WO2012016922A1 - SCHMELZENAUFGABESYSTEM ZUM BANDGIEßEN - Google Patents

SCHMELZENAUFGABESYSTEM ZUM BANDGIEßEN Download PDF

Info

Publication number
WO2012016922A1
WO2012016922A1 PCT/EP2011/063098 EP2011063098W WO2012016922A1 WO 2012016922 A1 WO2012016922 A1 WO 2012016922A1 EP 2011063098 W EP2011063098 W EP 2011063098W WO 2012016922 A1 WO2012016922 A1 WO 2012016922A1
Authority
WO
WIPO (PCT)
Prior art keywords
melt
heating
nozzle
heating device
outlet element
Prior art date
Application number
PCT/EP2011/063098
Other languages
English (en)
French (fr)
Inventor
Jörg BAUSCH
Reiner PÜRLING
Jochen SCHLÜTER
Jochen Wans
Karl-Heinz Spitzer
Hellfried Eichholz
Original Assignee
Sms Siemag Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sms Siemag Ag filed Critical Sms Siemag Ag
Priority to BR112013002475A priority Critical patent/BR112013002475A2/pt
Priority to EP11740894.8A priority patent/EP2598268B1/de
Priority to CN201180037801.XA priority patent/CN103025456B/zh
Priority to KR1020137002950A priority patent/KR20130041927A/ko
Priority to RU2013108515A priority patent/RU2628590C2/ru
Priority to US13/813,186 priority patent/US20130269905A1/en
Publication of WO2012016922A1 publication Critical patent/WO2012016922A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0631Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a travelling straight surface, e.g. through-like moulds, a belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/064Accessories therefor for supplying molten metal
    • B22D11/0642Nozzles

