présente invention est maintenant décrite à l'aide d'exemples uniquement illustratifs et nullement limitatifs de la portée de l'invention, et à partir de l'illustration ci-jointe, dans laquelle
- la figure 1 représente une vue schématique en coupe d'une OLED selon l'invention ;
- la figure 2a montre une vue MEB en coupe et en tilt à un grossissement de 1000 d'une couche diffusante selon l'invention avec un liant vitreux à l'oxyde de bismuth avec 30% d'alumine et des grandes porosités ;
- la figure 2b montre une vue MEB en coupe et en tilt à un grossissement de 5000 d'une couche diffusante selon l'invention avec un liant vitreux à l'oxyde de bismuth avec 30% d'alumine et des grandes porosités ;
- la figure 3 montre une vue MEB de dessus à un grossissement de 1000 d'une couche diffusante selon l'invention avec un liant vitreux à l'oxyde de bismuth avec 30% d'alumine et des grandes porosités ;
- la figure 4 montre une vue MEB en coupe et en tilt à un grossissement de 1000 d'une couche diffusante selon l'invention avec un liant vitreux à l'oxyde de bismuth avec des porosités et sans ajout de particules diffusantes.
Il est précisé que dans la figure 1 les proportions entre les divers éléments représentés ne sont pas respectées, afin d'en faciliter la lecture.
L'OLED 1 , illustrée schématiquement et non à l'échelle sur la figure 1 , comporte successivement : - un substrat transparent 10 avec une couche diffusante 2 selon l'invention,
- un premier revêtement électro-conducteur transparent 1 1 qui forme une électrode,
- une couche (mono ou multicouche) de matériau(x) organique(s) 12,
- un second revêtement électro-conducteur 13 qui forme une deuxième électrode en regard de la couche organique et de préférence formant une surface réfléchissante ou semi-réfléchissante destinée à renvoyer la lumière émise par la couche organique 12 vers la direction opposée, celle du substrat transparent 10.
Le substrat transparent 10 est d'épaisseur adaptée à l'application finale souhaitée (dispositif d'éclairage).
Le verre est de composition standard ou peut être un verre dit de manière connue « extra-clair » car conférant une absorption lumineuse minimisée. Le substrat 10 comprend selon ses plus grandes dimensions, une première face 10a et une deuxième face opposée 10b, la première face comprenant la première électrode 1 1 , tandis que la deuxième face 10b opposée est pourvue de la couche diffusante 2.
La couche diffusante 2 est rapportée contre le substrat 10 par sérigraphie ou toute autre technique adaptée telle que par enduction, par imprégnation en solution (« dip-coating »), par pulvérisation...
La couche diffusante 2 comporte un liant vitreux 20 et des éléments diffusants 21 .
La couche diffusante 2 de préférence contient une proportion de 30% en poids total de la couche des particules diffusantes d'alumine 21 de taille de l'ordre de 600 nm.
La proportion de liant vitreux 20 est de 70% environ en poids total de la couche 2.
Le liant vitreux comprend entre 40% et 60% en poids d'oxyde de bismuth B12O3 en incluant ces valeurs, voire entre 45% et 58% en poids d'oxyde de bismuth B12O3 en incluant ces valeurs. COMPOSITIONS ET TESTS
Deux exemples de compositions du liant vitreux de couche diffusante sont donnés dans le tableau 1 (en % en poids du liant vitreux)
Figure imgf000016_0001
Tableau 1
(aux erreurs de mesure près, la somme de la part de chaque constituant est égal à 100).
L'exemple 1 est un exemple selon l'invention, l'exemple comparatif est une couche avec un liant vitreux à fort taux de B12O3 et de ZnO et sans B12O3, cette couche diffusante comparative contenant comme la couche de l'exemple 1 une proportion de 30% en poids total de la couche de particules diffusantes d'alumine.
Chacun de ces deux exemples a subi tout un ensemble de tests (traitements) aux acides (servant par exemple pour la gravure d'électrode), aux bases (servant par exemple pour le retrait d'un masque de résine ou pour le 1 1
nettoyage de substrat), aux détergents commerciaux et aux solvants (servant par exemple pour le nettoyage de substrat) récapitulés dans le tableau 2 suivant :
Figure imgf000017_0001
Tableau 2
Les détergents commerciaux des bains de nettoyage sont employés aux dilutions volumiques citées dans le tableau 2. Le détergent Franklab neutrax est constitué d'un mélange d'acides organiques comme l'acide acétique et d'agents séquestrants dont la dilution à 1 % confère au milieu une pH acide modéré d'une valeur approximative de 4.
Le détergent Franklab TFD66 est un détergent alcalin peu moussant qui contient des agents séquestrants et donne un pH de l'ordre de 1 1 par dilution à 4%.
RBS 2 % est une solution alcaline basique qui est un mélange de détergents ioniques et non ioniques + phosphates et polyphosphates à concentration en volume de 2%, soit présentant un ph de l'ordre de 1 1 .
Chaque test est réalisé en immergeant dans le bain spécifié dans la colonne de gauche une éprouvette de 4 cm de large et 7 cm de haut et de 2 mm d'épaisseur, chaque éprouvette étant immergée à 80 % de sa hauteur dans le bain, l'éprouvette étant constituée uniquement du substrat revêtu de la couche diffusante d'environ 15 μιτι.
La résistance chimique des deux exemples est appréciée de façon visuelle selon l'échelle de résistance suivante :
- Niveau N5 : perte totale de la couche ;
- Niveau N4 : dégradation forte avec disparition locale par dissolution ;
- Niveau N3 : dégradation significative avec changement de couleur comme irisation, blanchiment, ou matage ;
- Niveau N2 : début d'attaque avec apparition du front délimitant l'immersion partielle et qui correspond à l'interface liquide-air ;
- Niveau N1 : pas d'attaque apparente.
Les changements sont aussi appréciés par variation des valeurs de la transmission lumineuse (TL) et de la transmission diffuse (TD). Ces valeurs sont mesurées avec un dispositif de type Hazemeter BYK.
Par la matrice à l'oxyde de bismuth (exemple 1 ) les niveaux de la transmission lumineuse TL et de la transmission diffuse (TD) restent dans le domaine souhaité pour l'extraction coté air. Comme visible dans le tableau 2 les couches de l'exemple 1 comportant de l'oxyde de bismuth acceptent 10 mn d'immersion à 25°C ou 40°C dans les bains suivants :
- acide à ph 4 : acide chlorhydrique, acide sulfurique, acide phosphorique ;
- détergents commerciaux : Franklab neutrax 1 % pH 4, Franklab TFD 66 4 % pH 1 1 et RBS 25 à 2 %.
Ces couches de l'exemple 1 présentent une tenue renforcée par rapport aux couches de l'exemple comparatif lors de l'immersion 10 mn dans les bains suivants :
- acide à ph 2 et 25 °C : acide chlorhydrique, acide phosphorique ;
- détergents commerciaux à 25 et 40°C : Franklab neutrax 1 % pH 4, Franklab TFD 66 4% pH 1 1 et RBS à 2%.
Ces résultats de bonne tenue chimique ont été corroborés avec des tests à la soude aux pH 1 1 et pH 13 ainsi qu'avec des tests aux ultra-sons.
Des résultats tout aussi satisfaisants sont également obtenus dans un exemple 1 bis : il s'agit d'une couche diffusante avec un liant de composition identique à l'exemple 1 et sans ajout de particules diffusantes. Les porosités (et les cristaux) forment des éléments diffusants.
Deux autres compositions du liant vitreux sont données dans le tableau 3 suivant, les couches diffusantes avec ces liants et sans ajout de particules diffusantes ont été testées aux acides, aux bases, aux détergents commerciaux et aux solvants et ont donné des résultats similaires à ceux de l'exemple 1 .
Ex 2 Ex. 3
Si02 3,9 4,14
Al203 0,4 0,6
B203 16,4 10
CaO 0 0,04
BaO 0 0
Li20 0 < 0,05
Na20 2,6 2,15
K20 0,8 0,03
ZnO 18,3 25,4
Bi203 57,5 57,6
Zr02 0 0
SrO 0 0
La203 0 0
Tableau 3
(aux erreurs de mesure près, la somme de la part de chaque constituant est égal à 100).
La figure 2a montre une vue MEB en coupe et en tilt à un grossissement de 1000 (échelle de 20 μιτι sur la vue) de la couche diffusante de l'exemple 1 .
Les grandes porosités 22 sont aisément observables.
La figure 2b montre une vue MEB en coupe et en tilt à un grossissement de 5000 (échelle de 5 μιτι sur la vue) de la couche diffusante 2 de l'exemple 1 .
Une porosité de taille micronique est montrée et on observe aussi les particules d'alumine 21 .
La figure 3 montre une vue MEB de dessus à un grossissement de 5000 (échelle de 20 μιτι sur la vue) de la couche diffusante 2 de l'exemple 1 .
La rugosité de surface est aisément observable.
On mesure le paramètre de rugosité Ra avec un profilométre mécanique et on obtient Ra=1350 nm sur une longueur d'analyse de 200 μιτι, notamment avec un pas de mesure de 0,05 μιτι. La figure 4 montre une vue MEB en coupe et en tilt à un grossissement de 1000 d'une couche diffusante 2 selon l'invention avec un liant vitreux 20 à l'oxyde de bismuth avec des porosités 22 et sans ajout de particules diffusantes, correspondant à l'exemple 1 bis.
Les porosités sont de taille plus réduite et la surface plus lisse. On mesure le paramètre de rugosité Ra avec un profilométre mécanique et on obtient Ra=30 nm sur une longueur d'analyse de 200 μιτι, notamment avec un pas de mesure de 0,05 μηη.
FABRICATION
La fabrication de la couche diffusante à résistance chimique renforcée peut s'effectuer selon différents procédés industriels et de préférence par sérigraphie. La pâte
La pâte de sérigraphie sera constituée dans des proportions massiques entre 10 et 50% d'un médium de sérigraphie qui servira de véhicule aux particules pour traverser l'écran d'application.
Ce médium peut être organique, constitué d'alcools, de glycols, d'esters, de terpinéol qui, associé à de fines particules minérales comme de la silice pyrogénée ou des éthers cellulosiques, confère des propriétés de fluide à seuil à la pâte.
La combustion du médium organique génère les porosités.
La pâte employée est préparée par exemple dispersion d'une fritte de verre dans un médium de sérigraphie usuel composé d'un mélange de glycols comme le médium 80840 commercialisé par l'entreprise Ferro.
Les caractéristiques rhéologiques pour l'utilisation de la pâte par sérigraphie sont optimisées par l'emploi de silice pyrogénée ou d'éthers cellulosiques.
La fraction solide (formant le liant vitreux) est une fritte de verre avec une forte proportion d'oxyde de bismuth comme déjà indiqué qui confère la résistance chimique de la couche. L'empâtage des constituants s'effectue à grande vitesse dans des mixers planétaires, disperseurs à disques. Des systèmes à petite vitesse peuvent aussi être utilisés en complément, que ce soit avant ou après l'opération à grande vitesse. Ces systèmes à petite vitesse sont constitués d'agitateur de type pétrin, batteur ou encore des flacons comportant des billes qui sont disposés plusieurs heures sur des agitateurs à rouleaux mus à des faibles vitesses de quelques tours par minute. La qualité de la pâte est appréciée par l'absence de grains ou d'agrégat à l'aide d'une jauge Egman.
Le dépôt
Les machines de dépôt peuvent être de format réduit de type électronique (EKRA, DEK) ou de taille industrielle (THIEME) comme pour le verre plat.
Les écrans seront constitués de maille textile (exemple : polyester) ou métallique.
Les masques peuvent être constitués de résine photosensible ou de feuilles métalliques.
Les outils de nappage et la racle seront en polymère, carbone ou métal. Les épaisseurs déposées sont entre 10 et 100 m sur substrat en verre. La maîtrise de l'épaisseur est d'abord assurée par le choix de la maille de l'écran et sa tension.