Definitions

  • the invention relates to a melt feeding system for horizontal strip casting of a molten metal with a discharge element, in particular with a pouring nozzle for the free overflow of the molten metal, hereinafter referred to as "nozzle".
  • the horizontal strip casting of metals which is also referred to as direct strip casting and BCT (Band Casting Technology), is used for example in steel, for example, with a close to final casting in combination with an offline or an inline rolling.
  • the forming or rolling step has both the purpose of reducing the thickness and the structure formation, d. H. the recrystallization. It is a process aimed at the production of hot wide strip for steel alloys.
  • liquid steel is fed by a feed system with a correspondingly formed nozzle onto a circulating transport belt cooled from below with water.
  • the melt addition during horizontal strip casting takes place via the melt feed vessel or feed system.
  • the melt flows through a filling area and then an outlet area before it passes through a ceramic component, such as a nozzle with a free overflow on the conveyor belt.
  • the conveyor belt is driven and guided by two pulleys.
  • the melt applied to the conveyor belt solidifies completely in the area of the primary cooling. After solidification, the strip enters inline rolling in rolling stands. After inline rolling and another cooling process, the belt is rewound.
  • Such a casting method for strip casting is known from DE 198 52 275 A1.
  • this object is achieved in a melt delivery system of the type mentioned above in that at least one heating device for heating the outlet element is arranged in the region of the outlet element.
  • an active heating of the outlet element i. H. in particular the nozzle, provided.
  • the area close to the jet can also be heated.
  • the outlet element is at least partially formed from a refractory ceramic.
  • the heating device is designed as a gas heater and / or as an electric heater.
  • the heater is arranged or integrated in a floor, in side walls, in a weir, a dam, an overflow and / or in a cover of the outlet element or the nozzle.
  • the heating device in particular in the form of heating rods, is preferably arranged in recesses or grooves in the bottom and / or in the cover.
  • the heating device is surrounded by ceramic components. These can be used in different geometries.
  • the heating elements are designed as carbide heating rods, in particular as lithium carbide or silicon carbide heating rods.
  • the heater comprises at least one pore burner
  • the pore burner can be operated with a liquid heating medium, but preferably with a gas. It comes with simultaneous delivery of a combustible fluid and air to a combustion reaction in a ceramic foam.
  • the pore burner can thus fill a nozzle bottom and / or upper part completely or partially in terms of area. Due to the high surface power density that can be achieved with the pore burner, this can be considered as be operated compact burner unit.
  • the infinitely variable burner output makes it possible to provide the required burner heat in a finely dosed manner in order to adapt the nozzle surfaces to the melt parameters required in the respective melting process.
  • inductive heating means are advantageously used, for. B. WS "Inducer" Fa. RHI.
  • the melt delivery system advantageously also provides a unit for supplying an inert gas to the strand of the metal strip to be cast in the area of the outlet element.
  • heating elements can be integrated in ceramic or as a replacement of the ceramic
  • the outlet element for heating the outlet element, in particular the nozzle integrate.
  • the nozzle is formed as a ceramic element, a ceramic temperature of 1 100 ° C is targeted for casting a molten steel.
  • the heat will heat the ceramic via radiation.
  • the heating elements can also be integrated in the cover of the nozzle, in particular in the region of the overflow. If the nozzle bottom is replaced by a heated component, the radiation also heats the ceramic. Only suitable cooling measures must be taken for the conveyor belt, over which the cast metal strip is removed.
  • heating elements can be integrated in the bottom of the nozzle, in particular in the region of an overflow, in a dam, a weir or in the side walls of the nozzle.
  • the advantage of the invention is that the casting process becomes more robust against time and temperature losses.
  • the casting can also be done over a longer period.
  • Fig. 1 is a schematic side view of a plant for strip casting
  • Fig. 2 is a sectional view of a equipped with heating elements outlet area in a plant for strip casting and
  • Fig. 3 is a perspective view, partially in section, of a nozzle in a plant for strip casting.
  • the furnace 2 can be opened down to a tapping channel 5.
  • the stopper rod 4 is mounted in the closed state relative to a sealing ring 6.
  • the melt flows into a preferably also heated or insulated task vessel 7.
  • the melt via an outlet channel 8, which ends in an outlet region, in particular in a nozzle 9.
  • the nozzle 9 is equipped with a dam 10 and with a weir 1 1 to channel the flow of the melt.
  • a gas nozzle 12 is provided, which generates against the flow direction of the melt, a stream of inert gas to distribute the melt, preferably also transversely to the casting direction, and / or to the superficial corrosion of the solidifying melt prevent.
  • the conveyor belt 13 passes over a deflection or drive roller 15. Further, the conveyor belt 13 is guided via support rollers 16 and / or a honeycomb grid. Between them, spray nozzles 17 are arranged, which spray a cooling medium taken from a basin 18 onto the underside of the conveyor belt 13 in order to solidify the metal strip 14.
  • this follower forming segments on the two narrow band sides of the conveyor belt 13, which are arranged overlapping each other or closely adjacent to each other to prevent leakage of the solidifying metal.
  • the distance of the segments is either predetermined by the width of the conveyor belt 13 or adjustable according to the desired width.
  • a nozzle 9 (FIG. 2) constructed like the nozzle 9 and therefore provided with the same reference numeral is provided with heating elements at several points in order to provide a constant flow through the surfaces adjacent to the molten metal To provide ambient temperature for the melt.
  • 20 heating devices are provided both in the nozzle upper part 19 and in the nozzle lower part.
  • two heaters 21, 22 are arranged one behind the other in the flow direction of the melt.
  • Each of the heaters 21, 22 comprises a heating rod 24 mounted in a ceramic tube 23.
  • a heating rod 26 is mounted in a front weir 25 of the nozzle 1 1, .
  • the weir is preferably designed inside as a ceramic tube.
  • the heating element 26 may be integrated in the ceramic tube.
  • the weir 25 controls the outflow of the melt from the nozzle 9.
  • a heating element 28 is housed in the nozzle lower part 20 in a ceramic tube 27, a heating element 28 is housed.
  • the heating rods 24, 26, 28 are made of silicon or lithium carbide, for example.
  • heating rods 33, 34 are designed as ohmic resistance heaters on the upper side and extend transversely to the flow direction of the melt, which leaves the nozzle via a dam 35.
  • the upper and lower nozzle parts 19, 20 and 31, 32 are, for example, constructed completely from a refractory ceramic.
  • the refractory ceramic can be provided with recesses into which ceramic elements surrounded by ceramic are introduced, such as the heating rods 33, 34.
  • the nozzle top and bottom parts 19, 20 and 31, 32 may also consist of a metal having a sufficiently higher melting temperature.
  • the metal to be cast is tin, zinc or aluminum or an alloy of these metals
  • the nozzle tops and bottoms 19, 20 and 31, 32 may also be wholly or partially made of a steel, for example a stainless steel, with respect to use adapted properties, in particular with regard to the corrosivity, wherein also in this case heating rods can be introduced with ceramic sheaths in corresponding recesses in the nozzle top and bottom parts.
  • the arrow S in FIGS. 2 and 3 denotes the flow direction of the melt.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Continuous Casting (AREA)
  • Coating With Molten Metal (AREA)
  • Furnace Details (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

Ein Schmelzenaufgabesystem zum horizontalen Bandgießen eines schmelzflüssigen Metalls mit einem Auslaufelement, insbesondere mit einer Düse (9), ist dadurch gekennzeichnet, dass im Bereich des Auslaufelements wenigstens eine Heizeinrichtung (21, 22; 28) zur Erwärmung des Auslaufelements angeordnet ist.