La maîtrise de l'épaisseur est aussi assurée par les réglages de la distance entre l'écran et le substrat ainsi que les pressions et les vitesses de déplacement appliquées à la racle. Les épaisseurs seront contrôlées à l'aide d'un banc optique à laser de type Rodenstock entre une zone revêtue ou non.
Les dépôts sont séchés à une température de l'ordre de 100 à 150 °C dans un tunnel à rayonnement infrarouge ou UV selon la nature du médium employé.
Le dépôt de la couche diffusante peut aussi être effectué par un autre moyen que la sérigraphie : par exemple par dépôt par rouleau (« roll coating »), dépôt par trempage (« dip coating »), dépôt par application au couteau (« knifecoating »), dépôt par pulvérisation, par tournette (« spin coating ») ou encore dépôt par nappage vertical (« flow coating »). Les changements des ratios poudre-liquide et l'emploi d'additif est utilisé pour adapter la rhéologie de la composition au mode de dépôt choisi. Deux modes de dépôt différents peuvent être employés successivement pour réaliser un empilement de couches semblables ou de compositions différentes ou à gradient d'un ou plusieurs constituants.
La cuisson
Les fours employés peuvent être dynamiques avec transport sur rouleaux comme pour la cuisson de lunette arrière automobile ou préférentiellement statiques avec positionnement sur plaques métalliques ou vitrocéramique pour conservation de la planéité du substrat. La température de cuisson est supérieure à 580°C.
La résistance au nettoyage
Le secteur de l'électronique utilise couramment en salle propre des substrats comportant ou non des couches qui doivent supporter en premier lieu des procédures de nettoyages manuels ou automatisés en bains. Ces procédures de nettoyage doivent débarrasser les supports de toute trace de matière organique ou minérale ainsi que de particules. Les substrats passent donc successivement des étapes au contact de solutions détergentes basiques et acides avec des rinçages intermédiaires. Le pouvoir nettoyant est accentué par la présence de détergents, d'ultra-sons et une température souvent proche de 40 °C.
La composition riche en oxyde de bismuth de la couche vitreuse diffusante selon l'invention lui confère une résistance élevée dans ces milieux agressifs tels que les bains précités. Une couche vitreuse de l'exemple comparatif élaborée selon le même processus d'élaboration se voit complètement détruite dans les mêmes conditions de nettoyage.
PERFORMANCES D'OLED
Afin de montrer le rôle de la couche diffusante de l'invention, des mesures ont été faites sur l'extraction de lumière et sur les variations colorimétriques, à partir de première, deuxième et troisième diodes électroluminescentes organiques disponibles commercialement pour lesquelles on a retiré le film plastique diffusant collé sur la deuxième face.
- sans rajouter de couche diffusante (exemples REF 1 , et REF 1 bis et REF 1 ter) ;
- en rajoutant une couche diffusante sans oxyde de bismuth (exemples
REF 2, REF 2bis et REF 2ter) ou
- en rajoutant la couche diffusante de l'exemple 1 (exemples A1 et A1 bis et A1 ter).
Pour les exemples REF 1 , RF 2 et A1 , on utilise donc une première diode électroluminescente organique pour l'éclairage dénommée Orbeos® vendue par la société OSRAM et procurant une lumière blanche.
Pour les exemples REF 1 bis, REF 2bis et A1 bis, on utilise donc une deuxième diode électroluminescente organique pour l'éclairage dénommée Lumiotec® vendue par la société LUMIOTEC et procurant une lumière blanche.
Pour les exemples REF 1 ter, RF 2ter et A1 ter, on utilise donc une troisième diode électroluminescente organique pour l'éclairage est dénommée Lumiblade® vendue par la société PHILIPS et procurant une lumière blanche.
On mesure d'abord le gain en extraction. Le gain d'extraction est défini comme l'augmentation relative de la quantité de lumière extraite, c'est-à-dire le rapport entre la différence de quantité de lumière émise par le dispositif avec et sans la solution de l'invention (ajout de la couche diffusante), et la quantité de lumière émise par le dispositif sans solution. Pour le mesurer, il s'agit donc de comparer le flux lumineux total qui sort d'une OLED sans solution et celui qui sort d'une OLED avec solution. Pour s'assurer de recueillir l'ensemble du flux dans les deux cas, les deux OLED sont une à une, de manière connue, placées à l'intérieur d'une sphère intégrante.
Pour les 2 OLEDs, Orbeos® et Lumiblade®, le gain est sensiblement de 40% concernant les exemples avec couches diffusantes comparatives (REF 2et REF 2ter) ou des couches diffusantes selon l'exemple 1 (A1 et A1 ter), 40% par rapport aux diodes sans film plastique diffusant (REF 1 et REF 1 ter).
Par ailleurs, pour les 2 OLEDs, Orbeos® et Lumiblade®, le gain est sensiblement de 25% pour les exemples avec couches diffusantes selon l'invention sans particules diffusantes, faites selon l'exemple 1 bis 25% par rapport aux diodes sans film plastique diffusant (REF 1 et REF 1 ter).
Enfin, le tableau 4 ci après répertorie les longueurs des chemins optiques Vc1 à Vc3 pour les exemples précités REF1 à A1 ter.
Figure imgf000025_0001
Tableau 4
On constate que la variation colorimétrique angulaire est donc bien moindre avec une couche diffusante et en particulier avec la couche diffusante selon l'invention, assurant ainsi une lumière blanche bien plus homogène.
On remarque ainsi que la couche diffusante selon l'invention sur le substrat permet à la fois d'augmenter le gain en extraction de l'OLED, de diminuer les variations colorimétriques de la lumière émise pour ainsi fournir une lumière plus homogène et d'être résistante chimiquement et thermiquement.

Claims

REVENDICATIONS
1 . Support pour dispositif à diode électroluminescente organique (1 ) comportant successivement un substrat transparent (10), en verre minéral, pourvu de première et deuxième faces principales opposées (10a, 10b), le substrat (10) étant revêtu sur sa deuxième face (10b) d'une couche diffusante (2) qui comprend un liant minéral (20) vitreux et des éléments diffusants (21 , 22) dispersés dans le liant,
caractérisé en ce que le liant vitreux (20) comprend entre 40% et 60% en poids d'oxyde de bismuth Bi2O3 en incluant ces valeurs, voire entre 45% et 58% en poids d'oxyde de bismuth Bi2O3 en incluant ces valeurs,
et en ce que la proportion du liant vitreux (20) est d'au moins 20% du poids total de la couche diffusante (2).
2. Support selon la revendication 1 , caractérisé en ce que le liant présente une composition en oxydes hydrosolubles, notamment les oxydes alcalins de type sodium et potassium, dont la teneur totale est inférieure à 15% en poids et préférentiellement inférieure à 5%.
3. Support selon l'une des revendications précédentes, caractérisé en ce que le liant vitreux (20) comporte, en poids :
- entre 0 % et 10 % et de préférence entre 0 et 5 % de SiO2,
- entre 0 % et 5 % et de préférence entre 0 et 1 % d'AI2O3,
- entre 8 % et 25 % et de préférence entre 10 et 22 % de B2O3,
- entre 0 % et 10 % et de préférence entre 0 et 5 % de CaO,
- entre 0 % et 20 % et de préférence entre 0 et 15 % de BaO,
- entre 0 % et 5 % et de préférence entre 0 et 3 % de Li2O,
- entre 0 % et 10 % et de préférence entre 0 et 5 % de Na2O,
- entre 0 % et 5 % et de préférence entre 0 et 3 % de K2O,
- entre 0 % et 5 % et de préférence entre 0 et 4 % de ZrO2,
- entre 0 % et 5 % de SrO,
- entre 0 % et 5 % de La2O3,
en incluant ces valeurs dans les plages.
4. Support selon l'une des revendications précédentes, caractérisé en ce que le liant vitreux (20) comporte entre 5 et 30% en poids de ZnO en incluant ces valeurs et de préférence entre 10 et 25% en poids de ZnO en incluant ces valeurs.
5. Support selon l'une des revendications précédentes, caractérisé en ce que les éléments diffusants comprennent des porosités (22) en volume.
6. Support selon l'une des revendications précédentes, caractérisé en ce que les éléments diffusants comprennent des particules diffusantes (21 ), de préférence en proportion inférieure à 60% du poids total de la couche diffusante (2), et éventuellement des porosités (22) en volume.
7. Support selon l'une des revendications précédentes, caractérisé en ce que les éléments diffusants comprennent des particules diffusantes minérales (21 ), notamment choisies parmi l'une ou plusieurs des particules suivantes : des particules d'alumine, de zircone ZrÛ2, de silice S1O2,. d'oxyde de titane TiO2, de CaCO3, de BaSO4.
8. Support selon l'une des revendications 6 ou 7, caractérisé en ce que la proportion du liant vitreux (20) est entre 40 et 80 % du poids total de la couche diffusante (2) en incluant ces valeurs, notamment entre 50 et 75% en incluant ces valeurs, et la proportion des particules diffusantes (21 ) choisies en alumine est entre 20% et 60 % en incluant ces valeurs, notamment entre 25 et 50% du poids total de la couche diffusante (2) en incluant ces valeurs.
9. Support selon l'une des revendications précédentes, caractérisé en ce que la couche diffusante (2) présente une surface externe principale à l'air libre qui est rugueuse, de rugosité définie par un paramètre de rugosité Ra supérieur à 500 nm, voire à 900 nm sur une longueur d'analyse de 200 μιτι.
10. Support selon l'une des revendications précédentes, caractérisé en ce que le substrat (10) revêtu de la couche diffusante (2) présente une transmission lumineuse d'au moins 50% et un flou d'au moins 80%, voire d'au moins 90%.