Description

Schmelzenaufgabesystem zum Bandgießen
Die Erfindung bezieht sich auf ein Schmelzenaufgabesystem zum horizontalen Bandgießen eines schmelzflüssigen Metalls mit einem Auslaufelement, insbe- sondere mit einer Gießdüse für den freien Überlauf des schmelzflüssigen Metalls, im weiteren mit„Düse" bezeichnet.
Das horizontale Bandgießen von Metallen, das auch als Direct Strip Casting und BCT (Band Casting Technology) bezeichnet wird, wird beispielsweise bei Stahl eingesetzt, beispielsweise mit einem endabmessungsnahen Gießen in Kombination mit einer Offline- oder einer Inline-Walzung. Der Umform- oder Walzschritt hat dabei sowohl den Zweck der Dickenreduzierung als auch der Gefügeneubildung, d. h. der Rekristallisation. Es handelt sich um ein Verfahren mit Ausrichtung auf die Erzeugung von Warm breitband für Stahllegierungen.
Beim Bandgießen wird flüssiger Stahl durch ein Zuführsystem mit einer entsprechend ausgebildeten Düse auf ein umlaufendes, von unten mit Wasser gekühltes Transportband aufgegeben. Die Schmelzenzugabe beim horizontalen Bandgießen erfolgt über das Schmelzenaufgabegefäß oder -aufgabesystem. Dabei durchströmt die Schmelze einen Einfüllbereich sowie anschließend einen Auslaufbereich, bevor sie durch ein keramisches Bauteil, beispielsweise eine Düse mit freiem Überlauf auf das Transportband gelangt. Das Transportband wird durch zwei Umlenkrollen angetrieben und geführt. Die auf das Transportband aufgebrachte Schmelze erstarrt noch im Bereich der Primärkühlung voll- ständig. Nach der Erstarrung läuft das Band zum Inline-Walzen in Walzgerüste ein. Nach dem Inline-Walzen und einem weiteren Kühlvorgang wird das Band aufgehaspelt. Ein derartiges Gießverfahren zum Bandgießen ist aus der DE 198 52 275 A1 bekannt. Es ist bekannt, das Schmelzenaufgabesystem vorzuwärmen, um ein Anfrieren des erstarrenden Metalls an dem Auslaufelement (Düse) zu verhindern. Jedoch lässt es sich bei dieser Technologie nicht verhindern, dass das Auslaufelement nach Beendigung des Vorwärmvorgangs nicht mehr genügend heiß ist und es zu Anfrierungen des zu gießenden Metalls kommt. Dies führt zu einem un- gleichmäßigen Schmelzenstrom und zu Fehlern im Gussbandprofil und an den Oberflächen der Gussprodukte. Ebenso führen Ablösungen der Anfrierungen während des Gusses ebenfalls zu instationären Zuständen hinsichtlich der Strömung und der Oberflächenqualität. Eine sehr lange Vorheizzeit im Bereich der Metallaufgabe im Schmelzenaufgabesystem, d. h. bis zu dem Zeitpunkt unmittelbar vor dem Eintritt der Schmelze, lässt sich aufgrund einer ebenfalls im Bereich der Metallaufgabe erfolgenden Inertisierung der Schmelze durch ein Inertgas nicht realisieren.
Es ist die Aufgabe der Erfindung, die Nachteile des Standes der Technik zu ver- meiden und insbesondere ein Anfrieren des erstarrenden Metalls beim Austritt aus dem Auslaufelement (Düse) zu verhindern.
Gemäß der Erfindung wird diese Aufgabe bei einem Schmelzenaufgabesystem der eingangs genannten Art dadurch gelöst, dass im Bereich des Auslaufele- ments wenigstens eine Heizeinrichtung zur Erwärmung des Auslaufelements angeordnet ist.
Gemäß der Erfindung wird eine aktive Beheizung des Auslaufelements, d. h. insbesondere der Düse, vorgesehen. Ebenso lässt sich auch der düsennahe Bereich beheizen.
Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen. Besonders geeignet ist eine Ausführung der Erfindung, gemäß der das Auslaufelement selber mit der Heizeinrichtung ausgestattet ist oder die Heizeinrichtung benachbart zu dem Auslaufelement angeordnet ist.
Vorzugsweise ist das Auslaufelement wenigstens teilweise aus einer feuerfes- ten Keramik ausgebildet.
In vorteilhafter Weise ist die Heizeinrichtung als Gasheizung und/oder als elektrische Heizung ausgebildet. Mit Vorteil lässt sich auch vorsehen, dass die Heizung in einem Boden, in Seitenwänden, in einem Wehr, einem Damm, einem Überlauf und/oder in einem Deckel des Auslaufelements bzw. der Düse angeordnet oder integriert ist.
Vorzugsweise ist die Heizeinrichtung, insbesondere in Form von Heizstäben, in Aussparungen oder Nuten im Boden und/oder im Deckel angeordnet.
In einer weiteren vorteilhaften Ausgestaltung ist die Heizeinrichtung von keramischen Bauteilen umgeben. Diese können in verschiedenen Geometrien zum Einsatz kommen.