1 1 . Support selon l'une des revendications précédentes, caractérisé en ce qu'une première électrode transparente (1 1 ), sous forme de couche(s) est déposée sur la première face (10a) du substrat (10).
12. Support d'électrode selon la revendication précédente, caractérisé en ce qu'il comporte au-dessus de la première électrode (1 1 ) un système électroluminescent organique (12), notamment un revêtement organique, système émetteur d'un rayonnement dans le visible de préférence polychromatique, et une deuxième électrode (13), sous forme de couche(s), et déposée sur le système organique(s) (12) à l'opposé de la première électrode (1 1 ).
13. Utilisation du support avec une couche diffusante (2) selon l'une des revendications précédentes, comme support dans un dispositif à diode électroluminescente organique (1 ) pour l'éclairage.
14. Dispositif à diode électroluminescent organique (1 ) comportant un support selon l'une des revendications 1 à 12.
15. Dispositif à diode électroluminescente organique (1 ) selon la revendication précédente, caractérisé en ce qu'il émet en sortie un spectre de lumière polychromatique, notamment blanche, défini par ses coordonnées colorimétriques dans le diagramme colorimétrique CIE XYZ 1931 , entre le spectre émis à 0° et le spectre émis à 75°, ceci tous les 5°, et pour lequel la longueur de chemin Vc1 entre le spectre émis à 0° et le spectre émis à 75°, et passant par les angles intermédiaires avec un pas de 5° et donné par la
Θ =75°
formule Vcl = £ ^ ) - χ(θΐ+1 ))2 + - y(QM ))2 dans
Θ,-=Ο
laquelle les coordonnées colorimétriques pour chaque spectre d'angle Θ, sont exprimées par le couple de coordonnées (χ(θ,);ν(θ,)) dans le diagramme colorimétrique CIE XYZ 1931 , et en ce que, pour un premier dispositif à diode électroluminescent organique de référence différencié par l'absence de couche diffusante sur la deuxième face du substrat, on définit une deuxième longueur de chemin Vc2 de manière identique, et on l'on obtient Vc1A/c2 inférieur ou égal à 0,25, voire à 0,1 et de préférence Vc2 est inférieure ou égale à 10"\
et/ou pour un deuxième dispositif à diode électroluminescent organique de référence avec une couche diffusante sur la deuxième face du substrat, couche différenciée par un liant vitreux sans oxyde de bismuth, on définit une troisième longueur de chemin Vc3 de manière identique, et on obtient Vc1A/c3 inférieur ou égal à 0,9 voire à 0,7, et de préférence Vc3 est inférieure ou égale à 10~1.
PCT/FR2011/051874 2010-08-06 2011-08-05 Support a couche diffusante pour dispositif a diode electroluminescente organique, dispositif electroluminescent organique comportant un tel support WO2012017183A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/814,428 US8890133B2 (en) 2010-08-06 2011-08-05 Support with a diffusing layer for an organic light-emitting diode device, and organic light-emitting device comprising such a support
JP2013523653A JP2013536551A (ja) 2010-08-06 2011-08-05 有機発光ダイオードデバイスのための散乱層を有する支持体、その支持体を含む有機発光デバイス
CN2011800422718A CN103081158A (zh) 2010-08-06 2011-08-05 用于有机发光二极管器件的具有漫射层的支架、以及包含该支架的有机发光二极管器件
EP11757383.2A EP2601695A1 (fr) 2010-08-06 2011-08-05 Support a couche diffusante pour dispositif a diode electroluminescente organique, dispositif electroluminescent organique comportant un tel support
KR20137005652A KR20130097744A (ko) 2010-08-06 2011-08-05 유기 발광 다이오드 장치용 확산층을 갖는 지지체, 이러한 지지체를 포함하는 유기 발광 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1056499 2010-08-06
FR1056499A FR2963705B1 (fr) 2010-08-06 2010-08-06 Support a couche diffusante pour dispositif a diode electroluminescente organique, dispositif electroluminescent organique comportant un tel support

Publications (1)

Publication Number Publication Date
WO2012017183A1 true WO2012017183A1 (fr) 2012-02-09

Family

ID=43640173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/051874 WO2012017183A1 (fr) 2010-08-06 2011-08-05 Support a couche diffusante pour dispositif a diode electroluminescente organique, dispositif electroluminescent organique comportant un tel support

Country Status (7)

Country Link
US (1) US8890133B2 (fr)
EP (1) EP2601695A1 (fr)
JP (1) JP2013536551A (fr)
KR (1) KR20130097744A (fr)
CN (1) CN103081158A (fr)
FR (1) FR2963705B1 (fr)
WO (1) WO2012017183A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012206967A1 (de) * 2012-04-26 2013-10-31 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelements
KR20130140443A (ko) * 2012-06-14 2013-12-24 쌩-고벵 글래스 프랑스 Oled 소자용 적층체, 그 제조방법 및 이를 구비한 oled 소자
WO2014128421A1 (fr) * 2013-02-25 2014-08-28 Saint-Gobain Glass France Substrat pour dispositif a diode electroluminescente organique
FR3002533A1 (fr) * 2013-02-25 2014-08-29 Saint Gobain Substrat pour dispositif a diode electroluminescente organique
WO2014194151A3 (fr) * 2013-05-30 2015-02-12 Neonode Inc. Capteurs de proximité optiques
CN104364216A (zh) * 2012-04-26 2015-02-18 欧司朗Oled股份有限公司 用于制造用于电磁辐射的散射层的方法和用于散射电磁辐射的散射层
US9164625B2 (en) 2012-10-14 2015-10-20 Neonode Inc. Proximity sensor for determining two-dimensional coordinates of a proximal object
DE102014107099A1 (de) 2014-05-20 2015-11-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Lichtstreuendes Schichtsystem, Verfahren zu seiner Herstellung und Verwendung des Schichtsystems
EP2767518A4 (fr) * 2011-10-14 2016-01-06 Asahi Glass Co Ltd Verre à utiliser dans une couche de diffusion d'un élément à diode électroluminescente (led) organique, substrat multicouche à utiliser dans un élément à led organique et son procédé de fabrication, et élément à led organique et son procédé de fabrication
US9741184B2 (en) 2012-10-14 2017-08-22 Neonode Inc. Door handle with optical proximity sensors
US9921661B2 (en) 2012-10-14 2018-03-20 Neonode Inc. Optical proximity sensor and associated user interface
US10282034B2 (en) 2012-10-14 2019-05-07 Neonode Inc. Touch sensitive curved and flexible displays
US10324565B2 (en) 2013-05-30 2019-06-18 Neonode Inc. Optical proximity sensor
US10585530B2 (en) 2014-09-23 2020-03-10 Neonode Inc. Optical proximity sensor
US11842014B2 (en) 2019-12-31 2023-12-12 Neonode Inc. Contactless touch input system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103378265A (zh) * 2012-04-28 2013-10-30 展晶科技(深圳)有限公司 发光模组载板的制造方法
EP2803645B1 (fr) * 2013-05-17 2018-08-01 Saint-Gobain Glass France Substrat OLED diffusif transparent et procédé de fabrication d'un tel substrat
ES2695052T3 (es) * 2013-05-17 2018-12-28 Saint-Gobain Glass France Sustrato OLED difusor transparente y método para producir tal sustrato
KR101493612B1 (ko) * 2013-10-08 2015-02-13 쌩-고벵 글래스 프랑스 발광 디바이스용 적층체 및 그의 제조 방법
FR3020179B1 (fr) * 2014-04-22 2017-10-06 Saint Gobain Electrode supportee transparente pour oled
DE102017127624A1 (de) * 2017-11-22 2019-05-23 Schott Ag Beschichtetes Glas- oder Glaskeramik-Substrat, Beschichtung umfassend geschlossene Poren sowie Verfahren zur Beschichtung eines Substrats
KR102103516B1 (ko) * 2018-08-29 2020-04-23 주식회사 첨단랩 광 추출 구조체 및 유기 발광 조명 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2937467A1 (fr) 2008-10-21 2010-04-23 Saint Gobain Dispositif a diode electroluminescente organique
WO2010084922A1 (fr) * 2009-01-26 2010-07-29 旭硝子株式会社 Verre pour une couche de diffusion d'un dispositif de del organique, et dispositif de del organique
WO2010084925A1 (fr) * 2009-01-26 2010-07-29 旭硝子株式会社 Composition de verre et élément comportant ladite composition sur un substrat
US20100187987A1 (en) * 2009-01-26 2010-07-29 Asahi Glass Company, Limited Electrode-attached substrate, method for producing the same, organic led element and method for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252521A (en) * 1992-10-19 1993-10-12 Ferro Corporation Bismuth-containing lead-free glass enamels and glazes of low silica content
CN101516794A (zh) * 2006-09-14 2009-08-26 旭硝子株式会社 光学玻璃和使用该光学玻璃的透镜
KR20100138939A (ko) * 2008-03-18 2010-12-31 아사히 가라스 가부시키가이샤 전자 디바이스용 기판, 유기 led 소자용 적층체 및 그의 제조 방법, 유기 led 소자 및 그의 제조 방법
JP2009238694A (ja) * 2008-03-28 2009-10-15 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2937467A1 (fr) 2008-10-21 2010-04-23 Saint Gobain Dispositif a diode electroluminescente organique
WO2010084922A1 (fr) * 2009-01-26 2010-07-29 旭硝子株式会社 Verre pour une couche de diffusion d'un dispositif de del organique, et dispositif de del organique
WO2010084925A1 (fr) * 2009-01-26 2010-07-29 旭硝子株式会社 Composition de verre et élément comportant ladite composition sur un substrat
US20100187987A1 (en) * 2009-01-26 2010-07-29 Asahi Glass Company, Limited Electrode-attached substrate, method for producing the same, organic led element and method for producing the same