Mit Vorteil sind die Heizstäbe als Carbid-Heizstäbe, insbesondere als Lithium- carbid- oder als Siliciumcarbid-Heizstäbe, ausgebildet.
Wenn die Heizeinrichtung wenigstens einen Porenbrenner umfasst, lässt sich eine über weite Bereiche stufenlos und schnell regelbare Heizung vorsehen. Der Porenbrenner kann mit einem flüssigen Heizmittel, bevorzugt aber mit einem Gas, betrieben werden. Dabei kommt es bei gleichzeitiger Zuführung eines verbrennbaren Fluids und von Luft zu einer Verbrennungsreaktion in einem Keramikschaum. Der Porenbrenner kann somit ein Düsenunter- und/oder -Oberteil flächenmäßig ganz oder partiell ausfüllen. Aufgrund der hohen Flächenleistungsdichte, die sich mit dem Porenbrenner erreichen lässt, kann dieser als kompakte Brennereinheit betrieben werden. Die stufenlos regelbare Brennerleistung erlaubt es, die jeweils im Prozess benötigte Brennerwärme fein dosiert zur Verfügung zu stellen, um die Düsenoberflächen an die im jeweiligen Schmelzprozess erforderlichen Schmelzenparameter anzupassen. In einer weiteren Ausführungsform kommen mit Vorteil induktive Heizmittel zum Einsatz, z. B. WS„Inducer" Fa. RHI.
Besonders vorteilhaft ist ein System mit einer induzierten Mittelfrequenz von etwa 10 kHz. Die Spulengeometrie sollte an das zu erwärmende keramische Bauteil angepasst sein, um eine schnelle und gleichmäßige Erwärmung zu gewährleisten. Die Keramik sollte zudem eine ausreichende elektrische Leitfähigkeit besitzen, um zusammen mit der erforderlichen Leistungsdichte eine kurze Aufwärmzeit von vorzugsweise etwa 10 Minuten zu erbringen. Das erfindungsgemäße Schmelzenaufgabesystem sieht mit Vorteil auch eine Einheit zur Zuführung eines Inertgases auf den Strang des zu gießenden Metallbandes im Bereich des Auslaufelements vor.
Gemäß der Erfindung lassen sich verschiedene Technologien, insbesondere 1 .) Heizelemente in Keramik integriert oder als Ersatz der Keramik
2. ) Porenbrennen, wie oben beschrieben, und
3. ) Induktion
zur Erwärmung des Auslaufelements, insbesondere der Düse, integrieren. Wenn die Düse als Keramikelement ausgebildet ist, wird zum Gießen einer Stahlschmelze etwa eine Keramik-Temperatur von 1 100°C angestrebt. Wenn der Düsendeckel oder das Düsendach durch ein beheiztes Bauteil ersetzt wird, erhitzt die Wärme über Strahlung die Keramik. Die Heizelemente lassen sich auch in den Deckel der Düse integrieren, insbesondere in den Bereich des Überlaufes. Wenn der Düsenboden durch ein beheiztes Bauteil ersetzt wird, erhitzt die Strahlung ebenfalls die Keramik. Es müssen lediglich geeignete Kühlmaßnahmen für das Transportband getroffen werden, über das das gegossene Metallband abtransportiert wird. Ebenso lassen sich Heizelemente in den Boden der Düse integrieren, insbesondere in den Bereich eines Überlaufes, in einen Damm, ein Wehr oder in die Seitenwände der Düse.
Insgesamt besteht durch die Erfindung auch der Vorteil, dass der Angießpro- zess robuster gegenüber Zeit- und auch Temperaturverlusten wird. Das Angießen kann dabei auch über einen längeren Zeitraum erfolgen.
Nachstehend wird die Erfindung in Ausführungsbeispielen näher erläutert. Es zeigen:
Fig. 1 eine schematische Seitenansicht einer Anlage zum Bandgießen, Fig. 2 eine Schnittansicht eines mit Heizelementen ausgestatteten Auslaufbereichs in einer Anlage zum Bandgießen und
Fig. 3 eine perspektivische Ansicht, teilweise geschnitten, einer Düse in einer Anlage zum Bandgießen.
Eine Bandgießanlage 1 (Fig. 1 ) zum Gießen eines Stahlbands oder eines Bandes aus einem anderen Metall umfasst ein Zuführsystem für das flüssige Metall mit einem Ofen 2, in dem eine Schmelze 3 zunächst enthalten ist.
Über eine Stopfenstange 4 lässt sich der Ofen 2 nach unten zu einem Abstichkanal 5 öffnen. Dabei ist die Stopfenstange 4 im geschlossenen Zustand gegenüber einem Dichtring 6 gelagert. Aus dem Abstichkanal 5 fließt die Schmelze in ein vorzugsweise ebenfalls beheiztes oder isoliertes Aufgabegefäß 7. Aus diesem wird die Schmelze über einen Austrittskanal 8, der in einem Auslaufbereich, insbesondere in einer Düse 9, endet.