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2767518A4 (fr) * 2011-10-14 2016-01-06 Asahi Glass Co Ltd Verre à utiliser dans une couche de diffusion d'un élément à diode électroluminescente (led) organique, substrat multicouche à utiliser dans un élément à led organique et son procédé de fabrication, et élément à led organique et son procédé de fabrication
US9945989B2 (en) 2012-04-26 2018-04-17 Osram Oled Gmbh Process for producing a scattering layer for electromagnetic radiation and scattering layer for scattering electromagnetic radiation
CN104364216A (zh) * 2012-04-26 2015-02-18 欧司朗Oled股份有限公司 用于制造用于电磁辐射的散射层的方法和用于散射电磁辐射的散射层
CN104364216B (zh) * 2012-04-26 2017-03-08 欧司朗Oled股份有限公司 用于制造用于电磁辐射的散射层的方法和用于散射电磁辐射的散射层
US9478761B2 (en) 2012-04-26 2016-10-25 Osram Oled Gmbh Optoelectronic component having a UV-protecting substrate and method for producing the same
DE102012206967A1 (de) * 2012-04-26 2013-10-31 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelements
KR20130140443A (ko) * 2012-06-14 2013-12-24 쌩-고벵 글래스 프랑스 Oled 소자용 적층체, 그 제조방법 및 이를 구비한 oled 소자
US9825258B2 (en) 2012-06-14 2017-11-21 Saint-Gobain Glass France Layered structure for OLED device, method for manufacturing the same, and OLED device having the same
KR101715112B1 (ko) * 2012-06-14 2017-03-10 쌩-고벵 글래스 프랑스 Oled 소자용 적층체, 그 제조방법 및 이를 구비한 oled 소자
US11733808B2 (en) 2012-10-14 2023-08-22 Neonode, Inc. Object detector based on reflected light
US10949027B2 (en) 2012-10-14 2021-03-16 Neonode Inc. Interactive virtual display
US9164625B2 (en) 2012-10-14 2015-10-20 Neonode Inc. Proximity sensor for determining two-dimensional coordinates of a proximal object
US11073948B2 (en) 2012-10-14 2021-07-27 Neonode Inc. Optical proximity sensors
US9741184B2 (en) 2012-10-14 2017-08-22 Neonode Inc. Door handle with optical proximity sensors
US11379048B2 (en) 2012-10-14 2022-07-05 Neonode Inc. Contactless control panel
US9921661B2 (en) 2012-10-14 2018-03-20 Neonode Inc. Optical proximity sensor and associated user interface
US11714509B2 (en) 2012-10-14 2023-08-01 Neonode Inc. Multi-plane reflective sensor
US10004985B2 (en) 2012-10-14 2018-06-26 Neonode Inc. Handheld electronic device and associated distributed multi-display system
US10928957B2 (en) 2012-10-14 2021-02-23 Neonode Inc. Optical proximity sensor
US10140791B2 (en) 2012-10-14 2018-11-27 Neonode Inc. Door lock user interface
US10282034B2 (en) 2012-10-14 2019-05-07 Neonode Inc. Touch sensitive curved and flexible displays
US10802601B2 (en) 2012-10-14 2020-10-13 Neonode Inc. Optical proximity sensor and associated user interface
US10496180B2 (en) 2012-10-14 2019-12-03 Neonode, Inc. Optical proximity sensor and associated user interface
US10534479B2 (en) 2012-10-14 2020-01-14 Neonode Inc. Optical proximity sensors
FR3002533A1 (fr) * 2013-02-25 2014-08-29 Saint Gobain Substrat pour dispositif a diode electroluminescente organique
US10084144B2 (en) 2013-02-25 2018-09-25 Saint-Gobain Glass France Substrate for device having an organic light-emitting diode
WO2014128421A1 (fr) * 2013-02-25 2014-08-28 Saint-Gobain Glass France Substrat pour dispositif a diode electroluminescente organique
US10324565B2 (en) 2013-05-30 2019-06-18 Neonode Inc. Optical proximity sensor
WO2014194151A3 (fr) * 2013-05-30 2015-02-12 Neonode Inc. Capteurs de proximité optiques
EP2955553A2 (fr) 2014-05-20 2015-12-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Système multicouches à diffusion lumineuse, son procédé de production et utilisation du système multicouches
DE102014107099A1 (de) 2014-05-20 2015-11-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Lichtstreuendes Schichtsystem, Verfahren zu seiner Herstellung und Verwendung des Schichtsystems
US10585530B2 (en) 2014-09-23 2020-03-10 Neonode Inc. Optical proximity sensor
US11842014B2 (en) 2019-12-31 2023-12-12 Neonode Inc. Contactless touch input system