Die Düse 9 ist mit einem Damm 10 und mit einem Wehr 1 1 ausgestattet, um den Strom der Schmelze zu kanalisieren. Im Bereich des Auslasses der Düse 9 ist eine Gasdüse 12 vorgesehen, die entgegen der Strömungsrichtung der Schmelze einen Strom eines Inertgases erzeugt, um die Schmelze zu verteilen, vorzugsweise auch quer zur Gießrichtung, und/oder um die oberflächliche Kor- rosion der erstarrenden Schmelze zu verhindern.
Diese bildet auf einem endlosen Transportband 13 ein Metallband 14. Das Transportband 13 läuft über eine Umlenk- oder Antriebsrolle 15. Ferner wird das Transportband 13 über Stützrollen 16 und/oder ein Wabengitter geführt. Zwischen diesen sind Sprühdüsen 17 angeordnet, die ein aus einem Becken 18 entnommenes Kühlmedium auf die Unterseite des Transportbandes 13 sprühen, um das Metallband 14 zu erstarren.
Vorzugsweise sind an den beiden Bandschmalseiten des Transportbandes 13 - hier nicht dargestellte - mit diesem mitlaufende formgebende Segmente vorgesehen, die einander überlappend oder dicht aneinander anschließend angeordnet sind, um ein Auslaufen des sich verfestigenden Metalls zu verhindern. Der Abstand der Segmente ist entweder durch die Breite des Transportbandes 13 vorgegeben oder entsprechend der gewünschten Breite einstellbar.
Eine wie die Düse 9 aufgebaute und daher mit demselben Bezugszeichen versehene Düse 9 (Fig. 2) ist an mehreren Stellen mit Heizelementen ausgestattet, um durch die an die Metallschmelze angrenzenden Oberflächen eine konstante Umgebungstemperatur für die Schmelze zur Verfügung zu stellen. Vorzugsweise sind sowohl im Düsenoberteil 19 als auch im Düsenunterteil 20 Heizeinrichtungen vorgesehen. In dem Düsenoberteil 19 sind zwei Heizeinrichtungen 21 , 22 in Strömungsrichtung der Schmelze hintereinander angeordnet. Jede der Heizeinrichtungen 21 , 22 umfasst einen in einem Keramikrohr 23 gelagerten Heizstab 24. Auch in einem vorderen Wehr 25 der Düse 1 1 ist ein Heizstab 26 angebracht. Das Wehr ist dabei vorzugsweise innen als Keramikrohr ausgeführt. Der Heizstab 26 kann in dem Keramikrohr integriert sein. Das Wehr 25 steuert ausgangsseitig das Ausströmen der Schmelze aus der Düse 9.
Ebenso ist in dem Düsenunterteil 20 in einem Keramikrohr 27 ein Heizstab 28 untergebracht. Die Heizstäbe 24, 26, 28 sind beispielsweise aus Silicium- oder Lithiumcarbid hergestellt.
In einer weiteren Ausführungsform einer Düse 30 (Fig. 3) mit einem Unterteil 31 und einem Oberteil 32 sind auf der Oberseite Heizstäbe 33, 34 als ohmsche Widerstandsheizungen ausgebildet und erstrecken sich quer zur Fließrichtung der Schmelze, die die Düse über einen Damm 35 verlässt.
Die Düsenober- und -unterteile 19, 20 und 31 , 32 sind beispielsweise vollstän- dig aus einer feuerfesten Keramik aufgebaut. Auch in diesem Fall kann die feuerfeste Keramik mit Ausnehmungen versehen sein, in die von Keramik umman- teltete Heizelemente eingebracht werden, wie die Heizstäbe 33, 34.
Andererseits können je nach Schmelztemperatur des zu gießenden Metalls die Düsenober- und -unterteile 19, 20 und 31 , 32 auch aus einem Metall mit einer ausreichend höheren Schmelztemperatur bestehen. Wenn also das zu vergießende Metall Zinn, Zink oder Aluminium oder eine Legierung dieser Metalle ist, können die Düsenober- und -unterteile 19, 20 und 31 , 32 auch ganz oder teilweise aus einem Stahl bestehen, beispielsweise einem Edelstahl mit in Hinblick auf den Einsatz angepassten Eigenschaften, insbesondere in Hinblick auf die Korrosivität, wobei auch in diesem Fall Heizstäbe mit Keramikummantelungen in entsprechenden Ausnehmungen in den Düsenober- und -unterteilen eingebracht sein können.
Der Pfeil S in den Figuren 2 und 3 bezeichnet die Fließrichtung der Schmelze.
Bezugszeichenliste
1 Bandgießanlage
10 2 Ofen
3 Schmelze
4 Stopfenstange
5 Abstichkanal
6 Dichtring
15 7 Aufgabegefäß
8 Austrittskanal
9 Düse/Auslaufelement
10 Damm
1 1 Wehr
20 12 Gasdüse
13 Transportband
14 Metallband
15 Umlenk- oder Antriebsrolle
16 Stützrollen
25 17 Sprühdüsen
18 Becken
19 Düsenoberteil
20 Düsenunterteil
21 Heizeinrichtung
30 22 Heizeinrichtung
23 Keramikrohr
24 Heizstab
25 Wehr
26 Heizstab
35 27 Keramikrohr
28 Heizstab 5 29 -
30 Düse
31 Unterteil
32 Oberteil
33 Heizstab
10 34 Heizstab
35 Damm
S Pfeil für die Fließrichtung der Schmelze
15
20
25

Claims

Patentansprüche
1 . Schmelzenaufgabesystem zum horizontalen Bandgießen eines schmelzflüssigen Metalls (3) mit einem Auslaufelement, insbesondere mit einer Düse (9, 30),
dadurch gekennzeichnet,
dass im Bereich des Auslaufelements wenigstens eine Heizeinrichtung (21 , 22; 28) zur Erwärmung des Auslaufelements angeordnet ist.
2. Schmelzenaufgabesystem nach Anspruch 1 ,
dadurch gekennzeichnet,
dass das Auslaufelement selber mit der Heizeinrichtung (21 , 22; 28) ausgestattet ist oder dass die Heizeinrichtung benachbart zu dem Auslaufelement angeordnet ist.
3. Schmelzenaufgabesystem nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass das Auslaufelement wenigstens teilweise aus einer feuerfesten Keramik ausgebildet ist.
4. Schmelzenaufgabesystem nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
dass die Heizeinrichtung als Gasheizung und/oder als elektrische Heizung ausgebildet ist.
5. Schmelzenaufgabesystem nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
dass die Heizeinrichtung (21 , 22; 28) in einem Boden, in Seitenwänden, in einem Wehr, einem Damm, einem Überlauf und/oder in einem De- ekel des Auslaufelements bzw. der Düse angeordnet oder integriert ist. Schmelzenaufgabesystem nach Anspruch 5,
dadurch gekennzeichnet,
dass die Heizeinrichtung (21 , 22), insbesondere in Form von Heizstäben (24, 28), in Aussparungen oder Nuten im Boden und/oder im Deckel angeordnet sind.
Schmelzenaufgabesystem nach Anspruch 6,
dadurch gekennzeichnet,
dass die Heizeinrichtung (24, 28) von keramischen Bauteilen (23, 27) umgeben ist.
Schmelzenaufgabesystem nach Anspruch 6 oder 7,
dadurch gekennzeichnet,
dass die Heizstäbe (23, 27) als Carbid-Heizstäbe, insbesondere als Li- thiumcarbid- oder als Siliciumcarbid-Heizstäbe, ausgebildet sind.
Schmelzenaufgabesystem nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet,
dass die Heizeinrichtung wenigstens einen Porenbrenner umfasst. 10. Schmelzenaufgabesystem nach einem der Ansprüche 1 bis 9,
dadurch gekennzeichnet,
dass die Heizeinrichtung induktive Heizmittel umfasst.
PCT/EP2011/063098 2010-07-31 2011-07-29 SCHMELZENAUFGABESYSTEM ZUM BANDGIEßEN WO2012016922A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112013002475A BR112013002475A2 (pt) 2010-07-31 2011-07-29 sistema de carregamento de massa fundida para lingotamento de tiras.
EP11740894.8A EP2598268B1 (de) 2010-07-31 2011-07-29 SCHMELZENAUFGABESYSTEM ZUM BANDGIEßEN
CN201180037801.XA CN103025456B (zh) 2010-07-31 2011-07-29 用于带式铸造的熔体交付系统
KR1020137002950A KR20130041927A (ko) 2010-07-31 2011-07-29 스트립 주조용 용탕 공급 시스템
RU2013108515A RU2628590C2 (ru) 2010-07-31 2011-07-29 Система загрузки расплава для разливки полосы
US13/813,186 US20130269905A1 (en) 2010-07-31 2011-07-29 Melt charging system for strip casting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010033018A DE102010033018A1 (de) 2010-07-31 2010-07-31 Schmelzenaufgabesystem zum Bandgießen
DE102010033018.3 2010-07-31