Also Published As

Publication number Publication date
FR2963705A1 (fr) 2012-02-10
KR20130097744A (ko) 2013-09-03
US8890133B2 (en) 2014-11-18
CN103081158A (zh) 2013-05-01
JP2013536551A (ja) 2013-09-19
US20130221336A1 (en) 2013-08-29
FR2963705B1 (fr) 2012-08-17
EP2601695A1 (fr) 2013-06-12

Similar Documents

Publication Publication Date Title
EP2601695A1 (fr) Support a couche diffusante pour dispositif a diode electroluminescente organique, dispositif electroluminescent organique comportant un tel support
EP2526071B1 (fr) Substrat verrier revetu d&#39;une couche haut indice sous un revetement electrode et dispositif electroluminescent organique comportant un tel substrat
EP2384086B1 (fr) Substrat pour dispositif électronique, ainsi que dispositif électronique utilisant celui-ci
JP5195755B2 (ja) 透光性基板、その製造方法、有機led素子及びその製造方法
WO2012086806A1 (fr) Article doté d&#39;un film à faible réflexion
FR2908406A1 (fr) Couche poreuse, son procede de fabrication et ses applications.
BE1020735A3 (fr) Substrat verrier texture a proprietes optiques ameliorees pour dispositif optoelectronique.
KR20080018799A (ko) 반사 방지층을 포함하는 발광 디바이스
TWI553940B (zh) 用於發光裝置之層板及其製備方法
WO2014128421A1 (fr) Substrat pour dispositif a diode electroluminescente organique
CN1249497C (zh) 反射式液晶显示元件用基底
RU2693123C2 (ru) Прозрачная диффузионная подложка осид и способ для изготовления такой подложки
WO2005080278A2 (fr) Plaque de verre destinee a recevoir un depot metallique et resistant a la coloration susceptible d&#39;etre provoquee par un tel depot.
DE112018002226T5 (de) Glassubstrat mit aufgebrachtem film, gegenstand und verfahren zur herstellung eines glassubstrats mit aufgebrachtem film
EP3134929B1 (fr) Electrode supportee transparente pour oled
JP6164120B2 (ja) 反射防止膜付き基材および物品
WO2014042129A1 (fr) Produit ayant un film de faible réflexion
FR2937467A1 (fr) Dispositif a diode electroluminescente organique
KR20180098216A (ko) 투명 도전막, 투명 도전막을 갖는 기판 및 투명 도전막을 갖는 기판의 제조 방법
FR2870844A1 (fr) Plaque de verre destinee a recevoir un depot metallique et resistant a la coloration susceptible d&#39;etre provoquee par un tel depot
FR2868769A1 (fr) Plaque de verre destinee a recevoir un depot metallique et resistant a la coloration susceptible d&#39;etre provoquee par un tel depot

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180042271.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11757383

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523653

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011757383

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011757383

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137005652

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13814428

Country of ref document: US