Publications (1)

Publication Number Publication Date
WO2012016922A1 true WO2012016922A1 (de) 2012-02-09

Family

ID=44629759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/063098 WO2012016922A1 (de) 2010-07-31 2011-07-29 SCHMELZENAUFGABESYSTEM ZUM BANDGIEßEN

Country Status (8)

Country Link
US (1) US20130269905A1 (de)
EP (1) EP2598268B1 (de)
KR (1) KR20130041927A (de)
CN (1) CN103025456B (de)
BR (1) BR112013002475A2 (de)
DE (1) DE102010033018A1 (de)
RU (1) RU2628590C2 (de)
WO (1) WO2012016922A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017221969A1 (de) 2017-12-05 2019-06-06 Sms Group Gmbh Verfahren und Vorrichtung zur Herstellung eines bandförmigen Verbundmaterials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016116711A1 (de) 2016-09-07 2018-03-08 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Metallbandes auf einer horizontalen Bandgießanlage

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1396701A (en) * 1971-07-16 1975-06-04 Singer A R E Strip casting
US4619309A (en) * 1978-01-30 1986-10-28 Swiss Aluminium Ltd. Nozzle for strip casting
DE4039959C1 (de) * 1990-12-14 1992-01-23 Wieland-Werke Ag, 7900 Ulm, De
US5439047A (en) * 1994-02-07 1995-08-08 Eckert; C. Edward Heated nozzle for continuous caster
DE19852275A1 (de) 1998-11-13 2000-05-25 Schloemann Siemag Ag Anlage und Verfahren zum Bandgießen
DE102004015713A1 (de) * 2004-03-29 2005-11-03 Thyssenkrupp Stahl Ag Gießdüse zum Vergießen von aus Magnesium oder einer Magnesiumlegierung erschmolzener Schmelze zu gegossenem Band
EP1946866A1 (de) * 2007-01-20 2008-07-23 MKM Mansfelder Kupfer und Messing GmbH Verfahren und Vorrichtung zum Vergiessen von NE-Metallschmelzen, insbesondere Kupfer oder Kupferlegierungen
WO2010149125A2 (de) * 2009-06-26 2010-12-29 Salzgitter Flachstahl Gmbh Verfahren und vorrichtung zum erzeugen von stahlbändern mittels bandgiessen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3587718A (en) * 1968-05-22 1971-06-28 Robert K Hopkins Continuous casting apparatus
DE4218587C1 (de) * 1991-09-27 1993-11-04 Wieland Werke Ag Verfahren und vorrichtung zur herstellung eines endabmessungsnahen metallbandes
EP2026922A1 (de) * 2006-05-16 2009-02-25 SMS Demag AG Heizeinrichtung zum vorwärmen eines flüssigmetall-transportbehälters

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1396701A (en) * 1971-07-16 1975-06-04 Singer A R E Strip casting
US4619309A (en) * 1978-01-30 1986-10-28 Swiss Aluminium Ltd. Nozzle for strip casting
DE4039959C1 (de) * 1990-12-14 1992-01-23 Wieland-Werke Ag, 7900 Ulm, De
US5439047A (en) * 1994-02-07 1995-08-08 Eckert; C. Edward Heated nozzle for continuous caster
DE19852275A1 (de) 1998-11-13 2000-05-25 Schloemann Siemag Ag Anlage und Verfahren zum Bandgießen
DE102004015713A1 (de) * 2004-03-29 2005-11-03 Thyssenkrupp Stahl Ag Gießdüse zum Vergießen von aus Magnesium oder einer Magnesiumlegierung erschmolzener Schmelze zu gegossenem Band
EP1946866A1 (de) * 2007-01-20 2008-07-23 MKM Mansfelder Kupfer und Messing GmbH Verfahren und Vorrichtung zum Vergiessen von NE-Metallschmelzen, insbesondere Kupfer oder Kupferlegierungen
WO2010149125A2 (de) * 2009-06-26 2010-12-29 Salzgitter Flachstahl Gmbh Verfahren und vorrichtung zum erzeugen von stahlbändern mittels bandgiessen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017221969A1 (de) 2017-12-05 2019-06-06 Sms Group Gmbh Verfahren und Vorrichtung zur Herstellung eines bandförmigen Verbundmaterials
EP3495086A1 (de) 2017-12-05 2019-06-12 SMS Group GmbH Verfahren und vorrichtung zur herstellung eines bandförmigen verbundmaterials

Also Published As

Publication number Publication date
RU2628590C2 (ru) 2017-08-21
US20130269905A1 (en) 2013-10-17
CN103025456A (zh) 2013-04-03
BR112013002475A2 (pt) 2016-05-24
KR20130041927A (ko) 2013-04-25
EP2598268B1 (de) 2019-09-11
DE102010033018A1 (de) 2012-02-02
RU2013108515A (ru) 2014-09-10
CN103025456B (zh) 2016-04-20
EP2598268A1 (de) 2013-06-05

Similar Documents

Publication Publication Date Title
DE3855653T2 (de) Vorrichtung und Verfahren zum direkten Giessen von Metallband
WO2007087893A1 (de) Verfahren und vorrichtung zum stranggiessen
DE3423834A1 (de) Verfahren und vorrichtung zum kontinuierlichen giessen von metallschmelze, insbesondere von stahlschmelze
EP3495086B1 (de) Verfahren und vorrichtung zur herstellung eines bandförmigen verbundmaterials
EP2598268B1 (de) SCHMELZENAUFGABESYSTEM ZUM BANDGIEßEN
DE1508715A1 (de) Verfahren und Vorrichtung zum Giessen von Metallen
EP3993921B1 (de) Schmelzezuführung für bandgussanlagen
DE19509681C1 (de) Verfahren und Anlage zur kontinuierlichen Erzeugung bandförmiger Bleche
EP2445663B1 (de) Verfahren und vorrichtung zum erzeugen von stahlbändern mittels bandgiessen
DE2442469C3 (de) Vorrichtung zum Anfahren eines Stranges beim horizontalen Stranggießen
EP1077782A1 (de) Verfahren und vorrichtung zum endabmessungsnahen giessen von metall
DE1521195B2 (de) Verfahren und Vorrichtung zum kontinuierlichen Umgießen eines Metallstranges mit einer dicken Schicht eines Metalls mit einem niedrigeren Schmelzpunkt
DE2548939A1 (de) Verfahren zur herstellung von metallischem bandmaterial durch giessen
DE69400909T2 (de) Verfahren zur herstellung eines heizelementes zum transport flüssigen metalls, heizelement, verwendung und anwendung
DE1508809A1 (de) Verfahren und Durchlaufkokille zum Stranggiessen von Metallen,insbesondere in Form von Brammen,Platten oder Blechen
DE2362702C3 (de) Vorrichtung zum Zuführen, Fördern und Dosieren einer Metallschmelze zu einer Stranggießkokille
DE60316568T2 (de) Bandtemperaturregelvorrichtung in einer kontinuierlichen bandgiessanlage
DE2149941C3 (de) Kühlsystem für die Walzen einer Walzenkokille
DE3141577C2 (de)
DE4410511A1 (de) Verfahren und Vorrichtung zum endabmessungsnahen Vergießen von Schmelzen
DE2406252B2 (de) Verfahren und Vorrichtung zum Stranggießen und Weiterverarbeiten des gegossenen Strangs
EP3344407A1 (de) SCHMELZENAUFGABESYSTEM FÜR EINE HORIZONTALE BANDGIEßANLAGE
DE2135289A1 (de)
EP1144705B1 (de) Verfahren und vorrichtung zur erzeugung von beschichteten strängen aus metall, insbesondere von bändern aus stahl
DE1295757B (de) Vorrichtung zur Entnahme von fluessigem Metall und Schlacke aus der axial angeordneten Entleerungsoeffnung eines Drehrohrofens

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180037801.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11740894

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011740894

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137002950

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013108515

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13813186

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013002475

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013002475

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130131